Compare commits

..

71 Commits

Author SHA1 Message Date
dependabot[bot]
f7e167d2ec chore(deps): bump the npm_and_yarn group across 1 directory with 4 updates
Bumps the npm_and_yarn group with 3 updates in the /docs directory: [next](https://github.com/vercel/next.js), [dompurify](https://github.com/cure53/DOMPurify) and [mermaid](https://github.com/mermaid-js/mermaid).


Updates `next` from 15.3.3 to 15.5.6
- [Release notes](https://github.com/vercel/next.js/releases)
- [Changelog](https://github.com/vercel/next.js/blob/canary/release.js)
- [Commits](https://github.com/vercel/next.js/compare/v15.3.3...v15.5.6)

Updates `dompurify` from 3.1.6 to 3.3.0
- [Release notes](https://github.com/cure53/DOMPurify/releases)
- [Commits](https://github.com/cure53/DOMPurify/compare/3.1.6...3.3.0)

Updates `mermaid` from 10.9.3 to 10.9.5
- [Release notes](https://github.com/mermaid-js/mermaid/releases)
- [Commits](https://github.com/mermaid-js/mermaid/compare/v10.9.3...v10.9.5)

Updates `mermaid` from 10.9.3 to 11.12.1
- [Release notes](https://github.com/mermaid-js/mermaid/releases)
- [Commits](https://github.com/mermaid-js/mermaid/compare/v10.9.3...v10.9.5)

Updates `micromatch` from 4.0.5 to 4.0.8
- [Release notes](https://github.com/micromatch/micromatch/releases)
- [Changelog](https://github.com/micromatch/micromatch/blob/master/CHANGELOG.md)
- [Commits](https://github.com/micromatch/micromatch/compare/4.0.5...4.0.8)

---
updated-dependencies:
- dependency-name: next
  dependency-version: 15.5.6
  dependency-type: direct:production
  dependency-group: npm_and_yarn
- dependency-name: dompurify
  dependency-version: 3.3.0
  dependency-type: indirect
  dependency-group: npm_and_yarn
- dependency-name: mermaid
  dependency-version: 10.9.5
  dependency-type: indirect
  dependency-group: npm_and_yarn
- dependency-name: mermaid
  dependency-version: 11.12.1
  dependency-type: indirect
  dependency-group: npm_and_yarn
- dependency-name: micromatch
  dependency-version: 4.0.8
  dependency-type: indirect
  dependency-group: npm_and_yarn
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-11-14 19:17:13 +00:00
Alex
9e58eb02b3 Update .env.development 2025-11-14 19:53:19 +02:00
Siddhant Rai
3f7de867cc feat: model registry and capabilities for multi-provider support (#2158)
* feat: Implement model registry and capabilities for multi-provider support

- Added ModelRegistry to manage available models and their capabilities.
- Introduced ModelProvider enum for different LLM providers.
- Created ModelCapabilities dataclass to define model features.
- Implemented methods to load models based on API keys and settings.
- Added utility functions for model management in model_utils.py.
- Updated settings.py to include provider-specific API keys.
- Refactored LLM classes (Anthropic, OpenAI, Google, etc.) to utilize new model registry.
- Enhanced utility functions to handle token limits and model validation.
- Improved code structure and logging for better maintainability.

* feat: Add model selection feature with API integration and UI component

* feat: Add model selection and default model functionality in agent management

* test: Update assertions and formatting in stream processing tests

* refactor(llm): Standardize model identifier to model_id

* fix tests

---------

Co-authored-by: Alex <a@tushynski.me>
2025-11-14 13:13:19 +02:00
Manish Madan
fbf7cf874b chore(dependabot): add react-widget npm dependency updates (#2146) 2025-11-07 17:17:46 +02:00
Manish Madan
ba7278b80f Merge pull request #2140 from arc53/dependabot/npm_and_yarn/frontend/husky-9.1.7
chore(deps-dev): bump husky from 8.0.3 to 9.1.7 in /frontend
2025-11-07 03:02:52 +05:30
ManishMadan2882
9d649de6f9 chore(eslint): migrate to ESLint 9 flat config format
- Add eslint.config.js with ESLint 9 flat config format
- Remove deprecated .eslintrc.cjs file
- Remove deprecated .eslintignore file (replaced by ignores in config)
- Maintain all existing ESLint rules and configurations
- Ensure compatibility with Husky 9.1.7
2025-11-07 02:59:51 +05:30
dependabot[bot]
7929afbf58 chore(deps-dev): bump husky from 8.0.3 to 9.1.7 in /frontend
Bumps [husky](https://github.com/typicode/husky) from 8.0.3 to 9.1.7.
- [Release notes](https://github.com/typicode/husky/releases)
- [Commits](https://github.com/typicode/husky/compare/v8.0.3...v9.1.7)

---
updated-dependencies:
- dependency-name: husky
  dependency-version: 9.1.7
  dependency-type: direct:development
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-11-06 21:27:39 +00:00
Manish Madan
ceaf942e70 Merge pull request #2139 from arc53/dependabot/npm_and_yarn/frontend/eslint-9.39.1
chore(deps-dev): bump eslint from 8.57.1 to 9.39.1 in /frontend
2025-11-07 02:33:32 +05:30
dependabot[bot]
f355601a44 chore(deps-dev): bump eslint from 8.57.1 to 9.39.1 in /frontend
Bumps [eslint](https://github.com/eslint/eslint) from 8.57.1 to 9.39.1.
- [Release notes](https://github.com/eslint/eslint/releases)
- [Commits](https://github.com/eslint/eslint/compare/v8.57.1...v9.39.1)

---
updated-dependencies:
- dependency-name: eslint
  dependency-version: 9.39.1
  dependency-type: direct:development
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-11-06 20:00:14 +00:00
Manish Madan
4ff99a1e86 Merge pull request #2138 from arc53/dependabot/npm_and_yarn/frontend/reduxjs/toolkit-2.10.1
chore(deps): bump @reduxjs/toolkit from 2.9.2 to 2.10.1 in /frontend
2025-11-07 01:28:58 +05:30
dependabot[bot]
129084ba92 chore(deps): bump @reduxjs/toolkit from 2.9.2 to 2.10.1 in /frontend
Bumps [@reduxjs/toolkit](https://github.com/reduxjs/redux-toolkit) from 2.9.2 to 2.10.1.
- [Release notes](https://github.com/reduxjs/redux-toolkit/releases)
- [Commits](https://github.com/reduxjs/redux-toolkit/compare/v2.9.2...v2.10.1)

---
updated-dependencies:
- dependency-name: "@reduxjs/toolkit"
  dependency-version: 2.10.1
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-11-06 19:56:28 +00:00
Manish Madan
2288df1293 Merge pull request #2141 from arc53/dependabot/npm_and_yarn/frontend/vite-7.2.0
chore(deps-dev): bump vite from 7.1.12 to 7.2.0 in /frontend
2025-11-07 01:05:29 +05:30
Manish Madan
d9dfac55e7 Merge pull request #2134 from arc53/dependabot/npm_and_yarn/frontend/types/mermaid-9.2.0
chore(deps-dev): bump @types/mermaid from 9.1.0 to 9.2.0 in /frontend
2025-11-06 17:46:59 +05:30
Nick
404cf4b7c7 Update quickstart.mdx (#2142)
Added missing **
2025-11-06 12:37:27 +02:00
dependabot[bot]
f1c1fc123b chore(deps-dev): bump vite from 7.1.12 to 7.2.0 in /frontend
Bumps [vite](https://github.com/vitejs/vite/tree/HEAD/packages/vite) from 7.1.12 to 7.2.0.
- [Release notes](https://github.com/vitejs/vite/releases)
- [Changelog](https://github.com/vitejs/vite/blob/main/packages/vite/CHANGELOG.md)
- [Commits](https://github.com/vitejs/vite/commits/v7.2.0/packages/vite)

---
updated-dependencies:
- dependency-name: vite
  dependency-version: 7.2.0
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-11-05 20:08:29 +00:00
ManishMadan2882
9f19c7ee4c Remove deprecated @types/mermaid dependency - mermaid provides its own types 2025-11-05 20:43:47 +05:30
dependabot[bot]
155e74eca1 chore(deps-dev): bump @types/mermaid from 9.1.0 to 9.2.0 in /frontend
Bumps [@types/mermaid](https://github.com/DefinitelyTyped/DefinitelyTyped/tree/HEAD/types/mermaid) from 9.1.0 to 9.2.0.
- [Release notes](https://github.com/DefinitelyTyped/DefinitelyTyped/releases)
- [Commits](https://github.com/DefinitelyTyped/DefinitelyTyped/commits/HEAD/types/mermaid)

---
updated-dependencies:
- dependency-name: "@types/mermaid"
  dependency-version: 9.2.0
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-11-05 15:10:19 +00:00
Manish Madan
ea2dc4dbcb Merge pull request #2133 from arc53/dependabot/npm_and_yarn/frontend/react-i18next-16.2.4
chore(deps): bump react-i18next from 15.7.4 to 16.2.4 in /frontend
2025-11-05 20:23:15 +05:30
dependabot[bot]
616edc97de chore(deps): bump react-i18next from 15.7.4 to 16.2.4 in /frontend
Bumps [react-i18next](https://github.com/i18next/react-i18next) from 15.7.4 to 16.2.4.
- [Changelog](https://github.com/i18next/react-i18next/blob/master/CHANGELOG.md)
- [Commits](https://github.com/i18next/react-i18next/compare/v15.7.4...v16.2.4)

---
updated-dependencies:
- dependency-name: react-i18next
  dependency-version: 16.2.4
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-11-05 14:48:28 +00:00
Manish Madan
b017e99c79 Merge pull request #2132 from arc53/dependabot/npm_and_yarn/frontend/eslint-plugin-n-17.23.1
chore(deps-dev): bump eslint-plugin-n from 16.6.2 to 17.23.1 in /frontend
2025-11-05 20:14:18 +05:30
dependabot[bot]
f698e9d3e1 chore(deps-dev): bump eslint-plugin-n in /frontend
Bumps [eslint-plugin-n](https://github.com/eslint-community/eslint-plugin-n) from 16.6.2 to 17.23.1.
- [Release notes](https://github.com/eslint-community/eslint-plugin-n/releases)
- [Changelog](https://github.com/eslint-community/eslint-plugin-n/blob/master/CHANGELOG.md)
- [Commits](https://github.com/eslint-community/eslint-plugin-n/compare/16.6.2...v17.23.1)

---
updated-dependencies:
- dependency-name: eslint-plugin-n
  dependency-version: 17.23.1
  dependency-type: direct:development
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-11-05 14:35:17 +00:00
Manish Madan
d366502850 Merge pull request #2131 from arc53/dependabot/npm_and_yarn/frontend/typescript-eslint/parser-8.46.3
chore(deps-dev): bump @typescript-eslint/parser from 6.21.0 to 8.46.3 in /frontend
2025-11-05 20:03:59 +05:30
ManishMadan2882
3d6757c170 (chore:lint) relax rules, build fix 2025-11-05 20:02:01 +05:30
Manish Madan
cb8302add8 Fixes shared conversation on cloud version (#2135)
* (fix:shared) conv as id, not dbref

* (chore) script to migrate dbref to id

* (chore): ruff fix

---------

Co-authored-by: GH Action - Upstream Sync <action@github.com>
2025-11-05 16:08:10 +02:00
dependabot[bot]
9d266e9fad chore(deps-dev): bump @typescript-eslint/parser in /frontend
Bumps [@typescript-eslint/parser](https://github.com/typescript-eslint/typescript-eslint/tree/HEAD/packages/parser) from 6.21.0 to 8.46.3.
- [Release notes](https://github.com/typescript-eslint/typescript-eslint/releases)
- [Changelog](https://github.com/typescript-eslint/typescript-eslint/blob/main/packages/parser/CHANGELOG.md)
- [Commits](https://github.com/typescript-eslint/typescript-eslint/commits/v8.46.3/packages/parser)

---
updated-dependencies:
- dependency-name: "@typescript-eslint/parser"
  dependency-version: 8.46.3
  dependency-type: direct:development
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-11-05 13:45:18 +00:00
Manish Madan
ae94c9d31e Merge pull request #2130 from arc53/dependabot/npm_and_yarn/frontend/vite-7.1.12
chore(deps-dev): bump vite from 6.4.1 to 7.1.12 in /frontend
2025-11-05 19:13:59 +05:30
ManishMadan2882
83ab232dcd (chore:fe) pkg lock 2025-11-05 19:12:20 +05:30
dependabot[bot]
eea85772a3 chore(deps-dev): bump vite from 6.4.1 to 7.1.12 in /frontend
Bumps [vite](https://github.com/vitejs/vite/tree/HEAD/packages/vite) from 6.4.1 to 7.1.12.
- [Release notes](https://github.com/vitejs/vite/releases)
- [Changelog](https://github.com/vitejs/vite/blob/v7.1.12/packages/vite/CHANGELOG.md)
- [Commits](https://github.com/vitejs/vite/commits/v7.1.12/packages/vite)

---
updated-dependencies:
- dependency-name: vite
  dependency-version: 7.1.12
  dependency-type: direct:development
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-11-05 19:10:27 +05:30
Alex
0fe7e223cc fix: update Discord invite link across documentation and navigation 2025-11-04 09:27:22 +00:00
Heisenberg Vader
3789d2eb03 Updated the technique for handling multiple file uploads from the user (#2126)
* Fixed multiple file uploads to be sent through a single request to backend for further processing and storing

* Fixed multiple file uploads to be sent through a single request to backend for further processing and storing

* Fixed multiple file uploads to be sent through a single request to backend for further processing and storing

* Made duplicate multiple keyword fixes

* Added back drag and drop functionality and it keeps the multiple file uploads
2025-11-04 01:12:35 +02:00
Manish Madan
d54469532e fix: adjust ESLint rules to warnings for strict type checking (#2129)
- Changed @typescript-eslint/no-explicit-any from error to warning
- Changed @typescript-eslint/no-unused-vars from error to warning
- Allows codebase to pass linting while maintaining code quality checks
- These rules can be gradually enforced as code is refactored
- Verified with npm run build - successful
2025-11-04 01:09:39 +02:00
Manish Madan
9884e51836 Merge pull request #2122 from arc53/dependabot/npm_and_yarn/frontend/prettier-plugin-tailwindcss-0.7.1
chore(deps-dev): bump prettier-plugin-tailwindcss from 0.6.13 to 0.7.1 in /frontend
2025-11-03 19:31:30 +05:30
Alex
6626723180 feat: enhance prompt variable handling and add system variable options in prompts modal (#2128) 2025-11-03 15:54:13 +02:00
Manish Madan
0c251e066b Merge pull request #2124 from arc53/dependabot/npm_and_yarn/frontend/eslint-plugin-n-17.23.1
chore(deps-dev): bump eslint-plugin-n from 15.7.0 to 17.23.1 in /frontend
2025-11-03 19:22:22 +05:30
dependabot[bot]
0957034bfa chore(deps-dev): bump prettier-plugin-tailwindcss in /frontend
Bumps [prettier-plugin-tailwindcss](https://github.com/tailwindlabs/prettier-plugin-tailwindcss) from 0.6.13 to 0.7.1.
- [Release notes](https://github.com/tailwindlabs/prettier-plugin-tailwindcss/releases)
- [Changelog](https://github.com/tailwindlabs/prettier-plugin-tailwindcss/blob/main/CHANGELOG.md)
- [Commits](https://github.com/tailwindlabs/prettier-plugin-tailwindcss/compare/v0.6.13...v0.7.1)

---
updated-dependencies:
- dependency-name: prettier-plugin-tailwindcss
  dependency-version: 0.7.1
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-11-03 13:49:34 +00:00
ManishMadan2882
44521cd893 fix: resolve peer dependency conflict with eslint-plugin-n
- Downgrade eslint-plugin-n from ^17.23.1 to ^16.6.2
- Ensure compatibility with eslint-config-standard-with-typescript@43.0.1
- eslint-config-standard-with-typescript requires eslint-plugin-n@^15.0.0 || ^16.0.0
- Verified with successful npm install and vite build
2025-11-03 19:19:02 +05:30
dependabot[bot]
b17f846730 chore(deps-dev): bump eslint-plugin-n in /frontend
Bumps [eslint-plugin-n](https://github.com/eslint-community/eslint-plugin-n) from 15.7.0 to 17.23.1.
- [Release notes](https://github.com/eslint-community/eslint-plugin-n/releases)
- [Changelog](https://github.com/eslint-community/eslint-plugin-n/blob/master/CHANGELOG.md)
- [Commits](https://github.com/eslint-community/eslint-plugin-n/compare/15.7.0...v17.23.1)

---
updated-dependencies:
- dependency-name: eslint-plugin-n
  dependency-version: 17.23.1
  dependency-type: direct:development
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-11-03 13:45:27 +00:00
Manish Madan
6dd32fd4ca Merge pull request #2111 from arc53/dependabot/npm_and_yarn/frontend/mermaid-11.12.1
chore(deps): bump mermaid from 11.12.0 to 11.12.1 in /frontend
2025-11-03 19:14:00 +05:30
dependabot[bot]
b17b1c70b5 chore(deps): bump mermaid from 11.12.0 to 11.12.1 in /frontend
Bumps [mermaid](https://github.com/mermaid-js/mermaid) from 11.12.0 to 11.12.1.
- [Release notes](https://github.com/mermaid-js/mermaid/releases)
- [Commits](https://github.com/mermaid-js/mermaid/compare/mermaid@11.12.0...mermaid@11.12.1)

---
updated-dependencies:
- dependency-name: mermaid
  dependency-version: 11.12.1
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-11-03 19:07:58 +05:30
Manish Madan
3f5b31fb5f Merge pull request #2084 from arc53/dependabot/npm_and_yarn/frontend/typescript-eslint/eslint-plugin-8.46.2
chore(deps-dev): bump @typescript-eslint/eslint-plugin from 5.51.0 to 8.46.2 in /frontend
2025-11-03 18:51:23 +05:30
ManishMadan2882
06bda6bd55 fix: resolve peer dependency conflicts in eslint and typescript-eslint packages
- Update @typescript-eslint/eslint-plugin from ^8.46.2 to ^6.21.0
- Update @typescript-eslint/parser from ^5.62.0 to ^6.21.0
- Update eslint-config-standard-with-typescript from ^34.0.0 to ^43.0.1
- Ensure all dependencies are compatible without requiring --legacy-peer-deps
- Verified with successful npm install and vite build
2025-11-03 18:47:34 +05:30
Christine Belzie
7dd97821a8 feat: Installing vale(redo) (#2104)
* docs: setup Vale

Signed-off-by: Christine Belzie <shecoder30@gmail.com>

* adding more content

* chore: add Vale configuration and custom dictionary

* chore: clean up spelling configuration and remove unused vocabularies

* fix: correct file path format for Vale linter configuration

---------

Signed-off-by: Christine Belzie <shecoder30@gmail.com>
Co-authored-by: Alex <a@tushynski.me>
2025-10-31 18:00:09 +02:00
Harshit Ranjan
695191d888 added error saving vector store (#2081)
* added error saving vector store

* fixed code formating

* added tests for embedding pipeline
2025-10-31 16:29:35 +02:00
dependabot[bot]
1dbcef24c7 chore(deps-dev): bump @typescript-eslint/eslint-plugin in /frontend
Bumps [@typescript-eslint/eslint-plugin](https://github.com/typescript-eslint/typescript-eslint/tree/HEAD/packages/eslint-plugin) from 5.51.0 to 8.46.2.
- [Release notes](https://github.com/typescript-eslint/typescript-eslint/releases)
- [Changelog](https://github.com/typescript-eslint/typescript-eslint/blob/main/packages/eslint-plugin/CHANGELOG.md)
- [Commits](https://github.com/typescript-eslint/typescript-eslint/commits/v8.46.2/packages/eslint-plugin)

---
updated-dependencies:
- dependency-name: "@typescript-eslint/eslint-plugin"
  dependency-version: 8.46.2
  dependency-type: direct:development
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-10-31 14:04:19 +00:00
Manish Madan
e086c79da0 Merge pull request #1933 from arc53/dependabot/npm_and_yarn/frontend/npm_and_yarn-d56b2ef021
chore(deps): bump mermaid from 11.6.0 to 11.10.0 in /frontend in the npm_and_yarn group
2025-10-31 19:32:57 +05:30
dependabot[bot]
6ae8d34b27 chore(deps): bump mermaid in /frontend in the npm_and_yarn group
Bumps the npm_and_yarn group in /frontend with 1 update: [mermaid](https://github.com/mermaid-js/mermaid).

Updates `mermaid` from 11.6.0 to 11.10.0
- [Release notes](https://github.com/mermaid-js/mermaid/releases)
- [Commits](https://github.com/mermaid-js/mermaid/compare/mermaid@11.6.0...mermaid@11.10.0)

---
updated-dependencies:
- dependency-name: mermaid
  dependency-version: 11.10.0
  dependency-type: direct:production
  dependency-group: npm_and_yarn
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-10-31 19:27:31 +05:30
Manish Madan
2e23e547d3 Merge pull request #1916 from arc53/dependabot/npm_and_yarn/frontend/eslint-plugin-prettier-5.5.4
build(deps-dev): bump eslint-plugin-prettier from 5.2.1 to 5.5.4 in /frontend
2025-10-31 19:24:38 +05:30
dependabot[bot]
fa11dc9828 build(deps-dev): bump eslint-plugin-prettier in /frontend
Bumps [eslint-plugin-prettier](https://github.com/prettier/eslint-plugin-prettier) from 5.2.1 to 5.5.4.
- [Release notes](https://github.com/prettier/eslint-plugin-prettier/releases)
- [Changelog](https://github.com/prettier/eslint-plugin-prettier/blob/main/CHANGELOG.md)
- [Commits](https://github.com/prettier/eslint-plugin-prettier/compare/v5.2.1...v5.5.4)

---
updated-dependencies:
- dependency-name: eslint-plugin-prettier
  dependency-version: 5.5.4
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-10-31 19:18:44 +05:30
Manish Madan
673fa70bc5 Merge pull request #1903 from arc53/dependabot/npm_and_yarn/frontend/multi-6fb5dc7d23
build(deps): bump react-dom and @types/react-dom in /frontend
2025-10-31 19:16:17 +05:30
dependabot[bot]
a0660a54c1 build(deps): bump react-dom and @types/react-dom in /frontend
Bumps [react-dom](https://github.com/facebook/react/tree/HEAD/packages/react-dom) and [@types/react-dom](https://github.com/DefinitelyTyped/DefinitelyTyped/tree/HEAD/types/react-dom). These dependencies needed to be updated together.

Updates `react-dom` from 19.1.0 to 19.1.1
- [Release notes](https://github.com/facebook/react/releases)
- [Changelog](https://github.com/facebook/react/blob/main/CHANGELOG.md)
- [Commits](https://github.com/facebook/react/commits/v19.1.1/packages/react-dom)

Updates `@types/react-dom` from 19.1.6 to 19.1.7
- [Release notes](https://github.com/DefinitelyTyped/DefinitelyTyped/releases)
- [Commits](https://github.com/DefinitelyTyped/DefinitelyTyped/commits/HEAD/types/react-dom)

---
updated-dependencies:
- dependency-name: react-dom
  dependency-version: 19.1.1
  dependency-type: direct:production
  update-type: version-update:semver-patch
- dependency-name: "@types/react-dom"
  dependency-version: 19.1.7
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-10-31 19:10:51 +05:30
Manish Madan
1137bf4280 Merge pull request #1864 from arc53/dependabot/npm_and_yarn/frontend/i18next-browser-languagedetector-8.2.0
build(deps): bump i18next-browser-languagedetector from 8.0.2 to 8.2.0 in /frontend
2025-10-31 19:10:26 +05:30
dependabot[bot]
da41c898d8 build(deps): bump i18next-browser-languagedetector in /frontend
Bumps [i18next-browser-languagedetector](https://github.com/i18next/i18next-browser-languageDetector) from 8.0.2 to 8.2.0.
- [Changelog](https://github.com/i18next/i18next-browser-languageDetector/blob/master/CHANGELOG.md)
- [Commits](https://github.com/i18next/i18next-browser-languageDetector/compare/v8.0.2...v8.2.0)

---
updated-dependencies:
- dependency-name: i18next-browser-languagedetector
  dependency-version: 8.2.0
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-10-31 18:59:21 +05:30
Siddhant Rai
21e5c261ef feat: template-based prompt rendering with dynamic namespace injection (#2091)
* feat: template-based prompt rendering with dynamic namespace injection

* refactor: improve template engine initialization with clearer formatting

* refactor: streamline ReActAgent methods and improve content extraction logic

feat: enhance error handling in NamespaceManager and TemplateEngine

fix: update NewAgent component to ensure consistent form data submission

test: modify tests for ReActAgent and prompt renderer to reflect method changes and improve coverage

* feat: tools namespace + three-tier token budget

* refactor: remove unused variable assignment in message building tests

* Enhance prompt customization and tool pre-fetching functionality

* ruff lint fix

* refactor: cleaner error handling and reduce code clutter

---------

Co-authored-by: Alex <a@tushynski.me>
2025-10-31 12:47:44 +00:00
Aqsa Aqeel
a7d61b9d59 feat: implementing the new custom modal design (#2090)
* feat: implementing the new custom modal design

* feat: added tool variable dropdown

* fix: ui fixes and link fixes

* feat: implemented redisgn for edit prompt modal

* (feat:prompts) matching figma

* (fix:prompts) tool vars

* (fix:promptsModal) responsive; disable save on text

---------

Co-authored-by: Aqsa Aqeel <aqsa.aqeel17@example.com>
Co-authored-by: ManishMadan2882 <manishmadan321@gmail.com>
2025-10-31 12:18:13 +02:00
dorkdiaries9
c5fe25c149 Enhance migration script with logging and error handling (#2103)
Added logging for migration steps and error handling.
2025-10-29 01:49:47 +02:00
Manish Madan
6a4cb617f9 Frontend audit: Bug fixes and refinements (#2112)
* (fix:attachements) sep id for redux ops

* (fix:ui) popups, toast, share modal

* (feat:agentsPreview) stable preview, ui fixes

* (fix:ui) light theme icon, sleek scroll

* (chore:i18n) missin keys

* (chore:i18n) missing keys

* (feat:preferrenceSlice) autoclear invalid source from storage

* (fix:general) delete all conv close btn

* (fix:tts) play one at a time

* (fix:tts) gracefully unmount

* (feat:tts) audio LRU cache

* (feat:tts) pointer on hovered area

* (feat:tts) clean text for speach

---------

Co-authored-by: GH Action - Upstream Sync <action@github.com>
2025-10-29 01:47:26 +02:00
Alex
94f70e6de5 refactor(tests): update todo tool tests to use simplified action names and improve key handling 2025-10-28 10:39:35 +00:00
Hanzalah Waheed
ab4ebf9a9d feat: add bg blur for modals (#2110)
* feat: add bg blur for modals

* feat: adjust darkness for lightmode
2025-10-28 12:14:37 +02:00
Nikunj Kohli
9f7945fcf5 [UI/UX] Improve image upload experience — add preview & drag-to-reord… (#2095)
* [UI/UX] Improve image upload experience — add preview & drag-to-reorder in chat section

* chore(chat): remove image previews, keep drag-to-reorder

* chore(chat): prevent attachment drag from triggering upload dropzone

* Revert "chore(chat): prevent attachment drag from triggering upload dropzone"

This reverts commit dd4b96256c.

* (feat:conv) rmv drag-drop on sources

* (feat:msg-input) drop attachments

---------

Co-authored-by: ManishMadan2882 <manishmadan321@gmail.com>
2025-10-27 21:53:18 +02:00
Gayatri K
d8ec3c008c todo tool feature added to tools (#1977)
* todo tool feature added to tools

* removed configs

* fix: require user_id on TodoListTool, normalize timestamps, add tests

* lint and tests fixes

* refactor: support multiple todos per user/tool by indexing with todo_id

* modified todo_id to use auto-increamenting integer instead of UUID

* test-case fixes

* feat: fix todos

---------

Co-authored-by: Alex <a@tushynski.me>
2025-10-27 19:09:32 +02:00
Pavel
2f00691246 Merge pull request #2096 from arc53/hacktoberfest-t-shirt-image
Update HACKTOBERFEST.md with T-shirt image
2025-10-24 13:15:30 +01:00
Pavel
9b2383b074 Update HACKTOBERFEST.md with T-shirt image
Added t-shirt image.
2025-10-24 13:09:23 +01:00
Ritoban Dutta
e4e9910575 fix(ui): use dedicated sidebar open/close icons for better visual feedback of actions (#2088)
* fix(ui): use dedicated icons for sidebar toggle (panel-left-open/close)

* fix: update sidebar toggle icon colors
2025-10-24 00:25:17 +03:00
Nihar
f448e4a615 add configurable provider in settings.py and update ElevenLabs Api (#2065) (#2074) 2025-10-22 19:07:21 +03:00
Manish Madan
c4e8daf50e Frontend audit: refinements (#2083)
* (fix:attachements) sep id for redux ops

* (fix:ui) popups, toast, share modal

* (feat:agentsPreview) stable preview, ui fixes

* (fix:ui) light theme icon, sleek scroll

---------

Co-authored-by: GH Action - Upstream Sync <action@github.com>
2025-10-22 12:12:05 +03:00
Hanzalah Waheed
5aa4ec1b9f fix: cleanup ConversationBubble and fix CopyButton (#2073)
* fix: rm states for hovering. use tailwind classes instead

* fix: use group hover css intead of states

* chore: no point in having separate defaults if cant be customised

* fix: move default bg colors into conditionals
2025-10-18 21:59:15 +03:00
Siddhant Rai
125ce0aad3 test: implement full API test suite with mongomock and centralized fixtures (#2068) 2025-10-17 12:01:14 +03:00
TinTin
ababc9ae04 fix: reduce large margins between list items in answer rendering (#2058) 2025-10-16 13:59:45 +03:00
Alex
62ac90746e fix: improve error handling and loading state in fetchChunks function 2025-10-15 17:33:13 +01:00
Alex
096f6d91a2 fix: handle potential undefined value for selectedDocs in fetchAnswer 2025-10-15 17:12:52 +01:00
jay98
d28ef6b094 Refactor: use async/await in fetchChunks for correct error handling (typescript:S4822) (#2066) 2025-10-15 15:52:55 +03:00
172 changed files with 16744 additions and 7555 deletions

View File

@@ -6,17 +6,4 @@ VITE_API_STREAMING=true
OPENAI_API_BASE=
OPENAI_API_VERSION=
AZURE_DEPLOYMENT_NAME=
AZURE_EMBEDDINGS_DEPLOYMENT_NAME=
#Azure AD Application (client) ID
MICROSOFT_CLIENT_ID=your-azure-ad-client-id
#Azure AD Application client secret
MICROSOFT_CLIENT_SECRET=your-azure-ad-client-secret
#Azure AD Tenant ID (or 'common' for multi-tenant)
MICROSOFT_TENANT_ID=your-azure-ad-tenant-id
#If you are using a Microsoft Entra ID tenant,
#configure the AUTHORITY variable as
#"https://login.microsoftonline.com/TENANT_GUID"
#or "https://login.microsoftonline.com/contoso.onmicrosoft.com".
#Alternatively, use "https://login.microsoftonline.com/common" for multi-tenant app.
MICROSOFT_AUTHORITY=https://{tenentId}.ciamlogin.com/{tenentId}
AZURE_EMBEDDINGS_DEPLOYMENT_NAME=

View File

@@ -13,7 +13,11 @@ updates:
directory: "/frontend" # Location of package manifests
schedule:
interval: "daily"
- package-ecosystem: "npm"
directory: "/extensions/react-widget"
schedule:
interval: "daily"
- package-ecosystem: "github-actions"
directory: "/"
schedule:
interval: "daily"
interval: "daily"

11
.github/styles/DocsGPT/Spelling.yml vendored Normal file
View File

@@ -0,0 +1,11 @@
extends: spelling
level: warning
message: "Did you really mean '%s'?"
ignore:
- "**/node_modules/**"
- "**/dist/**"
- "**/build/**"
- "**/coverage/**"
- "**/public/**"
- "**/static/**"
vocab: DocsGPT

View File

@@ -0,0 +1,46 @@
Ollama
Qdrant
Milvus
Chatwoot
Nextra
VSCode
npm
LLMs
APIs
Groq
SGLang
LMDeploy
OAuth
Vite
LLM
JSONPath
UIs
configs
uncomment
qdrant
vectorstore
docsgpt
llm
GPUs
kubectl
Lightsail
enqueues
chatbot
VSCode's
Shareability
feedbacks
automations
Premade
Signup
Repo
repo
env
URl
agentic
llama_cpp
parsable
SDKs
boolean
bool
hardcode
EOL

26
.github/workflows/vale.yml vendored Normal file
View File

@@ -0,0 +1,26 @@
name: Vale Documentation Linter
on:
pull_request:
paths:
- 'docs/**/*.md'
- 'docs/**/*.mdx'
- '**/*.md'
- '.vale.ini'
- '.github/styles/**'
jobs:
vale:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Vale linter
uses: errata-ai/vale-action@v2
with:
files: docs
fail_on_error: false
version: 3.0.5
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

1
.gitignore vendored
View File

@@ -3,6 +3,7 @@ __pycache__/
*.py[cod]
*$py.class
experiments
# C extensions
*.so
*.next

5
.vale.ini Normal file
View File

@@ -0,0 +1,5 @@
MinAlertLevel = warning
StylesPath = .github/styles
[*.{md,mdx}]
BasedOnStyles = DocsGPT

View File

@@ -147,5 +147,5 @@ Here's a step-by-step guide on how to contribute to DocsGPT:
Thank you for considering contributing to DocsGPT! 🙏
## Questions/collaboration
Feel free to join our [Discord](https://discord.gg/n5BX8dh8rU). We're very friendly and welcoming to new contributors, so don't hesitate to reach out.
Feel free to join our [Discord](https://discord.gg/vN7YFfdMpj). We're very friendly and welcoming to new contributors, so don't hesitate to reach out.
# Thank you so much for considering to contributing DocsGPT!🙏

View File

@@ -3,6 +3,7 @@
Welcome, contributors! We're excited to announce that DocsGPT is participating in Hacktoberfest. Get involved by submitting meaningful pull requests.
All Meaningful contributors with accepted PRs that were created for issues with the `hacktoberfest` label (set by our maintainer team: dartpain, siiddhantt, pabik, ManishMadan2882) will receive a cool T-shirt! 🤩.
<img width="1331" height="678" alt="hacktoberfest-mocks-preview" src="https://github.com/user-attachments/assets/633f6377-38db-48f5-b519-a8b3855a9eb4" />
Fill in [this form](https://forms.gle/Npaba4n9Epfyx56S8
) after your PR was merged please
@@ -31,7 +32,7 @@ Non-Code Contributions:
- Before contributing check existing [issues](https://github.com/arc53/DocsGPT/issues) or [create](https://github.com/arc53/DocsGPT/issues/new/choose) an issue and wait to get assigned.
- Once you are finished with your contribution, please fill in this [form](https://forms.gle/Npaba4n9Epfyx56S8).
- Refer to the [Documentation](https://docs.docsgpt.cloud/).
- Feel free to join our [Discord](https://discord.gg/n5BX8dh8rU) server. We're here to help newcomers, so don't hesitate to jump in! Join us [here](https://discord.gg/n5BX8dh8rU).
- Feel free to join our [Discord](https://discord.gg/vN7YFfdMpj) server. We're here to help newcomers, so don't hesitate to jump in! Join us [here](https://discord.gg/vN7YFfdMpj).
Thank you very much for considering contributing to DocsGPT during Hacktoberfest! 🙏 Your contributions (not just simple typos) could earn you a stylish new t-shirt.

