Compare commits

..

67 Commits

Author SHA1 Message Date
Manish Madan
c78518baf0 Merge pull request #1827 from arc53/dependabot/npm_and_yarn/frontend/react-dropzone-14.3.8
build(deps): bump react-dropzone from 14.3.5 to 14.3.8 in /frontend
2025-06-19 16:31:06 +05:30
dependabot[bot]
556d7e0497 build(deps): bump react-dropzone from 14.3.5 to 14.3.8 in /frontend
Bumps [react-dropzone](https://github.com/react-dropzone/react-dropzone) from 14.3.5 to 14.3.8.
- [Release notes](https://github.com/react-dropzone/react-dropzone/releases)
- [Commits](https://github.com/react-dropzone/react-dropzone/compare/v14.3.5...v14.3.8)

---
updated-dependencies:
- dependency-name: react-dropzone
  dependency-version: 14.3.8
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-06-19 10:59:31 +00:00
Manish Madan
2d27936dab Merge pull request #1826 from arc53/dependabot/npm_and_yarn/frontend/reduxjs/toolkit-2.8.2
build(deps): bump @reduxjs/toolkit from 2.5.1 to 2.8.2 in /frontend
2025-06-19 16:27:30 +05:30
Alex
63f6127049 Revert "Update README.md"
This reverts commit 55f60a9fe1.
2025-06-18 22:26:38 +01:00
Alex
f34e00c986 Merge branch 'main' of https://github.com/arc53/DocsGPT 2025-06-18 22:26:19 +01:00
Alex
55f60a9fe1 Update README.md 2025-06-18 22:26:11 +01:00
Alex
7da3618e0c Update README.md 2025-06-18 22:25:47 +01:00
Alex
56bfa98633 Merge remote-tracking branch 'upstream/main' 2025-06-18 22:18:06 +01:00
Alex
96f6188722 Initial commit 2025-06-18 22:17:23 +01:00
Alex
6c3a79802e Merge pull request #1849 from siiddhantt/feat/upload-agent-logo
feat: enhance agent management with image upload and retrieval
2025-06-18 17:45:51 +01:00
Siddhant Rai
c35c5e0793 Refactor image upload handling and add URL strategy setting 2025-06-18 21:54:44 +05:30
Siddhant Rai
fc01b90007 Add tailwind-merge dependency to package.json and package-lock.json 2025-06-18 19:00:59 +05:30
Siddhant Rai
e35f1d70e4 - Added image upload functionality for agents in the backend and frontend.
- Implemented image URL generation based on storage strategy (S3 or local).
- Updated agent creation and update endpoints to handle image files.
- Enhanced frontend components to display agent images with fallbacks.
- New API endpoint to serve images from storage.
- Refactored API client to support FormData for file uploads.
- Improved error handling and logging for image processing.
2025-06-18 18:17:20 +05:30
Siddhant Rai
cab1f3787a Refactor S3 storage implementation and enhance file handling
- Improved code readability by reorganizing imports and formatting.
- Updated S3Storage class to handle file uploads and downloads more efficiently.
- Added a new function to generate image URLs based on settings.
- Enhanced file listing and processing methods for better error handling.
- Introduced a FileUpload component for improved file upload experience in the frontend.
- Updated agent management components to support image uploads and previews.
- Added new SVG assets for UI enhancements.
- Modified API client to support FormData for file uploads.
2025-06-18 18:04:44 +05:30
Alex
bb42f4cbc1 Merge pull request #1846 from ManishMadan2882/main
Agents Details: UI update, external links
2025-06-17 14:31:16 +01:00
ManishMadan2882
98dc418a51 (feat:agent-details) redirect on url 2025-06-17 18:30:11 +05:30
ManishMadan2882
322b4eb18c Merge branch 'main' of https://github.com/manishmadan2882/docsgpt 2025-06-17 16:04:33 +05:30
ManishMadan2882
7f1cc30ed8 (feat:agent-details) test, learn more redirects 2025-06-17 16:04:08 +05:30
ManishMadan2882
7b45a6b956 (feat:agentDetails) copy button ui 2025-06-17 12:03:36 +05:30
Alex
e36769e70f Merge pull request #1844 from ManishMadan2882/main
Collapsible Question bubbles
2025-06-15 16:36:37 +01:00
ManishMadan2882
bd4a4cc4af (feat:question) match design 2025-06-14 02:32:59 +05:30
ManishMadan2882
8343fe63cb (feat:bubble) collapsable questions 2025-06-14 02:02:36 +05:30
Alex
7d89fb8461 fix: lint 2025-06-13 01:14:09 +01:00
Alex
098955d230 fix paths in docker compose 2025-06-13 01:11:22 +01:00
Alex
d254d14928 Merge pull request #1838 from ManishMadan2882/main
Fixes ingestion of file with non-ascii characters in name
2025-06-12 09:52:03 +01:00
GH Action - Upstream Sync
0a3e8ca535 Merge branch 'main' of https://github.com/arc53/DocsGPT 2025-06-12 01:43:21 +00:00
ManishMadan2882
b8a10e0962 (fix:ingestion) display names are separate 2025-06-12 00:57:46 +05:30
Alex
0aceda96e4 Merge pull request #1824 from siiddhantt/refactor/llm-handler
feat: reorganize LLM handler structure with better abstraction
2025-06-11 17:19:50 +01:00
ManishMadan2882
44b6ec25a2 clean 2025-06-11 21:18:37 +05:30
ManishMadan2882
1b84d1fa9d Merge branch 'main' of https://github.com/manishmadan2882/docsgpt 2025-06-11 21:04:57 +05:30
ManishMadan2882
78d5ed2ed2 (fix:ingestion) uuid for non-ascii filename 2025-06-11 21:04:50 +05:30
ManishMadan2882
142477ab9b (feat:safe_filename) handles case of non-ascii char 2025-06-11 21:03:38 +05:30
Siddhant Rai
b414f79bc5 fix: adjust width of tool calls display in ConversationBubble component 2025-06-11 19:37:32 +05:30
Siddhant Rai
6e08fe21d0 Merge branch 'refactor/llm-handler' of https://github.com/siiddhantt/DocsGPT into refactor/llm-handler 2025-06-11 19:28:47 +05:30
Siddhant Rai
9b839655a7 refactor: improve tool call result handling and display in conversation components 2025-06-11 19:28:15 +05:30
Siddhant Rai
3353c0ee1d Merge branch 'main' into refactor/llm-handler 2025-06-11 19:27:33 +05:30
Alex
aaecf52c99 refactor: update docs LLM_NAME and MODEL_NAME to LLM_PROVIDER and LLM_NAME 2025-06-11 12:30:34 +01:00
ManishMadan2882
8b3e960be0 (feat:ingestion) store filepath from now 2025-06-11 16:00:09 +05:30
Siddhant Rai
3351f71813 refactor: tool calls sent when pending and after completion 2025-06-11 12:40:32 +05:30
Alex
7490256303 Merge pull request #1830 from ManishMadan2882/main
UI update: attachments in question bubble
2025-06-10 14:46:05 +01:00
ManishMadan2882
041d600e45 (feat:prompts) delete after confirmation 2025-06-10 18:00:11 +05:30
ManishMadan2882
b4e2588a24 (fix:prompts) save when content changes 2025-06-10 17:02:24 +05:30
ManishMadan2882
68dc14c5a1 (feat:attachments) clear after passing 2025-06-10 02:50:07 +05:30
ManishMadan2882
ef35864e16 (fix) type error, ui adjust 2025-06-09 19:50:07 +05:30
ManishMadan2882
c0d385b983 (refactor:attachments) moved to new uploadSlice 2025-06-09 17:10:12 +05:30
ManishMadan2882
b2df431fa4 (feat:attachments) shared conversations route 2025-06-07 20:04:33 +05:30
ManishMadan2882
69a4bd415a (feat:attachment) message input update 2025-06-06 21:52:51 +05:30
ManishMadan2882
4862548e65 (feat:attach) renaming, semantic identifier names 2025-06-06 21:52:10 +05:30
ManishMadan2882
50248cc9ea Merge branch 'main' of https://github.com/manishmadan2882/docsgpt 2025-06-06 18:55:11 +05:30
ManishMadan2882
430822bae3 (feat:attach)state manage, follow camelCase 2025-06-06 18:54:50 +05:30
Siddhant Rai
dd9d18208d Merge branch 'main' into refactor/llm-handler 2025-06-06 17:36:31 +05:30
Siddhant Rai
e5b1a71659 refactor: update fallback LLM initialization to use factory method 2025-06-06 17:23:27 +05:30
Siddhant Rai
35f4b13237 refactor: add fallback LLM configuration options to settings 2025-06-06 17:05:15 +05:30
Siddhant Rai
5f5c31cd5b refactor: enhance LLM fallback handling and streamline method execution 2025-06-06 16:55:57 +05:30
Siddhant Rai
e9530d5ec5 refactor: update env variable names 2025-06-06 15:29:53 +05:30
Siddhant Rai
143f4aa886 refactor: streamline conversation handling and update agent pinning logic 2025-06-06 14:41:44 +05:30
GH Action - Upstream Sync
ece5c8bb31 Merge branch 'main' of https://github.com/arc53/DocsGPT 2025-06-06 01:42:12 +00:00
ManishMadan2882
3bae30c70c (fix:messages) attachments are for questions 2025-06-05 03:09:37 +05:30
ManishMadan2882
12b18c6bd1 Merge branch 'main' of https://github.com/manishmadan2882/docsgpt 2025-06-05 02:54:51 +05:30
ManishMadan2882
787d9e3bf5 (feat:attachments) ui details in bubble 2025-06-05 02:54:36 +05:30
ManishMadan2882
f325b54895 (fix:get_single_conversation) return attachments with filename 2025-06-05 02:53:43 +05:30
GH Action - Upstream Sync
c5616705b0 Merge branch 'main' of https://github.com/arc53/DocsGPT 2025-06-04 01:43:58 +00:00
ManishMadan2882
e90fe117ec (feat:attachments) render in bubble 2025-06-03 18:05:47 +05:30
ManishMadan2882
7cab5b3b09 (feat:attachments) store filenames in worker 2025-06-03 04:02:41 +05:30
ManishMadan2882
9f911cb5cb (feat:stream) store attachment_ids for query 2025-06-03 03:30:06 +05:30
dependabot[bot]
3da7cba06c build(deps): bump @reduxjs/toolkit from 2.5.1 to 2.8.2 in /frontend
Bumps [@reduxjs/toolkit](https://github.com/reduxjs/redux-toolkit) from 2.5.1 to 2.8.2.
- [Release notes](https://github.com/reduxjs/redux-toolkit/releases)
- [Commits](https://github.com/reduxjs/redux-toolkit/compare/v2.5.1...v2.8.2)

---
updated-dependencies:
- dependency-name: "@reduxjs/toolkit"
  dependency-version: 2.8.2
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-06-02 20:27:20 +00:00
Siddhant Rai
92c3c707e1 refactor: reorganize LLM handler structure and improve tool call parsing 2025-06-02 12:17:29 +05:30
73 changed files with 2197 additions and 1044 deletions

2
.gitattributes vendored Normal file
View File

@@ -0,0 +1,2 @@
# Auto detect text files and perform LF normalization
* text=auto

View File

@@ -2,16 +2,18 @@ import uuid
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from typing import Dict, Generator, List, Optional from typing import Dict, Generator, List, Optional
from application.agents.llm_handler import get_llm_handler from bson.objectid import ObjectId
from application.agents.tools.tool_action_parser import ToolActionParser from application.agents.tools.tool_action_parser import ToolActionParser
from application.agents.tools.tool_manager import ToolManager from application.agents.tools.tool_manager import ToolManager
from application.core.mongo_db import MongoDB from application.core.mongo_db import MongoDB
from application.core.settings import settings
from application.llm.handlers.handler_creator import LLMHandlerCreator
from application.llm.llm_creator import LLMCreator from application.llm.llm_creator import LLMCreator
from application.logging import build_stack_data, log_activity, LogContext from application.logging import build_stack_data, log_activity, LogContext
from application.retriever.base import BaseRetriever from application.retriever.base import BaseRetriever
from application.core.settings import settings
from bson.objectid import ObjectId
class BaseAgent(ABC): class BaseAgent(ABC):
@@ -45,7 +47,9 @@ class BaseAgent(ABC):
user_api_key=user_api_key, user_api_key=user_api_key,
decoded_token=decoded_token, decoded_token=decoded_token,
) )
self.llm_handler = get_llm_handler(llm_name) self.llm_handler = LLMHandlerCreator.create_handler(
llm_name if llm_name else "default"
)
self.attachments = attachments or [] self.attachments = attachments or []
@log_activity() @log_activity()
@@ -132,6 +136,15 @@ class BaseAgent(ABC):
parser = ToolActionParser(self.llm.__class__.__name__) parser = ToolActionParser(self.llm.__class__.__name__)
tool_id, action_name, call_args = parser.parse_args(call) tool_id, action_name, call_args = parser.parse_args(call)
call_id = getattr(call, "id", None) or str(uuid.uuid4())
tool_call_data = {
"tool_name": tools_dict[tool_id]["name"],
"call_id": call_id,
"action_name": f"{action_name}_{tool_id}",
"arguments": call_args,
}
yield {"type": "tool_call", "data": {**tool_call_data, "status": "pending"}}
tool_data = tools_dict[tool_id] tool_data = tools_dict[tool_id]
action_data = ( action_data = (
tool_data["config"]["actions"][action_name] tool_data["config"]["actions"][action_name]
@@ -184,19 +197,29 @@ class BaseAgent(ABC):
else: else:
print(f"Executing tool: {action_name} with args: {call_args}") print(f"Executing tool: {action_name} with args: {call_args}")
result = tool.execute_action(action_name, **parameters) result = tool.execute_action(action_name, **parameters)
call_id = getattr(call, "id", None) tool_call_data["result"] = (
f"{str(result)[:50]}..." if len(str(result)) > 50 else result
)
tool_call_data = { yield {"type": "tool_call", "data": {**tool_call_data, "status": "completed"}}
"tool_name": tool_data["name"],
"call_id": call_id if call_id is not None else "None",
"action_name": f"{action_name}_{tool_id}",
"arguments": call_args,
"result": result,
}
self.tool_calls.append(tool_call_data) self.tool_calls.append(tool_call_data)
return result, call_id return result, call_id
def _get_truncated_tool_calls(self):
return [
{
**tool_call,
"result": (
f"{str(tool_call['result'])[:50]}..."
if len(str(tool_call["result"])) > 50
else tool_call["result"]
),
"status": "completed",
}
for tool_call in self.tool_calls
]
def _build_messages( def _build_messages(
self, self,
system_prompt: str, system_prompt: str,
@@ -252,9 +275,16 @@ class BaseAgent(ABC):
return retrieved_data return retrieved_data
def _llm_gen(self, messages: List[Dict], log_context: Optional[LogContext] = None): def _llm_gen(self, messages: List[Dict], log_context: Optional[LogContext] = None):
resp = self.llm.gen_stream( gen_kwargs = {"model": self.gpt_model, "messages": messages}
model=self.gpt_model, messages=messages, tools=self.tools
) if (
hasattr(self.llm, "_supports_tools")
and self.llm._supports_tools
and self.tools
):
gen_kwargs["tools"] = self.tools
resp = self.llm.gen_stream(**gen_kwargs)
if log_context: if log_context:
data = build_stack_data(self.llm, exclude_attributes=["client"]) data = build_stack_data(self.llm, exclude_attributes=["client"])
log_context.stacks.append({"component": "llm", "data": data}) log_context.stacks.append({"component": "llm", "data": data})
@@ -268,10 +298,30 @@ class BaseAgent(ABC):
log_context: Optional[LogContext] = None, log_context: Optional[LogContext] = None,
attachments: Optional[List[Dict]] = None, attachments: Optional[List[Dict]] = None,
): ):
resp = self.llm_handler.handle_response( resp = self.llm_handler.process_message_flow(
self, resp, tools_dict, messages, attachments self, resp, tools_dict, messages, attachments, True
) )
if log_context: if log_context:
data = build_stack_data(self.llm_handler, exclude_attributes=["tool_calls"]) data = build_stack_data(self.llm_handler, exclude_attributes=["tool_calls"])
log_context.stacks.append({"component": "llm_handler", "data": data}) log_context.stacks.append({"component": "llm_handler", "data": data})
return resp return resp
def _handle_response(self, response, tools_dict, messages, log_context):
if isinstance(response, str):
yield {"answer": response}
return
if hasattr(response, "message") and getattr(response.message, "content", None):
yield {"answer": response.message.content}
return
processed_response_gen = self._llm_handler(
response, tools_dict, messages, log_context, self.attachments
)
for event in processed_response_gen:
if isinstance(event, str):
yield {"answer": event}
elif hasattr(event, "message") and getattr(event.message, "content", None):
yield {"answer": event.message.content}
elif isinstance(event, dict) and "type" in event:
yield event

View File

@@ -1,8 +1,6 @@
from typing import Dict, Generator from typing import Dict, Generator
from application.agents.base import BaseAgent from application.agents.base import BaseAgent
from application.logging import LogContext from application.logging import LogContext
from application.retriever.base import BaseRetriever from application.retriever.base import BaseRetriever
import logging import logging
@@ -10,55 +8,46 @@ logger = logging.getLogger(__name__)
class ClassicAgent(BaseAgent): class ClassicAgent(BaseAgent):
"""A simplified classic agent with clear execution flow.
Usage:
1. Processes a query through retrieval
2. Sets up available tools
3. Generates responses using LLM
4. Handles tool interactions if needed
5. Returns standardized outputs
Easy to extend by overriding specific steps.
"""
def _gen_inner( def _gen_inner(
self, query: str, retriever: BaseRetriever, log_context: LogContext self, query: str, retriever: BaseRetriever, log_context: LogContext
) -> Generator[Dict, None, None]: ) -> Generator[Dict, None, None]:
# Step 1: Retrieve relevant data
retrieved_data = self._retriever_search(retriever, query, log_context) retrieved_data = self._retriever_search(retriever, query, log_context)
if self.user_api_key:
tools_dict = self._get_tools(self.user_api_key) # Step 2: Prepare tools
else: tools_dict = (
tools_dict = self._get_user_tools(self.user) self._get_user_tools(self.user)
if not self.user_api_key
else self._get_tools(self.user_api_key)
)
self._prepare_tools(tools_dict) self._prepare_tools(tools_dict)
# Step 3: Build and process messages
messages = self._build_messages(self.prompt, query, retrieved_data) messages = self._build_messages(self.prompt, query, retrieved_data)
llm_response = self._llm_gen(messages, log_context)
resp = self._llm_gen(messages, log_context) # Step 4: Handle the response
yield from self._handle_response(
llm_response, tools_dict, messages, log_context
)
attachments = self.attachments # Step 5: Return metadata
yield {"sources": retrieved_data}
if isinstance(resp, str): yield {"tool_calls": self._get_truncated_tool_calls()}
yield {"answer": resp}
return
if (
hasattr(resp, "message")
and hasattr(resp.message, "content")
and resp.message.content is not None
):
yield {"answer": resp.message.content}
return
resp = self._llm_handler(resp, tools_dict, messages, log_context, attachments)
if isinstance(resp, str):
yield {"answer": resp}
elif (
hasattr(resp, "message")
and hasattr(resp.message, "content")
and resp.message.content is not None
):
yield {"answer": resp.message.content}
else:
for line in resp:
if isinstance(line, str):
yield {"answer": line}
# Log tool calls for debugging
log_context.stacks.append( log_context.stacks.append(
{"component": "agent", "data": {"tool_calls": self.tool_calls.copy()}} {"component": "agent", "data": {"tool_calls": self.tool_calls.copy()}}
) )
yield {"sources": retrieved_data}
# clean tool_call_data only send first 50 characters of tool_call['result']
for tool_call in self.tool_calls:
if len(str(tool_call["result"])) > 50:
tool_call["result"] = str(tool_call["result"])[:50] + "..."
yield {"tool_calls": self.tool_calls.copy()}

View File

@@ -1,351 +0,0 @@
import json
import logging
from abc import ABC, abstractmethod
from application.logging import build_stack_data
logger = logging.getLogger(__name__)
class LLMHandler(ABC):
def __init__(self):
self.llm_calls = []
self.tool_calls = []
@abstractmethod
def handle_response(self, agent, resp, tools_dict, messages, attachments=None, **kwargs):
pass
def prepare_messages_with_attachments(self, agent, messages, attachments=None):
"""
Prepare messages with attachment content if available.
Args:
agent: The current agent instance.
messages (list): List of message dictionaries.
attachments (list): List of attachment dictionaries with content.
Returns:
list: Messages with attachment context added to the system prompt.
"""
if not attachments:
return messages
logger.info(f"Preparing messages with {len(attachments)} attachments")
supported_types = agent.llm.get_supported_attachment_types()
supported_attachments = []
unsupported_attachments = []
for attachment in attachments:
mime_type = attachment.get('mime_type')
if mime_type in supported_types:
supported_attachments.append(attachment)
else:
unsupported_attachments.append(attachment)
# Process supported attachments with the LLM's custom method
prepared_messages = messages
if supported_attachments:
logger.info(f"Processing {len(supported_attachments)} supported attachments with {agent.llm.__class__.__name__}'s method")
prepared_messages = agent.llm.prepare_messages_with_attachments(messages, supported_attachments)
# Process unsupported attachments with the default method
if unsupported_attachments:
logger.info(f"Processing {len(unsupported_attachments)} unsupported attachments with default method")
prepared_messages = self._append_attachment_content_to_system(prepared_messages, unsupported_attachments)
return prepared_messages
def _append_attachment_content_to_system(self, messages, attachments):
"""
Default method to append attachment content to the system prompt.
Args:
messages (list): List of message dictionaries.
attachments (list): List of attachment dictionaries with content.
Returns:
list: Messages with attachment context added to the system prompt.
"""
prepared_messages = messages.copy()
attachment_texts = []
for attachment in attachments:
logger.info(f"Adding attachment {attachment.get('id')} to context")
if 'content' in attachment:
attachment_texts.append(f"Attached file content:\n\n{attachment['content']}")
if attachment_texts:
combined_attachment_text = "\n\n".join(attachment_texts)
system_found = False
for i in range(len(prepared_messages)):
if prepared_messages[i].get("role") == "system":
prepared_messages[i]["content"] += f"\n\n{combined_attachment_text}"
system_found = True
break
if not system_found:
prepared_messages.insert(0, {"role": "system", "content": combined_attachment_text})
return prepared_messages
class OpenAILLMHandler(LLMHandler):
def handle_response(self, agent, resp, tools_dict, messages, attachments=None, stream: bool = True):
messages = self.prepare_messages_with_attachments(agent, messages, attachments)
logger.info(f"Messages with attachments: {messages}")
if not stream:
while hasattr(resp, "finish_reason") and resp.finish_reason == "tool_calls":
message = json.loads(resp.model_dump_json())["message"]
keys_to_remove = {"audio", "function_call", "refusal"}
filtered_data = {
k: v for k, v in message.items() if k not in keys_to_remove
}
messages.append(filtered_data)
tool_calls = resp.message.tool_calls
for call in tool_calls:
try:
self.tool_calls.append(call)
tool_response, call_id = agent._execute_tool_action(
tools_dict, call
)
function_call_dict = {
"function_call": {
"name": call.function.name,
"args": call.function.arguments,
"call_id": call_id,
}
}
function_response_dict = {
"function_response": {
"name": call.function.name,
"response": {"result": tool_response},
"call_id": call_id,
}
}
messages.append(
{"role": "assistant", "content": [function_call_dict]}
)
messages.append(
{"role": "tool", "content": [function_response_dict]}
)
messages = self.prepare_messages_with_attachments(agent, messages, attachments)
except Exception as e:
logging.error(f"Error executing tool: {str(e)}", exc_info=True)
messages.append(
{
"role": "tool",
"content": f"Error executing tool: {str(e)}",
"tool_call_id": call_id,
}
)
resp = agent.llm.gen_stream(
model=agent.gpt_model, messages=messages, tools=agent.tools
)
self.llm_calls.append(build_stack_data(agent.llm))
return resp
else:
text_buffer = ""
while True:
tool_calls = {}
for chunk in resp:
if isinstance(chunk, str) and len(chunk) > 0:
yield chunk
continue
elif hasattr(chunk, "delta"):
chunk_delta = chunk.delta
if (
hasattr(chunk_delta, "tool_calls")
and chunk_delta.tool_calls is not None
):
for tool_call in chunk_delta.tool_calls:
index = tool_call.index
if index not in tool_calls:
tool_calls[index] = {
"id": "",
"function": {"name": "", "arguments": ""},
}
current = tool_calls[index]
if tool_call.id:
current["id"] = tool_call.id
if tool_call.function.name:
current["function"][
"name"
] = tool_call.function.name
if tool_call.function.arguments:
current["function"][
"arguments"
] += tool_call.function.arguments
tool_calls[index] = current
if (
hasattr(chunk, "finish_reason")
and chunk.finish_reason == "tool_calls"
):
for index in sorted(tool_calls.keys()):
call = tool_calls[index]
try:
self.tool_calls.append(call)
tool_response, call_id = agent._execute_tool_action(
tools_dict, call
)
if isinstance(call["function"]["arguments"], str):
call["function"]["arguments"] = json.loads(call["function"]["arguments"])
function_call_dict = {
"function_call": {
"name": call["function"]["name"],
"args": call["function"]["arguments"],
"call_id": call["id"],
}
}
function_response_dict = {
"function_response": {
"name": call["function"]["name"],
"response": {"result": tool_response},
"call_id": call["id"],
}
}
messages.append(
{
"role": "assistant",
"content": [function_call_dict],
}
)
messages.append(
{
"role": "tool",
"content": [function_response_dict],
}
)
except Exception as e:
logging.error(f"Error executing tool: {str(e)}", exc_info=True)
messages.append(
{
"role": "assistant",
"content": f"Error executing tool: {str(e)}",
}
)
tool_calls = {}
if hasattr(chunk_delta, "content") and chunk_delta.content:
# Add to buffer or yield immediately based on your preference
text_buffer += chunk_delta.content
yield text_buffer
text_buffer = ""
if (
hasattr(chunk, "finish_reason")
and chunk.finish_reason == "stop"
):
return resp
elif isinstance(chunk, str) and len(chunk) == 0:
continue
logger.info(f"Regenerating with messages: {messages}")
resp = agent.llm.gen_stream(
model=agent.gpt_model, messages=messages, tools=agent.tools
)
self.llm_calls.append(build_stack_data(agent.llm))
class GoogleLLMHandler(LLMHandler):
def handle_response(self, agent, resp, tools_dict, messages, attachments=None, stream: bool = True):
from google.genai import types
messages = self.prepare_messages_with_attachments(agent, messages, attachments)
while True:
if not stream:
response = agent.llm.gen(
model=agent.gpt_model, messages=messages, tools=agent.tools
)
self.llm_calls.append(build_stack_data(agent.llm))
if response.candidates and response.candidates[0].content.parts:
tool_call_found = False
for part in response.candidates[0].content.parts:
if part.function_call:
tool_call_found = True
self.tool_calls.append(part.function_call)
tool_response, call_id = agent._execute_tool_action(
tools_dict, part.function_call
)
function_response_part = types.Part.from_function_response(
name=part.function_call.name,
response={"result": tool_response},
)
messages.append(
{"role": "model", "content": [part.to_json_dict()]}
)
messages.append(
{
"role": "tool",
"content": [function_response_part.to_json_dict()],
}
)
if (
not tool_call_found
and response.candidates[0].content.parts
and response.candidates[0].content.parts[0].text
):
return response.candidates[0].content.parts[0].text
elif not tool_call_found:
return response.candidates[0].content.parts
else:
return response
else:
response = agent.llm.gen_stream(
model=agent.gpt_model, messages=messages, tools=agent.tools
)
self.llm_calls.append(build_stack_data(agent.llm))
tool_call_found = False
for result in response:
if hasattr(result, "function_call"):
tool_call_found = True
self.tool_calls.append(result.function_call)
tool_response, call_id = agent._execute_tool_action(
tools_dict, result.function_call
)
function_response_part = types.Part.from_function_response(
name=result.function_call.name,
response={"result": tool_response},
)
messages.append(
{"role": "model", "content": [result.to_json_dict()]}
)
messages.append(
{
"role": "tool",
"content": [function_response_part.to_json_dict()],
}
)
else:
tool_call_found = False
yield result
if not tool_call_found:
return response
def get_llm_handler(llm_type):
handlers = {
"openai": OpenAILLMHandler(),
"google": GoogleLLMHandler(),
}
return handlers.get(llm_type, OpenAILLMHandler())

