mirror of
https://github.com/arc53/DocsGPT.git
synced 2025-11-29 08:33:20 +00:00
Compare commits
1 Commits
feat/fixed
...
auto-chunk
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
01ea90f39a |
@@ -446,7 +446,8 @@ class Stream(Resource):
|
||||
attachment_ids = data.get("attachments", [])
|
||||
|
||||
index = data.get("index", None)
|
||||
chunks = int(data.get("chunks", 2))
|
||||
chunks_from_request = data.get("chunks", 2)
|
||||
chunks = chunks_from_request if str(chunks_from_request) == 'Auto' else int(chunks_from_request)
|
||||
token_limit = data.get("token_limit", settings.DEFAULT_MAX_HISTORY)
|
||||
retriever_name = data.get("retriever", "classic")
|
||||
agent_id = data.get("agent_id", None)
|
||||
@@ -620,7 +621,8 @@ class Answer(Resource):
|
||||
)
|
||||
conversation_id = data.get("conversation_id")
|
||||
prompt_id = data.get("prompt_id", "default")
|
||||
chunks = int(data.get("chunks", 2))
|
||||
chunks_from_request = data.get("chunks", 2)
|
||||
chunks = chunks_from_request if str(chunks_from_request) == 'Auto' else int(chunks_from_request)
|
||||
token_limit = data.get("token_limit", settings.DEFAULT_MAX_HISTORY)
|
||||
retriever_name = data.get("retriever", "classic")
|
||||
agent_type = settings.AGENT_NAME
|
||||
@@ -814,7 +816,8 @@ class Search(Resource):
|
||||
|
||||
try:
|
||||
question = data["question"]
|
||||
chunks = int(data.get("chunks", 2))
|
||||
chunks_from_request = data.get("chunks", 2)
|
||||
chunks = chunks_from_request if str(chunks_from_request) == 'Auto' else int(chunks_from_request)
|
||||
token_limit = data.get("token_limit", settings.DEFAULT_MAX_HISTORY)
|
||||
retriever_name = data.get("retriever", "classic")
|
||||
|
||||
|
||||
@@ -2,11 +2,16 @@ import logging
|
||||
from application.core.settings import settings
|
||||
from application.llm.llm_creator import LLMCreator
|
||||
from application.retriever.base import BaseRetriever
|
||||
|
||||
from application.vectorstore.vector_creator import VectorCreator
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class ClassicRAG(BaseRetriever):
|
||||
# Settings for Auto-Chunking
|
||||
AUTO_CHUNK_MIN: int = 0
|
||||
AUTO_CHUNK_MAX: int = 10
|
||||
SIMILARITY_SCORE_THRESHOLD: float = 0.5
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
source,
|
||||
@@ -47,6 +52,7 @@ class ClassicRAG(BaseRetriever):
|
||||
self.question = self._rephrase_query()
|
||||
self.vectorstore = source["active_docs"] if "active_docs" in source else None
|
||||
self.decoded_token = decoded_token
|
||||
self.actual_chunks_retrieved = 0
|
||||
|
||||
def _rephrase_query(self):
|
||||
if (
|
||||
@@ -77,8 +83,66 @@ class ClassicRAG(BaseRetriever):
|
||||
return self.original_question
|
||||
|
||||
def _get_data(self):
|
||||
if self.chunks == 'Auto':
|
||||
return self._get_data_auto()
|
||||
else:
|
||||
return self._get_data_classic()
|
||||
|
||||
def _get_data_auto(self):
|
||||
if not self.vectorstore:
|
||||
self.actual_chunks_retrieved = 0
|
||||
return []
|
||||
|
||||
docsearch = VectorCreator.create_vectorstore(
|
||||
settings.VECTOR_STORE, self.vectorstore, settings.EMBEDDINGS_KEY
|
||||
)
|
||||
|
||||
try:
|
||||
docs_with_scores = docsearch.search_with_scores(self.question, k=self.AUTO_CHUNK_MAX)
|
||||
except Exception as e:
|
||||
logger.error(f"Error during search_with_scores: {e}", exc_info=True)
|
||||
self.actual_chunks_retrieved = 0
|
||||
return []
|
||||
|
||||
if not docs_with_scores:
|
||||
self.actual_chunks_retrieved = 0
|
||||
return []
