Compare commits

..

1 Commits

Author SHA1 Message Date
dependabot[bot]
6e20414747 chore(deps): bump ebooklib from 0.18 to 0.20 in /application
Bumps [ebooklib](https://github.com/aerkalov/ebooklib) from 0.18 to 0.20.
- [Release notes](https://github.com/aerkalov/ebooklib/releases)
- [Changelog](https://github.com/aerkalov/ebooklib/blob/master/CHANGES.txt)
- [Commits](https://github.com/aerkalov/ebooklib/compare/v0.18...v0.20)

---
updated-dependencies:
- dependency-name: ebooklib
  dependency-version: '0.20'
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-10-27 21:05:42 +00:00
96 changed files with 3589 additions and 9082 deletions

View File

@@ -1,11 +0,0 @@
extends: spelling
level: warning
message: "Did you really mean '%s'?"
ignore:
- "**/node_modules/**"
- "**/dist/**"
- "**/build/**"
- "**/coverage/**"
- "**/public/**"
- "**/static/**"
vocab: DocsGPT

View File

@@ -1,46 +0,0 @@
Ollama
Qdrant
Milvus
Chatwoot
Nextra
VSCode
npm
LLMs
APIs
Groq
SGLang
LMDeploy
OAuth
Vite
LLM
JSONPath
UIs
configs
uncomment
qdrant
vectorstore
docsgpt
llm
GPUs
kubectl
Lightsail
enqueues
chatbot
VSCode's
Shareability
feedbacks
automations
Premade
Signup
Repo
repo
env
URl
agentic
llama_cpp
parsable
SDKs
boolean
bool
hardcode
EOL

View File

@@ -1,26 +0,0 @@
name: Vale Documentation Linter
on:
pull_request:
paths:
- 'docs/**/*.md'
- 'docs/**/*.mdx'
- '**/*.md'
- '.vale.ini'
- '.github/styles/**'
jobs:
vale:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Vale linter
uses: errata-ai/vale-action@v2
with:
files: docs
fail_on_error: false
version: 3.0.5
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

1
.gitignore vendored
View File

@@ -3,7 +3,6 @@ __pycache__/
*.py[cod]
*$py.class
experiments
# C extensions
*.so
*.next

View File

@@ -1,5 +0,0 @@
MinAlertLevel = warning
StylesPath = .github/styles
[*.{md,mdx}]
BasedOnStyles = DocsGPT

View File

@@ -147,5 +147,5 @@ Here's a step-by-step guide on how to contribute to DocsGPT:
Thank you for considering contributing to DocsGPT! 🙏
## Questions/collaboration
Feel free to join our [Discord](https://discord.gg/vN7YFfdMpj). We're very friendly and welcoming to new contributors, so don't hesitate to reach out.
Feel free to join our [Discord](https://discord.gg/n5BX8dh8rU). We're very friendly and welcoming to new contributors, so don't hesitate to reach out.
# Thank you so much for considering to contributing DocsGPT!🙏

View File

@@ -32,7 +32,7 @@ Non-Code Contributions:
- Before contributing check existing [issues](https://github.com/arc53/DocsGPT/issues) or [create](https://github.com/arc53/DocsGPT/issues/new/choose) an issue and wait to get assigned.
- Once you are finished with your contribution, please fill in this [form](https://forms.gle/Npaba4n9Epfyx56S8).
- Refer to the [Documentation](https://docs.docsgpt.cloud/).
- Feel free to join our [Discord](https://discord.gg/vN7YFfdMpj) server. We're here to help newcomers, so don't hesitate to jump in! Join us [here](https://discord.gg/vN7YFfdMpj).
- Feel free to join our [Discord](https://discord.gg/n5BX8dh8rU) server. We're here to help newcomers, so don't hesitate to jump in! Join us [here](https://discord.gg/n5BX8dh8rU).
Thank you very much for considering contributing to DocsGPT during Hacktoberfest! 🙏 Your contributions (not just simple typos) could earn you a stylish new t-shirt.

View File

@@ -16,10 +16,10 @@
<a href="https://github.com/arc53/DocsGPT">![link to main GitHub showing Forks number](https://img.shields.io/github/forks/arc53/docsgpt?style=social)</a>
<a href="https://github.com/arc53/DocsGPT/blob/main/LICENSE">![link to license file](https://img.shields.io/github/license/arc53/docsgpt)</a>
<a href="https://www.bestpractices.dev/projects/9907"><img src="https://www.bestpractices.dev/projects/9907/badge"></a>
<a href="https://discord.gg/vN7YFfdMpj">![link to discord](https://img.shields.io/discord/1070046503302877216)</a>
<a href="https://discord.gg/n5BX8dh8rU">![link to discord](https://img.shields.io/discord/1070046503302877216)</a>
<a href="https://x.com/docsgptai">![X (formerly Twitter) URL](https://img.shields.io/twitter/follow/docsgptai)</a>
<a href="https://docs.docsgpt.cloud/quickstart">⚡️ Quickstart</a><a href="https://app.docsgpt.cloud/">☁️ Cloud Version</a><a href="https://discord.gg/vN7YFfdMpj">💬 Discord</a>
<a href="https://docs.docsgpt.cloud/quickstart">⚡️ Quickstart</a><a href="https://app.docsgpt.cloud/">☁️ Cloud Version</a><a href="https://discord.gg/n5BX8dh8rU">💬 Discord</a>
<br>
<a href="https://docs.docsgpt.cloud/">📖 Documentation</a><a href="https://github.com/arc53/DocsGPT/blob/main/CONTRIBUTING.md">👫 Contribute</a><a href="https://blog.docsgpt.cloud/">🗞 Blog</a>
<br>

View File

@@ -12,6 +12,7 @@ from application.core.settings import settings
from application.llm.handlers.handler_creator import LLMHandlerCreator
from application.llm.llm_creator import LLMCreator
from application.logging import build_stack_data, log_activity, LogContext
from application.retriever.base import BaseRetriever
logger = logging.getLogger(__name__)
@@ -26,7 +27,6 @@ class BaseAgent(ABC):
user_api_key: Optional[str] = None,
prompt: str = "",
chat_history: Optional[List[Dict]] = None,
retrieved_docs: Optional[List[Dict]] = None,
decoded_token: Optional[Dict] = None,
attachments: Optional[List[Dict]] = None,
json_schema: Optional[Dict] = None,
@@ -53,7 +53,6 @@ class BaseAgent(ABC):
user_api_key=user_api_key,
decoded_token=decoded_token,
)
self.retrieved_docs = retrieved_docs or []
self.llm_handler = LLMHandlerCreator.create_handler(
llm_name if llm_name else "default"
)
@@ -66,13 +65,13 @@ class BaseAgent(ABC):
@log_activity()
def gen(
self, query: str, log_context: LogContext = None
self, query: str, retriever: BaseRetriever, log_context: LogContext = None
) -> Generator[Dict, None, None]:
yield from self._gen_inner(query, log_context)
yield from self._gen_inner(query, retriever, log_context)
@abstractmethod
def _gen_inner(
self, query: str, log_context: LogContext
self, query: str, retriever: BaseRetriever, log_context: LogContext
) -> Generator[Dict, None, None]:
pass
@@ -151,7 +150,6 @@ class BaseAgent(ABC):
call_id = getattr(call, "id", None) or str(uuid.uuid4())
# Check if parsing failed
if tool_id is None or action_name is None:
error_message = f"Error: Failed to parse LLM tool call. Tool name: {getattr(call, 'name', 'unknown')}"
logger.error(error_message)
@@ -166,14 +164,13 @@ class BaseAgent(ABC):
yield {"type": "tool_call", "data": {**tool_call_data, "status": "error"}}
self.tool_calls.append(tool_call_data)
return "Failed to parse tool call.", call_id
# Check if tool_id exists in available tools
# Check if tool_id exists in available tools
if tool_id not in tools_dict:
error_message = f"Error: Tool ID '{tool_id}' extracted from LLM call not found in available tools_dict. Available IDs: {list(tools_dict.keys())}"
logger.error(error_message)
# Return error result
tool_call_data = {
"tool_name": "unknown",
"call_id": call_id,
@@ -184,6 +181,7 @@ class BaseAgent(ABC):
yield {"type": "tool_call", "data": {**tool_call_data, "status": "error"}}
self.tool_calls.append(tool_call_data)
return f"Tool with ID {tool_id} not found.", call_id
tool_call_data = {
"tool_name": tools_dict[tool_id]["name"],
"call_id": call_id,
@@ -225,7 +223,6 @@ class BaseAgent(ABC):
tm = ToolManager(config={})
# Prepare tool_config and add tool_id for memory tools
if tool_data["name"] == "api_tool":
tool_config = {
"url": tool_data["config"]["actions"][action_name]["url"],
@@ -237,8 +234,8 @@ class BaseAgent(ABC):
tool_config = tool_data["config"].copy() if tool_data["config"] else {}
# Add tool_id from MongoDB _id for tools that need instance isolation (like memory tool)
# Use MongoDB _id if available, otherwise fall back to enumerated tool_id
tool_config["tool_id"] = str(tool_data.get("_id", tool_id))
tool = tm.load_tool(
tool_data["name"],
tool_config=tool_config,
@@ -279,14 +276,24 @@ class BaseAgent(ABC):
self,
system_prompt: str,
query: str,
retrieved_data: List[Dict],
) -> List[Dict]:
"""Build messages using pre-rendered system prompt"""
messages = [{"role": "system", "content": system_prompt}]
docs_with_filenames = []
for doc in retrieved_data:
filename = doc.get("filename") or doc.get("title") or doc.get("source")
if filename:
chunk_header = str(filename)
docs_with_filenames.append(f"{chunk_header}\n{doc['text']}")
else:
docs_with_filenames.append(doc["text"])
docs_together = "\n\n".join(docs_with_filenames)
p_chat_combine = system_prompt.replace("{summaries}", docs_together)
messages_combine = [{"role": "system", "content": p_chat_combine}]
for i in self.chat_history:
if "prompt" in i and "response" in i:
messages.append({"role": "user", "content": i["prompt"]})
messages.append({"role": "assistant", "content": i["response"]})
messages_combine.append({"role": "user", "content": i["prompt"]})
messages_combine.append({"role": "assistant", "content": i["response"]})
if "tool_calls" in i:
for tool_call in i["tool_calls"]:
call_id = tool_call.get("call_id") or str(uuid.uuid4())
@@ -306,14 +313,26 @@ class BaseAgent(ABC):
}
}
messages.append(
messages_combine.append(
{"role": "assistant", "content": [function_call_dict]}
)
messages.append(
messages_combine.append(
{"role": "tool", "content": [function_response_dict]}
)
messages.append({"role": "user", "content": query})
return messages
messages_combine.append({"role": "user", "content": query})
return messages_combine
def _retriever_search(
self,
retriever: BaseRetriever,
query: str,
log_context: Optional[LogContext] = None,
) -> List[Dict]:
retrieved_data = retriever.search(query)
if log_context:
data = build_stack_data(retriever, exclude_attributes=["llm"])
log_context.stacks.append({"component": "retriever", "data": data})
return retrieved_data
def _llm_gen(self, messages: List[Dict], log_context: Optional[LogContext] = None):
gen_kwargs = {"model": self.gpt_model, "messages": messages}
@@ -324,6 +343,7 @@ class BaseAgent(ABC):
and self.tools
):
gen_kwargs["tools"] = self.tools
if (
self.json_schema
and hasattr(self.llm, "_supports_structured_output")
@@ -337,6 +357,7 @@ class BaseAgent(ABC):
gen_kwargs["response_format"] = structured_format
elif self.llm_name == "google":
gen_kwargs["response_schema"] = structured_format
resp = self.llm.gen_stream(**gen_kwargs)
if log_context:

View File

@@ -1,20 +1,32 @@
import logging
from typing import Dict, Generator
from application.agents.base import BaseAgent
from application.logging import LogContext
from application.retriever.base import BaseRetriever
import logging
logger = logging.getLogger(__name__)
class ClassicAgent(BaseAgent):
"""A simplified agent with clear execution flow"""
"""A simplified agent with clear execution flow.
Usage:
1. Processes a query through retrieval
2. Sets up available tools
3. Generates responses using LLM
4. Handles tool interactions if needed
5. Returns standardized outputs
Easy to extend by overriding specific steps.
"""
def _gen_inner(
self, query: str, log_context: LogContext
self, query: str, retriever: BaseRetriever, log_context: LogContext
) -> Generator[Dict, None, None]:
"""Core generator function for ClassicAgent execution flow"""
# Step 1: Retrieve relevant data
retrieved_data = self._retriever_search(retriever, query, log_context)
# Step 2: Prepare tools
tools_dict = (
self._get_user_tools(self.user)
if not self.user_api_key
@@ -22,16 +34,20 @@ class ClassicAgent(BaseAgent):
)
self._prepare_tools(tools_dict)
messages = self._build_messages(self.prompt, query)
# Step 3: Build and process messages
messages = self._build_messages(self.prompt, query, retrieved_data)
llm_response = self._llm_gen(messages, log_context)
# Step 4: Handle the response
yield from self._handle_response(
llm_response, tools_dict, messages, log_context
)
yield {"sources": self.retrieved_docs}
# Step 5: Return metadata
yield {"sources": retrieved_data}
yield {"tool_calls": self._get_truncated_tool_calls()}
# Log tool calls for debugging
log_context.stacks.append(
{"component": "agent", "data": {"tool_calls": self.tool_calls.copy()}}
)

View File

@@ -1,238 +1,284 @@
import logging
import os
from typing import Any, Dict, Generator, List
from typing import Dict, Generator, List, Any
import logging
from application.agents.base import BaseAgent
from application.logging import build_stack_data, LogContext
from application.retriever.base import BaseRetriever
logger = logging.getLogger(__name__)
MAX_ITERATIONS_REASONING = 10
current_dir = os.path.dirname(
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
)
with open(
os.path.join(current_dir, "application/prompts", "react_planning_prompt.txt"), "r"
) as f:
PLANNING_PROMPT_TEMPLATE = f.read()
planning_prompt_template = f.read()
with open(
os.path.join(current_dir, "application/prompts", "react_final_prompt.txt"), "r"
os.path.join(current_dir, "application/prompts", "react_final_prompt.txt"),
"r",
) as f:
FINAL_PROMPT_TEMPLATE = f.read()
final_prompt_template = f.read()
MAX_ITERATIONS_REASONING = 10
class ReActAgent(BaseAgent):
"""
Research and Action (ReAct) Agent - Advanced reasoning agent with iterative planning.
Implements a think-act-observe loop for complex problem-solving:
1. Creates a strategic plan based on the query
2. Executes tools and gathers observations
3. Iteratively refines approach until satisfied
4. Synthesizes final answer from all observations
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.plan: str = ""
self.observations: List[str] = []
def _gen_inner(
self, query: str, log_context: LogContext
) -> Generator[Dict, None, None]:
"""Execute ReAct reasoning loop with planning, action, and observation cycles"""
def _extract_content_from_llm_response(self, resp: Any) -> str:
"""
Helper to extract string content from various LLM response types.
Handles strings, message objects (OpenAI-like), and streams.
Adapt stream handling for your specific LLM client if not OpenAI.
"""
collected_content = []
if isinstance(resp, str):
collected_content.append(resp)
elif ( # OpenAI non-streaming or Anthropic non-streaming (older SDK style)
hasattr(resp, "message")
and hasattr(resp.message, "content")
and resp.message.content is not None
):
collected_content.append(resp.message.content)
elif ( # OpenAI non-streaming (Pydantic model), Anthropic new SDK non-streaming
hasattr(resp, "choices")
and resp.choices
and hasattr(resp.choices[0], "message")
and hasattr(resp.choices[0].message, "content")
and resp.choices[0].message.content is not None
):
collected_content.append(resp.choices[0].message.content) # OpenAI
elif ( # Anthropic new SDK non-streaming content block
hasattr(resp, "content")
and isinstance(resp.content, list)
and resp.content
and hasattr(resp.content[0], "text")
):
collected_content.append(resp.content[0].text) # Anthropic
else:
# Assume resp is a stream if not a recognized object
chunk = None
try:
for (
chunk
) in (
resp
): # This will fail if resp is not iterable (e.g. a non-streaming response object)
content_piece = ""
# OpenAI-like stream
if (
hasattr(chunk, "choices")
and len(chunk.choices) > 0
and hasattr(chunk.choices[0], "delta")
and hasattr(chunk.choices[0].delta, "content")
and chunk.choices[0].delta.content is not None
):
content_piece = chunk.choices[0].delta.content
# Anthropic-like stream (ContentBlockDelta)
elif (
hasattr(chunk, "type")
and chunk.type == "content_block_delta"
and hasattr(chunk, "delta")
and hasattr(chunk.delta, "text")
):
content_piece = chunk.delta.text
elif isinstance(chunk, str): # Simplest case: stream of strings
content_piece = chunk
self._reset_state()
tools_dict = (
self._get_tools(self.user_api_key)
if self.user_api_key
else self._get_user_tools(self.user)
)
self._prepare_tools(tools_dict)
for iteration in range(1, MAX_ITERATIONS_REASONING + 1):
yield {"thought": f"Reasoning... (iteration {iteration})\n\n"}
yield from self._planning_phase(query, log_context)
if not self.plan:
logger.warning(
f"ReActAgent: No plan generated in iteration {iteration}"
if content_piece:
collected_content.append(content_piece)
except (
TypeError
): # If resp is not iterable (e.g. a final response object that wasn't caught above)
logger.debug(
f"Response type {type(resp)} could not be iterated as a stream. It might be a non-streaming object not handled by specific checks."
)
except Exception as e:
logger.error(
f"Error processing potential stream chunk: {e}, chunk was: {getattr(chunk, '__dict__', chunk) if chunk is not None else 'N/A'}"
)
break
self.observations.append(f"Plan (iteration {iteration}): {self.plan}")
satisfied = yield from self._execution_phase(query, tools_dict, log_context)
return "".join(collected_content)
if satisfied:
logger.info("ReActAgent: Goal satisfied, stopping reasoning loop")
break
yield from self._synthesis_phase(query, log_context)
def _reset_state(self):
"""Reset agent state for new query"""
def _gen_inner(
self, query: str, retriever: BaseRetriever, log_context: LogContext
) -> Generator[Dict, None, None]:
# Reset state for this generation call
self.plan = ""
self.observations = []
retrieved_data = self._retriever_search(retriever, query, log_context)
def _planning_phase(
self, query: str, log_context: LogContext
) -> Generator[Dict, None, None]:
"""Generate strategic plan for query"""
logger.info("ReActAgent: Creating plan...")
if self.user_api_key:
tools_dict = self._get_tools(self.user_api_key)
else:
tools_dict = self._get_user_tools(self.user)
self._prepare_tools(tools_dict)
plan_prompt = self._build_planning_prompt(query)
messages = [{"role": "user", "content": plan_prompt}]
docs_together = "\n".join([doc["text"] for doc in retrieved_data])
iterating_reasoning = 0
while iterating_reasoning < MAX_ITERATIONS_REASONING:
iterating_reasoning += 1
# 1. Create Plan
logger.info("ReActAgent: Creating plan...")
plan_stream = self._create_plan(query, docs_together, log_context)
current_plan_parts = []
yield {"thought": f"Reasoning... (iteration {iterating_reasoning})\n\n"}
for line_chunk in plan_stream:
current_plan_parts.append(line_chunk)
yield {"thought": line_chunk}
self.plan = "".join(current_plan_parts)
if self.plan:
self.observations.append(
f"Plan: {self.plan} Iteration: {iterating_reasoning}"
)
plan_stream = self.llm.gen_stream(
max_obs_len = 20000
obs_str = "\n".join(self.observations)
if len(obs_str) > max_obs_len:
obs_str = obs_str[:max_obs_len] + "\n...[observations truncated]"
execution_prompt_str = (
(self.prompt or "")
+ f"\n\nFollow this plan:\n{self.plan}"
+ f"\n\nObservations:\n{obs_str}"
+ f"\n\nIf there is enough data to complete user query '{query}', Respond with 'SATISFIED' only. Otherwise, continue. Dont Menstion 'SATISFIED' in your response if you are not ready. "
)
messages = self._build_messages(execution_prompt_str, query, retrieved_data)
resp_from_llm_gen = self._llm_gen(messages, log_context)
initial_llm_thought_content = self._extract_content_from_llm_response(
resp_from_llm_gen
)
if initial_llm_thought_content:
self.observations.append(
f"Initial thought/response: {initial_llm_thought_content}"
)
else:
logger.info(
"ReActAgent: Initial LLM response (before handler) had no textual content (might be only tool calls)."
)
resp_after_handler = self._llm_handler(
resp_from_llm_gen, tools_dict, messages, log_context
)
for (
tool_call_info
) in (
self.tool_calls
): # Iterate over self.tool_calls populated by _llm_handler
observation_string = (
f"Executed Action: Tool '{tool_call_info.get('tool_name', 'N/A')}' "
f"with arguments '{tool_call_info.get('arguments', '{}')}'. Result: '{str(tool_call_info.get('result', ''))[:200]}...'"
)
self.observations.append(observation_string)
content_after_handler = self._extract_content_from_llm_response(
resp_after_handler
)
if content_after_handler:
self.observations.append(
f"Response after tool execution: {content_after_handler}"
)
else:
logger.info(
"ReActAgent: LLM response after handler had no textual content."
)
if log_context:
log_context.stacks.append(
{
"component": "agent_tool_calls",
"data": {"tool_calls": self.tool_calls.copy()},
}
)
yield {"sources": retrieved_data}
display_tool_calls = []
for tc in self.tool_calls:
cleaned_tc = tc.copy()
if len(str(cleaned_tc.get("result", ""))) > 50:
cleaned_tc["result"] = str(cleaned_tc["result"])[:50] + "..."
display_tool_calls.append(cleaned_tc)
if display_tool_calls:
yield {"tool_calls": display_tool_calls}
if "SATISFIED" in content_after_handler:
logger.info(
"ReActAgent: LLM satisfied with the plan and data. Stopping reasoning."
)
break
# 3. Create Final Answer based on all observations
final_answer_stream = self._create_final_answer(
query, self.observations, log_context
)
for answer_chunk in final_answer_stream:
yield {"answer": answer_chunk}
logger.info("ReActAgent: Finished generating final answer.")
def _create_plan(
self, query: str, docs_data: str, log_context: LogContext = None
) -> Generator[str, None, None]:
plan_prompt_filled = planning_prompt_template.replace("{query}", query)
if "{summaries}" in plan_prompt_filled:
summaries = docs_data if docs_data else "No documents retrieved."
plan_prompt_filled = plan_prompt_filled.replace("{summaries}", summaries)
plan_prompt_filled = plan_prompt_filled.replace("{prompt}", self.prompt or "")
plan_prompt_filled = plan_prompt_filled.replace(
"{observations}", "\n".join(self.observations)
)
messages = [{"role": "user", "content": plan_prompt_filled}]
plan_stream_from_llm = self.llm.gen_stream(
model=self.gpt_model,
messages=messages,
tools=self.tools if self.tools else None,
tools=getattr(self, "tools", None), # Use self.tools
)
if log_context:
data = build_stack_data(self.llm)
log_context.stacks.append({"component": "planning_llm", "data": data})
for chunk in plan_stream_from_llm:
content_piece = self._extract_content_from_llm_response(chunk)
if content_piece:
yield content_piece
def _create_final_answer(
self, query: str, observations: List[str], log_context: LogContext = None
) -> Generator[str, None, None]:
observation_string = "\n".join(observations)
max_obs_len = 10000
if len(observation_string) > max_obs_len:
observation_string = (
observation_string[:max_obs_len] + "\n...[observations truncated]"
)
logger.warning(
"ReActAgent: Truncated observations for final answer prompt due to length."
)
final_answer_prompt_filled = final_prompt_template.format(
query=query, observations=observation_string
)
if log_context:
log_context.stacks.append(
{"component": "planning_llm", "data": build_stack_data(self.llm)}
)
plan_parts = []
for chunk in plan_stream:
content = self._extract_content(chunk)
if content:
plan_parts.append(content)
yield {"thought": content}
self.plan = "".join(plan_parts)
messages = [{"role": "user", "content": final_answer_prompt_filled}]
def _execution_phase(
self, query: str, tools_dict: Dict, log_context: LogContext
) -> Generator[bool, None, None]:
"""Execute plan with tool calls and observations"""
execution_prompt = self._build_execution_prompt(query)
messages = self._build_messages(execution_prompt, query)
llm_response = self._llm_gen(messages, log_context)
initial_content = self._extract_content(llm_response)
if initial_content:
self.observations.append(f"Initial response: {initial_content}")
processed_response = self._llm_handler(
llm_response, tools_dict, messages, log_context
)
for tool_call in self.tool_calls:
observation = (
f"Executed: {tool_call.get('tool_name', 'Unknown')} "
f"with args {tool_call.get('arguments', {})}. "
f"Result: {str(tool_call.get('result', ''))[:200]}"
)
self.observations.append(observation)
final_content = self._extract_content(processed_response)
if final_content:
self.observations.append(f"Response after tools: {final_content}")
if log_context:
log_context.stacks.append(
{
"component": "agent_tool_calls",
"data": {"tool_calls": self.tool_calls.copy()},
}
)
yield {"sources": self.retrieved_docs}
yield {"tool_calls": self._get_truncated_tool_calls()}
return "SATISFIED" in (final_content or "")
def _synthesis_phase(
self, query: str, log_context: LogContext
) -> Generator[Dict, None, None]:
"""Synthesize final answer from all observations"""
logger.info("ReActAgent: Generating final answer...")
final_prompt = self._build_final_answer_prompt(query)
messages = [{"role": "user", "content": final_prompt}]
final_stream = self.llm.gen_stream(
# Final answer should synthesize, not call tools.
final_answer_stream_from_llm = self.llm.gen_stream(
model=self.gpt_model, messages=messages, tools=None
)
if log_context:
log_context.stacks.append(
{"component": "final_answer_llm", "data": build_stack_data(self.llm)}
)
for chunk in final_stream:
content = self._extract_content(chunk)
if content:
yield {"answer": content}
data = build_stack_data(self.llm)
log_context.stacks.append({"component": "final_answer_llm", "data": data})
def _build_planning_prompt(self, query: str) -> str:
"""Build planning phase prompt"""
prompt = PLANNING_PROMPT_TEMPLATE.replace("{query}", query)
prompt = prompt.replace("{prompt}", self.prompt or "")
prompt = prompt.replace("{summaries}", "")
prompt = prompt.replace("{observations}", "\n".join(self.observations))
return prompt
def _build_execution_prompt(self, query: str) -> str:
"""Build execution phase prompt with plan and observations"""
observations_str = "\n".join(self.observations)
if len(observations_str) > 20000:
observations_str = observations_str[:20000] + "\n...[truncated]"
return (
f"{self.prompt or ''}\n\n"
f"Follow this plan:\n{self.plan}\n\n"
f"Observations:\n{observations_str}\n\n"
f"If sufficient data exists to answer '{query}', respond with 'SATISFIED'. "
f"Otherwise, continue executing the plan."
)
def _build_final_answer_prompt(self, query: str) -> str:
"""Build final synthesis prompt"""
observations_str = "\n".join(self.observations)
if len(observations_str) > 10000:
observations_str = observations_str[:10000] + "\n...[truncated]"
logger.warning("ReActAgent: Observations truncated for final answer")
return FINAL_PROMPT_TEMPLATE.format(query=query, observations=observations_str)
def _extract_content(self, response: Any) -> str:
"""Extract text content from various LLM response formats"""
if not response:
return ""
collected = []
if isinstance(response, str):
return response
if hasattr(response, "message") and hasattr(response.message, "content"):
if response.message.content:
return response.message.content
if hasattr(response, "choices") and response.choices:
if hasattr(response.choices[0], "message"):
content = response.choices[0].message.content
if content:
return content
if hasattr(response, "content") and isinstance(response.content, list):
if response.content and hasattr(response.content[0], "text"):
return response.content[0].text
try:
for chunk in response:
content_piece = ""
if hasattr(chunk, "choices") and chunk.choices:
if hasattr(chunk.choices[0], "delta"):
delta_content = chunk.choices[0].delta.content
if delta_content:
content_piece = delta_content
elif hasattr(chunk, "type") and chunk.type == "content_block_delta":
if hasattr(chunk, "delta") and hasattr(chunk.delta, "text"):
content_piece = chunk.delta.text
elif isinstance(chunk, str):
content_piece = chunk
if content_piece:
collected.append(content_piece)
except (TypeError, AttributeError):
logger.debug(
f"Response not iterable or unexpected format: {type(response)}"
)
except Exception as e:
logger.error(f"Error extracting content: {e}")
return "".join(collected)
for chunk in final_answer_stream_from_llm:
content_piece = self._extract_content_from_llm_response(chunk)
if content_piece:
yield content_piece

View File

@@ -54,10 +54,6 @@ class AnswerResource(Resource, BaseAnswerResource):
default=True,
description="Whether to save the conversation",
),
"passthrough": fields.Raw(
required=False,
description="Dynamic parameters to inject into prompt template",
),
},
)
@@ -73,17 +69,8 @@ class AnswerResource(Resource, BaseAnswerResource):
processor.initialize()
if not processor.decoded_token:
return make_response({"error": "Unauthorized"}, 401)
docs_together, docs_list = processor.pre_fetch_docs(
data.get("question", "")
)
tools_data = processor.pre_fetch_tools()
agent = processor.create_agent(
docs_together=docs_together,
docs=docs_list,
tools_data=tools_data,
)
agent = processor.create_agent()
retriever = processor.create_retriever()
if error := self.check_usage(processor.agent_config):
return error
@@ -91,6 +78,7 @@ class AnswerResource(Resource, BaseAnswerResource):
stream = self.complete_stream(
question=data["question"],
agent=agent,
retriever=retriever,
conversation_id=processor.conversation_id,
user_api_key=processor.agent_config.get("user_api_key"),
decoded_token=processor.decoded_token,

