import logging from google import genai from google.genai import types from application.core.settings import settings from application.llm.base import BaseLLM from application.storage.storage_creator import StorageCreator class GoogleLLM(BaseLLM): def __init__( self, api_key=None, user_api_key=None, decoded_token=None, *args, **kwargs ): super().__init__(*args, **kwargs) self.api_key = api_key or settings.GOOGLE_API_KEY or settings.API_KEY self.user_api_key = user_api_key self.client = genai.Client(api_key=self.api_key) self.storage = StorageCreator.get_storage() def get_supported_attachment_types(self): """ Return a list of MIME types supported by Google Gemini for file uploads. Returns: list: List of supported MIME types """ return [ "application/pdf", "image/png", "image/jpeg", "image/jpg", "image/webp", "image/gif", "application/pdf", "image/png", "image/jpeg", "image/jpg", "image/webp", "image/gif", ] def prepare_messages_with_attachments(self, messages, attachments=None): """ Process attachments using Google AI's file API for more efficient handling. Args: messages (list): List of message dictionaries. attachments (list): List of attachment dictionaries with content and metadata. Returns: list: Messages formatted with file references for Google AI API. """ if not attachments: return messages prepared_messages = messages.copy() # Find the user message to attach files to the last one user_message_index = None for i in range(len(prepared_messages) - 1, -1, -1): if prepared_messages[i].get("role") == "user": user_message_index = i break if user_message_index is None: user_message = {"role": "user", "content": []} prepared_messages.append(user_message) user_message_index = len(prepared_messages) - 1 if isinstance(prepared_messages[user_message_index].get("content"), str): text_content = prepared_messages[user_message_index]["content"] prepared_messages[user_message_index]["content"] = [ {"type": "text", "text": text_content} ] elif not isinstance(prepared_messages[user_message_index].get("content"), list): prepared_messages[user_message_index]["content"] = [] files = [] for attachment in attachments: mime_type = attachment.get("mime_type") if mime_type in self.get_supported_attachment_types(): try: file_uri = self._upload_file_to_google(attachment) logging.info( f"GoogleLLM: Successfully uploaded file, got URI: {file_uri}" ) files.append({"file_uri": file_uri, "mime_type": mime_type}) except Exception as e: logging.error( f"GoogleLLM: Error uploading file: {e}", exc_info=True ) if "content" in attachment: prepared_messages[user_message_index]["content"].append( { "type": "text", "text": f"[File could not be processed: {attachment.get('path', 'unknown')}]", } ) if files: logging.info(f"GoogleLLM: Adding {len(files)} files to message") prepared_messages[user_message_index]["content"].append({"files": files}) return prepared_messages def _upload_file_to_google(self, attachment): """ Upload a file to Google AI and return the file URI. Args: attachment (dict): Attachment dictionary with path and metadata. Returns: str: Google AI file URI for the uploaded file. """ if "google_file_uri" in attachment: return attachment["google_file_uri"] file_path = attachment.get("path") if not file_path: raise ValueError("No file path provided in attachment") if not self.storage.file_exists(file_path): raise FileNotFoundError(f"File not found: {file_path}") try: file_uri = self.storage.process_file( file_path, lambda local_path, **kwargs: self.client.files.upload( file=local_path ).uri, ) from application.core.mongo_db import MongoDB mongo = MongoDB.get_client() db = mongo[settings.MONGO_DB_NAME] attachments_collection = db["attachments"] if "_id" in attachment: attachments_collection.update_one( {"_id": attachment["_id"]}, {"$set": {"google_file_uri": file_uri}} ) return file_uri except Exception as e: logging.error(f"Error uploading file to Google AI: {e}", exc_info=True) raise def _clean_messages_google(self, messages): """ Convert OpenAI format messages to Google AI format and collect system prompts. Returns: tuple[list[types.Content], Optional[str]]: cleaned messages and optional combined system instruction. """ cleaned_messages = [] system_instructions = [] def _extract_system_text(content): if isinstance(content, str): return content if isinstance(content, list): parts = [] for item in content: if isinstance(item, dict) and "text" in item and item["text"] is not None: parts.append(item["text"]) return "\n".join(parts) return "" for message in messages: role = message.get("role") content = message.get("content") # Gemini only accepts user/model in the contents list. if role == "system": sys_text = _extract_system_text(content) if sys_text: system_instructions.append(sys_text) continue if role == "assistant": role = "model" elif role == "tool": role = "model" parts = [] if