Compare commits

..

1 Commits

Author SHA1 Message Date
Alex
b910f308f2 fix: api answer tool call event 2025-09-30 14:42:54 +01:00
18 changed files with 142 additions and 1249 deletions

33
.vscode/launch.json vendored
View File

@@ -2,11 +2,15 @@
"version": "0.2.0",
"configurations": [
{
"name": "Frontend Debug (npm)",
"type": "node-terminal",
"name": "Docker Debug Frontend",
"request": "launch",
"command": "npm run dev",
"cwd": "${workspaceFolder}/frontend"
"type": "chrome",
"preLaunchTask": "docker-compose: debug:frontend",
"url": "http://127.0.0.1:5173",
"webRoot": "${workspaceFolder}/frontend",
"skipFiles": [
"<node_internals>/**"
]
},
{
"name": "Flask Debugger",
@@ -45,27 +49,6 @@
"--pool=solo"
],
"cwd": "${workspaceFolder}"
},
{
"name": "Dev Containers (Mongo + Redis)",
"type": "node-terminal",
"request": "launch",
"command": "docker compose -f deployment/docker-compose-dev.yaml up --build",
"cwd": "${workspaceFolder}"
}
],
"compounds": [
{
"name": "DocsGPT: Full Stack",
"configurations": [
"Frontend Debug (npm)",
"Flask Debugger",
"Celery Debugger"
],
"presentation": {
"group": "DocsGPT",
"order": 1
}
}
]
}

21
.vscode/tasks.json vendored Normal file
View File

@@ -0,0 +1,21 @@
{
"version": "2.0.0",
"tasks": [
{
"type": "docker-compose",
"label": "docker-compose: debug:frontend",
"dockerCompose": {
"up": {
"detached": true,
"services": [
"frontend"
],
"build": true
},
"files": [
"${workspaceFolder}/docker-compose.yaml"
]
}
}
]
}

View File

@@ -110,6 +110,8 @@ class BaseAnswerResource:
yield f"data: {data}\n\n"
elif "tool_calls" in line:
tool_calls = line["tool_calls"]
data = json.dumps({"type": "tool_calls", "tool_calls": tool_calls})
yield f"data: {data}\n\n"
elif "thought" in line:
thought += line["thought"]
data = json.dumps({"type": "thought", "thought": line["thought"]})

View File

@@ -1660,6 +1660,18 @@ class CreateAgent(Resource):
"prompt_id",
"agent_type",
]
# Require either source or sources (but not both)
if not data.get("source") and not data.get("sources"):
return make_response(
jsonify(
{
"success": False,
"message": "Either 'source' or 'sources' field is required for published agents",
}
),
400,
)
validate_fields = ["name", "description", "prompt_id", "agent_type"]
else:
required_fields = ["name"]