View File

@@ -3,7 +3,7 @@ import json
import logging
from typing import Any, Dict, Generator, List, Optional
from flask import jsonify, make_response, Response
from flask import Response, make_response, jsonify
from flask_restx import Namespace
from application.api.answer.services.conversation_service import ConversationService
@@ -41,7 +41,9 @@ class BaseAnswerResource:
return missing_fields
return None
def check_usage(self, agent_config: Dict) -> Optional[Response]:
def check_usage(
self, agent_config: Dict
) -> Optional[Response]:
"""Check if there is a usage limit and if it is exceeded
Args:
@@ -49,40 +51,30 @@ class BaseAnswerResource:
Returns:
None or Response if either of limits exceeded.
"""
api_key = agent_config.get("user_api_key")
if not api_key:
return None
agents_collection = self.db["agents"]
agent = agents_collection.find_one({"key": api_key})
if not agent:
return make_response(
jsonify({"success": False, "message": "Invalid API key."}), 401
jsonify(
{
"success": False,
"message": "Invalid API key."
}
),
401
)
limited_token_mode_raw = agent.get("limited_token_mode", False)
limited_request_mode_raw = agent.get("limited_request_mode", False)
limited_token_mode = (
limited_token_mode_raw
if isinstance(limited_token_mode_raw, bool)
else limited_token_mode_raw == "True"
)
limited_request_mode = (
limited_request_mode_raw
if isinstance(limited_request_mode_raw, bool)
else limited_request_mode_raw == "True"
)
token_limit = int(
agent.get("token_limit", settings.DEFAULT_AGENT_LIMITS["token_limit"])
)
request_limit = int(
agent.get("request_limit", settings.DEFAULT_AGENT_LIMITS["request_limit"])
)
limited_token_mode = agent.get("limited_token_mode", False)
limited_request_mode = agent.get("limited_request_mode", False)
token_limit = int(agent.get("token_limit", settings.DEFAULT_AGENT_LIMITS["token_limit"]))
request_limit = int(agent.get("request_limit", settings.DEFAULT_AGENT_LIMITS["request_limit"]))
token_usage_collection = self.db["token_usage"]
@@ -91,20 +83,18 @@ class BaseAnswerResource:
match_query = {
"timestamp": {"$gte": start_date, "$lte": end_date},
"api_key": api_key,
"api_key": api_key
}
if limited_token_mode:
token_pipeline = [
{"$match": match_query},
{
"$group": {
"_id": None,
"total_tokens": {
"$sum": {"$add": ["$prompt_tokens", "$generated_tokens"]}
},
"total_tokens": {"$sum": {"$add": ["$prompt_tokens", "$generated_tokens"]}}
}
},
}
]
token_result = list(token_usage_collection.aggregate(token_pipeline))
daily_token_usage = token_result[0]["total_tokens"] if token_result else 0
@@ -118,33 +108,26 @@ class BaseAnswerResource:
if not limited_token_mode and not limited_request_mode:
return None
elif limited_token_mode and token_limit > daily_token_usage:
return None
elif limited_request_mode and request_limit > daily_request_usage:
return None
token_exceeded = (
limited_token_mode and token_limit > 0 and daily_token_usage >= token_limit
return make_response(
jsonify(
{
"success": False,
"message": "Exceeding usage limit, please try again later."
}
),
429, # too many requests
)
request_exceeded = (
limited_request_mode
and request_limit > 0
and daily_request_usage >= request_limit
)
if token_exceeded or request_exceeded:
return make_response(
jsonify(
{
"success": False,
"message": "Exceeding usage limit, please try again later.",
}
),
429,
)
return None
def complete_stream(
self,
question: str,
agent: Any,
retriever: Any,
conversation_id: Optional[str],
user_api_key: Optional[str],
decoded_token: Dict[str, Any],
@@ -173,7 +156,6 @@ class BaseAnswerResource:
agent_id: ID of agent used
is_shared_usage: Flag for shared agent usage
shared_token: Token for shared agent
retrieved_docs: Pre-fetched documents for sources (optional)
Yields:
Server-sent event strings
@@ -184,7 +166,7 @@ class BaseAnswerResource:
schema_info = None
structured_chunks = []
for line in agent.gen(query=question):
for line in agent.gen(query=question, retriever=retriever):
if "answer" in line:
response_full += str(line["answer"])
if line.get("structured"):
@@ -265,6 +247,7 @@ class BaseAnswerResource:
data = json.dumps(id_data)
yield f"data: {data}\n\n"
retriever_params = retriever.get_params()
log_data = {
"action": "stream_answer",
"level": "info",
@@ -273,6 +256,7 @@ class BaseAnswerResource:
"question": question,
"response": response_full,
"sources": source_log_docs,
"retriever_params": retriever_params,
"attachments": attachment_ids,
"timestamp": datetime.datetime.now(datetime.timezone.utc),
}
@@ -280,19 +264,24 @@ class BaseAnswerResource:
log_data["structured_output"] = True
if schema_info:
log_data["schema"] = schema_info
# Clean up text fields to be no longer than 10000 characters
# clean up text fields to be no longer than 10000 characters
for key, value in log_data.items():
if isinstance(value, str) and len(value) > 10000:
log_data[key] = value[:10000]
self.user_logs_collection.insert_one(log_data)
# End of stream
data = json.dumps({"type": "end"})
yield f"data: {data}\n\n"
except GeneratorExit:
logger.info(f"Stream aborted by client for question: {question[:50]}... ")
# Save partial response
# Client aborted the connection
logger.info(
f"Stream aborted by client for question: {question[:50]}... "
)
# Save partial response to database before exiting
if should_save_conversation and response_full:
try:
if isNoneDoc:
@@ -322,9 +311,7 @@ class BaseAnswerResource:
attachment_ids=attachment_ids,
)
except Exception as e:
logger.error(
f"Error saving partial response: {str(e)}", exc_info=True
)
logger.error(f"Error saving partial response: {str(e)}", exc_info=True)
raise
except Exception as e:
logger.error(f"Error in stream: {str(e)}", exc_info=True)

View File

@@ -60,10 +60,6 @@ class StreamResource(Resource, BaseAnswerResource):
"attachments": fields.List(
fields.String, required=False, description="List of attachment IDs"
),
"passthrough": fields.Raw(
required=False,
description="Dynamic parameters to inject into prompt template",
),
},
)
@@ -77,20 +73,17 @@ class StreamResource(Resource, BaseAnswerResource):
processor = StreamProcessor(data, decoded_token)
try:
processor.initialize()
docs_together, docs_list = processor.pre_fetch_docs(data["question"])
tools_data = processor.pre_fetch_tools()
agent = processor.create_agent(
docs_together=docs_together, docs=docs_list, tools_data=tools_data
)
agent = processor.create_agent()
retriever = processor.create_retriever()
if error := self.check_usage(processor.agent_config):
return error
return Response(
self.complete_stream(
question=data["question"],
agent=agent,
retriever=retriever,
conversation_id=processor.conversation_id,
user_api_key=processor.agent_config.get("user_api_key"),
decoded_token=processor.decoded_token,

View File

@@ -133,9 +133,10 @@ class ConversationService:
messages_summary = [
{
"role": "system",
"content": "You are a helpful assistant that creates concise conversation titles. "
"Summarize conversations in 3 words or less using the same language as the user.",
"role": "assistant",
"content": "Summarise following conversation in no more than 3 "
"words, respond ONLY with the summary, use the same "
"language as the user query",
},
{
"role": "user",

View File

@@ -1,97 +0,0 @@
import logging
from typing import Any, Dict, Optional
from application.templates.namespaces import NamespaceManager
from application.templates.template_engine import TemplateEngine, TemplateRenderError
logger = logging.getLogger(__name__)
class PromptRenderer:
"""Service for rendering prompts with dynamic context using namespaces"""
def __init__(self):
self.template_engine = TemplateEngine()
self.namespace_manager = NamespaceManager()
def render_prompt(
self,
prompt_content: str,
user_id: Optional[str] = None,
request_id: Optional[str] = None,
passthrough_data: Optional[Dict[str, Any]] = None,
docs: Optional[list] = None,
docs_together: Optional[str] = None,
tools_data: Optional[Dict[str, Any]] = None,
**kwargs,
) -> str:
"""
Render prompt with full context from all namespaces.
Args:
prompt_content: Raw prompt template string
user_id: Current user identifier
request_id: Unique request identifier
passthrough_data: Parameters from web request
docs: RAG retrieved documents
docs_together: Concatenated document content
tools_data: Pre-fetched tool results organized by tool name
**kwargs: Additional parameters for namespace builders
Returns:
Rendered prompt string with all variables substituted
Raises:
TemplateRenderError: If template rendering fails
"""
if not prompt_content:
return ""
uses_template = self._uses_template_syntax(prompt_content)
if not uses_template:
return self._apply_legacy_substitutions(prompt_content, docs_together)
try:
context = self.namespace_manager.build_context(
user_id=user_id,
request_id=request_id,
passthrough_data=passthrough_data,
docs=docs,
docs_together=docs_together,
tools_data=tools_data,
**kwargs,
)
return self.template_engine.render(prompt_content, context)
except TemplateRenderError:
raise
except Exception as e:
error_msg = f"Prompt rendering failed: {str(e)}"
logger.error(error_msg)
raise TemplateRenderError(error_msg) from e
def _uses_template_syntax(self, prompt_content: str) -> bool:
"""Check if prompt uses Jinja2 template syntax"""
return "{{" in prompt_content and "}}" in prompt_content
def _apply_legacy_substitutions(
self, prompt_content: str, docs_together: Optional[str] = None
) -> str:
"""
Apply backward-compatible substitutions for old prompt format.
Handles legacy {summaries} and {query} placeholders during transition period.
"""
if docs_together:
prompt_content = prompt_content.replace("{summaries}", docs_together)
return prompt_content
def validate_template(self, prompt_content: str) -> bool:
"""Validate prompt template syntax"""
return self.template_engine.validate_template(prompt_content)
def extract_variables(self, prompt_content: str) -> set[str]:
"""Extract all variable names from prompt template"""
return self.template_engine.extract_variables(prompt_content)

View File

@@ -3,7 +3,7 @@ import json
import logging
import os
from pathlib import Path
from typing import Any, Dict, Optional, Set
from typing import Any, Dict, Optional
from bson.dbref import DBRef
@@ -11,15 +11,10 @@ from bson.objectid import ObjectId
from application.agents.agent_creator import AgentCreator
from application.api.answer.services.conversation_service import ConversationService
from application.api.answer.services.prompt_renderer import PromptRenderer
from application.core.mongo_db import MongoDB
from application.core.settings import settings
from application.retriever.retriever_creator import RetrieverCreator
from application.utils import (
calculate_doc_token_budget,
get_gpt_model,
limit_chat_history,
)
from application.utils import get_gpt_model, limit_chat_history
logger = logging.getLogger(__name__)
@@ -78,16 +73,12 @@ class StreamProcessor:
self.all_sources = []
self.attachments = []
self.history = []
self.retrieved_docs = []
self.agent_config = {}
self.retriever_config = {}
self.is_shared_usage = False
self.shared_token = None
self.gpt_model = get_gpt_model()
self.conversation_service = ConversationService()
self.prompt_renderer = PromptRenderer()
self._prompt_content: Optional[str] = None
self._required_tool_actions: Optional[Dict[str, Set[Optional[str]]]] = None
def initialize(self):
"""Initialize all required components for processing"""
@@ -320,312 +311,19 @@ class StreamProcessor:
)
def _configure_retriever(self):
history_token_limit = int(self.data.get("token_limit", 2000))
doc_token_limit = calculate_doc_token_budget(
gpt_model=self.gpt_model, history_token_limit=history_token_limit
)
"""Configure the retriever based on request data"""
self.retriever_config = {
"retriever_name": self.data.get("retriever", "classic"),
"chunks": int(self.data.get("chunks", 2)),
"doc_token_limit": doc_token_limit,
"history_token_limit": history_token_limit,
"token_limit": self.data.get("token_limit", settings.DEFAULT_MAX_HISTORY),
}
api_key = self.data.get("api_key") or self.agent_key
if not api_key and "isNoneDoc" in self.data and self.data["isNoneDoc"]:
self.retriever_config["chunks"] = 0
def create_retriever(self):
return RetrieverCreator.create_retriever(
self.retriever_config["retriever_name"],
source=self.source,
chat_history=self.history,
prompt=get_prompt(self.agent_config["prompt_id"], self.prompts_collection),
chunks=self.retriever_config["chunks"],
doc_token_limit=self.retriever_config.get("doc_token_limit", 50000),
gpt_model=self.gpt_model,
user_api_key=self.agent_config["user_api_key"],
decoded_token=self.decoded_token,
)
def pre_fetch_docs(self, question: str) -> tuple[Optional[str], Optional[list]]:
"""Pre-fetch documents for template rendering before agent creation"""
if self.data.get("isNoneDoc", False):
logger.info("Pre-fetch skipped: isNoneDoc=True")
return None, None
try:
retriever = self.create_retriever()
logger.info(
f"Pre-fetching docs with chunks={retriever.chunks}, doc_token_limit={retriever.doc_token_limit}"
)
docs = retriever.search(question)
logger.info(f"Pre-fetch retrieved {len(docs) if docs else 0} documents")
if not docs:
logger.info("Pre-fetch: No documents returned from search")
return None, None
self.retrieved_docs = docs
docs_with_filenames = []
for doc in docs:
filename = doc.get("filename") or doc.get("title") or doc.get("source")
if filename:
chunk_header = str(filename)
docs_with_filenames.append(f"{chunk_header}\n{doc['text']}")
else:
docs_with_filenames.append(doc["text"])
docs_together = "\n\n".join(docs_with_filenames)
logger.info(f"Pre-fetch docs_together size: {len(docs_together)} chars")
return docs_together, docs
except Exception as e:
logger.error(f"Failed to pre-fetch docs: {str(e)}", exc_info=True)
return None, None
def pre_fetch_tools(self) -> Optional[Dict[str, Any]]:
"""Pre-fetch tool data for template rendering before agent creation
Can be controlled via:
1. Global setting: ENABLE_TOOL_PREFETCH in .env
2. Per-request: disable_tool_prefetch in request data
"""
if not settings.ENABLE_TOOL_PREFETCH:
logger.info(
"Tool pre-fetching disabled globally via ENABLE_TOOL_PREFETCH setting"
)
return None
if self.data.get("disable_tool_prefetch", False):
logger.info("Tool pre-fetching disabled for this request")
return None
required_tool_actions = self._get_required_tool_actions()
filtering_enabled = required_tool_actions is not None
try:
user_tools_collection = self.db["user_tools"]
user_id = self.initial_user_id or "local"
user_tools = list(
user_tools_collection.find({"user": user_id, "status": True})
)
if not user_tools:
return None
tools_data = {}
for tool_doc in user_tools:
tool_name = tool_doc.get("name")
tool_id = str(tool_doc.get("_id"))
if filtering_enabled:
required_actions_by_name = required_tool_actions.get(
tool_name, set()
)
required_actions_by_id = required_tool_actions.get(tool_id, set())
required_actions = required_actions_by_name | required_actions_by_id
if not required_actions:
continue
else:
required_actions = None
tool_data = self._fetch_tool_data(tool_doc, required_actions)
if tool_data:
tools_data[tool_name] = tool_data
tools_data[tool_id] = tool_data
return tools_data if tools_data else None
except Exception as e:
logger.warning(f"Failed to pre-fetch tools: {type(e).__name__}")
return None
def _fetch_tool_data(
self,
tool_doc: Dict[str, Any],
required_actions: Optional[Set[Optional[str]]],
) -> Optional[Dict[str, Any]]:
"""Fetch and execute tool actions with saved parameters"""
try:
from application.agents.tools.tool_manager import ToolManager
tool_name = tool_doc.get("name")
tool_config = tool_doc.get("config", {}).copy()
tool_config["tool_id"] = str(tool_doc["_id"])
tool_manager = ToolManager(config={tool_name: tool_config})
user_id = self.initial_user_id or "local"
tool = tool_manager.load_tool(tool_name, tool_config, user_id=user_id)
if not tool:
logger.debug(f"Tool '{tool_name}' failed to load")
return None
tool_actions = tool.get_actions_metadata()
if not tool_actions:
logger.debug(f"Tool '{tool_name}' has no actions")
return None
saved_actions = tool_doc.get("actions", [])
include_all_actions = required_actions is None or (
required_actions and None in required_actions
)
allowed_actions: Set[str] = (
{action for action in required_actions if isinstance(action, str)}
if required_actions
else set()
)
action_results = {}
for action_meta in tool_actions:
action_name = action_meta.get("name")
if action_name is None:
continue
if (
not include_all_actions
and allowed_actions
and action_name not in allowed_actions
):
continue
try:
saved_action = None
for sa in saved_actions:
if sa.get("name") == action_name:
saved_action = sa
break
action_params = action_meta.get("parameters", {})
properties = action_params.get("properties", {})
kwargs = {}
for param_name, param_spec in properties.items():
if saved_action:
saved_props = saved_action.get("parameters", {}).get(
"properties", {}
)
if param_name in saved_props:
param_value = saved_props[param_name].get("value")
if param_value is not None:
kwargs[param_name] = param_value
continue
if param_name in tool_config:
kwargs[param_name] = tool_config[param_name]
elif "default" in param_spec:
kwargs[param_name] = param_spec["default"]
result = tool.execute_action(action_name, **kwargs)
action_results[action_name] = result
except Exception as e:
logger.debug(
f"Action '{action_name}' execution failed: {type(e).__name__}"
)
continue
return action_results if action_results else None
except Exception as e:
logger.debug(f"Tool pre-fetch failed for '{tool_name}': {type(e).__name__}")
return None
def _get_prompt_content(self) -> Optional[str]:
"""Retrieve and cache the raw prompt content for the current agent configuration."""
if self._prompt_content is not None:
return self._prompt_content
prompt_id = (
self.agent_config.get("prompt_id")
if isinstance(self.agent_config, dict)
else None
)
if not prompt_id:
return None
try:
self._prompt_content = get_prompt(prompt_id, self.prompts_collection)
except ValueError as e:
logger.debug(f"Invalid prompt ID '{prompt_id}': {str(e)}")
self._prompt_content = None
except Exception as e:
logger.debug(f"Failed to fetch prompt '{prompt_id}': {type(e).__name__}")
self._prompt_content = None
return self._prompt_content
def _get_required_tool_actions(self) -> Optional[Dict[str, Set[Optional[str]]]]:
"""Determine which tool actions are referenced in the prompt template"""
if self._required_tool_actions is not None:
return self._required_tool_actions
prompt_content = self._get_prompt_content()
if prompt_content is None:
return None
if "{{" not in prompt_content or "}}" not in prompt_content:
self._required_tool_actions = {}
return self._required_tool_actions
try:
from application.templates.template_engine import TemplateEngine
template_engine = TemplateEngine()
usages = template_engine.extract_tool_usages(prompt_content)
self._required_tool_actions = usages
return self._required_tool_actions
except Exception as e:
logger.debug(f"Failed to extract tool usages: {type(e).__name__}")
self._required_tool_actions = {}
return self._required_tool_actions
def _fetch_memory_tool_data(
self, tool_doc: Dict[str, Any]
) -> Optional[Dict[str, Any]]:
"""Fetch memory tool data for pre-injection into prompt"""
try:
tool_config = tool_doc.get("config", {}).copy()
tool_config["tool_id"] = str(tool_doc["_id"])
from application.agents.tools.memory import MemoryTool
memory_tool = MemoryTool(tool_config, self.initial_user_id)
root_view = memory_tool.execute_action("view", path="/")
if "Error:" in root_view or not root_view.strip():
return None
return {"root": root_view, "available": True}
except Exception as e:
logger.warning(f"Failed to fetch memory tool data: {str(e)}")
return None
def create_agent(
self,
docs_together: Optional[str] = None,
docs: Optional[list] = None,
tools_data: Optional[Dict[str, Any]] = None,
):
"""Create and return the configured agent with rendered prompt"""
raw_prompt = self._get_prompt_content()
if raw_prompt is None:
raw_prompt = get_prompt(
self.agent_config["prompt_id"], self.prompts_collection
)
self._prompt_content = raw_prompt
rendered_prompt = self.prompt_renderer.render_prompt(
prompt_content=raw_prompt,
user_id=self.initial_user_id,
request_id=self.data.get("request_id"),
passthrough_data=self.data.get("passthrough"),
docs=docs,
docs_together=docs_together,
tools_data=tools_data,
)
def create_agent(self):
"""Create and return the configured agent"""
return AgentCreator.create_agent(
self.agent_config["agent_type"],
endpoint="stream",
@@ -633,10 +331,23 @@ class StreamProcessor:
gpt_model=self.gpt_model,
api_key=settings.API_KEY,
user_api_key=self.agent_config["user_api_key"],
prompt=rendered_prompt,
prompt=get_prompt(self.agent_config["prompt_id"], self.prompts_collection),
chat_history=self.history,
retrieved_docs=self.retrieved_docs,
decoded_token=self.decoded_token,
attachments=self.attachments,
json_schema=self.agent_config.get("json_schema"),
)
def create_retriever(self):
"""Create and return the configured retriever"""
return RetrieverCreator.create_retriever(
self.retriever_config["retriever_name"],
source=self.source,
chat_history=self.history,
prompt=get_prompt(self.agent_config["prompt_id"], self.prompts_collection),
chunks=self.retriever_config["chunks"],
token_limit=self.retriever_config["token_limit"],
gpt_model=self.gpt_model,
user_api_key=self.agent_config["user_api_key"],
decoded_token=self.decoded_token,
)

View File

@@ -10,6 +10,7 @@ from flask import current_app, jsonify, make_response, request
from flask_restx import fields, Namespace, Resource
from application.api import api
from application.core.settings import settings
from application.api.user.base import (
agents_collection,
db,
@@ -19,7 +20,6 @@ from application.api.user.base import (
storage,
users_collection,
)
from application.core.settings import settings
from application.utils import (
check_required_fields,
generate_image_url,
@@ -76,13 +76,9 @@ class GetAgent(Resource):
"status": agent.get("status", ""),
"json_schema": agent.get("json_schema"),
"limited_token_mode": agent.get("limited_token_mode", False),
"token_limit": agent.get(
"token_limit", settings.DEFAULT_AGENT_LIMITS["token_limit"]
),
"token_limit": agent.get("token_limit", settings.DEFAULT_AGENT_LIMITS["token_limit"]),
"limited_request_mode": agent.get("limited_request_mode", False),
"request_limit": agent.get(
"request_limit", settings.DEFAULT_AGENT_LIMITS["request_limit"]
),
"request_limit": agent.get("request_limit", settings.DEFAULT_AGENT_LIMITS["request_limit"]),
"created_at": agent.get("createdAt", ""),
"updated_at": agent.get("updatedAt", ""),
"last_used_at": agent.get("lastUsedAt", ""),
@@ -153,13 +149,9 @@ class GetAgents(Resource):
"status": agent.get("status", ""),
"json_schema": agent.get("json_schema"),
"limited_token_mode": agent.get("limited_token_mode", False),
"token_limit": agent.get(
"token_limit", settings.DEFAULT_AGENT_LIMITS["token_limit"]
),
"token_limit": agent.get("token_limit", settings.DEFAULT_AGENT_LIMITS["token_limit"]),
"limited_request_mode": agent.get("limited_request_mode", False),
"request_limit": agent.get(
"request_limit", settings.DEFAULT_AGENT_LIMITS["request_limit"]
),
"request_limit": agent.get("request_limit", settings.DEFAULT_AGENT_LIMITS["request_limit"]),
"created_at": agent.get("createdAt", ""),
"updated_at": agent.get("updatedAt", ""),
"last_used_at": agent.get("lastUsedAt", ""),
@@ -217,19 +209,21 @@ class CreateAgent(Resource):
description="JSON schema for enforcing structured output format",
),
"limited_token_mode": fields.Boolean(
required=False, description="Whether the agent is in limited token mode"
required=False,
description="Whether the agent is in limited token mode"
),
"token_limit": fields.Integer(
required=False, description="Token limit for the agent in limited mode"
required=False,
description="Token limit for the agent in limited mode"
),
"limited_request_mode": fields.Boolean(
required=False,
description="Whether the agent is in limited request mode",
description="Whether the agent is in limited request mode"
),
"request_limit": fields.Integer(
required=False,
description="Request limit for the agent in limited mode",
),
description="Request limit for the agent in limited mode"
)
},
)
@@ -375,26 +369,10 @@ class CreateAgent(Resource):
"agent_type": data.get("agent_type", ""),
"status": data.get("status"),
"json_schema": data.get("json_schema"),
"limited_token_mode": (
data.get("limited_token_mode") == "True"
if isinstance(data.get("limited_token_mode"), str)
else bool(data.get("limited_token_mode", False))
),
"token_limit": int(
data.get(
"token_limit", settings.DEFAULT_AGENT_LIMITS["token_limit"]
)
),
"limited_request_mode": (
data.get("limited_request_mode") == "True"
if isinstance(data.get("limited_request_mode"), str)
else bool(data.get("limited_request_mode", False))
),
"request_limit": int(
data.get(
"request_limit", settings.DEFAULT_AGENT_LIMITS["request_limit"]
)
),
"limited_token_mode": data.get("limited_token_mode", False),
"token_limit": data.get("token_limit", settings.DEFAULT_AGENT_LIMITS["token_limit"]),
"limited_request_mode": data.get("limited_request_mode", False),
"request_limit": data.get("request_limit", settings.DEFAULT_AGENT_LIMITS["request_limit"]),
"createdAt": datetime.datetime.now(datetime.timezone.utc),
"updatedAt": datetime.datetime.now(datetime.timezone.utc),
"lastUsedAt": None,
@@ -451,19 +429,21 @@ class UpdateAgent(Resource):
description="JSON schema for enforcing structured output format",
),
"limited_token_mode": fields.Boolean(
required=False, description="Whether the agent is in limited token mode"
required=False,
description="Whether the agent is in limited token mode"
),
"token_limit": fields.Integer(
required=False, description="Token limit for the agent in limited mode"
required=False,
description="Token limit for the agent in limited mode"
),
"limited_request_mode": fields.Boolean(
require=False,
description="Whether the agent is in limited request mode",
description="Whether the agent is in limited request mode"
),
"request_limit": fields.Integer(
required=False,
description="Request limit for the agent in limited mode",
),
description="Request limit for the agent in limited mode"
)
},
)
@@ -554,7 +534,7 @@ class UpdateAgent(Resource):
"limited_token_mode",
"token_limit",
"limited_request_mode",
"request_limit",
"request_limit"
]
for field in allowed_fields:
@@ -672,15 +652,8 @@ class UpdateAgent(Resource):
else:
update_fields[field] = None
elif field == "limited_token_mode":
raw_value = data.get("limited_token_mode", False)
bool_value = (
raw_value == "True"
if isinstance(raw_value, str)
else bool(raw_value)
)
update_fields[field] = bool_value
if bool_value and data.get("token_limit") is None:
is_mode_enabled = data.get("limited_token_mode", False)
if is_mode_enabled and data.get("token_limit") is None:
return make_response(
jsonify(
{
@@ -691,15 +664,8 @@ class UpdateAgent(Resource):
400,
)
elif field == "limited_request_mode":
raw_value = data.get("limited_request_mode", False)
bool_value = (
raw_value == "True"
if isinstance(raw_value, str)
else bool(raw_value)
)
update_fields[field] = bool_value
if bool_value and data.get("request_limit") is None:
is_mode_enabled = data.get("limited_request_mode", False)
if is_mode_enabled and data.get("request_limit") is None:
return make_response(
jsonify(
{
@@ -711,11 +677,7 @@ class UpdateAgent(Resource):
)
elif field == "token_limit":
token_limit = data.get("token_limit")
# Convert to int and store
update_fields[field] = int(token_limit) if token_limit else 0
# Validate consistency with mode
if update_fields[field] > 0 and not data.get("limited_token_mode"):
if token_limit is not None and not data.get("limited_token_mode"):
return make_response(
jsonify(
{
@@ -727,9 +689,7 @@ class UpdateAgent(Resource):
)
elif field == "request_limit":
request_limit = data.get("request_limit")
update_fields[field] = int(request_limit) if request_limit else 0
if update_fields[field] > 0 and not data.get("limited_request_mode"):
if request_limit is not None and not data.get("limited_request_mode"):
return make_response(
jsonify(
{

