import types import pytest from application.llm.openai import OpenAILLM class FakeChatCompletions: def __init__(self): self.last_kwargs = None class _Msg: def __init__(self, content=None, tool_calls=None): self.content = content self.tool_calls = tool_calls class _Delta: def __init__(self, content=None): self.content = content class _Choice: def __init__(self, content=None, delta=None, finish_reason="stop"): self.message = FakeChatCompletions._Msg(content=content) self.delta = FakeChatCompletions._Delta(content=delta) self.finish_reason = finish_reason class _StreamLine: def __init__(self, deltas): self.choices = [FakeChatCompletions._Choice(delta=d) for d in deltas] class _Response: def __init__(self, choices=None, lines=None): self._choices = choices or [] self._lines = lines or [] @property def choices(self): return self._choices def __iter__(self): for line in self._lines: yield line def create(self, **kwargs): self.last_kwargs = kwargs # default non-streaming: return content if not kwargs.get("stream"): return FakeChatCompletions._Response(choices=[ FakeChatCompletions._Choice(content="hello world") ]) # streaming: yield line objects each with choices[0].delta.content return FakeChatCompletions._Response(lines=[ FakeChatCompletions._StreamLine(["part1"]), FakeChatCompletions._StreamLine(["part2"]), ]) class FakeClient: def __init__(self): self.chat = types.SimpleNamespace(completions=FakeChatCompletions()) @pytest.fixture def openai_llm(monkeypatch): llm = OpenAILLM(api_key="sk-test", user_api_key=None) llm.storage = types.SimpleNamespace( get_file=lambda path: types.SimpleNamespace(read=lambda: b"img"), file_exists=lambda path: True, process_file=lambda path, processor_func, **kwargs: "file_id_123", ) llm.client = FakeClient() return llm def test_clean_messages_openai_variants(openai_llm): messages = [ {"role": "system", "content": "sys"}, {"role": "model", "content": "asst"}, {"role": "user", "content": [ {"text": "hello"}, {"function_call": {"call_id": "c1", "name": "fn", "args": {"a": 1}}}, {"function_response": {"call_id": "c1", "name": "fn", "response": {"result": 42}}}, {"type": "image_url", "image_url": {"url": ""}}, ]}, ] cleaned = openai_llm._clean_messages_openai(messages) roles = [m["role"] for m in cleaned] assert roles.count("assistant") >= 1 assert any(m["role"] == "tool" for m in cleaned) assert any(isinstance(m["content"], list) and any( part.get("type") == "image_url" for part in m["content"] if isinstance(part, dict) ) for m in cleaned if m["role"] == "user") def test_raw_gen_calls_openai_client_and_returns_content(openai_llm): msgs = [ {"role": "system", "content": "sys"}, {"role": "user", "content": "hello"}, ] content = openai_llm._raw_gen(openai_llm, model="gpt-4o", messages=msgs, stream=False) assert content == "hello world" passed = openai_llm.client.chat.completions.last_kwargs assert passed["model"] == "gpt-4o" assert isinstance(passed["messages"], list) assert passed["stream"] is False def test_raw_gen_stream_yields_chunks(openai_llm): msgs = [ {"role": "user", "content": "hi"}, ] gen = openai_llm._raw_gen_stream(openai_llm, model="gpt", messages=msgs, stream=True) chunks = list(gen) assert "part1" in "".join(chunks) assert "part2" in "".join(chunks) def test_prepare_structured_output_format_enforces_required_and_strict(openai_llm): schema = { "type": "object", "properties": { "a": {"type": "string"}, "b": {"type": "number"}, }, } result = openai_llm.prepare_structured_output_format(schema) assert result["type"] == "json_schema" js = result["json_schema"] assert js["strict"] is True assert set(js["schema"]["required"]) == {"a", "b"} assert js["schema"]["additionalProperties"] is False def test_prepare_messages_with_attachments_image_and_pdf(openai_llm, monkeypatch): monkeypatch.setattr(openai_llm, "_get_base64_image", lambda att: "AAA=") monkeypatch.setattr(openai_llm, "_upload_file_to_openai", lambda att: "file_xyz") messages = [{"role": "user", "content": "Hi"}] attachments = [ {"path": "/tmp/img.png", "mime_type": "image/png"}, {"path": "/tmp/doc.pdf", "mime_type": "application/pdf"}, ] out = openai_llm.prepare_messages_with_attachments(messages, attachments) # last user message should have list content with text and two attachments user_msg = next(m for m in out if m["role"] == "user") assert isinstance(user_msg["content"], list) types_in_content = [p.get("type") for p in user_msg["content"] if isinstance(p, dict)] assert "image_url" in types_in_content or any( isinstance(p, dict) and p.get("image_url") for p in user_msg["content"] ) assert any(isinstance(p, dict) and p.get("file", {}).get("file_id") == "file_xyz" for p in user_msg["content"])