View File

@@ -16,10 +16,10 @@
<a href="https://github.com/arc53/DocsGPT">![link to main GitHub showing Forks number](https://img.shields.io/github/forks/arc53/docsgpt?style=social)</a>
<a href="https://github.com/arc53/DocsGPT/blob/main/LICENSE">![link to license file](https://img.shields.io/github/license/arc53/docsgpt)</a>
<a href="https://www.bestpractices.dev/projects/9907"><img src="https://www.bestpractices.dev/projects/9907/badge"></a>
<a href="https://discord.gg/n5BX8dh8rU">![link to discord](https://img.shields.io/discord/1070046503302877216)</a>
<a href="https://discord.gg/vN7YFfdMpj">![link to discord](https://img.shields.io/discord/1070046503302877216)</a>
<a href="https://x.com/docsgptai">![X (formerly Twitter) URL](https://img.shields.io/twitter/follow/docsgptai)</a>
<a href="https://docs.docsgpt.cloud/quickstart">⚡️ Quickstart</a><a href="https://app.docsgpt.cloud/">☁️ Cloud Version</a><a href="https://discord.gg/n5BX8dh8rU">💬 Discord</a>
<a href="https://docs.docsgpt.cloud/quickstart">⚡️ Quickstart</a><a href="https://app.docsgpt.cloud/">☁️ Cloud Version</a><a href="https://discord.gg/vN7YFfdMpj">💬 Discord</a>
<br>
<a href="https://docs.docsgpt.cloud/">📖 Documentation</a><a href="https://github.com/arc53/DocsGPT/blob/main/CONTRIBUTING.md">👫 Contribute</a><a href="https://blog.docsgpt.cloud/">🗞 Blog</a>
<br>

View File

@@ -1,5 +1,8 @@
from application.agents.classic_agent import ClassicAgent
from application.agents.react_agent import ReActAgent
import logging
logger = logging.getLogger(__name__)
class AgentCreator:
@@ -13,4 +16,5 @@ class AgentCreator:
agent_class = cls.agents.get(type.lower())
if not agent_class:
raise ValueError(f"No agent class found for type {type}")
return agent_class(*args, **kwargs)

View File

@@ -12,7 +12,6 @@ from application.core.settings import settings
from application.llm.handlers.handler_creator import LLMHandlerCreator
from application.llm.llm_creator import LLMCreator
from application.logging import build_stack_data, log_activity, LogContext
from application.retriever.base import BaseRetriever
logger = logging.getLogger(__name__)
@@ -22,11 +21,12 @@ class BaseAgent(ABC):
self,
endpoint: str,
llm_name: str,
gpt_model: str,
model_id: str,
api_key: str,
user_api_key: Optional[str] = None,
prompt: str = "",
chat_history: Optional[List[Dict]] = None,
retrieved_docs: Optional[List[Dict]] = None,
decoded_token: Optional[Dict] = None,
attachments: Optional[List[Dict]] = None,
json_schema: Optional[Dict] = None,
@@ -37,7 +37,7 @@ class BaseAgent(ABC):
):
self.endpoint = endpoint
self.llm_name = llm_name
self.gpt_model = gpt_model
self.model_id = model_id
self.api_key = api_key
self.user_api_key = user_api_key
self.prompt = prompt
@@ -52,7 +52,9 @@ class BaseAgent(ABC):
api_key=api_key,
user_api_key=user_api_key,
decoded_token=decoded_token,
model_id=model_id,
)
self.retrieved_docs = retrieved_docs or []
self.llm_handler = LLMHandlerCreator.create_handler(
llm_name if llm_name else "default"
)
@@ -65,13 +67,13 @@ class BaseAgent(ABC):
@log_activity()
def gen(
self, query: str, retriever: BaseRetriever, log_context: LogContext = None
self, query: str, log_context: LogContext = None
) -> Generator[Dict, None, None]:
yield from self._gen_inner(query, retriever, log_context)
yield from self._gen_inner(query, log_context)
@abstractmethod
def _gen_inner(
self, query: str, retriever: BaseRetriever, log_context: LogContext
self, query: str, log_context: LogContext
) -> Generator[Dict, None, None]:
pass
@@ -150,6 +152,7 @@ class BaseAgent(ABC):
call_id = getattr(call, "id", None) or str(uuid.uuid4())
# Check if parsing failed
if tool_id is None or action_name is None:
error_message = f"Error: Failed to parse LLM tool call. Tool name: {getattr(call, 'name', 'unknown')}"
logger.error(error_message)
@@ -164,13 +167,14 @@ class BaseAgent(ABC):
yield {"type": "tool_call", "data": {**tool_call_data, "status": "error"}}
self.tool_calls.append(tool_call_data)
return "Failed to parse tool call.", call_id
# Check if tool_id exists in available tools
if tool_id not in tools_dict:
error_message = f"Error: Tool ID '{tool_id}' extracted from LLM call not found in available tools_dict. Available IDs: {list(tools_dict.keys())}"
logger.error(error_message)
# Return error result
tool_call_data = {
"tool_name": "unknown",
"call_id": call_id,
@@ -181,7 +185,6 @@ class BaseAgent(ABC):
yield {"type": "tool_call", "data": {**tool_call_data, "status": "error"}}
self.tool_calls.append(tool_call_data)
return f"Tool with ID {tool_id} not found.", call_id
tool_call_data = {
"tool_name": tools_dict[tool_id]["name"],
"call_id": call_id,
@@ -223,6 +226,7 @@ class BaseAgent(ABC):
tm = ToolManager(config={})
# Prepare tool_config and add tool_id for memory tools
if tool_data["name"] == "api_tool":
tool_config = {
"url": tool_data["config"]["actions"][action_name]["url"],
@@ -234,8 +238,8 @@ class BaseAgent(ABC):
tool_config = tool_data["config"].copy() if tool_data["config"] else {}
# Add tool_id from MongoDB _id for tools that need instance isolation (like memory tool)
# Use MongoDB _id if available, otherwise fall back to enumerated tool_id
tool_config["tool_id"] = str(tool_data.get("_id", tool_id))
tool_config["tool_id"] = str(tool_data.get("_id", tool_id))
tool = tm.load_tool(
tool_data["name"],
tool_config=tool_config,
@@ -276,24 +280,14 @@ class BaseAgent(ABC):
self,
system_prompt: str,
query: str,
retrieved_data: List[Dict],
) -> List[Dict]:
docs_with_filenames = []
for doc in retrieved_data:
filename = doc.get("filename") or doc.get("title") or doc.get("source")
if filename:
chunk_header = str(filename)
docs_with_filenames.append(f"{chunk_header}\n{doc['text']}")
else:
docs_with_filenames.append(doc["text"])
docs_together = "\n\n".join(docs_with_filenames)
p_chat_combine = system_prompt.replace("{summaries}", docs_together)
messages_combine = [{"role": "system", "content": p_chat_combine}]
"""Build messages using pre-rendered system prompt"""
messages = [{"role": "system", "content": system_prompt}]
for i in self.chat_history:
if "prompt" in i and "response" in i:
messages_combine.append({"role": "user", "content": i["prompt"]})
messages_combine.append({"role": "assistant", "content": i["response"]})
messages.append({"role": "user", "content": i["prompt"]})
messages.append({"role": "assistant", "content": i["response"]})
if "tool_calls" in i:
for tool_call in i["tool_calls"]:
call_id = tool_call.get("call_id") or str(uuid.uuid4())
@@ -313,29 +307,17 @@ class BaseAgent(ABC):
}
}
messages_combine.append(
messages.append(
{"role": "assistant", "content": [function_call_dict]}
)
messages_combine.append(
messages.append(
{"role": "tool", "content": [function_response_dict]}
)
messages_combine.append({"role": "user", "content": query})
return messages_combine
def _retriever_search(
self,
retriever: BaseRetriever,
query: str,
log_context: Optional[LogContext] = None,
) -> List[Dict]:
retrieved_data = retriever.search(query)
if log_context:
data = build_stack_data(retriever, exclude_attributes=["llm"])
log_context.stacks.append({"component": "retriever", "data": data})
return retrieved_data
messages.append({"role": "user", "content": query})
return messages
def _llm_gen(self, messages: List[Dict], log_context: Optional[LogContext] = None):
gen_kwargs = {"model": self.gpt_model, "messages": messages}
gen_kwargs = {"model": self.model_id, "messages": messages}
if (
hasattr(self.llm, "_supports_tools")
@@ -343,7 +325,6 @@ class BaseAgent(ABC):
and self.tools
):
gen_kwargs["tools"] = self.tools
if (
self.json_schema
and hasattr(self.llm, "_supports_structured_output")
@@ -357,7 +338,6 @@ class BaseAgent(ABC):
gen_kwargs["response_format"] = structured_format
elif self.llm_name == "google":
gen_kwargs["response_schema"] = structured_format
resp = self.llm.gen_stream(**gen_kwargs)
if log_context:

View File

@@ -1,32 +1,20 @@
import logging
from typing import Dict, Generator
from application.agents.base import BaseAgent
from application.logging import LogContext
from application.retriever.base import BaseRetriever
import logging
logger = logging.getLogger(__name__)
class ClassicAgent(BaseAgent):
"""A simplified agent with clear execution flow.
Usage:
1. Processes a query through retrieval
2. Sets up available tools
3. Generates responses using LLM
4. Handles tool interactions if needed
5. Returns standardized outputs
Easy to extend by overriding specific steps.
"""
"""A simplified agent with clear execution flow"""
def _gen_inner(
self, query: str, retriever: BaseRetriever, log_context: LogContext
self, query: str, log_context: LogContext
) -> Generator[Dict, None, None]:
# Step 1: Retrieve relevant data
retrieved_data = self._retriever_search(retriever, query, log_context)
"""Core generator function for ClassicAgent execution flow"""
# Step 2: Prepare tools
tools_dict = (
self._get_user_tools(self.user)
if not self.user_api_key
@@ -34,20 +22,16 @@ class ClassicAgent(BaseAgent):
)
self._prepare_tools(tools_dict)
# Step 3: Build and process messages
messages = self._build_messages(self.prompt, query, retrieved_data)
messages = self._build_messages(self.prompt, query)
llm_response = self._llm_gen(messages, log_context)
# Step 4: Handle the response
yield from self._handle_response(
llm_response, tools_dict, messages, log_context
)
# Step 5: Return metadata
yield {"sources": retrieved_data}
yield {"sources": self.retrieved_docs}
yield {"tool_calls": self._get_truncated_tool_calls()}
# Log tool calls for debugging
log_context.stacks.append(
{"component": "agent", "data": {"tool_calls": self.tool_calls.copy()}}
)

View File

@@ -1,284 +1,238 @@
import os
from typing import Dict, Generator, List, Any
import logging
import os
from typing import Any, Dict, Generator, List
from application.agents.base import BaseAgent
from application.logging import build_stack_data, LogContext
from application.retriever.base import BaseRetriever
logger = logging.getLogger(__name__)
MAX_ITERATIONS_REASONING = 10
current_dir = os.path.dirname(
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
)
with open(
os.path.join(current_dir, "application/prompts", "react_planning_prompt.txt"), "r"
) as f:
planning_prompt_template = f.read()
PLANNING_PROMPT_TEMPLATE = f.read()
with open(
os.path.join(current_dir, "application/prompts", "react_final_prompt.txt"),
"r",
os.path.join(current_dir, "application/prompts", "react_final_prompt.txt"), "r"
) as f:
final_prompt_template = f.read()
MAX_ITERATIONS_REASONING = 10
FINAL_PROMPT_TEMPLATE = f.read()
class ReActAgent(BaseAgent):
"""
Research and Action (ReAct) Agent - Advanced reasoning agent with iterative planning.
Implements a think-act-observe loop for complex problem-solving:
1. Creates a strategic plan based on the query
2. Executes tools and gathers observations
3. Iteratively refines approach until satisfied
4. Synthesizes final answer from all observations
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.plan: str = ""
self.observations: List[str] = []
def _extract_content_from_llm_response(self, resp: Any) -> str:
"""
Helper to extract string content from various LLM response types.
Handles strings, message objects (OpenAI-like), and streams.
Adapt stream handling for your specific LLM client if not OpenAI.
"""
collected_content = []
if isinstance(resp, str):
collected_content.append(resp)
elif ( # OpenAI non-streaming or Anthropic non-streaming (older SDK style)
hasattr(resp, "message")
and hasattr(resp.message, "content")
and resp.message.content is not None
):
collected_content.append(resp.message.content)
elif ( # OpenAI non-streaming (Pydantic model), Anthropic new SDK non-streaming
hasattr(resp, "choices")
and resp.choices
and hasattr(resp.choices[0], "message")
and hasattr(resp.choices[0].message, "content")
and resp.choices[0].message.content is not None
):
collected_content.append(resp.choices[0].message.content) # OpenAI
elif ( # Anthropic new SDK non-streaming content block
hasattr(resp, "content")
and isinstance(resp.content, list)
and resp.content
and hasattr(resp.content[0], "text")
):
collected_content.append(resp.content[0].text) # Anthropic
else:
# Assume resp is a stream if not a recognized object
chunk = None
try:
for (
chunk
) in (
resp
): # This will fail if resp is not iterable (e.g. a non-streaming response object)
content_piece = ""
# OpenAI-like stream
if (
hasattr(chunk, "choices")
and len(chunk.choices) > 0
and hasattr(chunk.choices[0], "delta")
and hasattr(chunk.choices[0].delta, "content")
and chunk.choices[0].delta.content is not None
):
content_piece = chunk.choices[0].delta.content
# Anthropic-like stream (ContentBlockDelta)
elif (
hasattr(chunk, "type")
and chunk.type == "content_block_delta"
and hasattr(chunk, "delta")
and hasattr(chunk.delta, "text")
):
content_piece = chunk.delta.text
elif isinstance(chunk, str): # Simplest case: stream of strings
content_piece = chunk
if content_piece:
collected_content.append(content_piece)
except (
TypeError
): # If resp is not iterable (e.g. a final response object that wasn't caught above)
logger.debug(
f"Response type {type(resp)} could not be iterated as a stream. It might be a non-streaming object not handled by specific checks."
)
except Exception as e:
logger.error(
f"Error processing potential stream chunk: {e}, chunk was: {getattr(chunk, '__dict__', chunk) if chunk is not None else 'N/A'}"
)
return "".join(collected_content)
def _gen_inner(
self, query: str, retriever: BaseRetriever, log_context: LogContext
self, query: str, log_context: LogContext
) -> Generator[Dict, None, None]:
# Reset state for this generation call
self.plan = ""
self.observations = []
retrieved_data = self._retriever_search(retriever, query, log_context)
"""Execute ReAct reasoning loop with planning, action, and observation cycles"""
if self.user_api_key:
tools_dict = self._get_tools(self.user_api_key)
else:
tools_dict = self._get_user_tools(self.user)
self._reset_state()
tools_dict = (
self._get_tools(self.user_api_key)
if self.user_api_key
else self._get_user_tools(self.user)
)
self._prepare_tools(tools_dict)
docs_together = "\n".join([doc["text"] for doc in retrieved_data])
iterating_reasoning = 0
while iterating_reasoning < MAX_ITERATIONS_REASONING:
iterating_reasoning += 1
# 1. Create Plan
logger.info("ReActAgent: Creating plan...")
plan_stream = self._create_plan(query, docs_together, log_context)
current_plan_parts = []
yield {"thought": f"Reasoning... (iteration {iterating_reasoning})\n\n"}
for line_chunk in plan_stream:
current_plan_parts.append(line_chunk)
yield {"thought": line_chunk}
self.plan = "".join(current_plan_parts)
if self.plan:
self.observations.append(
f"Plan: {self.plan} Iteration: {iterating_reasoning}"
)
for iteration in range(1, MAX_ITERATIONS_REASONING + 1):
yield {"thought": f"Reasoning... (iteration {iteration})\n\n"}
max_obs_len = 20000
obs_str = "\n".join(self.observations)
if len(obs_str) > max_obs_len:
obs_str = obs_str[:max_obs_len] + "\n...[observations truncated]"
execution_prompt_str = (
(self.prompt or "")
+ f"\n\nFollow this plan:\n{self.plan}"
+ f"\n\nObservations:\n{obs_str}"
+ f"\n\nIf there is enough data to complete user query '{query}', Respond with 'SATISFIED' only. Otherwise, continue. Dont Menstion 'SATISFIED' in your response if you are not ready. "
)
yield from self._planning_phase(query, log_context)
messages = self._build_messages(execution_prompt_str, query, retrieved_data)
resp_from_llm_gen = self._llm_gen(messages, log_context)
initial_llm_thought_content = self._extract_content_from_llm_response(
resp_from_llm_gen
)
if initial_llm_thought_content:
self.observations.append(
f"Initial thought/response: {initial_llm_thought_content}"
)
else:
logger.info(
"ReActAgent: Initial LLM response (before handler) had no textual content (might be only tool calls)."
)
resp_after_handler = self._llm_handler(
resp_from_llm_gen, tools_dict, messages, log_context
)
for (
tool_call_info
) in (
self.tool_calls
): # Iterate over self.tool_calls populated by _llm_handler
observation_string = (
f"Executed Action: Tool '{tool_call_info.get('tool_name', 'N/A')}' "
f"with arguments '{tool_call_info.get('arguments', '{}')}'. Result: '{str(tool_call_info.get('result', ''))[:200]}...'"
)
self.observations.append(observation_string)
content_after_handler = self._extract_content_from_llm_response(
resp_after_handler
)
if content_after_handler:
self.observations.append(
f"Response after tool execution: {content_after_handler}"
)
else:
logger.info(
"ReActAgent: LLM response after handler had no textual content."
)
if log_context:
log_context.stacks.append(
{
"component": "agent_tool_calls",
"data": {"tool_calls": self.tool_calls.copy()},
}
)
yield {"sources": retrieved_data}
display_tool_calls = []
for tc in self.tool_calls:
cleaned_tc = tc.copy()
if len(str(cleaned_tc.get("result", ""))) > 50:
cleaned_tc["result"] = str(cleaned_tc["result"])[:50] + "..."
display_tool_calls.append(cleaned_tc)
if display_tool_calls:
yield {"tool_calls": display_tool_calls}
if "SATISFIED" in content_after_handler:
logger.info(
"ReActAgent: LLM satisfied with the plan and data. Stopping reasoning."
if not self.plan:
logger.warning(
f"ReActAgent: No plan generated in iteration {iteration}"
)
break
self.observations.append(f"Plan (iteration {iteration}): {self.plan}")
# 3. Create Final Answer based on all observations
final_answer_stream = self._create_final_answer(
query, self.observations, log_context
)
for answer_chunk in final_answer_stream:
yield {"answer": answer_chunk}
logger.info("ReActAgent: Finished generating final answer.")
satisfied = yield from self._execution_phase(query, tools_dict, log_context)
def _create_plan(
self, query: str, docs_data: str, log_context: LogContext = None
) -> Generator[str, None, None]:
plan_prompt_filled = planning_prompt_template.replace("{query}", query)
if "{summaries}" in plan_prompt_filled:
summaries = docs_data if docs_data else "No documents retrieved."
plan_prompt_filled = plan_prompt_filled.replace("{summaries}", summaries)
plan_prompt_filled = plan_prompt_filled.replace("{prompt}", self.prompt or "")
plan_prompt_filled = plan_prompt_filled.replace(
"{observations}", "\n".join(self.observations)
)
if satisfied:
logger.info("ReActAgent: Goal satisfied, stopping reasoning loop")
break
yield from self._synthesis_phase(query, log_context)
messages = [{"role": "user", "content": plan_prompt_filled}]
def _reset_state(self):
"""Reset agent state for new query"""
self.plan = ""
self.observations = []
plan_stream_from_llm = self.llm.gen_stream(
model=self.gpt_model,
def _planning_phase(
self, query: str, log_context: LogContext
) -> Generator[Dict, None, None]:
"""Generate strategic plan for query"""
logger.info("ReActAgent: Creating plan...")
plan_prompt = self._build_planning_prompt(query)
messages = [{"role": "user", "content": plan_prompt}]
plan_stream = self.llm.gen_stream(
model=self.model_id,
messages=messages,
tools=getattr(self, "tools", None), # Use self.tools
tools=self.tools if self.tools else None,
)
if log_context:
data = build_stack_data(self.llm)
log_context.stacks.append({"component": "planning_llm", "data": data})
for chunk in plan_stream_from_llm:
content_piece = self._extract_content_from_llm_response(chunk)
if content_piece:
yield content_piece
def _create_final_answer(
self, query: str, observations: List[str], log_context: LogContext = None
) -> Generator[str, None, None]:
observation_string = "\n".join(observations)
max_obs_len = 10000
if len(observation_string) > max_obs_len:
observation_string = (
observation_string[:max_obs_len] + "\n...[observations truncated]"
)
logger.warning(
"ReActAgent: Truncated observations for final answer prompt due to length."
log_context.stacks.append(
{"component": "planning_llm", "data": build_stack_data(self.llm)}
)
plan_parts = []
for chunk in plan_stream:
content = self._extract_content(chunk)
if content:
plan_parts.append(content)
yield {"thought": content}
self.plan = "".join(plan_parts)
final_answer_prompt_filled = final_prompt_template.format(
query=query, observations=observation_string
def _execution_phase(
self, query: str, tools_dict: Dict, log_context: LogContext
) -> Generator[bool, None, None]:
"""Execute plan with tool calls and observations"""
execution_prompt = self._build_execution_prompt(query)
messages = self._build_messages(execution_prompt, query)
llm_response = self._llm_gen(messages, log_context)
initial_content = self._extract_content(llm_response)
if initial_content:
self.observations.append(f"Initial response: {initial_content}")
processed_response = self._llm_handler(
llm_response, tools_dict, messages, log_context
)
messages = [{"role": "user", "content": final_answer_prompt_filled}]
# Final answer should synthesize, not call tools.
final_answer_stream_from_llm = self.llm.gen_stream(
model=self.gpt_model, messages=messages, tools=None
)
for tool_call in self.tool_calls:
observation = (
f"Executed: {tool_call.get('tool_name', 'Unknown')} "
f"with args {tool_call.get('arguments', {})}. "
f"Result: {str(tool_call.get('result', ''))[:200]}"
)
self.observations.append(observation)
final_content = self._extract_content(processed_response)
if final_content:
self.observations.append(f"Response after tools: {final_content}")
if log_context:
data = build_stack_data(self.llm)
log_context.stacks.append({"component": "final_answer_llm", "data": data})
log_context.stacks.append(
{
"component": "agent_tool_calls",
"data": {"tool_calls": self.tool_calls.copy()},
}
)
yield {"sources": self.retrieved_docs}
yield {"tool_calls": self._get_truncated_tool_calls()}
for chunk in final_answer_stream_from_llm:
content_piece = self._extract_content_from_llm_response(chunk)
if content_piece:
yield content_piece
return "SATISFIED" in (final_content or "")
def _synthesis_phase(
self, query: str, log_context: LogContext
) -> Generator[Dict, None, None]:
"""Synthesize final answer from all observations"""
logger.info("ReActAgent: Generating final answer...")
final_prompt = self._build_final_answer_prompt(query)
messages = [{"role": "user", "content": final_prompt}]
final_stream = self.llm.gen_stream(
model=self.model_id, messages=messages, tools=None
)
if log_context:
log_context.stacks.append(
{"component": "final_answer_llm", "data": build_stack_data(self.llm)}
)
for chunk in final_stream:
content = self._extract_content(chunk)
if content:
yield {"answer": content}
def _build_planning_prompt(self, query: str) -> str:
"""Build planning phase prompt"""
prompt = PLANNING_PROMPT_TEMPLATE.replace("{query}", query)
prompt = prompt.replace("{prompt}", self.prompt or "")
prompt = prompt.replace("{summaries}", "")
prompt = prompt.replace("{observations}", "\n".join(self.observations))
return prompt
def _build_execution_prompt(self, query: str) -> str:
"""Build execution phase prompt with plan and observations"""
observations_str = "\n".join(self.observations)
if len(observations_str) > 20000:
observations_str = observations_str[:20000] + "\n...[truncated]"
return (
f"{self.prompt or ''}\n\n"
f"Follow this plan:\n{self.plan}\n\n"
f"Observations:\n{observations_str}\n\n"
f"If sufficient data exists to answer '{query}', respond with 'SATISFIED'. "
f"Otherwise, continue executing the plan."
)
def _build_final_answer_prompt(self, query: str) -> str:
"""Build final synthesis prompt"""
observations_str = "\n".join(self.observations)
if len(observations_str) > 10000:
observations_str = observations_str[:10000] + "\n...[truncated]"
logger.warning("ReActAgent: Observations truncated for final answer")
return FINAL_PROMPT_TEMPLATE.format(query=query, observations=observations_str)
def _extract_content(self, response: Any) -> str:
"""Extract text content from various LLM response formats"""
if not response:
return ""
collected = []
if isinstance(response, str):
return response
if hasattr(response, "message") and hasattr(response.message, "content"):
if response.message.content:
return response.message.content
if hasattr(response, "choices") and response.choices:
if hasattr(response.choices[0], "message"):
content = response.choices[0].message.content
if content:
return content
if hasattr(response, "content") and isinstance(response.content, list):
if response.content and hasattr(response.content[0], "text"):
return response.content[0].text
try:
for chunk in response:
content_piece = ""
if hasattr(chunk, "choices") and chunk.choices:
if hasattr(chunk.choices[0], "delta"):
delta_content = chunk.choices[0].delta.content
if delta_content:
content_piece = delta_content
elif hasattr(chunk, "type") and chunk.type == "content_block_delta":
if hasattr(chunk, "delta") and hasattr(chunk.delta, "text"):
content_piece = chunk.delta.text
elif isinstance(chunk, str):
content_piece = chunk
if content_piece:
collected.append(content_piece)
except (TypeError, AttributeError):
logger.debug(
f"Response not iterable or unexpected format: {type(response)}"
)
except Exception as e:
logger.error(f"Error extracting content: {e}")
return "".join(collected)

View File

@@ -0,0 +1,321 @@
from datetime import datetime
from typing import Any, Dict, List, Optional
import uuid
from .base import Tool
from application.core.mongo_db import MongoDB
from application.core.settings import settings
class TodoListTool(Tool):
"""Todo List
Manages todo items for users. Supports creating, viewing, updating, and deleting todos.
"""
def __init__(self, tool_config: Optional[Dict[str, Any]] = None, user_id: Optional[str] = None) -> None:
"""Initialize the tool.
Args:
tool_config: Optional tool configuration. Should include:
- tool_id: Unique identifier for this todo list tool instance (from user_tools._id)
This ensures each user's tool configuration has isolated todos
user_id: The authenticated user's id (should come from decoded_token["sub"]).
"""
self.user_id: Optional[str] = user_id
# Get tool_id from configuration (passed from user_tools._id in production)
# In production, tool_id is the MongoDB ObjectId string from user_tools collection
if tool_config and "tool_id" in tool_config:
self.tool_id = tool_config["tool_id"]
elif user_id:
# Fallback for backward compatibility or testing
self.tool_id = f"default_{user_id}"
else:
# Last resort fallback (shouldn't happen in normal use)
self.tool_id = str(uuid.uuid4())
db = MongoDB.get_client()[settings.MONGO_DB_NAME]
self.collection = db["todos"]
# -----------------------------
# Action implementations
# -----------------------------
def execute_action(self, action_name: str, **kwargs: Any) -> str:
"""Execute an action by name.
Args:
action_name: One of list, create, get, update, complete, delete.
**kwargs: Parameters for the action.
Returns:
A human-readable string result.
"""
if not self.user_id:
return "Error: TodoListTool requires a valid user_id."
if action_name == "list":
return self._list()
if action_name == "create":
return self._create(kwargs.get("title", ""))
if action_name == "get":
return self._get(kwargs.get("todo_id"))
if action_name == "update":
return self._update(
kwargs.get("todo_id"),
kwargs.get("title", "")
)
if action_name == "complete":
return self._complete(kwargs.get("todo_id"))
if action_name == "delete":
return self._delete(kwargs.get("todo_id"))
return f"Unknown action: {action_name}"
def get_actions_metadata(self) -> List[Dict[str, Any]]:
"""Return JSON metadata describing supported actions for tool schemas."""
return [
{
"name": "list",
"description": "List all todos for the user.",
"parameters": {"type": "object", "properties": {}},
},
{
"name": "create",
"description": "Create a new todo item.",
"parameters": {
"type": "object",
"properties": {
"title": {
"type": "string",
"description": "Title of the todo item."
}
},
"required": ["title"],
},
},
{
"name": "get",
"description": "Get a specific todo by ID.",
"parameters": {
"type": "object",
"properties": {
"todo_id": {
"type": "integer",
"description": "The ID of the todo to retrieve."
}
},
"required": ["todo_id"],
},
},
{
"name": "update",
"description": "Update a todo's title by ID.",
"parameters": {
"type": "object",
"properties": {
"todo_id": {
"type": "integer",
"description": "The ID of the todo to update."
},
"title": {
"type": "string",
"description": "The new title for the todo."
}
},
"required": ["todo_id", "title"],
},
},
{
"name": "complete",
"description": "Mark a todo as completed.",
"parameters": {
"type": "object",
"properties": {
"todo_id": {
"type": "integer",
"description": "The ID of the todo to mark as completed."
}
},
"required": ["todo_id"],
},
},
{
"name": "delete",
"description": "Delete a specific todo by ID.",
"parameters": {
"type": "object",
"properties": {
"todo_id": {
"type": "integer",
"description": "The ID of the todo to delete."
}
},
"required": ["todo_id"],
},
},
]
def get_config_requirements(self) -> Dict[str, Any]:
"""Return configuration requirements."""
return {}
# -----------------------------
# Internal helpers
# -----------------------------
def _coerce_todo_id(self, value: Optional[Any]) -> Optional[int]:
"""Convert todo identifiers to sequential integers."""
if value is None:
return None
if isinstance(value, int):
return value if value > 0 else None
if isinstance(value, str):
stripped = value.strip()
if stripped.isdigit():
numeric_value = int(stripped)
return numeric_value if numeric_value > 0 else None
return None
def _get_next_todo_id(self) -> int:
"""Get the next sequential todo_id for this user and tool.
Returns a simple integer (1, 2, 3, ...) scoped to this user/tool.
With 5-10 todos max, scanning is negligible.
"""
# Find all todos for this user/tool and get their IDs
todos = list(self.collection.find(
{"user_id": self.user_id, "tool_id": self.tool_id},
{"todo_id": 1}
))
# Find the maximum todo_id
max_id = 0
for todo in todos:
todo_id = self._coerce_todo_id(todo.get("todo_id"))
if todo_id is not None:
max_id = max(max_id, todo_id)
return max_id + 1
def _list(self) -> str:
"""List all todos for the user."""
cursor = self.collection.find({"user_id": self.user_id, "tool_id": self.tool_id})
todos = list(cursor)
if not todos:
return "No todos found."
result_lines = ["Todos:"]
for doc in todos:
todo_id = doc.get("todo_id")
title = doc.get("title", "Untitled")
status = doc.get("status", "open")
line = f"[{todo_id}] {title} ({status})"
result_lines.append(line)
return "\n".join(result_lines)
def _create(self, title: str) -> str:
"""Create a new todo item."""
title = (title or "").strip()
if not title:
return "Error: Title is required."
now = datetime.now()
todo_id = self._get_next_todo_id()
doc = {
"todo_id": todo_id,
"user_id": self.user_id,
"tool_id": self.tool_id,
"title": title,
"status": "open",
"created_at": now,
"updated_at": now,
}
self.collection.insert_one(doc)
return f"Todo created with ID {todo_id}: {title}"
def _get(self, todo_id: Optional[Any]) -> str:
"""Get a specific todo by ID."""
parsed_todo_id = self._coerce_todo_id(todo_id)
if parsed_todo_id is None:
return "Error: todo_id must be a positive integer."
doc = self.collection.find_one({
"user_id": self.user_id,
"tool_id": self.tool_id,
"todo_id": parsed_todo_id
})
if not doc:
return f"Error: Todo with ID {parsed_todo_id} not found."
title = doc.get("title", "Untitled")
status = doc.get("status", "open")
result = f"Todo [{parsed_todo_id}]:\nTitle: {title}\nStatus: {status}"
return result
def _update(self, todo_id: Optional[Any], title: str) -> str:
"""Update a todo's title by ID."""
parsed_todo_id = self._coerce_todo_id(todo_id)
if parsed_todo_id is None:
return "Error: todo_id must be a positive integer."
title = (title or "").strip()
if not title:
return "Error: Title is required."
result = self.collection.update_one(
{"user_id": self.user_id, "tool_id": self.tool_id, "todo_id": parsed_todo_id},
{"$set": {"title": title, "updated_at": datetime.now()}}
)
if result.matched_count == 0:
return f"Error: Todo with ID {parsed_todo_id} not found."
return f"Todo {parsed_todo_id} updated to: {title}"
def _complete(self, todo_id: Optional[Any]) -> str:
"""Mark a todo as completed."""
parsed_todo_id = self._coerce_todo_id(todo_id)
if parsed_todo_id is None:
return "Error: todo_id must be a positive integer."
result = self.collection.update_one(
{"user_id": self.user_id, "tool_id": self.tool_id, "todo_id": parsed_todo_id},
{"$set": {"status": "completed", "updated_at": datetime.now()}}
)
if result.matched_count == 0:
return f"Error: Todo with ID {parsed_todo_id} not found."
return f"Todo {parsed_todo_id} marked as completed."
def _delete(self, todo_id: Optional[Any]) -> str:
"""Delete a specific todo by ID."""
parsed_todo_id = self._coerce_todo_id(todo_id)
if parsed_todo_id is None:
return "Error: todo_id must be a positive integer."
result = self.collection.delete_one({
"user_id": self.user_id,
"tool_id": self.tool_id,
"todo_id": parsed_todo_id
})
if result.deleted_count == 0:
return f"Error: Todo with ID {parsed_todo_id} not found."
return f"Todo {parsed_todo_id} deleted."