View File

@@ -1,231 +0,0 @@
from unittest.mock import Mock, patch
from typing import Any, Dict, Generator
from application.llm.handlers.base import LLMHandler, LLMResponse, ToolCall
class TestToolCall:
"""Test ToolCall dataclass."""
def test_tool_call_creation(self):
"""Test basic ToolCall creation."""
tool_call = ToolCall(
id="test_id",
name="test_function",
arguments={"arg1": "value1"},
index=0
)
assert tool_call.id == "test_id"
assert tool_call.name == "test_function"
assert tool_call.arguments == {"arg1": "value1"}
assert tool_call.index == 0
def test_tool_call_from_dict(self):
"""Test ToolCall creation from dictionary."""
data = {
"id": "call_123",
"name": "get_weather",
"arguments": {"location": "New York"},
"index": 1
}
tool_call = ToolCall.from_dict(data)
assert tool_call.id == "call_123"
assert tool_call.name == "get_weather"
assert tool_call.arguments == {"location": "New York"}
assert tool_call.index == 1
def test_tool_call_from_dict_missing_fields(self):
"""Test ToolCall creation with missing fields."""
data = {"name": "test_func"}
tool_call = ToolCall.from_dict(data)
assert tool_call.id == ""
assert tool_call.name == "test_func"
assert tool_call.arguments == {}
assert tool_call.index is None
class TestLLMResponse:
"""Test LLMResponse dataclass."""
def test_llm_response_creation(self):
"""Test basic LLMResponse creation."""
tool_calls = [ToolCall(id="1", name="func", arguments={})]
response = LLMResponse(
content="Hello",
tool_calls=tool_calls,
finish_reason="tool_calls",
raw_response={"test": "data"}
)
assert response.content == "Hello"
assert len(response.tool_calls) == 1
assert response.finish_reason == "tool_calls"
assert response.raw_response == {"test": "data"}
def test_requires_tool_call_true(self):
"""Test requires_tool_call property when tool calls are needed."""
tool_calls = [ToolCall(id="1", name="func", arguments={})]
response = LLMResponse(
content="",
tool_calls=tool_calls,
finish_reason="tool_calls",
raw_response={}
)
assert response.requires_tool_call is True
def test_requires_tool_call_false_no_tools(self):
"""Test requires_tool_call property when no tool calls."""
response = LLMResponse(
content="Hello",
tool_calls=[],
finish_reason="stop",
raw_response={}
)
assert response.requires_tool_call is False
def test_requires_tool_call_false_wrong_finish_reason(self):
"""Test requires_tool_call property with tools but wrong finish reason."""
tool_calls = [ToolCall(id="1", name="func", arguments={})]
response = LLMResponse(
content="Hello",
tool_calls=tool_calls,
finish_reason="stop",
raw_response={}
)
assert response.requires_tool_call is False
class ConcreteHandler(LLMHandler):
"""Concrete implementation for testing abstract base class."""
def parse_response(self, response: Any) -> LLMResponse:
return LLMResponse(
content=str(response),
tool_calls=[],
finish_reason="stop",
raw_response=response
)
def create_tool_message(self, tool_call: ToolCall, result: Any) -> Dict:
return {
"role": "tool",
"content": str(result),
"tool_call_id": tool_call.id
}
def _iterate_stream(self, response: Any) -> Generator:
for chunk in response:
yield chunk
class TestLLMHandler:
"""Test LLMHandler base class."""
def test_handler_initialization(self):
"""Test handler initialization."""
handler = ConcreteHandler()
assert handler.llm_calls == []
assert handler.tool_calls == []
def test_prepare_messages_no_attachments(self):
"""Test prepare_messages with no attachments."""
handler = ConcreteHandler()
messages = [{"role": "user", "content": "Hello"}]
mock_agent = Mock()
result = handler.prepare_messages(mock_agent, messages, None)
assert result == messages
def test_prepare_messages_with_supported_attachments(self):
"""Test prepare_messages with supported attachments."""
handler = ConcreteHandler()
messages = [{"role": "user", "content": "Hello"}]
attachments = [{"mime_type": "image/png", "path": "/test.png"}]
mock_agent = Mock()
mock_agent.llm.get_supported_attachment_types.return_value = ["image/png"]
mock_agent.llm.prepare_messages_with_attachments.return_value = messages
result = handler.prepare_messages(mock_agent, messages, attachments)
mock_agent.llm.prepare_messages_with_attachments.assert_called_once_with(
messages, attachments
)
assert result == messages
@patch('application.llm.handlers.base.logger')
def test_prepare_messages_with_unsupported_attachments(self, mock_logger):
"""Test prepare_messages with unsupported attachments."""
handler = ConcreteHandler()
messages = [{"role": "user", "content": "Hello"}]
attachments = [{"mime_type": "text/plain", "path": "/test.txt"}]
mock_agent = Mock()
mock_agent.llm.get_supported_attachment_types.return_value = ["image/png"]
with patch.object(handler, '_append_unsupported_attachments', return_value=messages) as mock_append:
result = handler.prepare_messages(mock_agent, messages, attachments)
mock_append.assert_called_once_with(messages, attachments)
assert result == messages
def test_prepare_messages_mixed_attachments(self):
"""Test prepare_messages with both supported and unsupported attachments."""
handler = ConcreteHandler()
messages = [{"role": "user", "content": "Hello"}]
attachments = [
{"mime_type": "image/png", "path": "/test.png"},
{"mime_type": "text/plain", "path": "/test.txt"}
]
mock_agent = Mock()
mock_agent.llm.get_supported_attachment_types.return_value = ["image/png"]
mock_agent.llm.prepare_messages_with_attachments.return_value = messages
with patch.object(handler, '_append_unsupported_attachments', return_value=messages) as mock_append:
result = handler.prepare_messages(mock_agent, messages, attachments)
# Should call both methods
mock_agent.llm.prepare_messages_with_attachments.assert_called_once()
mock_append.assert_called_once()
assert result == messages
def test_process_message_flow_non_streaming(self):
"""Test process_message_flow for non-streaming."""
handler = ConcreteHandler()
mock_agent = Mock()
initial_response = "test response"
tools_dict = {}
messages = [{"role": "user", "content": "Hello"}]
with patch.object(handler, 'prepare_messages', return_value=messages) as mock_prepare:
with patch.object(handler, 'handle_non_streaming', return_value="final") as mock_handle:
result = handler.process_message_flow(
mock_agent, initial_response, tools_dict, messages, stream=False
)
mock_prepare.assert_called_once_with(mock_agent, messages, None)
mock_handle.assert_called_once_with(mock_agent, initial_response, tools_dict, messages)
assert result == "final"
def test_process_message_flow_streaming(self):
"""Test process_message_flow for streaming."""
handler = ConcreteHandler()
mock_agent = Mock()
initial_response = "test response"
tools_dict = {}
messages = [{"role": "user", "content": "Hello"}]
def mock_generator():
yield "chunk1"
yield "chunk2"
with patch.object(handler, 'prepare_messages', return_value=messages) as mock_prepare:
with patch.object(handler, 'handle_streaming', return_value=mock_generator()) as mock_handle:
result = handler.process_message_flow(
mock_agent, initial_response, tools_dict, messages, stream=True
)
mock_prepare.assert_called_once_with(mock_agent, messages, None)
mock_handle.assert_called_once_with(mock_agent, initial_response, tools_dict, messages)
# Verify it's a generator
chunks = list(result)
assert chunks == ["chunk1", "chunk2"]

