import os import dotenv import tiktoken from langchain import FAISS from langchain.embeddings import OpenAIEmbeddings dotenv.load_dotenv() embeddings_key = os.getenv("API_KEY") docsearch = FAISS.load_local('outputs/inputs', OpenAIEmbeddings(openai_api_key=embeddings_key)) d1 = docsearch.similarity_search("Whats new in 1.5.3?") print(d1) print("=====================================") print("=====================================") for i in d1: print("docs length (tokens)") doc_len = len(tiktoken.get_encoding("cl100k_base").encode(i.page_content)) print(doc_len)