View File

@@ -28,7 +28,7 @@ class ToolManager:
module = importlib.import_module(f"application.agents.tools.{tool_name}")
for member_name, obj in inspect.getmembers(module, inspect.isclass):
if issubclass(obj, Tool) and obj is not Tool:
if tool_name in {"mcp_tool", "notes", "memory"} and user_id:
if tool_name in {"mcp_tool", "notes", "memory", "todo_list"} and user_id:
return obj(tool_config, user_id)
else:
return obj(tool_config)
@@ -36,7 +36,7 @@ class ToolManager:
def execute_action(self, tool_name, action_name, user_id=None, **kwargs):
if tool_name not in self.tools:
raise ValueError(f"Tool '{tool_name}' not loaded")
if tool_name in {"mcp_tool", "memory"} and user_id:
if tool_name in {"mcp_tool", "memory", "todo_list"} and user_id:
tool_config = self.config.get(tool_name, {})
tool = self.load_tool(tool_name, tool_config, user_id)
return tool.execute_action(action_name, **kwargs)

View File

@@ -54,6 +54,14 @@ class AnswerResource(Resource, BaseAnswerResource):
default=True,
description="Whether to save the conversation",
),
"model_id": fields.String(
required=False,
description="Model ID to use for this request",
),
"passthrough": fields.Raw(
required=False,
description="Dynamic parameters to inject into prompt template",
),
},
)
@@ -69,8 +77,17 @@ class AnswerResource(Resource, BaseAnswerResource):
processor.initialize()
if not processor.decoded_token:
return make_response({"error": "Unauthorized"}, 401)
agent = processor.create_agent()
retriever = processor.create_retriever()
docs_together, docs_list = processor.pre_fetch_docs(
data.get("question", "")
)
tools_data = processor.pre_fetch_tools()
agent = processor.create_agent(
docs_together=docs_together,
docs=docs_list,
tools_data=tools_data,
)
if error := self.check_usage(processor.agent_config):
return error
@@ -78,13 +95,13 @@ class AnswerResource(Resource, BaseAnswerResource):
stream = self.complete_stream(
question=data["question"],
agent=agent,
retriever=retriever,
conversation_id=processor.conversation_id,
user_api_key=processor.agent_config.get("user_api_key"),
decoded_token=processor.decoded_token,
isNoneDoc=data.get("isNoneDoc"),
index=None,
should_save_conversation=data.get("save_conversation", True),
model_id=processor.model_id,
)
stream_result = self.process_response_stream(stream)

View File

@@ -3,15 +3,20 @@ import json
import logging
from typing import Any, Dict, Generator, List, Optional
from flask import Response, make_response, jsonify
from flask import jsonify, make_response, Response
from flask_restx import Namespace
from application.api.answer.services.conversation_service import ConversationService
from application.core.model_utils import (
get_api_key_for_provider,
get_default_model_id,
get_provider_from_model_id,
)
from application.core.mongo_db import MongoDB
from application.core.settings import settings
from application.llm.llm_creator import LLMCreator
from application.utils import check_required_fields, get_gpt_model
from application.utils import check_required_fields
logger = logging.getLogger(__name__)
@@ -27,7 +32,7 @@ class BaseAnswerResource:
db = mongo[settings.MONGO_DB_NAME]
self.db = db
self.user_logs_collection = db["user_logs"]
self.gpt_model = get_gpt_model()
self.default_model_id = get_default_model_id()
self.conversation_service = ConversationService()
def validate_request(
@@ -41,9 +46,7 @@ class BaseAnswerResource:
return missing_fields
return None
def check_usage(
self, agent_config: Dict
) -> Optional[Response]:
def check_usage(self, agent_config: Dict) -> Optional[Response]:
"""Check if there is a usage limit and if it is exceeded
Args:
@@ -51,30 +54,38 @@ class BaseAnswerResource:
Returns:
None or Response if either of limits exceeded.
"""
api_key = agent_config.get("user_api_key")
if not api_key:
return None
agents_collection = self.db["agents"]
agent = agents_collection.find_one({"key": api_key})
if not agent:
return make_response(
jsonify(
{
"success": False,
"message": "Invalid API key."
}
),
401
jsonify({"success": False, "message": "Invalid API key."}), 401
)
limited_token_mode_raw = agent.get("limited_token_mode", False)
limited_request_mode_raw = agent.get("limited_request_mode", False)
limited_token_mode = agent.get("limited_token_mode", False)
limited_request_mode = agent.get("limited_request_mode", False)
token_limit = int(agent.get("token_limit", settings.DEFAULT_AGENT_LIMITS["token_limit"]))
request_limit = int(agent.get("request_limit", settings.DEFAULT_AGENT_LIMITS["request_limit"]))
limited_token_mode = (
limited_token_mode_raw
if isinstance(limited_token_mode_raw, bool)
else limited_token_mode_raw == "True"
)
limited_request_mode = (
limited_request_mode_raw
if isinstance(limited_request_mode_raw, bool)
else limited_request_mode_raw == "True"
)
token_limit = int(
agent.get("token_limit", settings.DEFAULT_AGENT_LIMITS["token_limit"])
)
request_limit = int(
agent.get("request_limit", settings.DEFAULT_AGENT_LIMITS["request_limit"])
)
token_usage_collection = self.db["token_usage"]
@@ -83,51 +94,56 @@ class BaseAnswerResource:
match_query = {
"timestamp": {"$gte": start_date, "$lte": end_date},
"api_key": api_key
"api_key": api_key,
}
if limited_token_mode:
token_pipeline = [
{"$match": match_query},
{
"$group": {
"_id": None,
"total_tokens": {"$sum": {"$add": ["$prompt_tokens", "$generated_tokens"]}}
"total_tokens": {
"$sum": {"$add": ["$prompt_tokens", "$generated_tokens"]}
},
}
}
},
]
token_result = list(token_usage_collection.aggregate(token_pipeline))
daily_token_usage = token_result[0]["total_tokens"] if token_result else 0
else:
daily_token_usage = 0
if limited_request_mode:
daily_request_usage = token_usage_collection.count_documents(match_query)
else:
daily_request_usage = 0
if not limited_token_mode and not limited_request_mode:
return None
elif limited_token_mode and token_limit > daily_token_usage:
return None
elif limited_request_mode and request_limit > daily_request_usage:
return None
return make_response(
jsonify(
{
"success": False,
"message": "Exceeding usage limit, please try again later."
}
),
429, # too many requests
token_exceeded = (
limited_token_mode and token_limit > 0 and daily_token_usage >= token_limit
)
request_exceeded = (
limited_request_mode
and request_limit > 0
and daily_request_usage >= request_limit
)
if token_exceeded or request_exceeded:
return make_response(
jsonify(
{
"success": False,
"message": "Exceeding usage limit, please try again later.",
}
),
429,
)
return None
def complete_stream(
self,
question: str,
agent: Any,
retriever: Any,
conversation_id: Optional[str],
user_api_key: Optional[str],
decoded_token: Dict[str, Any],
@@ -138,6 +154,7 @@ class BaseAnswerResource:
agent_id: Optional[str] = None,
is_shared_usage: bool = False,
shared_token: Optional[str] = None,
model_id: Optional[str] = None,
) -> Generator[str, None, None]:
"""
Generator function that streams the complete conversation response.
@@ -156,6 +173,8 @@ class BaseAnswerResource:
agent_id: ID of agent used
is_shared_usage: Flag for shared agent usage
shared_token: Token for shared agent
model_id: Model ID used for the request
retrieved_docs: Pre-fetched documents for sources (optional)
Yields:
Server-sent event strings
@@ -166,7 +185,7 @@ class BaseAnswerResource:
schema_info = None
structured_chunks = []
for line in agent.gen(query=question, retriever=retriever):
for line in agent.gen(query=question):
if "answer" in line:
response_full += str(line["answer"])
if line.get("structured"):
@@ -202,7 +221,6 @@ class BaseAnswerResource:
elif "type" in line:
data = json.dumps(line)
yield f"data: {data}\n\n"
if is_structured and structured_chunks:
structured_data = {
"type": "structured_answer",
@@ -212,15 +230,22 @@ class BaseAnswerResource:
}
data = json.dumps(structured_data)
yield f"data: {data}\n\n"
if isNoneDoc:
for doc in source_log_docs:
doc["source"] = "None"
provider = (
get_provider_from_model_id(model_id)
if model_id
else settings.LLM_PROVIDER
)
system_api_key = get_api_key_for_provider(provider or settings.LLM_PROVIDER)
llm = LLMCreator.create_llm(
settings.LLM_PROVIDER,
api_key=settings.API_KEY,
provider or settings.LLM_PROVIDER,
api_key=system_api_key,
user_api_key=user_api_key,
decoded_token=decoded_token,
model_id=model_id,
)
if should_save_conversation:
@@ -232,7 +257,7 @@ class BaseAnswerResource:
source_log_docs,
tool_calls,
llm,
self.gpt_model,
model_id or self.default_model_id,
decoded_token,
index=index,
api_key=user_api_key,
@@ -247,7 +272,6 @@ class BaseAnswerResource:
data = json.dumps(id_data)
yield f"data: {data}\n\n"
retriever_params = retriever.get_params()
log_data = {
"action": "stream_answer",
"level": "info",
@@ -256,7 +280,6 @@ class BaseAnswerResource:
"question": question,
"response": response_full,
"sources": source_log_docs,
"retriever_params": retriever_params,
"attachments": attachment_ids,
"timestamp": datetime.datetime.now(datetime.timezone.utc),
}
@@ -264,24 +287,19 @@ class BaseAnswerResource:
log_data["structured_output"] = True
if schema_info:
log_data["schema"] = schema_info
# clean up text fields to be no longer than 10000 characters
# Clean up text fields to be no longer than 10000 characters
for key, value in log_data.items():
if isinstance(value, str) and len(value) > 10000:
log_data[key] = value[:10000]
self.user_logs_collection.insert_one(log_data)
# End of stream
data = json.dumps({"type": "end"})
yield f"data: {data}\n\n"
except GeneratorExit:
# Client aborted the connection
logger.info(
f"Stream aborted by client for question: {question[:50]}... "
)
# Save partial response to database before exiting
logger.info(f"Stream aborted by client for question: {question[:50]}... ")
# Save partial response
if should_save_conversation and response_full:
try:
if isNoneDoc:
@@ -301,7 +319,7 @@ class BaseAnswerResource:
source_log_docs,
tool_calls,
llm,
self.gpt_model,
model_id or self.default_model_id,
decoded_token,
index=index,
api_key=user_api_key,
@@ -311,7 +329,9 @@ class BaseAnswerResource:
attachment_ids=attachment_ids,
)
except Exception as e:
logger.error(f"Error saving partial response: {str(e)}", exc_info=True)
logger.error(
f"Error saving partial response: {str(e)}", exc_info=True
)
raise
except Exception as e:
logger.error(f"Error in stream: {str(e)}", exc_info=True)
@@ -356,7 +376,7 @@ class BaseAnswerResource:
thought = event["thought"]
elif event["type"] == "error":
logger.error(f"Error from stream: {event['error']}")
return None, None, None, None, event["error"]
return None, None, None, None, event["error"], None
elif event["type"] == "end":
stream_ended = True
except (json.JSONDecodeError, KeyError) as e:
@@ -364,8 +384,7 @@ class BaseAnswerResource:
continue
if not stream_ended:
logger.error("Stream ended unexpectedly without an 'end' event.")
return None, None, None, None, "Stream ended unexpectedly"
return None, None, None, None, "Stream ended unexpectedly", None
result = (
conversation_id,
response_full,
@@ -377,7 +396,6 @@ class BaseAnswerResource:
if is_structured:
result = result + ({"structured": True, "schema": schema_info},)
return result
def error_stream_generate(self, err_response):

View File

@@ -57,9 +57,17 @@ class StreamResource(Resource, BaseAnswerResource):
default=True,
description="Whether to save the conversation",
),
"model_id": fields.String(
required=False,
description="Model ID to use for this request",
),
"attachments": fields.List(
fields.String, required=False, description="List of attachment IDs"
),
"passthrough": fields.Raw(
required=False,
description="Dynamic parameters to inject into prompt template",
),
},
)
@@ -73,17 +81,20 @@ class StreamResource(Resource, BaseAnswerResource):
processor = StreamProcessor(data, decoded_token)
try:
processor.initialize()
agent = processor.create_agent()
retriever = processor.create_retriever()
docs_together, docs_list = processor.pre_fetch_docs(data["question"])
tools_data = processor.pre_fetch_tools()
agent = processor.create_agent(
docs_together=docs_together, docs=docs_list, tools_data=tools_data
)
if error := self.check_usage(processor.agent_config):
return error
return Response(
self.complete_stream(
question=data["question"],
agent=agent,
retriever=retriever,
conversation_id=processor.conversation_id,
user_api_key=processor.agent_config.get("user_api_key"),
decoded_token=processor.decoded_token,
@@ -94,6 +105,7 @@ class StreamResource(Resource, BaseAnswerResource):
agent_id=data.get("agent_id"),
is_shared_usage=processor.is_shared_usage,
shared_token=processor.shared_token,
model_id=processor.model_id,
),
mimetype="text/event-stream",
)

View File

@@ -52,7 +52,7 @@ class ConversationService:
sources: List[Dict[str, Any]],
tool_calls: List[Dict[str, Any]],
llm: Any,
gpt_model: str,
model_id: str,
decoded_token: Dict[str, Any],
index: Optional[int] = None,
api_key: Optional[str] = None,
@@ -66,7 +66,7 @@ class ConversationService:
if not user_id:
raise ValueError("User ID not found in token")
current_time = datetime.now(timezone.utc)
# clean up in sources array such that we save max 1k characters for text part
for source in sources:
if "text" in source and isinstance(source["text"], str):
@@ -90,6 +90,7 @@ class ConversationService:
f"queries.{index}.tool_calls": tool_calls,
f"queries.{index}.timestamp": current_time,
f"queries.{index}.attachments": attachment_ids,
f"queries.{index}.model_id": model_id,
}
},
)
@@ -120,6 +121,7 @@ class ConversationService:
"tool_calls": tool_calls,
"timestamp": current_time,
"attachments": attachment_ids,
"model_id": model_id,
}
}
},
@@ -133,10 +135,9 @@ class ConversationService:
messages_summary = [
{
"role": "assistant",
"content": "Summarise following conversation in no more than 3 "
"words, respond ONLY with the summary, use the same "
"language as the user query",
"role": "system",
"content": "You are a helpful assistant that creates concise conversation titles. "
"Summarize conversations in 3 words or less using the same language as the user.",
},
{
"role": "user",
@@ -147,7 +148,7 @@ class ConversationService:
]
completion = llm.gen(
model=gpt_model, messages=messages_summary, max_tokens=30
model=model_id, messages=messages_summary, max_tokens=30
)
conversation_data = {
@@ -163,6 +164,7 @@ class ConversationService:
"tool_calls": tool_calls,
"timestamp": current_time,
"attachments": attachment_ids,
"model_id": model_id,
}
],
}

View File

@@ -0,0 +1,97 @@
import logging
from typing import Any, Dict, Optional
from application.templates.namespaces import NamespaceManager
from application.templates.template_engine import TemplateEngine, TemplateRenderError
logger = logging.getLogger(__name__)
class PromptRenderer:
"""Service for rendering prompts with dynamic context using namespaces"""
def __init__(self):
self.template_engine = TemplateEngine()
self.namespace_manager = NamespaceManager()
def render_prompt(
self,
prompt_content: str,
user_id: Optional[str] = None,
request_id: Optional[str] = None,
passthrough_data: Optional[Dict[str, Any]] = None,
docs: Optional[list] = None,
docs_together: Optional[str] = None,
tools_data: Optional[Dict[str, Any]] = None,
**kwargs,
) -> str:
"""
Render prompt with full context from all namespaces.
Args:
prompt_content: Raw prompt template string
user_id: Current user identifier
request_id: Unique request identifier
passthrough_data: Parameters from web request
docs: RAG retrieved documents
docs_together: Concatenated document content
tools_data: Pre-fetched tool results organized by tool name
**kwargs: Additional parameters for namespace builders
Returns:
Rendered prompt string with all variables substituted
Raises:
TemplateRenderError: If template rendering fails
"""
if not prompt_content:
return ""
uses_template = self._uses_template_syntax(prompt_content)
if not uses_template:
return self._apply_legacy_substitutions(prompt_content, docs_together)
try:
context = self.namespace_manager.build_context(
user_id=user_id,
request_id=request_id,
passthrough_data=passthrough_data,
docs=docs,
docs_together=docs_together,
tools_data=tools_data,
**kwargs,
)
return self.template_engine.render(prompt_content, context)
except TemplateRenderError:
raise
except Exception as e:
error_msg = f"Prompt rendering failed: {str(e)}"
logger.error(error_msg)
raise TemplateRenderError(error_msg) from e
def _uses_template_syntax(self, prompt_content: str) -> bool:
"""Check if prompt uses Jinja2 template syntax"""
return "{{" in prompt_content and "}}" in prompt_content
def _apply_legacy_substitutions(
self, prompt_content: str, docs_together: Optional[str] = None
) -> str:
"""
Apply backward-compatible substitutions for old prompt format.
Handles legacy {summaries} and {query} placeholders during transition period.
"""
if docs_together:
prompt_content = prompt_content.replace("{summaries}", docs_together)
return prompt_content
def validate_template(self, prompt_content: str) -> bool:
"""Validate prompt template syntax"""
return self.template_engine.validate_template(prompt_content)
def extract_variables(self, prompt_content: str) -> set[str]:
"""Extract all variable names from prompt template"""
return self.template_engine.extract_variables(prompt_content)

View File

@@ -3,7 +3,7 @@ import json
import logging
import os
from pathlib import Path
from typing import Any, Dict, Optional
from typing import Any, Dict, Optional, Set
from bson.dbref import DBRef
@@ -11,10 +11,20 @@ from bson.objectid import ObjectId
from application.agents.agent_creator import AgentCreator
from application.api.answer.services.conversation_service import ConversationService
from application.api.answer.services.prompt_renderer import PromptRenderer
from application.core.model_utils import (
get_api_key_for_provider,
get_default_model_id,
get_provider_from_model_id,
validate_model_id,
)
from application.core.mongo_db import MongoDB
from application.core.settings import settings
from application.retriever.retriever_creator import RetrieverCreator
from application.utils import get_gpt_model, limit_chat_history
from application.utils import (
calculate_doc_token_budget,
limit_chat_history,
)
logger = logging.getLogger(__name__)
@@ -73,15 +83,20 @@ class StreamProcessor:
self.all_sources = []
self.attachments = []
self.history = []
self.retrieved_docs = []
self.agent_config = {}
self.retriever_config = {}
self.is_shared_usage = False
self.shared_token = None
self.gpt_model = get_gpt_model()
self.model_id: Optional[str] = None
self.conversation_service = ConversationService()
self.prompt_renderer = PromptRenderer()
self._prompt_content: Optional[str] = None
self._required_tool_actions: Optional[Dict[str, Set[Optional[str]]]] = None
def initialize(self):
"""Initialize all required components for processing"""
self._validate_and_set_model()
self._configure_agent()
self._configure_source()
self._configure_retriever()
@@ -103,7 +118,7 @@ class StreamProcessor:
]
else:
self.history = limit_chat_history(
json.loads(self.data.get("history", "[]")), gpt_model=self.gpt_model
json.loads(self.data.get("history", "[]")), model_id=self.model_id
)
def _process_attachments(self):
@@ -134,6 +149,25 @@ class StreamProcessor:
)
return attachments
def _validate_and_set_model(self):
"""Validate and set model_id from request"""
from application.core.model_settings import ModelRegistry
requested_model = self.data.get("model_id")
if requested_model:
if not validate_model_id(requested_model):
registry = ModelRegistry.get_instance()
available_models = [m.id for m in registry.get_enabled_models()]
raise ValueError(
f"Invalid model_id '{requested_model}'. "
f"Available models: {', '.join(available_models[:5])}"
+ (f" and {len(available_models) - 5} more" if len(available_models) > 5 else "")
)
self.model_id = requested_model
else:
self.model_id = get_default_model_id()
def _get_agent_key(self, agent_id: Optional[str], user_id: Optional[str]) -> tuple:
"""Get API key for agent with access control"""
if not agent_id:
@@ -311,43 +345,330 @@ class StreamProcessor:
)
def _configure_retriever(self):
"""Configure the retriever based on request data"""
history_token_limit = int(self.data.get("token_limit", 2000))
doc_token_limit = calculate_doc_token_budget(
model_id=self.model_id, history_token_limit=history_token_limit
)
self.retriever_config = {
"retriever_name": self.data.get("retriever", "classic"),
"chunks": int(self.data.get("chunks", 2)),
"token_limit": self.data.get("token_limit", settings.DEFAULT_MAX_HISTORY),
"doc_token_limit": doc_token_limit,
"history_token_limit": history_token_limit,
}
api_key = self.data.get("api_key") or self.agent_key
if not api_key and "isNoneDoc" in self.data and self.data["isNoneDoc"]:
self.retriever_config["chunks"] = 0
def create_agent(self):
"""Create and return the configured agent"""
return AgentCreator.create_agent(
self.agent_config["agent_type"],
endpoint="stream",
llm_name=settings.LLM_PROVIDER,
gpt_model=self.gpt_model,
api_key=settings.API_KEY,
user_api_key=self.agent_config["user_api_key"],
prompt=get_prompt(self.agent_config["prompt_id"], self.prompts_collection),
chat_history=self.history,
decoded_token=self.decoded_token,
attachments=self.attachments,
json_schema=self.agent_config.get("json_schema"),
)
def create_retriever(self):
"""Create and return the configured retriever"""
return RetrieverCreator.create_retriever(
self.retriever_config["retriever_name"],
source=self.source,
chat_history=self.history,
prompt=get_prompt(self.agent_config["prompt_id"], self.prompts_collection),
chunks=self.retriever_config["chunks"],
token_limit=self.retriever_config["token_limit"],
gpt_model=self.gpt_model,
doc_token_limit=self.retriever_config.get("doc_token_limit", 50000),
model_id=self.model_id,
user_api_key=self.agent_config["user_api_key"],
decoded_token=self.decoded_token,
)
def pre_fetch_docs(self, question: str) -> tuple[Optional[str], Optional[list]]:
"""Pre-fetch documents for template rendering before agent creation"""
if self.data.get("isNoneDoc", False):
logger.info("Pre-fetch skipped: isNoneDoc=True")
return None, None
try:
retriever = self.create_retriever()
logger.info(
f"Pre-fetching docs with chunks={retriever.chunks}, doc_token_limit={retriever.doc_token_limit}"
)
docs = retriever.search(question)
logger.info(f"Pre-fetch retrieved {len(docs) if docs else 0} documents")
if not docs:
logger.info("Pre-fetch: No documents returned from search")
return None, None
self.retrieved_docs = docs
docs_with_filenames = []
for doc in docs:
filename = doc.get("filename") or doc.get("title") or doc.get("source")
if filename:
chunk_header = str(filename)
docs_with_filenames.append(f"{chunk_header}\n{doc['text']}")
else:
docs_with_filenames.append(doc["text"])
docs_together = "\n\n".join(docs_with_filenames)
logger.info(f"Pre-fetch docs_together size: {len(docs_together)} chars")
return docs_together, docs
except Exception as e:
logger.error(f"Failed to pre-fetch docs: {str(e)}", exc_info=True)
return None, None
def pre_fetch_tools(self) -> Optional[Dict[str, Any]]:
"""Pre-fetch tool data for template rendering before agent creation
Can be controlled via:
1. Global setting: ENABLE_TOOL_PREFETCH in .env
2. Per-request: disable_tool_prefetch in request data
"""
if not settings.ENABLE_TOOL_PREFETCH:
logger.info(
"Tool pre-fetching disabled globally via ENABLE_TOOL_PREFETCH setting"
)
return None
if self.data.get("disable_tool_prefetch", False):
logger.info("Tool pre-fetching disabled for this request")
return None
required_tool_actions = self._get_required_tool_actions()
filtering_enabled = required_tool_actions is not None
try:
user_tools_collection = self.db["user_tools"]
user_id = self.initial_user_id or "local"
user_tools = list(
user_tools_collection.find({"user": user_id, "status": True})
)
if not user_tools:
return None
tools_data = {}
for tool_doc in user_tools:
tool_name = tool_doc.get("name")
tool_id = str(tool_doc.get("_id"))
if filtering_enabled:
required_actions_by_name = required_tool_actions.get(
tool_name, set()
)
required_actions_by_id = required_tool_actions.get(tool_id, set())
required_actions = required_actions_by_name | required_actions_by_id
if not required_actions:
continue
else:
required_actions = None
tool_data = self._fetch_tool_data(tool_doc, required_actions)
if tool_data:
tools_data[tool_name] = tool_data
tools_data[tool_id] = tool_data
return tools_data if tools_data else None
except Exception as e:
logger.warning(f"Failed to pre-fetch tools: {type(e).__name__}")
return None
def _fetch_tool_data(
self,
tool_doc: Dict[str, Any],
required_actions: Optional[Set[Optional[str]]],
) -> Optional[Dict[str, Any]]:
"""Fetch and execute tool actions with saved parameters"""
try:
from application.agents.tools.tool_manager import ToolManager
tool_name = tool_doc.get("name")
tool_config = tool_doc.get("config", {}).copy()
tool_config["tool_id"] = str(tool_doc["_id"])
tool_manager = ToolManager(config={tool_name: tool_config})
user_id = self.initial_user_id or "local"
tool = tool_manager.load_tool(tool_name, tool_config, user_id=user_id)
if not tool:
logger.debug(f"Tool '{tool_name}' failed to load")
return None
tool_actions = tool.get_actions_metadata()
if not tool_actions:
logger.debug(f"Tool '{tool_name}' has no actions")
return None
saved_actions = tool_doc.get("actions", [])
include_all_actions = required_actions is None or (
required_actions and None in required_actions
)
allowed_actions: Set[str] = (
{action for action in required_actions if isinstance(action, str)}
if required_actions
else set()
)
action_results = {}
for action_meta in tool_actions:
action_name = action_meta.get("name")
if action_name is None:
continue
if (
not include_all_actions
and allowed_actions
and action_name not in allowed_actions
):
continue
try:
saved_action = None
for sa in saved_actions:
if sa.get("name") == action_name:
saved_action = sa
break
action_params = action_meta.get("parameters", {})
properties = action_params.get("properties", {})
kwargs = {}
for param_name, param_spec in properties.items():
if saved_action:
saved_props = saved_action.get("parameters", {}).get(
"properties", {}
)
if param_name in saved_props:
param_value = saved_props[param_name].get("value")
if param_value is not None:
kwargs[param_name] = param_value
continue
if param_name in tool_config:
kwargs[param_name] = tool_config[param_name]
elif "default" in param_spec:
kwargs[param_name] = param_spec["default"]
result = tool.execute_action(action_name, **kwargs)
action_results[action_name] = result
except Exception as e:
logger.debug(
f"Action '{action_name}' execution failed: {type(e).__name__}"
)
continue
return action_results if action_results else None
except Exception as e:
logger.debug(f"Tool pre-fetch failed for '{tool_name}': {type(e).__name__}")
return None
def _get_prompt_content(self) -> Optional[str]:
"""Retrieve and cache the raw prompt content for the current agent configuration."""
if self._prompt_content is not None:
return self._prompt_content
prompt_id = (
self.agent_config.get("prompt_id")
if isinstance(self.agent_config, dict)
else None
)
if not prompt_id:
return None
try:
self._prompt_content = get_prompt(prompt_id, self.prompts_collection)
except ValueError as e:
logger.debug(f"Invalid prompt ID '{prompt_id}': {str(e)}")
self._prompt_content = None
except Exception as e:
logger.debug(f"Failed to fetch prompt '{prompt_id}': {type(e).__name__}")
self._prompt_content = None
return self._prompt_content
def _get_required_tool_actions(self) -> Optional[Dict[str, Set[Optional[str]]]]:
"""Determine which tool actions are referenced in the prompt template"""
if self._required_tool_actions is not None:
return self._required_tool_actions
prompt_content = self._get_prompt_content()
if prompt_content is None:
return None
if "{{" not in prompt_content or "}}" not in prompt_content:
self._required_tool_actions = {}
return self._required_tool_actions
try:
from application.templates.template_engine import TemplateEngine
template_engine = TemplateEngine()
usages = template_engine.extract_tool_usages(prompt_content)
self._required_tool_actions = usages
return self._required_tool_actions
except Exception as e:
logger.debug(f"Failed to extract tool usages: {type(e).__name__}")
self._required_tool_actions = {}
return self._required_tool_actions
def _fetch_memory_tool_data(
self, tool_doc: Dict[str, Any]
) -> Optional[Dict[str, Any]]:
"""Fetch memory tool data for pre-injection into prompt"""
try:
tool_config = tool_doc.get("config", {}).copy()
tool_config["tool_id"] = str(tool_doc["_id"])
from application.agents.tools.memory import MemoryTool
memory_tool = MemoryTool(tool_config, self.initial_user_id)
root_view = memory_tool.execute_action("view", path="/")
if "Error:" in root_view or not root_view.strip():
return None
return {"root": root_view, "available": True}
except Exception as e:
logger.warning(f"Failed to fetch memory tool data: {str(e)}")
return None
def create_agent(
self,
docs_together: Optional[str] = None,
docs: Optional[list] = None,
tools_data: Optional[Dict[str, Any]] = None,
):
"""Create and return the configured agent with rendered prompt"""
raw_prompt = self._get_prompt_content()
if raw_prompt is None:
raw_prompt = get_prompt(
self.agent_config["prompt_id"], self.prompts_collection
)
self._prompt_content = raw_prompt
rendered_prompt = self.prompt_renderer.render_prompt(
prompt_content=raw_prompt,
user_id=self.initial_user_id,
request_id=self.data.get("request_id"),
passthrough_data=self.data.get("passthrough"),
docs=docs,
docs_together=docs_together,
tools_data=tools_data,
)
provider = (
get_provider_from_model_id(self.model_id)
if self.model_id
else settings.LLM_PROVIDER
)
system_api_key = get_api_key_for_provider(provider or settings.LLM_PROVIDER)
return AgentCreator.create_agent(
self.agent_config["agent_type"],
endpoint="stream",
llm_name=provider or settings.LLM_PROVIDER,
model_id=self.model_id,
api_key=system_api_key,
user_api_key=self.agent_config["user_api_key"],
prompt=rendered_prompt,
chat_history=self.history,
retrieved_docs=self.retrieved_docs,
decoded_token=self.decoded_token,
attachments=self.attachments,
json_schema=self.agent_config.get("json_schema"),
)

View File

@@ -113,14 +113,10 @@ class ConnectorsCallback(Resource):
session_token = str(uuid.uuid4())
try:
if provider == "google_drive":
credentials = auth.create_credentials_from_token_info(token_info)
service = auth.build_drive_service(credentials)
user_info = service.about().get(fields="user").execute()
user_email = user_info.get('user', {}).get('emailAddress', 'Connected User')
else:
user_email = token_info.get('user_info', {}).get('email', 'Connected User')
credentials = auth.create_credentials_from_token_info(token_info)
service = auth.build_drive_service(credentials)
user_info = service.about().get(fields="user").execute()
user_email = user_info.get('user', {}).get('emailAddress', 'Connected User')
except Exception as e:
current_app.logger.warning(f"Could not get user info: {e}")
user_email = 'Connected User'