View File

@@ -17,26 +17,21 @@ class ToolActionParser:
return parser(call) return parser(call)
def _parse_openai_llm(self, call): def _parse_openai_llm(self, call):
if isinstance(call, dict): try:
try: call_args = json.loads(call.arguments)
call_args = json.loads(call["function"]["arguments"]) tool_id = call.name.split("_")[-1]
tool_id = call["function"]["name"].split("_")[-1] action_name = call.name.rsplit("_", 1)[0]
action_name = call["function"]["name"].rsplit("_", 1)[0] except (AttributeError, TypeError) as e:
except (KeyError, TypeError) as e: logger.error(f"Error parsing OpenAI LLM call: {e}")
logger.error(f"Error parsing OpenAI LLM call: {e}") return None, None, None
return None, None, None
else:
try:
call_args = json.loads(call.function.arguments)
tool_id = call.function.name.split("_")[-1]
action_name = call.function.name.rsplit("_", 1)[0]
except (AttributeError, TypeError) as e:
logger.error(f"Error parsing OpenAI LLM call: {e}")
return None, None, None
return tool_id, action_name, call_args return tool_id, action_name, call_args
def _parse_google_llm(self, call): def _parse_google_llm(self, call):
call_args = call.args try:
tool_id = call.name.split("_")[-1] call_args = call.arguments
action_name = call.name.rsplit("_", 1)[0] tool_id = call.name.split("_")[-1]
action_name = call.name.rsplit("_", 1)[0]
except (AttributeError, TypeError) as e:
logger.error(f"Error parsing Google LLM call: {e}")
return None, None, None
return tool_id, action_name, call_args return tool_id, action_name, call_args

View File

@@ -37,17 +37,17 @@ api.add_namespace(answer_ns)
gpt_model = "" gpt_model = ""
# to have some kind of default behaviour # to have some kind of default behaviour
if settings.LLM_NAME == "openai": if settings.LLM_PROVIDER == "openai":
gpt_model = "gpt-4o-mini" gpt_model = "gpt-4o-mini"
elif settings.LLM_NAME == "anthropic": elif settings.LLM_PROVIDER == "anthropic":
gpt_model = "claude-2" gpt_model = "claude-2"
elif settings.LLM_NAME == "groq": elif settings.LLM_PROVIDER == "groq":
gpt_model = "llama3-8b-8192" gpt_model = "llama3-8b-8192"
elif settings.LLM_NAME == "novita": elif settings.LLM_PROVIDER == "novita":
gpt_model = "deepseek/deepseek-r1" gpt_model = "deepseek/deepseek-r1"
if settings.MODEL_NAME: # in case there is particular model name configured if settings.LLM_NAME: # in case there is particular model name configured
gpt_model = settings.MODEL_NAME gpt_model = settings.LLM_NAME
# load the prompts # load the prompts
current_dir = os.path.dirname( current_dir = os.path.dirname(
@@ -164,6 +164,7 @@ def save_conversation(
agent_id=None, agent_id=None,
is_shared_usage=False, is_shared_usage=False,
shared_token=None, shared_token=None,
attachment_ids=None,
): ):
current_time = datetime.datetime.now(datetime.timezone.utc) current_time = datetime.datetime.now(datetime.timezone.utc)
if conversation_id is not None and index is not None: if conversation_id is not None and index is not None:
@@ -177,6 +178,7 @@ def save_conversation(
f"queries.{index}.sources": source_log_docs, f"queries.{index}.sources": source_log_docs,
f"queries.{index}.tool_calls": tool_calls, f"queries.{index}.tool_calls": tool_calls,
f"queries.{index}.timestamp": current_time, f"queries.{index}.timestamp": current_time,
f"queries.{index}.attachments": attachment_ids,
} }
}, },
) )
@@ -197,6 +199,7 @@ def save_conversation(
"sources": source_log_docs, "sources": source_log_docs,
"tool_calls": tool_calls, "tool_calls": tool_calls,
"timestamp": current_time, "timestamp": current_time,
"attachments": attachment_ids,
} }
} }
}, },
@@ -233,6 +236,7 @@ def save_conversation(
"sources": source_log_docs, "sources": source_log_docs,
"tool_calls": tool_calls, "tool_calls": tool_calls,
"timestamp": current_time, "timestamp": current_time,
"attachments": attachment_ids,
} }
], ],
} }
@@ -273,20 +277,13 @@ def complete_stream(
isNoneDoc=False, isNoneDoc=False,
index=None, index=None,
should_save_conversation=True, should_save_conversation=True,
attachments=None, attachment_ids=None,
agent_id=None, agent_id=None,
is_shared_usage=False, is_shared_usage=False,
shared_token=None, shared_token=None,
): ):
try: try:
response_full, thought, source_log_docs, tool_calls = "", "", [], [] response_full, thought, source_log_docs, tool_calls = "", "", [], []
attachment_ids = []
if attachments:
attachment_ids = [attachment["id"] for attachment in attachments]
logger.info(
f"Processing request with {len(attachments)} attachments: {attachment_ids}"
)
answer = agent.gen(query=question, retriever=retriever) answer = agent.gen(query=question, retriever=retriever)
@@ -310,19 +307,20 @@ def complete_stream(
yield f"data: {data}\n\n" yield f"data: {data}\n\n"
elif "tool_calls" in line: elif "tool_calls" in line:
tool_calls = line["tool_calls"] tool_calls = line["tool_calls"]
data = json.dumps({"type": "tool_calls", "tool_calls": tool_calls})
yield f"data: {data}\n\n"
elif "thought" in line: elif "thought" in line:
thought += line["thought"] thought += line["thought"]
data = json.dumps({"type": "thought", "thought": line["thought"]}) data = json.dumps({"type": "thought", "thought": line["thought"]})
yield f"data: {data}\n\n" yield f"data: {data}\n\n"
elif "type" in line:
data = json.dumps(line)
yield f"data: {data}\n\n"
if isNoneDoc: if isNoneDoc:
for doc in source_log_docs: for doc in source_log_docs:
doc["source"] = "None" doc["source"] = "None"
llm = LLMCreator.create_llm( llm = LLMCreator.create_llm(
settings.LLM_NAME, settings.LLM_PROVIDER,
api_key=settings.API_KEY, api_key=settings.API_KEY,
user_api_key=user_api_key, user_api_key=user_api_key,
decoded_token=decoded_token, decoded_token=decoded_token,
@@ -340,6 +338,7 @@ def complete_stream(
decoded_token, decoded_token,
index, index,
api_key=user_api_key, api_key=user_api_key,
attachment_ids=attachment_ids,
agent_id=agent_id, agent_id=agent_id,
is_shared_usage=is_shared_usage, is_shared_usage=is_shared_usage,
shared_token=shared_token, shared_token=shared_token,
@@ -453,9 +452,7 @@ class Stream(Resource):
agent_type = settings.AGENT_NAME agent_type = settings.AGENT_NAME
decoded_token = getattr(request, "decoded_token", None) decoded_token = getattr(request, "decoded_token", None)
user_sub = decoded_token.get("sub") if decoded_token else None user_sub = decoded_token.get("sub") if decoded_token else None
agent_key, is_shared_usage, shared_token = get_agent_key( agent_key, is_shared_usage, shared_token = get_agent_key(agent_id, user_sub)
agent_id, user_sub
)
if agent_key: if agent_key:
data.update({"api_key": agent_key}) data.update({"api_key": agent_key})
@@ -506,7 +503,7 @@ class Stream(Resource):
agent = AgentCreator.create_agent( agent = AgentCreator.create_agent(
agent_type, agent_type,
endpoint="stream", endpoint="stream",
llm_name=settings.LLM_NAME, llm_name=settings.LLM_PROVIDER,
gpt_model=gpt_model, gpt_model=gpt_model,
api_key=settings.API_KEY, api_key=settings.API_KEY,
user_api_key=user_api_key, user_api_key=user_api_key,
@@ -539,6 +536,7 @@ class Stream(Resource):
isNoneDoc=data.get("isNoneDoc"), isNoneDoc=data.get("isNoneDoc"),
index=index, index=index,
should_save_conversation=save_conv, should_save_conversation=save_conv,
attachment_ids=attachment_ids,
agent_id=agent_id, agent_id=agent_id,
is_shared_usage=is_shared_usage, is_shared_usage=is_shared_usage,
shared_token=shared_token, shared_token=shared_token,
@@ -659,7 +657,7 @@ class Answer(Resource):
agent = AgentCreator.create_agent( agent = AgentCreator.create_agent(
agent_type, agent_type,
endpoint="api/answer", endpoint="api/answer",
llm_name=settings.LLM_NAME, llm_name=settings.LLM_PROVIDER,
gpt_model=gpt_model, gpt_model=gpt_model,
api_key=settings.API_KEY, api_key=settings.API_KEY,
user_api_key=user_api_key, user_api_key=user_api_key,
@@ -728,7 +726,7 @@ class Answer(Resource):
doc["source"] = "None" doc["source"] = "None"
llm = LLMCreator.create_llm( llm = LLMCreator.create_llm(
settings.LLM_NAME, settings.LLM_PROVIDER,
api_key=settings.API_KEY, api_key=settings.API_KEY,
user_api_key=user_api_key, user_api_key=user_api_key,
decoded_token=decoded_token, decoded_token=decoded_token,

View File

@@ -37,16 +37,18 @@ def upload_index_files():
"""Upload two files(index.faiss, index.pkl) to the user's folder.""" """Upload two files(index.faiss, index.pkl) to the user's folder."""
if "user" not in request.form: if "user" not in request.form:
return {"status": "no user"} return {"status": "no user"}
user = secure_filename(request.form["user"]) user = request.form["user"]
if "name" not in request.form: if "name" not in request.form:
return {"status": "no name"} return {"status": "no name"}
job_name = secure_filename(request.form["name"]) job_name = request.form["name"]
tokens = secure_filename(request.form["tokens"]) tokens = request.form["tokens"]
retriever = secure_filename(request.form["retriever"]) retriever = request.form["retriever"]
id = secure_filename(request.form["id"]) id = request.form["id"]
type = secure_filename(request.form["type"]) type = request.form["type"]
remote_data = request.form["remote_data"] if "remote_data" in request.form else None remote_data = request.form["remote_data"] if "remote_data" in request.form else None
sync_frequency = secure_filename(request.form["sync_frequency"]) if "sync_frequency" in request.form else None sync_frequency = request.form["sync_frequency"] if "sync_frequency" in request.form else None
original_file_path = request.form.get("original_file_path")
storage = StorageCreator.get_storage() storage = StorageCreator.get_storage()
index_base_path = f"indexes/{id}" index_base_path = f"indexes/{id}"
@@ -85,6 +87,7 @@ def upload_index_files():
"retriever": retriever, "retriever": retriever,
"remote_data": remote_data, "remote_data": remote_data,
"sync_frequency": sync_frequency, "sync_frequency": sync_frequency,
"file_path": original_file_path,
} }
}, },
) )
@@ -102,6 +105,7 @@ def upload_index_files():
"retriever": retriever, "retriever": retriever,
"remote_data": remote_data, "remote_data": remote_data,
"sync_frequency": sync_frequency, "sync_frequency": sync_frequency,
"file_path": original_file_path,
} }
) )
return {"status": "ok"} return {"status": "ok"}

View File

@@ -6,16 +6,25 @@ import secrets
import shutil import shutil
import uuid import uuid
from functools import wraps from functools import wraps
from typing import Optional, Tuple
from bson.binary import Binary, UuidRepresentation from bson.binary import Binary, UuidRepresentation
from bson.dbref import DBRef from bson.dbref import DBRef
from bson.objectid import ObjectId from bson.objectid import ObjectId
from flask import Blueprint, current_app, jsonify, make_response, redirect, request from flask import (
Blueprint,
current_app,
jsonify,
make_response,
redirect,
request,
Response,
)
from flask_restx import fields, inputs, Namespace, Resource from flask_restx import fields, inputs, Namespace, Resource
from pymongo import ReturnDocument
from werkzeug.utils import secure_filename from werkzeug.utils import secure_filename
from application.agents.tools.tool_manager import ToolManager from application.agents.tools.tool_manager import ToolManager
from pymongo import ReturnDocument
from application.api.user.tasks import ( from application.api.user.tasks import (
ingest, ingest,
@@ -28,7 +37,12 @@ from application.core.settings import settings
from application.extensions import api from application.extensions import api
from application.storage.storage_creator import StorageCreator from application.storage.storage_creator import StorageCreator
from application.tts.google_tts import GoogleTTS from application.tts.google_tts import GoogleTTS
from application.utils import check_required_fields, validate_function_name from application.utils import (
check_required_fields,
generate_image_url,
safe_filename,
validate_function_name,
)
from application.vectorstore.vector_creator import VectorCreator from application.vectorstore.vector_creator import VectorCreator
storage = StorageCreator.get_storage() storage = StorageCreator.get_storage()
@@ -45,6 +59,7 @@ shared_conversations_collections = db["shared_conversations"]
users_collection = db["users"] users_collection = db["users"]
user_logs_collection = db["user_logs"] user_logs_collection = db["user_logs"]
user_tools_collection = db["user_tools"] user_tools_collection = db["user_tools"]
attachments_collection = db["attachments"]
agents_collection.create_index( agents_collection.create_index(
[("shared", 1)], [("shared", 1)],
@@ -142,6 +157,29 @@ def get_vector_store(source_id):
return store return store
def handle_image_upload(
request, existing_url: str, user: str, storage, base_path: str = "attachments/"
) -> Tuple[str, Optional[Response]]:
image_url = existing_url
if "image" in request.files:
file = request.files["image"]
if file.filename != "":
filename = secure_filename(file.filename)
upload_path = f"{settings.UPLOAD_FOLDER.rstrip('/')}/{user}/{base_path.rstrip('/')}/{uuid.uuid4()}_{filename}"
try:
storage.save_file(file, upload_path)
image_url = upload_path
except Exception as e:
current_app.logger.error(f"Error uploading image: {e}")
return None, make_response(
jsonify({"success": False, "message": "Image upload failed"}),
400,
)
return image_url, None
@user_ns.route("/api/delete_conversation") @user_ns.route("/api/delete_conversation")
class DeleteConversation(Resource): class DeleteConversation(Resource):
@api.doc( @api.doc(
@@ -252,13 +290,39 @@ class GetSingleConversation(Resource):
) )
if not conversation: if not conversation:
return make_response(jsonify({"status": "not found"}), 404) return make_response(jsonify({"status": "not found"}), 404)
# Process queries to include attachment names
queries = conversation["queries"]
for query in queries:
if "attachments" in query and query["attachments"]:
attachment_details = []
for attachment_id in query["attachments"]:
try:
attachment = attachments_collection.find_one(
{"_id": ObjectId(attachment_id)}
)
if attachment:
attachment_details.append(
{
"id": str(attachment["_id"]),
"fileName": attachment.get(
"filename", "Unknown file"
),
}
)
except Exception as e:
current_app.logger.error(
f"Error retrieving attachment {attachment_id}: {e}",
exc_info=True,
)
query["attachments"] = attachment_details
except Exception as err: except Exception as err:
current_app.logger.error( current_app.logger.error(
f"Error retrieving conversation: {err}", exc_info=True f"Error retrieving conversation: {err}", exc_info=True
) )
return make_response(jsonify({"success": False}), 400) return make_response(jsonify({"success": False}), 400)
data = { data = {
"queries": conversation["queries"], "queries": queries,
"agent_id": conversation.get("agent_id"), "agent_id": conversation.get("agent_id"),
"is_shared_usage": conversation.get("is_shared_usage", False), "is_shared_usage": conversation.get("is_shared_usage", False),
"shared_token": conversation.get("shared_token", None), "shared_token": conversation.get("shared_token", None),
@@ -475,29 +539,30 @@ class UploadFile(Resource):
), ),
400, 400,
) )
user = secure_filename(decoded_token.get("sub")) user = decoded_token.get("sub")
job_name = secure_filename(request.form["name"]) job_name = request.form["name"]
# Create safe versions for filesystem operations
safe_user = safe_filename(user)
dir_name = safe_filename(job_name)
try: try:
from application.storage.storage_creator import StorageCreator
storage = StorageCreator.get_storage() storage = StorageCreator.get_storage()
base_path = f"{settings.UPLOAD_FOLDER}/{safe_user}/{dir_name}"
base_path = f"{settings.UPLOAD_FOLDER}/{user}/{job_name}"
if len(files) > 1: if len(files) > 1:
temp_files = [] temp_files = []
for file in files: for file in files:
filename = secure_filename(file.filename) filename = safe_filename(file.filename)
temp_path = f"{base_path}/temp/{filename}" temp_path = f"{base_path}/temp/{filename}"
storage.save_file(file, temp_path) storage.save_file(file, temp_path)
temp_files.append(temp_path) temp_files.append(temp_path)
print(f"Saved file: {filename}") print(f"Saved file: {filename}")
zip_filename = f"{job_name}.zip" zip_filename = f"{dir_name}.zip"
zip_path = f"{base_path}/{zip_filename}" zip_path = f"{base_path}/{zip_filename}"
zip_temp_path = None zip_temp_path = None
def create_zip_archive(temp_paths, job_name, storage): def create_zip_archive(temp_paths, dir_name, storage):
import tempfile import tempfile
with tempfile.NamedTemporaryFile( with tempfile.NamedTemporaryFile(
@@ -537,7 +602,7 @@ class UploadFile(Resource):
return zip_output_path return zip_output_path
try: try:
zip_temp_path = create_zip_archive(temp_files, job_name, storage) zip_temp_path = create_zip_archive(temp_files, dir_name, storage)
with open(zip_temp_path, "rb") as zip_file: with open(zip_temp_path, "rb") as zip_file:
storage.save_file(zip_file, zip_path) storage.save_file(zip_file, zip_path)
task = ingest.delay( task = ingest.delay(
@@ -562,6 +627,8 @@ class UploadFile(Resource):
job_name, job_name,
zip_filename, zip_filename,
user, user,
dir_name,
safe_user,
) )
finally: finally:
# Clean up temporary files # Clean up temporary files
@@ -582,7 +649,7 @@ class UploadFile(Resource):
# For single file # For single file
file = files[0] file = files[0]
filename = secure_filename(file.filename) filename = safe_filename(file.filename)
file_path = f"{base_path}/{filename}" file_path = f"{base_path}/{filename}"
storage.save_file(file, file_path) storage.save_file(file, file_path)
@@ -609,6 +676,8 @@ class UploadFile(Resource):
job_name, job_name,
filename, # Corrected variable for single-file case filename, # Corrected variable for single-file case
user, user,
dir_name,
safe_user,
) )
except Exception as err: except Exception as err:
current_app.logger.error(f"Error uploading file: {err}", exc_info=True) current_app.logger.error(f"Error uploading file: {err}", exc_info=True)
@@ -1042,27 +1111,28 @@ class UpdatePrompt(Resource):
@user_ns.route("/api/get_agent") @user_ns.route("/api/get_agent")
class GetAgent(Resource): class GetAgent(Resource):
@api.doc(params={"id": "ID of the agent"}, description="Get a single agent by ID") @api.doc(params={"id": "Agent ID"}, description="Get agent by ID")
def get(self): def get(self):
decoded_token = request.decoded_token if not (decoded_token := request.decoded_token):
if not decoded_token: return {"success": False}, 401
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub") if not (agent_id := request.args.get("id")):
agent_id = request.args.get("id") return {"success": False, "message": "ID required"}, 400
if not agent_id:
return make_response(
jsonify({"success": False, "message": "ID is required"}), 400
)
try: try:
agent = agents_collection.find_one( agent = agents_collection.find_one(
{"_id": ObjectId(agent_id), "user": user} {"_id": ObjectId(agent_id), "user": decoded_token["sub"]}
) )
if not agent: if not agent:
return make_response(jsonify({"status": "Not found"}), 404) return {"status": "Not found"}, 404
data = { data = {
"id": str(agent["_id"]), "id": str(agent["_id"]),
"name": agent["name"], "name": agent["name"],
"description": agent.get("description", ""), "description": agent.get("description", ""),
"image": (
generate_image_url(agent["image"]) if agent.get("image") else ""
),
"source": ( "source": (
str(source_doc["_id"]) str(source_doc["_id"])
if isinstance(agent.get("source"), DBRef) if isinstance(agent.get("source"), DBRef)
@@ -1089,19 +1159,20 @@ class GetAgent(Resource):
"shared_metadata": agent.get("shared_metadata", {}), "shared_metadata": agent.get("shared_metadata", {}),
"shared_token": agent.get("shared_token", ""), "shared_token": agent.get("shared_token", ""),
} }
except Exception as err: return make_response(jsonify(data), 200)
current_app.logger.error(f"Error retrieving agent: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400) except Exception as e:
return make_response(jsonify(data), 200) current_app.logger.error(f"Agent fetch error: {e}", exc_info=True)
return {"success": False}, 400
@user_ns.route("/api/get_agents") @user_ns.route("/api/get_agents")
class GetAgents(Resource): class GetAgents(Resource):
@api.doc(description="Retrieve agents for the user") @api.doc(description="Retrieve agents for the user")
def get(self): def get(self):
decoded_token = request.decoded_token if not (decoded_token := request.decoded_token):
if not decoded_token: return {"success": False}, 401
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub") user = decoded_token.get("sub")
try: try:
user_doc = ensure_user_doc(user) user_doc = ensure_user_doc(user)
@@ -1113,6 +1184,9 @@ class GetAgents(Resource):
"id": str(agent["_id"]), "id": str(agent["_id"]),
"name": agent["name"], "name": agent["name"],
"description": agent.get("description", ""), "description": agent.get("description", ""),
"image": (
generate_image_url(agent["image"]) if agent.get("image") else ""
),
"source": ( "source": (
str(source_doc["_id"]) str(source_doc["_id"])
if isinstance(agent.get("source"), DBRef) if isinstance(agent.get("source"), DBRef)
@@ -1157,8 +1231,8 @@ class CreateAgent(Resource):
"description": fields.String( "description": fields.String(
required=True, description="Description of the agent" required=True, description="Description of the agent"
), ),
"image": fields.String( "image": fields.Raw(
required=False, description="Image URL or identifier" required=False, description="Image file upload", type="file"
), ),
"source": fields.String(required=True, description="Source ID"), "source": fields.String(required=True, description="Source ID"),
"chunks": fields.Integer(required=True, description="Chunks count"), "chunks": fields.Integer(required=True, description="Chunks count"),
@@ -1177,12 +1251,20 @@ class CreateAgent(Resource):
@api.expect(create_agent_model) @api.expect(create_agent_model)
@api.doc(description="Create a new agent") @api.doc(description="Create a new agent")
def post(self): def post(self):
decoded_token = request.decoded_token if not (decoded_token := request.decoded_token):
if not decoded_token: return {"success": False}, 401
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub") user = decoded_token.get("sub")
data = request.get_json() if request.content_type == "application/json":
data = request.get_json()
else:
print(request.form)
data = request.form.to_dict()
if "tools" in data:
try:
data["tools"] = json.loads(data["tools"])
except json.JSONDecodeError:
data["tools"] = []
print(f"Received data: {data}")
if data.get("status") not in ["draft", "published"]: if data.get("status") not in ["draft", "published"]:
return make_response( return make_response(
jsonify({"success": False, "message": "Invalid status"}), 400 jsonify({"success": False, "message": "Invalid status"}), 400
@@ -1203,13 +1285,20 @@ class CreateAgent(Resource):
missing_fields = check_required_fields(data, required_fields) missing_fields = check_required_fields(data, required_fields)
if missing_fields: if missing_fields:
return missing_fields return missing_fields
image_url, error = handle_image_upload(request, "", user, storage)
if error:
return make_response(
jsonify({"success": False, "message": "Image upload failed"}), 400
)
try: try:
key = str(uuid.uuid4()) key = str(uuid.uuid4())
new_agent = { new_agent = {
"user": user, "user": user,
"name": data.get("name"), "name": data.get("name"),
"description": data.get("description", ""), "description": data.get("description", ""),
"image": data.get("image", ""), "image": image_url,
"source": ( "source": (
DBRef("sources", ObjectId(data.get("source"))) DBRef("sources", ObjectId(data.get("source")))
if ObjectId.is_valid(data.get("source")) if ObjectId.is_valid(data.get("source"))
@@ -1267,11 +1356,18 @@ class UpdateAgent(Resource):
@api.expect(update_agent_model) @api.expect(update_agent_model)
@api.doc(description="Update an existing agent") @api.doc(description="Update an existing agent")
def put(self, agent_id): def put(self, agent_id):
decoded_token = request.decoded_token if not (decoded_token := request.decoded_token):
if not decoded_token: return {"success": False}, 401
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub") user = decoded_token.get("sub")
data = request.get_json() if request.content_type == "application/json":
data = request.get_json()
else:
data = request.form.to_dict()
if "tools" in data:
try:
data["tools"] = json.loads(data["tools"])
except json.JSONDecodeError:
data["tools"] = []
if not ObjectId.is_valid(agent_id): if not ObjectId.is_valid(agent_id):
return make_response( return make_response(
@@ -1296,6 +1392,15 @@ class UpdateAgent(Resource):
), ),
404, 404,
) )
image_url, error = handle_image_upload(
request, existing_agent.get("image", ""), user, storage
)
if error:
return make_response(
jsonify({"success": False, "message": "Image upload failed"}), 400
)
update_fields = {} update_fields = {}
allowed_fields = [ allowed_fields = [
"name", "name",
@@ -1367,6 +1472,8 @@ class UpdateAgent(Resource):
) )
else: else:
update_fields[field] = data[field] update_fields[field] = data[field]
if image_url:
update_fields["image"] = image_url
if not update_fields: if not update_fields:
return make_response( return make_response(
jsonify({"success": False, "message": "No update data provided"}), 400 jsonify({"success": False, "message": "No update data provided"}), 400
@@ -1515,6 +1622,9 @@ class PinnedAgents(Resource):
"id": str(agent["_id"]), "id": str(agent["_id"]),
"name": agent.get("name", ""), "name": agent.get("name", ""),
"description": agent.get("description", ""), "description": agent.get("description", ""),
"image": (
generate_image_url(agent["image"]) if agent.get("image") else ""
),
"source": ( "source": (
str(db.dereference(agent["source"])["_id"]) str(db.dereference(agent["source"])["_id"])
if "source" in agent if "source" in agent
@@ -1675,6 +1785,11 @@ class SharedAgent(Resource):
"id": agent_id, "id": agent_id,
"user": shared_agent.get("user", ""), "user": shared_agent.get("user", ""),
"name": shared_agent.get("name", ""), "name": shared_agent.get("name", ""),
"image": (
generate_image_url(shared_agent["image"])
if shared_agent.get("image")
else ""
),
"description": shared_agent.get("description", ""), "description": shared_agent.get("description", ""),
"tools": shared_agent.get("tools", []), "tools": shared_agent.get("tools", []),
"tool_details": resolve_tool_details(shared_agent.get("tools", [])), "tool_details": resolve_tool_details(shared_agent.get("tools", [])),
@@ -1750,6 +1865,9 @@ class SharedAgents(Resource):
"id": str(agent["_id"]), "id": str(agent["_id"]),
"name": agent.get("name", ""), "name": agent.get("name", ""),
"description": agent.get("description", ""), "description": agent.get("description", ""),
"image": (
generate_image_url(agent["image"]) if agent.get("image") else ""
),
"tools": agent.get("tools", []), "tools": agent.get("tools", []),
"tool_details": resolve_tool_details(agent.get("tools", [])), "tool_details": resolve_tool_details(agent.get("tools", [])),
"agent_type": agent.get("agent_type", ""), "agent_type": agent.get("agent_type", ""),
@@ -2205,7 +2323,7 @@ class GetPubliclySharedConversations(Resource):
return make_response( return make_response(
jsonify( jsonify(
{ {
"sucess": False, "success": False,
"error": "might have broken url or the conversation does not exist", "error": "might have broken url or the conversation does not exist",
} }
), ),
@@ -2214,11 +2332,35 @@ class GetPubliclySharedConversations(Resource):
conversation_queries = conversation["queries"][ conversation_queries = conversation["queries"][
: (shared["first_n_queries"]) : (shared["first_n_queries"])
] ]
for query in conversation_queries:
if "attachments" in query and query["attachments"]:
attachment_details = []
for attachment_id in query["attachments"]:
try:
attachment = attachments_collection.find_one(
{"_id": ObjectId(attachment_id)}
)
if attachment:
attachment_details.append(
{
"id": str(attachment["_id"]),
"fileName": attachment.get(
"filename", "Unknown file"
),
}
)
except Exception as e:
current_app.logger.error(
f"Error retrieving attachment {attachment_id}: {e}",
exc_info=True,
)
query["attachments"] = attachment_details
else: else:
return make_response( return make_response(
jsonify( jsonify(
{ {
"sucess": False, "success": False,
"error": "might have broken url or the conversation does not exist", "error": "might have broken url or the conversation does not exist",
} }
), ),
@@ -3416,7 +3558,7 @@ class StoreAttachment(Resource):
jsonify({"status": "error", "message": "Missing file"}), jsonify({"status": "error", "message": "Missing file"}),
400, 400,
) )
user = secure_filename(decoded_token.get("sub")) user = safe_filename(decoded_token.get("sub"))
try: try:
attachment_id = ObjectId() attachment_id = ObjectId()
@@ -3447,3 +3589,30 @@ class StoreAttachment(Resource):
except Exception as err: except Exception as err:
current_app.logger.error(f"Error storing attachment: {err}", exc_info=True) current_app.logger.error(f"Error storing attachment: {err}", exc_info=True)
return make_response(jsonify({"success": False, "error": str(err)}), 400) return make_response(jsonify({"success": False, "error": str(err)}), 400)
@user_ns.route("/api/images/<path:image_path>")
class ServeImage(Resource):
@api.doc(description="Serve an image from storage")
def get(self, image_path):
try:
file_obj = storage.get_file(image_path)
extension = image_path.split(".")[-1].lower()
content_type = f"image/{extension}"
if extension == "jpg":
content_type = "image/jpeg"
response = make_response(file_obj.read())
response.headers.set("Content-Type", content_type)
response.headers.set("Cache-Control", "max-age=86400")
return response
except FileNotFoundError:
return make_response(
jsonify({"success": False, "message": "Image not found"}), 404
)
except Exception as e:
current_app.logger.error(f"Error serving image: {e}")
return make_response(
jsonify({"success": False, "message": "Error retrieving image"}), 500
)