role and content is not None: if isinstance(content, str): parts = [types.Part.from_text(text=content)] elif isinstance(content, list): for item in content: if "text" in item: parts.append(types.Part.from_text(text=item["text"])) elif "function_call" in item: # Remove null values from args to avoid API errors cleaned_args = self._remove_null_values( item["function_call"]["args"] ) # Create function call part with thought_signature if present # For Gemini 3 models, we need to include thought_signature if "thought_signature" in item: # Use Part constructor with functionCall and thoughtSignature parts.append( types.Part( functionCall=types.FunctionCall( name=item["function_call"]["name"], args=cleaned_args, ), thoughtSignature=item["thought_signature"], ) ) else: # Use helper method when no thought_signature parts.append( types.Part.from_function_call( name=item["function_call"]["name"], args=cleaned_args, ) ) elif "function_response" in item: parts.append( types.Part.from_function_response( name=item["function_response"]["name"], response=item["function_response"]["response"], ) ) elif "files" in item: for file_data in item["files"]: parts.append( types.Part.from_uri( file_uri=file_data["file_uri"], mime_type=file_data["mime_type"], ) ) else: raise ValueError( f"Unexpected content dictionary format:{item}" ) else: raise ValueError(f"Unexpected content type: {type(content)}") if parts: cleaned_messages.append(types.Content(role=role, parts=parts)) system_instruction = "\n\n".join(system_instructions) if system_instructions else None return cleaned_messages, system_instruction def _clean_schema(self, schema_obj): """ Recursively remove unsupported fields from schema objects and validate required properties. """ if not isinstance(schema_obj, dict): return schema_obj allowed_fields = { "type", "description", "items", "properties", "required", "enum", "pattern", "minimum", "maximum", "nullable", "default", } cleaned = {} for key, value in schema_obj.items(): if key not in allowed_fields: continue elif key == "type" and isinstance(value, str): cleaned[key] = value.upper() elif isinstance(value, dict): cleaned[key] = self._clean_schema(value) elif isinstance(value, list): cleaned[key] = [self._clean_schema(item) for item in value] else: cleaned[key] = value # Validate that required properties actually exist in properties if "required" in cleaned and "properties" in cleaned: valid_required = [] properties_keys = set(cleaned["properties"].keys()) for required_prop in cleaned["required"]: if required_prop in properties_keys: valid_required.append(required_prop) if valid_required: cleaned["required"] = valid_required else: cleaned.pop("required", None) elif "required" in cleaned and "properties" not in cleaned: cleaned.pop("required", None) return cleaned def _clean_tools_format(self, tools_list): """Convert OpenAI format tools to Google AI format.""" genai_tools = [] for tool_data in tools_list: if tool_data["type"] == "function": function = tool_data["function"] parameters = function["parameters"] properties = parameters.get("properties", {}) if properties: cleaned_properties = {} for k, v in properties.items(): cleaned_properties[k] = self._clean_schema(v) genai_function = dict( name=function["name"], description=function["description"], parameters={ "type": "OBJECT", "properties": cleaned_properties, "required": ( parameters["required"] if "required" in parameters else [] ), }, ) else: genai_function = dict( name=function["name"], description=function["description"], ) genai_tool = types.Tool(function_declarations=[genai_function]) genai_tools.append(genai_tool) return genai_tools def _extract_preview_from_message(self, message): """Get a short, human-readable preview from the last message.""" try: if hasattr(message, "parts"): for part in reversed(message.parts): if getattr(part, "text", None): return part.text function_call = getattr(part, "function_call", None) if function_call: name = getattr(function_call, "name", "") or "function_call" return f"function_call:{name}" function_response = getattr(part, "function_response", None) if function_response: name = getattr(function_response, "name", "") or "function_response" return f"function_response:{name}" if isinstance(message, dict): content = message.get("content") if isinstance(content, str): return content if isinstance(content, list): for item in reversed(content): if isinstance(item, str): return item if isinstance(item, dict): if item.get("text"): return item["text"] if item.get("function_call"): fn = item["function_call"] if isinstance(fn, dict): name = fn.get("name") or "function_call" return f"function_call:{name}" return "function_call" if item.get("function_response"): resp = item["function_response"] if isinstance(resp, dict): name = resp.get("name") or "function_response" return f"function_response:{name}" return "function_response" if "text" in message and isinstance(message["text"], str): return message["text"] except Exception: pass return str(message) def _summarize_messages_for_log(self, messages, preview_chars=20): """Return a compact summary for logging to avoid huge payloads.""" message_count = len(messages) if messages else 0 last_preview = "" if messages: last_preview = self._extract_preview_from_message(messages[-1]) or "" last_preview = str(last_preview).replace("\n", " ") if len(last_preview) > preview_chars: last_preview = f"{last_preview[:preview_chars]}..." return f"count={message_count}, last='{last_preview}'" def _raw_gen( self, baseself, model, messages, stream=False, tools=None, formatting="openai", response_schema=None, **kwargs, ): """Generate content using Google AI API without streaming.""" client = genai.Client(api_key=self.api_key) system_instruction = None if formatting == "openai": messages, system_instruction = self._clean_messages_google(messages) config = types.GenerateContentConfig() if system_instruction: config.system_instruction = system_instruction if tools: cleaned_tools = self._clean_tools_format(tools) config.tools = cleaned_tools # Add response schema for structured output if provided if response_schema: config.response_schema = response_schema config.response_mime_type = "application/json" response = client.models.generate_content( model=model, contents=messages, config=config, ) if tools: return response else: return response.text def _raw_gen_stream( self, baseself, model, messages, stream=True, tools=None, formatting="openai", response_schema=None, **kwargs, ): """Generate content using Google AI API with streaming.""" client = genai.Client(api_key=self.api_key) system_instruction = None if formatting == "openai": messages, system_instruction = self._clean_messages_google(messages) config = types.GenerateContentConfig() if system_instruction: config.system_instruction = system_instruction if tools: cleaned_tools = self._clean_tools_format(tools) config.tools = cleaned_tools # Add response schema for structured output if provided if response_schema: config.response_schema = response_schema config.response_mime_type = "application/json" # Check if we have both tools and file attachments has_attachments = False for message in messages: for part in message.parts: if hasattr(part, "file_data") and part.file_data is not None: has_attachments = True break if has_attachments: break messages_summary = self._summarize_messages_for_log(messages) logging.info( "GoogleLLM: Starting stream generation. Model: %s, Messages: %s, Has attachments: %s", model, messages_summary, has_attachments, ) response = client.models.generate_content_stream( model=model, contents=messages, config=config, ) try: for chunk in response: if hasattr(chunk, "candidates") and chunk.candidates: for candidate in chunk.candidates: if candidate.content and candidate.content.parts: for part in candidate.content.parts: if part.function_call: yield part elif part.text: yield part.text elif hasattr(chunk, "text"): yield chunk.text finally: if hasattr(response, "close"): response.close() def _supports_tools(self): """Return whether this LLM supports function calling.""" return True def _supports_structured_output(self): """Return whether this LLM supports structured JSON output.""" return True def prepare_structured_output_format(self, json_schema): """Convert JSON schema to Google AI structured output format.""" if not json_schema: return None type_map = { "object": "OBJECT", "array": "ARRAY", "string": "STRING", "integer": "INTEGER", "number": "NUMBER", "boolean": "BOOLEAN", } def convert(schema): if not isinstance(schema, dict): return schema result = {} schema_type = schema.get("type") if schema_type: result["type"] = type_map.get(schema_type.lower(), schema_type.upper()) for key in [ "description", "nullable", "enum", "minItems", "maxItems", "required", "propertyOrdering", ]: if key in schema: result[key] = schema[key] if "format" in schema: format_value = schema["format"] if schema_type == "string": if format_value == "date": result["format"] = "date-time" elif format_value in ["enum", "date-time"]: result["format"] = format_value else: result["format"] = format_value if "properties" in schema: result["properties"] = { k: convert(v) for k, v in schema["properties"].items() } if "propertyOrdering" not in result and result.get("type") == "OBJECT": result["propertyOrdering"] = list(result["properties"].keys()) if "items" in schema: result["items"] = convert(schema["items"]) for field in ["anyOf", "oneOf", "allOf"]: if field in schema: result[field] = [convert(s) for s in schema[field]] return result try: return convert(json_schema) except Exception as e: logging.error( f"Error preparing structured output format for Google: {e}", exc_info=True, ) return None