View File

@@ -10,7 +10,6 @@ from flask import current_app, jsonify, make_response, request
from flask_restx import fields, Namespace, Resource
from application.api import api
from application.core.settings import settings
from application.api.user.base import (
agents_collection,
db,
@@ -20,6 +19,7 @@ from application.api.user.base import (
storage,
users_collection,
)
from application.core.settings import settings
from application.utils import (
check_required_fields,
generate_image_url,
@@ -76,9 +76,13 @@ class GetAgent(Resource):
"status": agent.get("status", ""),
"json_schema": agent.get("json_schema"),
"limited_token_mode": agent.get("limited_token_mode", False),
"token_limit": agent.get("token_limit", settings.DEFAULT_AGENT_LIMITS["token_limit"]),
"token_limit": agent.get(
"token_limit", settings.DEFAULT_AGENT_LIMITS["token_limit"]
),
"limited_request_mode": agent.get("limited_request_mode", False),
"request_limit": agent.get("request_limit", settings.DEFAULT_AGENT_LIMITS["request_limit"]),
"request_limit": agent.get(
"request_limit", settings.DEFAULT_AGENT_LIMITS["request_limit"]
),
"created_at": agent.get("createdAt", ""),
"updated_at": agent.get("updatedAt", ""),
"last_used_at": agent.get("lastUsedAt", ""),
@@ -91,6 +95,8 @@ class GetAgent(Resource):
"shared": agent.get("shared_publicly", False),
"shared_metadata": agent.get("shared_metadata", {}),
"shared_token": agent.get("shared_token", ""),
"models": agent.get("models", []),
"default_model_id": agent.get("default_model_id", ""),
}
return make_response(jsonify(data), 200)
except Exception as e:
@@ -149,9 +155,13 @@ class GetAgents(Resource):
"status": agent.get("status", ""),
"json_schema": agent.get("json_schema"),
"limited_token_mode": agent.get("limited_token_mode", False),
"token_limit": agent.get("token_limit", settings.DEFAULT_AGENT_LIMITS["token_limit"]),
"token_limit": agent.get(
"token_limit", settings.DEFAULT_AGENT_LIMITS["token_limit"]
),
"limited_request_mode": agent.get("limited_request_mode", False),
"request_limit": agent.get("request_limit", settings.DEFAULT_AGENT_LIMITS["request_limit"]),
"request_limit": agent.get(
"request_limit", settings.DEFAULT_AGENT_LIMITS["request_limit"]
),
"created_at": agent.get("createdAt", ""),
"updated_at": agent.get("updatedAt", ""),
"last_used_at": agent.get("lastUsedAt", ""),
@@ -164,6 +174,8 @@ class GetAgents(Resource):
"shared": agent.get("shared_publicly", False),
"shared_metadata": agent.get("shared_metadata", {}),
"shared_token": agent.get("shared_token", ""),
"models": agent.get("models", []),
"default_model_id": agent.get("default_model_id", ""),
}
for agent in agents
if "source" in agent or "retriever" in agent
@@ -209,21 +221,27 @@ class CreateAgent(Resource):
description="JSON schema for enforcing structured output format",
),
"limited_token_mode": fields.Boolean(
required=False,
description="Whether the agent is in limited token mode"
required=False, description="Whether the agent is in limited token mode"
),
"token_limit": fields.Integer(
required=False,
description="Token limit for the agent in limited mode"
required=False, description="Token limit for the agent in limited mode"
),
"limited_request_mode": fields.Boolean(
required=False,
description="Whether the agent is in limited request mode"
description="Whether the agent is in limited request mode",
),
"request_limit": fields.Integer(
required=False,
description="Request limit for the agent in limited mode"
)
description="Request limit for the agent in limited mode",
),
"models": fields.List(
fields.String,
required=False,
description="List of available model IDs for this agent",
),
"default_model_id": fields.String(
required=False, description="Default model ID for this agent"
),
},
)
@@ -252,6 +270,11 @@ class CreateAgent(Resource):
data["json_schema"] = json.loads(data["json_schema"])
except json.JSONDecodeError:
data["json_schema"] = None
if "models" in data:
try:
data["models"] = json.loads(data["models"])
except json.JSONDecodeError:
data["models"] = []
print(f"Received data: {data}")
# Validate JSON schema if provided
@@ -369,14 +392,32 @@ class CreateAgent(Resource):
"agent_type": data.get("agent_type", ""),
"status": data.get("status"),
"json_schema": data.get("json_schema"),
"limited_token_mode": data.get("limited_token_mode", False),
"token_limit": data.get("token_limit", settings.DEFAULT_AGENT_LIMITS["token_limit"]),
"limited_request_mode": data.get("limited_request_mode", False),
"request_limit": data.get("request_limit", settings.DEFAULT_AGENT_LIMITS["request_limit"]),
"limited_token_mode": (
data.get("limited_token_mode") == "True"
if isinstance(data.get("limited_token_mode"), str)
else bool(data.get("limited_token_mode", False))
),
"token_limit": int(
data.get(
"token_limit", settings.DEFAULT_AGENT_LIMITS["token_limit"]
)
),
"limited_request_mode": (
data.get("limited_request_mode") == "True"
if isinstance(data.get("limited_request_mode"), str)
else bool(data.get("limited_request_mode", False))
),
"request_limit": int(
data.get(
"request_limit", settings.DEFAULT_AGENT_LIMITS["request_limit"]
)
),
"createdAt": datetime.datetime.now(datetime.timezone.utc),
"updatedAt": datetime.datetime.now(datetime.timezone.utc),
"lastUsedAt": None,
"key": key,
"models": data.get("models", []),
"default_model_id": data.get("default_model_id", ""),
}
if new_agent["chunks"] == "":
new_agent["chunks"] = "2"
@@ -429,21 +470,27 @@ class UpdateAgent(Resource):
description="JSON schema for enforcing structured output format",
),
"limited_token_mode": fields.Boolean(
required=False,
description="Whether the agent is in limited token mode"
required=False, description="Whether the agent is in limited token mode"
),
"token_limit": fields.Integer(
required=False,
description="Token limit for the agent in limited mode"
required=False, description="Token limit for the agent in limited mode"
),
"limited_request_mode": fields.Boolean(
require=False,
description="Whether the agent is in limited request mode"
description="Whether the agent is in limited request mode",
),
"request_limit": fields.Integer(
required=False,
description="Request limit for the agent in limited mode"
)
description="Request limit for the agent in limited mode",
),
"models": fields.List(
fields.String,
required=False,
description="List of available model IDs for this agent",
),
"default_model_id": fields.String(
required=False, description="Default model ID for this agent"
),
},
)
@@ -467,7 +514,7 @@ class UpdateAgent(Resource):
data = request.get_json()
else:
data = request.form.to_dict()
json_fields = ["tools", "sources", "json_schema"]
json_fields = ["tools", "sources", "json_schema", "models"]
for field in json_fields:
if field in data and data[field]:
try:
@@ -534,7 +581,9 @@ class UpdateAgent(Resource):
"limited_token_mode",
"token_limit",
"limited_request_mode",
"request_limit"
"request_limit",
"models",
"default_model_id",
]
for field in allowed_fields:
@@ -652,8 +701,15 @@ class UpdateAgent(Resource):
else:
update_fields[field] = None
elif field == "limited_token_mode":
is_mode_enabled = data.get("limited_token_mode", False)
if is_mode_enabled and data.get("token_limit") is None:
raw_value = data.get("limited_token_mode", False)
bool_value = (
raw_value == "True"
if isinstance(raw_value, str)
else bool(raw_value)
)
update_fields[field] = bool_value
if bool_value and data.get("token_limit") is None:
return make_response(
jsonify(
{
@@ -664,8 +720,15 @@ class UpdateAgent(Resource):
400,
)
elif field == "limited_request_mode":
is_mode_enabled = data.get("limited_request_mode", False)
if is_mode_enabled and data.get("request_limit") is None:
raw_value = data.get("limited_request_mode", False)
bool_value = (
raw_value == "True"
if isinstance(raw_value, str)
else bool(raw_value)
)
update_fields[field] = bool_value
if bool_value and data.get("request_limit") is None:
return make_response(
jsonify(
{
@@ -677,7 +740,11 @@ class UpdateAgent(Resource):
)
elif field == "token_limit":
token_limit = data.get("token_limit")
if token_limit is not None and not data.get("limited_token_mode"):
# Convert to int and store
update_fields[field] = int(token_limit) if token_limit else 0
# Validate consistency with mode
if update_fields[field] > 0 and not data.get("limited_token_mode"):
return make_response(
jsonify(
{
@@ -689,7 +756,9 @@ class UpdateAgent(Resource):
)
elif field == "request_limit":
request_limit = data.get("request_limit")
if request_limit is not None and not data.get("limited_request_mode"):
update_fields[field] = int(request_limit) if request_limit else 0
if update_fields[field] > 0 and not data.get("limited_request_mode"):
return make_response(
jsonify(
{

View File

@@ -10,7 +10,7 @@ from application.api import api
from application.api.user.base import agents_collection, storage
from application.api.user.tasks import store_attachment
from application.core.settings import settings
from application.tts.google_tts import GoogleTTS
from application.tts.tts_creator import TTSCreator
from application.utils import safe_filename
@@ -25,7 +25,7 @@ class StoreAttachment(Resource):
api.model(
"AttachmentModel",
{
"file": fields.Raw(required=True, description="File to upload"),
"file": fields.Raw(required=True, description="File(s) to upload"),
"api_key": fields.String(
required=False, description="API key (optional)"
),
@@ -33,18 +33,24 @@ class StoreAttachment(Resource):
)
)
@api.doc(
description="Stores a single attachment without vectorization or training. Supports user or API key authentication."
description="Stores one or multiple attachments without vectorization or training. Supports user or API key authentication."
)
def post(self):
decoded_token = getattr(request, "decoded_token", None)
api_key = request.form.get("api_key") or request.args.get("api_key")
file = request.files.get("file")
if not file or file.filename == "":
files = request.files.getlist("file")
if not files:
single_file = request.files.get("file")
if single_file:
files = [single_file]
if not files or all(f.filename == "" for f in files):
return make_response(
jsonify({"status": "error", "message": "Missing file"}),
jsonify({"status": "error", "message": "Missing file(s)"}),
400,
)
user = None
if decoded_token:
user = safe_filename(decoded_token.get("sub"))
@@ -59,32 +65,74 @@ class StoreAttachment(Resource):
return make_response(
jsonify({"success": False, "message": "Authentication required"}), 401
)
try:
attachment_id = ObjectId()
original_filename = safe_filename(os.path.basename(file.filename))
relative_path = f"{settings.UPLOAD_FOLDER}/{user}/attachments/{str(attachment_id)}/{original_filename}"
tasks = []
errors = []
original_file_count = len(files)
for idx, file in enumerate(files):
try:
attachment_id = ObjectId()
original_filename = safe_filename(os.path.basename(file.filename))
relative_path = f"{settings.UPLOAD_FOLDER}/{user}/attachments/{str(attachment_id)}/{original_filename}"
metadata = storage.save_file(file, relative_path)
file_info = {
"filename": original_filename,
"attachment_id": str(attachment_id),
"path": relative_path,
"metadata": metadata,
}
task = store_attachment.delay(file_info, user)
return make_response(
jsonify(
{
"success": True,
"task_id": task.id,
"message": "File uploaded successfully. Processing started.",
metadata = storage.save_file(file, relative_path)
file_info = {
"filename": original_filename,
"attachment_id": str(attachment_id),
"path": relative_path,
"metadata": metadata,
}
),
200,
)
task = store_attachment.delay(file_info, user)
tasks.append({
"task_id": task.id,
"filename": original_filename,
"attachment_id": str(attachment_id),
})
except Exception as file_err:
current_app.logger.error(f"Error processing file {idx} ({file.filename}): {file_err}", exc_info=True)
errors.append({
"filename": file.filename,
"error": str(file_err)
})
if not tasks:
error_msg = "No valid files to upload"
if errors:
error_msg += f". Errors: {errors}"
return make_response(
jsonify({"status": "error", "message": error_msg, "errors": errors}),
400,
)
if original_file_count == 1 and len(tasks) == 1:
current_app.logger.info("Returning single task_id response")
return make_response(
jsonify(
{
"success": True,
"task_id": tasks[0]["task_id"],
"message": "File uploaded successfully. Processing started.",
}
),
200,
)
else:
response_data = {
"success": True,
"tasks": tasks,
"message": f"{len(tasks)} file(s) uploaded successfully. Processing started.",
}
if errors:
response_data["errors"] = errors
response_data["message"] += f" {len(errors)} file(s) failed."
return make_response(
jsonify(response_data),
200,
)
except Exception as err:
current_app.logger.error(f"Error storing attachment: {err}", exc_info=True)
return make_response(jsonify({"success": False, "error": str(err)}), 400)
@@ -133,7 +181,7 @@ class TextToSpeech(Resource):
data = request.get_json()
text = data["text"]
try:
tts_instance = GoogleTTS()
tts_instance = TTSCreator.create_tts(settings.TTS_PROVIDER)
audio_base64, detected_language = tts_instance.text_to_speech(text)
return make_response(
jsonify(

View File

@@ -0,0 +1,3 @@
from .routes import models_ns
__all__ = ["models_ns"]

View File

@@ -0,0 +1,25 @@
from flask import current_app, jsonify, make_response
from flask_restx import Namespace, Resource
from application.core.model_settings import ModelRegistry
models_ns = Namespace("models", description="Available models", path="/api")
@models_ns.route("/models")
class ModelsListResource(Resource):
def get(self):
"""Get list of available models with their capabilities."""
try:
registry = ModelRegistry.get_instance()
models = registry.get_enabled_models()
response = {
"models": [model.to_dict() for model in models],
"default_model_id": registry.default_model_id,
"count": len(models),
}
except Exception as err:
current_app.logger.error(f"Error fetching models: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 500)
return make_response(jsonify(response), 200)

View File

@@ -10,6 +10,7 @@ from .agents import agents_ns, agents_sharing_ns, agents_webhooks_ns
from .analytics import analytics_ns
from .attachments import attachments_ns
from .conversations import conversations_ns
from .models import models_ns
from .prompts import prompts_ns
from .sharing import sharing_ns
from .sources import sources_chunks_ns, sources_ns, sources_upload_ns
@@ -27,6 +28,9 @@ api.add_namespace(attachments_ns)
# Conversations
api.add_namespace(conversations_ns)
# Models
api.add_namespace(models_ns)
# Agents (main, sharing, webhooks)
api.add_namespace(agents_ns)
api.add_namespace(agents_sharing_ns)

View File

@@ -13,7 +13,6 @@ from application.api.user.base import (
agents_collection,
attachments_collection,
conversations_collection,
db,
shared_conversations_collections,
)
from application.utils import check_required_fields
@@ -97,9 +96,7 @@ class ShareConversation(Resource):
api_uuid = pre_existing_api_document["key"]
pre_existing = shared_conversations_collections.find_one(
{
"conversation_id": DBRef(
"conversations", ObjectId(conversation_id)
),
"conversation_id": ObjectId(conversation_id),
"isPromptable": is_promptable,
"first_n_queries": current_n_queries,
"user": user,
@@ -120,10 +117,7 @@ class ShareConversation(Resource):
shared_conversations_collections.insert_one(
{
"uuid": explicit_binary,
"conversation_id": {
"$ref": "conversations",
"$id": ObjectId(conversation_id),
},
"conversation_id": ObjectId(conversation_id),
"isPromptable": is_promptable,
"first_n_queries": current_n_queries,
"user": user,
@@ -154,10 +148,7 @@ class ShareConversation(Resource):
shared_conversations_collections.insert_one(
{
"uuid": explicit_binary,
"conversation_id": {
"$ref": "conversations",
"$id": ObjectId(conversation_id),
},
"conversation_id": ObjectId(conversation_id),
"isPromptable": is_promptable,
"first_n_queries": current_n_queries,
"user": user,
@@ -175,9 +166,7 @@ class ShareConversation(Resource):
)
pre_existing = shared_conversations_collections.find_one(
{
"conversation_id": DBRef(
"conversations", ObjectId(conversation_id)
),
"conversation_id": ObjectId(conversation_id),
"isPromptable": is_promptable,
"first_n_queries": current_n_queries,
"user": user,
@@ -197,10 +186,7 @@ class ShareConversation(Resource):
shared_conversations_collections.insert_one(
{
"uuid": explicit_binary,
"conversation_id": {
"$ref": "conversations",
"$id": ObjectId(conversation_id),
},
"conversation_id": ObjectId(conversation_id),
"isPromptable": is_promptable,
"first_n_queries": current_n_queries,
"user": user,
@@ -233,10 +219,12 @@ class GetPubliclySharedConversations(Resource):
if (
shared
and "conversation_id" in shared
and isinstance(shared["conversation_id"], DBRef)
):
conversation_ref = shared["conversation_id"]
conversation = db.dereference(conversation_ref)
# conversation_id is now stored as an ObjectId, not a DBRef
conversation_id = shared["conversation_id"]
conversation = conversations_collection.find_one(
{"_id": conversation_id}
)
if conversation is None:
return make_response(
jsonify(

View File

@@ -56,9 +56,10 @@ class GetTools(Resource):
tools = user_tools_collection.find({"user": user})
user_tools = []
for tool in tools:
tool["id"] = str(tool["_id"])
tool.pop("_id")
user_tools.append(tool)
tool_copy = {**tool}
tool_copy["id"] = str(tool["_id"])
tool_copy.pop("_id", None)
user_tools.append(tool_copy)
except Exception as err:
current_app.logger.error(f"Error getting user tools: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)

View File

@@ -0,0 +1,223 @@
"""
Model configurations for all supported LLM providers.
"""
from application.core.model_settings import (
AvailableModel,
ModelCapabilities,
ModelProvider,
)
OPENAI_ATTACHMENTS = [
"application/pdf",
"image/png",
"image/jpeg",
"image/jpg",
"image/webp",
"image/gif",
]
GOOGLE_ATTACHMENTS = [
"application/pdf",
"image/png",
"image/jpeg",
"image/jpg",
"image/webp",
"image/gif",
]
OPENAI_MODELS = [
AvailableModel(
id="gpt-4o",
provider=ModelProvider.OPENAI,
display_name="GPT-4 Omni",
description="Latest and most capable model",
capabilities=ModelCapabilities(
supports_tools=True,
supports_structured_output=True,
supported_attachment_types=OPENAI_ATTACHMENTS,
context_window=128000,
),
),
AvailableModel(
id="gpt-4o-mini",
provider=ModelProvider.OPENAI,
display_name="GPT-4 Omni Mini",
description="Fast and efficient",
capabilities=ModelCapabilities(
supports_tools=True,
supports_structured_output=True,
supported_attachment_types=OPENAI_ATTACHMENTS,
context_window=128000,
),
),
AvailableModel(
id="gpt-4-turbo",
provider=ModelProvider.OPENAI,
display_name="GPT-4 Turbo",
description="Fast GPT-4 with 128k context",
capabilities=ModelCapabilities(
supports_tools=True,
supports_structured_output=True,
supported_attachment_types=OPENAI_ATTACHMENTS,
context_window=128000,
),
),
AvailableModel(
id="gpt-4",
provider=ModelProvider.OPENAI,
display_name="GPT-4",
description="Most capable model",
capabilities=ModelCapabilities(
supports_tools=True,
supports_structured_output=True,
supported_attachment_types=OPENAI_ATTACHMENTS,
context_window=8192,
),
),
AvailableModel(
id="gpt-3.5-turbo",
provider=ModelProvider.OPENAI,
display_name="GPT-3.5 Turbo",
description="Fast and cost-effective",
capabilities=ModelCapabilities(
supports_tools=True,
context_window=4096,
),
),
]
ANTHROPIC_MODELS = [
AvailableModel(
id="claude-3-5-sonnet-20241022",
provider=ModelProvider.ANTHROPIC,
display_name="Claude 3.5 Sonnet (Latest)",
description="Latest Claude 3.5 Sonnet with enhanced capabilities",
capabilities=ModelCapabilities(
supports_tools=True,
context_window=200000,
),
),
AvailableModel(
id="claude-3-5-sonnet",
provider=ModelProvider.ANTHROPIC,
display_name="Claude 3.5 Sonnet",
description="Balanced performance and capability",
capabilities=ModelCapabilities(
supports_tools=True,
context_window=200000,
),
),
AvailableModel(
id="claude-3-opus",
provider=ModelProvider.ANTHROPIC,
display_name="Claude 3 Opus",
description="Most capable Claude model",
capabilities=ModelCapabilities(
supports_tools=True,
context_window=200000,
),
),
AvailableModel(
id="claude-3-haiku",
provider=ModelProvider.ANTHROPIC,
display_name="Claude 3 Haiku",
description="Fastest Claude model",
capabilities=ModelCapabilities(
supports_tools=True,
context_window=200000,
),
),
]
GOOGLE_MODELS = [
AvailableModel(
id="gemini-flash-latest",
provider=ModelProvider.GOOGLE,
display_name="Gemini Flash (Latest)",
description="Latest experimental Gemini model",
capabilities=ModelCapabilities(
supports_tools=True,
supports_structured_output=True,
supported_attachment_types=GOOGLE_ATTACHMENTS,
context_window=int(1e6),
),
),
AvailableModel(
id="gemini-flash-lite-latest",
provider=ModelProvider.GOOGLE,
display_name="Gemini Flash Lite (Latest)",
description="Fast with huge context window",
capabilities=ModelCapabilities(
supports_tools=True,
supports_structured_output=True,
supported_attachment_types=GOOGLE_ATTACHMENTS,
context_window=int(1e6),
),
),
AvailableModel(
id="gemini-2.5-pro",
provider=ModelProvider.GOOGLE,
display_name="Gemini 2.5 Pro",
description="Most capable Gemini model",
capabilities=ModelCapabilities(
supports_tools=True,
supports_structured_output=True,
supported_attachment_types=GOOGLE_ATTACHMENTS,
context_window=2000000,
),
),
]
GROQ_MODELS = [
AvailableModel(
id="llama-3.3-70b-versatile",
provider=ModelProvider.GROQ,
display_name="Llama 3.3 70B",
description="Latest Llama model with high-speed inference",
capabilities=ModelCapabilities(
supports_tools=True,
context_window=128000,
),
),
AvailableModel(
id="llama-3.1-8b-instant",
provider=ModelProvider.GROQ,
display_name="Llama 3.1 8B",
description="Ultra-fast inference",
capabilities=ModelCapabilities(
supports_tools=True,
context_window=128000,
),
),
AvailableModel(
id="mixtral-8x7b-32768",
provider=ModelProvider.GROQ,
display_name="Mixtral 8x7B",
description="High-speed inference with tools",
capabilities=ModelCapabilities(
supports_tools=True,
context_window=32768,
),
),
]
AZURE_OPENAI_MODELS = [
AvailableModel(
id="azure-gpt-4",
provider=ModelProvider.AZURE_OPENAI,
display_name="Azure OpenAI GPT-4",
description="Azure-hosted GPT model",
capabilities=ModelCapabilities(
supports_tools=True,
supports_structured_output=True,
supported_attachment_types=OPENAI_ATTACHMENTS,
context_window=8192,
),
),
]

View File

@@ -0,0 +1,236 @@
import logging
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional
logger = logging.getLogger(__name__)
class ModelProvider(str, Enum):
OPENAI = "openai"
AZURE_OPENAI = "azure_openai"
ANTHROPIC = "anthropic"
GROQ = "groq"
GOOGLE = "google"
HUGGINGFACE = "huggingface"
LLAMA_CPP = "llama.cpp"
DOCSGPT = "docsgpt"
PREMAI = "premai"
SAGEMAKER = "sagemaker"
NOVITA = "novita"
@dataclass
class ModelCapabilities:
supports_tools: bool = False
supports_structured_output: bool = False
supports_streaming: bool = True
supported_attachment_types: List[str] = field(default_factory=list)
context_window: int = 128000
input_cost_per_token: Optional[float] = None
output_cost_per_token: Optional[float] = None
@dataclass
class AvailableModel:
id: str
provider: ModelProvider
display_name: str
description: str = ""
capabilities: ModelCapabilities = field(default_factory=ModelCapabilities)
enabled: bool = True
base_url: Optional[str] = None
def to_dict(self) -> Dict:
result = {
"id": self.id,
"provider": self.provider.value,
"display_name": self.display_name,
"description": self.description,
"supported_attachment_types": self.capabilities.supported_attachment_types,
"supports_tools": self.capabilities.supports_tools,
"supports_structured_output": self.capabilities.supports_structured_output,
"supports_streaming": self.capabilities.supports_streaming,
"context_window": self.capabilities.context_window,
"enabled": self.enabled,
}
if self.base_url:
result["base_url"] = self.base_url
return result
class ModelRegistry:
_instance = None
_initialized = False
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
def __init__(self):
if not ModelRegistry._initialized:
self.models: Dict[str, AvailableModel] = {}
self.default_model_id: Optional[str] = None
self._load_models()
ModelRegistry._initialized = True
@classmethod
def get_instance(cls) -> "ModelRegistry":
return cls()
def _load_models(self):
from application.core.settings import settings
self.models.clear()
self._add_docsgpt_models(settings)
if settings.OPENAI_API_KEY or (
settings.LLM_PROVIDER == "openai" and settings.API_KEY
):
self._add_openai_models(settings)
if settings.OPENAI_API_BASE or (
settings.LLM_PROVIDER == "azure_openai" and settings.API_KEY
):
self._add_azure_openai_models(settings)
if settings.ANTHROPIC_API_KEY or (
settings.LLM_PROVIDER == "anthropic" and settings.API_KEY
):
self._add_anthropic_models(settings)
if settings.GOOGLE_API_KEY or (
settings.LLM_PROVIDER == "google" and settings.API_KEY
):
self._add_google_models(settings)
if settings.GROQ_API_KEY or (
settings.LLM_PROVIDER == "groq" and settings.API_KEY
):
self._add_groq_models(settings)
if settings.HUGGINGFACE_API_KEY or (
settings.LLM_PROVIDER == "huggingface" and settings.API_KEY
):
self._add_huggingface_models(settings)
# Default model selection
if settings.LLM_NAME and settings.LLM_NAME in self.models:
self.default_model_id = settings.LLM_NAME
elif settings.LLM_PROVIDER and settings.API_KEY:
for model_id, model in self.models.items():
if model.provider.value == settings.LLM_PROVIDER:
self.default_model_id = model_id
break
else:
self.default_model_id = next(iter(self.models.keys()))
logger.info(
f"ModelRegistry loaded {len(self.models)} models, default: {self.default_model_id}"
)
def _add_openai_models(self, settings):
from application.core.model_configs import OPENAI_MODELS
if settings.OPENAI_API_KEY:
for model in OPENAI_MODELS:
self.models[model.id] = model
return
if settings.LLM_PROVIDER == "openai" and settings.LLM_NAME:
for model in OPENAI_MODELS:
if model.id == settings.LLM_NAME:
self.models[model.id] = model
return
for model in OPENAI_MODELS:
self.models[model.id] = model
def _add_azure_openai_models(self, settings):
from application.core.model_configs import AZURE_OPENAI_MODELS
if settings.LLM_PROVIDER == "azure_openai" and settings.LLM_NAME:
for model in AZURE_OPENAI_MODELS:
if model.id == settings.LLM_NAME:
self.models[model.id] = model
return
for model in AZURE_OPENAI_MODELS:
self.models[model.id] = model
def _add_anthropic_models(self, settings):
from application.core.model_configs import ANTHROPIC_MODELS
if settings.ANTHROPIC_API_KEY:
for model in ANTHROPIC_MODELS:
self.models[model.id] = model
return
if settings.LLM_PROVIDER == "anthropic" and settings.LLM_NAME:
for model in ANTHROPIC_MODELS:
if model.id == settings.LLM_NAME:
self.models[model.id] = model
return
for model in ANTHROPIC_MODELS:
self.models[model.id] = model
def _add_google_models(self, settings):
from application.core.model_configs import GOOGLE_MODELS
if settings.GOOGLE_API_KEY:
for model in GOOGLE_MODELS:
self.models[model.id] = model
return
if settings.LLM_PROVIDER == "google" and settings.LLM_NAME:
for model in GOOGLE_MODELS:
if model.id == settings.LLM_NAME:
self.models[model.id] = model
return
for model in GOOGLE_MODELS:
self.models[model.id] = model
def _add_groq_models(self, settings):
from application.core.model_configs import GROQ_MODELS
if settings.GROQ_API_KEY:
for model in GROQ_MODELS:
self.models[model.id] = model
return
if settings.LLM_PROVIDER == "groq" and settings.LLM_NAME:
for model in GROQ_MODELS:
if model.id == settings.LLM_NAME:
self.models[model.id] = model
return
for model in GROQ_MODELS:
self.models[model.id] = model
def _add_docsgpt_models(self, settings):
model_id = "docsgpt-local"
model = AvailableModel(
id=model_id,
provider=ModelProvider.DOCSGPT,
display_name="DocsGPT Model",
description="Local model",
capabilities=ModelCapabilities(
supports_tools=False,
supported_attachment_types=[],
),
)
self.models[model_id] = model
def _add_huggingface_models(self, settings):
model_id = "huggingface-local"
model = AvailableModel(
id=model_id,
provider=ModelProvider.HUGGINGFACE,
display_name="Hugging Face Model",
description="Local Hugging Face model",
capabilities=ModelCapabilities(
supports_tools=False,
supported_attachment_types=[],
),
)
self.models[model_id] = model
def get_model(self, model_id: str) -> Optional[AvailableModel]:
return self.models.get(model_id)
def get_all_models(self) -> List[AvailableModel]:
return list(self.models.values())
def get_enabled_models(self) -> List[AvailableModel]:
return [m for m in self.models.values() if m.enabled]
def model_exists(self, model_id: str) -> bool:
return model_id in self.models

View File

@@ -0,0 +1,91 @@
from typing import Any, Dict, Optional
from application.core.model_settings import ModelRegistry
def get_api_key_for_provider(provider: str) -> Optional[str]:
"""Get the appropriate API key for a provider"""
from application.core.settings import settings
provider_key_map = {
"openai": settings.OPENAI_API_KEY,
"anthropic": settings.ANTHROPIC_API_KEY,
"google": settings.GOOGLE_API_KEY,
"groq": settings.GROQ_API_KEY,
"huggingface": settings.HUGGINGFACE_API_KEY,
"azure_openai": settings.API_KEY,
"docsgpt": None,
"llama.cpp": None,
}
provider_key = provider_key_map.get(provider)
if provider_key:
return provider_key
return settings.API_KEY
def get_all_available_models() -> Dict[str, Dict[str, Any]]:
"""Get all available models with metadata for API response"""
registry = ModelRegistry.get_instance()
return {model.id: model.to_dict() for model in registry.get_enabled_models()}
def validate_model_id(model_id: str) -> bool:
"""Check if a model ID exists in registry"""
registry = ModelRegistry.get_instance()
return registry.model_exists(model_id)
def get_model_capabilities(model_id: str) -> Optional[Dict[str, Any]]:
"""Get capabilities for a specific model"""
registry = ModelRegistry.get_instance()
model = registry.get_model(model_id)
if model:
return {
"supported_attachment_types": model.capabilities.supported_attachment_types,
"supports_tools": model.capabilities.supports_tools,
"supports_structured_output": model.capabilities.supports_structured_output,
"context_window": model.capabilities.context_window,
}
return None
def get_default_model_id() -> str:
"""Get the system default model ID"""
registry = ModelRegistry.get_instance()
return registry.default_model_id
def get_provider_from_model_id(model_id: str) -> Optional[str]:
"""Get the provider name for a given model_id"""
registry = ModelRegistry.get_instance()
model = registry.get_model(model_id)
if model:
return model.provider.value
return None
def get_token_limit(model_id: str) -> int:
"""
Get context window (token limit) for a model.
Returns model's context_window or default 128000 if model not found.
"""
from application.core.settings import settings
registry = ModelRegistry.get_instance()
model = registry.get_model(model_id)
if model:
return model.capabilities.context_window
return settings.DEFAULT_LLM_TOKEN_LIMIT
def get_base_url_for_model(model_id: str) -> Optional[str]:
"""
Get the custom base_url for a specific model if configured.
Returns None if no custom base_url is set.
"""
registry = ModelRegistry.get_instance()
model = registry.get_model(model_id)
if model:
return model.base_url
return None

View File

@@ -22,11 +22,11 @@ class Settings(BaseSettings):
MONGO_DB_NAME: str = "docsgpt"
LLM_PATH: str = os.path.join(current_dir, "models/docsgpt-7b-f16.gguf")
DEFAULT_MAX_HISTORY: int = 150
LLM_TOKEN_LIMITS: dict = {
"gpt-4o-mini": 128000,
"gpt-3.5-turbo": 4096,
"claude-2": 1e5,
"gemini-2.5-flash": 1e6,
DEFAULT_LLM_TOKEN_LIMIT: int = 128000 # Fallback when model not found in registry
RESERVED_TOKENS: dict = {
"system_prompt": 500,
"current_query": 500,
"safety_buffer": 1000,
}
DEFAULT_AGENT_LIMITS: dict = {
"token_limit": 50000,
@@ -55,20 +55,23 @@ class Settings(BaseSettings):
"http://127.0.0.1:7091/api/connectors/callback" ##add redirect url as it is to your provider's console(gcp)
)
# Microsoft Entra ID (Azure AD) integration
MICROSOFT_CLIENT_ID: Optional[str] = None # Azure AD Application (client) ID
MICROSOFT_CLIENT_SECRET: Optional[str] = None # Azure AD Application client secret
MICROSOFT_TENANT_ID: Optional[str] = "common" # Azure AD Tenant ID (or 'common' for multi-tenant)
MICROSOFT_AUTHORITY: Optional[str] = None # e.g., "https://login.microsoftonline.com/{tenant_id}"
# GitHub source
GITHUB_ACCESS_TOKEN: Optional[str] = None # PAT token with read repo access
GITHUB_ACCESS_TOKEN: Optional[str] = None # PAT token with read repo access
# LLM Cache
CACHE_REDIS_URL: str = "redis://localhost:6379/2"
API_URL: str = "http://localhost:7091" # backend url for celery worker
API_KEY: Optional[str] = None # LLM api key
API_KEY: Optional[str] = None # LLM api key (used by LLM_PROVIDER)
# Provider-specific API keys (for multi-model support)
OPENAI_API_KEY: Optional[str] = None
ANTHROPIC_API_KEY: Optional[str] = None
GOOGLE_API_KEY: Optional[str] = None
GROQ_API_KEY: Optional[str] = None
HUGGINGFACE_API_KEY: Optional[str] = None
EMBEDDINGS_KEY: Optional[str] = (
None # api key for embeddings (if using openai, just copy API_KEY)
)
@@ -135,7 +138,12 @@ class Settings(BaseSettings):
# Encryption settings
ENCRYPTION_SECRET_KEY: str = "default-docsgpt-encryption-key"
TTS_PROVIDER: str = "google_tts" # google_tts or elevenlabs
ELEVENLABS_API_KEY: Optional[str] = None
# Tool pre-fetch settings
ENABLE_TOOL_PREFETCH: bool = True
path = Path(__file__).parent.parent.absolute()
settings = Settings(_env_file=path.joinpath(".env"), _env_file_encoding="utf-8")

View File

@@ -1,30 +1,41 @@
from application.llm.base import BaseLLM
from anthropic import AI_PROMPT, Anthropic, HUMAN_PROMPT
from application.core.settings import settings
from application.llm.base import BaseLLM
class AnthropicLLM(BaseLLM):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
def __init__(self, api_key=None, user_api_key=None, base_url=None, *args, **kwargs):
super().__init__(*args, **kwargs)
self.api_key = (
api_key or settings.ANTHROPIC_API_KEY
) # If not provided, use a default from settings
self.api_key = api_key or settings.ANTHROPIC_API_KEY or settings.API_KEY
self.user_api_key = user_api_key
self.anthropic = Anthropic(api_key=self.api_key)
# Use custom base_url if provided
if base_url:
self.anthropic = Anthropic(api_key=self.api_key, base_url=base_url)
else:
self.anthropic = Anthropic(api_key=self.api_key)
self.HUMAN_PROMPT = HUMAN_PROMPT
self.AI_PROMPT = AI_PROMPT
def _raw_gen(
self, baseself, model, messages, stream=False, tools=None, max_tokens=300, **kwargs
self,
baseself,
model,
messages,
stream=False,
tools=None,
max_tokens=300,
**kwargs,
):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Context \n {context} \n ### Question \n {user_question}"
if stream:
return self.gen_stream(model, prompt, stream, max_tokens, **kwargs)
completion = self.anthropic.completions.create(
model=model,
max_tokens_to_sample=max_tokens,
@@ -34,7 +45,14 @@ class AnthropicLLM(BaseLLM):
return completion.completion
def _raw_gen_stream(
self, baseself, model, messages, stream=True, tools=None, max_tokens=300, **kwargs
self,
baseself,
model,
messages,
stream=True,
tools=None,
max_tokens=300,
**kwargs,
):
context = messages[0]["content"]
user_question = messages[-1]["content"]
@@ -50,5 +68,5 @@ class AnthropicLLM(BaseLLM):
for completion in stream_response:
yield completion.completion
finally:
if hasattr(stream_response, 'close'):
if hasattr(stream_response, "close"):
stream_response.close()