View File

@@ -25,7 +25,7 @@ class StoreAttachment(Resource):
api.model(
"AttachmentModel",
{
"file": fields.Raw(required=True, description="File(s) to upload"),
"file": fields.Raw(required=True, description="File to upload"),
"api_key": fields.String(
required=False, description="API key (optional)"
),
@@ -33,24 +33,18 @@ class StoreAttachment(Resource):
)
)
@api.doc(
description="Stores one or multiple attachments without vectorization or training. Supports user or API key authentication."
description="Stores a single attachment without vectorization or training. Supports user or API key authentication."
)
def post(self):
decoded_token = getattr(request, "decoded_token", None)
api_key = request.form.get("api_key") or request.args.get("api_key")
files = request.files.getlist("file")
if not files:
single_file = request.files.get("file")
if single_file:
files = [single_file]
if not files or all(f.filename == "" for f in files):
file = request.files.get("file")
if not file or file.filename == "":
return make_response(
jsonify({"status": "error", "message": "Missing file(s)"}),
jsonify({"status": "error", "message": "Missing file"}),
400,
)
user = None
if decoded_token:
user = safe_filename(decoded_token.get("sub"))
@@ -65,74 +59,32 @@ class StoreAttachment(Resource):
return make_response(
jsonify({"success": False, "message": "Authentication required"}), 401
)
try:
tasks = []
errors = []
original_file_count = len(files)
for idx, file in enumerate(files):
try:
attachment_id = ObjectId()
original_filename = safe_filename(os.path.basename(file.filename))
relative_path = f"{settings.UPLOAD_FOLDER}/{user}/attachments/{str(attachment_id)}/{original_filename}"
attachment_id = ObjectId()
original_filename = safe_filename(os.path.basename(file.filename))
relative_path = f"{settings.UPLOAD_FOLDER}/{user}/attachments/{str(attachment_id)}/{original_filename}"
metadata = storage.save_file(file, relative_path)
file_info = {
"filename": original_filename,
"attachment_id": str(attachment_id),
"path": relative_path,
"metadata": metadata,
}
metadata = storage.save_file(file, relative_path)
task = store_attachment.delay(file_info, user)
tasks.append({
file_info = {
"filename": original_filename,
"attachment_id": str(attachment_id),
"path": relative_path,
"metadata": metadata,
}
task = store_attachment.delay(file_info, user)
return make_response(
jsonify(
{
"success": True,
"task_id": task.id,
"filename": original_filename,
"attachment_id": str(attachment_id),
})
except Exception as file_err:
current_app.logger.error(f"Error processing file {idx} ({file.filename}): {file_err}", exc_info=True)
errors.append({
"filename": file.filename,
"error": str(file_err)
})
if not tasks:
error_msg = "No valid files to upload"
if errors:
error_msg += f". Errors: {errors}"
return make_response(
jsonify({"status": "error", "message": error_msg, "errors": errors}),
400,
)
if original_file_count == 1 and len(tasks) == 1:
current_app.logger.info("Returning single task_id response")
return make_response(
jsonify(
{
"success": True,
"task_id": tasks[0]["task_id"],
"message": "File uploaded successfully. Processing started.",
}
),
200,
)
else:
response_data = {
"success": True,
"tasks": tasks,
"message": f"{len(tasks)} file(s) uploaded successfully. Processing started.",
}
if errors:
response_data["errors"] = errors
response_data["message"] += f" {len(errors)} file(s) failed."
return make_response(
jsonify(response_data),
200,
)
"message": "File uploaded successfully. Processing started.",
}
),
200,
)
except Exception as err:
current_app.logger.error(f"Error storing attachment: {err}", exc_info=True)
return make_response(jsonify({"success": False, "error": str(err)}), 400)

View File

@@ -13,6 +13,7 @@ from application.api.user.base import (
agents_collection,
attachments_collection,
conversations_collection,
db,
shared_conversations_collections,
)
from application.utils import check_required_fields
@@ -96,7 +97,9 @@ class ShareConversation(Resource):
api_uuid = pre_existing_api_document["key"]
pre_existing = shared_conversations_collections.find_one(
{
"conversation_id": ObjectId(conversation_id),
"conversation_id": DBRef(
"conversations", ObjectId(conversation_id)
),
"isPromptable": is_promptable,
"first_n_queries": current_n_queries,
"user": user,
@@ -117,7 +120,10 @@ class ShareConversation(Resource):
shared_conversations_collections.insert_one(
{
"uuid": explicit_binary,
"conversation_id": ObjectId(conversation_id),
"conversation_id": {
"$ref": "conversations",
"$id": ObjectId(conversation_id),
},
"isPromptable": is_promptable,
"first_n_queries": current_n_queries,
"user": user,
@@ -148,7 +154,10 @@ class ShareConversation(Resource):
shared_conversations_collections.insert_one(
{
"uuid": explicit_binary,
"conversation_id": ObjectId(conversation_id),
"conversation_id": {
"$ref": "conversations",
"$id": ObjectId(conversation_id),
},
"isPromptable": is_promptable,
"first_n_queries": current_n_queries,
"user": user,
@@ -166,7 +175,9 @@ class ShareConversation(Resource):
)
pre_existing = shared_conversations_collections.find_one(
{
"conversation_id": ObjectId(conversation_id),
"conversation_id": DBRef(
"conversations", ObjectId(conversation_id)
),
"isPromptable": is_promptable,
"first_n_queries": current_n_queries,
"user": user,
@@ -186,7 +197,10 @@ class ShareConversation(Resource):
shared_conversations_collections.insert_one(
{
"uuid": explicit_binary,
"conversation_id": ObjectId(conversation_id),
"conversation_id": {
"$ref": "conversations",
"$id": ObjectId(conversation_id),
},
"isPromptable": is_promptable,
"first_n_queries": current_n_queries,
"user": user,
@@ -219,12 +233,10 @@ class GetPubliclySharedConversations(Resource):
if (
shared
and "conversation_id" in shared
and isinstance(shared["conversation_id"], DBRef)
):
# conversation_id is now stored as an ObjectId, not a DBRef
conversation_id = shared["conversation_id"]
conversation = conversations_collection.find_one(
{"_id": conversation_id}
)
conversation_ref = shared["conversation_id"]
conversation = db.dereference(conversation_ref)
if conversation is None:
return make_response(
jsonify(

View File

@@ -56,10 +56,9 @@ class GetTools(Resource):
tools = user_tools_collection.find({"user": user})
user_tools = []
for tool in tools:
tool_copy = {**tool}
tool_copy["id"] = str(tool["_id"])
tool_copy.pop("_id", None)
user_tools.append(tool_copy)
tool["id"] = str(tool["_id"])
tool.pop("_id")
user_tools.append(tool)
except Exception as err:
current_app.logger.error(f"Error getting user tools: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)

View File

@@ -23,18 +23,10 @@ class Settings(BaseSettings):
LLM_PATH: str = os.path.join(current_dir, "models/docsgpt-7b-f16.gguf")
DEFAULT_MAX_HISTORY: int = 150
LLM_TOKEN_LIMITS: dict = {
"gpt-4o": 128000,
"gpt-4o-mini": 128000,
"gpt-4": 8192,
"gpt-3.5-turbo": 4096,
"claude-2": int(1e5),
"gemini-2.5-flash": int(1e6),
}
DEFAULT_LLM_TOKEN_LIMIT: int = 128000
RESERVED_TOKENS: dict = {
"system_prompt": 500,
"current_query": 500,
"safety_buffer": 1000,
"claude-2": 1e5,
"gemini-2.5-flash": 1e6,
}
DEFAULT_AGENT_LIMITS: dict = {
"token_limit": 50000,
@@ -141,8 +133,5 @@ class Settings(BaseSettings):
TTS_PROVIDER: str = "google_tts" # google_tts or elevenlabs
ELEVENLABS_API_KEY: Optional[str] = None
# Tool pre-fetch settings
ENABLE_TOOL_PREFETCH: bool = True
path = Path(__file__).parent.parent.absolute()
settings = Settings(_env_file=path.joinpath(".env"), _env_file_encoding="utf-8")

View File

@@ -44,12 +44,6 @@ class BaseLLM(ABC):
)
return self._fallback_llm
@staticmethod
def _remove_null_values(args_dict):
if not isinstance(args_dict, dict):
return args_dict
return {k: v for k, v in args_dict.items() if v is not None}
def _execute_with_fallback(
self, method_name: str, decorators: list, *args, **kwargs
):

View File

@@ -33,15 +33,14 @@ class DocsGPTAPILLM(BaseLLM):
{"role": role, "content": item["text"]}
)
elif "function_call" in item:
cleaned_args = self._remove_null_values(
item["function_call"]["args"]
)
tool_call = {
"id": item["function_call"]["call_id"],
"type": "function",
"function": {
"name": item["function_call"]["name"],
"arguments": json.dumps(cleaned_args),
"arguments": json.dumps(
item["function_call"]["args"]
),
},
}
cleaned_messages.append(

View File

@@ -163,14 +163,10 @@ class GoogleLLM(BaseLLM):
if "text" in item:
parts.append(types.Part.from_text(text=item["text"]))
elif "function_call" in item:
# Remove null values from args to avoid API errors
cleaned_args = self._remove_null_values(
item["function_call"]["args"]
)
parts.append(
types.Part.from_function_call(
name=item["function_call"]["name"],
args=cleaned_args,
args=item["function_call"]["args"],
)
)
elif "function_response" in item:
@@ -390,7 +386,7 @@ class GoogleLLM(BaseLLM):
elif hasattr(chunk, "text"):
yield chunk.text
finally:
if hasattr(response, "close"):
if hasattr(response, 'close'):
response.close()
def _supports_tools(self):

View File

@@ -44,15 +44,14 @@ class OpenAILLM(BaseLLM):
{"role": role, "content": item["text"]}
)
elif "function_call" in item:
cleaned_args = self._remove_null_values(
item["function_call"]["args"]
)
tool_call = {
"id": item["function_call"]["call_id"],
"type": "function",
"function": {
"name": item["function_call"]["name"],
"arguments": json.dumps(cleaned_args),
"arguments": json.dumps(
item["function_call"]["args"]
),
},
}
cleaned_messages.append(
@@ -182,7 +181,7 @@ class OpenAILLM(BaseLLM):
elif len(line.choices) > 0:
yield line.choices[0]
finally:
if hasattr(response, "close"):
if hasattr(response, 'close'):
response.close()
def _supports_tools(self):

View File

@@ -1,6 +1,5 @@
import os
import logging
from typing import List, Any
from retry import retry
from tqdm import tqdm
from application.core.settings import settings
@@ -23,16 +22,13 @@ def sanitize_content(content: str) -> str:
@retry(tries=10, delay=60)
def add_text_to_store_with_retry(store: Any, doc: Any, source_id: str) -> None:
"""Add a document's text and metadata to the vector store with retry logic.
def add_text_to_store_with_retry(store, doc, source_id):
"""
Add a document's text and metadata to the vector store with retry logic.
Args:
store: The vector store object.
doc: The document to be added.
source_id: Unique identifier for the source.
Raises:
Exception: If document addition fails after all retry attempts.
"""
try:
# Sanitize content to remove NUL characters that cause ingestion failures
@@ -45,21 +41,18 @@ def add_text_to_store_with_retry(store: Any, doc: Any, source_id: str) -> None:
raise
def embed_and_store_documents(docs: List[Any], folder_name: str, source_id: str, task_status: Any) -> None:
"""Embeds documents and stores them in a vector store.
def embed_and_store_documents(docs, folder_name, source_id, task_status):
"""
Embeds documents and stores them in a vector store.
Args:
docs: List of documents to be embedded and stored.
folder_name: Directory to save the vector store.
source_id: Unique identifier for the source.
docs (list): List of documents to be embedded and stored.
folder_name (str): Directory to save the vector store.
source_id (str): Unique identifier for the source.
task_status: Task state manager for progress updates.
Returns:
None
Raises:
OSError: If unable to create folder or save vector store.
Exception: If vector store creation or document embedding fails.
"""
# Ensure the folder exists
if not os.path.exists(folder_name):
@@ -102,21 +95,10 @@ def embed_and_store_documents(docs: List[Any], folder_name: str, source_id: str,
except Exception as e:
logging.error(f"Error embedding document {idx}: {e}", exc_info=True)
logging.info(f"Saving progress at document {idx} out of {total_docs}")
try:
store.save_local(folder_name)
logging.info("Progress saved successfully")
except Exception as save_error:
logging.error(f"CRITICAL: Failed to save progress: {save_error}", exc_info=True)
# Continue without breaking to attempt final save
store.save_local(folder_name)
break
# Save the vector store
if settings.VECTOR_STORE == "faiss":
try:
store.save_local(folder_name)
logging.info("Vector store saved successfully.")
except Exception as e:
logging.error(f"CRITICAL: Failed to save final vector store: {e}", exc_info=True)
raise OSError(f"Unable to save vector store to {folder_name}: {e}") from e
else:
logging.info("Vector store saved successfully.")
store.save_local(folder_name)
logging.info("Vector store saved successfully.")

View File

@@ -6,7 +6,7 @@ cryptography==42.0.8
dataclasses-json==0.6.7
docx2txt==0.8
duckduckgo-search==7.5.2
ebooklib==0.18
ebooklib==0.20
escodegen==1.0.11
esprima==4.0.1
esutils==1.0.1

View File

@@ -8,3 +8,7 @@ class BaseRetriever(ABC):
@abstractmethod
def search(self, *args, **kwargs):
pass
@abstractmethod
def get_params(self):
pass

View File

@@ -4,7 +4,7 @@ import os
from application.core.settings import settings
from application.llm.llm_creator import LLMCreator
from application.retriever.base import BaseRetriever
from application.utils import num_tokens_from_string
from application.vectorstore.vector_creator import VectorCreator
@@ -15,13 +15,14 @@ class ClassicRAG(BaseRetriever):
chat_history=None,
prompt="",
chunks=2,
doc_token_limit=50000,
token_limit=150,
gpt_model="docsgpt",
user_api_key=None,
llm_name=settings.LLM_PROVIDER,
api_key=settings.API_KEY,
decoded_token=None,
):
"""Initialize ClassicRAG retriever with vectorstore sources and LLM configuration"""
self.original_question = source.get("question", "")
self.chat_history = chat_history if chat_history is not None else []
self.prompt = prompt
@@ -41,7 +42,16 @@ class ClassicRAG(BaseRetriever):
f"sources={'active_docs' in source and source['active_docs'] is not None}"
)
self.gpt_model = gpt_model
self.doc_token_limit = doc_token_limit
self.token_limit = (
token_limit
if token_limit
< settings.LLM_TOKEN_LIMITS.get(
self.gpt_model, settings.DEFAULT_MAX_HISTORY
)
else settings.LLM_TOKEN_LIMITS.get(
self.gpt_model, settings.DEFAULT_MAX_HISTORY
)
)
self.user_api_key = user_api_key
self.llm_name = llm_name
self.api_key = api_key
@@ -108,17 +118,21 @@ class ClassicRAG(BaseRetriever):
return self.original_question
def _get_data(self):
"""Retrieve relevant documents from configured vectorstores"""
if self.chunks == 0 or not self.vectorstores:
logging.info(
f"ClassicRAG._get_data: Skipping retrieval - chunks={self.chunks}, "
f"vectorstores_count={len(self.vectorstores) if self.vectorstores else 0}"
)
return []
all_docs = []
chunks_per_source = max(1, self.chunks // len(self.vectorstores))
token_budget = max(int(self.doc_token_limit * 0.9), 100)
cumulative_tokens = 0
logging.info(
f"ClassicRAG._get_data: Starting retrieval with chunks={self.chunks}, "
f"vectorstores={self.vectorstores}, chunks_per_source={chunks_per_source}, "
f"query='{self.question[:50]}...'"
)
for vectorstore_id in self.vectorstores:
if vectorstore_id:
@@ -126,21 +140,15 @@ class ClassicRAG(BaseRetriever):
docsearch = VectorCreator.create_vectorstore(
settings.VECTOR_STORE, vectorstore_id, settings.EMBEDDINGS_KEY
)
docs_temp = docsearch.search(
self.question, k=max(chunks_per_source * 2, 20)
)
docs_temp = docsearch.search(self.question, k=chunks_per_source)
for doc in docs_temp:
if cumulative_tokens >= token_budget:
break
if hasattr(doc, "page_content") and hasattr(doc, "metadata"):
page_content = doc.page_content
metadata = doc.metadata
else:
page_content = doc.get("text", doc.get("page_content", ""))
metadata = doc.get("metadata", {})
title = metadata.get(
"title", metadata.get("post_title", page_content)
)
@@ -160,35 +168,23 @@ class ClassicRAG(BaseRetriever):
if not filename:
filename = title
source_path = metadata.get("source") or vectorstore_id
doc_text_with_header = f"{filename}\n{page_content}"
doc_tokens = num_tokens_from_string(doc_text_with_header)
if cumulative_tokens + doc_tokens < token_budget:
all_docs.append(
{
"title": title,
"text": page_content,
"source": source_path,
"filename": filename,
}
)
cumulative_tokens += doc_tokens
if cumulative_tokens >= token_budget:
break
all_docs.append(
{
"title": title,
"text": page_content,
"source": source_path,
"filename": filename,
}
)
except Exception as e:
logging.error(
f"Error searching vectorstore {vectorstore_id}: {e}",
exc_info=True,
)
continue
logging.info(
f"ClassicRAG._get_data: Retrieval complete - retrieved {len(all_docs)} documents "
f"(requested chunks={self.chunks}, chunks_per_source={chunks_per_source}, "
f"cumulative_tokens={cumulative_tokens}/{token_budget})"
f"(requested chunks={self.chunks}, chunks_per_source={chunks_per_source})"
)
return all_docs
@@ -198,3 +194,15 @@ class ClassicRAG(BaseRetriever):
self.original_question = query
self.question = self._rephrase_query()
return self._get_data()
def get_params(self):
"""Return current retriever configuration parameters"""
return {
"question": self.original_question,
"rephrased_question": self.question,
"sources": self.vectorstores,
"chunks": self.chunks,
"token_limit": self.token_limit,
"gpt_model": self.gpt_model,
"user_api_key": self.user_api_key,
}

View File

@@ -1,190 +0,0 @@
import logging
import uuid
from abc import ABC, abstractmethod
from datetime import datetime, timezone
from typing import Any, Dict, Optional
logger = logging.getLogger(__name__)
class NamespaceBuilder(ABC):
"""Base class for building template context namespaces"""
@abstractmethod
def build(self, **kwargs) -> Dict[str, Any]:
"""Build namespace context dictionary"""
pass
@property
@abstractmethod
def namespace_name(self) -> str:
"""Name of this namespace for template access"""
pass
class SystemNamespace(NamespaceBuilder):
"""System metadata namespace: {{ system.* }}"""
@property
def namespace_name(self) -> str:
return "system"
def build(
self, request_id: Optional[str] = None, user_id: Optional[str] = None, **kwargs
) -> Dict[str, Any]:
"""
Build system context with metadata.
Args:
request_id: Unique request identifier
user_id: Current user identifier
Returns:
Dictionary with system variables
"""
now = datetime.now(timezone.utc)
return {
"date": now.strftime("%Y-%m-%d"),
"time": now.strftime("%H:%M:%S"),
"timestamp": now.isoformat(),
"request_id": request_id or str(uuid.uuid4()),
"user_id": user_id,
}
class PassthroughNamespace(NamespaceBuilder):
"""Request parameters namespace: {{ passthrough.* }}"""
@property
def namespace_name(self) -> str:
return "passthrough"
def build(
self, passthrough_data: Optional[Dict[str, Any]] = None, **kwargs
) -> Dict[str, Any]:
"""
Build passthrough context from request parameters.
Args:
passthrough_data: Dictionary of parameters from web request
Returns:
Dictionary with passthrough variables
"""
if not passthrough_data:
return {}
safe_data = {}
for key, value in passthrough_data.items():
if isinstance(value, (str, int, float, bool, type(None))):
safe_data[key] = value
else:
logger.warning(
f"Skipping non-serializable passthrough value for key '{key}': {type(value)}"
)
return safe_data
class SourceNamespace(NamespaceBuilder):
"""RAG source documents namespace: {{ source.* }}"""
@property
def namespace_name(self) -> str:
return "source"
def build(
self, docs: Optional[list] = None, docs_together: Optional[str] = None, **kwargs
) -> Dict[str, Any]:
"""
Build source context from RAG retrieval results.
Args:
docs: List of retrieved documents
docs_together: Concatenated document content (for backward compatibility)
Returns:
Dictionary with source variables
"""
context = {}
if docs:
context["documents"] = docs
context["count"] = len(docs)
if docs_together:
context["docs_together"] = docs_together # Add docs_together for custom templates
context["content"] = docs_together
context["summaries"] = docs_together
return context
class ToolsNamespace(NamespaceBuilder):
"""Pre-executed tools namespace: {{ tools.* }}"""
@property
def namespace_name(self) -> str:
return "tools"
def build(
self, tools_data: Optional[Dict[str, Any]] = None, **kwargs
) -> Dict[str, Any]:
"""
Build tools context with pre-executed tool results.
Args:
tools_data: Dictionary of pre-fetched tool results organized by tool name
e.g., {"memory": {"notes": "content", "tasks": "list"}}
Returns:
Dictionary with tool results organized by tool name
"""
if not tools_data:
return {}
safe_data = {}
for tool_name, tool_result in tools_data.items():
if isinstance(tool_result, (str, dict, list, int, float, bool, type(None))):
safe_data[tool_name] = tool_result
else:
logger.warning(
f"Skipping non-serializable tool result for '{tool_name}': {type(tool_result)}"
)
return safe_data
class NamespaceManager:
"""Manages all namespace builders and context assembly"""
def __init__(self):
self._builders = {
"system": SystemNamespace(),
"passthrough": PassthroughNamespace(),
"source": SourceNamespace(),
"tools": ToolsNamespace(),
}
def build_context(self, **kwargs) -> Dict[str, Any]:
"""
Build complete template context from all namespaces.
Args:
**kwargs: Parameters to pass to namespace builders
Returns:
Complete context dictionary for template rendering
"""
context = {}
for namespace_name, builder in self._builders.items():
try:
namespace_context = builder.build(**kwargs)
# Always include namespace, even if empty, to prevent undefined errors
context[namespace_name] = namespace_context if namespace_context else {}
except Exception as e:
logger.error(f"Failed to build {namespace_name} namespace: {str(e)}")
# Include empty namespace on error to prevent template failures
context[namespace_name] = {}
return context
def get_builder(self, namespace_name: str) -> Optional[NamespaceBuilder]:
"""Get specific namespace builder"""
return self._builders.get(namespace_name)

View File

@@ -1,161 +0,0 @@
import logging
from typing import Any, Dict, List, Optional, Set
from jinja2 import (
ChainableUndefined,
Environment,
nodes,
select_autoescape,
TemplateSyntaxError,
)
from jinja2.exceptions import UndefinedError
logger = logging.getLogger(__name__)
class TemplateRenderError(Exception):
"""Raised when template rendering fails"""
pass
class TemplateEngine:
"""Jinja2-based template engine for dynamic prompt rendering"""
def __init__(self):
self._env = Environment(
undefined=ChainableUndefined,
trim_blocks=True,
lstrip_blocks=True,
autoescape=select_autoescape(default_for_string=True, default=True),
)
def render(self, template_content: str, context: Dict[str, Any]) -> str:
"""
Render template with provided context.
Args:
template_content: Raw template string with Jinja2 syntax
context: Dictionary of variables to inject into template
Returns:
Rendered template string
Raises:
TemplateRenderError: If template syntax is invalid or variables undefined
"""
if not template_content:
return ""
try:
template = self._env.from_string(template_content)
return template.render(**context)
except TemplateSyntaxError as e:
error_msg = f"Template syntax error at line {e.lineno}: {e.message}"
logger.error(error_msg)
raise TemplateRenderError(error_msg) from e
except UndefinedError as e:
error_msg = f"Undefined variable in template: {e.message}"
logger.error(error_msg)
raise TemplateRenderError(error_msg) from e
except Exception as e:
error_msg = f"Template rendering failed: {str(e)}"
logger.error(error_msg)
raise TemplateRenderError(error_msg) from e
def validate_template(self, template_content: str) -> bool:
"""
Validate template syntax without rendering.
Args:
template_content: Template string to validate
Returns:
True if template is syntactically valid
"""
if not template_content:
return True
try:
self._env.from_string(template_content)
return True
except TemplateSyntaxError as e:
logger.debug(f"Template syntax invalid at line {e.lineno}: {e.message}")
return False
except Exception as e:
logger.debug(f"Template validation error: {type(e).__name__}: {str(e)}")
return False
def extract_variables(self, template_content: str) -> Set[str]:
"""
Extract all variable names from template.
Args:
template_content: Template string to analyze
Returns:
Set of variable names found in template
"""
if not template_content:
return set()
try:
ast = self._env.parse(template_content)
return set(self._env.get_template_module(ast).make_module().keys())
except TemplateSyntaxError as e:
logger.debug(f"Cannot extract variables - syntax error at line {e.lineno}")
return set()
except Exception as e:
logger.debug(f"Cannot extract variables: {type(e).__name__}")
return set()
def extract_tool_usages(
self, template_content: str
) -> Dict[str, Set[Optional[str]]]:
"""Extract tool and action references from a template"""
if not template_content:
return {}
try:
ast = self._env.parse(template_content)
except TemplateSyntaxError as e:
logger.debug(f"extract_tool_usages - syntax error at line {e.lineno}")
return {}
except Exception as e:
logger.debug(f"extract_tool_usages - parse error: {type(e).__name__}")
return {}
usages: Dict[str, Set[Optional[str]]] = {}
def record(path: List[str]) -> None:
if not path:
return
tool_name = path[0]
action_name = path[1] if len(path) > 1 else None
if not tool_name:
return
tool_entry = usages.setdefault(tool_name, set())
tool_entry.add(action_name)
for node in ast.find_all(nodes.Getattr):
path = []
current = node
while isinstance(current, nodes.Getattr):
path.append(current.attr)
current = current.node
if isinstance(current, nodes.Name) and current.name == "tools":
path.reverse()
record(path)
for node in ast.find_all(nodes.Getitem):
path = []
current = node
while isinstance(current, nodes.Getitem):
key = current.arg
if isinstance(key, nodes.Const) and isinstance(key.value, str):
path.append(key.value)
else:
path = []
break
current = current.node
if path and isinstance(current, nodes.Name) and current.name == "tools":
path.reverse()
record(path)
return usages

View File

@@ -74,17 +74,6 @@ def count_tokens_docs(docs):
return tokens
def calculate_doc_token_budget(
gpt_model: str = "gpt-4o", history_token_limit: int = 2000
) -> int:
total_context = settings.LLM_TOKEN_LIMITS.get(
gpt_model, settings.DEFAULT_LLM_TOKEN_LIMIT
)
reserved = sum(settings.RESERVED_TOKENS.values())
doc_budget = total_context - history_token_limit - reserved
return max(doc_budget, 1000)
def get_missing_fields(data, required_fields):
"""Check for missing required fields. Returns list of missing field names."""
return [field for field in required_fields if field not in data]
@@ -152,8 +141,8 @@ def limit_chat_history(history, max_token_limit=None, gpt_model="docsgpt"):
max_token_limit
if max_token_limit
and max_token_limit
< settings.LLM_TOKEN_LIMITS.get(gpt_model, settings.DEFAULT_LLM_TOKEN_LIMIT)
else settings.LLM_TOKEN_LIMITS.get(gpt_model, settings.DEFAULT_LLM_TOKEN_LIMIT)
< settings.LLM_TOKEN_LIMITS.get(gpt_model, settings.DEFAULT_MAX_HISTORY)
else settings.LLM_TOKEN_LIMITS.get(gpt_model, settings.DEFAULT_MAX_HISTORY)
)
if not history:
@@ -198,44 +187,3 @@ def generate_image_url(image_path):
else:
base_url = getattr(settings, "API_URL", "http://localhost:7091")
return f"{base_url}/api/images/{image_path}"
def clean_text_for_tts(text: str) -> str:
"""
clean text for Text-to-Speech processing.
"""
# Handle code blocks and links
text = re.sub(r'```mermaid[\s\S]*?```', ' flowchart, ', text) ## ```mermaid...```
text = re.sub(r'```[\s\S]*?```', ' code block, ', text) ## ```code```
text = re.sub(r'\[([^\]]+)\]\([^\)]+\)', r'\1', text) ## [text](url)
text = re.sub(r'!\[([^\]]*)\]\([^\)]+\)', '', text) ## ![alt](url)
# Remove markdown formatting
text = re.sub(r'`([^`]+)`', r'\1', text) ## `code`
text = re.sub(r'\{([^}]*)\}', r' \1 ', text) ## {text}
text = re.sub(r'[{}]', ' ', text) ## unmatched {}
text = re.sub(r'\[([^\]]+)\]', r' \1 ', text) ## [text]
text = re.sub(r'[\[\]]', ' ', text) ## unmatched []
text = re.sub(r'(\*\*|__)(.*?)\1', r'\2', text) ## **bold** __bold__
text = re.sub(r'(\*|_)(.*?)\1', r'\2', text) ## *italic* _italic_
text = re.sub(r'^#{1,6}\s+', '', text, flags=re.MULTILINE) ## # headers
text = re.sub(r'^>\s+', '', text, flags=re.MULTILINE) ## > blockquotes
text = re.sub(r'^[\s]*[-\*\+]\s+', '', text, flags=re.MULTILINE) ## - * + lists
text = re.sub(r'^[\s]*\d+\.\s+', '', text, flags=re.MULTILINE) ## 1. numbered lists
text = re.sub(r'^[\*\-_]{3,}\s*$', '', text, flags=re.MULTILINE) ## --- *** ___ rules
text = re.sub(r'<[^>]*>', '', text) ## <html> tags
#Remove non-ASCII (emojis, special Unicode)
text = re.sub(r'[^\x20-\x7E\n\r\t]', '', text)
#Replace special sequences
text = re.sub(r'-->', ', ', text) ## -->
text = re.sub(r'<--', ', ', text) ## <--
text = re.sub(r'=>', ', ', text) ## =>
text = re.sub(r'::', ' ', text) ## ::
#Normalize whitespace
text = re.sub(r'\s+', ' ', text)
text = text.strip()
return text