View File

@@ -1,270 +0,0 @@
from unittest.mock import Mock, patch
from types import SimpleNamespace
import uuid
from application.llm.handlers.google import GoogleLLMHandler
from application.llm.handlers.base import ToolCall, LLMResponse
class TestGoogleLLMHandler:
"""Test GoogleLLMHandler class."""
def test_handler_initialization(self):
"""Test handler initialization."""
handler = GoogleLLMHandler()
assert handler.llm_calls == []
assert handler.tool_calls == []
def test_parse_response_string_input(self):
"""Test parsing string response."""
handler = GoogleLLMHandler()
response = "Hello from Google!"
result = handler.parse_response(response)
assert isinstance(result, LLMResponse)
assert result.content == "Hello from Google!"
assert result.tool_calls == []
assert result.finish_reason == "stop"
assert result.raw_response == "Hello from Google!"
def test_parse_response_with_candidates_text_only(self):
"""Test parsing response with candidates containing only text."""
handler = GoogleLLMHandler()
mock_part = SimpleNamespace(text="Google response text")
mock_content = SimpleNamespace(parts=[mock_part])
mock_candidate = SimpleNamespace(content=mock_content)
mock_response = SimpleNamespace(candidates=[mock_candidate])
result = handler.parse_response(mock_response)
assert result.content == "Google response text"
assert result.tool_calls == []
assert result.finish_reason == "stop"
assert result.raw_response == mock_response
def test_parse_response_with_multiple_text_parts(self):
"""Test parsing response with multiple text parts."""
handler = GoogleLLMHandler()
mock_part1 = SimpleNamespace(text="First part")
mock_part2 = SimpleNamespace(text="Second part")
mock_content = SimpleNamespace(parts=[mock_part1, mock_part2])
mock_candidate = SimpleNamespace(content=mock_content)
mock_response = SimpleNamespace(candidates=[mock_candidate])
result = handler.parse_response(mock_response)
assert result.content == "First part Second part"
assert result.tool_calls == []
assert result.finish_reason == "stop"
@patch('uuid.uuid4')
def test_parse_response_with_function_call(self, mock_uuid):
"""Test parsing response with function call."""
mock_uuid.return_value = Mock(spec=uuid.UUID)
mock_uuid.return_value.__str__ = Mock(return_value="test-uuid-123")
handler = GoogleLLMHandler()
mock_function_call = SimpleNamespace(
name="get_weather",
args={"location": "San Francisco"}
)
mock_part = SimpleNamespace(function_call=mock_function_call)
mock_content = SimpleNamespace(parts=[mock_part])
mock_candidate = SimpleNamespace(content=mock_content)
mock_response = SimpleNamespace(candidates=[mock_candidate])
result = handler.parse_response(mock_response)
assert result.content == ""
assert len(result.tool_calls) == 1
assert result.tool_calls[0].id == "test-uuid-123"
assert result.tool_calls[0].name == "get_weather"
assert result.tool_calls[0].arguments == {"location": "San Francisco"}
assert result.finish_reason == "tool_calls"
@patch('uuid.uuid4')
def test_parse_response_with_mixed_parts(self, mock_uuid):
"""Test parsing response with both text and function call parts."""
mock_uuid.return_value = Mock(spec=uuid.UUID)
mock_uuid.return_value.__str__ = Mock(return_value="test-uuid-456")
handler = GoogleLLMHandler()
mock_text_part = SimpleNamespace(text="I'll check the weather for you.")
mock_function_call = SimpleNamespace(
name="get_weather",
args={"location": "NYC"}
)
mock_function_part = SimpleNamespace(function_call=mock_function_call)
mock_content = SimpleNamespace(parts=[mock_text_part, mock_function_part])
mock_candidate = SimpleNamespace(content=mock_content)
mock_response = SimpleNamespace(candidates=[mock_candidate])
result = handler.parse_response(mock_response)
assert result.content == "I'll check the weather for you."
assert len(result.tool_calls) == 1
assert result.tool_calls[0].name == "get_weather"
assert result.finish_reason == "tool_calls"
def test_parse_response_empty_candidates(self):
"""Test parsing response with empty candidates."""
handler = GoogleLLMHandler()
mock_response = SimpleNamespace(candidates=[])
result = handler.parse_response(mock_response)
assert result.content == ""
assert result.tool_calls == []
assert result.finish_reason == "stop"
def test_parse_response_parts_with_none_text(self):
"""Test parsing response with parts that have None text."""
handler = GoogleLLMHandler()
mock_part1 = SimpleNamespace(text=None)
mock_part2 = SimpleNamespace(text="Valid text")
mock_content = SimpleNamespace(parts=[mock_part1, mock_part2])
mock_candidate = SimpleNamespace(content=mock_content)
mock_response = SimpleNamespace(candidates=[mock_candidate])
result = handler.parse_response(mock_response)
assert result.content == "Valid text"
def test_parse_response_parts_without_text_attribute(self):
"""Test parsing response with parts missing text attribute."""
handler = GoogleLLMHandler()
mock_part1 = SimpleNamespace()
mock_part2 = SimpleNamespace(text="Valid text")
mock_content = SimpleNamespace(parts=[mock_part1, mock_part2])
mock_candidate = SimpleNamespace(content=mock_content)
mock_response = SimpleNamespace(candidates=[mock_candidate])
result = handler.parse_response(mock_response)
assert result.content == "Valid text"
@patch('uuid.uuid4')
def test_parse_response_direct_function_call(self, mock_uuid):
"""Test parsing response with direct function call (not in candidates)."""
mock_uuid.return_value = Mock(spec=uuid.UUID)
mock_uuid.return_value.__str__ = Mock(return_value="direct-uuid-789")
handler = GoogleLLMHandler()
mock_function_call = SimpleNamespace(
name="calculate",
args={"expression": "2+2"}
)
mock_response = SimpleNamespace(
function_call=mock_function_call,
text="The calculation result is:"
)
result = handler.parse_response(mock_response)
assert result.content == "The calculation result is:"
assert len(result.tool_calls) == 1
assert result.tool_calls[0].id == "direct-uuid-789"
assert result.tool_calls[0].name == "calculate"
assert result.tool_calls[0].arguments == {"expression": "2+2"}
assert result.finish_reason == "tool_calls"
def test_parse_response_direct_function_call_no_text(self):
"""Test parsing response with direct function call and no text."""
handler = GoogleLLMHandler()
mock_function_call = SimpleNamespace(
name="get_data",
args={"id": 123}
)
mock_response = SimpleNamespace(function_call=mock_function_call)
result = handler.parse_response(mock_response)
assert result.content == ""
assert len(result.tool_calls) == 1
assert result.tool_calls[0].name == "get_data"
assert result.finish_reason == "tool_calls"
def test_create_tool_message(self):
"""Test creating tool message."""
handler = GoogleLLMHandler()
tool_call = ToolCall(
id="call_123",
name="get_weather",
arguments={"location": "Tokyo"},
index=0
)
result = {"temperature": "25C", "condition": "cloudy"}
message = handler.create_tool_message(tool_call, result)
expected = {
"role": "model",
"content": [
{
"function_response": {
"name": "get_weather",
"response": {"result": result},
}
}
],
}
assert message == expected
def test_create_tool_message_string_result(self):
"""Test creating tool message with string result."""
handler = GoogleLLMHandler()
tool_call = ToolCall(id="call_456", name="get_time", arguments={})
result = "2023-12-01 15:30:00 JST"
message = handler.create_tool_message(tool_call, result)
assert message["role"] == "model"
assert message["content"][0]["function_response"]["response"]["result"] == result
assert message["content"][0]["function_response"]["name"] == "get_time"
def test_iterate_stream(self):
"""Test stream iteration."""
handler = GoogleLLMHandler()
mock_chunks = ["chunk1", "chunk2", "chunk3"]
result = list(handler._iterate_stream(mock_chunks))
assert result == mock_chunks
def test_iterate_stream_empty(self):
"""Test stream iteration with empty response."""
handler = GoogleLLMHandler()
result = list(handler._iterate_stream([]))
assert result == []
def test_parse_response_parts_without_function_call_attribute(self):
"""Test parsing response with parts missing function_call attribute."""
handler = GoogleLLMHandler()
mock_part = SimpleNamespace(text="Normal text")
mock_content = SimpleNamespace(parts=[mock_part])
mock_candidate = SimpleNamespace(content=mock_content)
mock_response = SimpleNamespace(candidates=[mock_candidate])
result = handler.parse_response(mock_response)
assert result.content == "Normal text"
assert result.tool_calls == []
assert result.finish_reason == "stop"