View File

@@ -11,8 +11,8 @@ from application.worker import (
@celery.task(bind=True) @celery.task(bind=True)
def ingest(self, directory, formats, name_job, filename, user): def ingest(self, directory, formats, job_name, filename, user, dir_name, user_dir):
resp = ingest_worker(self, directory, formats, name_job, filename, user) resp = ingest_worker(self, directory, formats, job_name, filename, user, dir_name, user_dir)
return resp return resp

View File

@@ -11,18 +11,18 @@ current_dir = os.path.dirname(
class Settings(BaseSettings): class Settings(BaseSettings):
AUTH_TYPE: Optional[str] = None AUTH_TYPE: Optional[str] = None
LLM_NAME: str = "docsgpt" LLM_PROVIDER: str = "docsgpt"
MODEL_NAME: Optional[str] = ( LLM_NAME: Optional[str] = (
None # if LLM_NAME is openai, MODEL_NAME can be gpt-4 or gpt-3.5-turbo None # if LLM_PROVIDER is openai, LLM_NAME can be gpt-4 or gpt-3.5-turbo
) )
EMBEDDINGS_NAME: str = "huggingface_sentence-transformers/all-mpnet-base-v2" EMBEDDINGS_NAME: str = "huggingface_sentence-transformers/all-mpnet-base-v2"
CELERY_BROKER_URL: str = "redis://localhost:6379/0" CELERY_BROKER_URL: str = "redis://localhost:6379/0"
CELERY_RESULT_BACKEND: str = "redis://localhost:6379/1" CELERY_RESULT_BACKEND: str = "redis://localhost:6379/1"
MONGO_URI: str = "mongodb://localhost:27017/docsgpt" MONGO_URI: str = "mongodb://localhost:27017/docsgpt"
MONGO_DB_NAME: str = "docsgpt" MONGO_DB_NAME: str = "docsgpt"
MODEL_PATH: str = os.path.join(current_dir, "models/docsgpt-7b-f16.gguf") LLM_PATH: str = os.path.join(current_dir, "models/docsgpt-7b-f16.gguf")
DEFAULT_MAX_HISTORY: int = 150 DEFAULT_MAX_HISTORY: int = 150
MODEL_TOKEN_LIMITS: dict = { LLM_TOKEN_LIMITS: dict = {
"gpt-4o-mini": 128000, "gpt-4o-mini": 128000,
"gpt-3.5-turbo": 4096, "gpt-3.5-turbo": 4096,
"claude-2": 1e5, "claude-2": 1e5,
@@ -35,6 +35,9 @@ class Settings(BaseSettings):
) )
RETRIEVERS_ENABLED: list = ["classic_rag", "duckduck_search"] # also brave_search RETRIEVERS_ENABLED: list = ["classic_rag", "duckduck_search"] # also brave_search
AGENT_NAME: str = "classic" AGENT_NAME: str = "classic"
FALLBACK_LLM_PROVIDER: Optional[str] = None # provider for fallback llm
FALLBACK_LLM_NAME: Optional[str] = None # model name for fallback llm
FALLBACK_LLM_API_KEY: Optional[str] = None # api key for fallback llm
# LLM Cache # LLM Cache
CACHE_REDIS_URL: str = "redis://localhost:6379/2" CACHE_REDIS_URL: str = "redis://localhost:6379/2"
@@ -99,8 +102,8 @@ class Settings(BaseSettings):
BRAVE_SEARCH_API_KEY: Optional[str] = None BRAVE_SEARCH_API_KEY: Optional[str] = None
FLASK_DEBUG_MODE: bool = False FLASK_DEBUG_MODE: bool = False
STORAGE_TYPE: str = "local" # local or s3 STORAGE_TYPE: str = "local" # local or s3
URL_STRATEGY: str = "backend" # backend or s3
JWT_SECRET_KEY: str = "" JWT_SECRET_KEY: str = ""

View File

@@ -1,53 +1,117 @@
import logging
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from application.cache import gen_cache, stream_cache from application.cache import gen_cache, stream_cache
from application.core.settings import settings
from application.usage import gen_token_usage, stream_token_usage from application.usage import gen_token_usage, stream_token_usage
logger = logging.getLogger(__name__)
class BaseLLM(ABC): class BaseLLM(ABC):
def __init__(self, decoded_token=None): def __init__(
self,
decoded_token=None,
):
self.decoded_token = decoded_token self.decoded_token = decoded_token
self.token_usage = {"prompt_tokens": 0, "generated_tokens": 0} self.token_usage = {"prompt_tokens": 0, "generated_tokens": 0}
self.fallback_provider = settings.FALLBACK_LLM_PROVIDER
self.fallback_model_name = settings.FALLBACK_LLM_NAME
self.fallback_llm_api_key = settings.FALLBACK_LLM_API_KEY
self._fallback_llm = None
def _apply_decorator(self, method, decorators, *args, **kwargs): @property
for decorator in decorators: def fallback_llm(self):
method = decorator(method) """Lazy-loaded fallback LLM instance."""
return method(self, *args, **kwargs) if (
self._fallback_llm is None
and self.fallback_provider
and self.fallback_model_name
):
try:
from application.llm.llm_creator import LLMCreator
self._fallback_llm = LLMCreator.create_llm(
self.fallback_provider,
self.fallback_llm_api_key,
None,
self.decoded_token,
)
except Exception as e:
logger.error(
f"Failed to initialize fallback LLM: {str(e)}", exc_info=True
)
return self._fallback_llm
def _execute_with_fallback(
self, method_name: str, decorators: list, *args, **kwargs
):
"""
Unified method execution with fallback support.
Args:
method_name: Name of the raw method ('_raw_gen' or '_raw_gen_stream')
decorators: List of decorators to apply
*args: Positional arguments
**kwargs: Keyword arguments
"""
def decorated_method():
method = getattr(self, method_name)
for decorator in decorators:
method = decorator(method)
return method(self, *args, **kwargs)
try:
return decorated_method()
except Exception as e:
if not self.fallback_llm:
logger.error(f"Primary LLM failed and no fallback available: {str(e)}")
raise
logger.warning(
f"Falling back to {self.fallback_provider}/{self.fallback_model_name}. Error: {str(e)}"
)
fallback_method = getattr(
self.fallback_llm, method_name.replace("_raw_", "")
)
return fallback_method(*args, **kwargs)
def gen(self, model, messages, stream=False, tools=None, *args, **kwargs):
decorators = [gen_token_usage, gen_cache]
return self._execute_with_fallback(
"_raw_gen",
decorators,
model=model,
messages=messages,
stream=stream,
tools=tools,
*args,
**kwargs,
)
def gen_stream(self, model, messages, stream=True, tools=None, *args, **kwargs):
decorators = [stream_cache, stream_token_usage]
return self._execute_with_fallback(
"_raw_gen_stream",
decorators,
model=model,
messages=messages,
stream=stream,
tools=tools,
*args,
**kwargs,
)
@abstractmethod @abstractmethod
def _raw_gen(self, model, messages, stream, tools, *args, **kwargs): def _raw_gen(self, model, messages, stream, tools, *args, **kwargs):
pass pass
def gen(self, model, messages, stream=False, tools=None, *args, **kwargs):
decorators = [gen_token_usage, gen_cache]
return self._apply_decorator(
self._raw_gen,
decorators=decorators,
model=model,
messages=messages,
stream=stream,
tools=tools,
*args,
**kwargs
)
@abstractmethod @abstractmethod
def _raw_gen_stream(self, model, messages, stream, *args, **kwargs): def _raw_gen_stream(self, model, messages, stream, *args, **kwargs):
pass pass
def gen_stream(self, model, messages, stream=True, tools=None, *args, **kwargs):
decorators = [stream_cache, stream_token_usage]
return self._apply_decorator(
self._raw_gen_stream,
decorators=decorators,
model=model,
messages=messages,
stream=stream,
tools=tools,
*args,
**kwargs
)
def supports_tools(self): def supports_tools(self):
return hasattr(self, "_supports_tools") and callable( return hasattr(self, "_supports_tools") and callable(
getattr(self, "_supports_tools") getattr(self, "_supports_tools")
@@ -55,11 +119,11 @@ class BaseLLM(ABC):
def _supports_tools(self): def _supports_tools(self):
raise NotImplementedError("Subclass must implement _supports_tools method") raise NotImplementedError("Subclass must implement _supports_tools method")
def get_supported_attachment_types(self): def get_supported_attachment_types(self):
""" """
Return a list of MIME types supported by this LLM for file uploads. Return a list of MIME types supported by this LLM for file uploads.
Returns: Returns:
list: List of supported MIME types list: List of supported MIME types
""" """

View File

View File

@@ -0,0 +1,335 @@
import logging
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Any, Dict, Generator, List, Optional, Union
from application.logging import build_stack_data
logger = logging.getLogger(__name__)
@dataclass
class ToolCall:
"""Represents a tool/function call from the LLM."""
id: str
name: str
arguments: Union[str, Dict]
index: Optional[int] = None
@classmethod
def from_dict(cls, data: Dict) -> "ToolCall":
"""Create ToolCall from dictionary."""
return cls(
id=data.get("id", ""),
name=data.get("name", ""),
arguments=data.get("arguments", {}),
index=data.get("index"),
)
@dataclass
class LLMResponse:
"""Represents a response from the LLM."""
content: str
tool_calls: List[ToolCall]
finish_reason: str
raw_response: Any
@property
def requires_tool_call(self) -> bool:
"""Check if the response requires tool calls."""
return bool(self.tool_calls) and self.finish_reason == "tool_calls"
class LLMHandler(ABC):
"""Abstract base class for LLM handlers."""
def __init__(self):
self.llm_calls = []
self.tool_calls = []
@abstractmethod
def parse_response(self, response: Any) -> LLMResponse:
"""Parse raw LLM response into standardized format."""
pass
@abstractmethod
def create_tool_message(self, tool_call: ToolCall, result: Any) -> Dict:
"""Create a tool result message for the conversation history."""
pass
@abstractmethod
def _iterate_stream(self, response: Any) -> Generator:
"""Iterate through streaming response chunks."""
pass
def process_message_flow(
self,
agent,
initial_response,
tools_dict: Dict,
messages: List[Dict],
attachments: Optional[List] = None,
stream: bool = False,
) -> Union[str, Generator]:
"""
Main orchestration method for processing LLM message flow.
Args:
agent: The agent instance
initial_response: Initial LLM response
tools_dict: Dictionary of available tools
messages: Conversation history
attachments: Optional attachments
stream: Whether to use streaming
Returns:
Final response or generator for streaming
"""
messages = self.prepare_messages(agent, messages, attachments)
if stream:
return self.handle_streaming(agent, initial_response, tools_dict, messages)
else:
return self.handle_non_streaming(
agent, initial_response, tools_dict, messages
)
def prepare_messages(
self, agent, messages: List[Dict], attachments: Optional[List] = None
) -> List[Dict]:
"""
Prepare messages with attachments and provider-specific formatting.
Args:
agent: The agent instance
messages: Original messages
attachments: List of attachments
Returns:
Prepared messages list
"""
if not attachments:
return messages
logger.info(f"Preparing messages with {len(attachments)} attachments")
supported_types = agent.llm.get_supported_attachment_types()
supported_attachments = [
a for a in attachments if a.get("mime_type") in supported_types
]
unsupported_attachments = [
a for a in attachments if a.get("mime_type") not in supported_types
]
# Process supported attachments with the LLM's custom method
if supported_attachments:
logger.info(
f"Processing {len(supported_attachments)} supported attachments"
)
messages = agent.llm.prepare_messages_with_attachments(
messages, supported_attachments
)
# Process unsupported attachments with default method
if unsupported_attachments:
logger.info(
f"Processing {len(unsupported_attachments)} unsupported attachments"
)
messages = self._append_unsupported_attachments(
messages, unsupported_attachments
)
return messages
def _append_unsupported_attachments(
self, messages: List[Dict], attachments: List[Dict]
) -> List[Dict]:
"""
Default method to append unsupported attachment content to system prompt.
Args:
messages: Current messages
attachments: List of unsupported attachments
Returns:
Updated messages list
"""
prepared_messages = messages.copy()
attachment_texts = []
for attachment in attachments:
logger.info(f"Adding attachment {attachment.get('id')} to context")
if "content" in attachment:
attachment_texts.append(
f"Attached file content:\n\n{attachment['content']}"
)
if attachment_texts:
combined_text = "\n\n".join(attachment_texts)
system_msg = next(
(msg for msg in prepared_messages if msg.get("role") == "system"),
{"role": "system", "content": ""},
)
if system_msg not in prepared_messages:
prepared_messages.insert(0, system_msg)
system_msg["content"] += f"\n\n{combined_text}"
return prepared_messages
def handle_tool_calls(
self, agent, tool_calls: List[ToolCall], tools_dict: Dict, messages: List[Dict]
) -> Generator:
"""
Execute tool calls and update conversation history.
Args:
agent: The agent instance
tool_calls: List of tool calls to execute
tools_dict: Available tools dictionary
messages: Current conversation history
Returns:
Updated messages list
"""
updated_messages = messages.copy()
for call in tool_calls:
try:
self.tool_calls.append(call)
tool_executor_gen = agent._execute_tool_action(tools_dict, call)
while True:
try:
yield next(tool_executor_gen)
except StopIteration as e:
tool_response, call_id = e.value
break
updated_messages.append(
{
"role": "assistant",
"content": [
{
"function_call": {
"name": call.name,
"args": call.arguments,
"call_id": call_id,
}
}
],
}
)
updated_messages.append(self.create_tool_message(call, tool_response))
except Exception as e:
logger.error(f"Error executing tool: {str(e)}", exc_info=True)
updated_messages.append(
{
"role": "tool",
"content": f"Error executing tool: {str(e)}",
"tool_call_id": call.id,
}
)
return updated_messages
def handle_non_streaming(
self, agent, response: Any, tools_dict: Dict, messages: List[Dict]
) -> Generator:
"""
Handle non-streaming response flow.
Args:
agent: The agent instance
response: Current LLM response
tools_dict: Available tools dictionary
messages: Conversation history
Returns:
Final response after processing all tool calls
"""
parsed = self.parse_response(response)
self.llm_calls.append(build_stack_data(agent.llm))
while parsed.requires_tool_call:
tool_handler_gen = self.handle_tool_calls(
agent, parsed.tool_calls, tools_dict, messages
)
while True:
try:
yield next(tool_handler_gen)
except StopIteration as e:
messages = e.value
break
response = agent.llm.gen(
model=agent.gpt_model, messages=messages, tools=agent.tools
)
parsed = self.parse_response(response)
self.llm_calls.append(build_stack_data(agent.llm))
return parsed.content
def handle_streaming(
self, agent, response: Any, tools_dict: Dict, messages: List[Dict]
) -> Generator:
"""
Handle streaming response flow.
Args:
agent: The agent instance
response: Current LLM response
tools_dict: Available tools dictionary
messages: Conversation history
Yields:
Streaming response chunks
"""
buffer = ""
tool_calls = {}
for chunk in self._iterate_stream(response):
if isinstance(chunk, str):
yield chunk
continue
parsed = self.parse_response(chunk)
if parsed.tool_calls:
for call in parsed.tool_calls:
if call.index not in tool_calls:
tool_calls[call.index] = call
else:
existing = tool_calls[call.index]
if call.id:
existing.id = call.id
if call.name:
existing.name = call.name
if call.arguments:
existing.arguments += call.arguments
if parsed.finish_reason == "tool_calls":
tool_handler_gen = self.handle_tool_calls(
agent, list(tool_calls.values()), tools_dict, messages
)
while True:
try:
yield next(tool_handler_gen)
except StopIteration as e:
messages = e.value
break
tool_calls = {}
response = agent.llm.gen_stream(
model=agent.gpt_model, messages=messages, tools=agent.tools
)
self.llm_calls.append(build_stack_data(agent.llm))
yield from self.handle_streaming(agent, response, tools_dict, messages)
return
if parsed.content:
buffer += parsed.content
yield buffer
buffer = ""
if parsed.finish_reason == "stop":
return

View File

@@ -0,0 +1,78 @@
import uuid
from typing import Any, Dict, Generator
from application.llm.handlers.base import LLMHandler, LLMResponse, ToolCall
class GoogleLLMHandler(LLMHandler):
"""Handler for Google's GenAI API."""
def parse_response(self, response: Any) -> LLMResponse:
"""Parse Google response into standardized format."""
if isinstance(response, str):
return LLMResponse(
content=response,
tool_calls=[],
finish_reason="stop",
raw_response=response,
)
if hasattr(response, "candidates"):
parts = response.candidates[0].content.parts if response.candidates else []
tool_calls = [
ToolCall(
id=str(uuid.uuid4()),
name=part.function_call.name,
arguments=part.function_call.args,
)
for part in parts
if hasattr(part, "function_call") and part.function_call is not None
]
content = " ".join(
part.text
for part in parts
if hasattr(part, "text") and part.text is not None
)
return LLMResponse(
content=content,
tool_calls=tool_calls,
finish_reason="tool_calls" if tool_calls else "stop",
raw_response=response,
)
else:
tool_calls = []
if hasattr(response, "function_call"):
tool_calls.append(
ToolCall(
id=str(uuid.uuid4()),
name=response.function_call.name,
arguments=response.function_call.args,
)
)
return LLMResponse(
content=response.text if hasattr(response, "text") else "",
tool_calls=tool_calls,
finish_reason="tool_calls" if tool_calls else "stop",
raw_response=response,
)
def create_tool_message(self, tool_call: ToolCall, result: Any) -> Dict:
"""Create Google-style tool message."""
from google.genai import types
return {
"role": "tool",
"content": [
types.Part.from_function_response(
name=tool_call.name, response={"result": result}
).to_json_dict()
],
}
def _iterate_stream(self, response: Any) -> Generator:
"""Iterate through Google streaming response."""
for chunk in response:
yield chunk

View File

@@ -0,0 +1,18 @@
from application.llm.handlers.base import LLMHandler
from application.llm.handlers.google import GoogleLLMHandler
from application.llm.handlers.openai import OpenAILLMHandler
class LLMHandlerCreator:
handlers = {
"openai": OpenAILLMHandler,
"google": GoogleLLMHandler,
"default": OpenAILLMHandler,
}
@classmethod
def create_handler(cls, llm_type: str, *args, **kwargs) -> LLMHandler:
handler_class = cls.handlers.get(llm_type.lower())
if not handler_class:
raise ValueError(f"No LLM handler class found for type {llm_type}")
return handler_class(*args, **kwargs)

View File

@@ -0,0 +1,57 @@
from typing import Any, Dict, Generator
from application.llm.handlers.base import LLMHandler, LLMResponse, ToolCall
class OpenAILLMHandler(LLMHandler):
"""Handler for OpenAI API."""
def parse_response(self, response: Any) -> LLMResponse:
"""Parse OpenAI response into standardized format."""
if isinstance(response, str):
return LLMResponse(
content=response,
tool_calls=[],
finish_reason="stop",
raw_response=response,
)
message = getattr(response, "message", None) or getattr(response, "delta", None)
tool_calls = []
if hasattr(message, "tool_calls"):
tool_calls = [
ToolCall(
id=getattr(tc, "id", ""),
name=getattr(tc.function, "name", ""),
arguments=getattr(tc.function, "arguments", ""),
index=getattr(tc, "index", None),
)
for tc in message.tool_calls or []
]
return LLMResponse(
content=getattr(message, "content", ""),
tool_calls=tool_calls,
finish_reason=getattr(response, "finish_reason", ""),
raw_response=response,
)
def create_tool_message(self, tool_call: ToolCall, result: Any) -> Dict:
"""Create OpenAI-style tool message."""
return {
"role": "tool",
"content": [
{
"function_response": {
"name": tool_call.name,
"response": {"result": result},
"call_id": tool_call.id,
}
}
],
}
def _iterate_stream(self, response: Any) -> Generator:
"""Iterate through OpenAI streaming response."""
for chunk in response:
yield chunk

View File

@@ -2,6 +2,7 @@ from application.llm.base import BaseLLM
from application.core.settings import settings from application.core.settings import settings
import threading import threading
class LlamaSingleton: class LlamaSingleton:
_instances = {} _instances = {}
_lock = threading.Lock() # Add a lock for thread synchronization _lock = threading.Lock() # Add a lock for thread synchronization
@@ -29,7 +30,7 @@ class LlamaCpp(BaseLLM):
self, self,
api_key=None, api_key=None,
user_api_key=None, user_api_key=None,
llm_name=settings.MODEL_PATH, llm_name=settings.LLM_PATH,
*args, *args,
**kwargs, **kwargs,
): ):
@@ -42,14 +43,18 @@ class LlamaCpp(BaseLLM):
context = messages[0]["content"] context = messages[0]["content"]
user_question = messages[-1]["content"] user_question = messages[-1]["content"]
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n" prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
result = LlamaSingleton.query_model(self.llama, prompt, max_tokens=150, echo=False) result = LlamaSingleton.query_model(
self.llama, prompt, max_tokens=150, echo=False
)
return result["choices"][0]["text"].split("### Answer \n")[-1] return result["choices"][0]["text"].split("### Answer \n")[-1]
def _raw_gen_stream(self, baseself, model, messages, stream=True, **kwargs): def _raw_gen_stream(self, baseself, model, messages, stream=True, **kwargs):
context = messages[0]["content"] context = messages[0]["content"]
user_question = messages[-1]["content"] user_question = messages[-1]["content"]
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n" prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
result = LlamaSingleton.query_model(self.llama, prompt, max_tokens=150, echo=False, stream=stream) result = LlamaSingleton.query_model(
self.llama, prompt, max_tokens=150, echo=False, stream=stream
)
for item in result: for item in result:
for choice in item["choices"]: for choice in item["choices"]:
yield choice["text"] yield choice["text"]

View File

@@ -64,12 +64,12 @@ python-pptx==1.0.2
redis==5.2.1 redis==5.2.1
referencing>=0.28.0,<0.31.0 referencing>=0.28.0,<0.31.0
regex==2024.11.6 regex==2024.11.6
requests==2.32.4 requests==2.32.3
retry==0.9.2 retry==0.9.2
sentence-transformers==3.3.1 sentence-transformers==3.3.1
tiktoken==0.8.0 tiktoken==0.8.0
tokenizers==0.21.0 tokenizers==0.21.0
torch==2.7.1 torch==2.7.0
tqdm==4.67.1 tqdm==4.67.1
transformers==4.51.3 transformers==4.51.3
typing-extensions==4.12.2 typing-extensions==4.12.2

View File

@@ -29,10 +29,10 @@ class BraveRetSearch(BaseRetriever):
self.token_limit = ( self.token_limit = (
token_limit token_limit
if token_limit if token_limit
< settings.MODEL_TOKEN_LIMITS.get( < settings.LLM_TOKEN_LIMITS.get(
self.gpt_model, settings.DEFAULT_MAX_HISTORY self.gpt_model, settings.DEFAULT_MAX_HISTORY
) )
else settings.MODEL_TOKEN_LIMITS.get( else settings.LLM_TOKEN_LIMITS.get(
self.gpt_model, settings.DEFAULT_MAX_HISTORY self.gpt_model, settings.DEFAULT_MAX_HISTORY
) )
) )
@@ -59,7 +59,7 @@ class BraveRetSearch(BaseRetriever):
docs.append({"text": snippet, "title": title, "link": link}) docs.append({"text": snippet, "title": title, "link": link})
except IndexError: except IndexError:
pass pass
if settings.LLM_NAME == "llama.cpp": if settings.LLM_PROVIDER == "llama.cpp":
docs = [docs[0]] docs = [docs[0]]
return docs return docs
@@ -84,7 +84,7 @@ class BraveRetSearch(BaseRetriever):
messages_combine.append({"role": "user", "content": self.question}) messages_combine.append({"role": "user", "content": self.question})
llm = LLMCreator.create_llm( llm = LLMCreator.create_llm(
settings.LLM_NAME, settings.LLM_PROVIDER,
api_key=settings.API_KEY, api_key=settings.API_KEY,
user_api_key=self.user_api_key, user_api_key=self.user_api_key,
decoded_token=self.decoded_token, decoded_token=self.decoded_token,

View File

@@ -16,7 +16,7 @@ class ClassicRAG(BaseRetriever):
token_limit=150, token_limit=150,
gpt_model="docsgpt", gpt_model="docsgpt",
user_api_key=None, user_api_key=None,
llm_name=settings.LLM_NAME, llm_name=settings.LLM_PROVIDER,
api_key=settings.API_KEY, api_key=settings.API_KEY,
decoded_token=None, decoded_token=None,
): ):
@@ -28,10 +28,10 @@ class ClassicRAG(BaseRetriever):
self.token_limit = ( self.token_limit = (
token_limit token_limit
if token_limit if token_limit
< settings.MODEL_TOKEN_LIMITS.get( < settings.LLM_TOKEN_LIMITS.get(
self.gpt_model, settings.DEFAULT_MAX_HISTORY self.gpt_model, settings.DEFAULT_MAX_HISTORY
) )
else settings.MODEL_TOKEN_LIMITS.get( else settings.LLM_TOKEN_LIMITS.get(
self.gpt_model, settings.DEFAULT_MAX_HISTORY self.gpt_model, settings.DEFAULT_MAX_HISTORY
) )
) )

View File

@@ -28,10 +28,10 @@ class DuckDuckSearch(BaseRetriever):
self.token_limit = ( self.token_limit = (
token_limit token_limit
if token_limit if token_limit
< settings.MODEL_TOKEN_LIMITS.get( < settings.LLM_TOKEN_LIMITS.get(
self.gpt_model, settings.DEFAULT_MAX_HISTORY self.gpt_model, settings.DEFAULT_MAX_HISTORY
) )
else settings.MODEL_TOKEN_LIMITS.get( else settings.LLM_TOKEN_LIMITS.get(
self.gpt_model, settings.DEFAULT_MAX_HISTORY self.gpt_model, settings.DEFAULT_MAX_HISTORY
) )
) )
@@ -58,7 +58,7 @@ class DuckDuckSearch(BaseRetriever):
) )
except IndexError: except IndexError:
pass pass
if settings.LLM_NAME == "llama.cpp": if settings.LLM_PROVIDER == "llama.cpp":
docs = [docs[0]] docs = [docs[0]]
return docs return docs
@@ -83,7 +83,7 @@ class DuckDuckSearch(BaseRetriever):
messages_combine.append({"role": "user", "content": self.question}) messages_combine.append({"role": "user", "content": self.question})
llm = LLMCreator.create_llm( llm = LLMCreator.create_llm(
settings.LLM_NAME, settings.LLM_PROVIDER,
api_key=settings.API_KEY, api_key=settings.API_KEY,
user_api_key=self.user_api_key, user_api_key=self.user_api_key,
decoded_token=self.decoded_token, decoded_token=self.decoded_token,