View File

@@ -1,453 +1,49 @@
---
title: Customizing Prompts
description: This guide explains how to customize prompts in DocsGPT using the new template-based system with dynamic variable injection.
title: Customizing Prompts
description: This guide will explain how to change prompts in DocsGPT and why it might be benefitial. Additionaly this article expains additional variables that can be used in prompts.
---
import Image from 'next/image'
# Customizing Prompts in DocsGPT
# Customizing the Main Prompt
Customizing prompts for DocsGPT gives you powerful control over the AI's behavior and responses. With the new template-based system, you can inject dynamic context through organized namespaces, making prompts flexible and maintainable without hardcoding values.
## Quick Start
Customizing the main prompt for DocsGPT gives you the ability to tailor the AI's responses to your specific requirements. By modifying the prompt text, you can achieve more accurate and relevant answers. Here's how you can do it:
1. Navigate to `SideBar -> Settings`.
2. In Settings, select the `Active Prompt` to see various prompt styles.
3. Click on the `edit icon` on your chosen prompt to customize it.
2.In Settings select the `Active Prompt` now you will be able to see various prompts style.x
3.Click on the `edit icon` on the prompt of your choice and you will be able to see the current prompt for it,you can now customise the prompt as per your choice.
### Video Demo
<Image src="/prompts.gif" alt="prompts" width={800} height={500} />
---
## Template-Based Prompt System
DocsGPT now uses **Jinja2 templating** with four organized namespaces for dynamic variable injection:
### Available Namespaces
#### 1. **`system`** - System Metadata
Access system-level information:
```jinja
{{ system.date }} # Current date (YYYY-MM-DD)
{{ system.time }} # Current time (HH:MM:SS)
{{ system.timestamp }} # ISO 8601 timestamp
{{ system.request_id }} # Unique request identifier
{{ system.user_id }} # Current user ID
```
#### 2. **`source`** - Retrieved Documents
Access RAG (Retrieval-Augmented Generation) document context:
```jinja
{{ source.content }} # Concatenated document content
{{ source.summaries }} # Alias for content (backward compatible)
{{ source.documents }} # List of document objects
{{ source.count }} # Number of retrieved documents
```
#### 3. **`passthrough`** - Request Parameters
Access custom parameters passed in the API request:
```jinja
{{ passthrough.company }} # Custom field from request
{{ passthrough.user_name }} # User-provided data
{{ passthrough.context }} # Any custom parameter
```
To use passthrough data, send it in your API request:
```json
{
"question": "What is the pricing?",
"passthrough": {
"company": "Acme Corp",
"user_name": "Alice",
"plan_type": "enterprise"
}
}
```
#### 4. **`tools`** - Pre-fetched Tool Data
Access results from tools that run before the agent (like memory tool):
```jinja
{{ tools.memory.root }} # Memory tool directory listing
{{ tools.memory.available }} # Boolean: is memory available
```
---
## Example Prompts
### Basic Prompt with Documents
```jinja
You are a helpful AI assistant for DocsGPT.
Current date: {{ system.date }}
Use the following documents to answer the question:
{{ source.content }}
Provide accurate, helpful answers with code examples when relevant.
```
### Advanced Prompt with All Namespaces
```jinja
You are an AI assistant for {{ passthrough.company }}.
**System Info:**
- Date: {{ system.date }}
- Request ID: {{ system.request_id }}
**User Context:**
- User: {{ passthrough.user_name }}
- Role: {{ passthrough.role }}
**Available Documents ({{ source.count }}):**
{{ source.content }}
**Memory Context:**
{% if tools.memory.available %}
{{ tools.memory.root }}
{% else %}
No saved context available.
{% endif %}
Please provide detailed, accurate answers based on the documents above.
```
### Conditional Logic Example
```jinja
You are a DocsGPT assistant.
{% if source.count > 0 %}
I found {{ source.count }} relevant document(s):
{{ source.content }}
Base your answer on these documents.
{% else %}
No documents were found. Please answer based on your general knowledge.
{% endif %}
```
---
## Migration Guide
### Legacy Format (Still Supported)
The old `{summaries}` format continues to work for backward compatibility:
## Example Prompt Modification
**Original Prompt:**
```markdown
You are a helpful assistant.
You are a DocsGPT, friendly and helpful AI assistant by Arc53 that provides help with documents. You give thorough answers with code examples if possible.
Use the following pieces of context to help answer the users question. If it's not relevant to the question, provide friendly responses.
You have access to chat history, and can use it to help answer the question.
When using code examples, use the following format:
Documents:
(code)
{summaries}
```
This will automatically substitute `{summaries}` with document content.
Note that `{summaries}` allows model to see and respond to your upploaded documents. If you don't want this functionality you can safely remove it from the customized prompt.
### New Template Format (Recommended)
Migrate to the new template syntax for more flexibility:
```jinja
You are a helpful assistant.
Documents:
{{ source.content }}
```
**Migration mapping:**
- `{summaries}` → `{{ source.content }}` or `{{ source.summaries }}`
---
## Best Practices
### 1. **Use Descriptive Context**
```jinja
**Retrieved Documents:**
{{ source.content }}
**User Query Context:**
- Company: {{ passthrough.company }}
- Department: {{ passthrough.department }}
```
### 2. **Handle Missing Data Gracefully**
```jinja
{% if passthrough.user_name %}
Hello {{ passthrough.user_name }}!
{% endif %}
```
### 3. **Leverage Memory for Continuity**
```jinja
{% if tools.memory.available %}
**Previous Context:**
{{ tools.memory.root }}
{% endif %}
**Current Question:**
Please consider the above context when answering.
```
### 4. **Add Clear Instructions**
```jinja
You are a technical support assistant.
**Guidelines:**
1. Always reference the documents below
2. Provide step-by-step instructions
3. Include code examples when relevant
**Reference Documents:**
{{ source.content }}
```
---
## Advanced Features
### Looping Over Documents
```jinja
{% for doc in source.documents %}
**Source {{ loop.index }}:** {{ doc.filename }}
{{ doc.text }}
{% endfor %}
```
### Date-Based Behavior
```jinja
{% if system.date > "2025-01-01" %}
Note: This is information from 2025 or later.
{% endif %}
```
### Custom Formatting
```jinja
**Request Information**
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
• Request ID: {{ system.request_id }}
• User: {{ passthrough.user_name | default("Guest") }}
• Time: {{ system.time }}
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
```
---
## Tool Pre-Fetching
### Memory Tool Configuration
Enable memory tool pre-fetching to inject saved context into prompts:
```python
# In your tool configuration
{
"name": "memory",
"config": {
"pre_fetch_enabled": true # Default: true
}
}
```
Control pre-fetching globally:
```bash
# .env file
ENABLE_TOOL_PREFETCH=true
```
Or per-request:
```json
{
"question": "What are the requirements?",
"disable_tool_prefetch": false
}
```
---
## Debugging Prompts
### View Rendered Prompts in Logs
Set log level to `INFO` to see the final rendered prompt sent to the LLM:
```bash
export LOG_LEVEL=INFO
```
You'll see output like:
```
INFO - Rendered system prompt for agent (length: 1234 chars):
================================================================================
You are a helpful assistant for Acme Corp.
Current date: 2025-10-30
Request ID: req_abc123
Documents:
Technical documentation about...
================================================================================
```
### Template Validation
Test your template syntax before saving:
```python
from application.api.answer.services.prompt_renderer import PromptRenderer
renderer = PromptRenderer()
is_valid = renderer.validate_template("Your prompt with {{ variables }}")
```
---
## Common Use Cases
### 1. Customer Support Bot
```jinja
You are a customer support assistant for {{ passthrough.company }}.
**Customer:** {{ passthrough.customer_name }}
**Ticket ID:** {{ system.request_id }}
**Date:** {{ system.date }}
**Knowledge Base:**
{{ source.content }}
**Previous Interactions:**
{{ tools.memory.root }}
Please provide helpful, friendly support based on the knowledge base above.
```
### 2. Technical Documentation Assistant
```jinja
You are a technical documentation expert.
**Available Documentation ({{ source.count }} documents):**
{{ source.content }}
**Requirements:**
- Provide code examples in {{ passthrough.language }}
- Focus on {{ passthrough.framework }} best practices
- Include relevant links when possible
```
### 3. Internal Knowledge Base
```jinja
You are an internal AI assistant for {{ passthrough.department }}.
**Employee:** {{ passthrough.employee_name }}
**Access Level:** {{ passthrough.access_level }}
**Relevant Documents:**
{{ source.content }}
Provide detailed answers appropriate for {{ passthrough.access_level }} access level.
```
---
## Template Syntax Reference
### Variables
```jinja
{{ variable_name }} # Output variable
{{ namespace.field }} # Access nested field
{{ variable | default("N/A") }} # Default value
```
### Conditionals
```jinja
{% if condition %}
Content
{% elif other_condition %}
Other content
{% else %}
Default content
{% endif %}
```
### Loops
```jinja
{% for item in list %}
{{ item.field }}
{% endfor %}
```
### Comments
```jinja
{# This is a comment and won't appear in output #}
```
---
## Security Considerations
1. **Input Sanitization**: Passthrough data is automatically sanitized to prevent injection attacks
2. **Type Filtering**: Only primitive types (string, int, float, bool, None) are allowed in passthrough
3. **Autoescaping**: Jinja2 autoescaping is enabled by default
4. **Size Limits**: Consider the token budget when including large documents
---
## Troubleshooting
### Problem: Variables Not Rendering
**Solution:** Ensure you're using the correct namespace:
```jinja
❌ {{ company }}
✅ {{ passthrough.company }}
```
### Problem: Empty Output for Tool Data
**Solution:** Check that tool pre-fetching is enabled and the tool is configured correctly.
### Problem: Syntax Errors
**Solution:** Validate template syntax. Common issues:
```jinja
❌ {{ variable } # Missing closing brace
❌ {% if x % # Missing closing %}
✅ {{ variable }}
✅ {% if x %}...{% endif %}
```
### Problem: Legacy Prompts Not Working
**Solution:** The system auto-detects template syntax. If your prompt uses `{summaries}`, it will work in legacy mode. To use new features, add `{{ }}` syntax.
---
## API Reference
### Render Prompt via API
```python
from application.api.answer.services.prompt_renderer import PromptRenderer
renderer = PromptRenderer()
rendered = renderer.render_prompt(
prompt_content="Your template with {{ passthrough.name }}",
user_id="user_123",
request_id="req_456",
passthrough_data={"name": "Alice"},
docs_together="Document content here",
tools_data={"memory": {"root": "Files: notes.txt"}}
)
```
---
Feel free to customize the prompt to align it with your specific use case or the kind of responses you want from the AI. For example, you can focus on specific document types, industries, or topics to get more targeted results.
## Conclusion
The new template-based prompt system provides powerful flexibility while maintaining backward compatibility. By leveraging namespaces, you can create dynamic, context-aware prompts that adapt to your specific use case.
Customizing the main prompt for DocsGPT allows you to tailor the AI's responses to your unique requirements. Whether you need in-depth explanations, code examples, or specific insights, you can achieve it by modifying the main prompt. Remember to experiment and fine-tune your prompts to get the best results.
**Key Benefits:**
- ✅ Dynamic variable injection
- ✅ Organized namespaces
- ✅ Backward compatible
- ✅ Security built-in
- ✅ Easy to debug
Start with simple templates and gradually add complexity as needed. Happy prompting! 🚀

View File

@@ -57,7 +57,7 @@ The easiest way to launch DocsGPT is using the provided `setup.sh` script. This
* **4) Connect Cloud API Provider:** This option lets you connect DocsGPT to a commercial Cloud API provider such as OpenAI, Google (Vertex AI/Gemini), Anthropic (Claude), Groq, HuggingFace Inference API, or Azure OpenAI. You will need an API key from your chosen provider. Select this if you prefer to use a powerful cloud-based LLM.
* **5) Modify DocsGPT's source code and rebuild the Docker images locally.** Instead of pulling prebuilt images from Docker Hub or using the hosted/public API, you build the entire backend and frontend from source, customizing how DocsGPT works internally, or run it in an environment without internet access.
* **5) Modify DocsGPT's source code and rebuild the Docker images locally. Instead of pulling prebuilt images from Docker Hub or using the hosted/public API, you build the entire backend and frontend from source, customizing how DocsGPT works internally, or run it in an environment without internet access.
After selecting an option and providing any required information (like API keys or model names), the script will configure your `.env` file and start DocsGPT using Docker Compose.
@@ -119,4 +119,4 @@ If you prefer a more manual approach, you can follow our [Docker Deployment docu
For more advanced customization of DocsGPT settings, such as configuring vector stores, embedding models, and other parameters, please refer to the [DocsGPT Settings documentation](/Deploying/DocsGPT-Settings). This guide explains how to modify the `.env` file or `settings.py` for deeper configuration.
Enjoy using DocsGPT!
Enjoy using DocsGPT!

View File

@@ -21,9 +21,6 @@ module.exports = {
'react/prop-types': 'off',
'unused-imports/no-unused-imports': 'error',
'react/react-in-jsx-scope': 'off',
'@typescript-eslint/no-explicit-any': 'warn',
'@typescript-eslint/no-unused-vars': 'warn',
'@typescript-eslint/no-unused-expressions': 'warn',
'prettier/prettier': [
'error',
{

File diff suppressed because it is too large Load Diff

View File

@@ -19,21 +19,21 @@
]
},
"dependencies": {
"@reduxjs/toolkit": "^2.10.1",
"@reduxjs/toolkit": "^2.8.2",
"chart.js": "^4.4.4",
"clsx": "^2.1.1",
"copy-to-clipboard": "^3.3.3",
"i18next": "^25.5.3",
"i18next-browser-languagedetector": "^8.2.0",
"i18next-browser-languagedetector": "^8.0.2",
"lodash": "^4.17.21",
"mermaid": "^11.12.1",
"mermaid": "^11.12.0",
"prop-types": "^15.8.1",
"react": "^19.1.0",
"react-chartjs-2": "^5.3.0",
"react-dom": "^19.1.1",
"react-dom": "^19.0.0",
"react-dropzone": "^14.3.8",
"react-google-drive-picker": "^1.2.2",
"react-i18next": "^16.2.4",
"react-i18next": "^15.4.0",
"react-markdown": "^9.0.1",
"react-redux": "^9.2.0",
"react-router-dom": "^7.6.1",
@@ -46,17 +46,19 @@
"devDependencies": {
"@tailwindcss/postcss": "^4.1.10",
"@types/lodash": "^4.17.20",
"@types/mermaid": "^9.1.0",
"@types/react": "^19.1.8",
"@types/react-dom": "^19.1.7",
"@types/react-dom": "^19.0.0",
"@types/react-syntax-highlighter": "^15.5.13",
"@typescript-eslint/eslint-plugin": "^8.46.3",
"@typescript-eslint/parser": "^8.46.3",
"@typescript-eslint/eslint-plugin": "^5.51.0",
"@typescript-eslint/parser": "^5.62.0",
"@vitejs/plugin-react": "^4.3.4",
"eslint": "^8.57.1",
"eslint-config-prettier": "^10.1.5",
"eslint-config-standard-with-typescript": "^34.0.0",
"eslint-plugin-import": "^2.31.0",
"eslint-plugin-n": "^17.23.1",
"eslint-plugin-prettier": "^5.5.4",
"eslint-plugin-n": "^15.7.0",
"eslint-plugin-prettier": "^5.2.1",
"eslint-plugin-promise": "^6.6.0",
"eslint-plugin-react": "^7.37.5",
"eslint-plugin-unused-imports": "^4.1.4",
@@ -64,10 +66,10 @@
"lint-staged": "^15.3.0",
"postcss": "^8.4.49",
"prettier": "^3.5.3",
"prettier-plugin-tailwindcss": "^0.7.1",
"tailwindcss": "^4.1.17",
"prettier-plugin-tailwindcss": "^0.6.13",
"tailwindcss": "^4.1.11",
"typescript": "^5.8.3",
"vite": "^7.2.0",
"vite": "^6.3.5",
"vite-plugin-svgr": "^4.3.0"
}
}

View File

@@ -411,9 +411,7 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
{recentAgents?.length > 0 ? (
<div>
<div className="mx-4 my-auto mt-2 flex h-6 items-center">
<p className="mt-1 ml-4 text-sm font-semibold">
{t('navigation.agents')}
</p>
<p className="mt-1 ml-4 text-sm font-semibold">Agents</p>
</div>
<div className="agents-container">
<div>
@@ -567,7 +565,7 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
<div className="flex items-center gap-1 pr-4">
<NavLink
target="_blank"
to={'https://discord.gg/vN7YFfdMpj'}
to={'https://discord.gg/WHJdfbQDR4'}
className={
'rounded-full hover:bg-gray-100 dark:hover:bg-[#28292E]'
}

View File

@@ -1,16 +1,13 @@
import { Link } from 'react-router-dom';
import { useTranslation } from 'react-i18next';
export default function PageNotFound() {
const { t } = useTranslation();
return (
<div className="dark:bg-raisin-black grid min-h-screen">
<p className="text-jet dark:bg-outer-space mx-auto my-auto mt-20 flex w-full max-w-6xl flex-col place-items-center gap-6 rounded-3xl bg-gray-100 p-6 lg:p-10 xl:p-16 dark:text-gray-100">
<h1>{t('pageNotFound.title')}</h1>
<p>{t('pageNotFound.message')}</p>
<h1>404</h1>
<p>The page you are looking for does not exist.</p>
<button className="pointer-cursor bg-blue-1000 hover:bg-blue-3000 mr-4 flex cursor-pointer items-center justify-center rounded-full px-4 py-2 text-white transition-colors duration-100">
<Link to="/">{t('pageNotFound.goHome')}</Link>
<Link to="/">Go Back Home</Link>
</button>
</p>
</div>

View File

@@ -1,5 +1,4 @@
import { useEffect, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { useSelector } from 'react-redux';
import { useNavigate, useParams } from 'react-router-dom';
@@ -12,7 +11,6 @@ import Logs from '../settings/Logs';
import { Agent } from './types';
export default function AgentLogs() {
const { t } = useTranslation();
const navigate = useNavigate();
const { agentId } = useParams();
const token = useSelector(selectToken);
@@ -47,12 +45,12 @@ export default function AgentLogs() {
<img src={ArrowLeft} alt="left-arrow" className="h-3 w-3" />
</button>
<p className="text-eerie-black dark:text-bright-gray mt-px text-sm font-semibold">
{t('agents.backToAll')}
Back to all agents
</p>
</div>
<div className="mt-5 flex w-full flex-wrap items-center justify-between gap-2 px-4">
<h1 className="text-eerie-black m-0 text-[32px] font-bold md:text-[40px] dark:text-white">
{t('agents.logs.title')}
Agent Logs
</h1>
</div>
<div className="mt-6 flex flex-col gap-3 px-4">
@@ -61,10 +59,9 @@ export default function AgentLogs() {
<p className="text-[#28292E] dark:text-[#E0E0E0]">{agent.name}</p>
<p className="text-xs text-[#28292E] dark:text-[#E0E0E0]/40">
{agent.last_used_at
? t('agents.logs.lastUsedAt') +
' ' +
? 'Last used at ' +
new Date(agent.last_used_at).toLocaleString()
: t('agents.logs.noUsageHistory')}
: 'No usage history'}
</p>
</div>
)}
@@ -82,9 +79,7 @@ export default function AgentLogs() {
<Spinner />
</div>
) : (
agent && (
<Logs agentId={agent.id} tableHeader={t('agents.logs.tableHeader')} />
)
agent && <Logs agentId={agent.id} tableHeader="Agent endpoint logs" />
)}
</div>
);

View File

@@ -1,5 +1,4 @@
import { useCallback, useEffect, useRef, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { useDispatch, useSelector } from 'react-redux';
import MessageInput from '../components/MessageInput';
@@ -18,7 +17,6 @@ import { selectSelectedAgent } from '../preferences/preferenceSlice';
import { AppDispatch } from '../store';
export default function AgentPreview() {
const { t } = useTranslation();
const dispatch = useDispatch<AppDispatch>();
const queries = useSelector(selectPreviewQueries);
@@ -132,7 +130,8 @@ export default function AgentPreview() {
/>
</div>
<p className="text-gray-4000 dark:text-sonic-silver w-full bg-transparent text-center text-xs md:inline">
{t('agents.preview.testMessage')}
This is a preview of the agent. You can publish it to start using it
in conversations.
</p>
</div>
</div>

View File

@@ -1,5 +1,4 @@
import { useEffect, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { useDispatch, useSelector } from 'react-redux';
import { useNavigate } from 'react-router-dom';
@@ -18,7 +17,6 @@ import { agentSectionsConfig } from './agents.config';
import { Agent } from './types';
export default function AgentsList() {
const { t } = useTranslation();
const dispatch = useDispatch();
const token = useSelector(selectToken);
const selectedAgent = useSelector(selectSelectedAgent);
@@ -35,10 +33,11 @@ export default function AgentsList() {
return (
<div className="p-4 md:p-12">
<h1 className="text-eerie-black mb-0 text-[32px] font-bold lg:text-[40px] dark:text-[#E0E0E0]">
{t('agents.title')}
Agents
</h1>
<p className="dark:text-gray-4000 mt-5 text-[15px] text-[#71717A]">
{t('agents.description')}
Discover and create custom versions of DocsGPT that combine
instructions, extra knowledge, and any combination of skills
</p>
{agentSectionsConfig.map((sectionConfig) => (
<AgentSection key={sectionConfig.id} config={sectionConfig} />
@@ -52,7 +51,6 @@ function AgentSection({
}: {
config: (typeof agentSectionsConfig)[number];
}) {
const { t } = useTranslation();
const navigate = useNavigate();
const dispatch = useDispatch();
const token = useSelector(selectToken);
@@ -87,18 +85,16 @@ function AgentSection({
<div className="flex w-full items-center justify-between">
<div className="flex flex-col gap-2">
<h2 className="text-[18px] font-semibold text-[#18181B] dark:text-[#E0E0E0]">
{t(`agents.sections.${config.id}.title`)}
{config.title}
</h2>
<p className="text-[13px] text-[#71717A]">
{t(`agents.sections.${config.id}.description`)}
</p>
<p className="text-[13px] text-[#71717A]">{config.description}</p>
</div>
{config.showNewAgentButton && (
<button
className="bg-purple-30 hover:bg-violets-are-blue rounded-full px-4 py-2 text-sm text-white"
onClick={() => navigate('/agents/new')}
>
{t('agents.newAgent')}
New Agent
</button>
)}
</div>
@@ -121,13 +117,13 @@ function AgentSection({
</div>
) : (
<div className="flex h-72 w-full flex-col items-center justify-center gap-3 text-base text-[#18181B] dark:text-[#E0E0E0]">
<p>{t(`agents.sections.${config.id}.emptyState`)}</p>
<p>{config.emptyStateDescription}</p>
{config.showNewAgentButton && (
<button
className="bg-purple-30 hover:bg-violets-are-blue ml-2 rounded-full px-4 py-2 text-sm text-white"
onClick={() => navigate('/agents/new')}
>
{t('agents.newAgent')}
New Agent
</button>
)}
</div>