|
||||
|
||||
candidate_docs = []
|
||||
for doc, score in docs_with_scores:
|
||||
if score >= self.SIMILARITY_SCORE_THRESHOLD:
|
||||
candidate_docs.append(doc)
|
||||
|
||||
if len(candidate_docs) < self.AUTO_CHUNK_MIN and self.AUTO_CHUNK_MIN > 0:
|
||||
final_docs_to_format = [doc for doc, score in docs_with_scores[:self.AUTO_CHUNK_MIN]]
|
||||
else:
|
||||
final_docs_to_format = candidate_docs
|
||||
|
||||
self.actual_chunks_retrieved = len(final_docs_to_format)
|
||||
|
||||
if not final_docs_to_format:
|
||||
return []
|
||||
|
||||
formatted_docs = [
|
||||
{
|
||||
"title": i.metadata.get(
|
||||
"title", i.metadata.get("post_title", i.page_content)
|
||||
).split("/")[-1],
|
||||
"text": i.page_content,
|
||||
"source": (
|
||||
i.metadata.get("source")
|
||||
if i.metadata.get("source")
|
||||
else "local"
|
||||
),
|
||||
}
|
||||
for i in final_docs_to_format
|
||||
]
|
||||
logger.info(f"AutoRAG: Retrieved {self.actual_chunks_retrieved} chunks for query '{self.original_question}'.")
|
||||
return formatted_docs
|
||||
|
||||
def _get_data_classic(self):
|
||||
if self.chunks == 0:
|
||||
docs = []
|
||||
return []
|
||||
else:
|
||||
docsearch = VectorCreator.create_vectorstore(
|
||||
settings.VECTOR_STORE, self.vectorstore, settings.EMBEDDINGS_KEY
|
||||
@@ -98,8 +162,7 @@ class ClassicRAG(BaseRetriever):
|
||||
}
|
||||
for i in docs_temp
|
||||
]
|
||||
|
||||
return docs
|
||||
return docs
|
||||
|
||||
def gen():
|
||||
pass
|
||||
@@ -111,12 +174,24 @@ class ClassicRAG(BaseRetriever):
|
||||
return self._get_data()
|
||||
|
||||
def get_params(self):
|
||||
return {
|
||||
params = {
|
||||
"question": self.original_question,
|
||||
"rephrased_question": self.question,
|
||||
"source": self.vectorstore,
|
||||
"chunks": self.chunks,
|
||||
"token_limit": self.token_limit,
|
||||
"gpt_model": self.gpt_model,
|
||||
"user_api_key": self.user_api_key,
|
||||
}
|
||||
if self.chunks == 'Auto':
|
||||
params.update({
|
||||
"chunks_mode": "Auto",
|
||||
"chunks_retrieved_auto": self.actual_chunks_retrieved,
|
||||
"auto_chunk_min_setting": self.AUTO_CHUNK_MIN,
|
||||
"auto_chunk_max_setting": self.AUTO_CHUNK_MAX,
|
||||
"similarity_threshold_setting": self.SIMILARITY_SCORE_THRESHOLD,
|
||||
})
|
||||
else:
|
||||
params["chunks_mode"] = "Classic"
|
||||
params["chunks"] = self.chunks
|
||||
|
||||
return params
|
||||
@@ -2,7 +2,6 @@ from application.retriever.classic_rag import ClassicRAG
|
||||
from application.retriever.duckduck_search import DuckDuckSearch
|
||||
from application.retriever.brave_search import BraveRetSearch
|
||||
|
||||
|
||||
class RetrieverCreator:
|
||||
retrievers = {
|
||||
"classic": ClassicRAG,
|
||||
|
||||
@@ -58,6 +58,10 @@ class BaseVectorStore(ABC):
|
||||
def search(self, *args, **kwargs):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def search_with_scores(self, query: str, k: int, *args, **kwargs):
|
||||
pass
|
||||
|
||||
def is_azure_configured(self):
|
||||
return settings.OPENAI_API_BASE and settings.OPENAI_API_VERSION and settings.AZURE_DEPLOYMENT_NAME
|
||||
|
||||
|
||||
@@ -108,6 +108,46 @@ class ElasticsearchStore(BaseVectorStore):
|
||||
|
||||
doc_list.append(Document(page_content = hit['_source']['text'], metadata = hit['_source']['metadata']))
|
||||
return doc_list
|
||||
|
||||
def search_with_scores(self, query: str, k: int, *args, **kwargs):
|
||||
embeddings = self._get_embeddings(settings.EMBEDDINGS_NAME, self.embeddings_key)
|
||||
vector = embeddings.embed_query(query)