View File

@@ -1,125 +0,0 @@
from application.llm.handlers.handler_creator import LLMHandlerCreator
from application.llm.handlers.base import LLMHandler
from application.llm.handlers.openai import OpenAILLMHandler
from application.llm.handlers.google import GoogleLLMHandler
class TestLLMHandlerCreator:
"""Test LLMHandlerCreator class."""
def test_create_openai_handler(self):
"""Test creating OpenAI handler."""
handler = LLMHandlerCreator.create_handler("openai")
assert isinstance(handler, OpenAILLMHandler)
assert isinstance(handler, LLMHandler)
def test_create_openai_handler_case_insensitive(self):
"""Test creating OpenAI handler with different cases."""
handler_upper = LLMHandlerCreator.create_handler("OPENAI")
handler_mixed = LLMHandlerCreator.create_handler("OpenAI")
assert isinstance(handler_upper, OpenAILLMHandler)
assert isinstance(handler_mixed, OpenAILLMHandler)
def test_create_google_handler(self):
"""Test creating Google handler."""
handler = LLMHandlerCreator.create_handler("google")
assert isinstance(handler, GoogleLLMHandler)
assert isinstance(handler, LLMHandler)
def test_create_google_handler_case_insensitive(self):
"""Test creating Google handler with different cases."""
handler_upper = LLMHandlerCreator.create_handler("GOOGLE")
handler_mixed = LLMHandlerCreator.create_handler("Google")
assert isinstance(handler_upper, GoogleLLMHandler)
assert isinstance(handler_mixed, GoogleLLMHandler)
def test_create_default_handler(self):
"""Test creating default handler."""
handler = LLMHandlerCreator.create_handler("default")
assert isinstance(handler, OpenAILLMHandler)
def test_create_unknown_handler_fallback(self):
"""Test creating handler for unknown type falls back to OpenAI."""
handler = LLMHandlerCreator.create_handler("unknown_provider")
assert isinstance(handler, OpenAILLMHandler)
def test_create_anthropic_handler_fallback(self):
"""Test creating Anthropic handler falls back to OpenAI (not supported in handlers)."""
handler = LLMHandlerCreator.create_handler("anthropic")
assert isinstance(handler, OpenAILLMHandler)
def test_create_empty_string_handler_fallback(self):
"""Test creating handler with empty string falls back to OpenAI."""
handler = LLMHandlerCreator.create_handler("")
assert isinstance(handler, OpenAILLMHandler)
def test_handlers_registry(self):
"""Test the handlers registry contains expected mappings."""
expected_handlers = {
"openai": OpenAILLMHandler,
"google": GoogleLLMHandler,
"default": OpenAILLMHandler,
}
assert LLMHandlerCreator.handlers == expected_handlers
def test_create_handler_with_args(self):
"""Test creating handler with additional arguments."""
handler = LLMHandlerCreator.create_handler("openai")
assert isinstance(handler, OpenAILLMHandler)
assert handler.llm_calls == []
assert handler.tool_calls == []
def test_create_handler_with_kwargs(self):
"""Test creating handler with keyword arguments."""
handler = LLMHandlerCreator.create_handler("google")
assert isinstance(handler, GoogleLLMHandler)
assert handler.llm_calls == []
assert handler.tool_calls == []
def test_all_registered_handlers_are_valid(self):
"""Test that all registered handlers can be instantiated."""
for handler_type in LLMHandlerCreator.handlers.keys():
handler = LLMHandlerCreator.create_handler(handler_type)
assert isinstance(handler, LLMHandler)
assert hasattr(handler, 'parse_response')
assert hasattr(handler, 'create_tool_message')
assert hasattr(handler, '_iterate_stream')
def test_handler_inheritance(self):
"""Test that all created handlers inherit from LLMHandler."""
test_types = ["openai", "google", "default", "unknown"]
for handler_type in test_types:
handler = LLMHandlerCreator.create_handler(handler_type)
assert isinstance(handler, LLMHandler)
assert callable(getattr(handler, 'parse_response'))
assert callable(getattr(handler, 'create_tool_message'))
assert callable(getattr(handler, '_iterate_stream'))
def test_create_handler_preserves_handler_state(self):
"""Test that each created handler has independent state."""
handler1 = LLMHandlerCreator.create_handler("openai")
handler2 = LLMHandlerCreator.create_handler("openai")
handler1.llm_calls.append("test_call")
assert len(handler1.llm_calls) == 1
assert len(handler2.llm_calls) == 0
assert handler1 is not handler2