View File

@@ -1,6 +1,5 @@
import isEqual from 'lodash/isEqual';
import React, { useCallback, useEffect, useRef, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { useDispatch, useSelector } from 'react-redux';
import { useNavigate, useParams } from 'react-router-dom';
@@ -31,7 +30,6 @@ const embeddingsName =
'huggingface_sentence-transformers/all-mpnet-base-v2';
export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
const { t } = useTranslation();
const navigate = useNavigate();
const dispatch = useDispatch();
const { agentId } = useParams();
@@ -89,8 +87,8 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
const modeConfig = {
new: {
heading: t('agents.form.headings.new'),
buttonText: t('agents.form.buttons.publish'),
heading: 'New Agent',
buttonText: 'Publish',
showDelete: false,
showSaveDraft: true,
showLogs: false,
@@ -98,8 +96,8 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
trackChanges: false,
},
edit: {
heading: t('agents.form.headings.edit'),
buttonText: t('agents.form.buttons.save'),
heading: 'Edit Agent',
buttonText: 'Save',
showDelete: true,
showSaveDraft: false,
showLogs: true,
@@ -107,8 +105,8 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
trackChanges: true,
},
draft: {
heading: t('agents.form.headings.draft'),
buttonText: t('agents.form.buttons.publish'),
heading: 'New Agent (Draft)',
buttonText: 'Publish',
showDelete: true,
showSaveDraft: true,
showLogs: false,
@@ -118,8 +116,8 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
};
const chunks = ['0', '2', '4', '6', '8', '10'];
const agentTypes = [
{ label: t('agents.form.agentTypes.classic'), value: 'classic' },
{ label: t('agents.form.agentTypes.react'), value: 'react' },
{ label: 'Classic', value: 'classic' },
{ label: 'ReAct', value: 'react' },
];
const isPublishable = () => {
@@ -200,19 +198,13 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
if (agent.limited_token_mode && agent.token_limit) {
formData.append('limited_token_mode', 'True');
formData.append('token_limit', agent.token_limit.toString());
} else {
formData.append('limited_token_mode', 'False');
formData.append('token_limit', '0');
}
formData.append('token_limit', JSON.stringify(agent.token_limit));
} else formData.append('token_limit', '0');
if (agent.limited_request_mode && agent.request_limit) {
formData.append('limited_request_mode', 'True');
formData.append('request_limit', agent.request_limit.toString());
} else {
formData.append('limited_request_mode', 'False');
formData.append('request_limit', '0');
}
formData.append('request_limit', JSON.stringify(agent.request_limit));
} else formData.append('request_limit', '0');
if (imageFile) formData.append('image', imageFile);
@@ -303,22 +295,15 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
formData.append('json_schema', JSON.stringify(agent.json_schema));
}
// Always send the limited mode fields
if (agent.limited_token_mode && agent.token_limit) {
formData.append('limited_token_mode', 'True');
formData.append('token_limit', agent.token_limit.toString());
} else {
formData.append('limited_token_mode', 'False');
formData.append('token_limit', '0');
}
formData.append('token_limit', JSON.stringify(agent.token_limit));
} else formData.append('token_limit', '0');
if (agent.limited_request_mode && agent.request_limit) {
formData.append('limited_request_mode', 'True');
formData.append('request_limit', agent.request_limit.toString());
} else {
formData.append('limited_request_mode', 'False');
formData.append('request_limit', '0');
}
formData.append('request_limit', JSON.stringify(agent.request_limit));
} else formData.append('request_limit', '0');
try {
setPublishLoading(true);
@@ -558,7 +543,7 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
<img src={ArrowLeft} alt="left-arrow" className="h-3 w-3" />
</button>
<p className="text-eerie-black dark:text-bright-gray mt-px text-sm font-semibold">
{t('agents.backToAll')}
Back to all agents
</p>
</div>
<div className="mt-5 flex w-full flex-wrap items-center justify-between gap-2 px-4">
@@ -570,7 +555,7 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
className="text-purple-30 dark:text-light-gray mr-4 rounded-3xl py-2 text-sm font-medium dark:bg-transparent"
onClick={handleCancel}
>
{t('agents.form.buttons.cancel')}
Cancel
</button>
{modeConfig[effectiveMode].showDelete && agent.id && (
<button
@@ -578,7 +563,7 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
onClick={() => setDeleteConfirmation('ACTIVE')}
>
<span className="block h-4 w-4 bg-[url('/src/assets/red-trash.svg')] bg-contain bg-center bg-no-repeat transition-all group-hover:bg-[url('/src/assets/white-trash.svg')]" />
{t('agents.form.buttons.delete')}
Delete
</button>
)}
{modeConfig[effectiveMode].showSaveDraft && (
@@ -593,7 +578,7 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
{draftLoading ? (
<Spinner size="small" color="#976af3" />
) : (
t('agents.form.buttons.saveDraft')
'Save Draft'
)}
</span>
</button>
@@ -604,7 +589,7 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
onClick={() => navigate(`/agents/logs/${agent.id}`)}
>
<span className="block h-5 w-5 bg-[url('/src/assets/monitoring-purple.svg')] bg-contain bg-center bg-no-repeat transition-all group-hover:bg-[url('/src/assets/monitoring-white.svg')]" />
{t('agents.form.buttons.logs')}
Logs
</button>
)}
{modeConfig[effectiveMode].showAccessDetails && (
@@ -612,7 +597,7 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
className="hover:bg-vi</button>olets-are-blue border-violets-are-blue text-violets-are-blue hover:bg-violets-are-blue rounded-3xl border border-solid px-5 py-2 text-sm font-medium transition-colors hover:text-white"
onClick={() => setAgentDetails('ACTIVE')}
>
{t('agents.form.buttons.accessDetails')}
Access Details
</button>
)}
<button
@@ -633,19 +618,17 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
<div className="mt-3 flex w-full flex-1 grid-cols-5 flex-col gap-10 rounded-[30px] bg-[#F6F6F6] p-5 max-[1179px]:overflow-visible min-[1180px]:grid min-[1180px]:gap-5 min-[1180px]:overflow-hidden dark:bg-[#383838]">
<div className="scrollbar-thin col-span-2 flex flex-col gap-5 max-[1179px]:overflow-visible min-[1180px]:max-h-full min-[1180px]:overflow-y-auto min-[1180px]:pr-3">
<div className="dark:bg-raisin-black rounded-[30px] bg-white px-6 py-3 dark:text-[#E0E0E0]">
<h2 className="text-lg font-semibold">
{t('agents.form.sections.meta')}
</h2>
<h2 className="text-lg font-semibold">Meta</h2>
<input
className="border-silver text-jet dark:bg-raisin-black dark:text-bright-gray dark:placeholder:text-silver mt-3 w-full rounded-3xl border bg-white px-5 py-3 text-sm outline-hidden placeholder:text-gray-400 dark:border-[#7E7E7E]"
type="text"
value={agent.name}
placeholder={t('agents.form.placeholders.agentName')}
placeholder="Agent name"
onChange={(e) => setAgent({ ...agent, name: e.target.value })}
/>
<textarea
className="border-silver text-jet dark:bg-raisin-black dark:text-bright-gray dark:placeholder:text-silver mt-3 h-32 w-full rounded-xl border bg-white px-5 py-4 text-sm outline-hidden placeholder:text-gray-400 dark:border-[#7E7E7E]"
placeholder={t('agents.form.placeholders.describeAgent')}
placeholder="Describe your agent"
value={agent.description}
onChange={(e) =>
setAgent({ ...agent, description: e.target.value })
@@ -658,12 +641,9 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
onUpload={handleUpload}
onRemove={() => setImageFile(null)}
uploadText={[
{ text: 'Click to upload', colorClass: 'text-[#7D54D1]' },
{
text: t('agents.form.upload.clickToUpload'),
colorClass: 'text-[#7D54D1]',
},
{
text: t('agents.form.upload.dragAndDrop'),
text: ' or drag and drop',
colorClass: 'text-[#525252]',
},
]}
@@ -671,9 +651,7 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
</div>
</div>
<div className="dark:bg-raisin-black rounded-[30px] bg-white px-6 py-3 dark:text-[#E0E0E0]">
<h2 className="text-lg font-semibold">
{t('agents.form.sections.source')}
</h2>
<h2 className="text-lg font-semibold">Source</h2>
<div className="mt-3">
<div className="flex flex-wrap items-center gap-1">
<button
@@ -694,13 +672,11 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
source.name === id ||
source.retriever === id,
);
return (
matchedDoc?.name || t('agents.form.externalKb')
);
return matchedDoc?.name || `External KB`;
})
.filter(Boolean)
.join(', ')
: t('agents.form.placeholders.selectSources')}
: 'Select sources'}
</button>
<MultiSelectPopup
isOpen={isSourcePopupOpen}
@@ -744,13 +720,9 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
setSelectedSourceIds(newSelectedIds);
}
}}
title={t('agents.form.sourcePopup.title')}
searchPlaceholder={t(
'agents.form.sourcePopup.searchPlaceholder',
)}
noOptionsMessage={t(
'agents.form.sourcePopup.noOptionsMessage',
)}
title="Select Sources"
searchPlaceholder="Search sources..."
noOptionsMessage="No sources available"
/>
</div>
<div className="mt-3">
@@ -765,7 +737,7 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
border="border"
buttonClassName="bg-white dark:bg-[#222327] border-silver dark:border-[#7E7E7E]"
optionsClassName="bg-white dark:bg-[#383838] border-silver dark:border-[#7E7E7E]"
placeholder={t('agents.form.placeholders.chunksPerQuery')}
placeholder="Chunks per query"
placeholderClassName="text-gray-400 dark:text-silver"
contentSize="text-sm"
/>
@@ -785,7 +757,7 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
setAgent({ ...agent, prompt_id: id })
}
setPrompts={setPrompts}
title={t('agents.form.sections.prompt')}
title="Prompt"
titleClassName="text-lg font-semibold dark:text-[#E0E0E0]"
showAddButton={false}
dropdownProps={{
@@ -805,14 +777,12 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
className="border-violets-are-blue text-violets-are-blue hover:bg-violets-are-blue w-20 shrink-0 basis-full rounded-3xl border-2 border-solid px-5 py-[11px] text-sm transition-colors hover:text-white sm:basis-auto"
onClick={() => setAddPromptModal('ACTIVE')}
>
{t('agents.form.buttons.add')}
Add
</button>
</div>
</div>
<div className="dark:bg-raisin-black rounded-[30px] bg-white px-6 py-3 dark:text-[#E0E0E0]">
<h2 className="text-lg font-semibold">
{t('agents.form.sections.tools')}
</h2>
<h2 className="text-lg font-semibold">Tools</h2>
<div className="mt-3 flex flex-wrap items-center gap-1">
<button
ref={toolAnchorButtonRef}
@@ -828,7 +798,7 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
.map((tool) => tool.display_name || tool.name)
.filter(Boolean)
.join(', ')
: t('agents.form.placeholders.selectTools')}
: 'Select tools'}
</button>
<MultiSelectPopup
isOpen={isToolsPopupOpen}
@@ -847,18 +817,14 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
})),
)
}
title={t('agents.form.toolsPopup.title')}
searchPlaceholder={t(
'agents.form.toolsPopup.searchPlaceholder',
)}
noOptionsMessage={t('agents.form.toolsPopup.noOptionsMessage')}
title="Select Tools"
searchPlaceholder="Search tools..."
noOptionsMessage="No tools available"
/>
</div>
</div>
<div className="dark:bg-raisin-black rounded-[30px] bg-white px-6 py-3 dark:text-[#E0E0E0]">
<h2 className="text-lg font-semibold">
{t('agents.form.sections.agentType')}
</h2>
<h2 className="text-lg font-semibold">Agent type</h2>
<div className="mt-3">
<Dropdown
options={agentTypes}
@@ -876,7 +842,7 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
border="border"
buttonClassName="bg-white dark:bg-[#222327] border-silver dark:border-[#7E7E7E]"
optionsClassName="bg-white dark:bg-[#383838] border-silver dark:border-[#7E7E7E]"
placeholder={t('agents.form.placeholders.selectType')}
placeholder="Select type"
placeholderClassName="text-gray-400 dark:text-silver"
contentSize="text-sm"
/>
@@ -890,9 +856,7 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
className="flex w-full items-center justify-between text-left focus:outline-none"
>
<div>
<h2 className="text-lg font-semibold">
{t('agents.form.sections.advanced')}
</h2>
<h2 className="text-lg font-semibold">Advanced</h2>
</div>
<div className="ml-4 flex items-center">
<svg
@@ -915,11 +879,9 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
{isAdvancedSectionExpanded && (
<div className="mt-3">
<div>
<h2 className="text-sm font-medium">
{t('agents.form.advanced.jsonSchema')}
</h2>
<h2 className="text-sm font-medium">JSON response schema</h2>
<p className="mt-1 text-xs text-gray-600 dark:text-gray-400">
{t('agents.form.advanced.jsonSchemaDescription')}
Define a JSON schema to enforce structured output format
</p>
</div>
<textarea
@@ -953,19 +915,17 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
}`}
/>
{jsonSchemaValid
? t('agents.form.advanced.validJson')
: t('agents.form.advanced.invalidJson')}
? 'Valid JSON'
: 'Invalid JSON - fix to enable saving'}
</div>
)}
<div className="mt-6">
<div className="flex items-center justify-between">
<div>
<h2 className="text-sm font-medium">
{t('agents.form.advanced.tokenLimiting')}
</h2>
<h2 className="text-sm font-medium">Token limiting</h2>
<p className="mt-1 text-xs text-gray-600 dark:text-gray-400">
{t('agents.form.advanced.tokenLimitingDescription')}
Limit daily total tokens that can be used by this agent
</p>
</div>
<button
@@ -1005,7 +965,7 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
})
}
disabled={!agent.limited_token_mode}
placeholder={t('agents.form.placeholders.enterTokenLimit')}
placeholder="Enter token limit"
className={`border-silver text-jet dark:bg-raisin-black dark:text-bright-gray dark:placeholder:text-silver mt-2 w-full rounded-3xl border bg-white px-5 py-3 text-sm outline-hidden placeholder:text-gray-400 dark:border-[#7E7E7E] ${
!agent.limited_token_mode
? 'cursor-not-allowed opacity-50'
@@ -1017,11 +977,10 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
<div className="mt-6">
<div className="flex items-center justify-between">
<div>
<h2 className="text-sm font-medium">
{t('agents.form.advanced.requestLimiting')}
</h2>
<h2 className="text-sm font-medium">Request limiting</h2>
<p className="mt-1 text-xs text-gray-600 dark:text-gray-400">
{t('agents.form.advanced.requestLimitingDescription')}
Limit daily total requests that can be made to this
agent
</p>
</div>
<button
@@ -1061,9 +1020,7 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
})
}
disabled={!agent.limited_request_mode}
placeholder={t(
'agents.form.placeholders.enterRequestLimit',
)}
placeholder="Enter request limit"
className={`border-silver text-jet dark:bg-raisin-black dark:text-bright-gray dark:placeholder:text-silver mt-2 w-full rounded-3xl border bg-white px-5 py-3 text-sm outline-hidden placeholder:text-gray-400 dark:border-[#7E7E7E] ${
!agent.limited_request_mode
? 'cursor-not-allowed opacity-50'
@@ -1076,24 +1033,22 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
</div>
</div>
<div className="col-span-3 flex flex-col gap-2 max-[1179px]:h-auto max-[1179px]:px-0 max-[1179px]:py-0 min-[1180px]:h-full min-[1180px]:py-2 dark:text-[#E0E0E0]">
<h2 className="text-lg font-semibold">
{t('agents.form.sections.preview')}
</h2>
<h2 className="text-lg font-semibold">Preview</h2>
<div className="flex-1 max-[1179px]:overflow-visible min-[1180px]:min-h-0 min-[1180px]:overflow-hidden">
<AgentPreviewArea />
</div>
</div>
</div>
<ConfirmationModal
message={t('agents.deleteConfirmation')}
message="Are you sure you want to delete this agent?"
modalState={deleteConfirmation}
setModalState={setDeleteConfirmation}
submitLabel={t('agents.form.buttons.delete')}
submitLabel="Delete"
handleSubmit={() => {
handleDelete(agent.id || '');
setDeleteConfirmation('INACTIVE');
}}
cancelLabel={t('agents.form.buttons.cancel')}
cancelLabel="Cancel"
variant="danger"
/>
<AgentDetailsModal
@@ -1116,7 +1071,6 @@ export default function NewAgent({ mode }: { mode: 'new' | 'edit' | 'draft' }) {
}
function AgentPreviewArea() {
const { t } = useTranslation();
const selectedAgent = useSelector(selectSelectedAgent);
return (
<div className="dark:bg-raisin-black w-full rounded-[30px] border border-[#F6F6F6] bg-white max-[1179px]:h-[600px] min-[1180px]:h-full dark:border-[#7E7E7E]">
@@ -1128,7 +1082,7 @@ function AgentPreviewArea() {
<div className="flex h-full w-full flex-col items-center justify-center gap-2">
<span className="block h-12 w-12 bg-[url('/src/assets/science-spark.svg')] bg-contain bg-center bg-no-repeat transition-all dark:bg-[url('/src/assets/science-spark-dark.svg')]" />{' '}
<p className="dark:text-gray-4000 text-xs text-[#18181B]">
{t('agents.form.preview.publishedPreview')}
Published agents can be previewed here
</p>
</div>
)}

View File

@@ -144,7 +144,7 @@ export default function SharedAgent() {
className="mx-auto mb-6 h-32 w-32"
/>
<p className="dark:text-gray-4000 text-center text-lg text-[#71717A]">
{t('agents.shared.notFound')}
No agent found. Please ensure the agent is shared.
</p>
</div>
</div>

View File

@@ -1,3 +0,0 @@
<svg width="12" height="14" viewBox="0 0 12 14" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M10.2857 14H2.57143C1.15179 14 0 12.8242 0 11.375V2.625C0 1.17578 1.15179 0 2.57143 0H10.7143C11.4241 0 12 0.587891 12 1.3125V9.1875C12 9.75898 11.6411 10.2457 11.1429 10.4262V12.25C11.617 12.25 12 12.641 12 13.125C12 13.609 11.617 14 11.1429 14H10.2857ZM2.57143 10.5C2.09732 10.5 1.71429 10.891 1.71429 11.375C1.71429 11.859 2.09732 12.25 2.57143 12.25H9.42857V10.5H2.57143ZM3.42857 4.15625C3.42857 4.51992 3.71518 4.8125 4.07143 4.8125H8.78571C9.14196 4.8125 9.42857 4.51992 9.42857 4.15625C9.42857 3.79258 9.14196 3.5 8.78571 3.5H4.07143C3.71518 3.5 3.42857 3.79258 3.42857 4.15625ZM4.07143 6.125C3.71518 6.125 3.42857 6.41758 3.42857 6.78125C3.42857 7.14492 3.71518 7.4375 4.07143 7.4375H8.78571C9.14196 7.4375 9.42857 7.14492 9.42857 6.78125C9.42857 6.41758 9.14196 6.125 8.78571 6.125H4.07143Z" fill="#6A4DF4"/>
</svg>

Before

Width:  |  Height:  |  Size: 930 B

View File

@@ -45,7 +45,7 @@ export default function ActionButtons({
<div className={`flex items-center gap-2 sm:gap-4 ${className}`}>
{showNewChat && (
<button
title={t('actionButtons.openNewChat')}
title="Open New Chat"
onClick={newChat}
className="hover:bg-bright-gray flex items-center gap-1 rounded-full p-2 lg:hidden dark:hover:bg-[#28292E]"
>
@@ -62,7 +62,7 @@ export default function ActionButtons({
{showShare && conversationId && (
<>
<button
title={t('actionButtons.share')}
title="Share"
onClick={() => setShareModalState(true)}
className="hover:bg-bright-gray rounded-full p-2 dark:hover:bg-[#28292E]"
>

View File

@@ -38,7 +38,7 @@ interface DirectoryStructure {
[key: string]: FileNode;
}
interface ConnectorTreeProps {
interface ConnectorTreeComponentProps {
docId: string;
sourceName: string;
onBackToDocuments: () => void;
@@ -50,7 +50,7 @@ interface SearchResult {
isFile: boolean;
}
const ConnectorTree: React.FC<ConnectorTreeProps> = ({
const ConnectorTreeComponent: React.FC<ConnectorTreeComponentProps> = ({
docId,
sourceName,
onBackToDocuments,
@@ -744,4 +744,4 @@ const ConnectorTree: React.FC<ConnectorTreeProps> = ({
);
};
export default ConnectorTree;
export default ConnectorTreeComponent;

View File

@@ -60,7 +60,7 @@ function Dropdown<T extends DropdownOption>({
}`}
>
{typeof selectedValue === 'string' ? (
<span className={`dark:text-bright-gray truncate ${contentSize}`}>
<span className="dark:text-bright-gray truncate">
{selectedValue}
</span>
) : (

View File

@@ -1,5 +1,4 @@
import React, { useState, useEffect, useCallback, useRef } from 'react';
import { useTranslation } from 'react-i18next';
import { formatBytes } from '../utils/stringUtils';
import { formatDate } from '../utils/dateTimeUtils';
import {
@@ -67,7 +66,6 @@ export const FilePicker: React.FC<CloudFilePickerProps> = ({
);
};
const { t } = useTranslation();
const [files, setFiles] = useState<CloudFile[]>([]);
const [selectedFiles, setSelectedFiles] =
useState<string[]>(initialSelectedFiles);
@@ -419,7 +417,7 @@ export const FilePicker: React.FC<CloudFilePickerProps> = ({
<div className="mb-3 max-w-md">
<Input
type="text"
placeholder={t('filePicker.searchPlaceholder')}
placeholder="Search files and folders..."
value={searchQuery}
onChange={(e) => handleSearchChange(e.target.value)}
colorVariant="silver"
@@ -433,9 +431,7 @@ export const FilePicker: React.FC<CloudFilePickerProps> = ({
{/* Selected Files Message */}
<div className="pb-3 text-sm text-gray-600 dark:text-gray-400">
{t('filePicker.itemsSelected', {
count: selectedFiles.length + selectedFolders.length,
})}
{selectedFiles.length + selectedFolders.length} selected
</div>
</div>
@@ -452,15 +448,9 @@ export const FilePicker: React.FC<CloudFilePickerProps> = ({
<TableHead>
<TableRow>
<TableHeader width="40px"></TableHeader>
<TableHeader width="60%">
{t('filePicker.name')}
</TableHeader>
<TableHeader width="20%">
{t('filePicker.lastModified')}
</TableHeader>
<TableHeader width="20%">
{t('filePicker.size')}
</TableHeader>
<TableHeader width="60%">Name</TableHeader>
<TableHeader width="20%">Last Modified</TableHeader>
<TableHeader width="20%">Size</TableHeader>
</TableRow>
</TableHead>
<TableBody>

View File

@@ -36,7 +36,7 @@ interface DirectoryStructure {
[key: string]: FileNode;
}
interface FileTreeProps {
interface FileTreeComponentProps {
docId: string;
sourceName: string;
onBackToDocuments: () => void;
@@ -48,7 +48,7 @@ interface SearchResult {
isFile: boolean;
}
const FileTree: React.FC<FileTreeProps> = ({
const FileTreeComponent: React.FC<FileTreeComponentProps> = ({
docId,
sourceName,
onBackToDocuments,
@@ -871,4 +871,4 @@ const FileTree: React.FC<FileTreeProps> = ({
);
};
export default FileTree;
export default FileTreeComponent;

View File

@@ -1,5 +1,4 @@
import React, { useCallback, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { useDropzone } from 'react-dropzone';
import { twMerge } from 'tailwind-merge';
@@ -45,14 +44,13 @@ export const FileUpload = ({
activeClassName = 'border-blue-500 bg-blue-50',
acceptClassName = 'border-green-500 dark:border-green-500 bg-green-50 dark:bg-green-50/10',
rejectClassName = 'border-red-500 bg-red-50 dark:bg-red-500/10 dark:border-red-500',
uploadText,
dragActiveText,
fileTypeText,
sizeLimitText,
uploadText = 'Click to upload or drag and drop',
dragActiveText = 'Drop the files here',
fileTypeText = 'PNG, JPG, JPEG up to',
sizeLimitText = 'MB',
disabled = false,
validator,
}: FileUploadProps) => {
const { t } = useTranslation();
const [errors, setErrors] = useState<string[]>([]);
const [preview, setPreview] = useState<string | null>(null);
const [currentFile, setCurrentFile] = useState<File | null>(null);
@@ -73,9 +71,7 @@ export const FileUpload = ({
if (file.size > maxSize) {
return {
isValid: false,
error: t('components.fileUpload.fileSizeError', {
size: maxSize / 1024 / 1024,
}),
error: `File exceeds ${maxSize / 1024 / 1024}MB limit`,
};
}
@@ -182,11 +178,7 @@ export const FileUpload = ({
</p>
);
}
return (
<p className="text-sm font-semibold">
{uploadText || t('components.fileUpload.clickToUpload')}
</p>
);
return <p className="text-sm font-semibold">{uploadText}</p>;
};
const defaultContent = (
@@ -204,17 +196,14 @@ export const FileUpload = ({
<div className="text-center">
<div className="text-sm font-medium">
{isDragActive ? (
<p className="text-sm font-semibold">
{dragActiveText || t('components.fileUpload.dropFiles')}
</p>
<p className="text-sm font-semibold">{dragActiveText}</p>
) : (
renderUploadText()
)}
</div>
<p className="mt-1 text-xs text-[#A3A3A3]">
{fileTypeText || t('components.fileUpload.fileTypes')}{' '}
{maxSize / 1024 / 1024}
{sizeLimitText || t('components.fileUpload.sizeLimitUnit')}
{fileTypeText} {maxSize / 1024 / 1024}
{sizeLimitText}
</p>
</div>
</div>

View File

@@ -20,7 +20,6 @@ const Input = ({
onChange,
onPaste,
onKeyDown,
edgeRoundness = 'rounded-full',
}: InputProps) => {
const colorStyles = {
silver: 'border-silver dark:border-silver/40',
@@ -44,7 +43,7 @@ const Input = ({
<div className={`relative ${className}`}>
<input
ref={inputRef}
className={`peer text-jet dark:text-bright-gray h-[42px] w-full ${edgeRoundness} bg-transparent ${leftIcon ? 'pl-10' : 'px-3'} py-1 placeholder-transparent outline-hidden ${colorStyles[colorVariant]} ${borderStyles[borderVariant]} ${textSizeStyles[textSize]} [&:-webkit-autofill]:appearance-none [&:-webkit-autofill]:bg-transparent [&:-webkit-autofill_selected]:bg-transparent`}
className={`peer text-jet dark:text-bright-gray h-[42px] w-full rounded-full bg-transparent ${leftIcon ? 'pl-10' : 'px-3'} py-1 placeholder-transparent outline-hidden ${colorStyles[colorVariant]} ${borderStyles[borderVariant]} ${textSizeStyles[textSize]} [&:-webkit-autofill]:appearance-none [&:-webkit-autofill]:bg-transparent [&:-webkit-autofill_selected]:bg-transparent`}
type={type}
id={id}
name={name}

View File

@@ -1,5 +1,4 @@
import React, { useEffect, useRef, useState } from 'react';
import { useTranslation } from 'react-i18next';
import mermaid from 'mermaid';
import CopyButton from './CopyButton';
import { Prism as SyntaxHighlighter } from 'react-syntax-highlighter';
@@ -16,7 +15,6 @@ const MermaidRenderer: React.FC<MermaidRendererProps> = ({
code,
isLoading,
}) => {
const { t } = useTranslation();
const [isDarkTheme] = useDarkTheme();
const diagramId = useRef(
`mermaid-${Date.now()}-${Math.random().toString(36).substring(2)}`,
@@ -275,7 +273,7 @@ const MermaidRenderer: React.FC<MermaidRendererProps> = ({
<button
onClick={() => setShowDownloadMenu(!showDownloadMenu)}
className="flex h-full items-center rounded-sm bg-gray-100 px-2 py-1 text-xs dark:bg-gray-700"
title={t('mermaid.downloadOptions')}
title="Download options"
>
Download <span className="ml-1"></span>
</button>
@@ -309,7 +307,7 @@ const MermaidRenderer: React.FC<MermaidRendererProps> = ({
? 'bg-blue-200 dark:bg-blue-800'
: 'bg-gray-100 dark:bg-gray-700'
}`}
title={t('mermaid.viewCode')}
title="View Code"
>
Code
</button>
@@ -355,7 +353,7 @@ const MermaidRenderer: React.FC<MermaidRendererProps> = ({
setZoomFactor((prev) => Math.max(1, prev - 0.5))
}
className="rounded px-1 hover:bg-gray-600"
title={t('mermaid.decreaseZoom')}
title="Decrease zoom"
>
-
</button>
@@ -364,7 +362,7 @@ const MermaidRenderer: React.FC<MermaidRendererProps> = ({
onClick={() => {
setZoomFactor(2);
}}
title={t('mermaid.resetZoom')}
title="Reset zoom"
>
{zoomFactor.toFixed(1)}x
</span>
@@ -373,7 +371,7 @@ const MermaidRenderer: React.FC<MermaidRendererProps> = ({
setZoomFactor((prev) => Math.min(6, prev + 0.5))
}
className="rounded px-1 hover:bg-gray-600"
title={t('mermaid.increaseZoom')}
title="Increase zoom"
>
+
</button>

View File

@@ -19,8 +19,8 @@ import {
removeAttachment,
selectAttachments,
updateAttachment,
reorderAttachments,
} from '../upload/uploadSlice';
import { reorderAttachments } from '../upload/uploadSlice';
import { ActiveState } from '../models/misc';
import {
@@ -77,7 +77,7 @@ export default function MessageInput({
(browserOS === 'mac' && event.metaKey && event.key === 'k')
) {
event.preventDefault();
setIsSourcesPopupOpen((s) => !s);
setIsSourcesPopupOpen(!isSourcesPopupOpen);
}
};
@@ -89,198 +89,8 @@ export default function MessageInput({
const uploadFiles = useCallback(
(files: File[]) => {
if (!files || files.length === 0) return;
const apiHost = import.meta.env.VITE_API_HOST;
if (files.length > 1) {
const formData = new FormData();
const indexToUiId: Record<number, string> = {};
files.forEach((file, i) => {
formData.append('file', file);
const uiId = crypto.randomUUID();
indexToUiId[i] = uiId;
dispatch(
addAttachment({
id: uiId,
fileName: file.name,
progress: 0,
status: 'uploading' as const,
taskId: '',
}),
);
});
const xhr = new XMLHttpRequest();
xhr.upload.addEventListener('progress', (event) => {
if (event.lengthComputable) {
const progress = Math.round((event.loaded / event.total) * 100);
Object.values(indexToUiId).forEach((uiId) =>
dispatch(
updateAttachment({
id: uiId,
updates: { progress },
}),
),
);
}
});
xhr.onload = () => {
const status = xhr.status;
if (status === 200) {
try {
const response = JSON.parse(xhr.responseText);
if (Array.isArray(response?.tasks)) {
const tasks = response.tasks as Array<{
task_id?: string;
filename?: string;
attachment_id?: string;
path?: string;
}>;
tasks.forEach((t, idx) => {
const uiId = indexToUiId[idx];
if (!uiId) return;
if (t?.task_id) {
dispatch(
updateAttachment({
id: uiId,
updates: {
taskId: t.task_id,
status: 'processing',
progress: 10,
},
}),
);
} else {
dispatch(
updateAttachment({
id: uiId,
updates: { status: 'failed' },
}),
);
}
});
if (tasks.length < files.length) {
for (let i = tasks.length; i < files.length; i++) {
const uiId = indexToUiId[i];
if (uiId) {
dispatch(
updateAttachment({
id: uiId,
updates: { status: 'failed' },
}),
);
}
}
}
} else if (response?.task_id) {
if (files.length === 1) {
const uiId = indexToUiId[0];
if (uiId) {
dispatch(
updateAttachment({
id: uiId,
updates: {
taskId: response.task_id,
status: 'processing',
progress: 10,
},
}),
);
}
} else {
console.warn(
'Server returned a single task_id for multiple files. Update backend to return tasks[].',
);
const firstUi = indexToUiId[0];
if (firstUi) {
dispatch(
updateAttachment({
id: firstUi,
updates: {
taskId: response.task_id,
status: 'processing',
progress: 10,
},
}),
);
}
for (let i = 1; i < files.length; i++) {
const uiId = indexToUiId[i];
if (uiId) {
dispatch(
updateAttachment({
id: uiId,
updates: { status: 'failed' },
}),
);
}
}
}
} else {
console.error('Unexpected upload response shape', response);
Object.values(indexToUiId).forEach((id) =>
dispatch(
updateAttachment({
id,
updates: { status: 'failed' },
}),
),
);
}
} catch (err) {
console.error(
'Failed to parse upload response',
err,
xhr.responseText,
);
Object.values(indexToUiId).forEach((id) =>
dispatch(
updateAttachment({
id,
updates: { status: 'failed' },
}),
),
);
}
} else {
console.error('Upload failed', status, xhr.responseText);
Object.values(indexToUiId).forEach((id) =>
dispatch(
updateAttachment({
id,
updates: { status: 'failed' },
}),
),
);
}
};
xhr.onerror = () => {
console.error('Upload network error');
Object.values(indexToUiId).forEach((id) =>
dispatch(
updateAttachment({
id,
updates: { status: 'failed' },
}),
),
);
};
xhr.open('POST', `${apiHost}${endpoints.USER.STORE_ATTACHMENT}`);
if (token) xhr.setRequestHeader('Authorization', `Bearer ${token}`);
xhr.send(formData);
return;
}
// Single-file path: upload each file individually (original repo behavior)
files.forEach((file) => {
const formData = new FormData();
formData.append('file', file);
@@ -311,54 +121,16 @@ export default function MessageInput({
xhr.onload = () => {
if (xhr.status === 200) {
try {
const response = JSON.parse(xhr.responseText);
if (response.task_id) {
dispatch(
updateAttachment({
id: uniqueId,
updates: {
taskId: response.task_id,
status: 'processing',
progress: 10,
},
}),
);
} else {
// If backend returned tasks[] for single-file, handle gracefully:
if (
Array.isArray(response?.tasks) &&
response.tasks[0]?.task_id
) {
dispatch(
updateAttachment({
id: uniqueId,
updates: {
taskId: response.tasks[0].task_id,
status: 'processing',
progress: 10,
},
}),
);
} else {
dispatch(
updateAttachment({
id: uniqueId,
updates: { status: 'failed' },
}),
);
}
}
} catch (err) {
console.error(
'Failed to parse upload response',
err,
xhr.responseText,
);
const response = JSON.parse(xhr.responseText);
if (response.task_id) {
dispatch(
updateAttachment({
id: uniqueId,
updates: { status: 'failed' },
updates: {
taskId: response.task_id,
status: 'processing',
progress: 10,
},
}),
);
}
@@ -382,7 +154,7 @@ export default function MessageInput({
};
xhr.open('POST', `${apiHost}${endpoints.USER.STORE_ATTACHMENT}`);
if (token) xhr.setRequestHeader('Authorization', `Bearer ${token}`);
xhr.setRequestHeader('Authorization', `Bearer ${token}`);
xhr.send(formData);
});
},
@@ -391,13 +163,15 @@ export default function MessageInput({
const handleFileAttachment = (e: React.ChangeEvent<HTMLInputElement>) => {
if (!e.target.files || e.target.files.length === 0) return;
const files = Array.from(e.target.files);
uploadFiles(files);
// clear input so same file can be selected again
e.target.value = '';
};
// Drag & drop via react-dropzone
// Drag and drop handler
const onDrop = useCallback(
(acceptedFiles: File[]) => {
uploadFiles(acceptedFiles);
@@ -547,8 +321,11 @@ export default function MessageInput({
handleAbort();
};
// Drag state for reordering
const [draggingId, setDraggingId] = useState<string | null>(null);
// no preview object URLs to revoke (preview removed per reviewer request)
const findIndexById = (id: string) =>
attachments.findIndex((a) => a.id === id);
@@ -582,9 +359,7 @@ export default function MessageInput({
return (
<div {...getRootProps()} className="flex w-full flex-col">
{/* react-dropzone input (for drag/drop) */}
<input {...getInputProps()} />
<div className="border-dark-gray bg-lotion dark:border-grey relative flex w-full flex-col rounded-[23px] border dark:bg-transparent">
<div className="flex flex-wrap gap-1.5 px-2 py-2 sm:gap-2 sm:px-3">
{attachments.map((attachment) => {
@@ -599,11 +374,7 @@ export default function MessageInput({
attachment.status !== 'completed'
? 'opacity-70'
: 'opacity-100'
} ${
draggingId === attachment.id
? 'ring-dashed opacity-60 ring-2 ring-purple-200'
: ''
}`}
} ${draggingId === attachment.id ? 'ring-dashed opacity-60 ring-2 ring-purple-200' : ''}`}
title={attachment.fileName}
>
<div className="bg-purple-30 mr-2 flex h-8 w-8 items-center justify-center rounded-md p-1">

View File

@@ -1,4 +1,3 @@
import { useTranslation } from 'react-i18next';
import close from '../assets/cross.svg';
import rightArrow from '../assets/arrow-full-right.svg';
import bg from '../assets/notification-bg.jpg';
@@ -14,14 +13,13 @@ export default function Notification({
notificationLink,
handleCloseNotification,
}: NotificationProps) {
const { t } = useTranslation();
return (
<a
className="absolute right-2 bottom-6 z-20 flex w-3/4 items-center justify-center gap-2 rounded-lg bg-cover bg-center bg-no-repeat px-2 py-4 sm:right-4 md:w-2/5 lg:w-1/3 xl:w-1/4 2xl:w-1/5"
style={{ backgroundImage: `url(${bg})` }}
href={notificationLink}
target="_blank"
aria-label={t('notification.ariaLabel')}
aria-label="Notification"
rel="noreferrer"
>
<p className="text-white-3000 text-xs leading-6 font-semibold xl:text-sm xl:leading-7">
@@ -33,7 +31,7 @@ export default function Notification({
<button
className="absolute top-2 right-2 z-30 h-4 w-4 hover:opacity-70"
aria-label={t('notification.closeAriaLabel')}
aria-label="Close notification"
onClick={(e) => {
e.stopPropagation();
e.preventDefault();