View File

@@ -1,13 +1,14 @@
"""S3 storage implementation.""" """S3 storage implementation."""
import io import io
from typing import BinaryIO, List, Callable
import os import os
from typing import BinaryIO, Callable, List
import boto3 import boto3
from botocore.exceptions import ClientError from application.core.settings import settings
from application.storage.base import BaseStorage from application.storage.base import BaseStorage
from application.core.settings import settings from botocore.exceptions import ClientError
class S3Storage(BaseStorage): class S3Storage(BaseStorage):
@@ -20,18 +21,21 @@ class S3Storage(BaseStorage):
Args: Args:
bucket_name: S3 bucket name (optional, defaults to settings) bucket_name: S3 bucket name (optional, defaults to settings)
""" """
self.bucket_name = bucket_name or getattr(settings, "S3_BUCKET_NAME", "docsgpt-test-bucket") self.bucket_name = bucket_name or getattr(
settings, "S3_BUCKET_NAME", "docsgpt-test-bucket"
)
# Get credentials from settings # Get credentials from settings
aws_access_key_id = getattr(settings, "SAGEMAKER_ACCESS_KEY", None) aws_access_key_id = getattr(settings, "SAGEMAKER_ACCESS_KEY", None)
aws_secret_access_key = getattr(settings, "SAGEMAKER_SECRET_KEY", None) aws_secret_access_key = getattr(settings, "SAGEMAKER_SECRET_KEY", None)
region_name = getattr(settings, "SAGEMAKER_REGION", None) region_name = getattr(settings, "SAGEMAKER_REGION", None)
self.s3 = boto3.client( self.s3 = boto3.client(
's3', "s3",
aws_access_key_id=aws_access_key_id, aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key, aws_secret_access_key=aws_secret_access_key,
region_name=region_name region_name=region_name,
) )
def save_file(self, file_data: BinaryIO, path: str) -> dict: def save_file(self, file_data: BinaryIO, path: str) -> dict:
@@ -41,17 +45,16 @@ class S3Storage(BaseStorage):
region = getattr(settings, "SAGEMAKER_REGION", None) region = getattr(settings, "SAGEMAKER_REGION", None)
return { return {
'storage_type': 's3', "storage_type": "s3",
'bucket_name': self.bucket_name, "bucket_name": self.bucket_name,
'uri': f's3://{self.bucket_name}/{path}', "uri": f"s3://{self.bucket_name}/{path}",
'region': region "region": region,
} }
def get_file(self, path: str) -> BinaryIO: def get_file(self, path: str) -> BinaryIO:
"""Get a file from S3 storage.""" """Get a file from S3 storage."""
if not self.file_exists(path): if not self.file_exists(path):
raise FileNotFoundError(f"File not found: {path}") raise FileNotFoundError(f"File not found: {path}")
file_obj = io.BytesIO() file_obj = io.BytesIO()
self.s3.download_fileobj(self.bucket_name, path, file_obj) self.s3.download_fileobj(self.bucket_name, path, file_obj)
file_obj.seek(0) file_obj.seek(0)
@@ -76,18 +79,17 @@ class S3Storage(BaseStorage):
def list_files(self, directory: str) -> List[str]: def list_files(self, directory: str) -> List[str]:
"""List all files in a directory in S3 storage.""" """List all files in a directory in S3 storage."""
# Ensure directory ends with a slash if it's not empty # Ensure directory ends with a slash if it's not empty
if directory and not directory.endswith('/'):
directory += '/'
if directory and not directory.endswith("/"):
directory += "/"
result = [] result = []
paginator = self.s3.get_paginator('list_objects_v2') paginator = self.s3.get_paginator("list_objects_v2")
pages = paginator.paginate(Bucket=self.bucket_name, Prefix=directory) pages = paginator.paginate(Bucket=self.bucket_name, Prefix=directory)
for page in pages: for page in pages:
if 'Contents' in page: if "Contents" in page:
for obj in page['Contents']: for obj in page["Contents"]:
result.append(obj['Key']) result.append(obj["Key"])
return result return result
def process_file(self, path: str, processor_func: Callable, **kwargs): def process_file(self, path: str, processor_func: Callable, **kwargs):
@@ -98,22 +100,24 @@ class S3Storage(BaseStorage):
path: Path to the file path: Path to the file
processor_func: Function that processes the file processor_func: Function that processes the file
**kwargs: Additional arguments to pass to the processor function **kwargs: Additional arguments to pass to the processor function
Returns: Returns:
The result of the processor function The result of the processor function
""" """
import tempfile
import logging import logging
import tempfile
if not self.file_exists(path): if not self.file_exists(path):
raise FileNotFoundError(f"File not found in S3: {path}") raise FileNotFoundError(f"File not found in S3: {path}")
with tempfile.NamedTemporaryFile(
with tempfile.NamedTemporaryFile(suffix=os.path.splitext(path)[1], delete=True) as temp_file: suffix=os.path.splitext(path)[1], delete=True
) as temp_file:
try: try:
# Download the file from S3 to the temporary file # Download the file from S3 to the temporary file
self.s3.download_fileobj(self.bucket_name, path, temp_file) self.s3.download_fileobj(self.bucket_name, path, temp_file)
temp_file.flush() temp_file.flush()
return processor_func(local_path=temp_file.name, **kwargs) return processor_func(local_path=temp_file.name, **kwargs)
except Exception as e: except Exception as e:
logging.error(f"Error processing S3 file {path}: {e}", exc_info=True) logging.error(f"Error processing S3 file {path}: {e}", exc_info=True)

View File

@@ -1,8 +1,12 @@
import hashlib import hashlib
import os
import re import re
import uuid
import tiktoken import tiktoken
from flask import jsonify, make_response from flask import jsonify, make_response
from werkzeug.utils import secure_filename
from application.core.settings import settings
_encoding = None _encoding = None
@@ -15,6 +19,31 @@ def get_encoding():
return _encoding return _encoding
def safe_filename(filename):
"""
Creates a safe filename that preserves the original extension.
Uses secure_filename, but ensures a proper filename is returned even with non-Latin characters.
Args:
filename (str): The original filename
Returns:
str: A safe filename that can be used for storage
"""
if not filename:
return str(uuid.uuid4())
_, extension = os.path.splitext(filename)
safe_name = secure_filename(filename)
# If secure_filename returns just the extension or an empty string
if not safe_name or safe_name == extension.lstrip("."):
return f"{str(uuid.uuid4())}{extension}"
return safe_name
def num_tokens_from_string(string: str) -> int: def num_tokens_from_string(string: str) -> int:
encoding = get_encoding() encoding = get_encoding()
if isinstance(string, str): if isinstance(string, str):
@@ -74,8 +103,8 @@ def limit_chat_history(history, max_token_limit=None, gpt_model="docsgpt"):
max_token_limit max_token_limit
if max_token_limit if max_token_limit
and max_token_limit and max_token_limit
< settings.MODEL_TOKEN_LIMITS.get(gpt_model, settings.DEFAULT_MAX_HISTORY) < settings.LLM_TOKEN_LIMITS.get(gpt_model, settings.DEFAULT_MAX_HISTORY)
else settings.MODEL_TOKEN_LIMITS.get(gpt_model, settings.DEFAULT_MAX_HISTORY) else settings.LLM_TOKEN_LIMITS.get(gpt_model, settings.DEFAULT_MAX_HISTORY)
) )
if not history: if not history:
@@ -109,3 +138,14 @@ def validate_function_name(function_name):
if not re.match(r"^[a-zA-Z0-9_-]+$", function_name): if not re.match(r"^[a-zA-Z0-9_-]+$", function_name):
return False return False
return True return True
def generate_image_url(image_path):
strategy = getattr(settings, "URL_STRATEGY", "backend")
if strategy == "s3":
bucket_name = getattr(settings, "S3_BUCKET_NAME", "docsgpt-test-bucket")
region_name = getattr(settings, "SAGEMAKER_REGION", "eu-central-1")
return f"https://{bucket_name}.s3.{region_name}.amazonaws.com/{image_path}"
else:
base_url = getattr(settings, "API_URL", "http://localhost:7091")
return f"{base_url}/api/images/{image_path}"

View File

@@ -143,8 +143,8 @@ def run_agent_logic(agent_config, input_data):
agent = AgentCreator.create_agent( agent = AgentCreator.create_agent(
agent_type, agent_type,
endpoint="webhook", endpoint="webhook",
llm_name=settings.LLM_NAME, llm_name=settings.LLM_PROVIDER,
gpt_model=settings.MODEL_NAME, gpt_model=settings.LLM_NAME,
api_key=settings.API_KEY, api_key=settings.API_KEY,
user_api_key=user_api_key, user_api_key=user_api_key,
prompt=prompt, prompt=prompt,
@@ -159,7 +159,7 @@ def run_agent_logic(agent_config, input_data):
prompt=prompt, prompt=prompt,
chunks=chunks, chunks=chunks,
token_limit=settings.DEFAULT_MAX_HISTORY, token_limit=settings.DEFAULT_MAX_HISTORY,
gpt_model=settings.MODEL_NAME, gpt_model=settings.LLM_NAME,
user_api_key=user_api_key, user_api_key=user_api_key,
decoded_token=decoded_token, decoded_token=decoded_token,
) )
@@ -194,7 +194,7 @@ def run_agent_logic(agent_config, input_data):
# Define the main function for ingesting and processing documents. # Define the main function for ingesting and processing documents.
def ingest_worker( def ingest_worker(
self, directory, formats, name_job, filename, user, retriever="classic" self, directory, formats, job_name, filename, user, dir_name=None, user_dir=None, retriever="classic"
): ):
""" """
Ingest and process documents. Ingest and process documents.
@@ -203,9 +203,11 @@ def ingest_worker(
self: Reference to the instance of the task. self: Reference to the instance of the task.
directory (str): Specifies the directory for ingesting ('inputs' or 'temp'). directory (str): Specifies the directory for ingesting ('inputs' or 'temp').
formats (list of str): List of file extensions to consider for ingestion (e.g., [".rst", ".md"]). formats (list of str): List of file extensions to consider for ingestion (e.g., [".rst", ".md"]).
name_job (str): Name of the job for this ingestion task. job_name (str): Name of the job for this ingestion task (original, unsanitized).
filename (str): Name of the file to be ingested. filename (str): Name of the file to be ingested.
user (str): Identifier for the user initiating the ingestion. user (str): Identifier for the user initiating the ingestion (original, unsanitized).
dir_name (str, optional): Sanitized directory name for filesystem operations.
user_dir (str, optional): Sanitized user ID for filesystem operations.
retriever (str): Type of retriever to use for processing the documents. retriever (str): Type of retriever to use for processing the documents.
Returns: Returns:
@@ -216,13 +218,13 @@ def ingest_worker(
limit = None limit = None
exclude = True exclude = True
sample = False sample = False
storage = StorageCreator.get_storage() storage = StorageCreator.get_storage()
full_path = os.path.join(directory, user, name_job) full_path = os.path.join(directory, user_dir, dir_name)
source_file_path = os.path.join(full_path, filename) source_file_path = os.path.join(full_path, filename)
logging.info(f"Ingest file: {full_path}", extra={"user": user, "job": name_job}) logging.info(f"Ingest file: {full_path}", extra={"user": user, "job": job_name})
# Create temporary working directory # Create temporary working directory
with tempfile.TemporaryDirectory() as temp_dir: with tempfile.TemporaryDirectory() as temp_dir:
@@ -283,13 +285,14 @@ def ingest_worker(
for i in range(min(5, len(raw_docs))): for i in range(min(5, len(raw_docs))):
logging.info(f"Sample document {i}: {raw_docs[i]}") logging.info(f"Sample document {i}: {raw_docs[i]}")
file_data = { file_data = {
"name": name_job, "name": job_name, # Use original job_name
"file": filename, "file": filename,
"user": user, "user": user, # Use original user
"tokens": tokens, "tokens": tokens,
"retriever": retriever, "retriever": retriever,
"id": str(id), "id": str(id),
"type": "local", "type": "local",
"original_file_path": source_file_path,
} }
upload_index(vector_store_path, file_data) upload_index(vector_store_path, file_data)
@@ -301,9 +304,9 @@ def ingest_worker(
return { return {
"directory": directory, "directory": directory,
"formats": formats, "formats": formats,
"name_job": name_job, "name_job": job_name, # Use original job_name
"filename": filename, "filename": filename,
"user": user, "user": user, # Use original user
"limited": False, "limited": False,
} }
@@ -449,7 +452,7 @@ def attachment_worker(self, file_info, user):
try: try:
self.update_state(state="PROGRESS", meta={"current": 10}) self.update_state(state="PROGRESS", meta={"current": 10})
storage = StorageCreator.get_storage() storage = StorageCreator.get_storage()
self.update_state( self.update_state(
state="PROGRESS", meta={"current": 30, "status": "Processing content"} state="PROGRESS", meta={"current": 30, "status": "Processing content"}
) )
@@ -458,9 +461,11 @@ def attachment_worker(self, file_info, user):
relative_path, relative_path,
lambda local_path, **kwargs: SimpleDirectoryReader( lambda local_path, **kwargs: SimpleDirectoryReader(
input_files=[local_path], exclude_hidden=True, errors="ignore" input_files=[local_path], exclude_hidden=True, errors="ignore"
).load_data()[0].text )
.load_data()[0]
.text,
) )
token_count = num_tokens_from_string(content) token_count = num_tokens_from_string(content)
self.update_state( self.update_state(
@@ -475,6 +480,7 @@ def attachment_worker(self, file_info, user):
"_id": doc_id, "_id": doc_id,
"user": user, "user": user,
"path": relative_path, "path": relative_path,
"filename": filename,
"content": content, "content": content,
"token_count": token_count, "token_count": token_count,
"mime_type": mime_type, "mime_type": mime_type,
@@ -487,9 +493,7 @@ def attachment_worker(self, file_info, user):
f"Stored attachment with ID: {attachment_id}", extra={"user": user} f"Stored attachment with ID: {attachment_id}", extra={"user": user}
) )
self.update_state( self.update_state(state="PROGRESS", meta={"current": 100, "status": "Complete"})
state="PROGRESS", meta={"current": 100, "status": "Complete"}
)
return { return {
"filename": filename, "filename": filename,

View File

@@ -1,3 +1,4 @@
name: docsgpt-oss
services: services:
redis: redis:

View File

@@ -1,3 +1,4 @@
name: docsgpt-oss
services: services:
frontend: frontend:
build: ../frontend build: ../frontend
@@ -17,19 +18,19 @@ services:
environment: environment:
- API_KEY=$API_KEY - API_KEY=$API_KEY
- EMBEDDINGS_KEY=$API_KEY - EMBEDDINGS_KEY=$API_KEY
- LLM_PROVIDER=$LLM_PROVIDER
- LLM_NAME=$LLM_NAME - LLM_NAME=$LLM_NAME
- CELERY_BROKER_URL=redis://redis:6379/0 - CELERY_BROKER_URL=redis://redis:6379/0
- CELERY_RESULT_BACKEND=redis://redis:6379/1 - CELERY_RESULT_BACKEND=redis://redis:6379/1
- MONGO_URI=mongodb://mongo:27017/docsgpt - MONGO_URI=mongodb://mongo:27017/docsgpt
- CACHE_REDIS_URL=redis://redis:6379/2 - CACHE_REDIS_URL=redis://redis:6379/2
- OPENAI_BASE_URL=$OPENAI_BASE_URL - OPENAI_BASE_URL=$OPENAI_BASE_URL
- MODEL_NAME=$MODEL_NAME
ports: ports:
- "7091:7091" - "7091:7091"
volumes: volumes:
- ../application/indexes:/app/application/indexes - ../application/indexes:/app/indexes
- ../application/inputs:/app/inputs - ../application/inputs:/app/inputs
- ../application/vectors:/app/application/vectors - ../application/vectors:/app/vectors
depends_on: depends_on:
- redis - redis
- mongo - mongo
@@ -41,6 +42,7 @@ services:
environment: environment:
- API_KEY=$API_KEY - API_KEY=$API_KEY
- EMBEDDINGS_KEY=$API_KEY - EMBEDDINGS_KEY=$API_KEY
- LLM_PROVIDER=$LLM_PROVIDER
- LLM_NAME=$LLM_NAME - LLM_NAME=$LLM_NAME
- CELERY_BROKER_URL=redis://redis:6379/0 - CELERY_BROKER_URL=redis://redis:6379/0
- CELERY_RESULT_BACKEND=redis://redis:6379/1 - CELERY_RESULT_BACKEND=redis://redis:6379/1
@@ -48,9 +50,9 @@ services:
- API_URL=http://backend:7091 - API_URL=http://backend:7091
- CACHE_REDIS_URL=redis://redis:6379/2 - CACHE_REDIS_URL=redis://redis:6379/2
volumes: volumes:
- ../application/indexes:/app/application/indexes - ../application/indexes:/app/indexes
- ../application/inputs:/app/inputs - ../application/inputs:/app/inputs
- ../application/vectors:/app/application/vectors - ../application/vectors:/app/vectors
depends_on: depends_on:
- redis - redis
- mongo - mongo

View File

@@ -4,7 +4,7 @@ metadata:
name: docsgpt-secrets name: docsgpt-secrets
type: Opaque type: Opaque
data: data:
LLM_NAME: ZG9jc2dwdA== LLM_PROVIDER: ZG9jc2dwdA==
INTERNAL_KEY: aW50ZXJuYWw= INTERNAL_KEY: aW50ZXJuYWw=
CELERY_BROKER_URL: cmVkaXM6Ly9yZWRpcy1zZXJ2aWNlOjYzNzkvMA== CELERY_BROKER_URL: cmVkaXM6Ly9yZWRpcy1zZXJ2aWNlOjYzNzkvMA==
CELERY_RESULT_BACKEND: cmVkaXM6Ly9yZWRpcy1zZXJ2aWNlOjYzNzkvMA== CELERY_RESULT_BACKEND: cmVkaXM6Ly9yZWRpcy1zZXJ2aWNlOjYzNzkvMA==

View File

@@ -37,7 +37,7 @@ The fastest way to try out DocsGPT is by using the public API endpoint. This req
Open the `.env` file and add the following lines: Open the `.env` file and add the following lines:
``` ```
LLM_NAME=docsgpt LLM_PROVIDER=docsgpt
VITE_API_STREAMING=true VITE_API_STREAMING=true
``` ```
@@ -93,16 +93,16 @@ There are two Ollama optional files:
3. **Pull the Ollama Model:** 3. **Pull the Ollama Model:**
**Crucially, after launching with Ollama, you need to pull the desired model into the Ollama container.** Find the `MODEL_NAME` you configured in your `.env` file (e.g., `llama3.2:1b`). Then execute the following command to pull the model *inside* the running Ollama container: **Crucially, after launching with Ollama, you need to pull the desired model into the Ollama container.** Find the `LLM_NAME` you configured in your `.env` file (e.g., `llama3.2:1b`). Then execute the following command to pull the model *inside* the running Ollama container:
```bash ```bash
docker compose -f deployment/docker-compose.yaml -f deployment/optional/docker-compose.optional.ollama-cpu.yaml exec -it ollama ollama pull <MODEL_NAME> docker compose -f deployment/docker-compose.yaml -f deployment/optional/docker-compose.optional.ollama-cpu.yaml exec -it ollama ollama pull <LLM_NAME>
``` ```
or (for GPU): or (for GPU):
```bash ```bash
docker compose -f deployment/docker-compose.yaml -f deployment/optional/docker-compose.optional.ollama-gpu.yaml exec -it ollama ollama pull <MODEL_NAME> docker compose -f deployment/docker-compose.yaml -f deployment/optional/docker-compose.optional.ollama-gpu.yaml exec -it ollama ollama pull <LLM_NAME>
``` ```
Replace `<MODEL_NAME>` with the actual model name from your `.env` file. Replace `<LLM_NAME>` with the actual model name from your `.env` file.
4. **Access DocsGPT in your browser:** 4. **Access DocsGPT in your browser:**

View File

@@ -20,9 +20,9 @@ The easiest and recommended way to configure basic settings is by using a `.env`
**Example `.env` file structure:** **Example `.env` file structure:**
``` ```
LLM_NAME=openai LLM_PROVIDER=openai
API_KEY=YOUR_OPENAI_API_KEY API_KEY=YOUR_OPENAI_API_KEY
MODEL_NAME=gpt-4o LLM_NAME=gpt-4o
``` ```
### 2. Configuration via `settings.py` file (Advanced) ### 2. Configuration via `settings.py` file (Advanced)
@@ -37,7 +37,7 @@ While modifying `settings.py` offers more flexibility, it's generally recommende
Here are some of the most fundamental settings you'll likely want to configure: Here are some of the most fundamental settings you'll likely want to configure:
- **`LLM_NAME`**: This setting determines which Large Language Model (LLM) provider DocsGPT will use. It tells DocsGPT which API to interact with. - **`LLM_PROVIDER`**: This setting determines which Large Language Model (LLM) provider DocsGPT will use. It tells DocsGPT which API to interact with.
- **Common values:** - **Common values:**
- `docsgpt`: Use the DocsGPT Public API Endpoint (simple and free, as offered in `setup.sh` option 1). - `docsgpt`: Use the DocsGPT Public API Endpoint (simple and free, as offered in `setup.sh` option 1).
@@ -49,11 +49,11 @@ Here are some of the most fundamental settings you'll likely want to configure:
- `azure_openai`: Use Azure OpenAI Service. - `azure_openai`: Use Azure OpenAI Service.
- `openai` (when using local inference engines like Ollama, Llama.cpp, TGI, etc.): This signals DocsGPT to use an OpenAI-compatible API format, even if the actual LLM is running locally. - `openai` (when using local inference engines like Ollama, Llama.cpp, TGI, etc.): This signals DocsGPT to use an OpenAI-compatible API format, even if the actual LLM is running locally.
- **`MODEL_NAME`**: Specifies the specific model to use from the chosen LLM provider. The available models depend on the `LLM_NAME` you've selected. - **`LLM_NAME`**: Specifies the specific model to use from the chosen LLM provider. The available models depend on the `LLM_PROVIDER` you've selected.
- **Examples:** - **Examples:**
- For `LLM_NAME=openai`: `gpt-4o` - For `LLM_PROVIDER=openai`: `gpt-4o`
- For `LLM_NAME=google`: `gemini-2.0-flash` - For `LLM_PROVIDER=google`: `gemini-2.0-flash`
- For local models (e.g., Ollama): `llama3.2:1b` (or any model name available in your setup). - For local models (e.g., Ollama): `llama3.2:1b` (or any model name available in your setup).
- **`EMBEDDINGS_NAME`**: This setting defines which embedding model DocsGPT will use to generate vector embeddings for your documents. Embeddings are numerical representations of text that allow DocsGPT to understand the semantic meaning of your documents for efficient search and retrieval. - **`EMBEDDINGS_NAME`**: This setting defines which embedding model DocsGPT will use to generate vector embeddings for your documents. Embeddings are numerical representations of text that allow DocsGPT to understand the semantic meaning of your documents for efficient search and retrieval.
@@ -63,7 +63,7 @@ Here are some of the most fundamental settings you'll likely want to configure:
- **`API_KEY`**: Required for most cloud-based LLM providers. This is your authentication key to access the LLM provider's API. You'll need to obtain this key from your chosen provider's platform. - **`API_KEY`**: Required for most cloud-based LLM providers. This is your authentication key to access the LLM provider's API. You'll need to obtain this key from your chosen provider's platform.
- **`OPENAI_BASE_URL`**: Specifically used when `LLM_NAME` is set to `openai` but you are connecting to a local inference engine (like Ollama, Llama.cpp, etc.) that exposes an OpenAI-compatible API. This setting tells DocsGPT where to find your local LLM server. - **`OPENAI_BASE_URL`**: Specifically used when `LLM_PROVIDER` is set to `openai` but you are connecting to a local inference engine (like Ollama, Llama.cpp, etc.) that exposes an OpenAI-compatible API. This setting tells DocsGPT where to find your local LLM server.
## Configuration Examples ## Configuration Examples
@@ -74,9 +74,9 @@ Let's look at some concrete examples of how to configure these settings in your
To use OpenAI's `gpt-4o` model, you would configure your `.env` file like this: To use OpenAI's `gpt-4o` model, you would configure your `.env` file like this:
``` ```
LLM_NAME=openai LLM_PROVIDER=openai
API_KEY=YOUR_OPENAI_API_KEY # Replace with your actual OpenAI API key API_KEY=YOUR_OPENAI_API_KEY # Replace with your actual OpenAI API key
MODEL_NAME=gpt-4o LLM_NAME=gpt-4o
``` ```
Make sure to replace `YOUR_OPENAI_API_KEY` with your actual OpenAI API key. Make sure to replace `YOUR_OPENAI_API_KEY` with your actual OpenAI API key.
@@ -86,14 +86,14 @@ Make sure to replace `YOUR_OPENAI_API_KEY` with your actual OpenAI API key.
To use a local Ollama server with the `llama3.2:1b` model, you would configure your `.env` file like this: To use a local Ollama server with the `llama3.2:1b` model, you would configure your `.env` file like this:
``` ```
LLM_NAME=openai # Using OpenAI compatible API format for local models LLM_PROVIDER=openai # Using OpenAI compatible API format for local models
API_KEY=None # API Key is not needed for local Ollama API_KEY=None # API Key is not needed for local Ollama
MODEL_NAME=llama3.2:1b LLM_NAME=llama3.2:1b
OPENAI_BASE_URL=http://host.docker.internal:11434/v1 # Default Ollama API URL within Docker OPENAI_BASE_URL=http://host.docker.internal:11434/v1 # Default Ollama API URL within Docker
EMBEDDINGS_NAME=huggingface_sentence-transformers/all-mpnet-base-v2 # You can also run embeddings locally if needed EMBEDDINGS_NAME=huggingface_sentence-transformers/all-mpnet-base-v2 # You can also run embeddings locally if needed
``` ```
In this case, even though you are using Ollama locally, `LLM_NAME` is set to `openai` because Ollama (and many other local inference engines) are designed to be API-compatible with OpenAI. `OPENAI_BASE_URL` points DocsGPT to the local Ollama server. In this case, even though you are using Ollama locally, `LLM_PROVIDER` is set to `openai` because Ollama (and many other local inference engines) are designed to be API-compatible with OpenAI. `OPENAI_BASE_URL` points DocsGPT to the local Ollama server.
## Authentication Settings ## Authentication Settings

View File

@@ -32,9 +32,9 @@ Choose the LLM of your choice.
### For Open source llm change: ### For Open source llm change:
<Steps> <Steps>
### Step 1 ### Step 1
For open source version please edit `LLM_NAME`, `MODEL_NAME` and others in the .env file. Refer to [⚙️ App Configuration](/Deploying/DocsGPT-Settings) for more information. For open source version please edit `LLM_PROVIDER`, `LLM_NAME` and others in the .env file. Refer to [⚙️ App Configuration](/Deploying/DocsGPT-Settings) for more information.
### Step 2 ### Step 2
Visit [☁️ Cloud Providers](/Models/cloud-providers) for the updated list of online models. Make sure you have the right API_KEY and correct LLM_NAME. Visit [☁️ Cloud Providers](/Models/cloud-providers) for the updated list of online models. Make sure you have the right API_KEY and correct LLM_PROVIDER.
For self-hosted please visit [🖥️ Local Inference](/Models/local-inference). For self-hosted please visit [🖥️ Local Inference](/Models/local-inference).
</Steps> </Steps>