View File

@@ -13,30 +13,32 @@ class BaseLLM(ABC):
def __init__(
self,
decoded_token=None,
model_id=None,
base_url=None,
):
self.decoded_token = decoded_token
self.model_id = model_id
self.base_url = base_url
self.token_usage = {"prompt_tokens": 0, "generated_tokens": 0}
self.fallback_provider = settings.FALLBACK_LLM_PROVIDER
self.fallback_model_name = settings.FALLBACK_LLM_NAME
self.fallback_llm_api_key = settings.FALLBACK_LLM_API_KEY
self._fallback_llm = None
self._fallback_sequence_index = 0
@property
def fallback_llm(self):
"""Lazy-loaded fallback LLM instance."""
if (
self._fallback_llm is None
and self.fallback_provider
and self.fallback_model_name
):
"""Lazy-loaded fallback LLM from FALLBACK_* settings."""
if self._fallback_llm is None and settings.FALLBACK_LLM_PROVIDER:
try:
from application.llm.llm_creator import LLMCreator
self._fallback_llm = LLMCreator.create_llm(
self.fallback_provider,
self.fallback_llm_api_key,
None,
self.decoded_token,
settings.FALLBACK_LLM_PROVIDER,
api_key=settings.FALLBACK_LLM_API_KEY or settings.API_KEY,
user_api_key=None,
decoded_token=self.decoded_token,
model_id=settings.FALLBACK_LLM_NAME,
)
logger.info(
f"Fallback LLM initialized: {settings.FALLBACK_LLM_PROVIDER}/{settings.FALLBACK_LLM_NAME}"
)
except Exception as e:
logger.error(
@@ -44,11 +46,17 @@ class BaseLLM(ABC):
)
return self._fallback_llm
@staticmethod
def _remove_null_values(args_dict):
if not isinstance(args_dict, dict):
return args_dict
return {k: v for k, v in args_dict.items() if v is not None}
def _execute_with_fallback(
self, method_name: str, decorators: list, *args, **kwargs
):
"""
Unified method execution with fallback support.
Execute method with fallback support.
Args:
method_name: Name of the raw method ('_raw_gen' or '_raw_gen_stream')
@@ -67,10 +75,10 @@ class BaseLLM(ABC):
return decorated_method()
except Exception as e:
if not self.fallback_llm:
logger.error(f"Primary LLM failed and no fallback available: {str(e)}")
logger.error(f"Primary LLM failed and no fallback configured: {str(e)}")
raise
logger.warning(
f"Falling back to {self.fallback_provider}/{self.fallback_model_name}. Error: {str(e)}"
f"Primary LLM failed. Falling back to {settings.FALLBACK_LLM_PROVIDER}/{settings.FALLBACK_LLM_NAME}. Error: {str(e)}"
)
fallback_method = getattr(

View File

@@ -1,5 +1,7 @@
import json
from openai import OpenAI
from application.core.settings import settings
from application.llm.base import BaseLLM
@@ -7,12 +9,11 @@ from application.llm.base import BaseLLM
class DocsGPTAPILLM(BaseLLM):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
from openai import OpenAI
super().__init__(*args, **kwargs)
self.client = OpenAI(api_key="sk-docsgpt-public", base_url="https://oai.arc53.com")
self.api_key = "sk-docsgpt-public"
self.client = OpenAI(api_key=self.api_key, base_url="https://oai.arc53.com")
self.user_api_key = user_api_key
self.api_key = api_key
def _clean_messages_openai(self, messages):
cleaned_messages = []
@@ -22,7 +23,6 @@ class DocsGPTAPILLM(BaseLLM):
if role == "model":
role = "assistant"
if role and content is not None:
if isinstance(content, str):
cleaned_messages.append({"role": role, "content": content})
@@ -33,14 +33,15 @@ class DocsGPTAPILLM(BaseLLM):
{"role": role, "content": item["text"]}
)
elif "function_call" in item:
cleaned_args = self._remove_null_values(
item["function_call"]["args"]
)
tool_call = {
"id": item["function_call"]["call_id"],
"type": "function",
"function": {
"name": item["function_call"]["name"],
"arguments": json.dumps(
item["function_call"]["args"]
),
"arguments": json.dumps(cleaned_args),
},
}
cleaned_messages.append(
@@ -68,7 +69,6 @@ class DocsGPTAPILLM(BaseLLM):
)
else:
raise ValueError(f"Unexpected content type: {type(content)}")
return cleaned_messages
def _raw_gen(
@@ -120,7 +120,6 @@ class DocsGPTAPILLM(BaseLLM):
response = self.client.chat.completions.create(
model="docsgpt", messages=messages, stream=stream, **kwargs
)
try:
for line in response:
if (
@@ -132,8 +131,8 @@ class DocsGPTAPILLM(BaseLLM):
elif len(line.choices) > 0:
yield line.choices[0]
finally:
if hasattr(response, 'close'):
if hasattr(response, "close"):
response.close()
def _supports_tools(self):
return True
return True

View File

@@ -13,8 +13,9 @@ from application.storage.storage_creator import StorageCreator
class GoogleLLM(BaseLLM):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
super().__init__(*args, **kwargs)
self.api_key = api_key
self.api_key = api_key or settings.GOOGLE_API_KEY or settings.API_KEY
self.user_api_key = user_api_key
self.client = genai.Client(api_key=self.api_key)
self.storage = StorageCreator.get_storage()
@@ -47,21 +48,19 @@ class GoogleLLM(BaseLLM):
"""
if not attachments:
return messages
prepared_messages = messages.copy()
# Find the user message to attach files to the last one
user_message_index = None
for i in range(len(prepared_messages) - 1, -1, -1):
if prepared_messages[i].get("role") == "user":
user_message_index = i
break
if user_message_index is None:
user_message = {"role": "user", "content": []}
prepared_messages.append(user_message)
user_message_index = len(prepared_messages) - 1
if isinstance(prepared_messages[user_message_index].get("content"), str):
text_content = prepared_messages[user_message_index]["content"]
prepared_messages[user_message_index]["content"] = [
@@ -69,7 +68,6 @@ class GoogleLLM(BaseLLM):
]
elif not isinstance(prepared_messages[user_message_index].get("content"), list):
prepared_messages[user_message_index]["content"] = []
files = []
for attachment in attachments:
mime_type = attachment.get("mime_type")
@@ -92,11 +90,9 @@ class GoogleLLM(BaseLLM):
"text": f"[File could not be processed: {attachment.get('path', 'unknown')}]",
}
)
if files:
logging.info(f"GoogleLLM: Adding {len(files)} files to message")
prepared_messages[user_message_index]["content"].append({"files": files})
return prepared_messages
def _upload_file_to_google(self, attachment):
@@ -111,14 +107,11 @@ class GoogleLLM(BaseLLM):
"""
if "google_file_uri" in attachment:
return attachment["google_file_uri"]
file_path = attachment.get("path")
if not file_path:
raise ValueError("No file path provided in attachment")
if not self.storage.file_exists(file_path):
raise FileNotFoundError(f"File not found: {file_path}")
try:
file_uri = self.storage.process_file(
file_path,
@@ -136,7 +129,6 @@ class GoogleLLM(BaseLLM):
attachments_collection.update_one(
{"_id": attachment["_id"]}, {"$set": {"google_file_uri": file_uri}}
)
return file_uri
except Exception as e:
logging.error(f"Error uploading file to Google AI: {e}", exc_info=True)
@@ -153,7 +145,6 @@ class GoogleLLM(BaseLLM):
role = "model"
elif role == "tool":
role = "model"
parts = []
if role and content is not None:
if isinstance(content, str):
@@ -163,10 +154,15 @@ class GoogleLLM(BaseLLM):
if "text" in item:
parts.append(types.Part.from_text(text=item["text"]))
elif "function_call" in item:
# Remove null values from args to avoid API errors
cleaned_args = self._remove_null_values(
item["function_call"]["args"]
)
parts.append(
types.Part.from_function_call(
name=item["function_call"]["name"],
args=item["function_call"]["args"],
args=cleaned_args,
)
)
elif "function_response" in item:
@@ -190,10 +186,8 @@ class GoogleLLM(BaseLLM):
)
else:
raise ValueError(f"Unexpected content type: {type(content)}")
if parts:
cleaned_messages.append(types.Content(role=role, parts=parts))
return cleaned_messages
def _clean_schema(self, schema_obj):
@@ -229,8 +223,8 @@ class GoogleLLM(BaseLLM):
cleaned[key] = [self._clean_schema(item) for item in value]
else:
cleaned[key] = value
# Validate that required properties actually exist in properties
if "required" in cleaned and "properties" in cleaned:
valid_required = []
properties_keys = set(cleaned["properties"].keys())
@@ -243,7 +237,6 @@ class GoogleLLM(BaseLLM):
cleaned.pop("required", None)
elif "required" in cleaned and "properties" not in cleaned:
cleaned.pop("required", None)
return cleaned
def _clean_tools_format(self, tools_list):
@@ -259,7 +252,6 @@ class GoogleLLM(BaseLLM):
cleaned_properties = {}
for k, v in properties.items():
cleaned_properties[k] = self._clean_schema(v)
genai_function = dict(
name=function["name"],
description=function["description"],
@@ -278,10 +270,8 @@ class GoogleLLM(BaseLLM):
name=function["name"],
description=function["description"],
)
genai_tool = types.Tool(function_declarations=[genai_function])
genai_tools.append(genai_tool)
return genai_tools
def _raw_gen(
@@ -303,16 +293,14 @@ class GoogleLLM(BaseLLM):
if messages[0].role == "system":
config.system_instruction = messages[0].parts[0].text
messages = messages[1:]
if tools:
cleaned_tools = self._clean_tools_format(tools)
config.tools = cleaned_tools
# Add response schema for structured output if provided
if response_schema:
config.response_schema = response_schema
config.response_mime_type = "application/json"
response = client.models.generate_content(
model=model,
contents=messages,
@@ -343,17 +331,16 @@ class GoogleLLM(BaseLLM):
if messages[0].role == "system":
config.system_instruction = messages[0].parts[0].text
messages = messages[1:]
if tools:
cleaned_tools = self._clean_tools_format(tools)
config.tools = cleaned_tools
# Add response schema for structured output if provided
if response_schema:
config.response_schema = response_schema
config.response_mime_type = "application/json"
# Check if we have both tools and file attachments
has_attachments = False
for message in messages:
for part in message.parts:
@@ -362,7 +349,6 @@ class GoogleLLM(BaseLLM):
break
if has_attachments:
break
logging.info(
f"GoogleLLM: Starting stream generation. Model: {model}, Messages: {json.dumps(messages, default=str)}, Has attachments: {has_attachments}"
)
@@ -386,7 +372,7 @@ class GoogleLLM(BaseLLM):
elif hasattr(chunk, "text"):
yield chunk.text
finally:
if hasattr(response, 'close'):
if hasattr(response, "close"):
response.close()
def _supports_tools(self):
@@ -401,7 +387,6 @@ class GoogleLLM(BaseLLM):
"""Convert JSON schema to Google AI structured output format."""
if not json_schema:
return None
type_map = {
"object": "OBJECT",
"array": "ARRAY",
@@ -414,12 +399,10 @@ class GoogleLLM(BaseLLM):
def convert(schema):
if not isinstance(schema, dict):
return schema
result = {}
schema_type = schema.get("type")
if schema_type:
result["type"] = type_map.get(schema_type.lower(), schema_type.upper())
for key in [
"description",
"nullable",
@@ -431,7 +414,6 @@ class GoogleLLM(BaseLLM):
]:
if key in schema:
result[key] = schema[key]
if "format" in schema:
format_value = schema["format"]
if schema_type == "string":
@@ -441,21 +423,17 @@ class GoogleLLM(BaseLLM):
result["format"] = format_value
else:
result["format"] = format_value
if "properties" in schema:
result["properties"] = {
k: convert(v) for k, v in schema["properties"].items()
}
if "propertyOrdering" not in result and result.get("type") == "OBJECT":
result["propertyOrdering"] = list(result["properties"].keys())
if "items" in schema:
result["items"] = convert(schema["items"])
for field in ["anyOf", "oneOf", "allOf"]:
if field in schema:
result[field] = [convert(s) for s in schema[field]]
return result
try:

View File

@@ -1,13 +1,18 @@
from application.llm.base import BaseLLM
from openai import OpenAI
from application.core.settings import settings
from application.llm.base import BaseLLM
class GroqLLM(BaseLLM):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
super().__init__(*args, **kwargs)
self.client = OpenAI(api_key=api_key, base_url="https://api.groq.com/openai/v1")
self.api_key = api_key
self.api_key = api_key or settings.GROQ_API_KEY or settings.API_KEY
self.user_api_key = user_api_key
self.client = OpenAI(
api_key=self.api_key, base_url="https://api.groq.com/openai/v1"
)
def _raw_gen(self, baseself, model, messages, stream=False, tools=None, **kwargs):
if tools:

View File

@@ -282,7 +282,7 @@ class LLMHandler(ABC):
messages = e.value
break
response = agent.llm.gen(
model=agent.gpt_model, messages=messages, tools=agent.tools
model=agent.model_id, messages=messages, tools=agent.tools
)
parsed = self.parse_response(response)
self.llm_calls.append(build_stack_data(agent.llm))
@@ -337,7 +337,7 @@ class LLMHandler(ABC):
tool_calls = {}
response = agent.llm.gen_stream(
model=agent.gpt_model, messages=messages, tools=agent.tools
model=agent.model_id, messages=messages, tools=agent.tools
)
self.llm_calls.append(build_stack_data(agent.llm))

View File

@@ -1,13 +1,17 @@
from application.llm.groq import GroqLLM
from application.llm.openai import OpenAILLM, AzureOpenAILLM
from application.llm.sagemaker import SagemakerAPILLM
from application.llm.huggingface import HuggingFaceLLM
from application.llm.llama_cpp import LlamaCpp
import logging
from application.llm.anthropic import AnthropicLLM
from application.llm.docsgpt_provider import DocsGPTAPILLM
from application.llm.premai import PremAILLM
from application.llm.google_ai import GoogleLLM
from application.llm.groq import GroqLLM
from application.llm.huggingface import HuggingFaceLLM
from application.llm.llama_cpp import LlamaCpp
from application.llm.novita import NovitaLLM
from application.llm.openai import AzureOpenAILLM, OpenAILLM
from application.llm.premai import PremAILLM
from application.llm.sagemaker import SagemakerAPILLM
logger = logging.getLogger(__name__)
class LLMCreator:
@@ -26,10 +30,26 @@ class LLMCreator:
}
@classmethod
def create_llm(cls, type, api_key, user_api_key, decoded_token, *args, **kwargs):
def create_llm(
cls, type, api_key, user_api_key, decoded_token, model_id=None, *args, **kwargs
):
from application.core.model_utils import get_base_url_for_model
llm_class = cls.llms.get(type.lower())
if not llm_class:
raise ValueError(f"No LLM class found for type {type}")
# Extract base_url from model configuration if model_id is provided
base_url = None
if model_id:
base_url = get_base_url_for_model(model_id)
return llm_class(
api_key, user_api_key, decoded_token=decoded_token, *args, **kwargs
api_key,
user_api_key,
decoded_token=decoded_token,
model_id=model_id,
base_url=base_url,
*args,
**kwargs,
)

View File

@@ -2,6 +2,8 @@ import base64
import json
import logging
from openai import OpenAI
from application.core.settings import settings
from application.llm.base import BaseLLM
from application.storage.storage_creator import StorageCreator
@@ -9,20 +11,25 @@ from application.storage.storage_creator import StorageCreator
class OpenAILLM(BaseLLM):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
from openai import OpenAI
def __init__(self, api_key=None, user_api_key=None, base_url=None, *args, **kwargs):
super().__init__(*args, **kwargs)
if (
self.api_key = api_key or settings.OPENAI_API_KEY or settings.API_KEY
self.user_api_key = user_api_key
# Priority: 1) Parameter base_url, 2) Settings OPENAI_BASE_URL, 3) Default
effective_base_url = None
if base_url and isinstance(base_url, str) and base_url.strip():
effective_base_url = base_url
elif (
isinstance(settings.OPENAI_BASE_URL, str)
and settings.OPENAI_BASE_URL.strip()
):
self.client = OpenAI(api_key=api_key, base_url=settings.OPENAI_BASE_URL)
effective_base_url = settings.OPENAI_BASE_URL
else:
DEFAULT_OPENAI_API_BASE = "https://api.openai.com/v1"
self.client = OpenAI(api_key=api_key, base_url=DEFAULT_OPENAI_API_BASE)
self.api_key = api_key
self.user_api_key = user_api_key
effective_base_url = "https://api.openai.com/v1"
self.client = OpenAI(api_key=self.api_key, base_url=effective_base_url)
self.storage = StorageCreator.get_storage()
def _clean_messages_openai(self, messages):
@@ -33,7 +40,6 @@ class OpenAILLM(BaseLLM):
if role == "model":
role = "assistant"
if role and content is not None:
if isinstance(content, str):
cleaned_messages.append({"role": role, "content": content})
@@ -44,14 +50,15 @@ class OpenAILLM(BaseLLM):
{"role": role, "content": item["text"]}
)
elif "function_call" in item:
cleaned_args = self._remove_null_values(
item["function_call"]["args"]
)
tool_call = {
"id": item["function_call"]["call_id"],
"type": "function",
"function": {
"name": item["function_call"]["name"],
"arguments": json.dumps(
item["function_call"]["args"]
),
"arguments": json.dumps(cleaned_args),
},
}
cleaned_messages.append(
@@ -106,7 +113,6 @@ class OpenAILLM(BaseLLM):
)
else:
raise ValueError(f"Unexpected content type: {type(content)}")
return cleaned_messages
def _raw_gen(
@@ -131,10 +137,8 @@ class OpenAILLM(BaseLLM):
if tools:
request_params["tools"] = tools
if response_format:
request_params["response_format"] = response_format
response = self.client.chat.completions.create(**request_params)
if tools:
@@ -164,10 +168,8 @@ class OpenAILLM(BaseLLM):
if tools:
request_params["tools"] = tools
if response_format:
request_params["response_format"] = response_format
response = self.client.chat.completions.create(**request_params)
try:
@@ -181,7 +183,7 @@ class OpenAILLM(BaseLLM):
elif len(line.choices) > 0:
yield line.choices[0]
finally:
if hasattr(response, 'close'):
if hasattr(response, "close"):
response.close()
def _supports_tools(self):
@@ -193,7 +195,6 @@ class OpenAILLM(BaseLLM):
def prepare_structured_output_format(self, json_schema):
if not json_schema:
return None
try:
def add_additional_properties_false(schema_obj):
@@ -203,11 +204,11 @@ class OpenAILLM(BaseLLM):
if schema_copy.get("type") == "object":
schema_copy["additionalProperties"] = False
# Ensure 'required' includes all properties for OpenAI strict mode
if "properties" in schema_copy:
schema_copy["required"] = list(
schema_copy["properties"].keys()
)
for key, value in schema_copy.items():
if key == "properties" and isinstance(value, dict):
schema_copy[key] = {
@@ -223,7 +224,6 @@ class OpenAILLM(BaseLLM):
add_additional_properties_false(sub_schema)
for sub_schema in value
]
return schema_copy
return schema_obj
@@ -242,7 +242,6 @@ class OpenAILLM(BaseLLM):
}
return result
except Exception as e:
logging.error(f"Error preparing structured output format: {e}")
return None
@@ -276,21 +275,19 @@ class OpenAILLM(BaseLLM):
"""
if not attachments:
return messages
prepared_messages = messages.copy()
# Find the user message to attach file_id to the last one
user_message_index = None
for i in range(len(prepared_messages) - 1, -1, -1):
if prepared_messages[i].get("role") == "user":
user_message_index = i
break
if user_message_index is None:
user_message = {"role": "user", "content": []}
prepared_messages.append(user_message)
user_message_index = len(prepared_messages) - 1
if isinstance(prepared_messages[user_message_index].get("content"), str):
text_content = prepared_messages[user_message_index]["content"]
prepared_messages[user_message_index]["content"] = [
@@ -298,7 +295,6 @@ class OpenAILLM(BaseLLM):
]
elif not isinstance(prepared_messages[user_message_index].get("content"), list):
prepared_messages[user_message_index]["content"] = []
for attachment in attachments:
mime_type = attachment.get("mime_type")
@@ -325,6 +321,7 @@ class OpenAILLM(BaseLLM):
}
)
# Handle PDFs using the file API
elif mime_type == "application/pdf":
try:
file_id = self._upload_file_to_openai(attachment)
@@ -340,7 +337,6 @@ class OpenAILLM(BaseLLM):
"text": f"File content:\n\n{attachment['content']}",
}
)
return prepared_messages
def _get_base64_image(self, attachment):
@@ -356,7 +352,6 @@ class OpenAILLM(BaseLLM):
file_path = attachment.get("path")
if not file_path:
raise ValueError("No file path provided in attachment")
try:
with self.storage.get_file(file_path) as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
@@ -380,12 +375,10 @@ class OpenAILLM(BaseLLM):
if "openai_file_id" in attachment:
return attachment["openai_file_id"]
file_path = attachment.get("path")
if not self.storage.file_exists(file_path):
raise FileNotFoundError(f"File not found: {file_path}")
try:
file_id = self.storage.process_file(
file_path,
@@ -403,7 +396,6 @@ class OpenAILLM(BaseLLM):
attachments_collection.update_one(
{"_id": attachment["_id"]}, {"$set": {"openai_file_id": file_id}}
)
return file_id
except Exception as e:
logging.error(f"Error uploading file to OpenAI: {e}", exc_info=True)

View File

@@ -1,7 +1,5 @@
from application.parser.connectors.google_drive.loader import GoogleDriveLoader
from application.parser.connectors.google_drive.auth import GoogleDriveAuth
from application.parser.connectors.share_point.auth import SharePointAuth
from application.parser.connectors.share_point.loader import SharePointLoader
class ConnectorCreator:
@@ -14,12 +12,10 @@ class ConnectorCreator:
connectors = {
"google_drive": GoogleDriveLoader,
"share_point": SharePointLoader,
}
auth_providers = {
"google_drive": GoogleDriveAuth,
"share_point": SharePointAuth,
}
@classmethod

View File

@@ -1,10 +0,0 @@
"""
Share Point connector package for DocsGPT.
This module provides authentication and document loading capabilities for Share Point.
"""
from .auth import SharePointAuth
from .loader import SharePointLoader
__all__ = ['SharePointAuth', 'SharePointLoader']

View File

@@ -1,91 +0,0 @@
import logging
import datetime
from typing import Optional, Dict, Any
from msal import ConfidentialClientApplication
from application.core.settings import settings
from application.parser.connectors.base import BaseConnectorAuth
class SharePointAuth(BaseConnectorAuth):
"""
Handles Microsoft OAuth 2.0 authentication.
# Documentation:
- https://learn.microsoft.com/en-us/entra/identity-platform/v2-oauth2-auth-code-flow
- https://learn.microsoft.com/en-gb/entra/msal/python/
"""
# Microsoft Graph scopes for SharePoint access
SCOPES = [
"User.Read",
]
def __init__(self):
self.client_id = settings.MICROSOFT_CLIENT_ID
self.client_secret = settings.MICROSOFT_CLIENT_SECRET
if not self.client_id or not self.client_secret:
raise ValueError(
"Microsoft OAuth credentials not configured. Please set MICROSOFT_CLIENT_ID and MICROSOFT_CLIENT_SECRET in settings."
)
self.redirect_uri = settings.CONNECTOR_REDIRECT_BASE_URI
self.tenant_id = settings.MICROSOFT_TENANT_ID
self.authority = getattr(settings, "MICROSOFT_AUTHORITY", f"https://{self.tenant_id}.ciamlogin.com/{self.tenant_id}")
self.auth_app = ConfidentialClientApplication(
client_id=self.client_id, client_credential=self.client_secret, authority=self.authority
)
def get_authorization_url(self, state: Optional[str] = None) -> str:
return self.auth_app.get_authorization_request_url(
scopes=self.SCOPES, state=state, redirect_uri=self.redirect_uri
)
def exchange_code_for_tokens(self, authorization_code: str) -> Dict[str, Any]:
result = self.auth_app.acquire_token_by_authorization_code(
code=authorization_code, scopes=self.SCOPES, redirect_uri=self.redirect_uri
)
if "error" in result:
logging.error(f"Error acquiring token: {result.get('error_description')}")
raise ValueError(f"Error acquiring token: {result.get('error_description')}")
return self.map_token_response(result)
def refresh_access_token(self, refresh_token: str) -> Dict[str, Any]:
result = self.auth_app.acquire_token_by_refresh_token(refresh_token=refresh_token, scopes=self.SCOPES)
if "error" in result:
logging.error(f"Error acquiring token: {result.get('error_description')}")
raise ValueError(f"Error acquiring token: {result.get('error_description')}")
return self.map_token_response(result)
def is_token_expired(self, token_info: Dict[str, Any]) -> bool:
if not token_info or "expiry" not in token_info:
# If no expiry info, consider token expired to be safe
return True
# Get expiry timestamp and current time
expiry_timestamp = token_info["expiry"]
current_timestamp = int(datetime.datetime.now().timestamp())
# Token is expired if current time is greater than or equal to expiry time
return current_timestamp >= expiry_timestamp
def map_token_response(self, result) -> Dict[str, Any]:
return {
"access_token": result.get("access_token"),
"refresh_token": result.get("refresh_token"),
"token_uri": result.get("id_token_claims", {}).get("iss"),
"scopes": result.get("scope"),
"expiry": result.get("id_token_claims", {}).get("exp"),
"user_info": {
"name": result.get("id_token_claims", {}).get("name"),
"email": result.get("id_token_claims", {}).get("preferred_username"),
},
"raw_token": result,
}

View File

@@ -1,44 +0,0 @@
from typing import List, Dict, Any
from application.parser.connectors.base import BaseConnectorLoader
from application.parser.schema.base import Document
class SharePointLoader(BaseConnectorLoader):
def __init__(self, session_token: str):
pass
def load_data(self, inputs: Dict[str, Any]) -> List[Document]:
"""
Load documents from the external knowledge base.
Args:
inputs: Configuration dictionary containing:
- file_ids: Optional list of specific file IDs to load
- folder_ids: Optional list of folder IDs to browse/download
- limit: Maximum number of items to return
- list_only: If True, return metadata without content
- recursive: Whether to recursively process folders
Returns:
List of Document objects
"""
pass
def download_to_directory(self, local_dir: str, source_config: Dict[str, Any] = None) -> Dict[str, Any]:
"""
Download files/folders to a local directory.
Args:
local_dir: Local directory path to download files to
source_config: Configuration for what to download
Returns:
Dictionary containing download results:
- files_downloaded: Number of files downloaded
- directory_path: Path where files were downloaded
- empty_result: Whether no files were downloaded
- source_type: Type of connector
- config_used: Configuration that was used
- error: Error message if download failed (optional)
"""
pass

View File

@@ -1,5 +1,6 @@
import os
import logging
from typing import List, Any
from retry import retry
from tqdm import tqdm
from application.core.settings import settings
@@ -22,13 +23,16 @@ def sanitize_content(content: str) -> str:
@retry(tries=10, delay=60)
def add_text_to_store_with_retry(store, doc, source_id):
"""
Add a document's text and metadata to the vector store with retry logic.
def add_text_to_store_with_retry(store: Any, doc: Any, source_id: str) -> None:
"""Add a document's text and metadata to the vector store with retry logic.
Args:
store: The vector store object.
doc: The document to be added.
source_id: Unique identifier for the source.
Raises:
Exception: If document addition fails after all retry attempts.
"""
try:
# Sanitize content to remove NUL characters that cause ingestion failures
@@ -41,18 +45,21 @@ def add_text_to_store_with_retry(store, doc, source_id):
raise
def embed_and_store_documents(docs, folder_name, source_id, task_status):
"""
Embeds documents and stores them in a vector store.
def embed_and_store_documents(docs: List[Any], folder_name: str, source_id: str, task_status: Any) -> None:
"""Embeds documents and stores them in a vector store.
Args:
docs (list): List of documents to be embedded and stored.
folder_name (str): Directory to save the vector store.
source_id (str): Unique identifier for the source.
docs: List of documents to be embedded and stored.
folder_name: Directory to save the vector store.
source_id: Unique identifier for the source.
task_status: Task state manager for progress updates.
Returns:
None
Raises:
OSError: If unable to create folder or save vector store.
Exception: If vector store creation or document embedding fails.
"""
# Ensure the folder exists
if not os.path.exists(folder_name):
@@ -95,10 +102,21 @@ def embed_and_store_documents(docs, folder_name, source_id, task_status):
except Exception as e:
logging.error(f"Error embedding document {idx}: {e}", exc_info=True)
logging.info(f"Saving progress at document {idx} out of {total_docs}")
store.save_local(folder_name)
try:
store.save_local(folder_name)
logging.info("Progress saved successfully")
except Exception as save_error:
logging.error(f"CRITICAL: Failed to save progress: {save_error}", exc_info=True)
# Continue without breaking to attempt final save
break
# Save the vector store
if settings.VECTOR_STORE == "faiss":
store.save_local(folder_name)
logging.info("Vector store saved successfully.")
try:
store.save_local(folder_name)
logging.info("Vector store saved successfully.")
except Exception as e:
logging.error(f"CRITICAL: Failed to save final vector store: {e}", exc_info=True)
raise OSError(f"Unable to save vector store to {folder_name}: {e}") from e
else:
logging.info("Vector store saved successfully.")

View File

@@ -10,6 +10,7 @@ ebooklib==0.18
escodegen==1.0.11
esprima==4.0.1
esutils==1.0.1
elevenlabs==2.17.0
Flask==3.1.1
faiss-cpu==1.9.0.post1
fastmcp==2.11.0
@@ -40,7 +41,6 @@ markupsafe==3.0.2
marshmallow==3.26.1
mpmath==1.3.0
multidict==6.4.3
msal==1.34.0
mypy-extensions==1.0.0
networkx==3.4.2
numpy==2.2.1
@@ -88,4 +88,4 @@ werkzeug>=3.1.0,<3.1.2
yarl==1.20.0
markdownify==1.1.0
tldextract==5.1.3
websockets==14.1
websockets==14.1

View File

@@ -8,7 +8,3 @@ class BaseRetriever(ABC):
@abstractmethod
def search(self, *args, **kwargs):
pass
@abstractmethod
def get_params(self):
pass

View File

@@ -4,7 +4,7 @@ import os
from application.core.settings import settings
from application.llm.llm_creator import LLMCreator
from application.retriever.base import BaseRetriever
from application.utils import num_tokens_from_string
from application.vectorstore.vector_creator import VectorCreator
@@ -15,14 +15,13 @@ class ClassicRAG(BaseRetriever):
chat_history=None,
prompt="",
chunks=2,
token_limit=150,
gpt_model="docsgpt",
doc_token_limit=50000,
model_id="docsgpt-local",
user_api_key=None,
llm_name=settings.LLM_PROVIDER,
api_key=settings.API_KEY,
decoded_token=None,
):
"""Initialize ClassicRAG retriever with vectorstore sources and LLM configuration"""
self.original_question = source.get("question", "")
self.chat_history = chat_history if chat_history is not None else []
self.prompt = prompt
@@ -41,17 +40,8 @@ class ClassicRAG(BaseRetriever):
f"ClassicRAG initialized with chunks={self.chunks}, user_api_key={user_identifier}, "
f"sources={'active_docs' in source and source['active_docs'] is not None}"
)
self.gpt_model = gpt_model
self.token_limit = (
token_limit
if token_limit
< settings.LLM_TOKEN_LIMITS.get(
self.gpt_model, settings.DEFAULT_MAX_HISTORY
)
else settings.LLM_TOKEN_LIMITS.get(
self.gpt_model, settings.DEFAULT_MAX_HISTORY
)
)
self.model_id = model_id
self.doc_token_limit = doc_token_limit
self.user_api_key = user_api_key
self.llm_name = llm_name
self.api_key = api_key
@@ -110,7 +100,7 @@ class ClassicRAG(BaseRetriever):
]
try:
rephrased_query = self.llm.gen(model=self.gpt_model, messages=messages)
rephrased_query = self.llm.gen(model=self.model_id, messages=messages)
print(f"Rephrased query: {rephrased_query}")
return rephrased_query if rephrased_query else self.original_question
except Exception as e:
@@ -118,21 +108,17 @@ class ClassicRAG(BaseRetriever):
return self.original_question
def _get_data(self):
"""Retrieve relevant documents from configured vectorstores"""
if self.chunks == 0 or not self.vectorstores:
logging.info(
f"ClassicRAG._get_data: Skipping retrieval - chunks={self.chunks}, "
f"vectorstores_count={len(self.vectorstores) if self.vectorstores else 0}"
)
return []
all_docs = []
chunks_per_source = max(1, self.chunks // len(self.vectorstores))
logging.info(
f"ClassicRAG._get_data: Starting retrieval with chunks={self.chunks}, "
f"vectorstores={self.vectorstores}, chunks_per_source={chunks_per_source}, "
f"query='{self.question[:50]}...'"
)
token_budget = max(int(self.doc_token_limit * 0.9), 100)
cumulative_tokens = 0
for vectorstore_id in self.vectorstores:
if vectorstore_id:
@@ -140,15 +126,21 @@ class ClassicRAG(BaseRetriever):
docsearch = VectorCreator.create_vectorstore(
settings.VECTOR_STORE, vectorstore_id, settings.EMBEDDINGS_KEY
)
docs_temp = docsearch.search(self.question, k=chunks_per_source)
docs_temp = docsearch.search(
self.question, k=max(chunks_per_source * 2, 20)
)
for doc in docs_temp:
if cumulative_tokens >= token_budget:
break
if hasattr(doc, "page_content") and hasattr(doc, "metadata"):
page_content = doc.page_content
metadata = doc.metadata
else:
page_content = doc.get("text", doc.get("page_content", ""))
metadata = doc.get("metadata", {})
title = metadata.get(
"title", metadata.get("post_title", page_content)
)
@@ -168,23 +160,35 @@ class ClassicRAG(BaseRetriever):
if not filename:
filename = title
source_path = metadata.get("source") or vectorstore_id
all_docs.append(
{
"title": title,
"text": page_content,
"source": source_path,
"filename": filename,
}
)
doc_text_with_header = f"{filename}\n{page_content}"
doc_tokens = num_tokens_from_string(doc_text_with_header)
if cumulative_tokens + doc_tokens < token_budget:
all_docs.append(
{
"title": title,
"text": page_content,
"source": source_path,
"filename": filename,
}
)
cumulative_tokens += doc_tokens
if cumulative_tokens >= token_budget:
break
except Exception as e:
logging.error(
f"Error searching vectorstore {vectorstore_id}: {e}",
exc_info=True,
)
continue
logging.info(
f"ClassicRAG._get_data: Retrieval complete - retrieved {len(all_docs)} documents "
f"(requested chunks={self.chunks}, chunks_per_source={chunks_per_source})"
f"(requested chunks={self.chunks}, chunks_per_source={chunks_per_source}, "
f"cumulative_tokens={cumulative_tokens}/{token_budget})"
)
return all_docs
@@ -194,15 +198,3 @@ class ClassicRAG(BaseRetriever):
self.original_question = query
self.question = self._rephrase_query()
return self._get_data()
def get_params(self):
"""Return current retriever configuration parameters"""
return {
"question": self.original_question,
"rephrased_question": self.question,
"sources": self.vectorstores,
"chunks": self.chunks,
"token_limit": self.token_limit,
"gpt_model": self.gpt_model,
"user_api_key": self.user_api_key,
}

