from application.llm.base import BaseLLM from application.core.settings import settings class AnthropicLLM(BaseLLM): def __init__(self, api_key=None, *args, **kwargs): from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT super().__init__(*args, **kwargs) self.api_key = ( api_key or settings.ANTHROPIC_API_KEY ) # If not provided, use a default from settings self.anthropic = Anthropic(api_key=self.api_key) self.HUMAN_PROMPT = HUMAN_PROMPT self.AI_PROMPT = AI_PROMPT def _raw_gen( self, baseself, model, messages, max_tokens=300, stream=False, **kwargs ): context = messages[0]["content"] user_question = messages[-1]["content"] prompt = f"### Context \n {context} \n ### Question \n {user_question}" if stream: return self.gen_stream(model, prompt, max_tokens, **kwargs) completion = self.anthropic.completions.create( model=model, max_tokens_to_sample=max_tokens, stream=stream, prompt=f"{self.HUMAN_PROMPT} {prompt}{self.AI_PROMPT}", ) return completion.completion def _raw_gen_stream(self, baseself, model, messages, max_tokens=300, **kwargs): context = messages[0]["content"] user_question = messages[-1]["content"] prompt = f"### Context \n {context} \n ### Question \n {user_question}" stream_response = self.anthropic.completions.create( model=model, prompt=f"{self.HUMAN_PROMPT} {prompt}{self.AI_PROMPT}", max_tokens_to_sample=max_tokens, stream=True, ) for completion in stream_response: yield completion.completion