View File

@@ -13,15 +13,15 @@ The primary method for configuring your LLM provider in DocsGPT is through the `
To connect to a cloud LLM provider, you will typically need to configure the following basic settings in your `.env` file: To connect to a cloud LLM provider, you will typically need to configure the following basic settings in your `.env` file:
* **`LLM_NAME`**: This setting is essential and identifies the specific cloud provider you wish to use (e.g., `openai`, `google`, `anthropic`). * **`LLM_PROVIDER`**: This setting is essential and identifies the specific cloud provider you wish to use (e.g., `openai`, `google`, `anthropic`).
* **`MODEL_NAME`**: Specifies the exact model you want to utilize from your chosen provider (e.g., `gpt-4o`, `gemini-2.0-flash`, `claude-3-5-sonnet-latest`). Refer to your provider's documentation for a list of available models. * **`LLM_NAME`**: Specifies the exact model you want to utilize from your chosen provider (e.g., `gpt-4o`, `gemini-2.0-flash`, `claude-3-5-sonnet-latest`). Refer to your provider's documentation for a list of available models.
* **`API_KEY`**: Almost all cloud LLM providers require an API key for authentication. Obtain your API key from your chosen provider's platform and securely store it in your `.env` file. * **`API_KEY`**: Almost all cloud LLM providers require an API key for authentication. Obtain your API key from your chosen provider's platform and securely store it in your `.env` file.
## Explicitly Supported Cloud Providers ## Explicitly Supported Cloud Providers
DocsGPT offers direct, streamlined support for the following cloud LLM providers, making configuration straightforward. The table below outlines the `LLM_NAME` and example `MODEL_NAME` values to use for each provider in your `.env` file. DocsGPT offers direct, streamlined support for the following cloud LLM providers, making configuration straightforward. The table below outlines the `LLM_PROVIDER` and example `LLM_NAME` values to use for each provider in your `.env` file.
| Provider | `LLM_NAME` | Example `MODEL_NAME` | | Provider | `LLM_PROVIDER` | Example `LLM_NAME` |
| :--------------------------- | :------------- | :-------------------------- | | :--------------------------- | :------------- | :-------------------------- |
| DocsGPT Public API | `docsgpt` | `None` | | DocsGPT Public API | `docsgpt` | `None` |
| OpenAI | `openai` | `gpt-4o` | | OpenAI | `openai` | `gpt-4o` |
@@ -35,16 +35,16 @@ DocsGPT offers direct, streamlined support for the following cloud LLM providers
DocsGPT's flexible architecture allows you to connect to any cloud provider that offers an API compatible with the OpenAI API standard. This opens up a vast ecosystem of LLM services. DocsGPT's flexible architecture allows you to connect to any cloud provider that offers an API compatible with the OpenAI API standard. This opens up a vast ecosystem of LLM services.
To connect to an OpenAI-compatible cloud provider, you will still use `LLM_NAME=openai` in your `.env` file. However, you will also need to specify the API endpoint of your chosen provider using the `OPENAI_BASE_URL` setting. You will also likely need to provide an `API_KEY` and `MODEL_NAME` as required by that provider. To connect to an OpenAI-compatible cloud provider, you will still use `LLM_PROVIDER=openai` in your `.env` file. However, you will also need to specify the API endpoint of your chosen provider using the `OPENAI_BASE_URL` setting. You will also likely need to provide an `API_KEY` and `LLM_NAME` as required by that provider.
**Example for DeepSeek (OpenAI-Compatible API):** **Example for DeepSeek (OpenAI-Compatible API):**
To connect to DeepSeek, which offers an OpenAI-compatible API, your `.env` file could be configured as follows: To connect to DeepSeek, which offers an OpenAI-compatible API, your `.env` file could be configured as follows:
``` ```
LLM_NAME=openai LLM_PROVIDER=openai
API_KEY=YOUR_API_KEY # Your DeepSeek API key API_KEY=YOUR_API_KEY # Your DeepSeek API key
MODEL_NAME=deepseek-chat # Or your desired DeepSeek model name LLM_NAME=deepseek-chat # Or your desired DeepSeek model name
OPENAI_BASE_URL=https://api.deepseek.com/v1 # DeepSeek's OpenAI API URL OPENAI_BASE_URL=https://api.deepseek.com/v1 # DeepSeek's OpenAI API URL
``` ```

View File

@@ -60,7 +60,7 @@ To use OpenAI's `text-embedding-ada-002` embedding model, you need to set `EMBED
**Example `.env` configuration for OpenAI Embeddings:** **Example `.env` configuration for OpenAI Embeddings:**
``` ```
LLM_NAME=openai LLM_PROVIDER=openai
API_KEY=YOUR_OPENAI_API_KEY # Your OpenAI API Key API_KEY=YOUR_OPENAI_API_KEY # Your OpenAI API Key
EMBEDDINGS_NAME=openai_text-embedding-ada-002 EMBEDDINGS_NAME=openai_text-embedding-ada-002
``` ```

View File

@@ -15,8 +15,8 @@ Setting up a local inference engine with DocsGPT is configured through environme
To connect to a local inference engine, you will generally need to configure these settings in your `.env` file: To connect to a local inference engine, you will generally need to configure these settings in your `.env` file:
* **`LLM_NAME`**: Crucially set this to `openai`. This tells DocsGPT to use the OpenAI-compatible API format for communication, even though the LLM is local. * **`LLM_PROVIDER`**: Crucially set this to `openai`. This tells DocsGPT to use the OpenAI-compatible API format for communication, even though the LLM is local.
* **`MODEL_NAME`**: Specify the model name as recognized by your local inference engine. This might be a model identifier or left as `None` if the engine doesn't require explicit model naming in the API request. * **`LLM_NAME`**: Specify the model name as recognized by your local inference engine. This might be a model identifier or left as `None` if the engine doesn't require explicit model naming in the API request.
* **`OPENAI_BASE_URL`**: This is essential. Set this to the base URL of your local inference engine's API endpoint. This tells DocsGPT where to find your local LLM server. * **`OPENAI_BASE_URL`**: This is essential. Set this to the base URL of your local inference engine's API endpoint. This tells DocsGPT where to find your local LLM server.
* **`API_KEY`**: Generally, for local inference engines, you can set `API_KEY=None` as authentication is usually not required in local setups. * **`API_KEY`**: Generally, for local inference engines, you can set `API_KEY=None` as authentication is usually not required in local setups.
@@ -24,16 +24,16 @@ To connect to a local inference engine, you will generally need to configure the
DocsGPT is readily configurable to work with the following local inference engines, all communicating via the OpenAI API format. Here are example `OPENAI_BASE_URL` values for each, based on default setups: DocsGPT is readily configurable to work with the following local inference engines, all communicating via the OpenAI API format. Here are example `OPENAI_BASE_URL` values for each, based on default setups:
| Inference Engine | `LLM_NAME` | `OPENAI_BASE_URL` | | Inference Engine | `LLM_PROVIDER` | `OPENAI_BASE_URL` |
| :---------------------------- | :--------- | :------------------------- | | :---------------------------- | :------------- | :------------------------- |
| LLaMa.cpp | `openai` | `http://localhost:8000/v1` | | LLaMa.cpp | `openai` | `http://localhost:8000/v1` |
| Ollama | `openai` | `http://localhost:11434/v1` | | Ollama | `openai` | `http://localhost:11434/v1` |
| Text Generation Inference (TGI)| `openai` | `http://localhost:8080/v1` | | Text Generation Inference (TGI)| `openai` | `http://localhost:8080/v1` |
| SGLang | `openai` | `http://localhost:30000/v1` | | SGLang | `openai` | `http://localhost:30000/v1` |
| vLLM | `openai` | `http://localhost:8000/v1` | | vLLM | `openai` | `http://localhost:8000/v1` |
| Aphrodite | `openai` | `http://localhost:2242/v1` | | Aphrodite | `openai` | `http://localhost:2242/v1` |
| FriendliAI | `openai` | `http://localhost:8997/v1` | | FriendliAI | `openai` | `http://localhost:8997/v1` |
| LMDeploy | `openai` | `http://localhost:23333/v1` | | LMDeploy | `openai` | `http://localhost:23333/v1` |
**Important Note on `localhost` vs `host.docker.internal`:** **Important Note on `localhost` vs `host.docker.internal`:**

View File

@@ -8,7 +8,7 @@
"name": "frontend", "name": "frontend",
"version": "0.0.0", "version": "0.0.0",
"dependencies": { "dependencies": {
"@reduxjs/toolkit": "^2.5.1", "@reduxjs/toolkit": "^2.8.2",
"chart.js": "^4.4.4", "chart.js": "^4.4.4",
"clsx": "^2.1.1", "clsx": "^2.1.1",
"i18next": "^24.2.0", "i18next": "^24.2.0",
@@ -19,7 +19,7 @@
"react-chartjs-2": "^5.3.0", "react-chartjs-2": "^5.3.0",
"react-copy-to-clipboard": "^5.1.0", "react-copy-to-clipboard": "^5.1.0",
"react-dom": "^18.3.1", "react-dom": "^18.3.1",
"react-dropzone": "^14.3.5", "react-dropzone": "^14.3.8",
"react-helmet": "^6.1.0", "react-helmet": "^6.1.0",
"react-i18next": "^15.4.0", "react-i18next": "^15.4.0",
"react-markdown": "^9.0.1", "react-markdown": "^9.0.1",
@@ -28,7 +28,8 @@
"react-syntax-highlighter": "^15.6.1", "react-syntax-highlighter": "^15.6.1",
"rehype-katex": "^7.0.1", "rehype-katex": "^7.0.1",
"remark-gfm": "^4.0.0", "remark-gfm": "^4.0.0",
"remark-math": "^6.0.0" "remark-math": "^6.0.0",
"tailwind-merge": "^3.3.1"
}, },
"devDependencies": { "devDependencies": {
"@types/mermaid": "^9.1.0", "@types/mermaid": "^9.1.0",
@@ -1197,11 +1198,13 @@
} }
}, },
"node_modules/@reduxjs/toolkit": { "node_modules/@reduxjs/toolkit": {
"version": "2.5.1", "version": "2.8.2",
"resolved": "https://registry.npmjs.org/@reduxjs/toolkit/-/toolkit-2.5.1.tgz", "resolved": "https://registry.npmjs.org/@reduxjs/toolkit/-/toolkit-2.8.2.tgz",
"integrity": "sha512-UHhy3p0oUpdhnSxyDjaRDYaw8Xra75UiLbCiRozVPHjfDwNYkh0TsVm/1OmTW8Md+iDAJmYPWUKMvsMc2GtpNg==", "integrity": "sha512-MYlOhQ0sLdw4ud48FoC5w0dH9VfWQjtCjreKwYTT3l+r427qYC5Y8PihNutepr8XrNaBUDQo9khWUwQxZaqt5A==",
"license": "MIT", "license": "MIT",
"dependencies": { "dependencies": {
"@standard-schema/spec": "^1.0.0",
"@standard-schema/utils": "^0.3.0",
"immer": "^10.0.3", "immer": "^10.0.3",
"redux": "^5.0.1", "redux": "^5.0.1",
"redux-thunk": "^3.1.0", "redux-thunk": "^3.1.0",
@@ -1542,6 +1545,18 @@
"integrity": "sha512-zt6OdqaDoOnJ1ZYsCYGt9YmWzDXl4vQdKTyJev62gFhRGKdx7mcT54V9KIjg+d2wi9EXsPvAPKe7i7WjfVWB8g==", "integrity": "sha512-zt6OdqaDoOnJ1ZYsCYGt9YmWzDXl4vQdKTyJev62gFhRGKdx7mcT54V9KIjg+d2wi9EXsPvAPKe7i7WjfVWB8g==",
"dev": true "dev": true
}, },
"node_modules/@standard-schema/spec": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/@standard-schema/spec/-/spec-1.0.0.tgz",
"integrity": "sha512-m2bOd0f2RT9k8QJx1JN85cZYyH1RqFBdlwtkSlf4tBDYLCiiZnv1fIIwacK6cqwXavOydf0NPToMQgpKq+dVlA==",
"license": "MIT"
},
"node_modules/@standard-schema/utils": {
"version": "0.3.0",
"resolved": "https://registry.npmjs.org/@standard-schema/utils/-/utils-0.3.0.tgz",
"integrity": "sha512-e7Mew686owMaPJVNNLs55PUvgz371nKgwsc4vxE49zsODpJEnxgxRo2y/OKrqueavXgZNMDVj3DdHFlaSAeU8g==",
"license": "MIT"
},
"node_modules/@svgr/babel-plugin-add-jsx-attribute": { "node_modules/@svgr/babel-plugin-add-jsx-attribute": {
"version": "8.0.0", "version": "8.0.0",
"resolved": "https://registry.npmjs.org/@svgr/babel-plugin-add-jsx-attribute/-/babel-plugin-add-jsx-attribute-8.0.0.tgz", "resolved": "https://registry.npmjs.org/@svgr/babel-plugin-add-jsx-attribute/-/babel-plugin-add-jsx-attribute-8.0.0.tgz",
@@ -9186,9 +9201,10 @@
} }
}, },
"node_modules/react-dropzone": { "node_modules/react-dropzone": {
"version": "14.3.5", "version": "14.3.8",
"resolved": "https://registry.npmjs.org/react-dropzone/-/react-dropzone-14.3.5.tgz", "resolved": "https://registry.npmjs.org/react-dropzone/-/react-dropzone-14.3.8.tgz",
"integrity": "sha512-9nDUaEEpqZLOz5v5SUcFA0CjM4vq8YbqO0WRls+EYT7+DvxUdzDPKNCPLqGfj3YL9MsniCLCD4RFA6M95V6KMQ==", "integrity": "sha512-sBgODnq+lcA4P296DY4wacOZz3JFpD99fp+hb//iBO2HHnyeZU3FwWyXJ6salNpqQdsZrgMrotuko/BdJMV8Ug==",
"license": "MIT",
"dependencies": { "dependencies": {
"attr-accept": "^2.2.4", "attr-accept": "^2.2.4",
"file-selector": "^2.1.0", "file-selector": "^2.1.0",
@@ -10469,6 +10485,16 @@
"integrity": "sha512-gLXCKdN1/j47AiHiOkJN69hJmcbGTHI0ImLmbYLHykhgeN0jVGola9yVjFgzCUklsZQMW55o+dW7IXv3RCXDzA==", "integrity": "sha512-gLXCKdN1/j47AiHiOkJN69hJmcbGTHI0ImLmbYLHykhgeN0jVGola9yVjFgzCUklsZQMW55o+dW7IXv3RCXDzA==",
"dev": true "dev": true
}, },
"node_modules/tailwind-merge": {
"version": "3.3.1",
"resolved": "https://registry.npmjs.org/tailwind-merge/-/tailwind-merge-3.3.1.tgz",
"integrity": "sha512-gBXpgUm/3rp1lMZZrM/w7D8GKqshif0zAymAhbCyIt8KMe+0v9DQ7cdYLR4FHH/cKpdTXb+A/tKKU3eolfsI+g==",
"license": "MIT",
"funding": {
"type": "github",
"url": "https://github.com/sponsors/dcastil"
}
},
"node_modules/tailwindcss": { "node_modules/tailwindcss": {
"version": "3.4.17", "version": "3.4.17",
"resolved": "https://registry.npmjs.org/tailwindcss/-/tailwindcss-3.4.17.tgz", "resolved": "https://registry.npmjs.org/tailwindcss/-/tailwindcss-3.4.17.tgz",

View File

@@ -19,7 +19,7 @@
] ]
}, },
"dependencies": { "dependencies": {
"@reduxjs/toolkit": "^2.5.1", "@reduxjs/toolkit": "^2.8.2",
"chart.js": "^4.4.4", "chart.js": "^4.4.4",
"clsx": "^2.1.1", "clsx": "^2.1.1",
"i18next": "^24.2.0", "i18next": "^24.2.0",
@@ -30,7 +30,7 @@
"react-chartjs-2": "^5.3.0", "react-chartjs-2": "^5.3.0",
"react-copy-to-clipboard": "^5.1.0", "react-copy-to-clipboard": "^5.1.0",
"react-dom": "^18.3.1", "react-dom": "^18.3.1",
"react-dropzone": "^14.3.5", "react-dropzone": "^14.3.8",
"react-helmet": "^6.1.0", "react-helmet": "^6.1.0",
"react-i18next": "^15.4.0", "react-i18next": "^15.4.0",
"react-markdown": "^9.0.1", "react-markdown": "^9.0.1",
@@ -39,7 +39,8 @@
"react-syntax-highlighter": "^15.6.1", "react-syntax-highlighter": "^15.6.1",
"rehype-katex": "^7.0.1", "rehype-katex": "^7.0.1",
"remark-gfm": "^4.0.0", "remark-gfm": "^4.0.0",
"remark-math": "^6.0.0" "remark-math": "^6.0.0",
"tailwind-merge": "^3.3.1"
}, },
"devDependencies": { "devDependencies": {
"@types/mermaid": "^9.1.0", "@types/mermaid": "^9.1.0",

View File

@@ -48,6 +48,7 @@ import {
setConversations, setConversations,
setModalStateDeleteConv, setModalStateDeleteConv,
setSelectedAgent, setSelectedAgent,
setSharedAgents,
} from './preferences/preferenceSlice'; } from './preferences/preferenceSlice';
import Upload from './upload/Upload'; import Upload from './upload/Upload';
@@ -169,73 +170,65 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
const handleTogglePin = (agent: Agent) => { const handleTogglePin = (agent: Agent) => {
userService.togglePinAgent(agent.id ?? '', token).then((response) => { userService.togglePinAgent(agent.id ?? '', token).then((response) => {
if (response.ok) { if (response.ok) {
const updatedAgents = agents?.map((a) => const updatePinnedStatus = (a: Agent) =>
a.id === agent.id ? { ...a, pinned: !a.pinned } : a, a.id === agent.id ? { ...a, pinned: !a.pinned } : a;
); dispatch(setAgents(agents?.map(updatePinnedStatus)));
dispatch(setAgents(updatedAgents)); dispatch(setSharedAgents(sharedAgents?.map(updatePinnedStatus)));
} }
}); });
}; };
const handleConversationClick = (index: string) => { const handleConversationClick = async (index: string) => {
dispatch(setSelectedAgent(null)); try {
conversationService dispatch(setSelectedAgent(null));
.getConversation(index, token)
.then((response) => { const response = await conversationService.getConversation(index, token);
if (!response.ok) { if (!response.ok) {
navigate('/'); navigate('/');
dispatch(setSelectedAgent(null)); return;
return null; }
}
return response.json(); const data = await response.json();
}) if (!data) return;
.then((data) => {
if (!data) return; dispatch(setConversation(data.queries));
dispatch(setConversation(data.queries)); dispatch(updateConversationId({ query: { conversationId: index } }));
dispatch(
updateConversationId({ if (!data.agent_id) {
query: { conversationId: index }, navigate('/');
}), return;
}
let agent: Agent;
if (data.is_shared_usage) {
const sharedResponse = await userService.getSharedAgent(
data.shared_token,
token,
); );
if (isMobile || isTablet) { if (!sharedResponse.ok) {
setNavOpen(false);
}
if (data.agent_id) {
if (data.is_shared_usage) {
userService
.getSharedAgent(data.shared_token, token)
.then((response) => {
if (!response.ok) {
navigate('/');
dispatch(setSelectedAgent(null));
return;
}
response.json().then((agent: Agent) => {
navigate(`/agents/shared/${agent.shared_token}`);
});
});
} else {
userService.getAgent(data.agent_id, token).then((response) => {
if (!response.ok) {
navigate('/');
dispatch(setSelectedAgent(null));
return;
}
response.json().then((agent: Agent) => {
if (agent.shared_token)
navigate(`/agents/shared/${agent.shared_token}`);
else {
dispatch(setSelectedAgent(agent));
navigate('/');
}
});
});
}
} else {
navigate('/'); navigate('/');
dispatch(setSelectedAgent(null)); return;
} }
}); agent = await sharedResponse.json();
navigate(`/agents/shared/${agent.shared_token}`);
} else {
const agentResponse = await userService.getAgent(data.agent_id, token);
if (!agentResponse.ok) {
navigate('/');
return;
}
agent = await agentResponse.json();
if (agent.shared_token) {
navigate(`/agents/shared/${agent.shared_token}`);
} else {
await Promise.resolve(dispatch(setSelectedAgent(agent)));
navigate('/');
}
}
} catch (error) {
console.error('Error handling conversation click:', error);
navigate('/');
}
}; };
const resetConversation = () => { const resetConversation = () => {
@@ -408,9 +401,13 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
<div className="flex items-center gap-2"> <div className="flex items-center gap-2">
<div className="flex w-6 justify-center"> <div className="flex w-6 justify-center">
<img <img
src={agent.image ?? Robot} src={
agent.image && agent.image.trim() !== ''
? agent.image
: Robot
}
alt="agent-logo" alt="agent-logo"
className="h-6 w-6" className="h-6 w-6 rounded-full object-contain"
/> />
</div> </div>
<p className="overflow-hidden overflow-ellipsis whitespace-nowrap text-sm leading-6 text-eerie-black dark:text-bright-gray"> <p className="overflow-hidden overflow-ellipsis whitespace-nowrap text-sm leading-6 text-eerie-black dark:text-bright-gray">

View File

@@ -83,9 +83,9 @@ export default function AgentCard({
<div className="w-full"> <div className="w-full">
<div className="flex w-full items-center gap-1 px-1"> <div className="flex w-full items-center gap-1 px-1">
<img <img
src={agent.image ?? Robot} src={agent.image && agent.image.trim() !== '' ? agent.image : Robot}
alt={`${agent.name}`} alt={`${agent.name}`}
className="h-7 w-7 rounded-full" className="h-7 w-7 rounded-full object-contain"
/> />
{agent.status === 'draft' && ( {agent.status === 'draft' && (
<p className="text-xs text-black opacity-50 dark:text-[#E0E0E0]"> <p className="text-xs text-black opacity-50 dark:text-[#E0E0E0]">

View File

@@ -1,4 +1,4 @@
import React, { useEffect, useRef, useState } from 'react'; import React, { useCallback, useEffect, useRef, useState } from 'react';
import { useDispatch, useSelector } from 'react-redux'; import { useDispatch, useSelector } from 'react-redux';
import { useNavigate, useParams } from 'react-router-dom'; import { useNavigate, useParams } from 'react-router-dom';
@@ -6,6 +6,7 @@ import userService from '../api/services/userService';
import ArrowLeft from '../assets/arrow-left.svg'; import ArrowLeft from '../assets/arrow-left.svg';
import SourceIcon from '../assets/source.svg'; import SourceIcon from '../assets/source.svg';
import Dropdown from '../components/Dropdown'; import Dropdown from '../components/Dropdown';
import { FileUpload } from '../components/FileUpload';
import MultiSelectPopup, { OptionType } from '../components/MultiSelectPopup'; import MultiSelectPopup, { OptionType } from '../components/MultiSelectPopup';
import AgentDetailsModal from '../modals/AgentDetailsModal'; import AgentDetailsModal from '../modals/AgentDetailsModal';
import ConfirmationModal from '../modals/ConfirmationModal'; import ConfirmationModal from '../modals/ConfirmationModal';
@@ -48,6 +49,7 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
agent_type: '', agent_type: '',
status: '', status: '',
}); });
const [imageFile, setImageFile] = useState<File | null>(null);
const [prompts, setPrompts] = useState< const [prompts, setPrompts] = useState<
{ name: string; id: string; type: string }[] { name: string; id: string; type: string }[]
>([]); >([]);
@@ -106,6 +108,13 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
); );
}; };
const handleUpload = useCallback((files: File[]) => {
if (files && files.length > 0) {
const file = files[0];
setImageFile(file);
}
}, []);
const handleCancel = () => { const handleCancel = () => {
if (selectedAgent) dispatch(setSelectedAgent(null)); if (selectedAgent) dispatch(setSelectedAgent(null));
navigate('/agents'); navigate('/agents');
@@ -118,42 +127,80 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
}; };
const handleSaveDraft = async () => { const handleSaveDraft = async () => {
const response = const formData = new FormData();
effectiveMode === 'new' formData.append('name', agent.name);
? await userService.createAgent({ ...agent, status: 'draft' }, token) formData.append('description', agent.description);
: await userService.updateAgent( formData.append('source', agent.source);
agent.id || '', formData.append('chunks', agent.chunks);
{ ...agent, status: 'draft' }, formData.append('retriever', agent.retriever);
token, formData.append('prompt_id', agent.prompt_id);
); formData.append('agent_type', agent.agent_type);
if (!response.ok) throw new Error('Failed to create agent draft'); formData.append('status', 'draft');
const data = await response.json();
if (effectiveMode === 'new') { if (imageFile) formData.append('image', imageFile);
setEffectiveMode('draft');
setAgent((prev) => ({ ...prev, id: data.id })); if (agent.tools && agent.tools.length > 0)
formData.append('tools', JSON.stringify(agent.tools));
else formData.append('tools', '[]');
try {
const response =
effectiveMode === 'new'
? await userService.createAgent(formData, token)
: await userService.updateAgent(agent.id || '', formData, token);
if (!response.ok) throw new Error('Failed to create agent draft');
const data = await response.json();
if (effectiveMode === 'new') {
setEffectiveMode('draft');
setAgent((prev) => ({
...prev,
id: data.id,
image: data.image || prev.image,
}));
}
} catch (error) {
console.error('Error saving draft:', error);
throw new Error('Failed to save draft');
} }
}; };
const handlePublish = async () => { const handlePublish = async () => {
const response = const formData = new FormData();
effectiveMode === 'new' formData.append('name', agent.name);
? await userService.createAgent( formData.append('description', agent.description);
{ ...agent, status: 'published' }, formData.append('source', agent.source);
token, formData.append('chunks', agent.chunks);
) formData.append('retriever', agent.retriever);
: await userService.updateAgent( formData.append('prompt_id', agent.prompt_id);
agent.id || '', formData.append('agent_type', agent.agent_type);
{ ...agent, status: 'published' }, formData.append('status', 'published');
token,
); if (imageFile) formData.append('image', imageFile);
if (!response.ok) throw new Error('Failed to publish agent'); if (agent.tools && agent.tools.length > 0)
const data = await response.json(); formData.append('tools', JSON.stringify(agent.tools));
if (data.id) setAgent((prev) => ({ ...prev, id: data.id })); else formData.append('tools', '[]');
if (data.key) setAgent((prev) => ({ ...prev, key: data.key }));
if (effectiveMode === 'new' || effectiveMode === 'draft') { try {
setEffectiveMode('edit'); const response =
setAgent((prev) => ({ ...prev, status: 'published' })); effectiveMode === 'new'
setAgentDetails('ACTIVE'); ? await userService.createAgent(formData, token)
: await userService.updateAgent(agent.id || '', formData, token);
if (!response.ok) throw new Error('Failed to publish agent');
const data = await response.json();
if (data.id) setAgent((prev) => ({ ...prev, id: data.id }));
if (data.key) setAgent((prev) => ({ ...prev, key: data.key }));
if (effectiveMode === 'new' || effectiveMode === 'draft') {
setEffectiveMode('edit');
setAgent((prev) => ({
...prev,
status: 'published',
image: data.image || prev.image,
}));
setAgentDetails('ACTIVE');
}
} catch (error) {
console.error('Error publishing agent:', error);
throw new Error('Failed to publish agent');
} }
}; };
@@ -325,6 +372,21 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
setAgent({ ...agent, description: e.target.value }) setAgent({ ...agent, description: e.target.value })
} }
/> />
<div className="mt-3">
<FileUpload
showPreview
className="dark:bg-[#222327]"
onUpload={handleUpload}
onRemove={() => setImageFile(null)}
uploadText={[
{ text: 'Click to upload', colorClass: 'text-[#7D54D1]' },
{
text: ' or drag and drop',
colorClass: 'text-[#525252]',
},
]}
/>
</div>
</div> </div>
<div className="rounded-[30px] bg-[#F6F6F6] px-6 py-3 dark:bg-[#383838] dark:text-[#E0E0E0]"> <div className="rounded-[30px] bg-[#F6F6F6] px-6 py-3 dark:bg-[#383838] dark:text-[#E0E0E0]">
<h2 className="text-lg font-semibold">Source</h2> <h2 className="text-lg font-semibold">Source</h2>
@@ -333,7 +395,11 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
<button <button
ref={sourceAnchorButtonRef} ref={sourceAnchorButtonRef}
onClick={() => setIsSourcePopupOpen(!isSourcePopupOpen)} onClick={() => setIsSourcePopupOpen(!isSourcePopupOpen)}
className="w-full truncate rounded-3xl border border-silver bg-white px-5 py-3 text-left text-sm text-gray-400 dark:border-[#7E7E7E] dark:bg-[#222327] dark:text-silver" className={`w-full truncate rounded-3xl border border-silver bg-white px-5 py-3 text-left text-sm dark:border-[#7E7E7E] dark:bg-[#222327] ${
selectedSourceIds.size > 0
? 'text-jet dark:text-bright-gray'
: 'text-gray-400 dark:text-silver'
}`}
> >
{selectedSourceIds.size > 0 {selectedSourceIds.size > 0
? Array.from(selectedSourceIds) ? Array.from(selectedSourceIds)
@@ -436,7 +502,11 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
<button <button
ref={toolAnchorButtonRef} ref={toolAnchorButtonRef}
onClick={() => setIsToolsPopupOpen(!isToolsPopupOpen)} onClick={() => setIsToolsPopupOpen(!isToolsPopupOpen)}
className="w-full truncate rounded-3xl border border-silver bg-white px-5 py-3 text-left text-sm text-gray-400 dark:border-[#7E7E7E] dark:bg-[#222327] dark:text-silver" className={`w-full truncate rounded-3xl border border-silver bg-white px-5 py-3 text-left text-sm dark:border-[#7E7E7E] dark:bg-[#222327] ${
selectedToolIds.size > 0
? 'text-jet dark:text-bright-gray'
: 'text-gray-400 dark:text-silver'
}`}
> >
{selectedToolIds.size > 0 {selectedToolIds.size > 0
? Array.from(selectedToolIds) ? Array.from(selectedToolIds)