View File

@@ -1,208 +0,0 @@
from types import SimpleNamespace
from application.llm.handlers.openai import OpenAILLMHandler
from application.llm.handlers.base import ToolCall, LLMResponse
class TestOpenAILLMHandler:
"""Test OpenAILLMHandler class."""
def test_handler_initialization(self):
"""Test handler initialization."""
handler = OpenAILLMHandler()
assert handler.llm_calls == []
assert handler.tool_calls == []
def test_parse_response_string_input(self):
"""Test parsing string response."""
handler = OpenAILLMHandler()
response = "Hello, world!"
result = handler.parse_response(response)
assert isinstance(result, LLMResponse)
assert result.content == "Hello, world!"
assert result.tool_calls == []
assert result.finish_reason == "stop"
assert result.raw_response == "Hello, world!"
def test_parse_response_with_message_content(self):
"""Test parsing response with message content."""
handler = OpenAILLMHandler()
# Mock OpenAI response structure
mock_message = SimpleNamespace(content="Test content", tool_calls=None)
mock_response = SimpleNamespace(message=mock_message, finish_reason="stop")
result = handler.parse_response(mock_response)
assert result.content == "Test content"
assert result.tool_calls == []
assert result.finish_reason == "stop"
assert result.raw_response == mock_response
def test_parse_response_with_delta_content(self):
"""Test parsing response with delta content (streaming)."""
handler = OpenAILLMHandler()
# Mock streaming response structure
mock_delta = SimpleNamespace(content="Stream chunk", tool_calls=None)
mock_response = SimpleNamespace(delta=mock_delta, finish_reason="")
result = handler.parse_response(mock_response)
assert result.content == "Stream chunk"
assert result.tool_calls == []
assert result.finish_reason == ""
assert result.raw_response == mock_response
def test_parse_response_with_tool_calls(self):
"""Test parsing response with tool calls."""
handler = OpenAILLMHandler()
# Mock tool call structure
mock_function = SimpleNamespace(name="get_weather", arguments='{"location": "NYC"}')
mock_tool_call = SimpleNamespace(
id="call_123",
function=mock_function,
index=0
)
mock_message = SimpleNamespace(content="", tool_calls=[mock_tool_call])
mock_response = SimpleNamespace(message=mock_message, finish_reason="tool_calls")
result = handler.parse_response(mock_response)
assert result.content == ""
assert len(result.tool_calls) == 1
assert result.tool_calls[0].id == "call_123"
assert result.tool_calls[0].name == "get_weather"
assert result.tool_calls[0].arguments == '{"location": "NYC"}'
assert result.tool_calls[0].index == 0
assert result.finish_reason == "tool_calls"
def test_parse_response_with_multiple_tool_calls(self):
"""Test parsing response with multiple tool calls."""
handler = OpenAILLMHandler()
# Mock multiple tool calls
mock_function1 = SimpleNamespace(name="get_weather", arguments='{"location": "NYC"}')
mock_function2 = SimpleNamespace(name="get_time", arguments='{"timezone": "UTC"}')
mock_tool_call1 = SimpleNamespace(id="call_1", function=mock_function1, index=0)
mock_tool_call2 = SimpleNamespace(id="call_2", function=mock_function2, index=1)
mock_message = SimpleNamespace(content="", tool_calls=[mock_tool_call1, mock_tool_call2])
mock_response = SimpleNamespace(message=mock_message, finish_reason="tool_calls")
result = handler.parse_response(mock_response)
assert len(result.tool_calls) == 2
assert result.tool_calls[0].name == "get_weather"
assert result.tool_calls[1].name == "get_time"
def test_parse_response_empty_tool_calls(self):
"""Test parsing response with empty tool_calls."""
handler = OpenAILLMHandler()
mock_message = SimpleNamespace(content="No tools needed", tool_calls=None)
mock_response = SimpleNamespace(message=mock_message, finish_reason="stop")
result = handler.parse_response(mock_response)
assert result.content == "No tools needed"
assert result.tool_calls == []
assert result.finish_reason == "stop"
def test_parse_response_missing_attributes(self):
"""Test parsing response with missing attributes."""
handler = OpenAILLMHandler()
# Mock response with missing attributes
mock_message = SimpleNamespace() # No content or tool_calls
mock_response = SimpleNamespace(message=mock_message) # No finish_reason
result = handler.parse_response(mock_response)
assert result.content == ""
assert result.tool_calls == []
assert result.finish_reason == ""
def test_create_tool_message(self):
"""Test creating tool message."""
handler = OpenAILLMHandler()
tool_call = ToolCall(
id="call_123",
name="get_weather",
arguments={"location": "NYC"},
index=0
)
result = {"temperature": "72F", "condition": "sunny"}
message = handler.create_tool_message(tool_call, result)
expected = {
"role": "tool",
"content": [
{
"function_response": {
"name": "get_weather",
"response": {"result": result},
"call_id": "call_123",
}
}
],
}
assert message == expected
def test_create_tool_message_string_result(self):
"""Test creating tool message with string result."""
handler = OpenAILLMHandler()
tool_call = ToolCall(id="call_456", name="get_time", arguments={})
result = "2023-12-01 10:30:00"
message = handler.create_tool_message(tool_call, result)
assert message["role"] == "tool"
assert message["content"][0]["function_response"]["response"]["result"] == result
assert message["content"][0]["function_response"]["call_id"] == "call_456"
def test_iterate_stream(self):
"""Test stream iteration."""
handler = OpenAILLMHandler()
# Mock streaming response
mock_chunks = ["chunk1", "chunk2", "chunk3"]
result = list(handler._iterate_stream(mock_chunks))
assert result == mock_chunks
def test_iterate_stream_empty(self):
"""Test stream iteration with empty response."""
handler = OpenAILLMHandler()
result = list(handler._iterate_stream([]))
assert result == []
def test_parse_response_tool_call_missing_attributes(self):
"""Test parsing tool calls with missing attributes."""
handler = OpenAILLMHandler()
# Mock tool call with missing attributes
mock_function = SimpleNamespace() # No name or arguments
mock_tool_call = SimpleNamespace(function=mock_function) # No id or index
mock_message = SimpleNamespace(content="", tool_calls=[mock_tool_call])
mock_response = SimpleNamespace(message=mock_message, finish_reason="tool_calls")
result = handler.parse_response(mock_response)
assert len(result.tool_calls) == 1
assert result.tool_calls[0].id == ""
assert result.tool_calls[0].name == ""
assert result.tool_calls[0].arguments == ""
assert result.tool_calls[0].index is None