View File

View File

@@ -0,0 +1,190 @@
import logging
import uuid
from abc import ABC, abstractmethod
from datetime import datetime, timezone
from typing import Any, Dict, Optional
logger = logging.getLogger(__name__)
class NamespaceBuilder(ABC):
"""Base class for building template context namespaces"""
@abstractmethod
def build(self, **kwargs) -> Dict[str, Any]:
"""Build namespace context dictionary"""
pass
@property
@abstractmethod
def namespace_name(self) -> str:
"""Name of this namespace for template access"""
pass
class SystemNamespace(NamespaceBuilder):
"""System metadata namespace: {{ system.* }}"""
@property
def namespace_name(self) -> str:
return "system"
def build(
self, request_id: Optional[str] = None, user_id: Optional[str] = None, **kwargs
) -> Dict[str, Any]:
"""
Build system context with metadata.
Args:
request_id: Unique request identifier
user_id: Current user identifier
Returns:
Dictionary with system variables
"""
now = datetime.now(timezone.utc)
return {
"date": now.strftime("%Y-%m-%d"),
"time": now.strftime("%H:%M:%S"),
"timestamp": now.isoformat(),
"request_id": request_id or str(uuid.uuid4()),
"user_id": user_id,
}
class PassthroughNamespace(NamespaceBuilder):
"""Request parameters namespace: {{ passthrough.* }}"""
@property
def namespace_name(self) -> str:
return "passthrough"
def build(
self, passthrough_data: Optional[Dict[str, Any]] = None, **kwargs
) -> Dict[str, Any]:
"""
Build passthrough context from request parameters.
Args:
passthrough_data: Dictionary of parameters from web request
Returns:
Dictionary with passthrough variables
"""
if not passthrough_data:
return {}
safe_data = {}
for key, value in passthrough_data.items():
if isinstance(value, (str, int, float, bool, type(None))):
safe_data[key] = value
else:
logger.warning(
f"Skipping non-serializable passthrough value for key '{key}': {type(value)}"
)
return safe_data
class SourceNamespace(NamespaceBuilder):
"""RAG source documents namespace: {{ source.* }}"""
@property
def namespace_name(self) -> str:
return "source"
def build(
self, docs: Optional[list] = None, docs_together: Optional[str] = None, **kwargs
) -> Dict[str, Any]:
"""
Build source context from RAG retrieval results.
Args:
docs: List of retrieved documents
docs_together: Concatenated document content (for backward compatibility)
Returns:
Dictionary with source variables
"""
context = {}
if docs:
context["documents"] = docs
context["count"] = len(docs)
if docs_together:
context["docs_together"] = docs_together # Add docs_together for custom templates
context["content"] = docs_together
context["summaries"] = docs_together
return context
class ToolsNamespace(NamespaceBuilder):
"""Pre-executed tools namespace: {{ tools.* }}"""
@property
def namespace_name(self) -> str:
return "tools"
def build(
self, tools_data: Optional[Dict[str, Any]] = None, **kwargs
) -> Dict[str, Any]:
"""
Build tools context with pre-executed tool results.
Args:
tools_data: Dictionary of pre-fetched tool results organized by tool name
e.g., {"memory": {"notes": "content", "tasks": "list"}}
Returns:
Dictionary with tool results organized by tool name
"""
if not tools_data:
return {}
safe_data = {}
for tool_name, tool_result in tools_data.items():
if isinstance(tool_result, (str, dict, list, int, float, bool, type(None))):
safe_data[tool_name] = tool_result
else:
logger.warning(
f"Skipping non-serializable tool result for '{tool_name}': {type(tool_result)}"
)
return safe_data
class NamespaceManager:
"""Manages all namespace builders and context assembly"""
def __init__(self):
self._builders = {
"system": SystemNamespace(),
"passthrough": PassthroughNamespace(),
"source": SourceNamespace(),
"tools": ToolsNamespace(),
}
def build_context(self, **kwargs) -> Dict[str, Any]:
"""
Build complete template context from all namespaces.
Args:
**kwargs: Parameters to pass to namespace builders
Returns:
Complete context dictionary for template rendering
"""
context = {}
for namespace_name, builder in self._builders.items():
try:
namespace_context = builder.build(**kwargs)
# Always include namespace, even if empty, to prevent undefined errors
context[namespace_name] = namespace_context if namespace_context else {}
except Exception as e:
logger.error(f"Failed to build {namespace_name} namespace: {str(e)}")
# Include empty namespace on error to prevent template failures
context[namespace_name] = {}
return context
def get_builder(self, namespace_name: str) -> Optional[NamespaceBuilder]:
"""Get specific namespace builder"""
return self._builders.get(namespace_name)

View File

@@ -0,0 +1,161 @@
import logging
from typing import Any, Dict, List, Optional, Set
from jinja2 import (
ChainableUndefined,
Environment,
nodes,
select_autoescape,
TemplateSyntaxError,
)
from jinja2.exceptions import UndefinedError
logger = logging.getLogger(__name__)
class TemplateRenderError(Exception):
"""Raised when template rendering fails"""
pass
class TemplateEngine:
"""Jinja2-based template engine for dynamic prompt rendering"""
def __init__(self):
self._env = Environment(
undefined=ChainableUndefined,
trim_blocks=True,
lstrip_blocks=True,
autoescape=select_autoescape(default_for_string=True, default=True),
)
def render(self, template_content: str, context: Dict[str, Any]) -> str:
"""
Render template with provided context.
Args:
template_content: Raw template string with Jinja2 syntax
context: Dictionary of variables to inject into template
Returns:
Rendered template string
Raises:
TemplateRenderError: If template syntax is invalid or variables undefined
"""
if not template_content:
return ""
try:
template = self._env.from_string(template_content)
return template.render(**context)
except TemplateSyntaxError as e:
error_msg = f"Template syntax error at line {e.lineno}: {e.message}"
logger.error(error_msg)
raise TemplateRenderError(error_msg) from e
except UndefinedError as e:
error_msg = f"Undefined variable in template: {e.message}"
logger.error(error_msg)
raise TemplateRenderError(error_msg) from e
except Exception as e:
error_msg = f"Template rendering failed: {str(e)}"
logger.error(error_msg)
raise TemplateRenderError(error_msg) from e
def validate_template(self, template_content: str) -> bool:
"""
Validate template syntax without rendering.
Args:
template_content: Template string to validate
Returns:
True if template is syntactically valid
"""
if not template_content:
return True
try:
self._env.from_string(template_content)
return True
except TemplateSyntaxError as e:
logger.debug(f"Template syntax invalid at line {e.lineno}: {e.message}")
return False
except Exception as e:
logger.debug(f"Template validation error: {type(e).__name__}: {str(e)}")
return False
def extract_variables(self, template_content: str) -> Set[str]:
"""
Extract all variable names from template.
Args:
template_content: Template string to analyze
Returns:
Set of variable names found in template
"""
if not template_content:
return set()
try:
ast = self._env.parse(template_content)
return set(self._env.get_template_module(ast).make_module().keys())
except TemplateSyntaxError as e:
logger.debug(f"Cannot extract variables - syntax error at line {e.lineno}")
return set()
except Exception as e:
logger.debug(f"Cannot extract variables: {type(e).__name__}")
return set()
def extract_tool_usages(
self, template_content: str
) -> Dict[str, Set[Optional[str]]]:
"""Extract tool and action references from a template"""
if not template_content:
return {}
try:
ast = self._env.parse(template_content)
except TemplateSyntaxError as e:
logger.debug(f"extract_tool_usages - syntax error at line {e.lineno}")
return {}
except Exception as e:
logger.debug(f"extract_tool_usages - parse error: {type(e).__name__}")
return {}
usages: Dict[str, Set[Optional[str]]] = {}
def record(path: List[str]) -> None:
if not path:
return
tool_name = path[0]
action_name = path[1] if len(path) > 1 else None
if not tool_name:
return
tool_entry = usages.setdefault(tool_name, set())
tool_entry.add(action_name)
for node in ast.find_all(nodes.Getattr):
path = []
current = node
while isinstance(current, nodes.Getattr):
path.append(current.attr)
current = current.node
if isinstance(current, nodes.Name) and current.name == "tools":
path.reverse()
record(path)
for node in ast.find_all(nodes.Getitem):
path = []
current = node
while isinstance(current, nodes.Getitem):
key = current.arg
if isinstance(key, nodes.Const) and isinstance(key.value, str):
path.append(key.value)
else:
path = []
break
current = current.node
if path and isinstance(current, nodes.Name) and current.name == "tools":
path.reverse()
record(path)
return usages

View File

@@ -15,10 +15,11 @@ class ElevenlabsTTS(BaseTTS):
def text_to_speech(self, text):
lang = "en"
audio = self.client.generate(
audio = self.client.text_to_speech.convert(
voice_id="nPczCjzI2devNBz1zQrb",
model_id="eleven_multilingual_v2",
text=text,
model="eleven_multilingual_v2",
voice="Brian",
output_format="mp3_44100_128"
)
audio_data = BytesIO()
for chunk in audio:

View File

@@ -0,0 +1,18 @@
from application.tts.google_tts import GoogleTTS
from application.tts.elevenlabs import ElevenlabsTTS
from application.tts.base import BaseTTS
class TTSCreator:
tts_providers = {
"google_tts": GoogleTTS,
"elevenlabs": ElevenlabsTTS,
}
@classmethod
def create_tts(cls, tts_type, *args, **kwargs)-> BaseTTS:
tts_class = cls.tts_providers.get(tts_type.lower())
if not tts_class:
raise ValueError(f"No tts class found for type {tts_type}")
return tts_class(*args, **kwargs)

View File

@@ -7,6 +7,8 @@ import tiktoken
from flask import jsonify, make_response
from werkzeug.utils import secure_filename
from application.core.model_utils import get_token_limit
from application.core.settings import settings
@@ -21,7 +23,7 @@ def get_encoding():
def get_gpt_model() -> str:
"""Get the appropriate GPT model based on provider"""
"""Get GPT model based on provider"""
model_map = {
"openai": "gpt-4o-mini",
"anthropic": "claude-2",
@@ -32,16 +34,7 @@ def get_gpt_model() -> str:
def safe_filename(filename):
"""
Creates a safe filename that preserves the original extension.
Uses secure_filename, but ensures a proper filename is returned even with non-Latin characters.
Args:
filename (str): The original filename
Returns:
str: A safe filename that can be used for storage
"""
"""Create safe filename, preserving extension. Handles non-Latin characters."""
if not filename:
return str(uuid.uuid4())
_, extension = os.path.splitext(filename)
@@ -83,8 +76,23 @@ def count_tokens_docs(docs):
return tokens
def calculate_doc_token_budget(
model_id: str = "gpt-4o", history_token_limit: int = 2000
) -> int:
total_context = get_token_limit(model_id)
reserved = sum(settings.RESERVED_TOKENS.values())
doc_budget = total_context - history_token_limit - reserved
return max(doc_budget, 1000)
def get_missing_fields(data, required_fields):
"""Check for missing required fields. Returns list of missing field names."""
return [field for field in required_fields if field not in data]
def check_required_fields(data, required_fields):
missing_fields = [field for field in required_fields if field not in data]
"""Validate required fields. Returns Flask 400 response if validation fails, None otherwise."""
missing_fields = get_missing_fields(data, required_fields)
if missing_fields:
return make_response(
jsonify(
@@ -98,7 +106,8 @@ def check_required_fields(data, required_fields):
return None
def validate_required_fields(data, required_fields):
def get_field_validation_errors(data, required_fields):
"""Check for missing and empty fields. Returns dict with 'missing_fields' and 'empty_fields', or None."""
missing_fields = []
empty_fields = []
@@ -107,12 +116,24 @@ def validate_required_fields(data, required_fields):
missing_fields.append(field)
elif not data[field]:
empty_fields.append(field)
errors = []
if missing_fields:
errors.append(f"Missing required fields: {', '.join(missing_fields)}")
if empty_fields:
errors.append(f"Empty values in required fields: {', '.join(empty_fields)}")
if errors:
if missing_fields or empty_fields:
return {"missing_fields": missing_fields, "empty_fields": empty_fields}
return None
def validate_required_fields(data, required_fields):
"""Validate required fields (must exist and be non-empty). Returns Flask 400 response if validation fails, None otherwise."""
errors_dict = get_field_validation_errors(data, required_fields)
if errors_dict:
errors = []
if errors_dict["missing_fields"]:
errors.append(
f"Missing required fields: {', '.join(errors_dict['missing_fields'])}"
)
if errors_dict["empty_fields"]:
errors.append(
f"Empty values in required fields: {', '.join(errors_dict['empty_fields'])}"
)
return make_response(
jsonify({"success": False, "message": " | ".join(errors)}), 400
)
@@ -123,19 +144,13 @@ def get_hash(data):
return hashlib.md5(data.encode(), usedforsecurity=False).hexdigest()
def limit_chat_history(history, max_token_limit=None, gpt_model="docsgpt"):
"""
Limits chat history based on token count.
Returns a list of messages that fit within the token limit.
"""
from application.core.settings import settings
def limit_chat_history(history, max_token_limit=None, model_id="docsgpt-local"):
"""Limit chat history to fit within token limit."""
model_token_limit = get_token_limit(model_id)
max_token_limit = (
max_token_limit
if max_token_limit
and max_token_limit
< settings.LLM_TOKEN_LIMITS.get(gpt_model, settings.DEFAULT_MAX_HISTORY)
else settings.LLM_TOKEN_LIMITS.get(gpt_model, settings.DEFAULT_MAX_HISTORY)
if max_token_limit and max_token_limit < model_token_limit
else model_token_limit
)
if not history:
@@ -161,7 +176,7 @@ def limit_chat_history(history, max_token_limit=None, gpt_model="docsgpt"):
def validate_function_name(function_name):
"""Validates if a function name matches the allowed pattern."""
"""Validate function name matches allowed pattern (alphanumeric, underscore, hyphen)."""
if not re.match(r"^[a-zA-Z0-9_-]+$", function_name):
return False
return True
@@ -180,3 +195,51 @@ def generate_image_url(image_path):
else:
base_url = getattr(settings, "API_URL", "http://localhost:7091")
return f"{base_url}/api/images/{image_path}"
def clean_text_for_tts(text: str) -> str:
"""
clean text for Text-to-Speech processing.
"""
# Handle code blocks and links
text = re.sub(r"```mermaid[\s\S]*?```", " flowchart, ", text) ## ```mermaid...```
text = re.sub(r"```[\s\S]*?```", " code block, ", text) ## ```code```
text = re.sub(r"\[([^\]]+)\]\([^\)]+\)", r"\1", text) ## [text](url)
text = re.sub(r"!\[([^\]]*)\]\([^\)]+\)", "", text) ## ![alt](url)
# Remove markdown formatting
text = re.sub(r"`([^`]+)`", r"\1", text) ## `code`
text = re.sub(r"\{([^}]*)\}", r" \1 ", text) ## {text}
text = re.sub(r"[{}]", " ", text) ## unmatched {}
text = re.sub(r"\[([^\]]+)\]", r" \1 ", text) ## [text]
text = re.sub(r"[\[\]]", " ", text) ## unmatched []
text = re.sub(r"(\*\*|__)(.*?)\1", r"\2", text) ## **bold** __bold__
text = re.sub(r"(\*|_)(.*?)\1", r"\2", text) ## *italic* _italic_
text = re.sub(r"^#{1,6}\s+", "", text, flags=re.MULTILINE) ## # headers
text = re.sub(r"^>\s+", "", text, flags=re.MULTILINE) ## > blockquotes
text = re.sub(r"^[\s]*[-\*\+]\s+", "", text, flags=re.MULTILINE) ## - * + lists
text = re.sub(r"^[\s]*\d+\.\s+", "", text, flags=re.MULTILINE) ## 1. numbered lists
text = re.sub(
r"^[\*\-_]{3,}\s*$", "", text, flags=re.MULTILINE
) ## --- *** ___ rules
text = re.sub(r"<[^>]*>", "", text) ## <html> tags
# Remove non-ASCII (emojis, special Unicode)
text = re.sub(r"[^\x20-\x7E\n\r\t]", "", text)
# Replace special sequences
text = re.sub(r"-->", ", ", text) ## -->
text = re.sub(r"<--", ", ", text) ## <--
text = re.sub(r"=>", ", ", text) ## =>
text = re.sub(r"::", " ", text) ## ::
# Normalize whitespace
text = re.sub(r"\s+", " ", text)
text = text.strip()
return text

View File

@@ -165,7 +165,7 @@ def run_agent_logic(agent_config, input_data):
agent_type,
endpoint="webhook",
llm_name=settings.LLM_PROVIDER,
gpt_model=settings.LLM_NAME,
model_id=settings.LLM_NAME,
api_key=settings.API_KEY,
user_api_key=user_api_key,
prompt=prompt,
@@ -180,7 +180,7 @@ def run_agent_logic(agent_config, input_data):
prompt=prompt,
chunks=chunks,
token_limit=settings.DEFAULT_MAX_HISTORY,
gpt_model=settings.LLM_NAME,
model_id=settings.LLM_NAME,
user_api_key=user_api_key,
decoded_token=decoded_token,
)

5997
docs/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -8,9 +8,9 @@
"dependencies": {
"@vercel/analytics": "^1.1.1",
"docsgpt-react": "^0.5.1",
"next": "^15.3.3",
"nextra": "^2.13.2",
"nextra-theme-docs": "^2.13.2",
"next": "^15.5.6",
"nextra": "^4.6.0",
"nextra-theme-docs": "^4.6.0",
"react": "^18.2.0",
"react-dom": "^18.2.0"
}

View File

@@ -1,49 +1,453 @@
---
title: Customizing Prompts
description: This guide will explain how to change prompts in DocsGPT and why it might be benefitial. Additionaly this article expains additional variables that can be used in prompts.
title: Customizing Prompts
description: This guide explains how to customize prompts in DocsGPT using the new template-based system with dynamic variable injection.
---
import Image from 'next/image'
# Customizing the Main Prompt
# Customizing Prompts in DocsGPT
Customizing the main prompt for DocsGPT gives you the ability to tailor the AI's responses to your specific requirements. By modifying the prompt text, you can achieve more accurate and relevant answers. Here's how you can do it:
Customizing prompts for DocsGPT gives you powerful control over the AI's behavior and responses. With the new template-based system, you can inject dynamic context through organized namespaces, making prompts flexible and maintainable without hardcoding values.
## Quick Start
1. Navigate to `SideBar -> Settings`.
2.In Settings select the `Active Prompt` now you will be able to see various prompts style.x
3.Click on the `edit icon` on the prompt of your choice and you will be able to see the current prompt for it,you can now customise the prompt as per your choice.
2. In Settings, select the `Active Prompt` to see various prompt styles.
3. Click on the `edit icon` on your chosen prompt to customize it.
### Video Demo
<Image src="/prompts.gif" alt="prompts" width={800} height={500} />
---
## Template-Based Prompt System
## Example Prompt Modification
DocsGPT now uses **Jinja2 templating** with four organized namespaces for dynamic variable injection:
### Available Namespaces
#### 1. **`system`** - System Metadata
Access system-level information:
```jinja
{{ system.date }} # Current date (YYYY-MM-DD)
{{ system.time }} # Current time (HH:MM:SS)
{{ system.timestamp }} # ISO 8601 timestamp
{{ system.request_id }} # Unique request identifier
{{ system.user_id }} # Current user ID
```
#### 2. **`source`** - Retrieved Documents
Access RAG (Retrieval-Augmented Generation) document context:
```jinja
{{ source.content }} # Concatenated document content
{{ source.summaries }} # Alias for content (backward compatible)
{{ source.documents }} # List of document objects
{{ source.count }} # Number of retrieved documents
```
#### 3. **`passthrough`** - Request Parameters
Access custom parameters passed in the API request:
```jinja
{{ passthrough.company }} # Custom field from request
{{ passthrough.user_name }} # User-provided data
{{ passthrough.context }} # Any custom parameter
```
To use passthrough data, send it in your API request:
```json
{
"question": "What is the pricing?",
"passthrough": {
"company": "Acme Corp",
"user_name": "Alice",
"plan_type": "enterprise"
}
}
```
#### 4. **`tools`** - Pre-fetched Tool Data
Access results from tools that run before the agent (like memory tool):
```jinja
{{ tools.memory.root }} # Memory tool directory listing
{{ tools.memory.available }} # Boolean: is memory available
```
---
## Example Prompts
### Basic Prompt with Documents
```jinja
You are a helpful AI assistant for DocsGPT.
Current date: {{ system.date }}
Use the following documents to answer the question:
{{ source.content }}
Provide accurate, helpful answers with code examples when relevant.
```
### Advanced Prompt with All Namespaces
```jinja
You are an AI assistant for {{ passthrough.company }}.
**System Info:**
- Date: {{ system.date }}
- Request ID: {{ system.request_id }}
**User Context:**
- User: {{ passthrough.user_name }}
- Role: {{ passthrough.role }}
**Available Documents ({{ source.count }}):**
{{ source.content }}
**Memory Context:**
{% if tools.memory.available %}
{{ tools.memory.root }}
{% else %}
No saved context available.
{% endif %}
Please provide detailed, accurate answers based on the documents above.
```
### Conditional Logic Example
```jinja
You are a DocsGPT assistant.
{% if source.count > 0 %}
I found {{ source.count }} relevant document(s):
{{ source.content }}
Base your answer on these documents.
{% else %}
No documents were found. Please answer based on your general knowledge.
{% endif %}
```
---
## Migration Guide
### Legacy Format (Still Supported)
The old `{summaries}` format continues to work for backward compatibility:
**Original Prompt:**
```markdown
You are a DocsGPT, friendly and helpful AI assistant by Arc53 that provides help with documents. You give thorough answers with code examples if possible.
Use the following pieces of context to help answer the users question. If it's not relevant to the question, provide friendly responses.
You have access to chat history, and can use it to help answer the question.
When using code examples, use the following format:
You are a helpful assistant.
(code)
Documents:
{summaries}
```
Note that `{summaries}` allows model to see and respond to your upploaded documents. If you don't want this functionality you can safely remove it from the customized prompt.
This will automatically substitute `{summaries}` with document content.
Feel free to customize the prompt to align it with your specific use case or the kind of responses you want from the AI. For example, you can focus on specific document types, industries, or topics to get more targeted results.
### New Template Format (Recommended)
Migrate to the new template syntax for more flexibility:
```jinja
You are a helpful assistant.
Documents:
{{ source.content }}
```
**Migration mapping:**
- `{summaries}` → `{{ source.content }}` or `{{ source.summaries }}`
---
## Best Practices
### 1. **Use Descriptive Context**
```jinja
**Retrieved Documents:**
{{ source.content }}
**User Query Context:**
- Company: {{ passthrough.company }}
- Department: {{ passthrough.department }}
```
### 2. **Handle Missing Data Gracefully**
```jinja
{% if passthrough.user_name %}
Hello {{ passthrough.user_name }}!
{% endif %}
```
### 3. **Leverage Memory for Continuity**
```jinja
{% if tools.memory.available %}
**Previous Context:**
{{ tools.memory.root }}
{% endif %}
**Current Question:**
Please consider the above context when answering.
```
### 4. **Add Clear Instructions**
```jinja
You are a technical support assistant.
**Guidelines:**
1. Always reference the documents below
2. Provide step-by-step instructions
3. Include code examples when relevant
**Reference Documents:**
{{ source.content }}
```
---
## Advanced Features
### Looping Over Documents
```jinja
{% for doc in source.documents %}
**Source {{ loop.index }}:** {{ doc.filename }}
{{ doc.text }}
{% endfor %}
```
### Date-Based Behavior
```jinja
{% if system.date > "2025-01-01" %}
Note: This is information from 2025 or later.
{% endif %}
```
### Custom Formatting
```jinja
**Request Information**
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
• Request ID: {{ system.request_id }}
• User: {{ passthrough.user_name | default("Guest") }}
• Time: {{ system.time }}
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
```
---
## Tool Pre-Fetching
### Memory Tool Configuration
Enable memory tool pre-fetching to inject saved context into prompts:
```python
# In your tool configuration
{
"name": "memory",
"config": {
"pre_fetch_enabled": true # Default: true
}
}
```
Control pre-fetching globally:
```bash
# .env file
ENABLE_TOOL_PREFETCH=true
```
Or per-request:
```json
{
"question": "What are the requirements?",
"disable_tool_prefetch": false
}
```
---
## Debugging Prompts
### View Rendered Prompts in Logs
Set log level to `INFO` to see the final rendered prompt sent to the LLM:
```bash
export LOG_LEVEL=INFO
```
You'll see output like:
```
INFO - Rendered system prompt for agent (length: 1234 chars):
================================================================================
You are a helpful assistant for Acme Corp.
Current date: 2025-10-30
Request ID: req_abc123
Documents:
Technical documentation about...
================================================================================
```
### Template Validation
Test your template syntax before saving:
```python
from application.api.answer.services.prompt_renderer import PromptRenderer
renderer = PromptRenderer()
is_valid = renderer.validate_template("Your prompt with {{ variables }}")
```
---
## Common Use Cases
### 1. Customer Support Bot
```jinja
You are a customer support assistant for {{ passthrough.company }}.
**Customer:** {{ passthrough.customer_name }}
**Ticket ID:** {{ system.request_id }}
**Date:** {{ system.date }}
**Knowledge Base:**
{{ source.content }}
**Previous Interactions:**
{{ tools.memory.root }}
Please provide helpful, friendly support based on the knowledge base above.
```
### 2. Technical Documentation Assistant
```jinja
You are a technical documentation expert.
**Available Documentation ({{ source.count }} documents):**
{{ source.content }}
**Requirements:**
- Provide code examples in {{ passthrough.language }}
- Focus on {{ passthrough.framework }} best practices
- Include relevant links when possible
```
### 3. Internal Knowledge Base
```jinja
You are an internal AI assistant for {{ passthrough.department }}.
**Employee:** {{ passthrough.employee_name }}
**Access Level:** {{ passthrough.access_level }}
**Relevant Documents:**
{{ source.content }}
Provide detailed answers appropriate for {{ passthrough.access_level }} access level.
```
---
## Template Syntax Reference
### Variables
```jinja
{{ variable_name }} # Output variable
{{ namespace.field }} # Access nested field
{{ variable | default("N/A") }} # Default value
```
### Conditionals
```jinja
{% if condition %}
Content
{% elif other_condition %}
Other content
{% else %}
Default content
{% endif %}
```
### Loops
```jinja
{% for item in list %}
{{ item.field }}
{% endfor %}
```
### Comments
```jinja
{# This is a comment and won't appear in output #}
```
---
## Security Considerations
1. **Input Sanitization**: Passthrough data is automatically sanitized to prevent injection attacks
2. **Type Filtering**: Only primitive types (string, int, float, bool, None) are allowed in passthrough
3. **Autoescaping**: Jinja2 autoescaping is enabled by default
4. **Size Limits**: Consider the token budget when including large documents
---
## Troubleshooting
### Problem: Variables Not Rendering
**Solution:** Ensure you're using the correct namespace:
```jinja
❌ {{ company }}
✅ {{ passthrough.company }}
```
### Problem: Empty Output for Tool Data
**Solution:** Check that tool pre-fetching is enabled and the tool is configured correctly.
### Problem: Syntax Errors
**Solution:** Validate template syntax. Common issues:
```jinja
❌ {{ variable } # Missing closing brace
❌ {% if x % # Missing closing %}
✅ {{ variable }}
✅ {% if x %}...{% endif %}
```
### Problem: Legacy Prompts Not Working
**Solution:** The system auto-detects template syntax. If your prompt uses `{summaries}`, it will work in legacy mode. To use new features, add `{{ }}` syntax.
---
## API Reference
### Render Prompt via API
```python
from application.api.answer.services.prompt_renderer import PromptRenderer
renderer = PromptRenderer()
rendered = renderer.render_prompt(
prompt_content="Your template with {{ passthrough.name }}",
user_id="user_123",
request_id="req_456",
passthrough_data={"name": "Alice"},
docs_together="Document content here",
tools_data={"memory": {"root": "Files: notes.txt"}}
)
```
---
## Conclusion
Customizing the main prompt for DocsGPT allows you to tailor the AI's responses to your unique requirements. Whether you need in-depth explanations, code examples, or specific insights, you can achieve it by modifying the main prompt. Remember to experiment and fine-tune your prompts to get the best results.
The new template-based prompt system provides powerful flexibility while maintaining backward compatibility. By leveraging namespaces, you can create dynamic, context-aware prompts that adapt to your specific use case.
**Key Benefits:**
- ✅ Dynamic variable injection
- ✅ Organized namespaces
- ✅ Backward compatible
- ✅ Security built-in
- ✅ Easy to debug
Start with simple templates and gradually add complexity as needed. Happy prompting! 🚀

View File

@@ -57,7 +57,7 @@ The easiest way to launch DocsGPT is using the provided `setup.sh` script. This
* **4) Connect Cloud API Provider:** This option lets you connect DocsGPT to a commercial Cloud API provider such as OpenAI, Google (Vertex AI/Gemini), Anthropic (Claude), Groq, HuggingFace Inference API, or Azure OpenAI. You will need an API key from your chosen provider. Select this if you prefer to use a powerful cloud-based LLM.
* **5) Modify DocsGPT's source code and rebuild the Docker images locally. Instead of pulling prebuilt images from Docker Hub or using the hosted/public API, you build the entire backend and frontend from source, customizing how DocsGPT works internally, or run it in an environment without internet access.
* **5) Modify DocsGPT's source code and rebuild the Docker images locally.** Instead of pulling prebuilt images from Docker Hub or using the hosted/public API, you build the entire backend and frontend from source, customizing how DocsGPT works internally, or run it in an environment without internet access.
After selecting an option and providing any required information (like API keys or model names), the script will configure your `.env` file and start DocsGPT using Docker Compose.
@@ -119,4 +119,4 @@ If you prefer a more manual approach, you can follow our [Docker Deployment docu
For more advanced customization of DocsGPT settings, such as configuring vector stores, embedding models, and other parameters, please refer to the [DocsGPT Settings documentation](/Deploying/DocsGPT-Settings). This guide explains how to modify the `.env` file or `settings.py` for deeper configuration.
Enjoy using DocsGPT!
Enjoy using DocsGPT!

