Files
DocsGPT/application/llm/handlers/google.py
2025-11-23 18:35:51 +00:00

88 lines
3.3 KiB
Python

import uuid
from typing import Any, Dict, Generator
from application.llm.handlers.base import LLMHandler, LLMResponse, ToolCall
class GoogleLLMHandler(LLMHandler):
"""Handler for Google's GenAI API."""
def parse_response(self, response: Any) -> LLMResponse:
"""Parse Google response into standardized format."""
if isinstance(response, str):
return LLMResponse(
content=response,
tool_calls=[],
finish_reason="stop",
raw_response=response,
)
if hasattr(response, "candidates"):
parts = response.candidates[0].content.parts if response.candidates else []
tool_calls = []
for idx, part in enumerate(parts):
if hasattr(part, "function_call") and part.function_call is not None:
has_sig = hasattr(part, "thought_signature") and part.thought_signature is not None
thought_sig = part.thought_signature if has_sig else None
tool_calls.append(
ToolCall(
id=str(uuid.uuid4()),
name=part.function_call.name,
arguments=part.function_call.args,
index=idx,
thought_signature=thought_sig,
)
)
content = " ".join(
part.text
for part in parts
if hasattr(part, "text") and part.text is not None
)
return LLMResponse(
content=content,
tool_calls=tool_calls,
finish_reason="tool_calls" if tool_calls else "stop",
raw_response=response,
)
else:
# This branch handles individual Part objects from streaming responses
tool_calls = []
if hasattr(response, "function_call") and response.function_call is not None:
has_sig = hasattr(response, "thought_signature") and response.thought_signature is not None
thought_sig = response.thought_signature if has_sig else None
tool_calls.append(
ToolCall(
id=str(uuid.uuid4()),
name=response.function_call.name,
arguments=response.function_call.args,
thought_signature=thought_sig,
)
)
return LLMResponse(
content=response.text if hasattr(response, "text") else "",
tool_calls=tool_calls,
finish_reason="tool_calls" if tool_calls else "stop",
raw_response=response,
)
def create_tool_message(self, tool_call: ToolCall, result: Any) -> Dict:
"""Create Google-style tool message."""
return {
"role": "model",
"content": [
{
"function_response": {
"name": tool_call.name,
"response": {"result": result},
}
}
],
}
def _iterate_stream(self, response: Any) -> Generator:
"""Iterate through Google streaming response."""
for chunk in response:
yield chunk