Files
DocsGPT/application/retriever/classic_rag.py
Siddhant Rai 3f7de867cc feat: model registry and capabilities for multi-provider support (#2158)
* feat: Implement model registry and capabilities for multi-provider support

- Added ModelRegistry to manage available models and their capabilities.
- Introduced ModelProvider enum for different LLM providers.
- Created ModelCapabilities dataclass to define model features.
- Implemented methods to load models based on API keys and settings.
- Added utility functions for model management in model_utils.py.
- Updated settings.py to include provider-specific API keys.
- Refactored LLM classes (Anthropic, OpenAI, Google, etc.) to utilize new model registry.
- Enhanced utility functions to handle token limits and model validation.
- Improved code structure and logging for better maintainability.

* feat: Add model selection feature with API integration and UI component

* feat: Add model selection and default model functionality in agent management

* test: Update assertions and formatting in stream processing tests

* refactor(llm): Standardize model identifier to model_id

* fix tests

---------

Co-authored-by: Alex <a@tushynski.me>
2025-11-14 13:13:19 +02:00

201 lines
7.8 KiB
Python

import logging
import os
from application.core.settings import settings
from application.llm.llm_creator import LLMCreator
from application.retriever.base import BaseRetriever
from application.utils import num_tokens_from_string
from application.vectorstore.vector_creator import VectorCreator
class ClassicRAG(BaseRetriever):
def __init__(
self,
source,
chat_history=None,
prompt="",
chunks=2,
doc_token_limit=50000,
model_id="docsgpt-local",
user_api_key=None,
llm_name=settings.LLM_PROVIDER,
api_key=settings.API_KEY,
decoded_token=None,
):
self.original_question = source.get("question", "")
self.chat_history = chat_history if chat_history is not None else []
self.prompt = prompt
if isinstance(chunks, str):
try:
self.chunks = int(chunks)
except ValueError:
logging.warning(
f"Invalid chunks value '{chunks}', using default value 2"
)
self.chunks = 2
else:
self.chunks = chunks
user_identifier = user_api_key if user_api_key else "default"
logging.info(
f"ClassicRAG initialized with chunks={self.chunks}, user_api_key={user_identifier}, "
f"sources={'active_docs' in source and source['active_docs'] is not None}"
)
self.model_id = model_id
self.doc_token_limit = doc_token_limit
self.user_api_key = user_api_key
self.llm_name = llm_name
self.api_key = api_key
self.llm = LLMCreator.create_llm(
self.llm_name,
api_key=self.api_key,
user_api_key=self.user_api_key,
decoded_token=decoded_token,
)
if "active_docs" in source and source["active_docs"] is not None:
if isinstance(source["active_docs"], list):
self.vectorstores = source["active_docs"]
else:
self.vectorstores = [source["active_docs"]]
else:
self.vectorstores = []
self.question = self._rephrase_query()
self.decoded_token = decoded_token
self._validate_vectorstore_config()
def _validate_vectorstore_config(self):
"""Validate vectorstore IDs and remove any empty/invalid entries"""
if not self.vectorstores:
logging.warning("No vectorstores configured for retrieval")
return
invalid_ids = [
vs_id for vs_id in self.vectorstores if not vs_id or not vs_id.strip()
]
if invalid_ids:
logging.warning(f"Found invalid vectorstore IDs: {invalid_ids}")
self.vectorstores = [
vs_id for vs_id in self.vectorstores if vs_id and vs_id.strip()
]
def _rephrase_query(self):
"""Rephrase user query with chat history context for better retrieval"""
if (
not self.original_question
or not self.chat_history
or self.chat_history == []
or self.chunks == 0
or not self.vectorstores
):
return self.original_question
prompt = (
"Given the following conversation history:\n"
f"{self.chat_history}\n\n"
"Rephrase the following user question to be a standalone search query "
"that captures all relevant context from the conversation:\n"
)
messages = [
{"role": "system", "content": prompt},
{"role": "user", "content": self.original_question},
]
try:
rephrased_query = self.llm.gen(model=self.model_id, messages=messages)
print(f"Rephrased query: {rephrased_query}")
return rephrased_query if rephrased_query else self.original_question
except Exception as e:
logging.error(f"Error rephrasing query: {e}", exc_info=True)
return self.original_question
def _get_data(self):
if self.chunks == 0 or not self.vectorstores:
logging.info(
f"ClassicRAG._get_data: Skipping retrieval - chunks={self.chunks}, "
f"vectorstores_count={len(self.vectorstores) if self.vectorstores else 0}"
)
return []
all_docs = []
chunks_per_source = max(1, self.chunks // len(self.vectorstores))
token_budget = max(int(self.doc_token_limit * 0.9), 100)
cumulative_tokens = 0
for vectorstore_id in self.vectorstores:
if vectorstore_id:
try:
docsearch = VectorCreator.create_vectorstore(
settings.VECTOR_STORE, vectorstore_id, settings.EMBEDDINGS_KEY
)
docs_temp = docsearch.search(
self.question, k=max(chunks_per_source * 2, 20)
)
for doc in docs_temp:
if cumulative_tokens >= token_budget:
break
if hasattr(doc, "page_content") and hasattr(doc, "metadata"):
page_content = doc.page_content
metadata = doc.metadata
else:
page_content = doc.get("text", doc.get("page_content", ""))
metadata = doc.get("metadata", {})
title = metadata.get(
"title", metadata.get("post_title", page_content)
)
if not isinstance(title, str):
title = str(title)
title = title.split("/")[-1]
filename = (
metadata.get("filename")
or metadata.get("file_name")
or metadata.get("source")
)
if isinstance(filename, str):
filename = os.path.basename(filename) or filename
else:
filename = title
if not filename:
filename = title
source_path = metadata.get("source") or vectorstore_id
doc_text_with_header = f"{filename}\n{page_content}"
doc_tokens = num_tokens_from_string(doc_text_with_header)
if cumulative_tokens + doc_tokens < token_budget:
all_docs.append(
{
"title": title,
"text": page_content,
"source": source_path,
"filename": filename,
}
)
cumulative_tokens += doc_tokens
if cumulative_tokens >= token_budget:
break
except Exception as e:
logging.error(
f"Error searching vectorstore {vectorstore_id}: {e}",
exc_info=True,
)
continue
logging.info(
f"ClassicRAG._get_data: Retrieval complete - retrieved {len(all_docs)} documents "
f"(requested chunks={self.chunks}, chunks_per_source={chunks_per_source}, "
f"cumulative_tokens={cumulative_tokens}/{token_budget})"
)
return all_docs
def search(self, query: str = ""):
"""Search for documents using optional query override"""
if query:
self.original_question = query
self.question = self._rephrase_query()
return self._get_data()