View File

@@ -24,7 +24,6 @@ interface SettingsBarProps {
}
const SettingsBar = ({ setActiveTab, activeTab }: SettingsBarProps) => {
const { t } = useTranslation();
const [hiddenGradient, setHiddenGradient] =
useState<HiddenGradientType>('left');
const containerRef = useRef<null | HTMLDivElement>(null);
@@ -61,7 +60,7 @@ const SettingsBar = ({ setActiveTab, activeTab }: SettingsBarProps) => {
<button
onClick={() => scrollTabs(-1)}
className="flex h-6 w-6 items-center justify-center rounded-full transition-all hover:bg-gray-200 dark:hover:bg-gray-700"
aria-label={t('settings.scrollTabsLeft')}
aria-label="Scroll tabs left"
>
<img src={ArrowLeft} alt="left-arrow" className="h-3" />
</button>
@@ -70,7 +69,7 @@ const SettingsBar = ({ setActiveTab, activeTab }: SettingsBarProps) => {
ref={containerRef}
className="no-scrollbar flex snap-x flex-nowrap overflow-x-auto scroll-smooth md:space-x-4"
role="tablist"
aria-label={t('settings.tabsAriaLabel')}
aria-label="Settings tabs"
>
{tabs.map((tab, index) => (
<button
@@ -94,7 +93,7 @@ const SettingsBar = ({ setActiveTab, activeTab }: SettingsBarProps) => {
<button
onClick={() => scrollTabs(1)}
className="flex h-6 w-6 items-center justify-center rounded-full hover:bg-gray-200 dark:hover:bg-gray-700"
aria-label={t('settings.scrollTabsRight')}
aria-label="Scroll tabs right"
>
<img src={ArrowRight} alt="right-arrow" className="h-3" />
</button>

View File

@@ -172,7 +172,11 @@ export default function SourcesPopup({
: doc.date !== option.date,
)
: [];
dispatch(setSelectedDocs(updatedDocs));
dispatch(
setSelectedDocs(
updatedDocs.length > 0 ? updatedDocs : null,
),
);
handlePostDocumentSelect(
updatedDocs.length > 0 ? updatedDocs : null,
);

View File

@@ -1,202 +1,94 @@
import { useState, useRef, useEffect } from 'react';
import { useState, useRef } from 'react';
import Speaker from '../assets/speaker.svg?react';
import Stopspeech from '../assets/stopspeech.svg?react';
import LoadingIcon from '../assets/Loading.svg?react'; // Add a loading icon SVG here
const apiHost = import.meta.env.VITE_API_HOST || 'https://docsapi.arc53.com';
let currentlyPlayingAudio: {
audio: HTMLAudioElement;
stopCallback: () => void;
} | null = null;
let currentLoadingRequest: {
abortController: AbortController;
stopLoadingCallback: () => void;
} | null = null;
// LRU Cache for audio
const audioCache = new Map<string, string>();
const MAX_CACHE_SIZE = 10;
function getCachedAudio(text: string): string | undefined {
const cached = audioCache.get(text);
if (cached) {
audioCache.delete(text);
audioCache.set(text, cached);
}
return cached;
}
function setCachedAudio(text: string, audioBase64: string) {
if (audioCache.has(text)) {
audioCache.delete(text);
}
if (audioCache.size >= MAX_CACHE_SIZE) {
const firstKey = audioCache.keys().next().value;
if (firstKey !== undefined) {
audioCache.delete(firstKey);
}
}
audioCache.set(text, audioBase64);
}
export default function SpeakButton({ text }: { text: string }) {
export default function SpeakButton({
text,
colorLight,
colorDark,
}: {
text: string;
colorLight?: string;
colorDark?: string;
}) {
const [isSpeaking, setIsSpeaking] = useState(false);
const [isLoading, setIsLoading] = useState(false);
const [isSpeakHovered, setIsSpeakHovered] = useState(false);
const audioRef = useRef<HTMLAudioElement | null>(null);
const abortControllerRef = useRef<AbortController | null>(null);
useEffect(() => {
return () => {
// Abort any pending fetch request
if (abortControllerRef.current) {
abortControllerRef.current.abort();
abortControllerRef.current = null;
}
// Stop any playing audio
if (audioRef.current) {
audioRef.current.pause();
if (currentlyPlayingAudio?.audio === audioRef.current) {
currentlyPlayingAudio = null;
}
audioRef.current = null;
}
// Clear global loading request if it's this component's
if (currentLoadingRequest) {
currentLoadingRequest = null;
}
};
}, []);
const handleSpeakClick = async () => {
if (isSpeaking) {
// Stop audio if it's currently playing
audioRef.current?.pause();
audioRef.current = null;
currentlyPlayingAudio = null;
setIsSpeaking(false);
return;
}
// Stop any currently playing audio
if (currentlyPlayingAudio) {
currentlyPlayingAudio.audio.pause();
currentlyPlayingAudio.stopCallback();
currentlyPlayingAudio = null;
}
// Abort any pending loading request
if (currentLoadingRequest) {
currentLoadingRequest.abortController.abort();
currentLoadingRequest.stopLoadingCallback();
currentLoadingRequest = null;
}
try {
// Set loading state and initiate TTS request
setIsLoading(true);
const cachedAudio = getCachedAudio(text);
let audioBase64: string;
if (cachedAudio) {
audioBase64 = cachedAudio;
setIsLoading(false);
} else {
const abortController = new AbortController();
abortControllerRef.current = abortController;
currentLoadingRequest = {
abortController,
stopLoadingCallback: () => {
setIsLoading(false);
},
};
const response = await fetch(apiHost + '/api/tts', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ text }),
signal: abortController.signal,
});
const data = await response.json();
abortControllerRef.current = null;
currentLoadingRequest = null;
if (data.success && data.audio_base64) {
audioBase64 = data.audio_base64;
// Store in cache
setCachedAudio(text, audioBase64);
setIsLoading(false);
} else {
console.error('Failed to retrieve audio.');
setIsLoading(false);
return;
}
}
const audio = new Audio(`data:audio/mp3;base64,${audioBase64}`);
audioRef.current = audio;
currentlyPlayingAudio = {
audio,
stopCallback: () => {
setIsSpeaking(false);
audioRef.current = null;
},
};
audio.play().then(() => {
setIsSpeaking(true);
setIsLoading(false);
audio.onended = () => {
setIsSpeaking(false);
audioRef.current = null;
if (currentlyPlayingAudio?.audio === audio) {
currentlyPlayingAudio = null;
}
};
const response = await fetch(apiHost + '/api/tts', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ text }),
});
} catch (error: any) {
abortControllerRef.current = null;
currentLoadingRequest = null;
if (error.name === 'AbortError') {
return;
const data = await response.json();
if (data.success && data.audio_base64) {
// Create and play the audio
const audio = new Audio(`data:audio/mp3;base64,${data.audio_base64}`);
audioRef.current = audio;
audio.play().then(() => {
setIsSpeaking(true);
setIsLoading(false);
// Reset when audio ends
audio.onended = () => {
setIsSpeaking(false);
audioRef.current = null;
};
});
} else {
console.error('Failed to retrieve audio.');
setIsLoading(false);
}
} catch (error) {
console.error('Error fetching audio from TTS endpoint', error);
setIsLoading(false);
}
};
return (
<button
type="button"
className={`flex cursor-pointer items-center justify-center rounded-full p-2 ${
isSpeaking || isLoading
? 'dark:bg-purple-taupe bg-[#EEEEEE]'
: 'bg-white-3000 dark:hover:bg-purple-taupe hover:bg-[#EEEEEE] dark:bg-transparent'
<div
className={`flex items-center justify-center rounded-full p-2 ${
isSpeakHovered
? `dark:bg-purple-taupe bg-[#EEEEEE]`
: `bg-[${colorLight ? colorLight : '#FFFFFF'}] dark:bg-[${colorDark ? colorDark : 'transparent'}]`
}`}
onClick={handleSpeakClick}
aria-label={
isLoading
? 'Loading audio'
: isSpeaking
? 'Stop speaking'
: 'Speak text'
}
disabled={isLoading}
>
{isLoading ? (
<LoadingIcon className="animate-spin" />
) : isSpeaking ? (
<Stopspeech className="fill-none" />
<Stopspeech
className="cursor-pointer fill-none"
onClick={handleSpeakClick}
onMouseEnter={() => setIsSpeakHovered(true)}
onMouseLeave={() => setIsSpeakHovered(false)}
/>
) : (
<Speaker className="fill-none" />
<Speaker
className="cursor-pointer fill-none"
onClick={handleSpeakClick}
onMouseEnter={() => setIsSpeakHovered(true)}
onMouseLeave={() => setIsSpeakHovered(false)}
/>
)}
</button>
</div>
);
}

View File

@@ -23,7 +23,6 @@ export type InputProps = {
e: React.KeyboardEvent<HTMLTextAreaElement | HTMLInputElement>,
) => void;
leftIcon?: React.ReactNode;
edgeRoundness?: string;
};
export type MermaidRendererProps = {

View File

@@ -130,7 +130,7 @@ export default function Conversation() {
}),
);
handleQuestion({
question: question,
question: queries[queries.length - 1].prompt,
isRetry: true,
});
} else {

View File

@@ -560,47 +560,37 @@ const ConversationBubble = forwardRef<
{handleFeedback && (
<>
<div className="relative mr-2 flex items-center justify-center">
<button
type="button"
className="bg-white-3000 dark:hover:bg-purple-taupe flex cursor-pointer items-center justify-center rounded-full p-2 hover:bg-[#EEEEEE] dark:bg-transparent"
onClick={() => {
if (feedback === 'LIKE') {
handleFeedback?.(null);
} else {
handleFeedback?.('LIKE');
}
}}
aria-label={
feedback === 'LIKE' ? 'Remove like' : 'Like'
}
>
<Like
className={`${feedback === 'LIKE' ? 'fill-white-3000 stroke-purple-30 dark:fill-transparent' : 'stroke-gray-4000 fill-none'}`}
></Like>
</button>
<div>
<div className="bg-white-3000 dark:hover:bg-purple-taupe flex items-center justify-center rounded-full p-2 hover:bg-[#EEEEEE] dark:bg-transparent">
<Like
className={`${feedback === 'LIKE' ? 'fill-white-3000 stroke-purple-30 dark:fill-transparent' : 'stroke-gray-4000 fill-none'} cursor-pointer`}
onClick={() => {
if (feedback === 'LIKE') {
handleFeedback?.(null);
} else {
handleFeedback?.('LIKE');
}
}}
></Like>
</div>
</div>
</div>
<div className="relative mr-2 flex items-center justify-center">
<button
type="button"
className="bg-white-3000 dark:hover:bg-purple-taupe flex cursor-pointer items-center justify-center rounded-full p-2 hover:bg-[#EEEEEE] dark:bg-transparent"
onClick={() => {
if (feedback === 'DISLIKE') {
handleFeedback?.(null);
} else {
handleFeedback?.('DISLIKE');
}
}}
aria-label={
feedback === 'DISLIKE'
? 'Remove dislike'
: 'Dislike'
}
>
<Dislike
className={`${feedback === 'DISLIKE' ? 'fill-white-3000 stroke-red-2000 dark:fill-transparent' : 'stroke-gray-4000 fill-none'}`}
></Dislike>
</button>
<div>
<div className="bg-white-3000 dark:hover:bg-purple-taupe flex items-center justify-center rounded-full p-2 hover:bg-[#EEEEEE] dark:bg-transparent">
<Dislike
className={`${feedback === 'DISLIKE' ? 'fill-white-3000 stroke-red-2000 dark:fill-transparent' : 'stroke-gray-4000 fill-none'} cursor-pointer`}
onClick={() => {
if (feedback === 'DISLIKE') {
handleFeedback?.(null);
} else {
handleFeedback?.('DISLIKE');
}
}}
></Dislike>
</div>
</div>
</div>
</>
)}
@@ -803,7 +793,6 @@ function Thought({
thought: string;
preprocessLaTeX: (content: string) => string;
}) {
const { t } = useTranslation();
const [isDarkTheme] = useDarkTheme();
const [isThoughtOpen, setIsThoughtOpen] = useState(true);
@@ -824,9 +813,7 @@ function Thought({
className="flex flex-row items-center gap-2"
onClick={() => setIsThoughtOpen(!isThoughtOpen)}
>
<p className="text-base font-semibold">
{t('conversation.reasoning')}
</p>
<p className="text-base font-semibold">Reasoning</p>
<img
src={ChevronDown}
alt="ChevronDown"

View File

@@ -7,7 +7,6 @@ import {
useState,
} from 'react';
import { useTranslation } from 'react-i18next';
import { useSelector } from 'react-redux';
import ArrowDown from '../assets/arrow-down.svg';
import RetryIcon from '../components/RetryIcon';
@@ -15,7 +14,6 @@ import Hero from '../Hero';
import { useDarkTheme } from '../hooks';
import ConversationBubble from './ConversationBubble';
import { FEEDBACK, Query, Status } from './conversationModels';
import { selectConversationId } from '../preferences/preferenceSlice';
const SCROLL_THRESHOLD = 10;
const LAST_BUBBLE_MARGIN = 'mb-32';
@@ -52,7 +50,6 @@ export default function ConversationMessages({
}: ConversationMessagesProps) {
const [isDarkTheme] = useDarkTheme();
const { t } = useTranslation();
const conversationId = useSelector(selectConversationId);
const conversationRef = useRef<HTMLDivElement>(null);
const [hasScrolledToLast, setHasScrolledToLast] = useState(true);
@@ -90,20 +87,15 @@ export default function ConversationMessages({
setHasScrolledToLast(isAtBottom);
}, [setHasScrolledToLast]);
const lastQuery = queries[queries.length - 1];
const lastQueryResponse = lastQuery?.response;
const lastQueryError = lastQuery?.error;
const lastQueryThought = lastQuery?.thought;
useEffect(() => {
if (!userInterruptedScroll) {
scrollConversationToBottom();
}
}, [
queries.length,
lastQueryResponse,
lastQueryError,
lastQueryThought,
queries[queries.length - 1]?.response,
queries[queries.length - 1]?.error,
queries[queries.length - 1]?.thought,
userInterruptedScroll,
scrollConversationToBottom,
]);
@@ -145,7 +137,7 @@ export default function ConversationMessages({
return (
<ConversationBubble
className={bubbleMargin}
key={`${conversationId}-${index}-ANSWER`}
key={`${index}-ANSWER`}
message={query.response}
type={'ANSWER'}
thought={query.thought}
@@ -183,7 +175,7 @@ export default function ConversationMessages({
return (
<ConversationBubble
className={bubbleMargin}
key={`${conversationId}-${index}-ERROR`}
key={`${index}-ERROR`}
message={query.error}
type="ERROR"
retryBtn={retryButton}
@@ -222,10 +214,10 @@ export default function ConversationMessages({
{queries.length > 0 ? (
queries.map((query, index) => (
<Fragment key={`${conversationId}-${index}-query-fragment`}>
<Fragment key={`${index}-query-fragment`}>
<ConversationBubble
className={index === 0 ? FIRST_QUESTION_BUBBLE_MARGIN_TOP : ''}
key={`${conversationId}-${index}-QUESTION`}
key={`${index}-QUESTION`}
message={query.prompt}
type="QUESTION"
handleUpdatedQuestionSubmission={handleQuestionSubmission}

View File

@@ -370,10 +370,7 @@ export const conversationSlice = createSlice({
return state;
}
state.status = 'failed';
if (state.queries.length > 0) {
state.queries[state.queries.length - 1].error =
'Something went wrong';
}
state.queries[state.queries.length - 1].error = 'Something went wrong';
});
},
});

View File

@@ -225,16 +225,6 @@ layer(base);
}
@layer base {
.prompt-variable-highlight {
background-color: rgba(106, 77, 244, 0.18);
border-radius: 0.375rem;
padding: 0 0.25rem;
}
.dark .prompt-variable-highlight {
background-color: rgba(106, 77, 244, 0.32);
}
/*! normalize.css v8.0.1 | MIT License | github.com/necolas/normalize.css */
/* Document

View File

@@ -201,15 +201,6 @@
"noAuth": "No Authentication",
"oauthInProgress": "Waiting for OAuth completion...",
"oauthCompleted": "OAuth completed successfully",
"authType": "Authentication Type",
"defaultServerName": "My MCP Server",
"authTypes": {
"none": "No Authentication",
"apiKey": "API Key",
"bearer": "Bearer Token",
"oauth": "OAuth",
"basic": "Basic Authentication"
},
"placeholders": {
"serverUrl": "https://api.example.com",
"apiKey": "Your secret API key",
@@ -229,14 +220,10 @@
"testFailed": "Connection test failed",
"saveFailed": "Failed to save MCP server",
"oauthFailed": "OAuth process failed or was cancelled",
"oauthTimeout": "OAuth process timed out, please try again",
"timeoutRange": "Timeout must be between 1 and 300 seconds"
"oauthTimeout": "OAuth process timed out, please try again"
}
}
},
"scrollTabsLeft": "Scroll tabs left",
"tabsAriaLabel": "Settings tabs",
"scrollTabsRight": "Scroll tabs right"
}
},
"modals": {
"uploadDoc": {
@@ -356,8 +343,7 @@
"disclaimer": "This is the only time your key will be shown.",
"copy": "Copy",
"copied": "Copied",
"confirm": "I saved the Key",
"apiKeyLabel": "API Key"
"confirm": "I saved the Key"
},
"deleteConv": {
"confirm": "Are you sure you want to delete all the conversations?",
@@ -375,8 +361,7 @@
"apiKeyLabel": "API Key / OAuth",
"apiKeyPlaceholder": "Enter API Key / OAuth",
"addButton": "Add Tool",
"closeButton": "Close",
"customNamePlaceholder": "Enter custom name (optional)"
"closeButton": "Close"
},
"prompts": {
"addPrompt": "Add Prompt",
@@ -386,32 +371,8 @@
"promptName": "Prompt Name",
"promptText": "Prompt Text",
"save": "Save",
"cancel": "Cancel",
"nameExists": "Name already exists",
"deleteConfirmation": "Are you sure you want to delete the prompt '{{name}}'?",
"placeholderText": "Type your prompt text here...",
"addExamplePlaceholder": "Please summarize this text:",
"variablesLabel": "Variables",
"variablesSubtext": "Click To Insert Into Prompt",
"variablesDescription": "Click to insert into prompt",
"systemVariables": "Click to insert into prompt",
"toolVariables": "Tool Variables",
"systemVariablesDropdownLabel": "System Variables",
"systemVariableOptions": {
"sourceContent": "Sources content",
"sourceSummaries": "Alias for content (backward compatible)",
"sourceDocuments": "Document objects list",
"sourceCount": "Number of retrieved documents",
"systemDate": "Current date (YYYY-MM-DD)",
"systemTime": "Current time (HH:MM:SS)",
"systemTimestamp": "ISO 8601 timestamp",
"systemRequestId": "Unique request identifier",
"systemUserId": "Current user ID"
},
"learnAboutPrompts": "Learn about Prompts →",
"publicPromptEditDisabled": "Public prompts cannot be edited",
"promptTypePublic": "public",
"promptTypePrivate": "private"
"deleteConfirmation": "Are you sure you want to delete the prompt '{{name}}'?"
},
"chunk": {
"add": "Add Chunk",
@@ -425,22 +386,6 @@
"cancel": "Cancel",
"delete": "Delete",
"deleteConfirmation": "Are you sure you want to delete this chunk?"
},
"addAction": {
"title": "New Action",
"actionNamePlaceholder": "Action Name",
"invalidFormat": "Invalid function name format. Use only letters, numbers, underscores, and hyphens.",
"formatHelp": "Use only letters, numbers, underscores, and hyphens (e.g., `get_data`, `send_report`, etc.)",
"addButton": "Add"
},
"agentDetails": {
"title": "Access Details",
"publicLink": "Public Link",
"apiKey": "API Key",
"webhookUrl": "Webhook URL",
"generate": "Generate",
"test": "Test",
"learnMore": "Learn more"
}
},
"sharedConv": {
@@ -483,153 +428,6 @@
"attach": "Attach",
"remove": "Remove attachment"
},
"retry": "Retry",
"reasoning": "Reasoning"
},
"agents": {
"title": "Agents",
"description": "Discover and create custom versions of DocsGPT that combine instructions, extra knowledge, and any combination of skills",
"newAgent": "New Agent",
"backToAll": "Back to all agents",
"sections": {
"template": {
"title": "By DocsGPT",
"description": "Agents provided by DocsGPT",
"emptyState": "No template agents found."
},
"user": {
"title": "By me",
"description": "Agents created or published by you",
"emptyState": "You don't have any created agents yet."
},
"shared": {
"title": "Shared with me",
"description": "Agents imported by using a public link",
"emptyState": "No shared agents found."
}
},
"form": {
"headings": {
"new": "New Agent",
"edit": "Edit Agent",
"draft": "New Agent (Draft)"
},
"buttons": {
"publish": "Publish",
"save": "Save",
"saveDraft": "Save Draft",
"cancel": "Cancel",
"delete": "Delete",
"logs": "Logs",
"accessDetails": "Access Details",
"add": "Add"
},
"sections": {
"meta": "Meta",
"source": "Source",
"prompt": "Prompt",
"tools": "Tools",
"agentType": "Agent type",
"advanced": "Advanced",
"preview": "Preview"
},
"placeholders": {
"agentName": "Agent name",
"describeAgent": "Describe your agent",
"selectSources": "Select sources",
"chunksPerQuery": "Chunks per query",
"selectType": "Select type",
"selectTools": "Select tools",
"enterTokenLimit": "Enter token limit",
"enterRequestLimit": "Enter request limit"
},
"sourcePopup": {
"title": "Select Sources",
"searchPlaceholder": "Search sources...",
"noOptionsMessage": "No sources available"
},
"toolsPopup": {
"title": "Select Tools",
"searchPlaceholder": "Search tools...",
"noOptionsMessage": "No tools available"
},
"upload": {
"clickToUpload": "Click to upload",
"dragAndDrop": " or drag and drop"
},
"agentTypes": {
"classic": "Classic",
"react": "ReAct"
},
"advanced": {
"jsonSchema": "JSON response schema",
"jsonSchemaDescription": "Define a JSON schema to enforce structured output format",
"validJson": "Valid JSON",
"invalidJson": "Invalid JSON - fix to enable saving",
"tokenLimiting": "Token limiting",
"tokenLimitingDescription": "Limit daily total tokens that can be used by this agent",
"requestLimiting": "Request limiting",
"requestLimitingDescription": "Limit daily total requests that can be made to this agent"
},
"preview": {
"publishedPreview": "Published agents can be previewed here"
},
"externalKb": "External KB"
},
"logs": {
"title": "Agent Logs",
"lastUsedAt": "Last used at",
"noUsageHistory": "No usage history",
"tableHeader": "Agent endpoint logs"
},
"shared": {
"notFound": "No agent found. Please ensure the agent is shared."
},
"preview": {
"testMessage": "Test your agent here. Published agents can be used in conversations."
},
"deleteConfirmation": "Are you sure you want to delete this agent?"
},
"components": {
"fileUpload": {
"clickToUpload": "Click to upload or drag and drop",
"dropFiles": "Drop the files here",
"fileTypes": "PNG, JPG, JPEG up to",
"sizeLimitUnit": "MB",
"fileSizeError": "File exceeds {{size}}MB limit"
}
},
"pageNotFound": {
"title": "404",
"message": "The page you are looking for does not exist.",
"goHome": "Go Back Home"
},
"filePicker": {
"searchPlaceholder": "Search files and folders...",
"itemsSelected": "{{count}} selected",
"name": "Name",
"lastModified": "Last Modified",
"size": "Size"
},
"actionButtons": {
"openNewChat": "Open New Chat",
"share": "Share"
},
"mermaid": {
"downloadOptions": "Download options",
"viewCode": "View Code",
"decreaseZoom": "Decrease zoom",
"resetZoom": "Reset zoom",
"increaseZoom": "Increase zoom"
},
"navigation": {
"agents": "Agents"
},
"notification": {
"ariaLabel": "Notification",
"closeAriaLabel": "Close notification"
},
"prompts": {
"textAriaLabel": "Prompt Text"
"retry": "Retry"
}
}

View File

@@ -185,58 +185,8 @@
"fieldDescription": "Descripción del campo",
"add": "Añadir",
"cancel": "Cancelar",
"addNew": "Añadir Nuevo",
"mcp": {
"addServer": "Add MCP Server",
"editServer": "Edit Server",
"serverName": "Server Name",
"serverUrl": "Server URL",
"headerName": "Header Name",
"timeout": "Timeout (seconds)",
"testConnection": "Test Connection",
"testing": "Testing",
"saving": "Saving",
"save": "Save",
"cancel": "Cancel",
"noAuth": "No Authentication",
"oauthInProgress": "Waiting for OAuth completion...",
"oauthCompleted": "OAuth completed successfully",
"authType": "Authentication Type",
"defaultServerName": "My MCP Server",
"authTypes": {
"none": "No Authentication",
"apiKey": "API Key",
"bearer": "Bearer Token",
"oauth": "OAuth",
"basic": "Basic Authentication"
},
"placeholders": {
"serverUrl": "https://api.example.com",
"apiKey": "Your secret API key",
"bearerToken": "Your secret token",
"username": "Your username",
"password": "Your password",
"oauthScopes": "OAuth scopes (comma separated)"
},
"errors": {
"nameRequired": "Server name is required",
"urlRequired": "Server URL is required",
"invalidUrl": "Please enter a valid URL",
"apiKeyRequired": "API key is required",
"tokenRequired": "Bearer token is required",
"usernameRequired": "Username is required",
"passwordRequired": "Password is required",
"testFailed": "Connection test failed",
"saveFailed": "Failed to save MCP server",
"oauthFailed": "OAuth process failed or was cancelled",
"oauthTimeout": "OAuth process timed out, please try again",
"timeoutRange": "Timeout must be between 1 and 300 seconds"
}
}
},
"scrollTabsLeft": "Desplazar pestañas a la izquierda",
"tabsAriaLabel": "Pestañas de configuración",
"scrollTabsRight": "Desplazar pestañas a la derecha"
"addNew": "Añadir Nuevo"
}
},
"modals": {
"uploadDoc": {
@@ -356,8 +306,7 @@
"disclaimer": "Esta es la única vez que se mostrará tu clave.",
"copy": "Copiar",
"copied": "Copiado",
"confirm": "He guardado la Clave",
"apiKeyLabel": "API Key"
"confirm": "He guardado la Clave"
},
"deleteConv": {
"confirm": "¿Estás seguro de que deseas eliminar todas las conversaciones?",
@@ -375,8 +324,7 @@
"apiKeyLabel": "Clave API / OAuth",
"apiKeyPlaceholder": "Ingrese la Clave API / OAuth",
"addButton": "Agregar Herramienta",
"closeButton": "Cerrar",
"customNamePlaceholder": "Enter custom name (optional)"
"closeButton": "Cerrar"
},
"prompts": {
"addPrompt": "Agregar Prompt",
@@ -386,32 +334,8 @@
"promptName": "Nombre del Prompt",
"promptText": "Texto del Prompt",
"save": "Guardar",
"cancel": "Cancelar",
"nameExists": "El nombre ya existe",
"deleteConfirmation": "¿Estás seguro de que deseas eliminar el prompt '{{name}}'?",
"placeholderText": "Escribe tu texto de prompt aquí...",
"addExamplePlaceholder": "Por favor, resume este texto:",
"variablesLabel": "Variables",
"variablesSubtext": "Haz clic para insertar en el prompt",
"variablesDescription": "Haz clic para insertar en el prompt",
"systemVariables": "Variables del sistema",
"toolVariables": "Variables de herramientas",
"systemVariablesDropdownLabel": "Variables del sistema",
"systemVariableOptions": {
"sourceContent": "Contenido de las fuentes",
"sourceSummaries": "Alias del contenido (compatibilidad retroactiva)",
"sourceDocuments": "Lista de objetos de documentos",
"sourceCount": "Número de documentos recuperados",
"systemDate": "Fecha actual (YYYY-MM-DD)",
"systemTime": "Hora actual (HH:MM:SS)",
"systemTimestamp": "Marca de tiempo ISO 8601",
"systemRequestId": "Identificador único de solicitud",
"systemUserId": "ID del usuario actual"
},
"learnAboutPrompts": "Aprende sobre los Prompts →",
"publicPromptEditDisabled": "Los prompts públicos no se pueden editar",
"promptTypePublic": "público",
"promptTypePrivate": "privado"
"deleteConfirmation": "¿Estás seguro de que deseas eliminar el prompt '{{name}}'?"
},
"chunk": {
"add": "Agregar Fragmento",
@@ -425,22 +349,6 @@
"cancel": "Cancelar",
"delete": "Eliminar",
"deleteConfirmation": "¿Estás seguro de que deseas eliminar este fragmento?"
},
"addAction": {
"title": "New Action",
"actionNamePlaceholder": "Action Name",
"invalidFormat": "Invalid function name format. Use only letters, numbers, underscores, and hyphens.",
"formatHelp": "Use only letters, numbers, underscores, and hyphens (e.g., `get_data`, `send_report`, etc.)",
"addButton": "Add"
},
"agentDetails": {
"title": "Access Details",
"publicLink": "Public Link",
"apiKey": "API Key",
"webhookUrl": "Webhook URL",
"generate": "Generate",
"test": "Test",
"learnMore": "Learn more"
}
},
"sharedConv": {
@@ -483,153 +391,6 @@
"attach": "Adjuntar",
"remove": "Eliminar adjunto"
},
"retry": "Reintentar",
"reasoning": "Razonamiento"
},
"agents": {
"title": "Agentes",
"description": "Descubre y crea versiones personalizadas de DocsGPT que combinan instrucciones, conocimiento adicional y cualquier combinación de habilidades",
"newAgent": "Nuevo Agente",
"backToAll": "Volver a todos los agentes",
"sections": {
"template": {
"title": "Por DocsGPT",
"description": "Agentes proporcionados por DocsGPT",
"emptyState": "No se encontraron agentes de plantilla."
},
"user": {
"title": "Por mí",
"description": "Agentes creados o publicados por ti",
"emptyState": "Aún no tienes agentes creados."
},
"shared": {
"title": "Compartidos conmigo",
"description": "Agentes importados mediante un enlace público",
"emptyState": "No se encontraron agentes compartidos."
}
},
"form": {
"headings": {
"new": "Nuevo Agente",
"edit": "Editar Agente",
"draft": "Nuevo Agente (Borrador)"
},
"buttons": {
"publish": "Publicar",
"save": "Guardar",
"saveDraft": "Guardar Borrador",
"cancel": "Cancelar",
"delete": "Eliminar",
"logs": "Registros",
"accessDetails": "Detalles de Acceso",
"add": "Agregar"
},
"sections": {
"meta": "Meta",
"source": "Fuente",
"prompt": "Prompt",
"tools": "Herramientas",
"agentType": "Tipo de agente",
"advanced": "Avanzado",
"preview": "Vista previa"
},
"placeholders": {
"agentName": "Nombre del agente",
"describeAgent": "Describe tu agente",
"selectSources": "Seleccionar fuentes",
"chunksPerQuery": "Fragmentos por consulta",
"selectType": "Seleccionar tipo",
"selectTools": "Seleccionar herramientas",
"enterTokenLimit": "Ingresar límite de tokens",
"enterRequestLimit": "Ingresar límite de solicitudes"
},
"sourcePopup": {
"title": "Seleccionar Fuentes",
"searchPlaceholder": "Buscar fuentes...",
"noOptionsMessage": "No hay fuentes disponibles"
},
"toolsPopup": {
"title": "Seleccionar Herramientas",
"searchPlaceholder": "Buscar herramientas...",
"noOptionsMessage": "No hay herramientas disponibles"
},
"upload": {
"clickToUpload": "Haz clic para subir",
"dragAndDrop": " o arrastra y suelta"
},
"agentTypes": {
"classic": "Clásico",
"react": "ReAct"
},
"advanced": {
"jsonSchema": "Esquema de respuesta JSON",
"jsonSchemaDescription": "Define un esquema JSON para aplicar formato de salida estructurado",
"validJson": "JSON válido",
"invalidJson": "JSON inválido - corrige para habilitar el guardado",
"tokenLimiting": "Límite de tokens",
"tokenLimitingDescription": "Limita el total diario de tokens que puede usar este agente",
"requestLimiting": "Límite de solicitudes",
"requestLimitingDescription": "Limita el total diario de solicitudes que se pueden hacer a este agente"
},
"preview": {
"publishedPreview": "Los agentes publicados se pueden previsualizar aquí"
},
"externalKb": "KB Externa"
},
"logs": {
"title": "Registros del Agente",
"lastUsedAt": "Último uso",
"noUsageHistory": "Sin historial de uso",
"tableHeader": "Registros del endpoint del agente"
},
"shared": {
"notFound": "No se encontró el agente. Asegúrate de que el agente esté compartido."
},
"preview": {
"testMessage": "Prueba tu agente aquí. Los agentes publicados se pueden usar en conversaciones."
},
"deleteConfirmation": "¿Estás seguro de que quieres eliminar este agente?"
},
"components": {
"fileUpload": {
"clickToUpload": "Click to upload or drag and drop",
"dropFiles": "Drop the files here",
"fileTypes": "PNG, JPG, JPEG up to",
"sizeLimitUnit": "MB",
"fileSizeError": "File exceeds {{size}}MB limit"
}
},
"pageNotFound": {
"title": "404",
"message": "The page you are looking for does not exist.",
"goHome": "Go Back Home"
},
"filePicker": {
"searchPlaceholder": "Buscar archivos y carpetas...",
"itemsSelected": "{{count}} seleccionados",
"name": "Nombre",
"lastModified": "Última modificación",
"size": "Tamaño"
},
"actionButtons": {
"openNewChat": "Abrir nuevo chat",
"share": "Compartir"
},
"mermaid": {
"downloadOptions": "Opciones de descarga",
"viewCode": "Ver código",
"decreaseZoom": "Reducir zoom",
"resetZoom": "Restablecer zoom",
"increaseZoom": "Aumentar zoom"
},
"navigation": {
"agents": "Agentes"
},
"notification": {
"ariaLabel": "Notificación",
"closeAriaLabel": "Cerrar notificación"
},
"prompts": {
"textAriaLabel": "Texto del prompt"
"retry": "Reintentar"
}
}