|
||||
knn = {
|
||||
"filter": [{"match": {"metadata.source_id.keyword": self.source_id}}],
|
||||
"field": "vector",
|
||||
"k": k,
|
||||
"num_candidates": 100,
|
||||
"query_vector": vector,
|
||||
}
|
||||
full_query = {
|
||||
"knn": knn,
|
||||
"query": {
|
||||
"bool": {
|
||||
"must": [
|
||||
{
|
||||
"match": {
|
||||
"text": {
|
||||
"query": question,
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"filter": [{"match": {"metadata.source_id.keyword": self.source_id}}],
|
||||
}
|
||||
},
|
||||
"rank": {"rrf": {}},
|
||||
}
|
||||
resp = self.docsearch.search(index=self.index_name, query=full_query['query'], size=k, knn=full_query['knn'])
|
||||
|
||||
docs_with_scores = []
|
||||
for hit in resp['hits']['hits']:
|
||||
score = hit['_score']
|
||||
# Normalize the score. Elasticsearch returns a score of 1.0 + cosine similarity.
|
||||
similarity = max(0, score - 1.0)
|
||||
doc = Document(page_content=hit['_source']['text'], metadata=hit['_source']['metadata'])
|
||||
docs_with_scores.append((doc, similarity))
|
||||
|
||||
return docs_with_scores
|
||||
|
||||
def _create_index_if_not_exists(
|
||||
self, index_name, dims_length
|
||||
|
||||
@@ -62,6 +62,18 @@ class FaissStore(BaseVectorStore):
|
||||
|
||||
def search(self, *args, **kwargs):
|
||||
return self.docsearch.similarity_search(*args, **kwargs)
|
||||
|
||||
def search_with_scores(self, query: str, k: int, *args, **kwargs):
|
||||
docs_and_distances = self.docsearch.similarity_search_with_score(query, k, *args, **kwargs)
|
||||
|
||||
# Convert L2 distance to a normalized similarity score (0-1, higher is better)
|
||||
docs_and_similarities = []
|
||||
for doc, distance in docs_and_distances:
|
||||
if distance < 0: distance = 0
|
||||
similarity = 1 / (1 + distance)
|
||||
docs_and_similarities.append((doc, similarity))
|
||||
|
||||
return docs_and_similarities
|
||||
|
||||
def add_texts(self, *args, **kwargs):
|
||||
return self.docsearch.add_texts(*args, **kwargs)
|
||||
|
||||
@@ -2,6 +2,8 @@ from typing import List, Optional
|
||||
import importlib
|
||||
from application.vectorstore.base import BaseVectorStore
|
||||
from application.core.settings import settings
|
||||
from application.vectorstore.document_class import Document
|
||||
|
||||
|
||||
class LanceDBVectorStore(BaseVectorStore):
|
||||
"""Class for LanceDB Vector Store integration."""
|
||||
@@ -87,6 +89,23 @@ class LanceDBVectorStore(BaseVectorStore):
|
||||
results = self.docsearch.search(query_embedding).limit(k).to_list()
|
||||
return [(result["_distance"], result["text"], result["metadata"]) for result in results]
|
||||
|
||||
def search_with_scores(self, query: str, k: int, *args, **kwargs):
|
||||
"""Perform a similarity search with scores."""
|
||||
self.ensure_table_exists()
|
||||
query_embedding = self._get_embeddings(settings.EMBEDDINGS_NAME, self.embeddings_key).embed_query(query)
|
||||
results = self.docsearch.search(query_embedding).limit(k).to_list()
|
||||
|
||||
docs_with_scores = []
|
||||
for result in results:
|
||||
distance = result.get('_distance', float('inf'))
|
||||
if distance < 0: distance = 0
|
||||
# Convert L2 distance to a normalized similarity score
|
||||
similarity = 1 / (1 + distance)
|
||||
doc = Document(page_content=result['text'], metadata=result["metadata"])
|
||||
docs_with_scores.append((doc, similarity))
|
||||
|
||||
return docs_with_scores
|
||||
|
||||
def delete_index(self):
|
||||
"""Delete the entire LanceDB index (table)."""
