from google import genai from google.genai import types from application.core.settings import settings from application.llm.base import BaseLLM class GoogleLLM(BaseLLM): def __init__(self, api_key=None, user_api_key=None, *args, **kwargs): super().__init__(*args, **kwargs) self.client = genai.Client(api_key="AIzaSyDmbZX65qlQKXcvfMBkJV2KwH82_0yIMlE") def _clean_messages_google(self, messages): cleaned_messages = [] for message in messages: role = message.get("role") content = message.get("content") if role and content is not None: if isinstance(content, str): parts = [types.Part.from_text(content)] elif isinstance(content, list): parts = content else: raise ValueError(f"Unexpected content type: {type(content)}") cleaned_messages.append(types.Content(role=role, parts=parts)) return cleaned_messages def _clean_tools_format(self, tools_list): genai_tools = [] for tool_data in tools_list: if tool_data["type"] == "function": function = tool_data["function"] genai_function = dict( name=function["name"], description=function["description"], parameters={ "type": "OBJECT", "properties": { k: { **v, "type": v["type"].upper() if v["type"] else None, } for k, v in function["parameters"]["properties"].items() }, "required": ( function["parameters"]["required"] if "required" in function["parameters"] else [] ), }, ) genai_tool = types.Tool(function_declarations=[genai_function]) genai_tools.append(genai_tool) return genai_tools def _raw_gen( self, baseself, model, messages, stream=False, tools=None, formatting="openai", **kwargs, ): client = self.client if formatting == "openai": messages = self._clean_messages_google(messages) config = types.GenerateContentConfig() if tools: cleaned_tools = self._clean_tools_format(tools) config.tools = cleaned_tools response = client.models.generate_content( model=model, contents=messages, config=config, ) return response else: response = client.models.generate_content( model=model, contents=messages, config=config ) return response.text def _raw_gen_stream( self, baseself, model, messages, stream=True, tools=None, formatting="openai", **kwargs, ): client = self.client if formatting == "openai": cleaned_messages = self._clean_messages_google(messages) config = types.GenerateContentConfig() if tools: cleaned_tools = self._clean_tools_format(tools) config.tools = cleaned_tools response = client.models.generate_content_stream( model=model, contents=cleaned_messages, config=config, ) for chunk in response: if chunk.text is not None: yield chunk.text def _supports_tools(self): return True