View File

@@ -155,9 +155,13 @@ export default function SharedAgent() {
<div className="relative h-full w-full"> <div className="relative h-full w-full">
<div className="absolute left-4 top-5 hidden items-center gap-3 sm:flex"> <div className="absolute left-4 top-5 hidden items-center gap-3 sm:flex">
<img <img
src={sharedAgent.image ?? Robot} src={
sharedAgent.image && sharedAgent.image.trim() !== ''
? sharedAgent.image
: Robot
}
alt="agent-logo" alt="agent-logo"
className="h-6 w-6" className="h-6 w-6 rounded-full object-contain"
/> />
<h2 className="text-lg font-semibold text-[#212121] dark:text-[#E0E0E0]"> <h2 className="text-lg font-semibold text-[#212121] dark:text-[#E0E0E0]">
{sharedAgent.name} {sharedAgent.name}

View File

@@ -6,7 +6,10 @@ export default function SharedAgentCard({ agent }: { agent: Agent }) {
<div className="flex w-full max-w-[720px] flex-col rounded-3xl border border-dark-gray p-6 shadow-sm dark:border-grey sm:w-fit sm:min-w-[480px]"> <div className="flex w-full max-w-[720px] flex-col rounded-3xl border border-dark-gray p-6 shadow-sm dark:border-grey sm:w-fit sm:min-w-[480px]">
<div className="flex items-center gap-3"> <div className="flex items-center gap-3">
<div className="flex h-12 w-12 items-center justify-center overflow-hidden rounded-full p-1"> <div className="flex h-12 w-12 items-center justify-center overflow-hidden rounded-full p-1">
<img src={Robot} className="h-full w-full object-contain" /> <img
src={agent.image && agent.image.trim() !== '' ? agent.image : Robot}
className="h-full w-full rounded-full object-contain"
/>
</div> </div>
<div className="flex max-h-[92px] w-[80%] flex-col gap-px"> <div className="flex max-h-[92px] w-[80%] flex-col gap-px">
<h2 className="text-base font-semibold text-[#212121] dark:text-[#E0E0E0] sm:text-lg"> <h2 className="text-base font-semibold text-[#212121] dark:text-[#E0E0E0] sm:text-lg">

View File

@@ -324,17 +324,21 @@ function AgentCard({
iconWidth: 14, iconWidth: 14,
iconHeight: 14, iconHeight: 14,
}, },
{ ...(agent.status === 'published'
icon: agent.pinned ? UnPin : Pin, ? [
label: agent.pinned ? 'Unpin' : 'Pin agent', {
onClick: (e: SyntheticEvent) => { icon: agent.pinned ? UnPin : Pin,
e.stopPropagation(); label: agent.pinned ? 'Unpin' : 'Pin agent',
togglePin(); onClick: (e: SyntheticEvent) => {
}, e.stopPropagation();
variant: 'primary', togglePin();
iconWidth: 18, },
iconHeight: 18, variant: 'primary' as const,
}, iconWidth: 18,
iconHeight: 18,
},
]
: []),
{ {
icon: Trash, icon: Trash,
label: 'Delete', label: 'Delete',
@@ -426,16 +430,16 @@ function AgentCard({
setIsOpen={setIsMenuOpen} setIsOpen={setIsMenuOpen}
options={menuOptions} options={menuOptions}
anchorRef={menuRef} anchorRef={menuRef}
position="top-right" position="bottom-right"
offset={{ x: 0, y: 0 }} offset={{ x: 0, y: 0 }}
/> />
</div> </div>
<div className="w-full"> <div className="w-full">
<div className="flex w-full items-center gap-1 px-1"> <div className="flex w-full items-center gap-1 px-1">
<img <img
src={agent.image ?? Robot} src={agent.image && agent.image.trim() !== '' ? agent.image : Robot}
alt={`${agent.name}`} alt={`${agent.name}`}
className="h-7 w-7 rounded-full" className="h-7 w-7 rounded-full object-contain"
/> />
{agent.status === 'draft' && ( {agent.status === 'draft' && (
<p className="text-xs text-black opacity-50 dark:text-[#E0E0E0]">{`(Draft)`}</p> <p className="text-xs text-black opacity-50 dark:text-[#E0E0E0]">{`(Draft)`}</p>

View File

@@ -1,16 +1,21 @@
export const baseURL = export const baseURL =
import.meta.env.VITE_API_HOST || 'https://docsapi.arc53.com'; import.meta.env.VITE_API_HOST || 'https://docsapi.arc53.com';
const defaultHeaders = { const getHeaders = (
'Content-Type': 'application/json', token: string | null,
}; customHeaders = {},
isFormData = false,
const getHeaders = (token: string | null, customHeaders = {}): HeadersInit => { ): HeadersInit => {
return { const headers: HeadersInit = {
...defaultHeaders,
...(token ? { Authorization: `Bearer ${token}` } : {}), ...(token ? { Authorization: `Bearer ${token}` } : {}),
...customHeaders, ...customHeaders,
}; };
if (!isFormData) {
headers['Content-Type'] = 'application/json';
}
return headers;
}; };
const apiClient = { const apiClient = {
@@ -44,6 +49,21 @@ const apiClient = {
return response; return response;
}), }),
postFormData: (
url: string,
formData: FormData,
token: string | null,
headers = {},
signal?: AbortSignal,
): Promise<Response> => {
return fetch(`${baseURL}${url}`, {
method: 'POST',
headers: getHeaders(token, headers, true),
body: formData,
signal,
});
},
put: ( put: (
url: string, url: string,
data: any, data: any,
@@ -60,6 +80,21 @@ const apiClient = {
return response; return response;
}), }),
putFormData: (
url: string,
formData: FormData,
token: string | null,
headers = {},
signal?: AbortSignal,
): Promise<Response> => {
return fetch(`${baseURL}${url}`, {
method: 'PUT',
headers: getHeaders(token, headers, true),
body: formData,
signal,
});
},
delete: ( delete: (
url: string, url: string,
token: string | null, token: string | null,

View File

@@ -22,13 +22,13 @@ const userService = {
getAgents: (token: string | null): Promise<any> => getAgents: (token: string | null): Promise<any> =>
apiClient.get(endpoints.USER.AGENTS, token), apiClient.get(endpoints.USER.AGENTS, token),
createAgent: (data: any, token: string | null): Promise<any> => createAgent: (data: any, token: string | null): Promise<any> =>
apiClient.post(endpoints.USER.CREATE_AGENT, data, token), apiClient.postFormData(endpoints.USER.CREATE_AGENT, data, token),
updateAgent: ( updateAgent: (
agent_id: string, agent_id: string,
data: any, data: any,
token: string | null, token: string | null,
): Promise<any> => ): Promise<any> =>
apiClient.put(endpoints.USER.UPDATE_AGENT(agent_id), data, token), apiClient.putFormData(endpoints.USER.UPDATE_AGENT(agent_id), data, token),
deleteAgent: (id: string, token: string | null): Promise<any> => deleteAgent: (id: string, token: string | null): Promise<any> =>
apiClient.delete(endpoints.USER.DELETE_AGENT(id), token), apiClient.delete(endpoints.USER.DELETE_AGENT(id), token),
getPinnedAgents: (token: string | null): Promise<any> => getPinnedAgents: (token: string | null): Promise<any> =>

View File

@@ -1,3 +1,3 @@
<svg width="18" height="18" viewBox="0 0 18 18" fill="none" xmlns="http://www.w3.org/2000/svg"> <svg width="18" height="18" viewBox="0 0 18 18" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M8.16669 11.5H9.83335V13.1666H8.16669V11.5ZM8.16669 4.83329H9.83335V9.83329H8.16669V4.83329ZM8.99169 0.666626C4.39169 0.666626 0.666687 4.39996 0.666687 8.99996C0.666687 13.6 4.39169 17.3333 8.99169 17.3333C13.6 17.3333 17.3334 13.6 17.3334 8.99996C17.3334 4.39996 13.6 0.666626 8.99169 0.666626ZM9.00002 15.6666C5.31669 15.6666 2.33335 12.6833 2.33335 8.99996C2.33335 5.31663 5.31669 2.33329 9.00002 2.33329C12.6834 2.33329 15.6667 5.31663 15.6667 8.99996C15.6667 12.6833 12.6834 15.6666 9.00002 15.6666Z" fill="#F44336"/> <path d="M8.16669 11.5H9.83335V13.1666H8.16669V11.5ZM8.16669 4.83329H9.83335V9.83329H8.16669V4.83329ZM8.99169 0.666626C4.39169 0.666626 0.666687 4.39996 0.666687 8.99996C0.666687 13.6 4.39169 17.3333 8.99169 17.3333C13.6 17.3333 17.3334 13.6 17.3334 8.99996C17.3334 4.39996 13.6 0.666626 8.99169 0.666626ZM9.00002 15.6666C5.31669 15.6666 2.33335 12.6833 2.33335 8.99996C2.33335 5.31663 5.31669 2.33329 9.00002 2.33329C12.6834 2.33329 15.6667 5.31663 15.6667 8.99996C15.6667 12.6833 12.6834 15.6666 9.00002 15.6666Z" fill="#ECECF1"/>
</svg> </svg>

Before

Width:  |  Height:  |  Size: 636 B

After

Width:  |  Height:  |  Size: 636 B

View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="white" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="lucide lucide-x-icon lucide-x"><path d="M18 6 6 18"/><path d="m6 6 12 12"/></svg>

After

Width:  |  Height:  |  Size: 262 B

View File

@@ -0,0 +1,3 @@
<svg width="16" height="16" viewBox="0 0 16 16" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M12.4028 7.35671V12.6427C12.4043 12.844 12.3655 13.0436 12.2889 13.2298C12.2122 13.4159 12.0991 13.5849 11.9564 13.7269C11.8136 13.8688 11.6439 13.9808 11.4573 14.0563C11.2706 14.1318 11.0708 14.1694 10.8695 14.1667H3.36483C3.16278 14.1693 2.96226 14.1314 2.77509 14.0553C2.58792 13.9791 2.41789 13.8663 2.27504 13.7234C2.13219 13.5804 2.01941 13.4104 1.94335 13.2232C1.86728 13.036 1.82948 12.8354 1.83217 12.6334V5.12871C1.82975 4.92668 1.86776 4.7262 1.94396 4.53908C2.02017 4.35196 2.13302 4.18196 2.27589 4.0391C2.41875 3.89623 2.58875 3.78338 2.77587 3.70717C2.963 3.63097 3.16347 3.59296 3.3655 3.59537H8.65083M14.1648 1.83337L7.1175 8.88071M14.1648 1.83337H10.6408M14.1648 1.83337V5.35737" stroke="#7D54D1" stroke-width="1.3" stroke-linecap="round" stroke-linejoin="round"/>
</svg>

After

Width:  |  Height:  |  Size: 895 B

View File

@@ -0,0 +1,3 @@
<svg width="40" height="39" viewBox="0 0 40 39" fill="none" xmlns="http://www.w3.org/2000/svg">
<path fill-rule="evenodd" clip-rule="evenodd" d="M11.9477 3.02295H33.8827C35.898 3.02295 37.5388 4.6819 37.5388 6.71923V22.9819C37.5388 25.0193 35.898 26.6782 33.8827 26.6782H11.9477C9.9328 26.6782 8.29192 25.0193 8.29192 22.9819V6.71923C8.29192 4.6819 9.9328 3.02295 11.9477 3.02295ZM33.8827 5.97992H11.9477C11.5442 5.97992 11.2167 6.31098 11.2167 6.71916V20.6741L15.2527 16.595C16.2515 15.5839 17.8791 15.5839 18.8792 16.595L20.6486 18.3795L26.0799 11.7888C26.5653 11.2003 27.276 10.8603 28.0335 10.856C28.7953 10.8735 29.5046 11.1841 29.9946 11.765L34.614 17.2147V6.71923C34.614 6.31104 34.2866 5.97992 33.8827 5.97992ZM6.40446 25.1242C7.16068 27.3803 9.243 28.8957 11.584 28.8957H32.8128L31.4954 33.1312C31.1223 34.5715 29.7916 35.5487 28.3352 35.5487C28.051 35.5485 27.768 35.5117 27.4929 35.4393L4.88059 29.3169C3.13614 28.8305 2.09642 27.0048 2.55267 25.2438L6.10025 13.2714V23.3516C6.10025 23.8543 6.17497 24.3567 6.35333 24.9542L6.40446 25.1242ZM18.53 10.4151C18.53 12.0459 17.2186 13.3721 15.6055 13.3721C13.9926 13.3721 12.6808 12.0458 12.6808 10.4151C12.6808 8.78445 13.9925 7.45815 15.6055 7.45815C17.2186 7.45815 18.53 8.78438 18.53 10.4151Z" fill="#A3A3A3"/>
</svg>

After

Width:  |  Height:  |  Size: 1.2 KiB

View File

@@ -1,19 +1,19 @@
<svg width="22" height="18" viewBox="0 0 22 18" fill="none" xmlns="http://www.w3.org/2000/svg"> <svg width="24" height="24" viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M13.394 1.001H7.982C7.32776 1.00074 6.67989 1.12939 6.07539 1.3796C5.47089 1.62982 4.92162 1.99669 4.45896 2.45926C3.9963 2.92182 3.62932 3.47102 3.37898 4.07547C3.12865 4.67992 2.99987 5.32776 3 5.982V11.394C2.99974 12.0483 3.12842 12.6963 3.3787 13.3008C3.62897 13.9054 3.99593 14.4547 4.45861 14.9174C4.92128 15.3801 5.4706 15.747 6.07516 15.9973C6.67972 16.2476 7.32768 16.3763 7.982 16.376H13.394C14.0483 16.3763 14.6963 16.2476 15.3008 15.9973C15.9054 15.747 16.4547 15.3801 16.9174 14.9174C17.3801 14.4547 17.747 13.9054 17.9973 13.3008C18.2476 12.6963 18.3763 12.0483 18.376 11.394V5.982C18.3763 5.32768 18.2476 4.67972 17.9973 4.07516C17.747 3.4706 17.3801 2.92128 16.9174 2.45861C16.4547 1.99593 15.9054 1.62897 15.3008 1.3787C14.6963 1.12842 14.0483 0.999738 13.394 1V1.001Z" stroke="url(#paint0_linear_8958_15228)" stroke-width="1.5"/> <path d="M14.394 4.001H8.982C8.32776 4.00074 7.67989 4.12939 7.07539 4.3796C6.47089 4.62982 5.92162 4.99669 5.45896 5.45926C4.9963 5.92182 4.62932 6.47102 4.37898 7.07547C4.12865 7.67992 3.99987 8.32776 4 8.982V14.394C3.99974 15.0483 4.12842 15.6963 4.3787 16.3008C4.62897 16.9054 4.99593 17.4547 5.45861 17.9174C5.92128 18.3801 6.4706 18.747 7.07516 18.9973C7.67972 19.2476 8.32768 19.3763 8.982 19.376H14.394C15.0483 19.3763 15.6963 19.2476 16.3008 18.9973C16.9054 18.747 17.4547 18.3801 17.9174 17.9174C18.3801 17.4547 18.747 16.9054 18.9973 16.3008C19.2476 15.6963 19.3763 15.0483 19.376 14.394V8.982C19.3763 8.32768 19.2476 7.67972 18.9973 7.07516C18.747 6.4706 18.3801 5.92128 17.9174 5.45861C17.4547 4.99593 16.9054 4.62897 16.3008 4.3787C15.6963 4.12842 15.0483 3.99974 14.394 4V4.001Z" stroke="url(#paint0_linear_9044_3689)" stroke-width="1.5"/>
<path d="M18.606 12.5881H20.225C20.4968 12.5881 20.7576 12.4801 20.9498 12.2879C21.142 12.0956 21.25 11.8349 21.25 11.5631V6.43809C21.25 6.16624 21.142 5.90553 20.9498 5.7133C20.7576 5.52108 20.4968 5.41309 20.225 5.41309H18.605M3.395 12.5881H1.775C1.6404 12.5881 1.50711 12.5616 1.38275 12.5101C1.25839 12.4586 1.1454 12.3831 1.05022 12.2879C0.955035 12.1927 0.879535 12.0797 0.828023 11.9553C0.776512 11.831 0.75 11.6977 0.75 11.5631V6.43809C0.75 6.16624 0.857991 5.90553 1.05022 5.7133C1.24244 5.52108 1.50315 5.41309 1.775 5.41309H3.395" stroke="url(#paint1_linear_8958_15228)" stroke-width="1.5"/> <path d="M19.606 15.5881H21.225C21.4968 15.5881 21.7576 15.4801 21.9498 15.2879C22.142 15.0956 22.25 14.8349 22.25 14.5631V9.43809C22.25 9.16624 22.142 8.90553 21.9498 8.7133C21.7576 8.52108 21.4968 8.41309 21.225 8.41309H19.605M4.395 15.5881H2.775C2.6404 15.5881 2.50711 15.5616 2.38275 15.5101C2.25839 15.4586 2.1454 15.3831 2.05022 15.2879C1.95504 15.1927 1.87953 15.0797 1.82802 14.9553C1.77651 14.831 1.75 14.6977 1.75 14.5631V9.43809C1.75 9.16624 1.85799 8.90553 2.05022 8.7133C2.24244 8.52108 2.50315 8.41309 2.775 8.41309H4.395" stroke="url(#paint1_linear_9044_3689)" stroke-width="1.5"/>
<path d="M1.76562 5.41323V1.31323M20.2256 5.41323L20.2156 1.31323M7.91562 5.76323V8.46123M14.0656 5.76323V8.46123M8.94062 12.5882H13.0406" stroke="url(#paint2_linear_8958_15228)" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> <path d="M2.76562 8.41323V4.31323M21.2256 8.41323L21.2156 4.31323M8.91562 8.76323V11.4612M15.0656 8.76323V11.4612M9.94062 15.5882H14.0406" stroke="url(#paint2_linear_9044_3689)" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/>
<defs> <defs>
<linearGradient id="paint0_linear_8958_15228" x1="10.688" y1="1" x2="10.688" y2="16.376" gradientUnits="userSpaceOnUse"> <linearGradient id="paint0_linear_9044_3689" x1="11.688" y1="4" x2="11.688" y2="19.376" gradientUnits="userSpaceOnUse">
<stop stop-color="#58E2E1"/> <stop stop-color="#58E2E1"/>
<stop offset="0.524038" stop-color="#657797"/> <stop offset="0.524038" stop-color="#657797"/>
<stop offset="1" stop-color="#CC7871"/> <stop offset="1" stop-color="#CC7871"/>
</linearGradient> </linearGradient>
<linearGradient id="paint1_linear_8958_15228" x1="11" y1="5.41309" x2="11" y2="12.5881" gradientUnits="userSpaceOnUse"> <linearGradient id="paint1_linear_9044_3689" x1="12" y1="8.41309" x2="12" y2="15.5881" gradientUnits="userSpaceOnUse">
<stop stop-color="#58E2E1"/> <stop stop-color="#58E2E1"/>
<stop offset="0.524038" stop-color="#657797"/> <stop offset="0.524038" stop-color="#657797"/>
<stop offset="1" stop-color="#CC7871"/> <stop offset="1" stop-color="#CC7871"/>
</linearGradient> </linearGradient>
<linearGradient id="paint2_linear_8958_15228" x1="10.9956" y1="1.31323" x2="10.9956" y2="12.5882" gradientUnits="userSpaceOnUse"> <linearGradient id="paint2_linear_9044_3689" x1="11.9956" y1="4.31323" x2="11.9956" y2="15.5882" gradientUnits="userSpaceOnUse">
<stop stop-color="#58E2E1"/> <stop stop-color="#58E2E1"/>
<stop offset="0.524038" stop-color="#657797"/> <stop offset="0.524038" stop-color="#657797"/>
<stop offset="1" stop-color="#CC7871"/> <stop offset="1" stop-color="#CC7871"/>

Before

Width:  |  Height:  |  Size: 2.5 KiB

After

Width:  |  Height:  |  Size: 2.5 KiB

View File

@@ -0,0 +1,229 @@
import React, { useCallback, useState } from 'react';
import { useDropzone } from 'react-dropzone';
import { twMerge } from 'tailwind-merge';
import Cross from '../assets/cross.svg';
import ImagesIcon from '../assets/images.svg';
interface FileUploadProps {
onUpload: (files: File[]) => void;
onRemove?: (file: File) => void;
multiple?: boolean;
maxFiles?: number;
maxSize?: number; // in bytes
accept?: Record<string, string[]>; // e.g. { 'image/*': ['.png', '.jpg'] }
showPreview?: boolean;
previewSize?: number;
children?: React.ReactNode;
className?: string;
activeClassName?: string;
acceptClassName?: string;
rejectClassName?: string;
uploadText?: string | { text: string; colorClass?: string }[];
dragActiveText?: string;
fileTypeText?: string;
sizeLimitText?: string;
disabled?: boolean;
validator?: (file: File) => { isValid: boolean; error?: string };
}
export const FileUpload = ({
onUpload,
onRemove,
multiple = false,
maxFiles = 1,
maxSize = 5 * 1024 * 1024,
accept = { 'image/*': ['.jpeg', '.png', '.jpg'] },
showPreview = false,
previewSize = 80,
children,
className = 'border-2 border-dashed rounded-3xl p-6 text-center cursor-pointer transition-colors border-silver dark:border-[#7E7E7E]',
activeClassName = 'border-blue-500 bg-blue-50',
acceptClassName = 'border-green-500 dark:border-green-500 bg-green-50 dark:bg-green-50/10',
rejectClassName = 'border-red-500 bg-red-50 dark:bg-red-500/10 dark:border-red-500',
uploadText = 'Click to upload or drag and drop',
dragActiveText = 'Drop the files here',
fileTypeText = 'PNG, JPG, JPEG up to',
sizeLimitText = 'MB',
disabled = false,
validator,
}: FileUploadProps) => {
const [errors, setErrors] = useState<string[]>([]);
const [preview, setPreview] = useState<string | null>(null);
const [currentFile, setCurrentFile] = useState<File | null>(null);
const validateFile = (file: File) => {
const defaultValidation = {
isValid: true,
error: '',
};
if (validator) {
const customValidation = validator(file);
if (!customValidation.isValid) {
return customValidation;
}
}
if (file.size > maxSize) {
return {
isValid: false,
error: `File exceeds ${maxSize / 1024 / 1024}MB limit`,
};
}
return defaultValidation;
};
const onDrop = useCallback(
(acceptedFiles: File[], fileRejections: any[]) => {
setErrors([]);
if (fileRejections.length > 0) {
const newErrors = fileRejections
.map(({ errors }) => errors.map((e: any) => e.message))
.flat();
setErrors(newErrors);
return;
}
const validationResults = acceptedFiles.map(validateFile);
const invalidFiles = validationResults.filter((r) => !r.isValid);
if (invalidFiles.length > 0) {
setErrors(invalidFiles.map((f) => f.error!));
return;
}
const filesToUpload = multiple ? acceptedFiles : [acceptedFiles[0]];
onUpload(filesToUpload);
const file = multiple ? acceptedFiles[0] : acceptedFiles[0];
setCurrentFile(file);
if (showPreview && file.type.startsWith('image/')) {
const reader = new FileReader();
reader.onload = () => setPreview(reader.result as string);
reader.readAsDataURL(file);
}
},
[onUpload, multiple, maxSize, validator],
);
const {
getRootProps,
getInputProps,
isDragActive,
isDragAccept,
isDragReject,
} = useDropzone({
onDrop,
multiple,
maxFiles,
maxSize,
accept,
disabled,
});
const currentClassName = twMerge(
'border-2 border-dashed rounded-3xl p-8 text-center cursor-pointer transition-colors border-silver dark:border-[#7E7E7E]',
className,
isDragActive && activeClassName,
isDragAccept && acceptClassName,
isDragReject && rejectClassName,
disabled && 'opacity-50 cursor-not-allowed',
);
const handleRemove = () => {
setPreview(null);
setCurrentFile(null);
if (onRemove && currentFile) onRemove(currentFile);
};
const renderPreview = () => (
<div
className="relative"
style={{ width: previewSize, height: previewSize }}
>
<img
src={preview ?? undefined}
alt="preview"
className="h-full w-full rounded-md object-cover"
/>
<button
type="button"
onClick={(e) => {
e.stopPropagation();
handleRemove();
}}
className="absolute -right-2 -top-2 rounded-full bg-[#7D54D1] p-1 transition-colors hover:bg-[#714cbc]"
>
<img src={Cross} alt="remove" className="h-3 w-3" />
</button>
</div>
);
const renderUploadText = () => {
if (Array.isArray(uploadText)) {
return (
<p className="text-sm font-semibold">
{uploadText.map((segment, i) => (
<span key={i} className={segment.colorClass || ''}>
{segment.text}
</span>
))}
</p>
);
}
return <p className="text-sm font-semibold">{uploadText}</p>;
};
const defaultContent = (
<div className="flex flex-col items-center gap-2">
{showPreview && preview ? (
renderPreview()
) : (
<div
style={{ width: previewSize, height: previewSize }}
className="flex items-center justify-center"
>
<img src={ImagesIcon} className="h-10 w-10" />
</div>
)}
<div className="text-center">
<div className="text-sm font-medium">
{isDragActive ? (
<p className="text-sm font-semibold">{dragActiveText}</p>
) : (
renderUploadText()
)}
</div>
<p className="mt-1 text-xs text-[#A3A3A3]">
{fileTypeText} {maxSize / 1024 / 1024}
{sizeLimitText}
</p>
</div>
</div>
);
return (
<div className="relative">
<div {...getRootProps({ className: currentClassName })}>
<input {...getInputProps()} />
{children || defaultContent}
{errors.length > 0 && (
<div className="absolute left-0 right-0 mt-[2px] px-4 text-xs text-red-600">
{errors.map((error, i) => (
<p key={i} className="truncate">
{error}
</p>
))}
</div>
)}
</div>
</div>
);
};