View File

@@ -185,58 +185,8 @@
"cancel": "キャンセル",
"addNew": "新規追加",
"name": "名前",
"type": "タイプ",
"mcp": {
"addServer": "Add MCP Server",
"editServer": "Edit Server",
"serverName": "Server Name",
"serverUrl": "Server URL",
"headerName": "Header Name",
"timeout": "Timeout (seconds)",
"testConnection": "Test Connection",
"testing": "Testing",
"saving": "Saving",
"save": "Save",
"cancel": "Cancel",
"noAuth": "No Authentication",
"oauthInProgress": "Waiting for OAuth completion...",
"oauthCompleted": "OAuth completed successfully",
"authType": "Authentication Type",
"defaultServerName": "My MCP Server",
"authTypes": {
"none": "No Authentication",
"apiKey": "API Key",
"bearer": "Bearer Token",
"oauth": "OAuth",
"basic": "Basic Authentication"
},
"placeholders": {
"serverUrl": "https://api.example.com",
"apiKey": "Your secret API key",
"bearerToken": "Your secret token",
"username": "Your username",
"password": "Your password",
"oauthScopes": "OAuth scopes (comma separated)"
},
"errors": {
"nameRequired": "Server name is required",
"urlRequired": "Server URL is required",
"invalidUrl": "Please enter a valid URL",
"apiKeyRequired": "API key is required",
"tokenRequired": "Bearer token is required",
"usernameRequired": "Username is required",
"passwordRequired": "Password is required",
"testFailed": "Connection test failed",
"saveFailed": "Failed to save MCP server",
"oauthFailed": "OAuth process failed or was cancelled",
"oauthTimeout": "OAuth process timed out, please try again",
"timeoutRange": "Timeout must be between 1 and 300 seconds"
}
}
},
"scrollTabsLeft": "タブを左にスクロール",
"tabsAriaLabel": "設定タブ",
"scrollTabsRight": "タブを右にスクロール"
"type": "タイプ"
}
},
"modals": {
"uploadDoc": {
@@ -356,8 +306,7 @@
"disclaimer": "キーが表示されるのはこのときだけです。",
"copy": "コピー",
"copied": "コピーしました",
"confirm": "キーを保存しました",
"apiKeyLabel": "API Key"
"confirm": "キーを保存しました"
},
"deleteConv": {
"confirm": "すべての会話を削除してもよろしいですか?",
@@ -375,43 +324,18 @@
"apiKeyLabel": "APIキー / OAuth",
"apiKeyPlaceholder": "APIキー / OAuthを入力してください",
"addButton": "ツールを追加",
"closeButton": "閉じる",
"customNamePlaceholder": "Enter custom name (optional)"
"closeButton": "閉じる"
},
"prompts": {
"addPrompt": "プロンプトを追加",
"addDescription": "カスタムプロンプトを追加して DocsGPT に保存します",
"addDescription": "カスタムプロンプトを追加してDocsGPTに保存",
"editPrompt": "プロンプトを編集",
"editDescription": "カスタムプロンプトを編集して DocsGPT に保存します",
"editDescription": "カスタムプロンプトを編集してDocsGPTに保存",
"promptName": "プロンプト名",
"promptText": "プロンプトテキスト",
"promptText": "プロンプトテキスト",
"save": "保存",
"cancel": "キャンセル",
"nameExists": "この名前はすでに存在します",
"deleteConfirmation": "プロンプト『{{name}}』を削除してもよろしいですか?",
"placeholderText": "ここにプロンプトのテキストを入力してください…",
"addExamplePlaceholder": "このテキストを要約してください:",
"variablesLabel": "変数",
"variablesSubtext": "クリックしてプロンプトに挿入",
"variablesDescription": "クリックしてプロンプトに挿入",
"systemVariables": "システム変数",
"toolVariables": "ツール変数",
"systemVariablesDropdownLabel": "System Variables",
"systemVariableOptions": {
"sourceContent": "Sources content",
"sourceSummaries": "Alias for content (backward compatible)",
"sourceDocuments": "Document objects list",
"sourceCount": "Number of retrieved documents",
"systemDate": "Current date (YYYY-MM-DD)",
"systemTime": "Current time (HH:MM:SS)",
"systemTimestamp": "ISO 8601 timestamp",
"systemRequestId": "Unique request identifier",
"systemUserId": "Current user ID"
},
"learnAboutPrompts": "プロンプトについて学ぶ →",
"publicPromptEditDisabled": "公開プロンプトは編集できません",
"promptTypePublic": "公開",
"promptTypePrivate": "非公開"
"nameExists": "名前が既に存在します",
"deleteConfirmation": "プロンプト「{{name}}」を削除してもよろしいですか?"
},
"chunk": {
"add": "チャンクを追加",
@@ -425,22 +349,6 @@
"cancel": "キャンセル",
"delete": "削除",
"deleteConfirmation": "このチャンクを削除してもよろしいですか?"
},
"addAction": {
"title": "New Action",
"actionNamePlaceholder": "Action Name",
"invalidFormat": "Invalid function name format. Use only letters, numbers, underscores, and hyphens.",
"formatHelp": "Use only letters, numbers, underscores, and hyphens (e.g., `get_data`, `send_report`, etc.)",
"addButton": "Add"
},
"agentDetails": {
"title": "Access Details",
"publicLink": "Public Link",
"apiKey": "API Key",
"webhookUrl": "Webhook URL",
"generate": "Generate",
"test": "Test",
"learnMore": "Learn more"
}
},
"sharedConv": {
@@ -483,153 +391,6 @@
"attach": "添付",
"remove": "添付ファイルを削除"
},
"retry": "再試行",
"reasoning": "推論"
},
"agents": {
"title": "エージェント",
"description": "指示、追加知識、スキルの組み合わせを含むDocsGPTのカスタムバージョンを発見して作成します",
"newAgent": "新しいエージェント",
"backToAll": "すべてのエージェントに戻る",
"sections": {
"template": {
"title": "DocsGPT提供",
"description": "DocsGPTが提供するエージェント",
"emptyState": "テンプレートエージェントが見つかりません。"
},
"user": {
"title": "自分のエージェント",
"description": "あなたが作成または公開したエージェント",
"emptyState": "まだ作成されたエージェントがありません。"
},
"shared": {
"title": "共有されたエージェント",
"description": "公開リンクを使用してインポートされたエージェント",
"emptyState": "共有エージェントが見つかりません。"
}
},
"form": {
"headings": {
"new": "新しいエージェント",
"edit": "エージェントを編集",
"draft": "新しいエージェント(下書き)"
},
"buttons": {
"publish": "公開",
"save": "保存",
"saveDraft": "下書きを保存",
"cancel": "キャンセル",
"delete": "削除",
"logs": "ログ",
"accessDetails": "アクセス詳細",
"add": "追加"
},
"sections": {
"meta": "メタ",
"source": "ソース",
"prompt": "プロンプト",
"tools": "ツール",
"agentType": "エージェントタイプ",
"advanced": "詳細設定",
"preview": "プレビュー"
},
"placeholders": {
"agentName": "エージェント名",
"describeAgent": "エージェントを説明してください",
"selectSources": "ソースを選択",
"chunksPerQuery": "クエリごとのチャンク数",
"selectType": "タイプを選択",
"selectTools": "ツールを選択",
"enterTokenLimit": "トークン制限を入力",
"enterRequestLimit": "リクエスト制限を入力"
},
"sourcePopup": {
"title": "ソースを選択",
"searchPlaceholder": "ソースを検索...",
"noOptionsMessage": "利用可能なソースがありません"
},
"toolsPopup": {
"title": "ツールを選択",
"searchPlaceholder": "ツールを検索...",
"noOptionsMessage": "利用可能なツールがありません"
},
"upload": {
"clickToUpload": "クリックしてアップロード",
"dragAndDrop": " またはドラッグ&ドロップ"
},
"agentTypes": {
"classic": "クラシック",
"react": "ReAct"
},
"advanced": {
"jsonSchema": "JSON応答スキーマ",
"jsonSchemaDescription": "構造化された出力形式を適用するためのJSONスキーマを定義します",
"validJson": "有効なJSON",
"invalidJson": "無効なJSON - 保存を有効にするには修正してください",
"tokenLimiting": "トークン制限",
"tokenLimitingDescription": "このエージェントが使用できる1日の合計トークン数を制限します",
"requestLimiting": "リクエスト制限",
"requestLimitingDescription": "このエージェントに対して行える1日の合計リクエスト数を制限します"
},
"preview": {
"publishedPreview": "公開されたエージェントはここでプレビューできます"
},
"externalKb": "外部KB"
},
"logs": {
"title": "エージェントログ",
"lastUsedAt": "最終使用日時",
"noUsageHistory": "使用履歴がありません",
"tableHeader": "エージェントエンドポイントログ"
},
"shared": {
"notFound": "エージェントが見つかりません。エージェントが共有されていることを確認してください。"
},
"preview": {
"testMessage": "ここでエージェントをテストできます。公開されたエージェントは会話で使用できます。"
},
"deleteConfirmation": "このエージェントを削除してもよろしいですか?"
},
"components": {
"fileUpload": {
"clickToUpload": "Click to upload or drag and drop",
"dropFiles": "Drop the files here",
"fileTypes": "PNG, JPG, JPEG up to",
"sizeLimitUnit": "MB",
"fileSizeError": "File exceeds {{size}}MB limit"
}
},
"pageNotFound": {
"title": "404",
"message": "The page you are looking for does not exist.",
"goHome": "Go Back Home"
},
"filePicker": {
"searchPlaceholder": "ファイルとフォルダを検索...",
"itemsSelected": "{{count}} 件選択済み",
"name": "名前",
"lastModified": "最終更新日",
"size": "サイズ"
},
"actionButtons": {
"openNewChat": "新しいチャットを開く",
"share": "共有"
},
"mermaid": {
"downloadOptions": "ダウンロードオプション",
"viewCode": "コードを表示",
"decreaseZoom": "ズームアウト",
"resetZoom": "ズームをリセット",
"increaseZoom": "ズームイン"
},
"navigation": {
"agents": "エージェント"
},
"notification": {
"ariaLabel": "通知",
"closeAriaLabel": "通知を閉じる"
},
"prompts": {
"textAriaLabel": "プロンプトテキスト"
"retry": "再試行"
}
}

View File

@@ -185,58 +185,8 @@
"cancel": "Отмена",
"addNew": "Добавить новое",
"name": "Имя",
"type": "Тип",
"mcp": {
"addServer": "Add MCP Server",
"editServer": "Edit Server",
"serverName": "Server Name",
"serverUrl": "Server URL",
"headerName": "Header Name",
"timeout": "Timeout (seconds)",
"testConnection": "Test Connection",
"testing": "Testing",
"saving": "Saving",
"save": "Save",
"cancel": "Cancel",
"noAuth": "No Authentication",
"oauthInProgress": "Waiting for OAuth completion...",
"oauthCompleted": "OAuth completed successfully",
"authType": "Authentication Type",
"defaultServerName": "My MCP Server",
"authTypes": {
"none": "No Authentication",
"apiKey": "API Key",
"bearer": "Bearer Token",
"oauth": "OAuth",
"basic": "Basic Authentication"
},
"placeholders": {
"serverUrl": "https://api.example.com",
"apiKey": "Your secret API key",
"bearerToken": "Your secret token",
"username": "Your username",
"password": "Your password",
"oauthScopes": "OAuth scopes (comma separated)"
},
"errors": {
"nameRequired": "Server name is required",
"urlRequired": "Server URL is required",
"invalidUrl": "Please enter a valid URL",
"apiKeyRequired": "API key is required",
"tokenRequired": "Bearer token is required",
"usernameRequired": "Username is required",
"passwordRequired": "Password is required",
"testFailed": "Connection test failed",
"saveFailed": "Failed to save MCP server",
"oauthFailed": "OAuth process failed or was cancelled",
"oauthTimeout": "OAuth process timed out, please try again",
"timeoutRange": "Timeout must be between 1 and 300 seconds"
}
}
},
"scrollTabsLeft": "Прокрутить вкладки влево",
"tabsAriaLabel": "Вкладки настроек",
"scrollTabsRight": "Прокрутить вкладки вправо"
"type": "Тип"
}
},
"modals": {
"uploadDoc": {
@@ -356,8 +306,7 @@
"disclaimer": "Ваш ключ будет показан только один раз.",
"copy": "Копировать",
"copied": "Скопировано",
"confirm": "Я сохранил ключ",
"apiKeyLabel": "API Key"
"confirm": "Я сохранил ключ"
},
"deleteConv": {
"confirm": "Вы уверены, что хотите удалить все разговоры?",
@@ -375,43 +324,18 @@
"apiKeyLabel": "API ключ / OAuth",
"apiKeyPlaceholder": "Введите API ключ / OAuth",
"addButton": "Добавить инструмент",
"closeButton": "Закрыть",
"customNamePlaceholder": "Enter custom name (optional)"
"closeButton": "Закрыть"
},
"prompts": {
"addPrompt": "Добавить промпт",
"addDescription": "Добавьте свой собственный промпт и сохраните его в DocsGPT",
"editPrompt": "Редактировать промпт",
"editDescription": "Отредактируйте свой промпт и сохраните его в DocsGPT",
"promptName": "Название промпта",
"promptText": "Текст промпта",
"addPrompt": "Добавить подсказку",
"addDescription": "Добавить вашу пользовательскую подсказку и сохранить её в DocsGPT",
"editPrompt": "Редактировать подсказку",
"editDescription": "Редактировать вашу пользовательскую подсказку и сохранить её в DocsGPT",
"promptName": "Название подсказки",
"promptText": "Текст подсказки",
"save": "Сохранить",
"cancel": "Отмена",
"nameExists": "Имя уже существует",
"deleteConfirmation": "Вы уверены, что хотите удалить промпт «{{name}}»?",
"placeholderText": "Введите текст вашего промпта здесь...",
"addExamplePlaceholder": "Пожалуйста, кратко изложите этот текст:",
"variablesLabel": "Переменные",
"variablesSubtext": "Нажмите, чтобы вставить в промпт",
"variablesDescription": "Нажмите, чтобы вставить в промпт",
"systemVariables": "Системные переменные",
"toolVariables": "Переменные инструментов",
"systemVariablesDropdownLabel": "Системные переменные",
"systemVariableOptions": {
"sourceContent": "Содержимое источников",
"sourceSummaries": "Псевдоним содержимого (обратная совместимость)",
"sourceDocuments": "Список объектов документов",
"sourceCount": "Количество полученных документов",
"systemDate": "Текущая дата (ГГГГ-ММ-ДД)",
"systemTime": "Текущее время (ЧЧ:ММ:СС)",
"systemTimestamp": "Отметка времени ISO 8601",
"systemRequestId": "Уникальный идентификатор запроса",
"systemUserId": "Идентификатор текущего пользователя"
},
"learnAboutPrompts": "Узнать о промптах →",
"publicPromptEditDisabled": "Публичные промпты нельзя редактировать",
"promptTypePublic": "публичный",
"promptTypePrivate": "приватный"
"nameExists": "Название уже существует",
"deleteConfirmation": "Вы уверены, что хотите удалить подсказку «{{name}}»?"
},
"chunk": {
"add": "Добавить фрагмент",
@@ -425,22 +349,6 @@
"cancel": "Отмена",
"delete": "Удалить",
"deleteConfirmation": "Вы уверены, что хотите удалить этот фрагмент?"
},
"addAction": {
"title": "New Action",
"actionNamePlaceholder": "Action Name",
"invalidFormat": "Invalid function name format. Use only letters, numbers, underscores, and hyphens.",
"formatHelp": "Use only letters, numbers, underscores, and hyphens (e.g., `get_data`, `send_report`, etc.)",
"addButton": "Add"
},
"agentDetails": {
"title": "Access Details",
"publicLink": "Public Link",
"apiKey": "API Key",
"webhookUrl": "Webhook URL",
"generate": "Generate",
"test": "Test",
"learnMore": "Learn more"
}
},
"sharedConv": {
@@ -483,153 +391,6 @@
"attach": "Прикрепить",
"remove": "Удалить вложение"
},
"retry": "Повторить",
"reasoning": "Рассуждение"
},
"agents": {
"title": "Агенты",
"description": "Откройте и создайте пользовательские версии DocsGPT, которые объединяют инструкции, дополнительные знания и любую комбинацию навыков",
"newAgent": "Новый Агент",
"backToAll": "Вернуться ко всем агентам",
"sections": {
"template": {
"title": "От DocsGPT",
"description": "Агенты, предоставленные DocsGPT",
"emptyState": "Шаблонные агенты не найдены."
},
"user": {
"title": "Мои",
"description": "Агенты, созданные или опубликованные вами",
"emptyState": "У вас пока нет созданных агентов."
},
"shared": {
"title": "Поделились со мной",
"description": "Агенты, импортированные по публичной ссылке",
"emptyState": "Общие агенты не найдены."
}
},
"form": {
"headings": {
"new": "Новый Агент",
"edit": "Редактировать Агента",
"draft": "Новый Агент (Черновик)"
},
"buttons": {
"publish": "Опубликовать",
"save": "Сохранить",
"saveDraft": "Сохранить Черновик",
"cancel": "Отмена",
"delete": "Удалить",
"logs": "Логи",
"accessDetails": "Детали Доступа",
"add": "Добавить"
},
"sections": {
"meta": "Мета",
"source": "Источник",
"prompt": "Промпт",
"tools": "Инструменты",
"agentType": "Тип агента",
"advanced": "Расширенные",
"preview": "Предпросмотр"
},
"placeholders": {
"agentName": "Имя агента",
"describeAgent": "Опишите вашего агента",
"selectSources": "Выберите источники",
"chunksPerQuery": "Фрагментов на запрос",
"selectType": "Выберите тип",
"selectTools": "Выберите инструменты",
"enterTokenLimit": "Введите лимит токенов",
"enterRequestLimit": "Введите лимит запросов"
},
"sourcePopup": {
"title": "Выберите Источники",
"searchPlaceholder": "Поиск источников...",
"noOptionsMessage": "Нет доступных источников"
},
"toolsPopup": {
"title": "Выберите Инструменты",
"searchPlaceholder": "Поиск инструментов...",
"noOptionsMessage": "Нет доступных инструментов"
},
"upload": {
"clickToUpload": "Нажмите для загрузки",
"dragAndDrop": " или перетащите"
},
"agentTypes": {
"classic": "Классический",
"react": "ReAct"
},
"advanced": {
"jsonSchema": "Схема ответа JSON",
"jsonSchemaDescription": "Определите схему JSON для применения структурированного формата вывода",
"validJson": "Валидный JSON",
"invalidJson": "Невалидный JSON - исправьте для сохранения",
"tokenLimiting": "Лимит токенов",
"tokenLimitingDescription": "Ограничить ежедневное общее количество токенов, которые может использовать этот агент",
"requestLimiting": "Лимит запросов",
"requestLimitingDescription": "Ограничить ежедневное общее количество запросов, которые можно сделать к этому агенту"
},
"preview": {
"publishedPreview": "Опубликованные агенты можно просмотреть здесь"
},
"externalKb": "Внешняя БЗ"
},
"logs": {
"title": "Логи Агента",
"lastUsedAt": "Последнее использование",
"noUsageHistory": "Нет истории использования",
"tableHeader": "Логи конечной точки агента"
},
"shared": {
"notFound": "Агент не найден. Убедитесь, что агент является общим."
},
"preview": {
"testMessage": "Протестируйте своего агента здесь. Опубликованные агенты можно использовать в разговорах."
},
"deleteConfirmation": "Вы уверены, что хотите удалить этого агента?"
},
"components": {
"fileUpload": {
"clickToUpload": "Click to upload or drag and drop",
"dropFiles": "Drop the files here",
"fileTypes": "PNG, JPG, JPEG up to",
"sizeLimitUnit": "MB",
"fileSizeError": "File exceeds {{size}}MB limit"
}
},
"pageNotFound": {
"title": "404",
"message": "The page you are looking for does not exist.",
"goHome": "Go Back Home"
},
"filePicker": {
"searchPlaceholder": "Поиск файлов и папок...",
"itemsSelected": "{{count}} выбрано",
"name": "Имя",
"lastModified": "Последнее изменение",
"size": "Размер"
},
"actionButtons": {
"openNewChat": "Открыть новый чат",
"share": "Поделиться"
},
"mermaid": {
"downloadOptions": "Параметры загрузки",
"viewCode": "Просмотр кода",
"decreaseZoom": "Уменьшить масштаб",
"resetZoom": "Сбросить масштаб",
"increaseZoom": "Увеличить масштаб"
},
"navigation": {
"agents": "Агенты"
},
"notification": {
"ariaLabel": "Уведомление",
"closeAriaLabel": "Закрыть уведомление"
},
"prompts": {
"textAriaLabel": "Текст подсказки"
"retry": "Повторить"
}
}