View File

@@ -3,4 +3,4 @@ VITE_BASE_URL=http://localhost:5173
VITE_API_HOST=http://127.0.0.1:7091
VITE_API_STREAMING=true
VITE_NOTIFICATION_TEXT="What's new in 0.14.0 — Changelog"
VITE_NOTIFICATION_LINK="#"
VITE_NOTIFICATION_LINK="https://blog.docsgpt.cloud/docsgpt-0-14-agents-automate-integrate-and-innovate/"

View File

@@ -1,17 +0,0 @@
node_modules/
dist/
prettier.config.cjs
.eslintrc.cjs
env.d.ts
public/
assets/
vite-env.d.ts
.prettierignore
package-lock.json
package.json
postcss.config.cjs
prettier.config.cjs
tailwind.config.cjs
tsconfig.json
tsconfig.node.json
vite.config.ts

View File

@@ -1,45 +0,0 @@
module.exports = {
env: {
browser: true,
es2021: true,
node: true,
},
extends: [
'eslint:recommended',
'plugin:@typescript-eslint/recommended',
'plugin:react/recommended',
'plugin:prettier/recommended',
],
overrides: [],
parser: '@typescript-eslint/parser',
parserOptions: {
ecmaVersion: 'latest',
sourceType: 'module',
},
plugins: ['react', 'unused-imports'],
rules: {
'react/prop-types': 'off',
'unused-imports/no-unused-imports': 'error',
'react/react-in-jsx-scope': 'off',
'prettier/prettier': [
'error',
{
endOfLine: 'auto',
},
],
},
settings: {
'import/parsers': {
'@typescript-eslint/parser': ['.ts', '.tsx'],
},
react: {
version: 'detect',
},
'import/resolver': {
node: {
paths: ['src'],
extensions: ['.js', '.jsx', '.ts', '.tsx'],
},
},
},
};

78
frontend/eslint.config.js Normal file
View File

@@ -0,0 +1,78 @@
import js from '@eslint/js'
import tsParser from '@typescript-eslint/parser'
import tsPlugin from '@typescript-eslint/eslint-plugin'
import react from 'eslint-plugin-react'
import unusedImports from 'eslint-plugin-unused-imports'
import prettier from 'eslint-plugin-prettier'
import globals from 'globals'
export default [
{
ignores: [
'node_modules/',
'dist/',
'prettier.config.cjs',
'.eslintrc.cjs',
'env.d.ts',
'public/',
'assets/',
'vite-env.d.ts',
'.prettierignore',
'package-lock.json',
'package.json',
'postcss.config.cjs',
'tailwind.config.cjs',
'tsconfig.json',
'tsconfig.node.json',
'vite.config.ts',
],
},
{
files: ['**/*.{js,jsx,ts,tsx}'],
languageOptions: {
ecmaVersion: 'latest',
sourceType: 'module',
parser: tsParser,
parserOptions: {
ecmaFeatures: {
jsx: true,
},
},
globals: {
...globals.browser,
...globals.es2021,
...globals.node,
},
},
plugins: {
'@typescript-eslint': tsPlugin,
react,
'unused-imports': unusedImports,
prettier,
},
rules: {
...js.configs.recommended.rules,
...tsPlugin.configs.recommended.rules,
...react.configs.recommended.rules,
...prettier.configs.recommended.rules,
'react/prop-types': 'off',
'unused-imports/no-unused-imports': 'error',
'react/react-in-jsx-scope': 'off',
'no-undef': 'off',
'@typescript-eslint/no-explicit-any': 'warn',
'@typescript-eslint/no-unused-vars': 'warn',
'@typescript-eslint/no-unused-expressions': 'warn',
'prettier/prettier': [
'error',
{
endOfLine: 'auto',
},
],
},
settings: {
react: {
version: 'detect',
},
},
},
]

File diff suppressed because it is too large Load Diff

View File

@@ -19,21 +19,21 @@
]
},
"dependencies": {
"@reduxjs/toolkit": "^2.8.2",
"@reduxjs/toolkit": "^2.10.1",
"chart.js": "^4.4.4",
"clsx": "^2.1.1",
"copy-to-clipboard": "^3.3.3",
"i18next": "^25.5.3",
"i18next-browser-languagedetector": "^8.0.2",
"i18next-browser-languagedetector": "^8.2.0",
"lodash": "^4.17.21",
"mermaid": "^11.12.0",
"mermaid": "^11.12.1",
"prop-types": "^15.8.1",
"react": "^19.1.0",
"react-chartjs-2": "^5.3.0",
"react-dom": "^19.0.0",
"react-dom": "^19.1.1",
"react-dropzone": "^14.3.8",
"react-google-drive-picker": "^1.2.2",
"react-i18next": "^15.4.0",
"react-i18next": "^16.2.4",
"react-markdown": "^9.0.1",
"react-redux": "^9.2.0",
"react-router-dom": "^7.6.1",
@@ -46,30 +46,28 @@
"devDependencies": {
"@tailwindcss/postcss": "^4.1.10",
"@types/lodash": "^4.17.20",
"@types/mermaid": "^9.1.0",
"@types/react": "^19.1.8",
"@types/react-dom": "^19.0.0",
"@types/react-dom": "^19.1.7",
"@types/react-syntax-highlighter": "^15.5.13",
"@typescript-eslint/eslint-plugin": "^5.51.0",
"@typescript-eslint/parser": "^5.62.0",
"@typescript-eslint/eslint-plugin": "^8.46.3",
"@typescript-eslint/parser": "^8.46.3",
"@vitejs/plugin-react": "^4.3.4",
"eslint": "^8.57.1",
"eslint": "^9.39.1",
"eslint-config-prettier": "^10.1.5",
"eslint-config-standard-with-typescript": "^34.0.0",
"eslint-plugin-import": "^2.31.0",
"eslint-plugin-n": "^15.7.0",
"eslint-plugin-prettier": "^5.2.1",
"eslint-plugin-n": "^17.23.1",
"eslint-plugin-prettier": "^5.5.4",
"eslint-plugin-promise": "^6.6.0",
"eslint-plugin-react": "^7.37.5",
"eslint-plugin-unused-imports": "^4.1.4",
"husky": "^8.0.0",
"husky": "^9.1.7",
"lint-staged": "^15.3.0",
"postcss": "^8.4.49",
"prettier": "^3.5.3",
"prettier-plugin-tailwindcss": "^0.6.13",
"prettier-plugin-tailwindcss": "^0.7.1",
"tailwindcss": "^4.1.11",
"typescript": "^5.8.3",
"vite": "^6.3.5",
"vite": "^7.2.0",
"vite-plugin-svgr": "^4.3.0"
}
}

View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" height="24px" viewBox="0 -960 960 960" width="24px" fill="#e3e3e3"><path d="M240-80q-33 0-56.5-23.5T160-160v-640q0-33 23.5-56.5T240-880h480q33 0 56.5 23.5T800-800v640q0 33-23.5 56.5T720-80H240Zm0-80h480v-640H240v640Zm88-104 56-56-56-56-56 56 56 56Zm0-160 56-56-56-56-56 56 56 56Zm0-160 56-56-56-56-56 56 56 56Zm120 280h232v-80H448v80Zm0-160h232v-80H448v80Zm0-160h232v-80H448v80ZM240-160v-640 640Z"/></svg>

After

Width:  |  Height:  |  Size: 446 B

View File

@@ -1,6 +1,8 @@
import DocsGPT3 from './assets/cute_docsgpt3.svg';
import { useTranslation } from 'react-i18next';
import DocsGPT3 from './assets/cute_docsgpt3.svg';
import DropdownModel from './components/DropdownModel';
export default function Hero({
handleQuestion,
}: {
@@ -26,6 +28,10 @@ export default function Hero({
<span className="text-4xl font-semibold">DocsGPT</span>
<img className="mb-1 inline w-14" src={DocsGPT3} alt="docsgpt" />
</div>
{/* Model Selector */}
<div className="relative w-72">
<DropdownModel />
</div>
</div>
{/* Demo Buttons Section */}
@@ -38,7 +44,7 @@ export default function Hero({
<button
key={key}
onClick={() => handleQuestion({ question: demo.query })}
className={`border-dark-gray text-just-black hover:bg-cultured dark:border-dim-gray dark:text-chinese-white dark:hover:bg-charleston-green w-full rounded-[66px] border bg-transparent px-6 py-[14px] text-left transition-colors ${key >= 2 ? 'hidden md:block' : ''} // Show only 2 buttons on mobile`}
className={`border-dark-gray text-just-black hover:bg-cultured dark:border-dim-gray dark:text-chinese-white dark:hover:bg-charleston-green w-full rounded-[66px] border bg-transparent px-6 py-[14px] text-left transition-colors ${key >= 2 ? 'hidden md:block' : ''}`}
>
<p className="text-black-1000 dark:text-bright-gray mb-2 font-semibold">
{demo.header}

View File

@@ -9,7 +9,8 @@ import userService from './api/services/userService';
import Add from './assets/add.svg';
import DocsGPT3 from './assets/cute_docsgpt3.svg';
import Discord from './assets/discord.svg';
import Expand from './assets/expand.svg';
import PanelLeftClose from './assets/panel-left-close.svg';
import PanelLeftOpen from './assets/panel-left-open.svg';
import Github from './assets/git_nav.svg';
import Hamburger from './assets/hamburger.svg';
import openNewChat from './assets/openNewChat.svg';
@@ -302,18 +303,20 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
{
<div className="absolute top-3 left-3 z-20 hidden transition-all duration-300 ease-in-out lg:block">
<div className="flex items-center gap-3">
<button
onClick={() => {
setNavOpen(!navOpen);
}}
className="transition-transform duration-200 hover:scale-110"
>
<img
src={Expand}
alt="Toggle navigation menu"
className="m-auto transition-all duration-300 ease-in-out"
/>
</button>
{!navOpen && (
<button
onClick={() => {
setNavOpen(!navOpen);
}}
className="transition-transform duration-200 hover:scale-110"
>
<img
src={PanelLeftOpen}
alt="Open navigation menu"
className="m-auto transition-all duration-300 ease-in-out"
/>
</button>
)}
{queries?.length > 0 && (
<button
onClick={() => {
@@ -363,8 +366,8 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
}}
>
<img
src={Expand}
alt="Toggle navigation menu"
src={navOpen ? PanelLeftClose : PanelLeftOpen}
alt={navOpen ? 'Collapse sidebar' : 'Expand sidebar'}
className="m-auto transition-all duration-300 ease-in-out hover:scale-110"
/>
</button>
@@ -408,7 +411,9 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
{recentAgents?.length > 0 ? (
<div>
<div className="mx-4 my-auto mt-2 flex h-6 items-center">
<p className="mt-1 ml-4 text-sm font-semibold">Agents</p>
<p className="mt-1 ml-4 text-sm font-semibold">
{t('navigation.agents')}
</p>
</div>
<div className="agents-container">
<div>
@@ -562,7 +567,7 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
<div className="flex items-center gap-1 pr-4">
<NavLink
target="_blank"
to={'https://discord.gg/WHJdfbQDR4'}
to={'https://discord.gg/vN7YFfdMpj'}
className={
'rounded-full hover:bg-gray-100 dark:hover:bg-[#28292E]'
}

View File

@@ -1,13 +1,16 @@
import { Link } from 'react-router-dom';
import { useTranslation } from 'react-i18next';
export default function PageNotFound() {
const { t } = useTranslation();
return (
<div className="dark:bg-raisin-black grid min-h-screen">
<p className="text-jet dark:bg-outer-space mx-auto my-auto mt-20 flex w-full max-w-6xl flex-col place-items-center gap-6 rounded-3xl bg-gray-100 p-6 lg:p-10 xl:p-16 dark:text-gray-100">
<h1>404</h1>
<p>The page you are looking for does not exist.</p>
<h1>{t('pageNotFound.title')}</h1>
<p>{t('pageNotFound.message')}</p>
<button className="pointer-cursor bg-blue-1000 hover:bg-blue-3000 mr-4 flex cursor-pointer items-center justify-center rounded-full px-4 py-2 text-white transition-colors duration-100">
<Link to="/">Go Back Home</Link>
<Link to="/">{t('pageNotFound.goHome')}</Link>
</button>
</p>
</div>

View File

@@ -1,4 +1,5 @@
import { useEffect, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { useSelector } from 'react-redux';
import { useNavigate, useParams } from 'react-router-dom';
@@ -11,6 +12,7 @@ import Logs from '../settings/Logs';
import { Agent } from './types';
export default function AgentLogs() {
const { t } = useTranslation();
const navigate = useNavigate();
const { agentId } = useParams();
const token = useSelector(selectToken);
@@ -45,12 +47,12 @@ export default function AgentLogs() {
<img src={ArrowLeft} alt="left-arrow" className="h-3 w-3" />
</button>
<p className="text-eerie-black dark:text-bright-gray mt-px text-sm font-semibold">
Back to all agents
{t('agents.backToAll')}
</p>
</div>
<div className="mt-5 flex w-full flex-wrap items-center justify-between gap-2 px-4">
<h1 className="text-eerie-black m-0 text-[32px] font-bold md:text-[40px] dark:text-white">
Agent Logs
{t('agents.logs.title')}
</h1>
</div>
<div className="mt-6 flex flex-col gap-3 px-4">
@@ -59,9 +61,10 @@ export default function AgentLogs() {
<p className="text-[#28292E] dark:text-[#E0E0E0]">{agent.name}</p>
<p className="text-xs text-[#28292E] dark:text-[#E0E0E0]/40">
{agent.last_used_at
? 'Last used at ' +
? t('agents.logs.lastUsedAt') +
' ' +
new Date(agent.last_used_at).toLocaleString()
: 'No usage history'}
: t('agents.logs.noUsageHistory')}
</p>
</div>
)}
@@ -79,7 +82,9 @@ export default function AgentLogs() {
<Spinner />
</div>
) : (
agent && <Logs agentId={agent.id} tableHeader="Agent endpoint logs" />
agent && (
<Logs agentId={agent.id} tableHeader={t('agents.logs.tableHeader')} />
)
)}
</div>
);

View File

@@ -1,4 +1,5 @@
import { useCallback, useEffect, useRef, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { useDispatch, useSelector } from 'react-redux';
import MessageInput from '../components/MessageInput';
@@ -17,6 +18,7 @@ import { selectSelectedAgent } from '../preferences/preferenceSlice';
import { AppDispatch } from '../store';
export default function AgentPreview() {
const { t } = useTranslation();
const dispatch = useDispatch<AppDispatch>();
const queries = useSelector(selectPreviewQueries);
@@ -109,18 +111,18 @@ export default function AgentPreview() {
} else setLastQueryReturnedErr(false);
}, [queries]);
return (
<div>
<div className="dark:bg-raisin-black flex h-full flex-col items-center justify-between gap-2 overflow-y-hidden">
<div className="h-[512px] w-full overflow-y-auto">
<ConversationMessages
handleQuestion={handleQuestion}
handleQuestionSubmission={handleQuestionSubmission}
queries={queries}
status={status}
showHeroOnEmpty={false}
/>
</div>
<div className="flex w-[95%] max-w-[1500px] flex-col items-center gap-4 pb-2 md:w-9/12 lg:w-8/12 xl:w-8/12 2xl:w-6/12">
<div className="relative h-full w-full">
<div className="scrollbar-thin absolute inset-0 bottom-[180px] overflow-hidden px-4 pt-4 [&>div>div]:!w-full [&>div>div]:!max-w-none">
<ConversationMessages
handleQuestion={handleQuestion}
handleQuestionSubmission={handleQuestionSubmission}
queries={queries}
status={status}
showHeroOnEmpty={false}
/>
</div>
<div className="absolute right-0 bottom-0 left-0 flex w-full flex-col gap-4 pb-2">
<div className="w-full px-4">
<MessageInput
onSubmit={(text) => handleQuestionSubmission(text)}
loading={status === 'loading'}
@@ -128,11 +130,10 @@ export default function AgentPreview() {
showToolButton={selectedAgent ? false : true}
autoFocus={false}
/>
<p className="text-gray-4000 dark:text-sonic-silver w-full self-center bg-transparent pt-2 text-center text-xs md:inline">
This is a preview of the agent. You can publish it to start using it
in conversations.
</p>
</div>
<p className="text-gray-4000 dark:text-sonic-silver w-full bg-transparent text-center text-xs md:inline">
{t('agents.preview.testMessage')}
</p>
</div>
</div>
);

View File

@@ -1,4 +1,5 @@
import { useEffect, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { useDispatch, useSelector } from 'react-redux';
import { useNavigate } from 'react-router-dom';
@@ -17,6 +18,7 @@ import { agentSectionsConfig } from './agents.config';
import { Agent } from './types';
export default function AgentsList() {
const { t } = useTranslation();
const dispatch = useDispatch();
const token = useSelector(selectToken);
const selectedAgent = useSelector(selectSelectedAgent);
@@ -33,11 +35,10 @@ export default function AgentsList() {
return (
<div className="p-4 md:p-12">
<h1 className="text-eerie-black mb-0 text-[32px] font-bold lg:text-[40px] dark:text-[#E0E0E0]">
Agents
{t('agents.title')}
</h1>
<p className="dark:text-gray-4000 mt-5 text-[15px] text-[#71717A]">
Discover and create custom versions of DocsGPT that combine
instructions, extra knowledge, and any combination of skills
{t('agents.description')}
</p>
{agentSectionsConfig.map((sectionConfig) => (
<AgentSection key={sectionConfig.id} config={sectionConfig} />
@@ -51,6 +52,7 @@ function AgentSection({
}: {
config: (typeof agentSectionsConfig)[number];
}) {
const { t } = useTranslation();
const navigate = useNavigate();
const dispatch = useDispatch();
const token = useSelector(selectToken);
@@ -85,16 +87,18 @@ function AgentSection({
<div className="flex w-full items-center justify-between">
<div className="flex flex-col gap-2">
<h2 className="text-[18px] font-semibold text-[#18181B] dark:text-[#E0E0E0]">
{config.title}
{t(`agents.sections.${config.id}.title`)}
</h2>
<p className="text-[13px] text-[#71717A]">{config.description}</p>
<p className="text-[13px] text-[#71717A]">
{t(`agents.sections.${config.id}.description`)}
</p>
</div>
{config.showNewAgentButton && (
<button
className="bg-purple-30 hover:bg-violets-are-blue rounded-full px-4 py-2 text-sm text-white"
onClick={() => navigate('/agents/new')}
>
New Agent
{t('agents.newAgent')}
</button>
)}
</div>
@@ -117,13 +121,13 @@ function AgentSection({
</div>
) : (
<div className="flex h-72 w-full flex-col items-center justify-center gap-3 text-base text-[#18181B] dark:text-[#E0E0E0]">
<p>{config.emptyStateDescription}</p>
<p>{t(`agents.sections.${config.id}.emptyState`)}</p>
{config.showNewAgentButton && (
<button
className="bg-purple-30 hover:bg-violets-are-blue ml-2 rounded-full px-4 py-2 text-sm text-white"
onClick={() => navigate('/agents/new')}
>
New Agent
{t('agents.newAgent')}
</button>
)}
</div>

View File

@@ -1,8 +1,10 @@
import isEqual from 'lodash/isEqual';
import React, { useCallback, useEffect, useRef, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { useDispatch, useSelector } from 'react-redux';
import { useNavigate, useParams } from 'react-router-dom';
import modelService from '../api/services/modelService';
import userService from '../api/services/userService';
import ArrowLeft from '../assets/arrow-left.svg';
import SourceIcon from '../assets/source.svg';
@@ -25,11 +27,13 @@ import { UserToolType } from '../settings/types';
import AgentPreview from './AgentPreview';
import { Agent, ToolSummary } from './types';
import type { Model } from '../models/types';
const embeddingsName =
import.meta.env.VITE_EMBEDDINGS_NAME ||
'huggingface_sentence-transformers/all-mpnet-base-v2';
export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
const { t } = useTranslation();
const navigate = useNavigate();
const dispatch = useDispatch();
const { agentId } = useParams();
@@ -57,18 +61,25 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
token_limit: undefined,
limited_request_mode: false,
request_limit: undefined,
models: [],
default_model_id: '',
});
const [imageFile, setImageFile] = useState<File | null>(null);
const [prompts, setPrompts] = useState<
{ name: string; id: string; type: string }[]
>([]);
const [userTools, setUserTools] = useState<OptionType[]>([]);
const [availableModels, setAvailableModels] = useState<Model[]>([]);
const [isSourcePopupOpen, setIsSourcePopupOpen] = useState(false);
const [isToolsPopupOpen, setIsToolsPopupOpen] = useState(false);
const [isModelsPopupOpen, setIsModelsPopupOpen] = useState(false);
const [selectedSourceIds, setSelectedSourceIds] = useState<
Set<string | number>
>(new Set());
const [selectedTools, setSelectedTools] = useState<ToolSummary[]>([]);
const [selectedModelIds, setSelectedModelIds] = useState<Set<string>>(
new Set(),
);
const [deleteConfirmation, setDeleteConfirmation] =
useState<ActiveState>('INACTIVE');
const [agentDetails, setAgentDetails] = useState<ActiveState>('INACTIVE');
@@ -84,11 +95,12 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
const initialAgentRef = useRef<Agent | null>(null);
const sourceAnchorButtonRef = useRef<HTMLButtonElement>(null);
const toolAnchorButtonRef = useRef<HTMLButtonElement>(null);
const modelAnchorButtonRef = useRef<HTMLButtonElement>(null);
const modeConfig = {
new: {
heading: 'New Agent',
buttonText: 'Publish',
heading: t('agents.form.headings.new'),
buttonText: t('agents.form.buttons.publish'),
showDelete: false,
showSaveDraft: true,
showLogs: false,
@@ -96,8 +108,8 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
trackChanges: false,
},
edit: {
heading: 'Edit Agent',
buttonText: 'Save',
heading: t('agents.form.headings.edit'),
buttonText: t('agents.form.buttons.save'),
showDelete: true,
showSaveDraft: false,
showLogs: true,
@@ -105,8 +117,8 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
trackChanges: true,
},
draft: {
heading: 'New Agent (Draft)',
buttonText: 'Publish',
heading: t('agents.form.headings.draft'),
buttonText: t('agents.form.buttons.publish'),
showDelete: true,
showSaveDraft: true,
showLogs: false,
@@ -116,8 +128,8 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
};
const chunks = ['0', '2', '4', '6', '8', '10'];
const agentTypes = [
{ label: 'Classic', value: 'classic' },
{ label: 'ReAct', value: 'react' },
{ label: t('agents.form.agentTypes.classic'), value: 'classic' },
{ label: t('agents.form.agentTypes.react'), value: 'react' },
];
const isPublishable = () => {
@@ -198,13 +210,19 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
if (agent.limited_token_mode && agent.token_limit) {
formData.append('limited_token_mode', 'True');
formData.append('token_limit', JSON.stringify(agent.token_limit));
} else formData.append('token_limit', '0');
formData.append('token_limit', agent.token_limit.toString());
} else {
formData.append('limited_token_mode', 'False');
formData.append('token_limit', '0');
}
if (agent.limited_request_mode && agent.request_limit) {
formData.append('limited_request_mode', 'True');
formData.append('request_limit', JSON.stringify(agent.request_limit));
} else formData.append('request_limit', '0');
formData.append('request_limit', agent.request_limit.toString());
} else {
formData.append('limited_request_mode', 'False');
formData.append('request_limit', '0');
}
if (imageFile) formData.append('image', imageFile);
@@ -216,6 +234,13 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
formData.append('json_schema', JSON.stringify(agent.json_schema));
}
if (agent.models && agent.models.length > 0) {
formData.append('models', JSON.stringify(agent.models));
}
if (agent.default_model_id) {
formData.append('default_model_id', agent.default_model_id);
}
try {
setDraftLoading(true);
const response =
@@ -295,15 +320,29 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
formData.append('json_schema', JSON.stringify(agent.json_schema));
}
// Always send the limited mode fields
if (agent.limited_token_mode && agent.token_limit) {
formData.append('limited_token_mode', 'True');
formData.append('token_limit', JSON.stringify(agent.token_limit));
} else formData.append('token_limit', '0');
formData.append('token_limit', agent.token_limit.toString());
} else {
formData.append('limited_token_mode', 'False');
formData.append('token_limit', '0');
}
if (agent.limited_request_mode && agent.request_limit) {
formData.append('limited_request_mode', 'True');
formData.append('request_limit', JSON.stringify(agent.request_limit));
} else formData.append('request_limit', '0');
formData.append('request_limit', agent.request_limit.toString());
} else {
formData.append('limited_request_mode', 'False');
formData.append('request_limit', '0');
}
if (agent.models && agent.models.length > 0) {
formData.append('models', JSON.stringify(agent.models));
}
if (agent.default_model_id) {
formData.append('default_model_id', agent.default_model_id);
}
try {
setPublishLoading(true);
@@ -373,8 +412,16 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
const data = await response.json();
setPrompts(data);
};
const getModels = async () => {
const response = await modelService.getModels(null);
if (!response.ok) throw new Error('Failed to fetch models');
const data = await response.json();
const transformed = modelService.transformModels(data.models || []);
setAvailableModels(transformed);
};
getTools();
getPrompts();
getModels();
}, [token]);
// Auto-select default source if none selected
@@ -447,6 +494,34 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
}
}, [agentId, mode, token]);
useEffect(() => {
if (agent.models && agent.models.length > 0 && availableModels.length > 0) {
const agentModelIds = new Set(agent.models);
if (agentModelIds.size > 0 && selectedModelIds.size === 0) {
setSelectedModelIds(agentModelIds);
}
}
}, [agent.models, availableModels.length]);
useEffect(() => {
const modelsArray = Array.from(selectedModelIds);
if (modelsArray.length > 0) {
setAgent((prev) => ({
...prev,
models: modelsArray,
default_model_id: modelsArray.includes(prev.default_model_id || '')
? prev.default_model_id
: modelsArray[0],
}));
} else {
setAgent((prev) => ({
...prev,
models: [],
default_model_id: '',
}));
}
}, [selectedModelIds]);
useEffect(() => {
const selectedSources = Array.from(selectedSourceIds)
.map((id) =>
@@ -534,7 +609,7 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
setHasChanges(isChanged);
}, [agent, dispatch, effectiveMode, imageFile, jsonSchemaText]);
return (
<div className="p-4 md:p-12">
<div className="flex flex-col px-4 pt-4 pb-2 max-[1179px]:min-h-[100dvh] min-[1180px]:h-[100dvh] md:px-12 md:pt-12 md:pb-3">
<div className="flex items-center gap-3 px-4">
<button
className="rounded-full border p-3 text-sm text-gray-400 dark:border-0 dark:bg-[#28292D] dark:text-gray-500 dark:hover:bg-[#2E2F34]"
@@ -543,7 +618,7 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
<img src={ArrowLeft} alt="left-arrow" className="h-3 w-3" />
</button>
<p className="text-eerie-black dark:text-bright-gray mt-px text-sm font-semibold">
Back to all agents
{t('agents.backToAll')}
</p>
</div>
<div className="mt-5 flex w-full flex-wrap items-center justify-between gap-2 px-4">
@@ -555,7 +630,7 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
className="text-purple-30 dark:text-light-gray mr-4 rounded-3xl py-2 text-sm font-medium dark:bg-transparent"
onClick={handleCancel}
>
Cancel
{t('agents.form.buttons.cancel')}
</button>
{modeConfig[effectiveMode].showDelete && agent.id && (
<button
@@ -563,7 +638,7 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
onClick={() => setDeleteConfirmation('ACTIVE')}
>
<span className="block h-4 w-4 bg-[url('/src/assets/red-trash.svg')] bg-contain bg-center bg-no-repeat transition-all group-hover:bg-[url('/src/assets/white-trash.svg')]" />
Delete
{t('agents.form.buttons.delete')}
</button>
)}
{modeConfig[effectiveMode].showSaveDraft && (
@@ -578,7 +653,7 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
{draftLoading ? (
<Spinner size="small" color="#976af3" />
) : (
'Save Draft'
t('agents.form.buttons.saveDraft')
)}
</span>
</button>
@@ -589,7 +664,7 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
onClick={() => navigate(`/agents/logs/${agent.id}`)}
>
<span className="block h-5 w-5 bg-[url('/src/assets/monitoring-purple.svg')] bg-contain bg-center bg-no-repeat transition-all group-hover:bg-[url('/src/assets/monitoring-white.svg')]" />
Logs
{t('agents.form.buttons.logs')}
</button>
)}
{modeConfig[effectiveMode].showAccessDetails && (
@@ -597,7 +672,7 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
className="hover:bg-vi</button>olets-are-blue border-violets-are-blue text-violets-are-blue hover:bg-violets-are-blue rounded-3xl border border-solid px-5 py-2 text-sm font-medium transition-colors hover:text-white"
onClick={() => setAgentDetails('ACTIVE')}
>
Access Details
{t('agents.form.buttons.accessDetails')}
</button>
)}
<button
@@ -615,20 +690,22 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
</button>
</div>
</div>
<div className="mt-5 flex w-full grid-cols-5 flex-col gap-10 min-[1180px]:grid min-[1180px]:gap-5">
<div className="col-span-2 flex flex-col gap-5">
<div className="rounded-[30px] bg-[#F6F6F6] px-6 py-3 dark:bg-[#383838] dark:text-[#E0E0E0]">
<h2 className="text-lg font-semibold">Meta</h2>
<div className="mt-3 flex w-full flex-1 grid-cols-5 flex-col gap-10 rounded-[30px] bg-[#F6F6F6] p-5 max-[1179px]:overflow-visible min-[1180px]:grid min-[1180px]:gap-5 min-[1180px]:overflow-hidden dark:bg-[#383838]">
<div className="scrollbar-thin col-span-2 flex flex-col gap-5 max-[1179px]:overflow-visible min-[1180px]:max-h-full min-[1180px]:overflow-y-auto min-[1180px]:pr-3">
<div className="dark:bg-raisin-black rounded-[30px] bg-white px-6 py-3 dark:text-[#E0E0E0]">
<h2 className="text-lg font-semibold">
{t('agents.form.sections.meta')}
</h2>
<input
className="border-silver text-jet dark:bg-raisin-black dark:text-bright-gray dark:placeholder:text-silver mt-3 w-full rounded-3xl border bg-white px-5 py-3 text-sm outline-hidden placeholder:text-gray-400 dark:border-[#7E7E7E]"
type="text"
value={agent.name}
placeholder="Agent name"
placeholder={t('agents.form.placeholders.agentName')}
onChange={(e) => setAgent({ ...agent, name: e.target.value })}
/>
<textarea
className="border-silver text-jet dark:bg-raisin-black dark:text-bright-gray dark:placeholder:text-silver mt-3 h-32 w-full rounded-xl border bg-white px-5 py-4 text-sm outline-hidden placeholder:text-gray-400 dark:border-[#7E7E7E]"
placeholder="Describe your agent"
placeholder={t('agents.form.placeholders.describeAgent')}
value={agent.description}
onChange={(e) =>
setAgent({ ...agent, description: e.target.value })
@@ -641,17 +718,22 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
onUpload={handleUpload}
onRemove={() => setImageFile(null)}
uploadText={[
{ text: 'Click to upload', colorClass: 'text-[#7D54D1]' },
{
text: ' or drag and drop',
text: t('agents.form.upload.clickToUpload'),
colorClass: 'text-[#7D54D1]',
},
{
text: t('agents.form.upload.dragAndDrop'),
colorClass: 'text-[#525252]',
},
]}
/>
</div>
</div>
<div className="rounded-[30px] bg-[#F6F6F6] px-6 py-3 dark:bg-[#383838] dark:text-[#E0E0E0]">
<h2 className="text-lg font-semibold">Source</h2>
<div className="dark:bg-raisin-black rounded-[30px] bg-white px-6 py-3 dark:text-[#E0E0E0]">
<h2 className="text-lg font-semibold">
{t('agents.form.sections.source')}
</h2>
<div className="mt-3">
<div className="flex flex-wrap items-center gap-1">
<button
@@ -672,11 +754,13 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
source.name === id ||
source.retriever === id,
);
return matchedDoc?.name || `External KB`;
return (
matchedDoc?.name || t('agents.form.externalKb')
);
})
.filter(Boolean)
.join(', ')
: 'Select sources'}
: t('agents.form.placeholders.selectSources')}
</button>
<MultiSelectPopup
isOpen={isSourcePopupOpen}
@@ -720,9 +804,13 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
setSelectedSourceIds(newSelectedIds);
}
}}
title="Select Sources"
searchPlaceholder="Search sources..."
noOptionsMessage="No sources available"
title={t('agents.form.sourcePopup.title')}
searchPlaceholder={t(
'agents.form.sourcePopup.searchPlaceholder',
)}
noOptionsMessage={t(
'agents.form.sourcePopup.noOptionsMessage',
)}
/>
</div>
<div className="mt-3">
@@ -737,14 +825,14 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
border="border"
buttonClassName="bg-white dark:bg-[#222327] border-silver dark:border-[#7E7E7E]"
optionsClassName="bg-white dark:bg-[#383838] border-silver dark:border-[#7E7E7E]"
placeholder="Chunks per query"
placeholder={t('agents.form.placeholders.chunksPerQuery')}
placeholderClassName="text-gray-400 dark:text-silver"
contentSize="text-sm"
/>
</div>
</div>
</div>
<div className="rounded-[30px] bg-[#F6F6F6] px-6 py-3 dark:bg-[#383838] dark:text-[#E0E0E0]">
<div className="dark:bg-raisin-black rounded-[30px] bg-white px-6 py-3 dark:text-[#E0E0E0]">
<div className="flex flex-wrap items-end gap-1">
<div className="min-w-20 grow basis-full sm:basis-0">
<Prompts
@@ -757,7 +845,7 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
setAgent({ ...agent, prompt_id: id })
}
setPrompts={setPrompts}
title="Prompt"
title={t('agents.form.sections.prompt')}
titleClassName="text-lg font-semibold dark:text-[#E0E0E0]"
showAddButton={false}
dropdownProps={{
@@ -777,12 +865,14 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
className="border-violets-are-blue text-violets-are-blue hover:bg-violets-are-blue w-20 shrink-0 basis-full rounded-3xl border-2 border-solid px-5 py-[11px] text-sm transition-colors hover:text-white sm:basis-auto"
onClick={() => setAddPromptModal('ACTIVE')}
>
Add
{t('agents.form.buttons.add')}
</button>
</div>
</div>
<div className="rounded-[30px] bg-[#F6F6F6] px-6 py-3 dark:bg-[#383838] dark:text-[#E0E0E0]">
<h2 className="text-lg font-semibold">Tools</h2>
<div className="dark:bg-raisin-black rounded-[30px] bg-white px-6 py-3 dark:text-[#E0E0E0]">
<h2 className="text-lg font-semibold">
{t('agents.form.sections.tools')}
</h2>
<div className="mt-3 flex flex-wrap items-center gap-1">
<button
ref={toolAnchorButtonRef}
@@ -798,7 +888,7 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
.map((tool) => tool.display_name || tool.name)
.filter(Boolean)
.join(', ')
: 'Select tools'}
: t('agents.form.placeholders.selectTools')}
</button>
<MultiSelectPopup
isOpen={isToolsPopupOpen}
@@ -817,14 +907,18 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
})),
)
}
title="Select Tools"
searchPlaceholder="Search tools..."
noOptionsMessage="No tools available"
title={t('agents.form.toolsPopup.title')}
searchPlaceholder={t(
'agents.form.toolsPopup.searchPlaceholder',
)}
noOptionsMessage={t('agents.form.toolsPopup.noOptionsMessage')}
/>
</div>
</div>
<div className="rounded-[30px] bg-[#F6F6F6] px-6 py-3 dark:bg-[#383838] dark:text-[#E0E0E0]">
<h2 className="text-lg font-semibold">Agent type</h2>
<div className="dark:bg-raisin-black rounded-[30px] bg-white px-6 py-3 dark:text-[#E0E0E0]">
<h2 className="text-lg font-semibold">
{t('agents.form.sections.agentType')}
</h2>
<div className="mt-3">
<Dropdown
options={agentTypes}
@@ -842,13 +936,89 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
border="border"
buttonClassName="bg-white dark:bg-[#222327] border-silver dark:border-[#7E7E7E]"
optionsClassName="bg-white dark:bg-[#383838] border-silver dark:border-[#7E7E7E]"
placeholder="Select type"
placeholder={t('agents.form.placeholders.selectType')}
placeholderClassName="text-gray-400 dark:text-silver"
contentSize="text-sm"
/>
</div>
</div>
<div className="rounded-[30px] bg-[#F6F6F6] px-6 py-3 dark:bg-[#383838] dark:text-[#E0E0E0]">
<div className="dark:bg-raisin-black rounded-[30px] bg-white px-6 py-3 dark:text-[#E0E0E0]">
<h2 className="text-lg font-semibold">
{t('agents.form.sections.models')}
</h2>
<div className="mt-3 flex flex-col gap-3">
<button
ref={modelAnchorButtonRef}
onClick={() => setIsModelsPopupOpen(!isModelsPopupOpen)}
className={`border-silver dark:bg-raisin-black w-full truncate rounded-3xl border bg-white px-5 py-3 text-left text-sm dark:border-[#7E7E7E] ${
selectedModelIds.size > 0
? 'text-jet dark:text-bright-gray'
: 'dark:text-silver text-gray-400'
}`}
>
{selectedModelIds.size > 0
? availableModels
.filter((m) => selectedModelIds.has(m.id))
.map((m) => m.display_name)
.join(', ')
: t('agents.form.placeholders.selectModels')}
</button>
<MultiSelectPopup
isOpen={isModelsPopupOpen}
onClose={() => setIsModelsPopupOpen(false)}
anchorRef={modelAnchorButtonRef}
options={availableModels.map((model) => ({
id: model.id,
label: model.display_name,
}))}
selectedIds={selectedModelIds}
onSelectionChange={(newSelectedIds: Set<string | number>) =>
setSelectedModelIds(
new Set(Array.from(newSelectedIds).map(String)),
)
}
title={t('agents.form.modelsPopup.title')}
searchPlaceholder={t(
'agents.form.modelsPopup.searchPlaceholder',
)}
noOptionsMessage={t('agents.form.modelsPopup.noOptionsMessage')}
/>
{selectedModelIds.size > 0 && (
<div>
<label className="mb-2 block text-sm font-medium">
{t('agents.form.labels.defaultModel')}
</label>
<Dropdown
options={availableModels
.filter((m) => selectedModelIds.has(m.id))
.map((m) => ({
label: m.display_name,
value: m.id,
}))}
selectedValue={
availableModels.find(
(m) => m.id === agent.default_model_id,
)?.display_name || null
}
onSelect={(option: { label: string; value: string }) =>
setAgent({ ...agent, default_model_id: option.value })
}
size="w-full"
rounded="3xl"
border="border"
buttonClassName="bg-white dark:bg-[#222327] border-silver dark:border-[#7E7E7E]"
optionsClassName="bg-white dark:bg-[#383838] border-silver dark:border-[#7E7E7E]"
placeholder={t(
'agents.form.placeholders.selectDefaultModel',
)}
placeholderClassName="text-gray-400 dark:text-silver"
contentSize="text-sm"
/>
</div>
)}
</div>
</div>
<div className="dark:bg-raisin-black rounded-[30px] bg-white px-6 py-3 dark:text-[#E0E0E0]">
<button
onClick={() =>
setIsAdvancedSectionExpanded(!isAdvancedSectionExpanded)
@@ -856,7 +1026,9 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
className="flex w-full items-center justify-between text-left focus:outline-none"
>
<div>
<h2 className="text-lg font-semibold">Advanced</h2>
<h2 className="text-lg font-semibold">
{t('agents.form.sections.advanced')}
</h2>
</div>
<div className="ml-4 flex items-center">
<svg
@@ -879,9 +1051,11 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
{isAdvancedSectionExpanded && (
<div className="mt-3">
<div>
<h2 className="text-sm font-medium">JSON response schema</h2>
<h2 className="text-sm font-medium">
{t('agents.form.advanced.jsonSchema')}
</h2>
<p className="mt-1 text-xs text-gray-600 dark:text-gray-400">
Define a JSON schema to enforce structured output format
{t('agents.form.advanced.jsonSchemaDescription')}
</p>
</div>
<textarea
@@ -915,17 +1089,19 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
}`}
/>
{jsonSchemaValid
? 'Valid JSON'
: 'Invalid JSON - fix to enable saving'}
? t('agents.form.advanced.validJson')
: t('agents.form.advanced.invalidJson')}
</div>
)}
<div className="mt-6">
<div className="flex items-center justify-between">
<div>
<h2 className="text-sm font-medium">Token limiting</h2>
<h2 className="text-sm font-medium">
{t('agents.form.advanced.tokenLimiting')}
</h2>
<p className="mt-1 text-xs text-gray-600 dark:text-gray-400">
Limit daily total tokens that can be used by this agent
{t('agents.form.advanced.tokenLimitingDescription')}
</p>
</div>
<button
@@ -965,7 +1141,7 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
})
}
disabled={!agent.limited_token_mode}
placeholder="Enter token limit"
placeholder={t('agents.form.placeholders.enterTokenLimit')}
className={`border-silver text-jet dark:bg-raisin-black dark:text-bright-gray dark:placeholder:text-silver mt-2 w-full rounded-3xl border bg-white px-5 py-3 text-sm outline-hidden placeholder:text-gray-400 dark:border-[#7E7E7E] ${
!agent.limited_token_mode
? 'cursor-not-allowed opacity-50'
@@ -977,10 +1153,11 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
<div className="mt-6">
<div className="flex items-center justify-between">
<div>
<h2 className="text-sm font-medium">Request limiting</h2>
<h2 className="text-sm font-medium">
{t('agents.form.advanced.requestLimiting')}
</h2>
<p className="mt-1 text-xs text-gray-600 dark:text-gray-400">
Limit daily total requests that can be made to this
agent
{t('agents.form.advanced.requestLimitingDescription')}
</p>
</div>
<button
@@ -1020,7 +1197,9 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
})
}
disabled={!agent.limited_request_mode}
placeholder="Enter request limit"
placeholder={t(
'agents.form.placeholders.enterRequestLimit',
)}
className={`border-silver text-jet dark:bg-raisin-black dark:text-bright-gray dark:placeholder:text-silver mt-2 w-full rounded-3xl border bg-white px-5 py-3 text-sm outline-hidden placeholder:text-gray-400 dark:border-[#7E7E7E] ${
!agent.limited_request_mode
? 'cursor-not-allowed opacity-50'
@@ -1032,21 +1211,25 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
)}
</div>
</div>
<div className="col-span-3 flex flex-col gap-3 rounded-[30px] bg-[#F6F6F6] px-6 py-3 dark:bg-[#383838] dark:text-[#E0E0E0]">
<h2 className="text-lg font-semibold">Preview</h2>
<AgentPreviewArea />
<div className="col-span-3 flex flex-col gap-2 max-[1179px]:h-auto max-[1179px]:px-0 max-[1179px]:py-0 min-[1180px]:h-full min-[1180px]:py-2 dark:text-[#E0E0E0]">
<h2 className="text-lg font-semibold">
{t('agents.form.sections.preview')}
</h2>
<div className="flex-1 max-[1179px]:overflow-visible min-[1180px]:min-h-0 min-[1180px]:overflow-hidden">
<AgentPreviewArea />
</div>
</div>
</div>
<ConfirmationModal
message="Are you sure you want to delete this agent?"
message={t('agents.deleteConfirmation')}
modalState={deleteConfirmation}
setModalState={setDeleteConfirmation}
submitLabel="Delete"
submitLabel={t('agents.form.buttons.delete')}
handleSubmit={() => {
handleDelete(agent.id || '');
setDeleteConfirmation('INACTIVE');
}}
cancelLabel="Cancel"
cancelLabel={t('agents.form.buttons.cancel')}
variant="danger"
/>
<AgentDetailsModal
@@ -1069,18 +1252,19 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
}
function AgentPreviewArea() {
const { t } = useTranslation();
const selectedAgent = useSelector(selectSelectedAgent);
return (
<div className="dark:bg-raisin-black h-full w-full rounded-[30px] border border-[#F6F6F6] bg-white max-[1180px]:h-192 dark:border-[#7E7E7E]">
<div className="dark:bg-raisin-black w-full rounded-[30px] border border-[#F6F6F6] bg-white max-[1179px]:h-[600px] min-[1180px]:h-full dark:border-[#7E7E7E]">
{selectedAgent?.status === 'published' ? (
<div className="flex h-full w-full flex-col justify-end overflow-auto rounded-[30px]">
<div className="flex h-full w-full flex-col overflow-hidden rounded-[30px]">
<AgentPreview />
</div>
) : (
<div className="flex h-full w-full flex-col items-center justify-center gap-2">
<span className="block h-12 w-12 bg-[url('/src/assets/science-spark.svg')] bg-contain bg-center bg-no-repeat transition-all dark:bg-[url('/src/assets/science-spark-dark.svg')]" />{' '}
<p className="dark:text-gray-4000 text-xs text-[#18181B]">
Published agents can be previewed here
{t('agents.form.preview.publishedPreview')}
</p>
</div>
)}