View File

@@ -0,0 +1,68 @@
import unittest
from unittest.mock import patch, Mock
from application.llm.anthropic import AnthropicLLM
class TestAnthropicLLM(unittest.TestCase):
def setUp(self):
self.api_key = "TEST_API_KEY"
self.llm = AnthropicLLM(api_key=self.api_key)
@patch("application.llm.anthropic.settings")
def test_init_default_api_key(self, mock_settings):
mock_settings.ANTHROPIC_API_KEY = "DEFAULT_API_KEY"
llm = AnthropicLLM()
self.assertEqual(llm.api_key, "DEFAULT_API_KEY")
def test_gen(self):
messages = [
{"content": "context"},
{"content": "question"}
]
mock_response = Mock()
mock_response.completion = "test completion"
with patch("application.cache.get_redis_instance") as mock_make_redis:
mock_redis_instance = mock_make_redis.return_value
mock_redis_instance.get.return_value = None
mock_redis_instance.set = Mock()
with patch.object(self.llm.anthropic.completions, "create", return_value=mock_response) as mock_create:
response = self.llm.gen("test_model", messages)
self.assertEqual(response, "test completion")
prompt_expected = "### Context \n context \n ### Question \n question"
mock_create.assert_called_with(
model="test_model",
max_tokens_to_sample=300,
stream=False,
prompt=f"{self.llm.HUMAN_PROMPT} {prompt_expected}{self.llm.AI_PROMPT}"
)
mock_redis_instance.set.assert_called_once()
def test_gen_stream(self):
messages = [
{"content": "context"},
{"content": "question"}
]
mock_responses = [Mock(completion="response_1"), Mock(completion="response_2")]
mock_tools = Mock()
with patch("application.cache.get_redis_instance") as mock_make_redis:
mock_redis_instance = mock_make_redis.return_value
mock_redis_instance.get.return_value = None
mock_redis_instance.set = Mock()
with patch.object(self.llm.anthropic.completions, "create", return_value=iter(mock_responses)) as mock_create:
responses = list(self.llm.gen_stream("test_model", messages, tools=mock_tools))
self.assertListEqual(responses, ["response_1", "response_2"])
prompt_expected = "### Context \n context \n ### Question \n question"
mock_create.assert_called_with(
model="test_model",
prompt=f"{self.llm.HUMAN_PROMPT} {prompt_expected}{self.llm.AI_PROMPT}",
max_tokens_to_sample=300,
stream=True
)
if __name__ == "__main__":
unittest.main()

View File

@@ -1,65 +0,0 @@
import sys
import types
import pytest
class _FakeCompletion:
def __init__(self, text):
self.completion = text
class _FakeCompletions:
def __init__(self):
self.last_kwargs = None
self._stream = [_FakeCompletion("s1"), _FakeCompletion("s2")]
def create(self, **kwargs):
self.last_kwargs = kwargs
if kwargs.get("stream"):
return self._stream
return _FakeCompletion("final")
class _FakeAnthropic:
def __init__(self, api_key=None):
self.api_key = api_key
self.completions = _FakeCompletions()
@pytest.fixture(autouse=True)
def patch_anthropic(monkeypatch):
fake = types.ModuleType("anthropic")
fake.Anthropic = _FakeAnthropic
fake.HUMAN_PROMPT = "<HUMAN>"
fake.AI_PROMPT = "<AI>"
sys.modules["anthropic"] = fake
yield
sys.modules.pop("anthropic", None)
def test_anthropic_raw_gen_builds_prompt_and_returns_completion():
from application.llm.anthropic import AnthropicLLM
llm = AnthropicLLM(api_key="k")
msgs = [
{"content": "ctx"},
{"content": "q"},
]
out = llm._raw_gen(llm, model="claude-2", messages=msgs, stream=False, max_tokens=55)
assert out == "final"
last = llm.anthropic.completions.last_kwargs
assert last["model"] == "claude-2"
assert last["max_tokens_to_sample"] == 55
assert last["prompt"].startswith("<HUMAN>") and last["prompt"].endswith("<AI>")
assert "### Context" in last["prompt"] and "### Question" in last["prompt"]
def test_anthropic_raw_gen_stream_yields_chunks():
from application.llm.anthropic import AnthropicLLM
llm = AnthropicLLM(api_key="k")
msgs = [
{"content": "ctx"},
{"content": "q"},
]
gen = llm._raw_gen_stream(llm, model="claude", messages=msgs, stream=True, max_tokens=10)
chunks = list(gen)
assert chunks == ["s1", "s2"]