|
||||
if self.table:
|
||||
|
||||
@@ -25,6 +25,16 @@ class MilvusStore(BaseVectorStore):
|
||||
def search(self, question, k=2, *args, **kwargs):
|
||||
expr = f"source_id == '{self._source_id}'"
|
||||
return self._docsearch.similarity_search(query=question, k=k, expr=expr, *args, **kwargs)
|
||||
|
||||
def search_with_scores(self, query: str, k: int, *args, **kwargs):
|
||||
expr = f"source_id == '{self._source_id}'"
|
||||
docs_and_distances = self._docsearch.similarity_search_with_score(query, k, expr=expr, *args, **kwargs)
|
||||
docs_with_scores = []
|
||||
for doc, distance in docs_and_distances:
|
||||
similarity = 1.0 - distance
|
||||
docs_with_scores.append((doc, max(0, similarity)))
|
||||
|
||||
return docs_with_scores
|
||||
|
||||
def add_texts(self, texts: List[str], metadatas: Optional[List[dict]], *args, **kwargs):
|
||||
ids = [str(uuid4()) for _ in range(len(texts))]
|
||||
|
||||
@@ -62,6 +62,40 @@ class MongoDBVectorStore(BaseVectorStore):
|
||||
metadata = doc
|
||||
results.append(Document(text, metadata))
|
||||
return results
|
||||
|
||||
def search_with_scores(self, query: str, k: int, *args, **kwargs):
|
||||
query_vector = self._embedding.embed_query(query)
|
||||
|
||||
pipeline = [
|
||||
{
|
||||
"$vectorSearch": {
|
||||
"queryVector": query_vector,
|
||||
"path": self._embedding_key,
|
||||
"limit": k,
|
||||
"numCandidates": k * 10,
|
||||
"index": self._index_name,
|
||||
"filter": {"source_id": {"$eq": self._source_id}},
|
||||
}
|
||||
},
|
||||
{
|
||||
"$addFields": {
|
||||
"score": {"$meta": "vectorSearchScore"}
|
||||
}
|
||||
}
|
||||
]
|
||||
|
||||
cursor = self._collection.aggregate(pipeline)
|
||||
|
||||
results = []
|
||||
for doc in cursor:
|
||||
score = doc.pop("score", 0.0)
|
||||
text = doc.pop(self._text_key)
|
||||
doc.pop("_id")
|
||||
doc.pop(self._embedding_key, None)
|
||||
metadata = doc
|
||||
doc = Document(page_content=text, metadata=metadata)
|
||||
results.append((doc, score))
|
||||
return results
|
||||
|
||||
def _insert_texts(self, texts, metadatas):
|
||||
if not texts:
|
||||
|
||||
@@ -35,6 +35,9 @@ class QdrantStore(BaseVectorStore):
|
||||
|
||||
def search(self, *args, **kwargs):
|
||||
return self._docsearch.similarity_search(filter=self._filter, *args, **kwargs)
|
||||
|
||||
def search_with_scores(self, query: str, k: int, *args, **kwargs):
|
||||
return self._docsearch.similarity_search_with_score(query=query, k=k, filter=self._filter, *args, **kwargs)
|
||||
|
||||
def add_texts(self, *args, **kwargs):
|
||||
return self._docsearch.add_texts(*args, **kwargs)
|
||||
|
||||
3224
frontend/package-lock.json
generated
3224
frontend/package-lock.json
generated
File diff suppressed because it is too large
Load Diff
@@ -36,7 +36,7 @@ export default function General() {
|
||||
{ label: '繁體中文(臺灣)', value: 'zhTW' },
|
||||
{ label: 'Русский', value: 'ru' },
|
||||
];
|
||||
const chunks = ['0', '2', '4', '6', '8', '10'];
|
||||
const chunks = ['Auto', '0', '2', '4', '6', '8', '10'];
|
||||
const token_limits = new Map([
|
||||
[0, t('settings.general.none')],
|
||||
[100, t('settings.general.low')],
|
||||
|
||||
Reference in New Issue
Block a user