View File

@@ -144,7 +144,7 @@ export default function SharedAgent() {
className="mx-auto mb-6 h-32 w-32"
/>
<p className="dark:text-gray-4000 text-center text-lg text-[#71717A]">
No agent found. Please ensure the agent is shared.
{t('agents.shared.notFound')}
</p>
</div>
</div>
@@ -177,13 +177,15 @@ export default function SharedAgent() {
/>
</div>
<div className="flex w-[95%] max-w-[1500px] flex-col items-center pb-2 md:w-9/12 lg:w-8/12 xl:w-8/12 2xl:w-6/12">
<MessageInput
onSubmit={(text) => handleQuestionSubmission(text)}
loading={status === 'loading'}
showSourceButton={sharedAgent ? false : true}
showToolButton={sharedAgent ? false : true}
autoFocus={false}
/>
<div className="w-full px-2">
<MessageInput
onSubmit={(text) => handleQuestionSubmission(text)}
loading={status === 'loading'}
showSourceButton={sharedAgent ? false : true}
showToolButton={sharedAgent ? false : true}
autoFocus={false}
/>
</div>
<p className="text-gray-4000 dark:text-sonic-silver hidden w-screen self-center bg-transparent py-2 text-center text-xs md:inline md:w-full">
{t('tagline')}
</p>

View File

@@ -52,6 +52,10 @@ export const fetchPreviewAnswer = createAsyncThunk<
}
if (state.preference) {
const modelId =
state.preference.selectedAgent?.default_model_id ||
state.preference.selectedModel?.id;
if (API_STREAMING) {
await handleFetchAnswerSteaming(
question,
@@ -120,22 +124,23 @@ export const fetchPreviewAnswer = createAsyncThunk<
indx,
state.preference.selectedAgent?.id,
attachmentIds,
false, // Don't save preview conversations
false,
modelId,
);
} else {
// Non-streaming implementation
const answer = await handleFetchAnswer(
question,
signal,
state.preference.token,
state.preference.selectedDocs,
null, // No conversation ID for previews
null,
state.preference.prompt.id,
state.preference.chunks,
state.preference.token_limit,
state.preference.selectedAgent?.id,
attachmentIds,
false, // Don't save preview conversations
false,
modelId,
);
if (answer) {

View File

@@ -32,4 +32,6 @@ export type Agent = {
token_limit?: number;
limited_request_mode?: boolean;
request_limit?: number;
models?: string[];
default_model_id?: string;
};

View File

@@ -2,6 +2,7 @@ const endpoints = {
USER: {
CONFIG: '/api/config',
NEW_TOKEN: '/api/generate_token',
MODELS: '/api/models',
DOCS: '/api/sources',
DOCS_PAGINATED: '/api/sources/paginated',
API_KEYS: '/api/get_api_keys',

View File

@@ -0,0 +1,25 @@
import apiClient from '../client';
import endpoints from '../endpoints';
import type { AvailableModel, Model } from '../../models/types';
const modelService = {
getModels: (token: string | null): Promise<Response> =>
apiClient.get(endpoints.USER.MODELS, token, {}),
transformModels: (models: AvailableModel[]): Model[] =>
models.map((model) => ({
id: model.id,
value: model.id,
provider: model.provider,
display_name: model.display_name,
description: model.description,
context_window: model.context_window,
supported_attachment_types: model.supported_attachment_types,
supports_tools: model.supports_tools,
supports_structured_output: model.supports_structured_output,
supports_streaming: model.supports_streaming,
})),
};
export default modelService;

View File

@@ -0,0 +1,3 @@
<svg width="12" height="14" viewBox="0 0 12 14" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M10.2857 14H2.57143C1.15179 14 0 12.8242 0 11.375V2.625C0 1.17578 1.15179 0 2.57143 0H10.7143C11.4241 0 12 0.587891 12 1.3125V9.1875C12 9.75898 11.6411 10.2457 11.1429 10.4262V12.25C11.617 12.25 12 12.641 12 13.125C12 13.609 11.617 14 11.1429 14H10.2857ZM2.57143 10.5C2.09732 10.5 1.71429 10.891 1.71429 11.375C1.71429 11.859 2.09732 12.25 2.57143 12.25H9.42857V10.5H2.57143ZM3.42857 4.15625C3.42857 4.51992 3.71518 4.8125 4.07143 4.8125H8.78571C9.14196 4.8125 9.42857 4.51992 9.42857 4.15625C9.42857 3.79258 9.14196 3.5 8.78571 3.5H4.07143C3.71518 3.5 3.42857 3.79258 3.42857 4.15625ZM4.07143 6.125C3.71518 6.125 3.42857 6.41758 3.42857 6.78125C3.42857 7.14492 3.71518 7.4375 4.07143 7.4375H8.78571C9.14196 7.4375 9.42857 7.14492 9.42857 6.78125C9.42857 6.41758 9.14196 6.125 8.78571 6.125H4.07143Z" fill="#6A4DF4"/>
</svg>

After

Width:  |  Height:  |  Size: 930 B

View File

@@ -1,4 +0,0 @@
<svg width="27" height="26" viewBox="0 0 27 26" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M4.03371 5.27275L4.1915 20.9162C4.20021 21.7802 4.90766 22.4735 5.77162 22.4648L21.4151 22.307C22.2791 22.2983 22.9724 21.5909 22.9637 20.7269L22.8059 5.0834C22.7972 4.21944 22.0897 3.52612 21.2258 3.53483L5.58228 3.69262C4.71831 3.70134 4.02499 4.40878 4.03371 5.27275Z" stroke="#949494" stroke-width="2.08591" stroke-linejoin="round"/>
<path d="M9.42289 22.428L9.23354 3.65585M17.6924 15.0436L15.5856 12.9788L17.6504 10.872M6.29419 22.4596L12.5516 22.3965M6.10484 3.68741L12.3622 3.62429" stroke="#949494" stroke-width="2.08591" stroke-linecap="round" stroke-linejoin="round"/>
</svg>

Before

Width:  |  Height:  |  Size: 692 B

View File

@@ -1,5 +1,5 @@
<svg width="113" height="124" viewBox="0 0 113 124" fill="none" xmlns="http://www.w3.org/2000/svg">
<circle cx="55.5" cy="71" r="53" fill="#F1F1F1" fill-opacity="0.5"/>
<circle cx="55.5" cy="71" r="53" fill="#E8E3F3" fill-opacity="0.6"/>
<rect x="-0.599797" y="0.654564" width="43.9445" height="61.5222" rx="4.39444" transform="matrix(-0.999048 0.0436194 0.0436194 0.999048 68.9873 43.3176)" fill="#EEEEEE" stroke="#999999" stroke-width="1.25556"/>
<rect x="0.704349" y="-0.540466" width="46.4556" height="64.0333" rx="5.65" transform="matrix(-0.991445 -0.130526 -0.130526 0.991445 96.3673 40.893)" fill="#FAFAFA" stroke="#999999" stroke-width="1.25556"/>
<path d="M94.3796 45.7849C94.7417 43.0349 92.8059 40.5122 90.0559 40.1501L55.2011 35.5614C52.4511 35.1994 49.9284 37.1352 49.5663 39.8851L48.3372 49.2212L93.1505 55.121L94.3796 45.7849Z" fill="#EEEEEE"/>

Before

Width:  |  Height:  |  Size: 2.0 KiB

After

Width:  |  Height:  |  Size: 2.0 KiB

View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="#949494" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="lucide lucide-panel-left-close-icon lucide-panel-left-close"><rect width="18" height="18" x="3" y="3" rx="2"/><path d="M9 3v18"/><path d="m16 15-3-3 3-3"/></svg>

After

Width:  |  Height:  |  Size: 345 B

View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="#949494" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="lucide lucide-panel-left-open-icon lucide-panel-left-open"><rect width="18" height="18" x="3" y="3" rx="2"/><path d="M9 3v18"/><path d="m14 9 3 3-3 3"/></svg>

After

Width:  |  Height:  |  Size: 342 B

View File

@@ -0,0 +1,3 @@
<svg width="20" height="21" viewBox="0 0 20 21" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M10 0.75C4.62391 0.75 0.25 5.12391 0.25 10.5C0.25 15.8761 4.62391 20.25 10 20.25C15.3761 20.25 19.75 15.8761 19.75 10.5C19.75 5.12391 15.3761 0.75 10 0.75ZM15.0742 7.23234L8.77422 14.7323C8.70511 14.8147 8.61912 14.8812 8.52207 14.9273C8.42502 14.9735 8.31918 14.9983 8.21172 15H8.19906C8.09394 15 7.99 14.9778 7.89398 14.935C7.79797 14.8922 7.71202 14.8297 7.64172 14.7516L4.94172 11.7516C4.87315 11.6788 4.81981 11.5931 4.78483 11.4995C4.74986 11.4059 4.73395 11.3062 4.73805 11.2063C4.74215 11.1064 4.76617 11.0084 4.8087 10.9179C4.85124 10.8275 4.91142 10.7464 4.98572 10.6796C5.06002 10.6127 5.14694 10.5614 5.24136 10.5286C5.33579 10.4958 5.43581 10.4822 5.53556 10.4886C5.63531 10.495 5.73277 10.5213 5.82222 10.5659C5.91166 10.6106 5.99128 10.6726 6.05641 10.7484L8.17938 13.1072L13.9258 6.26766C14.0547 6.11863 14.237 6.02631 14.4335 6.01066C14.6299 5.99501 14.8246 6.05728 14.9754 6.18402C15.1263 6.31075 15.2212 6.49176 15.2397 6.68793C15.2582 6.8841 15.1988 7.07966 15.0742 7.23234Z" fill="#B5B5B5"/>
</svg>

After

Width:  |  Height:  |  Size: 1.1 KiB

View File

@@ -1,16 +0,0 @@
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<!-- Uploaded to: SVG Repo, www.svgrepo.com, Transformed by: SVG Repo Mixer Tools -->
<svg width="800px" height="800px" viewBox="0 0 48 48" id="b" xmlns="http://www.w3.org/2000/svg" fill="#000000" stroke="#000000" stroke-width="3.312">
<g id="SVGRepo_bgCarrier" stroke-width="0"/>
<g id="SVGRepo_tracerCarrier" stroke-linecap="round" stroke-linejoin="round"/>
<g id="SVGRepo_iconCarrier">
<defs>
<style>.c{fill:none;stroke:#000000;stroke-linecap:round;stroke-linejoin:round;}</style>
</defs>

Before

Width:  |  Height:  |  Size: 1.2 KiB

View File

@@ -45,7 +45,7 @@ export default function ActionButtons({
<div className={`flex items-center gap-2 sm:gap-4 ${className}`}>
{showNewChat && (
<button
title="Open New Chat"
title={t('actionButtons.openNewChat')}
onClick={newChat}
className="hover:bg-bright-gray flex items-center gap-1 rounded-full p-2 lg:hidden dark:hover:bg-[#28292E]"
>
@@ -62,7 +62,7 @@ export default function ActionButtons({
{showShare && conversationId && (
<>
<button
title="Share"
title={t('actionButtons.share')}
onClick={() => setShareModalState(true)}
className="hover:bg-bright-gray rounded-full p-2 dark:hover:bg-[#28292E]"
>

View File

@@ -136,33 +136,34 @@ const Chunks: React.FC<ChunksProps> = ({
const pathParts = path ? path.split('/') : [];
const fetchChunks = () => {
const fetchChunks = async () => {
setLoading(true);
try {
userService
.getDocumentChunks(documentId, page, perPage, token, path, searchTerm)
.then((response) => {
if (!response.ok) {
setLoading(false);
setPaginatedChunks([]);
throw new Error('Failed to fetch chunks data');
}
return response.json();
})
.then((data) => {
setPage(data.page);
setPerPage(data.per_page);
setTotalChunks(data.total);
setPaginatedChunks(data.chunks);
setLoading(false);
})
.catch((error) => {
setLoading(false);
setPaginatedChunks([]);
});
} catch (e) {
setLoading(false);
const response = await userService.getDocumentChunks(
documentId,
page,
perPage,
token,
path,
searchTerm,
);
if (!response.ok) {
throw new Error('Failed to fetch chunks data');
}
const data = await response.json();
setPage(data.page);
setPerPage(data.per_page);
setTotalChunks(data.total);
setPaginatedChunks(data.chunks);
} catch (error) {
setPaginatedChunks([]);
console.error(error);
} finally {
// ✅ always runs, success or failure
setLoading(false);
}
};

View File

@@ -1,13 +0,0 @@
const ConnectedStateSkeleton = () => (
<div className="mb-4">
<div className="flex w-full animate-pulse items-center justify-between rounded-[10px] bg-gray-200 px-4 py-2 dark:bg-gray-700">
<div className="flex items-center gap-2">
<div className="h-4 w-4 rounded bg-gray-300 dark:bg-gray-600"></div>
<div className="h-4 w-32 rounded bg-gray-300 dark:bg-gray-600"></div>
</div>
<div className="h-4 w-16 rounded bg-gray-300 dark:bg-gray-600"></div>
</div>
</div>
);
export default ConnectedStateSkeleton;

View File

@@ -150,7 +150,7 @@ const ConnectorAuth: React.FC<ConnectorAuthProps> = ({
{isConnected ? (
<div className="mb-4">
<div className="flex w-full items-center justify-between rounded-[10px] bg-[#8FDD51] px-4 py-2 text-sm font-medium text-[#212121]">
<div className="flex max-w-[500px] items-center gap-2">
<div className="flex items-center gap-2">
<svg className="h-4 w-4" viewBox="0 0 24 24">
<path
fill="currentColor"

View File

@@ -38,7 +38,7 @@ interface DirectoryStructure {
[key: string]: FileNode;
}
interface ConnectorTreeComponentProps {
interface ConnectorTreeProps {
docId: string;
sourceName: string;
onBackToDocuments: () => void;
@@ -50,7 +50,7 @@ interface SearchResult {
isFile: boolean;
}
const ConnectorTreeComponent: React.FC<ConnectorTreeComponentProps> = ({
const ConnectorTree: React.FC<ConnectorTreeProps> = ({
docId,
sourceName,
onBackToDocuments,
@@ -744,4 +744,4 @@ const ConnectorTreeComponent: React.FC<ConnectorTreeComponentProps> = ({
);
};
export default ConnectorTreeComponent;
export default ConnectorTree;

View File

@@ -20,14 +20,9 @@ type CopyButtonProps = {
const DEFAULT_ICON_SIZE = 'w-4 h-4';
const DEFAULT_PADDING = 'p-2';
const DEFAULT_COPIED_DURATION = 2000;
const DEFAULT_BG_LIGHT = '#FFFFFF';
const DEFAULT_BG_DARK = 'transparent';
const DEFAULT_HOVER_BG_LIGHT = '#EEEEEE';
const DEFAULT_HOVER_BG_DARK = '#464152';
export default function CopyButton({
textToCopy,
iconSize = DEFAULT_ICON_SIZE,
padding = DEFAULT_PADDING,
showText = false,
@@ -43,9 +38,8 @@ export default function CopyButton({
const iconWrapperClasses = clsx(
'flex items-center justify-center rounded-full transition-colors duration-150 ease-in-out',
padding,
`bg-[${DEFAULT_BG_LIGHT}] dark:bg-[${DEFAULT_BG_DARK}]`,
{
[`hover:bg-[${DEFAULT_HOVER_BG_LIGHT}] dark:hover:bg-[${DEFAULT_HOVER_BG_DARK}]`]:
[`bg-[#FFFFFF}] dark:bg-transparent hover:bg-[#EEEEEE] dark:hover:bg-purple-taupe`]:
!isCopied,
'bg-green-100 dark:bg-green-900 hover:bg-green-100 dark:hover:bg-green-900':
isCopied,

View File

@@ -60,7 +60,7 @@ function Dropdown<T extends DropdownOption>({
}`}
>
{typeof selectedValue === 'string' ? (
<span className="dark:text-bright-gray truncate">
<span className={`dark:text-bright-gray truncate ${contentSize}`}>
{selectedValue}
</span>
) : (

View File

@@ -0,0 +1,138 @@
import React, { useEffect } from 'react';
import { useDispatch, useSelector } from 'react-redux';
import modelService from '../api/services/modelService';
import Arrow2 from '../assets/dropdown-arrow.svg';
import RoundedTick from '../assets/rounded-tick.svg';
import {
selectAvailableModels,
selectSelectedModel,
setAvailableModels,
setModelsLoading,
setSelectedModel,
} from '../preferences/preferenceSlice';
import type { Model } from '../models/types';
export default function DropdownModel() {
const dispatch = useDispatch();
const selectedModel = useSelector(selectSelectedModel);
const availableModels = useSelector(selectAvailableModels);
const dropdownRef = React.useRef<HTMLDivElement>(null);
const [isOpen, setIsOpen] = React.useState(false);
useEffect(() => {
const loadModels = async () => {
if ((availableModels?.length ?? 0) > 0) {
return;
}
dispatch(setModelsLoading(true));
try {
const response = await modelService.getModels(null);
if (!response.ok) {
throw new Error(`API error: ${response.status}`);
}
const data = await response.json();
const models = data.models || [];
const transformed = modelService.transformModels(models);
dispatch(setAvailableModels(transformed));
if (!selectedModel && transformed.length > 0) {
const defaultModel =
transformed.find((m) => m.id === data.default_model_id) ||
transformed[0];
dispatch(setSelectedModel(defaultModel));
} else if (selectedModel && transformed.length > 0) {
const isValid = transformed.find((m) => m.id === selectedModel.id);
if (!isValid) {
const defaultModel =
transformed.find((m) => m.id === data.default_model_id) ||
transformed[0];
dispatch(setSelectedModel(defaultModel));
}
}
} catch (error) {
console.error('Failed to load models:', error);
} finally {
dispatch(setModelsLoading(false));
}
};
loadModels();
}, [availableModels?.length, dispatch, selectedModel]);
const handleClickOutside = (event: MouseEvent) => {
if (
dropdownRef.current &&
!dropdownRef.current.contains(event.target as Node)
) {
setIsOpen(false);
}
};
useEffect(() => {
document.addEventListener('mousedown', handleClickOutside);
return () => {
document.removeEventListener('mousedown', handleClickOutside);
};
}, []);
return (
<div ref={dropdownRef}>
<div
className={`bg-gray-1000 dark:bg-dark-charcoal mx-auto flex w-full cursor-pointer justify-between p-1 dark:text-white ${isOpen ? 'rounded-t-3xl' : 'rounded-3xl'}`}
onClick={() => setIsOpen(!isOpen)}
>
{selectedModel?.display_name ? (
<p className="mx-4 my-3 truncate overflow-hidden whitespace-nowrap">
{selectedModel.display_name}
</p>
) : (
<p className="mx-4 my-3 truncate overflow-hidden whitespace-nowrap">
Select Model
</p>
)}
<img
src={Arrow2}
alt="arrow"
className={`${
isOpen ? 'rotate-360' : 'rotate-270'
} mr-3 w-3 transition-all select-none`}
/>
</div>
{isOpen && (
<div className="no-scrollbar dark:bg-dark-charcoal absolute right-0 left-0 z-20 -mt-1 max-h-52 w-full overflow-y-auto rounded-b-3xl bg-white shadow-md">
{availableModels && (availableModels?.length ?? 0) > 0 ? (
availableModels.map((model: Model) => (
<div
key={model.id}
onClick={() => {
dispatch(setSelectedModel(model));
setIsOpen(false);
}}
className={`border-gray-3000/75 dark:border-purple-taupe/50 hover:bg-gray-3000/75 dark:hover:bg-purple-taupe flex h-10 w-full cursor-pointer items-center justify-between border-t`}
>
<div className="flex w-full items-center justify-between">
<p className="overflow-hidden py-3 pr-2 pl-5 overflow-ellipsis whitespace-nowrap">
{model.display_name}
</p>
{model.id === selectedModel?.id ? (
<img
src={RoundedTick}
alt="selected"
className="mr-3.5 h-4 w-4"
/>
) : null}
</div>
</div>
))
) : (
<div className="h-10 w-full border-x-2 border-b-2">
<p className="ml-5 py-3 text-gray-500">No models available</p>
</div>
)}
</div>
)}
</div>
);
}

View File

@@ -1,4 +1,5 @@
import React, { useState, useEffect, useCallback, useRef } from 'react';
import { useTranslation } from 'react-i18next';
import { formatBytes } from '../utils/stringUtils';
import { formatDate } from '../utils/dateTimeUtils';
import {
@@ -66,6 +67,7 @@ export const FilePicker: React.FC<CloudFilePickerProps> = ({
);
};
const { t } = useTranslation();
const [files, setFiles] = useState<CloudFile[]>([]);
const [selectedFiles, setSelectedFiles] =
useState<string[]>(initialSelectedFiles);
@@ -417,7 +419,7 @@ export const FilePicker: React.FC<CloudFilePickerProps> = ({
<div className="mb-3 max-w-md">
<Input
type="text"
placeholder="Search files and folders..."
placeholder={t('filePicker.searchPlaceholder')}
value={searchQuery}
onChange={(e) => handleSearchChange(e.target.value)}
colorVariant="silver"
@@ -431,7 +433,9 @@ export const FilePicker: React.FC<CloudFilePickerProps> = ({
{/* Selected Files Message */}
<div className="pb-3 text-sm text-gray-600 dark:text-gray-400">
{selectedFiles.length + selectedFolders.length} selected
{t('filePicker.itemsSelected', {
count: selectedFiles.length + selectedFolders.length,
})}
</div>
</div>
@@ -448,9 +452,15 @@ export const FilePicker: React.FC<CloudFilePickerProps> = ({
<TableHead>
<TableRow>
<TableHeader width="40px"></TableHeader>
<TableHeader width="60%">Name</TableHeader>
<TableHeader width="20%">Last Modified</TableHeader>
<TableHeader width="20%">Size</TableHeader>
<TableHeader width="60%">
{t('filePicker.name')}
</TableHeader>
<TableHeader width="20%">
{t('filePicker.lastModified')}
</TableHeader>
<TableHeader width="20%">
{t('filePicker.size')}
</TableHeader>
</TableRow>
</TableHead>
<TableBody>

View File

@@ -1,13 +0,0 @@
const FilesSectionSkeleton = () => (
<div className="rounded-lg border border-[#EEE6FF78] dark:border-[#6A6A6A]">
<div className="p-4">
<div className="mb-4 flex items-center justify-between">
<div className="h-5 w-24 animate-pulse rounded bg-gray-200 dark:bg-gray-700"></div>
<div className="h-8 w-24 animate-pulse rounded bg-gray-200 dark:bg-gray-700"></div>
</div>
<div className="h-4 w-40 animate-pulse rounded bg-gray-200 dark:bg-gray-700"></div>
</div>
</div>
);
export default FilesSectionSkeleton;

View File

@@ -36,7 +36,7 @@ interface DirectoryStructure {
[key: string]: FileNode;
}
interface FileTreeComponentProps {
interface FileTreeProps {
docId: string;
sourceName: string;
onBackToDocuments: () => void;
@@ -48,7 +48,7 @@ interface SearchResult {
isFile: boolean;
}
const FileTreeComponent: React.FC<FileTreeComponentProps> = ({
const FileTree: React.FC<FileTreeProps> = ({
docId,
sourceName,
onBackToDocuments,
@@ -871,4 +871,4 @@ const FileTreeComponent: React.FC<FileTreeComponentProps> = ({
);
};
export default FileTreeComponent;
export default FileTree;

View File

@@ -1,4 +1,5 @@
import React, { useCallback, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { useDropzone } from 'react-dropzone';
import { twMerge } from 'tailwind-merge';
@@ -44,13 +45,14 @@ export const FileUpload = ({
activeClassName = 'border-blue-500 bg-blue-50',
acceptClassName = 'border-green-500 dark:border-green-500 bg-green-50 dark:bg-green-50/10',
rejectClassName = 'border-red-500 bg-red-50 dark:bg-red-500/10 dark:border-red-500',
uploadText = 'Click to upload or drag and drop',
dragActiveText = 'Drop the files here',
fileTypeText = 'PNG, JPG, JPEG up to',
sizeLimitText = 'MB',
uploadText,
dragActiveText,
fileTypeText,
sizeLimitText,
disabled = false,
validator,
}: FileUploadProps) => {
const { t } = useTranslation();
const [errors, setErrors] = useState<string[]>([]);
const [preview, setPreview] = useState<string | null>(null);
const [currentFile, setCurrentFile] = useState<File | null>(null);
@@ -71,7 +73,9 @@ export const FileUpload = ({
if (file.size > maxSize) {
return {
isValid: false,
error: `File exceeds ${maxSize / 1024 / 1024}MB limit`,
error: t('components.fileUpload.fileSizeError', {
size: maxSize / 1024 / 1024,
}),
};
}
@@ -178,7 +182,11 @@ export const FileUpload = ({
</p>
);
}
return <p className="text-sm font-semibold">{uploadText}</p>;
return (
<p className="text-sm font-semibold">
{uploadText || t('components.fileUpload.clickToUpload')}
</p>
);
};
const defaultContent = (
@@ -196,14 +204,17 @@ export const FileUpload = ({
<div className="text-center">
<div className="text-sm font-medium">
{isDragActive ? (
<p className="text-sm font-semibold">{dragActiveText}</p>
<p className="text-sm font-semibold">
{dragActiveText || t('components.fileUpload.dropFiles')}
</p>
) : (
renderUploadText()
)}
</div>
<p className="mt-1 text-xs text-[#A3A3A3]">
{fileTypeText} {maxSize / 1024 / 1024}
{sizeLimitText}
{fileTypeText || t('components.fileUpload.fileTypes')}{' '}
{maxSize / 1024 / 1024}
{sizeLimitText || t('components.fileUpload.sizeLimitUnit')}
</p>
</div>
</div>

View File

@@ -7,10 +7,7 @@ import {
getSessionToken,
setSessionToken,
removeSessionToken,
validateProviderSession,
} from '../utils/providerUtils';
import ConnectedStateSkeleton from './ConnectedStateSkeleton';
import FilesSectionSkeleton from './FileSelectionSkeleton';
interface PickerFile {
id: string;
@@ -53,9 +50,20 @@ const GoogleDrivePicker: React.FC<GoogleDrivePickerProps> = ({
const validateSession = async (sessionToken: string) => {
try {
const validateResponse = await validateProviderSession(
token,
'google_drive',
const apiHost = import.meta.env.VITE_API_HOST;
const validateResponse = await fetch(
`${apiHost}/api/connectors/validate-session`,
{
method: 'POST',
headers: {
'Content-Type': 'application/json',
Authorization: `Bearer ${token}`,
},
body: JSON.stringify({
provider: 'google_drive',
session_token: sessionToken,
}),
},
);
if (!validateResponse.ok) {
@@ -226,6 +234,30 @@ const GoogleDrivePicker: React.FC<GoogleDrivePickerProps> = ({
onSelectionChange([], []);
};
const ConnectedStateSkeleton = () => (
<div className="mb-4">
<div className="flex w-full animate-pulse items-center justify-between rounded-[10px] bg-gray-200 px-4 py-2 dark:bg-gray-700">
<div className="flex items-center gap-2">
<div className="h-4 w-4 rounded bg-gray-300 dark:bg-gray-600"></div>
<div className="h-4 w-32 rounded bg-gray-300 dark:bg-gray-600"></div>
</div>
<div className="h-4 w-16 rounded bg-gray-300 dark:bg-gray-600"></div>
</div>
</div>
);
const FilesSectionSkeleton = () => (
<div className="rounded-lg border border-[#EEE6FF78] dark:border-[#6A6A6A]">
<div className="p-4">
<div className="mb-4 flex items-center justify-between">
<div className="h-5 w-24 animate-pulse rounded bg-gray-200 dark:bg-gray-700"></div>
<div className="h-8 w-24 animate-pulse rounded bg-gray-200 dark:bg-gray-700"></div>
</div>
<div className="h-4 w-40 animate-pulse rounded bg-gray-200 dark:bg-gray-700"></div>
</div>
</div>
);
return (
<div>
{isValidating ? (

Some files were not shown because too many files have changed in this diff Show More