View File

@@ -1,151 +0,0 @@
import types
import pytest
from application.llm.google_ai import GoogleLLM
class _FakePart:
def __init__(self, text=None, function_call=None, file_data=None):
self.text = text
self.function_call = function_call
self.file_data = file_data
@staticmethod
def from_text(text):
return _FakePart(text=text)
@staticmethod
def from_function_call(name, args):
return _FakePart(function_call=types.SimpleNamespace(name=name, args=args))
@staticmethod
def from_function_response(name, response):
# not used in assertions but present for completeness
return _FakePart(function_call=None, text=str(response))
@staticmethod
def from_uri(file_uri, mime_type):
# mimic presence of file data for streaming detection
return _FakePart(file_data=types.SimpleNamespace(file_uri=file_uri, mime_type=mime_type))
class _FakeContent:
def __init__(self, role, parts):
self.role = role
self.parts = parts
class FakeTypesModule:
Part = _FakePart
Content = _FakeContent
class GenerateContentConfig:
def __init__(self):
self.system_instruction = None
self.tools = None
self.response_schema = None
self.response_mime_type = None
class FakeModels:
def __init__(self):
self.last_args = None
self.last_kwargs = None
class _Resp:
def __init__(self, text=None, candidates=None):
self.text = text
self.candidates = candidates or []
def generate_content(self, *args, **kwargs):
self.last_args, self.last_kwargs = args, kwargs
return FakeModels._Resp(text="ok")
def generate_content_stream(self, *args, **kwargs):
self.last_args, self.last_kwargs = args, kwargs
# Simulate stream of text parts
part1 = types.SimpleNamespace(text="a", candidates=None)
part2 = types.SimpleNamespace(text="b", candidates=None)
return [part1, part2]
class FakeClient:
def __init__(self, *_, **__):
self.models = FakeModels()
@pytest.fixture(autouse=True)
def patch_google_modules(monkeypatch):
# Patch the types module used by GoogleLLM
import application.llm.google_ai as gmod
monkeypatch.setattr(gmod, "types", FakeTypesModule)
monkeypatch.setattr(gmod.genai, "Client", FakeClient)
def test_clean_messages_google_basic():
llm = GoogleLLM(api_key="key")
msgs = [
{"role": "assistant", "content": "hi"},
{"role": "user", "content": [
{"text": "hello"},
{"files": [{"file_uri": "gs://x", "mime_type": "image/png"}]},
{"function_call": {"name": "fn", "args": {"a": 1}}},
]},
]
cleaned = llm._clean_messages_google(msgs)
assert all(hasattr(c, "role") and hasattr(c, "parts") for c in cleaned)
assert any(c.role == "model" for c in cleaned)
assert any(hasattr(p, "text") for c in cleaned for p in c.parts)
def test_raw_gen_calls_google_client_and_returns_text():
llm = GoogleLLM(api_key="key")
msgs = [{"role": "user", "content": "hello"}]
out = llm._raw_gen(llm, model="gemini-2.0", messages=msgs, stream=False)
assert out == "ok"
def test_raw_gen_stream_yields_chunks():
llm = GoogleLLM(api_key="key")
msgs = [{"role": "user", "content": "hello"}]
gen = llm._raw_gen_stream(llm, model="gemini", messages=msgs, stream=True)
assert list(gen) == ["a", "b"]
def test_prepare_structured_output_format_type_mapping():
llm = GoogleLLM(api_key="key")
schema = {
"type": "object",
"properties": {
"a": {"type": "string"},
"b": {"type": "array", "items": {"type": "integer"}},
},
"required": ["a"],
}
out = llm.prepare_structured_output_format(schema)
assert out["type"] == "OBJECT"
assert out["properties"]["a"]["type"] == "STRING"
assert out["properties"]["b"]["type"] == "ARRAY"
def test_prepare_messages_with_attachments_appends_files(monkeypatch):
llm = GoogleLLM(api_key="key")
llm.storage = types.SimpleNamespace(
file_exists=lambda path: True,
process_file=lambda path, processor_func, **kwargs: "gs://file_uri"
)
monkeypatch.setattr(llm, "_upload_file_to_google", lambda att: "gs://file_uri")
messages = [{"role": "user", "content": "Hi"}]
attachments = [
{"path": "/tmp/img.png", "mime_type": "image/png"},
{"path": "/tmp/doc.pdf", "mime_type": "application/pdf"},
]
out = llm.prepare_messages_with_attachments(messages, attachments)
user_msg = next(m for m in out if m["role"] == "user")
assert isinstance(user_msg["content"], list)
files_entry = next((p for p in user_msg["content"] if isinstance(p, dict) and "files" in p), None)
assert files_entry is not None
assert isinstance(files_entry["files"], list) and len(files_entry["files"]) == 2

11
tests/llm/test_openai.py Normal file
View File

@@ -0,0 +1,11 @@
import unittest
from application.llm.openai import OpenAILLM
class TestOpenAILLM(unittest.TestCase):
def setUp(self):
self.api_key = "test_api_key"
self.llm = OpenAILLM(self.api_key)
def test_init(self):
self.assertEqual(self.llm.api_key, self.api_key)