View File

@@ -9,6 +9,7 @@ import ClipIcon from '../assets/clip.svg';
import ExitIcon from '../assets/exit.svg'; import ExitIcon from '../assets/exit.svg';
import PaperPlane from '../assets/paper_plane.svg'; import PaperPlane from '../assets/paper_plane.svg';
import SourceIcon from '../assets/source.svg'; import SourceIcon from '../assets/source.svg';
import DocumentationDark from '../assets/documentation-dark.svg';
import SpinnerDark from '../assets/spinner-dark.svg'; import SpinnerDark from '../assets/spinner-dark.svg';
import Spinner from '../assets/spinner.svg'; import Spinner from '../assets/spinner.svg';
import ToolIcon from '../assets/tool.svg'; import ToolIcon from '../assets/tool.svg';
@@ -17,7 +18,7 @@ import {
removeAttachment, removeAttachment,
selectAttachments, selectAttachments,
updateAttachment, updateAttachment,
} from '../conversation/conversationSlice'; } from '../upload/uploadSlice';
import { useDarkTheme } from '../hooks'; import { useDarkTheme } from '../hooks';
import { ActiveState } from '../models/misc'; import { ActiveState } from '../models/misc';
import { import {
@@ -262,71 +263,81 @@ export default function MessageInput({
{attachments.map((attachment, index) => ( {attachments.map((attachment, index) => (
<div <div
key={index} key={index}
className={`group relative flex items-center rounded-[32px] border border-[#AAAAAA] bg-white px-2 py-1 text-[12px] text-[#5D5D5D] dark:border-purple-taupe dark:bg-[#1F2028] dark:text-bright-gray sm:px-3 sm:py-1.5 sm:text-[14px] ${ className={`group relative flex items-center rounded-xl bg-[#EFF3F4] px-2 py-1 text-[12px] text-[#5D5D5D] dark:bg-[#393B3D] dark:text-bright-gray sm:px-3 sm:py-1.5 sm:text-[14px] ${
attachment.status !== 'completed' ? 'opacity-70' : 'opacity-100' attachment.status !== 'completed' ? 'opacity-70' : 'opacity-100'
}`} }`}
title={attachment.fileName} title={attachment.fileName}
> >
<div className="mr-2 items-center justify-center rounded-lg bg-purple-30 p-[5.5px]">
{attachment.status === 'completed' && (
<img
src={DocumentationDark}
alt="Attachment"
className="h-[15px] w-[15px] object-fill"
/>
)}
{attachment.status === 'failed' && (
<img
src={AlertIcon}
alt="Failed"
className="h-[15px] w-[15px] object-fill"
/>
)}
{(attachment.status === 'uploading' ||
attachment.status === 'processing') && (
<div className="flex h-[15px] w-[15px] items-center justify-center">
<svg className="h-[15px] w-[15px]" viewBox="0 0 24 24">
<circle
className="opacity-0"
cx="12"
cy="12"
r="10"
stroke="transparent"
strokeWidth="4"
fill="none"
/>
<circle
className="text-[#ECECF1]"
cx="12"
cy="12"
r="10"
stroke="currentColor"
strokeWidth="4"
fill="none"
strokeDasharray="62.83"
strokeDashoffset={
62.83 * (1 - attachment.progress / 100)
}
transform="rotate(-90 12 12)"
/>
</svg>
</div>
)}
</div>
<span className="max-w-[120px] truncate font-medium sm:max-w-[150px]"> <span className="max-w-[120px] truncate font-medium sm:max-w-[150px]">
{attachment.fileName} {attachment.fileName}
</span> </span>
{attachment.status === 'completed' && ( <button
<button className="ml-1.5 flex items-center justify-center rounded-full p-1"
className="absolute right-2 top-1/2 -translate-y-1/2 rounded-full bg-white p-1 opacity-0 transition-opacity hover:bg-white/95 focus:opacity-100 group-hover:opacity-100 dark:bg-[#1F2028] dark:hover:bg-[#1F2028]/95" onClick={() => {
onClick={() => { if (attachment.id) {
if (attachment.id) { dispatch(removeAttachment(attachment.id));
dispatch(removeAttachment(attachment.id)); } else if (attachment.taskId) {
} dispatch(removeAttachment(attachment.taskId));
}} }
aria-label={t('conversation.attachments.remove')} }}
> aria-label={t('conversation.attachments.remove')}
<img >
src={ExitIcon}
alt={t('conversation.attachments.remove')}
className="h-2.5 w-2.5 filter dark:invert"
/>
</button>
)}
{attachment.status === 'failed' && (
<img <img
src={AlertIcon} src={ExitIcon}
alt="Upload failed" alt={t('conversation.attachments.remove')}
className="ml-2 h-3.5 w-3.5" className="h-2.5 w-2.5 filter dark:invert"
title="Upload failed"
/> />
)} </button>
{(attachment.status === 'uploading' ||
attachment.status === 'processing') && (
<div className="relative ml-2 h-4 w-4">
<svg className="h-4 w-4" viewBox="0 0 24 24">
{/* Background circle */}
<circle
className="text-gray-200 dark:text-gray-700"
cx="12"
cy="12"
r="10"
stroke="currentColor"
strokeWidth="4"
fill="none"
/>
<circle
className="text-blue-600 dark:text-blue-400"
cx="12"
cy="12"
r="10"
stroke="currentColor"
strokeWidth="4"
fill="none"
strokeDasharray="62.83"
strokeDashoffset={62.83 * (1 - attachment.progress / 100)}
transform="rotate(-90 12 12)"
/>
</svg>
</div>
)}
</div> </div>
))} ))}
</div> </div>

View File

@@ -28,6 +28,10 @@ import {
updateConversationId, updateConversationId,
updateQuery, updateQuery,
} from './conversationSlice'; } from './conversationSlice';
import {
selectCompletedAttachments,
clearAttachments,
} from '../upload/uploadSlice';
export default function Conversation() { export default function Conversation() {
const { t } = useTranslation(); const { t } = useTranslation();
@@ -39,6 +43,7 @@ export default function Conversation() {
const status = useSelector(selectStatus); const status = useSelector(selectStatus);
const conversationId = useSelector(selectConversationId); const conversationId = useSelector(selectConversationId);
const selectedAgent = useSelector(selectSelectedAgent); const selectedAgent = useSelector(selectSelectedAgent);
const completedAttachments = useSelector(selectCompletedAttachments);
const [uploadModalState, setUploadModalState] = const [uploadModalState, setUploadModalState] =
useState<ActiveState>('INACTIVE'); useState<ActiveState>('INACTIVE');
@@ -107,15 +112,25 @@ export default function Conversation() {
const trimmedQuestion = question.trim(); const trimmedQuestion = question.trim();
if (trimmedQuestion === '') return; if (trimmedQuestion === '') return;
const filesAttached = completedAttachments
.filter((a) => a.id)
.map((a) => ({ id: a.id as string, fileName: a.fileName }));
if (index !== undefined) { if (index !== undefined) {
if (!isRetry) dispatch(resendQuery({ index, prompt: trimmedQuestion })); if (!isRetry) dispatch(resendQuery({ index, prompt: trimmedQuestion }));
handleFetchAnswer({ question: trimmedQuestion, index }); handleFetchAnswer({ question: trimmedQuestion, index });
} else { } else {
if (!isRetry) dispatch(addQuery({ prompt: trimmedQuestion })); if (!isRetry)
dispatch(
addQuery({
prompt: trimmedQuestion,
attachments: filesAttached,
}),
);
handleFetchAnswer({ question: trimmedQuestion, index }); handleFetchAnswer({ question: trimmedQuestion, index });
} }
}, },
[dispatch, handleFetchAnswer], [dispatch, handleFetchAnswer, completedAttachments],
); );
const handleFeedback = (query: Query, feedback: FEEDBACK, index: number) => { const handleFeedback = (query: Query, feedback: FEEDBACK, index: number) => {
@@ -178,6 +193,7 @@ export default function Conversation() {
query: { conversationId: null }, query: { conversationId: null },
}), }),
); );
dispatch(clearAttachments());
}; };
useEffect(() => { useEffect(() => {

View File

@@ -1,6 +1,6 @@
import 'katex/dist/katex.min.css'; import 'katex/dist/katex.min.css';
import { forwardRef, Fragment, useRef, useState } from 'react'; import { forwardRef, Fragment, useRef, useState, useEffect } from 'react';
import { useTranslation } from 'react-i18next'; import { useTranslation } from 'react-i18next';
import ReactMarkdown from 'react-markdown'; import ReactMarkdown from 'react-markdown';
import { useSelector } from 'react-redux'; import { useSelector } from 'react-redux';
@@ -12,7 +12,7 @@ import {
import rehypeKatex from 'rehype-katex'; import rehypeKatex from 'rehype-katex';
import remarkGfm from 'remark-gfm'; import remarkGfm from 'remark-gfm';
import remarkMath from 'remark-math'; import remarkMath from 'remark-math';
import DocumentationDark from '../assets/documentation-dark.svg';
import ChevronDown from '../assets/chevron-down.svg'; import ChevronDown from '../assets/chevron-down.svg';
import Cloud from '../assets/cloud.svg'; import Cloud from '../assets/cloud.svg';
import DocsGPT3 from '../assets/cute_docsgpt3.svg'; import DocsGPT3 from '../assets/cute_docsgpt3.svg';
@@ -26,7 +26,9 @@ import UserIcon from '../assets/user.svg';
import Accordion from '../components/Accordion'; import Accordion from '../components/Accordion';
import Avatar from '../components/Avatar'; import Avatar from '../components/Avatar';
import CopyButton from '../components/CopyButton'; import CopyButton from '../components/CopyButton';
import MermaidRenderer from '../components/MermaidRenderer';
import Sidebar from '../components/Sidebar'; import Sidebar from '../components/Sidebar';
import Spinner from '../components/Spinner';
import SpeakButton from '../components/TextToSpeechButton'; import SpeakButton from '../components/TextToSpeechButton';
import { useDarkTheme, useOutsideAlerter } from '../hooks'; import { useDarkTheme, useOutsideAlerter } from '../hooks';
import { import {
@@ -36,7 +38,6 @@ import {
import classes from './ConversationBubble.module.css'; import classes from './ConversationBubble.module.css';
import { FEEDBACK, MESSAGE_TYPE } from './conversationModels'; import { FEEDBACK, MESSAGE_TYPE } from './conversationModels';
import { ToolCallsType } from './types'; import { ToolCallsType } from './types';
import MermaidRenderer from '../components/MermaidRenderer';
const DisableSourceFE = import.meta.env.VITE_DISABLE_SOURCE_FE || false; const DisableSourceFE = import.meta.env.VITE_DISABLE_SOURCE_FE || false;
@@ -59,6 +60,7 @@ const ConversationBubble = forwardRef<
updated?: boolean, updated?: boolean,
index?: number, index?: number,
) => void; ) => void;
filesAttached?: { id: string; fileName: string }[];
} }
>(function ConversationBubble( >(function ConversationBubble(
{ {
@@ -74,6 +76,7 @@ const ConversationBubble = forwardRef<
questionNumber, questionNumber,
isStreaming, isStreaming,
handleUpdatedQuestionSubmission, handleUpdatedQuestionSubmission,
filesAttached,
}, },
ref, ref,
) { ) {
@@ -87,14 +90,24 @@ const ConversationBubble = forwardRef<
const [isDislikeHovered, setIsDislikeHovered] = useState(false); const [isDislikeHovered, setIsDislikeHovered] = useState(false);
const [isQuestionHovered, setIsQuestionHovered] = useState(false); const [isQuestionHovered, setIsQuestionHovered] = useState(false);
const [editInputBox, setEditInputBox] = useState<string>(''); const [editInputBox, setEditInputBox] = useState<string>('');
const messageRef = useRef<HTMLDivElement>(null);
const [shouldShowToggle, setShouldShowToggle] = useState(false);
const [isLikeClicked, setIsLikeClicked] = useState(false); const [isLikeClicked, setIsLikeClicked] = useState(false);
const [isDislikeClicked, setIsDislikeClicked] = useState(false); const [isDislikeClicked, setIsDislikeClicked] = useState(false);
const [activeTooltip, setActiveTooltip] = useState<number | null>(null); const [activeTooltip, setActiveTooltip] = useState<number | null>(null);
const [isSidebarOpen, setIsSidebarOpen] = useState<boolean>(false); const [isSidebarOpen, setIsSidebarOpen] = useState<boolean>(false);
const editableQueryRef = useRef<HTMLDivElement | null>(null); const editableQueryRef = useRef<HTMLDivElement | null>(null);
const [isQuestionCollapsed, setIsQuestionCollapsed] = useState(true);
useOutsideAlerter(editableQueryRef, () => setIsEditClicked(false), [], true); useOutsideAlerter(editableQueryRef, () => setIsEditClicked(false), [], true);
useEffect(() => {
if (messageRef.current) {
const height = messageRef.current.scrollHeight;
setShouldShowToggle(height > 84);
}
}, [message]);
const handleEditClick = () => { const handleEditClick = () => {
setIsEditClicked(false); setIsEditClicked(false);
handleUpdatedQuestionSubmission?.(editInputBox, true, questionNumber); handleUpdatedQuestionSubmission?.(editInputBox, true, questionNumber);
@@ -105,41 +118,88 @@ const ConversationBubble = forwardRef<
<div <div
onMouseEnter={() => setIsQuestionHovered(true)} onMouseEnter={() => setIsQuestionHovered(true)}
onMouseLeave={() => setIsQuestionHovered(false)} onMouseLeave={() => setIsQuestionHovered(false)}
className={className}
> >
<div <div className="flex flex-col items-end">
ref={ref} {filesAttached && filesAttached.length > 0 && (
className={`flex flex-row-reverse justify-items-start ${className}`} <div className="mb-4 mr-12 flex flex-wrap justify-end gap-2">
> {filesAttached.map((file, index) => (
<Avatar
size="SMALL"
className="mt-2 flex-shrink-0 text-2xl"
avatar={
<img className="mr-1 rounded-full" width={30} src={UserIcon} />
}
/>
{!isEditClicked && (
<>
<div className="mr-2 flex flex-col">
<div <div
style={{ key={index}
wordBreak: 'break-word', title={file.fileName}
}} className="flex items-center rounded-xl bg-[#EFF3F4] p-2 text-[14px] text-[#5D5D5D] dark:bg-[#393B3D] dark:text-bright-gray"
className="ml-2 mr-2 flex max-w-full items-center whitespace-pre-wrap rounded-[28px] bg-gradient-to-b from-medium-purple to-slate-blue px-[19px] py-[14px] text-sm leading-normal text-white sm:text-base"
> >
{message} <div className="mr-2 items-center justify-center rounded-lg bg-purple-30 p-[5.5px]">
<img
src={DocumentationDark}
alt="Attachment"
className="h-[15px] w-[15px] object-fill"
/>
</div>
<span className="max-w-[150px] truncate font-normal">
{file.fileName}
</span>
</div> </div>
</div> ))}
<button </div>
onClick={() => {
setIsEditClicked(true);
setEditInputBox(message ?? '');
}}
className={`mt-3 flex h-fit flex-shrink-0 cursor-pointer items-center rounded-full p-2 hover:bg-light-silver dark:hover:bg-[#35363B] ${isQuestionHovered || isEditClicked ? 'visible' : 'invisible'}`}
>
<img src={Edit} alt="Edit" className="cursor-pointer" />
</button>
</>
)} )}
<div
ref={ref}
className={`flex flex-row-reverse justify-items-start`}
>
<Avatar
size="SMALL"
className="mt-2 flex-shrink-0 text-2xl"
avatar={
<img className="mr-1 rounded-full" width={30} src={UserIcon} />
}
/>
{!isEditClicked && (
<>
<div className="relative mr-2 flex w-full flex-col">
<div
style={{
wordBreak: 'break-word',
}}
className="ml-2 mr-2 flex max-w-full items-start gap-2 whitespace-pre-wrap rounded-[28px] bg-gradient-to-b from-medium-purple to-slate-blue py-[14px] pl-[19px] pr-3 text-sm leading-normal text-white sm:text-base"
>
<div
ref={messageRef}
className={`${isQuestionCollapsed ? 'line-clamp-4' : ''} w-full`}
>
{message}
</div>
{shouldShowToggle && (
<button
onClick={(e) => {
e.stopPropagation();
setIsQuestionCollapsed(!isQuestionCollapsed);
}}
className="rounded-full p-2.5 hover:bg-[#D9D9D933]"
>
<img
src={ChevronDown}
alt="Toggle"
width={24}
height={24}
className={`transform invert transition-transform duration-200 ${isQuestionCollapsed ? '' : 'rotate-180'}`}
/>
</button>
)}
</div>
</div>
<button
onClick={() => {
setIsEditClicked(true);
setEditInputBox(message ?? '');
}}
className={`mt-3 flex h-fit flex-shrink-0 cursor-pointer items-center rounded-full p-2 hover:bg-light-silver dark:hover:bg-[#35363B] ${isQuestionHovered || isEditClicked ? 'visible' : 'invisible'}`}
>
<img src={Edit} alt="Edit" className="cursor-pointer" />
</button>
</>
)}
</div>
{isEditClicked && ( {isEditClicked && (
<div <div
ref={editableQueryRef} ref={editableQueryRef}
@@ -741,7 +801,7 @@ function ToolCalls({ toolCalls }: { toolCalls: ToolCallsType[] }) {
</button> </button>
</div> </div>
{isToolCallsOpen && ( {isToolCallsOpen && (
<div className="fade-in ml-3 mr-5 max-w-[90vw] md:max-w-[70vw] lg:max-w-[50vw]"> <div className="fade-in ml-3 mr-5 w-[90vw] md:w-[70vw] lg:w-full">
<div className="grid grid-cols-1 gap-2"> <div className="grid grid-cols-1 gap-2">
{toolCalls.map((toolCall, index) => ( {toolCalls.map((toolCall, index) => (
<Accordion <Accordion
@@ -778,14 +838,21 @@ function ToolCalls({ toolCalls }: { toolCalls: ToolCallsType[] }) {
textToCopy={JSON.stringify(toolCall.result, null, 2)} textToCopy={JSON.stringify(toolCall.result, null, 2)}
/> />
</p> </p>
<p className="dark:tex break-words rounded-b-2xl p-2 font-mono text-sm dark:bg-[#222327]"> {toolCall.status === 'pending' && (
<span <span className="flex w-full items-center justify-center rounded-b-2xl p-2 dark:bg-[#222327]">
className="leading-[23px] text-black dark:text-gray-400" <Spinner size="small" />
style={{ fontFamily: 'IBMPlexMono-Medium' }}
>
{JSON.stringify(toolCall.result, null, 2)}
</span> </span>
</p> )}
{toolCall.status === 'completed' && (
<p className="break-words rounded-b-2xl p-2 font-mono text-sm dark:bg-[#222327]">
<span
className="leading-[23px] text-black dark:text-gray-400"
style={{ fontFamily: 'IBMPlexMono-Medium' }}
>
{JSON.stringify(toolCall.result, null, 2)}
</span>
</p>
)}
</div> </div>
</div> </div>
</Accordion> </Accordion>

View File

@@ -131,7 +131,7 @@ export default function ConversationMessages({
? LAST_BUBBLE_MARGIN ? LAST_BUBBLE_MARGIN
: DEFAULT_BUBBLE_MARGIN; : DEFAULT_BUBBLE_MARGIN;
if (query.thought || query.response) { if (query.thought || query.response || query.tool_calls) {
const isCurrentlyStreaming = const isCurrentlyStreaming =
status === 'loading' && index === queries.length - 1; status === 'loading' && index === queries.length - 1;
return ( return (
@@ -223,6 +223,7 @@ export default function ConversationMessages({
handleUpdatedQuestionSubmission={handleQuestionSubmission} handleUpdatedQuestionSubmission={handleQuestionSubmission}
questionNumber={index} questionNumber={index}
sources={query.sources} sources={query.sources}
filesAttached={query.attachments}
/> />
{renderResponseView(query, index)} {renderResponseView(query, index)}
</Fragment> </Fragment>

View File

@@ -23,6 +23,7 @@ import {
setIdentifier, setIdentifier,
updateQuery, updateQuery,
} from './sharedConversationSlice'; } from './sharedConversationSlice';
import { selectCompletedAttachments } from '../upload/uploadSlice';
export const SharedConversation = () => { export const SharedConversation = () => {
const navigate = useNavigate(); const navigate = useNavigate();
@@ -34,6 +35,7 @@ export const SharedConversation = () => {
const date = useSelector(selectDate); const date = useSelector(selectDate);
const apiKey = useSelector(selectClientAPIKey); const apiKey = useSelector(selectClientAPIKey);
const status = useSelector(selectStatus); const status = useSelector(selectStatus);
const completedAttachments = useSelector(selectCompletedAttachments);
const { t } = useTranslation(); const { t } = useTranslation();
const dispatch = useDispatch<AppDispatch>(); const dispatch = useDispatch<AppDispatch>();
@@ -106,7 +108,19 @@ export const SharedConversation = () => {
}) => { }) => {
question = question.trim(); question = question.trim();
if (question === '') return; if (question === '') return;
!isRetry && dispatch(addQuery({ prompt: question })); //dispatch only new queries
const filesAttached = completedAttachments
.filter((a) => a.id)
.map((a) => ({ id: a.id as string, fileName: a.fileName }));
!isRetry &&
dispatch(
addQuery({
prompt: question,
attachments: filesAttached,
}),
); //dispatch only new queries
dispatch(fetchSharedAnswer({ question })); dispatch(fetchSharedAnswer({ question }));
}; };
useEffect(() => { useEffect(() => {

View File

@@ -279,11 +279,12 @@ export function handleSendFeedback(
}); });
} }
export function handleFetchSharedAnswerStreaming( //for shared conversations export function handleFetchSharedAnswerStreaming(
question: string, question: string,
signal: AbortSignal, signal: AbortSignal,
apiKey: string, apiKey: string,
history: Array<any> = [], history: Array<any> = [],
attachments: string[] = [],
onEvent: (event: MessageEvent) => void, onEvent: (event: MessageEvent) => void,
): Promise<Answer> { ): Promise<Answer> {
history = history.map((item) => { history = history.map((item) => {
@@ -300,6 +301,7 @@ export function handleFetchSharedAnswerStreaming( //for shared conversations
history: JSON.stringify(history), history: JSON.stringify(history),
api_key: apiKey, api_key: apiKey,
save_conversation: false, save_conversation: false,
attachments: attachments.length > 0 ? attachments : undefined,
}; };
conversationService conversationService
.answerStream(payload, null, signal) .answerStream(payload, null, signal)
@@ -355,6 +357,7 @@ export function handleFetchSharedAnswer(
question: string, question: string,
signal: AbortSignal, signal: AbortSignal,
apiKey: string, apiKey: string,
attachments?: string[],
): Promise< ): Promise<
| { | {
result: any; result: any;
@@ -370,15 +373,15 @@ export function handleFetchSharedAnswer(
title: any; title: any;
} }
> { > {
const payload = {
question: question,
api_key: apiKey,
attachments:
attachments && attachments.length > 0 ? attachments : undefined,
};
return conversationService return conversationService
.answer( .answer(payload, null, signal)
{
question: question,
api_key: apiKey,
},
null,
signal,
)
.then((response) => { .then((response) => {
if (response.ok) { if (response.ok) {
return response.json(); return response.json();

View File

@@ -22,7 +22,6 @@ export interface ConversationState {
queries: Query[]; queries: Query[];
status: Status; status: Status;
conversationId: string | null; conversationId: string | null;
attachments: Attachment[];
} }
export interface Answer { export interface Answer {
@@ -46,7 +45,7 @@ export interface Query {
sources?: { title: string; text: string; link: string }[]; sources?: { title: string; text: string; link: string }[];
tool_calls?: ToolCallsType[]; tool_calls?: ToolCallsType[];
error?: string; error?: string;
attachments?: { fileName: string; id: string }[]; attachments?: { id: string; fileName: string }[];
} }
export interface RetrievalPayload { export interface RetrievalPayload {

View File

@@ -3,23 +3,27 @@ import { createAsyncThunk, createSlice, PayloadAction } from '@reduxjs/toolkit';
import { getConversations } from '../preferences/preferenceApi'; import { getConversations } from '../preferences/preferenceApi';
import { setConversations } from '../preferences/preferenceSlice'; import { setConversations } from '../preferences/preferenceSlice';
import store from '../store'; import store from '../store';
import {
clearAttachments,
selectCompletedAttachments,
} from '../upload/uploadSlice';
import { import {
handleFetchAnswer, handleFetchAnswer,
handleFetchAnswerSteaming, handleFetchAnswerSteaming,
} from './conversationHandlers'; } from './conversationHandlers';
import { import {
Answer, Answer,
Attachment,
ConversationState,
Query, Query,
Status, Status,
ConversationState,
Attachment,
} from './conversationModels'; } from './conversationModels';
import { ToolCallsType } from './types';
const initialState: ConversationState = { const initialState: ConversationState = {
queries: [], queries: [],
status: 'idle', status: 'idle',
conversationId: null, conversationId: null,
attachments: [],
}; };
const API_STREAMING = import.meta.env.VITE_API_STREAMING === 'true'; const API_STREAMING = import.meta.env.VITE_API_STREAMING === 'true';
@@ -44,9 +48,14 @@ export const fetchAnswer = createAsyncThunk<
let isSourceUpdated = false; let isSourceUpdated = false;
const state = getState() as RootState; const state = getState() as RootState;
const attachmentIds = state.conversation.attachments const attachmentIds = selectCompletedAttachments(state)
.filter((a) => a.id && a.status === 'completed') .filter((a) => a.id)
.map((a) => a.id) as string[]; .map((a) => a.id) as string[];
if (attachmentIds.length > 0) {
dispatch(clearAttachments());
}
const currentConversationId = state.conversation.conversationId; const currentConversationId = state.conversation.conversationId;
const conversationIdToSend = isPreview ? null : currentConversationId; const conversationIdToSend = isPreview ? null : currentConversationId;
const save_conversation = isPreview ? false : true; const save_conversation = isPreview ? false : true;
@@ -110,11 +119,11 @@ export const fetchAnswer = createAsyncThunk<
query: { sources: data.source ?? [] }, query: { sources: data.source ?? [] },
}), }),
); );
} else if (data.type === 'tool_calls') { } else if (data.type === 'tool_call') {
dispatch( dispatch(
updateToolCalls({ updateToolCall({
index: targetIndex, index: targetIndex,
query: { tool_calls: data.tool_calls }, tool_call: data.data as ToolCallsType,
}), }),
); );
} else if (data.type === 'error') { } else if (data.type === 'error') {
@@ -280,12 +289,24 @@ export const conversationSlice = createSlice({
state.queries[index].sources!.push(query.sources![0]); state.queries[index].sources!.push(query.sources![0]);
} }
}, },
updateToolCalls( updateToolCall(state, action) {
state, const { index, tool_call } = action.payload;
action: PayloadAction<{ index: number; query: Partial<Query> }>,
) { if (!state.queries[index].tool_calls) {
const { index, query } = action.payload; state.queries[index].tool_calls = [];
state.queries[index].tool_calls = query?.tool_calls ?? []; }
const existingIndex = state.queries[index].tool_calls.findIndex(
(call) => call.call_id === tool_call.call_id,
);
if (existingIndex !== -1) {
const existingCall = state.queries[index].tool_calls[existingIndex];
state.queries[index].tool_calls[existingIndex] = {
...existingCall,
...tool_call,
};
} else state.queries[index].tool_calls.push(tool_call);
}, },
updateQuery( updateQuery(
state, state,
@@ -307,39 +328,11 @@ export const conversationSlice = createSlice({
const { index, message } = action.payload; const { index, message } = action.payload;
state.queries[index].error = message; state.queries[index].error = message;
}, },
setAttachments: (state, action: PayloadAction<Attachment[]>) => {
state.attachments = action.payload;
},
addAttachment: (state, action: PayloadAction<Attachment>) => {
state.attachments.push(action.payload);
},
updateAttachment: (
state,
action: PayloadAction<{
taskId: string;
updates: Partial<Attachment>;
}>,
) => {
const index = state.attachments.findIndex(
(att) => att.taskId === action.payload.taskId,
);
if (index !== -1) {
state.attachments[index] = {
...state.attachments[index],
...action.payload.updates,
};
}
},
removeAttachment: (state, action: PayloadAction<string>) => {
state.attachments = state.attachments.filter(
(att) => att.taskId !== action.payload && att.id !== action.payload,
);
},
resetConversation: (state) => { resetConversation: (state) => {
state.queries = initialState.queries; state.queries = initialState.queries;
state.status = initialState.status; state.status = initialState.status;
state.conversationId = initialState.conversationId; state.conversationId = initialState.conversationId;
state.attachments = initialState.attachments;
handleAbort(); handleAbort();
}, },
}, },
@@ -365,11 +358,6 @@ export const selectQueries = (state: RootState) => state.conversation.queries;
export const selectStatus = (state: RootState) => state.conversation.status; export const selectStatus = (state: RootState) => state.conversation.status;
export const selectAttachments = (state: RootState) =>
state.conversation.attachments;
export const selectCompletedAttachments = (state: RootState) =>
state.conversation.attachments.filter((att) => att.status === 'completed');
export const { export const {
addQuery, addQuery,
updateQuery, updateQuery,
@@ -378,12 +366,10 @@ export const {
updateConversationId, updateConversationId,
updateThought, updateThought,
updateStreamingSource, updateStreamingSource,
updateToolCalls, updateToolCall,
setConversation, setConversation,
setAttachments, setStatus,
addAttachment, raiseError,
updateAttachment,
removeAttachment,
resetConversation, resetConversation,
} = conversationSlice.actions; } = conversationSlice.actions;
export default conversationSlice.reducer; export default conversationSlice.reducer;