View File

@@ -1,157 +0,0 @@
import types
import pytest
from application.llm.openai import OpenAILLM
class FakeChatCompletions:
def __init__(self):
self.last_kwargs = None
class _Msg:
def __init__(self, content=None, tool_calls=None):
self.content = content
self.tool_calls = tool_calls
class _Delta:
def __init__(self, content=None):
self.content = content
class _Choice:
def __init__(self, content=None, delta=None, finish_reason="stop"):
self.message = FakeChatCompletions._Msg(content=content)
self.delta = FakeChatCompletions._Delta(content=delta)
self.finish_reason = finish_reason
class _StreamLine:
def __init__(self, deltas):
self.choices = [FakeChatCompletions._Choice(delta=d) for d in deltas]
class _Response:
def __init__(self, choices=None, lines=None):
self._choices = choices or []
self._lines = lines or []
@property
def choices(self):
return self._choices
def __iter__(self):
for line in self._lines:
yield line
def create(self, **kwargs):
self.last_kwargs = kwargs
# default non-streaming: return content
if not kwargs.get("stream"):
return FakeChatCompletions._Response(choices=[
FakeChatCompletions._Choice(content="hello world")
])
# streaming: yield line objects each with choices[0].delta.content
return FakeChatCompletions._Response(lines=[
FakeChatCompletions._StreamLine(["part1"]),
FakeChatCompletions._StreamLine(["part2"]),
])
class FakeClient:
def __init__(self):
self.chat = types.SimpleNamespace(completions=FakeChatCompletions())
@pytest.fixture
def openai_llm(monkeypatch):
llm = OpenAILLM(api_key="sk-test", user_api_key=None)
llm.storage = types.SimpleNamespace(
get_file=lambda path: types.SimpleNamespace(read=lambda: b"img"),
file_exists=lambda path: True,
process_file=lambda path, processor_func, **kwargs: "file_id_123",
)
llm.client = FakeClient()
return llm
def test_clean_messages_openai_variants(openai_llm):
messages = [
{"role": "system", "content": "sys"},
{"role": "model", "content": "asst"},
{"role": "user", "content": [
{"text": "hello"},
{"function_call": {"call_id": "c1", "name": "fn", "args": {"a": 1}}},
{"function_response": {"call_id": "c1", "name": "fn", "response": {"result": 42}}},
{"type": "image_url", "image_url": {"url": ""}},
]},
]
cleaned = openai_llm._clean_messages_openai(messages)
roles = [m["role"] for m in cleaned]
assert roles.count("assistant") >= 1
assert any(m["role"] == "tool" for m in cleaned)
assert any(isinstance(m["content"], list) and any(
part.get("type") == "image_url" for part in m["content"] if isinstance(part, dict)
) for m in cleaned if m["role"] == "user")
def test_raw_gen_calls_openai_client_and_returns_content(openai_llm):
msgs = [
{"role": "system", "content": "sys"},
{"role": "user", "content": "hello"},
]
content = openai_llm._raw_gen(openai_llm, model="gpt-4o", messages=msgs, stream=False)
assert content == "hello world"
passed = openai_llm.client.chat.completions.last_kwargs
assert passed["model"] == "gpt-4o"
assert isinstance(passed["messages"], list)
assert passed["stream"] is False
def test_raw_gen_stream_yields_chunks(openai_llm):
msgs = [
{"role": "user", "content": "hi"},
]
gen = openai_llm._raw_gen_stream(openai_llm, model="gpt", messages=msgs, stream=True)
chunks = list(gen)
assert "part1" in "".join(chunks)
assert "part2" in "".join(chunks)
def test_prepare_structured_output_format_enforces_required_and_strict(openai_llm):
schema = {
"type": "object",
"properties": {
"a": {"type": "string"},
"b": {"type": "number"},
},
}
result = openai_llm.prepare_structured_output_format(schema)
assert result["type"] == "json_schema"
js = result["json_schema"]
assert js["strict"] is True
assert set(js["schema"]["required"]) == {"a", "b"}
assert js["schema"]["additionalProperties"] is False
def test_prepare_messages_with_attachments_image_and_pdf(openai_llm, monkeypatch):
monkeypatch.setattr(openai_llm, "_get_base64_image", lambda att: "AAA=")
monkeypatch.setattr(openai_llm, "_upload_file_to_openai", lambda att: "file_xyz")
messages = [{"role": "user", "content": "Hi"}]
attachments = [
{"path": "/tmp/img.png", "mime_type": "image/png"},
{"path": "/tmp/doc.pdf", "mime_type": "application/pdf"},
]
out = openai_llm.prepare_messages_with_attachments(messages, attachments)
# last user message should have list content with text and two attachments
user_msg = next(m for m in out if m["role"] == "user")
assert isinstance(user_msg["content"], list)
types_in_content = [p.get("type") for p in user_msg["content"] if isinstance(p, dict)]
assert "image_url" in types_in_content or any(
isinstance(p, dict) and p.get("image_url") for p in user_msg["content"]
)
assert any(isinstance(p, dict) and p.get("file", {}).get("file_id") == "file_xyz" for p in user_msg["content"])

View File

@@ -27,6 +27,7 @@ def test_html_parser_parse_file():
mock_doc.page_content = "Extracted HTML content"
mock_doc.metadata = {"source": "test.html"}
import types, sys
fake_lc = types.ModuleType("langchain_community")
fake_dl = types.ModuleType("langchain_community.document_loaders")

View File

@@ -1,3 +1,4 @@
import pytest
from pathlib import Path
from unittest.mock import patch, MagicMock, mock_open

View File

@@ -1,3 +1,4 @@
import pytest
from pathlib import Path
from unittest.mock import patch, mock_open
@@ -39,8 +40,7 @@ def test_json_parser_row_joiner_config():
def test_json_parser_forwards_json_config():
def pf(s):
return 1.23
pf = lambda s: 1.23
parser = JSONParser(json_config={"parse_float": pf})
with patch("builtins.open", mock_open(read_data="[]")):
with patch("json.load", return_value=[]) as mock_load:

View File

@@ -1,21 +1,24 @@
from pathlib import Path
from unittest.mock import mock_open, patch
import pytest
import sys, types
if "tiktoken" not in sys.modules:
fake_tt = types.ModuleType("tiktoken")
class _Enc:
def encode(self, s: str):
return list(s)
def get_encoding(_: str):
return _Enc()
fake_tt.get_encoding = get_encoding
sys.modules["tiktoken"] = fake_tt
import tiktoken
from application.parser.file.markdown_parser import MarkdownParser
class _Enc:
def encode(self, s: str):
return list(s)
@pytest.fixture(autouse=True)
def _patch_tokenizer(monkeypatch):
monkeypatch.setattr(tiktoken, "get_encoding", lambda _: _Enc())
def test_markdown_init_parser():
parser = MarkdownParser()
assert isinstance(parser._init_parser(), dict)

View File

@@ -30,8 +30,7 @@ def _fake_presentation_with(slides_shapes_texts):
def test_pptx_parser_concat_true():
slides = [["Hello ", "World"], ["Slide2"]]
FakePres = _fake_presentation_with(slides)
import sys
import types
import sys, types
fake_pptx = types.ModuleType("pptx")
fake_pptx.Presentation = FakePres
parser = PPTXParser()
@@ -43,8 +42,7 @@ def test_pptx_parser_concat_true():
def test_pptx_parser_list_mode():
slides = [[" A ", "B"], [" C "]]
FakePres = _fake_presentation_with(slides)
import sys
import types
import sys, types
fake_pptx = types.ModuleType("pptx")
fake_pptx.Presentation = FakePres
parser = PPTXParser()