View File

@@ -7,6 +7,10 @@ import {
handleFetchSharedAnswer, handleFetchSharedAnswer,
handleFetchSharedAnswerStreaming, handleFetchSharedAnswerStreaming,
} from './conversationHandlers'; } from './conversationHandlers';
import {
selectCompletedAttachments,
clearAttachments,
} from '../upload/uploadSlice';
const API_STREAMING = import.meta.env.VITE_API_STREAMING === 'true'; const API_STREAMING = import.meta.env.VITE_API_STREAMING === 'true';
interface SharedConversationsType { interface SharedConversationsType {
@@ -29,6 +33,14 @@ export const fetchSharedAnswer = createAsyncThunk<Answer, { question: string }>(
async ({ question }, { dispatch, getState, signal }) => { async ({ question }, { dispatch, getState, signal }) => {
const state = getState() as RootState; const state = getState() as RootState;
const attachmentIds = selectCompletedAttachments(state)
.filter((a) => a.id)
.map((a) => a.id) as string[];
if (attachmentIds.length > 0) {
dispatch(clearAttachments());
}
if (state.preference && state.sharedConversation.apiKey) { if (state.preference && state.sharedConversation.apiKey) {
if (API_STREAMING) { if (API_STREAMING) {
await handleFetchSharedAnswerStreaming( await handleFetchSharedAnswerStreaming(
@@ -36,7 +48,7 @@ export const fetchSharedAnswer = createAsyncThunk<Answer, { question: string }>(
signal, signal,
state.sharedConversation.apiKey, state.sharedConversation.apiKey,
state.sharedConversation.queries, state.sharedConversation.queries,
attachmentIds,
(event) => { (event) => {
const data = JSON.parse(event.data); const data = JSON.parse(event.data);
// check if the 'end' event has been received // check if the 'end' event has been received
@@ -92,6 +104,7 @@ export const fetchSharedAnswer = createAsyncThunk<Answer, { question: string }>(
question, question,
signal, signal,
state.sharedConversation.apiKey, state.sharedConversation.apiKey,
attachmentIds,
); );
if (answer) { if (answer) {
let sourcesPrepped = []; let sourcesPrepped = [];

View File

@@ -3,5 +3,6 @@ export type ToolCallsType = {
action_name: string; action_name: string;
call_id: string; call_id: string;
arguments: Record<string, any>; arguments: Record<string, any>;
result: Record<string, any>; result?: Record<string, any>;
status?: 'pending' | 'completed';
}; };

View File

@@ -1,3 +1,5 @@
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@300;400;500;700&display=swap');
@tailwind base; @tailwind base;
@tailwind components; @tailwind components;
@tailwind utilities; @tailwind utilities;

View File

@@ -245,7 +245,8 @@
"promptName": "Prompt Name", "promptName": "Prompt Name",
"promptText": "Prompt Text", "promptText": "Prompt Text",
"save": "Save", "save": "Save",
"nameExists": "Name already exists" "nameExists": "Name already exists",
"deleteConfirmation": "Are you sure you want to delete the prompt '{{name}}'?"
}, },
"chunk": { "chunk": {
"add": "Add Chunk", "add": "Add Chunk",

View File

@@ -245,7 +245,8 @@
"promptName": "Nombre del Prompt", "promptName": "Nombre del Prompt",
"promptText": "Texto del Prompt", "promptText": "Texto del Prompt",
"save": "Guardar", "save": "Guardar",
"nameExists": "El nombre ya existe" "nameExists": "El nombre ya existe",
"deleteConfirmation": "¿Estás seguro de que deseas eliminar el prompt '{{name}}'?"
}, },
"chunk": { "chunk": {
"add": "Agregar Fragmento", "add": "Agregar Fragmento",

View File

@@ -245,7 +245,8 @@
"promptName": "プロンプト名", "promptName": "プロンプト名",
"promptText": "プロンプトテキスト", "promptText": "プロンプトテキスト",
"save": "保存", "save": "保存",
"nameExists": "名前が既に存在します" "nameExists": "名前が既に存在します",
"deleteConfirmation": "プロンプト「{{name}}」を削除してもよろしいですか?"
}, },
"chunk": { "chunk": {
"add": "チャンクを追加", "add": "チャンクを追加",

View File

@@ -245,7 +245,8 @@
"promptName": "Название подсказки", "promptName": "Название подсказки",
"promptText": "Текст подсказки", "promptText": "Текст подсказки",
"save": "Сохранить", "save": "Сохранить",
"nameExists": "Название уже существует" "nameExists": "Название уже существует",
"deleteConfirmation": "Вы уверены, что хотите удалить подсказку «{{name}}»?"
}, },
"chunk": { "chunk": {
"add": "Добавить фрагмент", "add": "Добавить фрагмент",

View File

@@ -245,7 +245,8 @@
"promptName": "提示名稱", "promptName": "提示名稱",
"promptText": "提示文字", "promptText": "提示文字",
"save": "儲存", "save": "儲存",
"nameExists": "名稱已存在" "nameExists": "名稱已存在",
"deleteConfirmation": "您確定要刪除提示「{{name}}」嗎?"
}, },
"chunk": { "chunk": {
"add": "新增區塊", "add": "新增區塊",

View File

@@ -245,7 +245,8 @@
"promptName": "提示名称", "promptName": "提示名称",
"promptText": "提示文本", "promptText": "提示文本",
"save": "保存", "save": "保存",
"nameExists": "名称已存在" "nameExists": "名称已存在",
"deleteConfirmation": "您确定要删除提示'{{name}}'吗?"
}, },
"chunk": { "chunk": {
"add": "添加块", "add": "添加块",

View File

@@ -94,24 +94,40 @@ export default function AgentDetailsModal({
<h2 className="text-base font-semibold text-jet dark:text-bright-gray"> <h2 className="text-base font-semibold text-jet dark:text-bright-gray">
Public Link Public Link
</h2> </h2>
{sharedToken && ( </div>
<div className="mb-1"> {sharedToken ? (
<div className="flex flex-col gap-2">
<p className="inline break-all font-roboto text-[14px] font-medium leading-normal text-gray-700 dark:text-[#ECECF1]">
<a
href={`${baseURL}/shared/agent/${sharedToken}`}
target="_blank"
rel="noreferrer"
>
{`${baseURL}/shared/agent/${sharedToken}`}
</a>
<CopyButton <CopyButton
textToCopy={`${baseURL}/shared/agent/${sharedToken}`} textToCopy={`${baseURL}/shared/agent/${sharedToken}`}
padding="p-1" padding="p-1"
className="absolute -mt-0.5 ml-1 inline-flex"
/> />
</div>
)}
</div>
{sharedToken ? (
<div className="flex flex-col flex-wrap items-start gap-2">
<p className="f break-all font-mono text-sm text-gray-700 dark:text-[#ECECF1]">
{`${baseURL}/shared/agent/${sharedToken}`}
</p> </p>
<a
href="https://docs.docsgpt.cloud/Agents/basics#core-components-of-an-agent"
className="flex w-fit items-center gap-1 text-purple-30 hover:underline"
target="_blank"
rel="noopener noreferrer"
>
<span className="text-sm">Learn more</span>
<img
src="/src/assets/external-link.svg"
alt="External link"
className="h-3 w-3"
/>
</a>
</div> </div>
) : ( ) : (
<button <button
className="hover:bg-vi</button>olets-are-blue flex w-28 items-center justify-center rounded-3xl border border-solid border-violets-are-blue px-5 py-2 text-sm font-medium text-violets-are-blue transition-colors hover:bg-violets-are-blue hover:text-white" className="flex w-28 items-center justify-center rounded-3xl border border-solid border-purple-30 px-5 py-2 text-sm font-medium text-purple-30 transition-colors hover:bg-purple-30 hover:text-white"
onClick={handleGeneratePublicLink} onClick={handleGeneratePublicLink}
> >
{loadingStates.publicLink ? ( {loadingStates.publicLink ? (
@@ -127,11 +143,37 @@ export default function AgentDetailsModal({
API Key API Key
</h2> </h2>
{apiKey ? ( {apiKey ? (
<span className="font-mono text-sm text-gray-700 dark:text-[#ECECF1]"> <div className="flex flex-col gap-2">
{apiKey} <div className="flex items-center gap-2">
</span> <div className="break-all font-roboto text-[14px] font-medium leading-normal text-gray-700 dark:text-[#ECECF1]">
{apiKey}
{!apiKey.includes('...') && (
<CopyButton
textToCopy={apiKey}
padding="p-1"
className="absolute -mt-0.5 ml-1 inline-flex"
/>
)}
</div>
{!apiKey.includes('...') && (
<a
href={`https://widget.docsgpt.cloud/?api-key=${apiKey}`}
className="group ml-8 flex w-[101px] items-center justify-center gap-1 rounded-[62px] border border-purple-30 py-1.5 text-sm font-medium text-purple-30 transition-colors hover:bg-purple-30 hover:text-white"
target="_blank"
rel="noopener noreferrer"
>
Test
<img
src="/src/assets/external-link.svg"
alt="External link"
className="h-3 w-3 group-hover:brightness-0 group-hover:invert"
/>
</a>
)}
</div>
</div>
) : ( ) : (
<button className="hover:bg-vi</button>olets-are-blue w-28 rounded-3xl border border-solid border-violets-are-blue px-5 py-2 text-sm font-medium text-violets-are-blue transition-colors hover:bg-violets-are-blue hover:text-white"> <button className="w-28 rounded-3xl border border-solid border-purple-30 px-5 py-2 text-sm font-medium text-purple-30 transition-colors hover:bg-purple-30 hover:text-white">
Generate Generate
</button> </button>
)} )}
@@ -141,21 +183,36 @@ export default function AgentDetailsModal({
<h2 className="text-base font-semibold text-jet dark:text-bright-gray"> <h2 className="text-base font-semibold text-jet dark:text-bright-gray">
Webhook URL Webhook URL
</h2> </h2>
{webhookUrl && (
<div className="mb-1">
<CopyButton textToCopy={webhookUrl} padding="p-1" />
</div>
)}
</div> </div>
{webhookUrl ? ( {webhookUrl ? (
<div className="flex flex-col flex-wrap items-start gap-2"> <div className="flex flex-col gap-2">
<p className="f break-all font-mono text-sm text-gray-700 dark:text-[#ECECF1]"> <p className="break-all font-roboto text-[14px] font-medium leading-normal text-gray-700 dark:text-[#ECECF1]">
{webhookUrl} <a href={webhookUrl} target="_blank" rel="noreferrer">
{webhookUrl}
</a>
<CopyButton
textToCopy={webhookUrl}
padding="p-1"
className="absolute -mt-0.5 ml-1 inline-flex"
/>
</p> </p>
<a
href="https://docs.docsgpt.cloud/Agents/basics#core-components-of-an-agent"
className="flex w-fit items-center gap-1 text-purple-30 hover:underline"
target="_blank"
rel="noopener noreferrer"
>
<span className="text-sm">Learn more</span>
<img
src="/src/assets/external-link.svg"
alt="External link"
className="h-3 w-3"
/>
</a>
</div> </div>
) : ( ) : (
<button <button
className="hover:bg-vi</button>olets-are-blue flex w-28 items-center justify-center rounded-3xl border border-solid border-violets-are-blue px-5 py-2 text-sm font-medium text-violets-are-blue transition-colors hover:bg-violets-are-blue hover:text-white" className="flex w-28 items-center justify-center rounded-3xl border border-solid border-purple-30 px-5 py-2 text-sm font-medium text-purple-30 transition-colors hover:bg-purple-30 hover:text-white"
onClick={handleGenerateWebhook} onClick={handleGenerateWebhook}
> >
{loadingStates.webhook ? ( {loadingStates.webhook ? (

View File

@@ -184,29 +184,54 @@ export default function PromptsModal({
setEditPromptName: (name: string) => void; setEditPromptName: (name: string) => void;
editPromptContent: string; editPromptContent: string;
setEditPromptContent: (content: string) => void; setEditPromptContent: (content: string) => void;
currentPromptEdit: { name: string; id: string; type: string }; currentPromptEdit: {
name: string;
id: string;
type: string;
content?: string;
};
handleAddPrompt?: () => void; handleAddPrompt?: () => void;
handleEditPrompt?: (id: string, type: string) => void; handleEditPrompt?: (id: string, type: string) => void;
}) { }) {
const [disableSave, setDisableSave] = React.useState(true); const [disableSave, setDisableSave] = React.useState(true);
const handlePrompNameChange = (edit: boolean, newName: string) => { const handlePromptNameChange = (edit: boolean, newName: string) => {
const nameExists = existingPrompts.find(
(prompt) => newName === prompt.name,
);
if (newName && !nameExists) {
setDisableSave(false);
} else {
setDisableSave(true);
}
if (edit) { if (edit) {
const nameExists = existingPrompts.find(
(prompt) =>
newName === prompt.name && prompt.id !== currentPromptEdit.id,
);
const nameValid = newName && !nameExists;
const contentChanged = editPromptContent !== currentPromptEdit.content;
setDisableSave(!(nameValid || contentChanged));
setEditPromptName(newName); setEditPromptName(newName);
} else { } else {
const nameExists = existingPrompts.find(
(prompt) => newName === prompt.name,
);
setDisableSave(!(newName && !nameExists));
setNewPromptName(newName); setNewPromptName(newName);
} }
}; };
const handleContentChange = (edit: boolean, newContent: string) => {
if (edit) {
const contentChanged = newContent !== currentPromptEdit.content;
const nameValid =
editPromptName &&
!existingPrompts.find(
(prompt) =>
editPromptName === prompt.name &&
prompt.id !== currentPromptEdit.id,
);
setDisableSave(!(nameValid || contentChanged));
setEditPromptContent(newContent);
} else {
setNewPromptContent(newContent);
}
};
let view; let view;
if (type === 'ADD') { if (type === 'ADD') {
@@ -215,9 +240,9 @@ export default function PromptsModal({
setModalState={setModalState} setModalState={setModalState}
handleAddPrompt={handleAddPrompt} handleAddPrompt={handleAddPrompt}
newPromptName={newPromptName} newPromptName={newPromptName}
setNewPromptName={handlePrompNameChange.bind(null, false)} setNewPromptName={handlePromptNameChange.bind(null, false)}
newPromptContent={newPromptContent} newPromptContent={newPromptContent}
setNewPromptContent={setNewPromptContent} setNewPromptContent={handleContentChange.bind(null, false)}
disableSave={disableSave} disableSave={disableSave}
/> />
); );
@@ -227,9 +252,9 @@ export default function PromptsModal({
setModalState={setModalState} setModalState={setModalState}
handleEditPrompt={handleEditPrompt} handleEditPrompt={handleEditPrompt}
editPromptName={editPromptName} editPromptName={editPromptName}
setEditPromptName={handlePrompNameChange.bind(null, true)} setEditPromptName={handlePromptNameChange.bind(null, true)}
editPromptContent={editPromptContent} editPromptContent={editPromptContent}
setEditPromptContent={setEditPromptContent} setEditPromptContent={handleContentChange.bind(null, true)}
currentPromptEdit={currentPromptEdit} currentPromptEdit={currentPromptEdit}
disableSave={disableSave} disableSave={disableSave}
/> />

View File

@@ -7,6 +7,7 @@ import Dropdown from '../components/Dropdown';
import { ActiveState, PromptProps } from '../models/misc'; import { ActiveState, PromptProps } from '../models/misc';
import { selectToken } from '../preferences/preferenceSlice'; import { selectToken } from '../preferences/preferenceSlice';
import PromptsModal from '../preferences/PromptsModal'; import PromptsModal from '../preferences/PromptsModal';
import ConfirmationModal from '../modals/ConfirmationModal';
export default function Prompts({ export default function Prompts({
prompts, prompts,
@@ -40,6 +41,11 @@ export default function Prompts({
const [modalState, setModalState] = React.useState<ActiveState>('INACTIVE'); const [modalState, setModalState] = React.useState<ActiveState>('INACTIVE');
const { t } = useTranslation(); const { t } = useTranslation();
const [promptToDelete, setPromptToDelete] = React.useState<{
id: string;
name: string;
} | null>(null);
const handleAddPrompt = async () => { const handleAddPrompt = async () => {
try { try {
const response = await userService.createPrompt( const response = await userService.createPrompt(
@@ -69,20 +75,37 @@ export default function Prompts({
}; };
const handleDeletePrompt = (id: string) => { const handleDeletePrompt = (id: string) => {
setPrompts(prompts.filter((prompt) => prompt.id !== id)); const promptToRemove = prompts.find((prompt) => prompt.id === id);
userService if (promptToRemove) {
.deletePrompt({ id }, token) setPromptToDelete({ id, name: promptToRemove.name });
.then((response) => { }
if (!response.ok) { };
throw new Error('Failed to delete prompt');
} const confirmDeletePrompt = () => {
if (prompts.length > 0) { if (promptToDelete) {
onSelectPrompt(prompts[0].name, prompts[0].id, prompts[0].type); setPrompts(prompts.filter((prompt) => prompt.id !== promptToDelete.id));
} userService
}) .deletePrompt({ id: promptToDelete.id }, token)
.catch((error) => { .then((response) => {
console.error(error); if (!response.ok) {
}); throw new Error('Failed to delete prompt');
}
if (prompts.length > 0) {
const firstPrompt = prompts.find((p) => p.id !== promptToDelete.id);
if (firstPrompt) {
onSelectPrompt(
firstPrompt.name,
firstPrompt.id,
firstPrompt.type,
);
}
}
})
.catch((error) => {
console.error(error);
});
setPromptToDelete(null);
}
}; };
const handleFetchPromptContent = async (id: string) => { const handleFetchPromptContent = async (id: string) => {
@@ -202,6 +225,19 @@ export default function Prompts({
handleAddPrompt={handleAddPrompt} handleAddPrompt={handleAddPrompt}
handleEditPrompt={handleSaveChanges} handleEditPrompt={handleSaveChanges}
/> />
{promptToDelete && (
<ConfirmationModal
message={t('modals.prompts.deleteConfirmation', {
name: promptToDelete.name,
})}
modalState="ACTIVE"
setModalState={() => setPromptToDelete(null)}
submitLabel={t('modals.deleteConv.delete')}
handleSubmit={confirmDeletePrompt}
handleCancel={() => setPromptToDelete(null)}
variant="danger"
/>
)}
</> </>
); );
} }

View File

@@ -7,6 +7,7 @@ import {
prefListenerMiddleware, prefListenerMiddleware,
prefSlice, prefSlice,
} from './preferences/preferenceSlice'; } from './preferences/preferenceSlice';
import uploadReducer from './upload/uploadSlice';
const key = localStorage.getItem('DocsGPTApiKey'); const key = localStorage.getItem('DocsGPTApiKey');
const prompt = localStorage.getItem('DocsGPTPrompt'); const prompt = localStorage.getItem('DocsGPTPrompt');
@@ -52,6 +53,7 @@ const store = configureStore({
preference: prefSlice.reducer, preference: prefSlice.reducer,
conversation: conversationSlice.reducer, conversation: conversationSlice.reducer,
sharedConversation: sharedConversationSlice.reducer, sharedConversation: sharedConversationSlice.reducer,
upload: uploadReducer,
}, },
middleware: (getDefaultMiddleware) => middleware: (getDefaultMiddleware) =>
getDefaultMiddleware().concat(prefListenerMiddleware.middleware), getDefaultMiddleware().concat(prefListenerMiddleware.middleware),

View File

@@ -0,0 +1,69 @@
import { createSlice, PayloadAction } from '@reduxjs/toolkit';
import { RootState } from '../store';
export interface Attachment {
fileName: string;
progress: number;
status: 'uploading' | 'processing' | 'completed' | 'failed';
taskId: string;
id?: string;
token_count?: number;
}
interface UploadState {
attachments: Attachment[];
}
const initialState: UploadState = {
attachments: [],
};
export const uploadSlice = createSlice({
name: 'upload',
initialState,
reducers: {
addAttachment: (state, action: PayloadAction<Attachment>) => {
state.attachments.push(action.payload);
},
updateAttachment: (
state,
action: PayloadAction<{
taskId: string;
updates: Partial<Attachment>;
}>,
) => {
const index = state.attachments.findIndex(
(att) => att.taskId === action.payload.taskId,
);
if (index !== -1) {
state.attachments[index] = {
...state.attachments[index],
...action.payload.updates,
};
}
},
removeAttachment: (state, action: PayloadAction<string>) => {
state.attachments = state.attachments.filter(
(att) => att.taskId !== action.payload && att.id !== action.payload,
);
},
clearAttachments: (state) => {
state.attachments = state.attachments.filter(
(att) => att.status === 'uploading' || att.status === 'processing',
);
},
},
});
export const {
addAttachment,
updateAttachment,
removeAttachment,
clearAttachments,
} = uploadSlice.actions;
export const selectAttachments = (state: RootState) => state.upload.attachments;
export const selectCompletedAttachments = (state: RootState) =>
state.upload.attachments.filter((att) => att.status === 'completed');
export default uploadSlice.reducer;

View File

@@ -4,6 +4,9 @@ module.exports = {
darkMode: 'class', darkMode: 'class',
theme: { theme: {
extend: { extend: {
fontFamily: {
'roboto': ['Roboto', 'sans-serif'],
},
spacing: { spacing: {
112: '28rem', 112: '28rem',
128: '32rem', 128: '32rem',

View File

@@ -169,7 +169,7 @@ prompt_ollama_options() {
# 1) Use DocsGPT Public API Endpoint (simple and free) # 1) Use DocsGPT Public API Endpoint (simple and free)
use_docs_public_api_endpoint() { use_docs_public_api_endpoint() {
echo -e "\n${NC}Setting up DocsGPT Public API Endpoint...${NC}" echo -e "\n${NC}Setting up DocsGPT Public API Endpoint...${NC}"
echo "LLM_NAME=docsgpt" > .env echo "LLM_PROVIDER=docsgpt" > .env
echo "VITE_API_STREAMING=true" >> .env echo "VITE_API_STREAMING=true" >> .env
echo -e "${GREEN}.env file configured for DocsGPT Public API.${NC}" echo -e "${GREEN}.env file configured for DocsGPT Public API.${NC}"
@@ -237,13 +237,12 @@ serve_local_ollama() {
echo -e "\n${NC}Configuring for Ollama ($(echo "$docker_compose_file_suffix" | tr '[:lower:]' '[:upper:]'))...${NC}" # Using tr for uppercase - more compatible echo -e "\n${NC}Configuring for Ollama ($(echo "$docker_compose_file_suffix" | tr '[:lower:]' '[:upper:]'))...${NC}" # Using tr for uppercase - more compatible
echo "API_KEY=xxxx" > .env # Placeholder API Key echo "API_KEY=xxxx" > .env # Placeholder API Key
echo "LLM_NAME=openai" >> .env echo "LLM_PROVIDER=openai" >> .env
echo "MODEL_NAME=$model_name" >> .env echo "LLM_NAME=$model_name" >> .env
echo "VITE_API_STREAMING=true" >> .env echo "VITE_API_STREAMING=true" >> .env
echo "OPENAI_BASE_URL=http://ollama:11434/v1" >> .env echo "OPENAI_BASE_URL=http://ollama:11434/v1" >> .env
echo "EMBEDDINGS_NAME=huggingface_sentence-transformers/all-mpnet-base-v2" >> .env echo "EMBEDDINGS_NAME=huggingface_sentence-transformers/all-mpnet-base-v2" >> .env
echo -e "${GREEN}.env file configured for Ollama ($(echo "$docker_compose_file_suffix" | tr '[:lower:]' '[:upper:]')${NC}${GREEN}).${NC}" echo -e "${GREEN}.env file configured for Ollama ($(echo "$docker_compose_file_suffix" | tr '[:lower:]' '[:upper:]')${NC}${GREEN}).${NC}"
echo -e "${YELLOW}Note: MODEL_NAME is set to '${BOLD}$model_name${NC}${YELLOW}'. You can change it later in the .env file.${NC}"
check_and_start_docker check_and_start_docker
@@ -350,8 +349,8 @@ connect_local_inference_engine() {
echo -e "\n${NC}Configuring for Local Inference Engine: ${BOLD}${engine_name}...${NC}" echo -e "\n${NC}Configuring for Local Inference Engine: ${BOLD}${engine_name}...${NC}"
echo "API_KEY=None" > .env echo "API_KEY=None" > .env
echo "LLM_NAME=openai" >> .env echo "LLM_PROVIDER=openai" >> .env
echo "MODEL_NAME=$model_name" >> .env echo "LLM_NAME=$model_name" >> .env
echo "VITE_API_STREAMING=true" >> .env echo "VITE_API_STREAMING=true" >> .env
echo "OPENAI_BASE_URL=$openai_base_url" >> .env echo "OPENAI_BASE_URL=$openai_base_url" >> .env
echo "EMBEDDINGS_NAME=huggingface_sentence-transformers/all-mpnet-base-v2" >> .env echo "EMBEDDINGS_NAME=huggingface_sentence-transformers/all-mpnet-base-v2" >> .env
@@ -381,7 +380,7 @@ connect_local_inference_engine() {
# 4) Connect Cloud API Provider # 4) Connect Cloud API Provider
connect_cloud_api_provider() { connect_cloud_api_provider() {
local provider_choice api_key llm_name local provider_choice api_key llm_provider
local setup_result # Variable to store the return status local setup_result # Variable to store the return status
get_api_key() { get_api_key() {
@@ -395,43 +394,43 @@ connect_cloud_api_provider() {
case "$provider_choice" in case "$provider_choice" in
1) # OpenAI 1) # OpenAI
provider_name="OpenAI" provider_name="OpenAI"
llm_name="openai" llm_provider="openai"
model_name="gpt-4o" model_name="gpt-4o"
get_api_key get_api_key
break ;; break ;;
2) # Google 2) # Google
provider_name="Google (Vertex AI, Gemini)" provider_name="Google (Vertex AI, Gemini)"
llm_name="google" llm_provider="google"
model_name="gemini-2.0-flash" model_name="gemini-2.0-flash"
get_api_key get_api_key
break ;; break ;;
3) # Anthropic 3) # Anthropic
provider_name="Anthropic (Claude)" provider_name="Anthropic (Claude)"
llm_name="anthropic" llm_provider="anthropic"
model_name="claude-3-5-sonnet-latest" model_name="claude-3-5-sonnet-latest"
get_api_key get_api_key
break ;; break ;;
4) # Groq 4) # Groq
provider_name="Groq" provider_name="Groq"
llm_name="groq" llm_provider="groq"
model_name="llama-3.1-8b-instant" model_name="llama-3.1-8b-instant"
get_api_key get_api_key
break ;; break ;;
5) # HuggingFace Inference API 5) # HuggingFace Inference API
provider_name="HuggingFace Inference API" provider_name="HuggingFace Inference API"
llm_name="huggingface" llm_provider="huggingface"
model_name="meta-llama/Llama-3.1-8B-Instruct" model_name="meta-llama/Llama-3.1-8B-Instruct"
get_api_key get_api_key
break ;; break ;;
6) # Azure OpenAI 6) # Azure OpenAI
provider_name="Azure OpenAI" provider_name="Azure OpenAI"
llm_name="azure_openai" llm_provider="azure_openai"
model_name="gpt-4o" model_name="gpt-4o"
get_api_key get_api_key
break ;; break ;;
7) # Novita 7) # Novita
provider_name="Novita" provider_name="Novita"
llm_name="novita" llm_provider="novita"
model_name="deepseek/deepseek-r1" model_name="deepseek/deepseek-r1"
get_api_key get_api_key
break ;; break ;;
@@ -442,8 +441,8 @@ connect_cloud_api_provider() {
echo -e "\n${NC}Configuring for Cloud API Provider: ${BOLD}${provider_name}...${NC}" echo -e "\n${NC}Configuring for Cloud API Provider: ${BOLD}${provider_name}...${NC}"
echo "API_KEY=$api_key" > .env echo "API_KEY=$api_key" > .env
echo "LLM_NAME=$llm_name" >> .env echo "LLM_PROVIDER=$llm_provider" >> .env
echo "MODEL_NAME=$model_name" >> .env echo "LLM_NAME=$model_name" >> .env
echo "VITE_API_STREAMING=true" >> .env echo "VITE_API_STREAMING=true" >> .env
echo -e "${GREEN}.env file configured for ${BOLD}${provider_name}${NC}${GREEN}.${NC}" echo -e "${GREEN}.env file configured for ${BOLD}${provider_name}${NC}${GREEN}.${NC}"