View File

@@ -185,58 +185,8 @@
"cancel": "取消",
"addNew": "新增",
"name": "名稱",
"type": "類型",
"mcp": {
"addServer": "Add MCP Server",
"editServer": "Edit Server",
"serverName": "Server Name",
"serverUrl": "Server URL",
"headerName": "Header Name",
"timeout": "Timeout (seconds)",
"testConnection": "Test Connection",
"testing": "Testing",
"saving": "Saving",
"save": "Save",
"cancel": "Cancel",
"noAuth": "No Authentication",
"oauthInProgress": "Waiting for OAuth completion...",
"oauthCompleted": "OAuth completed successfully",
"authType": "Authentication Type",
"defaultServerName": "My MCP Server",
"authTypes": {
"none": "No Authentication",
"apiKey": "API Key",
"bearer": "Bearer Token",
"oauth": "OAuth",
"basic": "Basic Authentication"
},
"placeholders": {
"serverUrl": "https://api.example.com",
"apiKey": "Your secret API key",
"bearerToken": "Your secret token",
"username": "Your username",
"password": "Your password",
"oauthScopes": "OAuth scopes (comma separated)"
},
"errors": {
"nameRequired": "Server name is required",
"urlRequired": "Server URL is required",
"invalidUrl": "Please enter a valid URL",
"apiKeyRequired": "API key is required",
"tokenRequired": "Bearer token is required",
"usernameRequired": "Username is required",
"passwordRequired": "Password is required",
"testFailed": "Connection test failed",
"saveFailed": "Failed to save MCP server",
"oauthFailed": "OAuth process failed or was cancelled",
"oauthTimeout": "OAuth process timed out, please try again",
"timeoutRange": "Timeout must be between 1 and 300 seconds"
}
}
},
"scrollTabsLeft": "向左捲動標籤",
"tabsAriaLabel": "設定標籤",
"scrollTabsRight": "向右捲動標籤"
"type": "類型"
}
},
"modals": {
"uploadDoc": {
@@ -356,8 +306,7 @@
"disclaimer": "這是唯一一次顯示您的金鑰。",
"copy": "複製",
"copied": "已複製",
"confirm": "我已儲存金鑰",
"apiKeyLabel": "API Key"
"confirm": "我已儲存金鑰"
},
"deleteConv": {
"confirm": "您確定要刪除所有對話嗎?",
@@ -375,8 +324,7 @@
"apiKeyLabel": "API 金鑰 / OAuth",
"apiKeyPlaceholder": "輸入 API 金鑰 / OAuth",
"addButton": "新增工具",
"closeButton": "關閉",
"customNamePlaceholder": "Enter custom name (optional)"
"closeButton": "關閉"
},
"prompts": {
"addPrompt": "新增提示",
@@ -386,32 +334,8 @@
"promptName": "提示名稱",
"promptText": "提示文字",
"save": "儲存",
"cancel": "取消",
"nameExists": "名稱已存在",
"deleteConfirmation": "您確定要刪除提示「{{name}}」嗎?",
"placeholderText": "在此輸入提示內容...",
"addExamplePlaceholder": "請總結此文本:",
"variablesLabel": "變數",
"variablesSubtext": "點擊以插入提示中",
"variablesDescription": "點擊以插入到提示中",
"systemVariables": "點擊以插入提示中",
"toolVariables": "工具變數",
"systemVariablesDropdownLabel": "系統變數",
"systemVariableOptions": {
"sourceContent": "來源內容",
"sourceSummaries": "內容別名(向後相容)",
"sourceDocuments": "文件物件列表",
"sourceCount": "擷取的文件數量",
"systemDate": "目前日期 (YYYY-MM-DD)",
"systemTime": "目前時間 (HH:MM:SS)",
"systemTimestamp": "ISO 8601 時間戳記",
"systemRequestId": "唯一請求識別碼",
"systemUserId": "目前使用者 ID"
},
"learnAboutPrompts": "了解提示 →",
"publicPromptEditDisabled": "公共提示無法編輯",
"promptTypePublic": "公共",
"promptTypePrivate": "私人"
"deleteConfirmation": "您確定要刪除提示「{{name}}」嗎?"
},
"chunk": {
"add": "新增區塊",
@@ -425,22 +349,6 @@
"cancel": "取消",
"delete": "刪除",
"deleteConfirmation": "您確定要刪除此區塊嗎?"
},
"addAction": {
"title": "New Action",
"actionNamePlaceholder": "Action Name",
"invalidFormat": "Invalid function name format. Use only letters, numbers, underscores, and hyphens.",
"formatHelp": "Use only letters, numbers, underscores, and hyphens (e.g., `get_data`, `send_report`, etc.)",
"addButton": "Add"
},
"agentDetails": {
"title": "Access Details",
"publicLink": "Public Link",
"apiKey": "API Key",
"webhookUrl": "Webhook URL",
"generate": "Generate",
"test": "Test",
"learnMore": "Learn more"
}
},
"sharedConv": {
@@ -483,153 +391,6 @@
"attach": "附件",
"remove": "刪除附件"
},
"retry": "重試",
"reasoning": "推理"
},
"agents": {
"title": "代理",
"description": "探索並創建結合指令、額外知識和任意技能組合的DocsGPT自訂版本",
"newAgent": "新建代理",
"backToAll": "返回所有代理",
"sections": {
"template": {
"title": "由DocsGPT提供",
"description": "DocsGPT提供的代理",
"emptyState": "未找到範本代理。"
},
"user": {
"title": "我的代理",
"description": "您創建或發佈的代理",
"emptyState": "您還沒有創建任何代理。"
},
"shared": {
"title": "與我共享",
"description": "透過公共連結匯入的代理",
"emptyState": "未找到共享代理。"
}
},
"form": {
"headings": {
"new": "新建代理",
"edit": "編輯代理",
"draft": "新建代理(草稿)"
},
"buttons": {
"publish": "發佈",
"save": "儲存",
"saveDraft": "儲存草稿",
"cancel": "取消",
"delete": "刪除",
"logs": "日誌",
"accessDetails": "存取詳情",
"add": "新增"
},
"sections": {
"meta": "中繼資料",
"source": "來源",
"prompt": "提示詞",
"tools": "工具",
"agentType": "代理類型",
"advanced": "進階",
"preview": "預覽"
},
"placeholders": {
"agentName": "代理名稱",
"describeAgent": "描述您的代理",
"selectSources": "選擇來源",
"chunksPerQuery": "每次查詢的區塊數",
"selectType": "選擇類型",
"selectTools": "選擇工具",
"enterTokenLimit": "輸入權杖限制",
"enterRequestLimit": "輸入請求限制"
},
"sourcePopup": {
"title": "選擇來源",
"searchPlaceholder": "搜尋來源...",
"noOptionsMessage": "沒有可用的來源"
},
"toolsPopup": {
"title": "選擇工具",
"searchPlaceholder": "搜尋工具...",
"noOptionsMessage": "沒有可用的工具"
},
"upload": {
"clickToUpload": "點擊上傳",
"dragAndDrop": " 或拖放"
},
"agentTypes": {
"classic": "經典",
"react": "ReAct"
},
"advanced": {
"jsonSchema": "JSON回應架構",
"jsonSchemaDescription": "定義JSON架構以強制執行結構化輸出格式",
"validJson": "有效的JSON",
"invalidJson": "無效的JSON - 修復後才能儲存",
"tokenLimiting": "權杖限制",
"tokenLimitingDescription": "限制此代理每天可使用的總權杖數",
"requestLimiting": "請求限制",
"requestLimitingDescription": "限制每天可向此代理發出的總請求數"
},
"preview": {
"publishedPreview": "已發佈的代理可以在此處預覽"
},
"externalKb": "外部知識庫"
},
"logs": {
"title": "代理日誌",
"lastUsedAt": "最後使用時間",
"noUsageHistory": "無使用歷史",
"tableHeader": "代理端點日誌"
},
"shared": {
"notFound": "未找到代理。請確保代理已共享。"
},
"preview": {
"testMessage": "在此測試您的代理。已發佈的代理可以在對話中使用。"
},
"deleteConfirmation": "您確定要刪除此代理嗎?"
},
"components": {
"fileUpload": {
"clickToUpload": "Click to upload or drag and drop",
"dropFiles": "Drop the files here",
"fileTypes": "PNG, JPG, JPEG up to",
"sizeLimitUnit": "MB",
"fileSizeError": "File exceeds {{size}}MB limit"
}
},
"pageNotFound": {
"title": "404",
"message": "The page you are looking for does not exist.",
"goHome": "Go Back Home"
},
"filePicker": {
"searchPlaceholder": "搜尋檔案和資料夾...",
"itemsSelected": "已選擇 {{count}} 項",
"name": "名稱",
"lastModified": "最後修改",
"size": "大小"
},
"actionButtons": {
"openNewChat": "開啟新聊天",
"share": "分享"
},
"mermaid": {
"downloadOptions": "下載選項",
"viewCode": "查看程式碼",
"decreaseZoom": "縮小",
"resetZoom": "重設縮放",
"increaseZoom": "放大"
},
"navigation": {
"agents": "代理"
},
"notification": {
"ariaLabel": "通知",
"closeAriaLabel": "關閉通知"
},
"prompts": {
"textAriaLabel": "提示文字"
"retry": "重試"
}
}

View File

@@ -185,58 +185,8 @@
"cancel": "取消",
"addNew": "添加新的",
"name": "名称",
"type": "类型",
"mcp": {
"addServer": "Add MCP Server",
"editServer": "Edit Server",
"serverName": "Server Name",
"serverUrl": "Server URL",
"headerName": "Header Name",
"timeout": "Timeout (seconds)",
"testConnection": "Test Connection",
"testing": "Testing",
"saving": "Saving",
"save": "Save",
"cancel": "Cancel",
"noAuth": "No Authentication",
"oauthInProgress": "Waiting for OAuth completion...",
"oauthCompleted": "OAuth completed successfully",
"authType": "Authentication Type",
"defaultServerName": "My MCP Server",
"authTypes": {
"none": "No Authentication",
"apiKey": "API Key",
"bearer": "Bearer Token",
"oauth": "OAuth",
"basic": "Basic Authentication"
},
"placeholders": {
"serverUrl": "https://api.example.com",
"apiKey": "Your secret API key",
"bearerToken": "Your secret token",
"username": "Your username",
"password": "Your password",
"oauthScopes": "OAuth scopes (comma separated)"
},
"errors": {
"nameRequired": "Server name is required",
"urlRequired": "Server URL is required",
"invalidUrl": "Please enter a valid URL",
"apiKeyRequired": "API key is required",
"tokenRequired": "Bearer token is required",
"usernameRequired": "Username is required",
"passwordRequired": "Password is required",
"testFailed": "Connection test failed",
"saveFailed": "Failed to save MCP server",
"oauthFailed": "OAuth process failed or was cancelled",
"oauthTimeout": "OAuth process timed out, please try again",
"timeoutRange": "Timeout must be between 1 and 300 seconds"
}
}
},
"scrollTabsLeft": "向左滚动标签",
"tabsAriaLabel": "设置标签",
"scrollTabsRight": "向右滚动标签"
"type": "类型"
}
},
"modals": {
"uploadDoc": {
@@ -356,8 +306,7 @@
"disclaimer": "这是您的密钥唯一一次展示机会。",
"copy": "复制",
"copied": "已复制",
"confirm": "我已保存密钥",
"apiKeyLabel": "API Key"
"confirm": "我已保存密钥"
},
"deleteConv": {
"confirm": "您确定要删除所有对话吗?",
@@ -375,8 +324,7 @@
"apiKeyLabel": "API 密钥 / OAuth",
"apiKeyPlaceholder": "输入 API 密钥 / OAuth",
"addButton": "添加工具",
"closeButton": "关闭",
"customNamePlaceholder": "Enter custom name (optional)"
"closeButton": "关闭"
},
"prompts": {
"addPrompt": "添加提示",
@@ -387,31 +335,7 @@
"promptText": "提示文本",
"save": "保存",
"nameExists": "名称已存在",
"deleteConfirmation": "您确定要删除提示'{{name}}'吗?",
"cancel": "取消",
"placeholderText": "在此輸入提示內容...",
"addExamplePlaceholder": "請總結此文本:",
"variablesLabel": "變數",
"variablesSubtext": "點擊以插入提示中",
"variablesDescription": "點擊以插入到提示中",
"systemVariables": "點擊以插入提示中",
"toolVariables": "工具變數",
"systemVariablesDropdownLabel": "系統變數",
"systemVariableOptions": {
"sourceContent": "來源內容",
"sourceSummaries": "內容別名(向後相容)",
"sourceDocuments": "文件物件列表",
"sourceCount": "擷取的文件數量",
"systemDate": "目前日期 (YYYY-MM-DD)",
"systemTime": "目前時間 (HH:MM:SS)",
"systemTimestamp": "ISO 8601 時間戳記",
"systemRequestId": "唯一請求識別碼",
"systemUserId": "目前使用者 ID"
},
"learnAboutPrompts": "了解提示 →",
"publicPromptEditDisabled": "公共提示無法編輯",
"promptTypePublic": "公共",
"promptTypePrivate": "私人"
"deleteConfirmation": "您确定要删除提示'{{name}}'吗?"
},
"chunk": {
"add": "添加块",
@@ -425,22 +349,6 @@
"cancel": "取消",
"delete": "删除",
"deleteConfirmation": "您确定要删除此块吗?"
},
"addAction": {
"title": "New Action",
"actionNamePlaceholder": "Action Name",
"invalidFormat": "Invalid function name format. Use only letters, numbers, underscores, and hyphens.",
"formatHelp": "Use only letters, numbers, underscores, and hyphens (e.g., `get_data`, `send_report`, etc.)",
"addButton": "Add"
},
"agentDetails": {
"title": "Access Details",
"publicLink": "Public Link",
"apiKey": "API Key",
"webhookUrl": "Webhook URL",
"generate": "Generate",
"test": "Test",
"learnMore": "Learn more"
}
},
"sharedConv": {
@@ -483,153 +391,6 @@
"attach": "附件",
"remove": "删除附件"
},
"retry": "重试",
"reasoning": "推理"
},
"agents": {
"title": "代理",
"description": "发现并创建结合指令、额外知识和任意技能组合的DocsGPT自定义版本",
"newAgent": "新建代理",
"backToAll": "返回所有代理",
"sections": {
"template": {
"title": "由DocsGPT提供",
"description": "DocsGPT提供的代理",
"emptyState": "未找到模板代理。"
},
"user": {
"title": "我的代理",
"description": "您创建或发布的代理",
"emptyState": "您还没有创建任何代理。"
},
"shared": {
"title": "与我共享",
"description": "通过公共链接导入的代理",
"emptyState": "未找到共享代理。"
}
},
"form": {
"headings": {
"new": "新建代理",
"edit": "编辑代理",
"draft": "新建代理(草稿)"
},
"buttons": {
"publish": "发布",
"save": "保存",
"saveDraft": "保存草稿",
"cancel": "取消",
"delete": "删除",
"logs": "日志",
"accessDetails": "访问详情",
"add": "添加"
},
"sections": {
"meta": "元数据",
"source": "来源",
"prompt": "提示词",
"tools": "工具",
"agentType": "代理类型",
"advanced": "高级",
"preview": "预览"
},
"placeholders": {
"agentName": "代理名称",
"describeAgent": "描述您的代理",
"selectSources": "选择来源",
"chunksPerQuery": "每次查询的块数",
"selectType": "选择类型",
"selectTools": "选择工具",
"enterTokenLimit": "输入令牌限制",
"enterRequestLimit": "输入请求限制"
},
"sourcePopup": {
"title": "选择来源",
"searchPlaceholder": "搜索来源...",
"noOptionsMessage": "没有可用的来源"
},
"toolsPopup": {
"title": "选择工具",
"searchPlaceholder": "搜索工具...",
"noOptionsMessage": "没有可用的工具"
},
"upload": {
"clickToUpload": "点击上传",
"dragAndDrop": " 或拖放"
},
"agentTypes": {
"classic": "经典",
"react": "ReAct"
},
"advanced": {
"jsonSchema": "JSON响应架构",
"jsonSchemaDescription": "定义JSON架构以强制执行结构化输出格式",
"validJson": "有效的JSON",
"invalidJson": "无效的JSON - 修复后才能保存",
"tokenLimiting": "令牌限制",
"tokenLimitingDescription": "限制此代理每天可使用的总令牌数",
"requestLimiting": "请求限制",
"requestLimitingDescription": "限制每天可向此代理发出的总请求数"
},
"preview": {
"publishedPreview": "已发布的代理可以在此处预览"
},
"externalKb": "外部知识库"
},
"logs": {
"title": "代理日志",
"lastUsedAt": "最后使用时间",
"noUsageHistory": "无使用历史",
"tableHeader": "代理端点日志"
},
"shared": {
"notFound": "未找到代理。请确保代理已共享。"
},
"preview": {
"testMessage": "在此测试您的代理。已发布的代理可以在对话中使用。"
},
"deleteConfirmation": "您确定要删除此代理吗?"
},
"components": {
"fileUpload": {
"clickToUpload": "Click to upload or drag and drop",
"dropFiles": "Drop the files here",
"fileTypes": "PNG, JPG, JPEG up to",
"sizeLimitUnit": "MB",
"fileSizeError": "File exceeds {{size}}MB limit"
}
},
"pageNotFound": {
"title": "404",
"message": "The page you are looking for does not exist.",
"goHome": "Go Back Home"
},
"filePicker": {
"searchPlaceholder": "搜索文件和文件夹...",
"itemsSelected": "已选择 {{count}} 项",
"name": "名称",
"lastModified": "最后修改",
"size": "大小"
},
"actionButtons": {
"openNewChat": "打开新聊天",
"share": "分享"
},
"mermaid": {
"downloadOptions": "下载选项",
"viewCode": "查看代码",
"decreaseZoom": "缩小",
"resetZoom": "重置缩放",
"increaseZoom": "放大"
},
"navigation": {
"agents": "代理"
},
"notification": {
"ariaLabel": "通知",
"closeAriaLabel": "关闭通知"
},
"prompts": {
"textAriaLabel": "提示文本"
"retry": "重试"
}
}

View File

@@ -44,7 +44,7 @@ export default function AddActionModal({
>
<div>
<h2 className="text-jet dark:text-bright-gray px-3 text-xl font-semibold">
{t('modals.addAction.title')}
New Action
</h2>
<div className="relative mt-6 px-3">
<Input
@@ -57,7 +57,7 @@ export default function AddActionModal({
}}
borderVariant="thin"
labelBgClassName="bg-white dark:bg-charleston-green-2"
placeholder={t('modals.addAction.actionNamePlaceholder')}
placeholder="Action Name"
required={true}
/>
<p
@@ -66,8 +66,8 @@ export default function AddActionModal({
}`}
>
{functionNameError
? t('modals.addAction.invalidFormat')
: t('modals.addAction.formatHelp')}
? 'Invalid function name format. Use only letters, numbers, underscores, and hyphens.'
: 'Use only letters, numbers, underscores, and hyphens (e.g., `get_data`, `send_report`, etc.)'}
</p>
</div>
<div className="mt-3 flex flex-row-reverse gap-1 px-3">
@@ -75,7 +75,7 @@ export default function AddActionModal({
onClick={handleAddAction}
className="bg-purple-30 hover:bg-violets-are-blue rounded-3xl px-5 py-2 text-sm text-white transition-all"
>
{t('modals.addAction.addButton')}
Add
</button>
<button
onClick={() => {

View File

@@ -1,5 +1,4 @@
import { useEffect, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { useSelector } from 'react-redux';
import { Agent } from '../agents/types';
@@ -25,7 +24,6 @@ export default function AgentDetailsModal({
modalState,
setModalState,
}: AgentDetailsModalProps) {
const { t } = useTranslation();
const token = useSelector(selectToken);
const [sharedToken, setSharedToken] = useState<string | null>(
@@ -88,13 +86,13 @@ export default function AgentDetailsModal({
>
<div>
<h2 className="text-jet dark:text-bright-gray text-xl font-semibold">
{t('modals.agentDetails.title')}
Access Details
</h2>
<div className="mt-8 flex flex-col gap-6">
<div className="flex flex-col gap-3">
<div className="flex items-center gap-2">
<h2 className="text-jet dark:text-bright-gray text-base font-semibold">
{t('modals.agentDetails.publicLink')}
Public Link
</h2>
</div>
{sharedToken ? (
@@ -119,9 +117,7 @@ export default function AgentDetailsModal({
target="_blank"
rel="noopener noreferrer"
>
<span className="text-sm">
{t('modals.agentDetails.learnMore')}
</span>
<span className="text-sm">Learn more</span>
<img
src="/src/assets/external-link.svg"
alt="External link"
@@ -137,14 +133,14 @@ export default function AgentDetailsModal({
{loadingStates.publicLink ? (
<Spinner size="small" color="#976af3" />
) : (
t('modals.agentDetails.generate')
'Generate'
)}
</button>
)}
</div>
<div className="flex flex-col gap-3">
<h2 className="text-jet dark:text-bright-gray text-base font-semibold">
{t('modals.agentDetails.apiKey')}
API Key
</h2>
{apiKey ? (
<div className="flex flex-col gap-2">
@@ -166,7 +162,7 @@ export default function AgentDetailsModal({
target="_blank"
rel="noopener noreferrer"
>
{t('modals.agentDetails.test')}
Test
<img
src="/src/assets/external-link.svg"
alt="External link"
@@ -178,14 +174,14 @@ export default function AgentDetailsModal({
</div>
) : (
<button className="border-purple-30 text-purple-30 hover:bg-purple-30 w-28 rounded-3xl border border-solid px-5 py-2 text-sm font-medium transition-colors hover:text-white">
{t('modals.agentDetails.generate')}
Generate
</button>
)}
</div>
<div className="flex flex-col gap-3">
<div className="flex items-center gap-2">
<h2 className="text-jet dark:text-bright-gray text-base font-semibold">
{t('modals.agentDetails.webhookUrl')}
Webhook URL
</h2>
</div>
{webhookUrl ? (
@@ -206,9 +202,7 @@ export default function AgentDetailsModal({
target="_blank"
rel="noopener noreferrer"
>
<span className="text-sm">
{t('modals.agentDetails.learnMore')}
</span>
<span className="text-sm">Learn more</span>
<img
src="/src/assets/external-link.svg"
alt="External link"
@@ -224,7 +218,7 @@ export default function AgentDetailsModal({
{loadingStates.webhook ? (
<Spinner size="small" color="#976af3" />
) : (
t('modals.agentDetails.generate')
'Generate'
)}
</button>
)}

View File

@@ -66,7 +66,7 @@ export default function ConfigToolModal({
value={customName}
onChange={(e) => setCustomName(e.target.value)}
borderVariant="thin"
placeholder={t('modals.configTool.customNamePlaceholder')}
placeholder="Enter custom name (optional)"
labelBgClassName="bg-white dark:bg-charleston-green-2"
/>
</div>

View File

@@ -0,0 +1,155 @@
import React from 'react';
import { useTranslation } from 'react-i18next';
import { useSelector } from 'react-redux';
import userService from '../api/services/userService';
import Dropdown from '../components/Dropdown';
import Input from '../components/Input';
import { CreateAPIKeyModalProps, Doc } from '../models/misc';
import { selectSourceDocs, selectToken } from '../preferences/preferenceSlice';
import WrapperModal from './WrapperModal';
const embeddingsName =
import.meta.env.VITE_EMBEDDINGS_NAME ||
'huggingface_sentence-transformers/all-mpnet-base-v2';
export default function CreateAPIKeyModal({
close,
createAPIKey,
}: CreateAPIKeyModalProps) {
const { t } = useTranslation();
const token = useSelector(selectToken);
const docs = useSelector(selectSourceDocs);
const [APIKeyName, setAPIKeyName] = React.useState<string>('');
const [sourcePath, setSourcePath] = React.useState<{
name: string;
id: string;
type: string;
} | null>(null);
const [prompt, setPrompt] = React.useState<{
name: string;
id: string;
type: string;
} | null>(null);
const [activePrompts, setActivePrompts] = React.useState<
{ name: string; id: string; type: string }[]
>([]);
const [chunk, setChunk] = React.useState<string>('2');
const chunkOptions = ['0', '2', '4', '6', '8', '10'];
const extractDocPaths = () =>
docs
? docs
.filter((doc) => doc.model === embeddingsName)
.map((doc: Doc) => {
if ('id' in doc) {
return {
name: doc.name,
id: doc.id as string,
type: 'local',
};
}
return {
name: doc.name,
id: doc.id ?? 'default',
type: doc.type ?? 'default',
};
})
: [];
React.useEffect(() => {
const handleFetchPrompts = async () => {
try {
const response = await userService.getPrompts(token);
if (!response.ok) {
throw new Error('Failed to fetch prompts');
}
const promptsData = await response.json();
setActivePrompts(promptsData);
} catch (error) {
console.error(error);
}
};
handleFetchPrompts();
}, []);
return (
<WrapperModal close={close} className="p-4">
<div className="mb-6">
<span className="text-jet dark:text-bright-gray text-xl">
{t('modals.createAPIKey.label')}
</span>
</div>
<div className="relative mt-5 mb-4">
<Input
type="text"
className="rounded-md"
value={APIKeyName}
placeholder={t('modals.createAPIKey.apiKeyName')}
onChange={(e) => setAPIKeyName(e.target.value)}
borderVariant="thin"
labelBgClassName="bg-white dark:bg-charleston-green-2"
></Input>
</div>
<div className="my-4">
<Dropdown
placeholder={t('modals.createAPIKey.sourceDoc')}
selectedValue={sourcePath ? sourcePath.name : null}
onSelect={(selection: { name: string; id: string; type: string }) => {
setSourcePath(selection);
}}
options={extractDocPaths()}
size="w-full"
rounded="xl"
border="border"
/>
</div>
<div className="my-4">
<Dropdown
options={activePrompts}
selectedValue={prompt ? prompt.name : null}
placeholder={t('modals.createAPIKey.prompt')}
onSelect={(value: { name: string; id: string; type: string }) =>
setPrompt(value)
}
size="w-full"
border="border"
/>
</div>
<div className="my-4">
<p className="text-jet dark:text-bright-gray mb-2 ml-2 font-semibold">
{t('modals.createAPIKey.chunks')}
</p>
<Dropdown
options={chunkOptions}
selectedValue={chunk}
onSelect={(value: string) => setChunk(value)}
size="w-full"
border="border"
/>
</div>
<button
disabled={!sourcePath || APIKeyName.length === 0 || !prompt}
onClick={() => {
if (sourcePath && prompt) {
const payload: any = {
name: APIKeyName,
prompt_id: prompt.id,
chunks: chunk,
};
if (sourcePath.type === 'default') {
payload.retriever = sourcePath.id;
}
if (sourcePath.type === 'local') {
payload.source = sourcePath.id;
}
createAPIKey(payload);
}
}}
className="bg-purple-30 hover:bg-violets-are-blue float-right mt-4 rounded-full px-5 py-2 text-sm text-white disabled:opacity-50"
>
{t('modals.createAPIKey.create')}
</button>
</WrapperModal>
);
}

View File

@@ -38,7 +38,7 @@ export default function DeleteConvModal({
<ConfirmationModal
message={t('modals.deleteConv.confirm')}
modalState={modalState}
setModalState={(state) => dispatch(setModalState(state))}
setModalState={setModalState}
submitLabel={t('modals.deleteConv.delete')}
handleSubmit={handleSubmit}
handleCancel={handleCancel}

View File

@@ -18,6 +18,14 @@ interface MCPServerModalProps {
onServerSaved: () => void;
}
const authTypes = [
{ label: 'No Authentication', value: 'none' },
{ label: 'API Key', value: 'api_key' },
{ label: 'Bearer Token', value: 'bearer' },
{ label: 'OAuth', value: 'oauth' },
// { label: 'Basic Authentication', value: 'basic' },
];
export default function MCPServerModal({
modalState,
setModalState,
@@ -28,16 +36,8 @@ export default function MCPServerModal({
const token = useSelector(selectToken);
const modalRef = useRef<HTMLDivElement>(null);
const authTypes = [
{ label: t('settings.tools.mcp.authTypes.none'), value: 'none' },
{ label: t('settings.tools.mcp.authTypes.apiKey'), value: 'api_key' },
{ label: t('settings.tools.mcp.authTypes.bearer'), value: 'bearer' },
{ label: t('settings.tools.mcp.authTypes.oauth'), value: 'oauth' },
// { label: t('settings.tools.mcp.authTypes.basic'), value: 'basic' },
];
const [formData, setFormData] = useState({
name: server?.displayName || t('settings.tools.mcp.defaultServerName'),
name: server?.displayName || 'My MCP Server',
server_url: server?.server_url || '',
auth_type: server?.auth_type || 'none',
api_key: '',
@@ -72,7 +72,7 @@ export default function MCPServerModal({
const resetForm = () => {
setFormData({
name: t('settings.tools.mcp.defaultServerName'),
name: 'My MCP Server',
server_url: '',
auth_type: 'none',
api_key: '',
@@ -133,7 +133,7 @@ export default function MCPServerModal({
typeof timeoutValue === 'number' &&
(timeoutValue < 1 || timeoutValue > 300)
)
newErrors.timeout = t('settings.tools.mcp.errors.timeoutRange');
newErrors.timeout = 'Timeout must be between 1 and 300 seconds';
if (authFieldChecks[formData.auth_type])
authFieldChecks[formData.auth_type]();

View File

@@ -0,0 +1,51 @@
import React from 'react';
import { useTranslation } from 'react-i18next';
import { SaveAPIKeyModalProps } from '../models/misc';
import WrapperModal from './WrapperModal';
export default function SaveAPIKeyModal({
apiKey,
close,
}: SaveAPIKeyModalProps) {
const { t } = useTranslation();
const [isCopied, setIsCopied] = React.useState(false);
const handleCopyKey = () => {
navigator.clipboard.writeText(apiKey);
setIsCopied(true);
};
return (
<WrapperModal close={close}>
<h1 className="text-jet dark:text-bright-gray my-0 text-xl font-medium">
{t('modals.saveKey.note')}
</h1>
<h3 className="text-outer-space dark:text-silver text-sm font-normal">
{t('modals.saveKey.disclaimer')}
</h3>
<div className="flex justify-between py-2">
<div>
<h2 className="text-jet dark:text-bright-gray text-base font-semibold">
API Key
</h2>
<span className="text-jet dark:text-bright-gray text-sm leading-7 font-normal">
{apiKey}
</span>
</div>
<button
className="border-violets-are-blue text-violets-are-blue hover:bg-violets-are-blue my-1 h-10 w-20 rounded-full border border-solid p-2 text-sm hover:text-white"
onClick={handleCopyKey}
>
{isCopied ? t('modals.saveKey.copied') : t('modals.saveKey.copy')}
</button>
</div>
<button
onClick={close}
className="bg-philippine-yellow rounded-full px-4 py-3 font-medium text-black hover:bg-[#E6B91A]"
>
{t('modals.saveKey.confirm')}
</button>
</WrapperModal>
);
}

View File

@@ -43,7 +43,6 @@ export default function WrapperModal({
const modalContent = (
<div className="fixed top-0 left-0 z-30 flex h-screen w-screen items-center justify-center">
<div className="absolute inset-0 bg-black/25 backdrop-blur-xs dark:bg-black/50" />
<div
ref={modalRef}
className={`relative rounded-2xl bg-white p-8 shadow-[0px_4px_40px_-3px_#0000001A] dark:bg-[#26272E] ${className}`}

View File

@@ -39,3 +39,18 @@ export type DocumentsProps = {
paginatedDocuments: Doc[] | null;
handleDeleteDocument: (index: number, document: Doc) => void;
};
export type CreateAPIKeyModalProps = {
close: () => void;
createAPIKey: (payload: {
name: string;
source: string;
prompt_id: string;
chunks: string;
}) => void;
};
export type SaveAPIKeyModalProps = {
apiKey: string;
close: () => void;
};

View File

@@ -1,216 +1,8 @@
import { ActiveState } from '../models/misc';
import Input from '../components/Input';
import { Link } from 'react-router-dom';
import React from 'react';
import { useTranslation } from 'react-i18next';
import { useSelector } from 'react-redux';
import WrapperModal from '../modals/WrapperModal';
import Dropdown from '../components/Dropdown';
import BookIcon from '../assets/book.svg';
import userService from '../api/services/userService';
import { selectToken } from '../preferences/preferenceSlice';
import { UserToolType } from '../settings/types';
const variablePattern = /(\{\{\s*[^{}]+\s*\}\}|\{(?!\{)[^{}]+\})/g;
const escapeHtml = (value: string) =>
value
.replace(/&/g, '&amp;')
.replace(/</g, '&lt;')
.replace(/>/g, '&gt;')
.replace(/"/g, '&quot;')
.replace(/'/g, '&#39;');
const highlightPromptVariables = (text: string) => {
if (!text) {
return '&#8203;';
}
variablePattern.lastIndex = 0;
let result = '';
let lastIndex = 0;
let match: RegExpExecArray | null;
while ((match = variablePattern.exec(text)) !== null) {
const precedingText = text.slice(lastIndex, match.index);
if (precedingText) {
result += escapeHtml(precedingText);
}
result += `<span class="prompt-variable-highlight">${escapeHtml(match[0])}</span>`;
lastIndex = match.index + match[0].length;
}
const remainingText = text.slice(lastIndex);
if (remainingText) {
result += escapeHtml(remainingText);
}
return result || '&#8203;';
};
const systemVariableOptionDefinitions = [
{
labelKey: 'modals.prompts.systemVariableOptions.sourceContent',
value: 'source.content',
},
{
labelKey: 'modals.prompts.systemVariableOptions.sourceSummaries',
value: 'source.summaries',
},
{
labelKey: 'modals.prompts.systemVariableOptions.sourceDocuments',
value: 'source.documents',
},
{
labelKey: 'modals.prompts.systemVariableOptions.sourceCount',
value: 'source.count',
},
{
labelKey: 'modals.prompts.systemVariableOptions.systemDate',
value: 'system.date',
},
{
labelKey: 'modals.prompts.systemVariableOptions.systemTime',
value: 'system.time',
},
{
labelKey: 'modals.prompts.systemVariableOptions.systemTimestamp',
value: 'system.timestamp',
},
{
labelKey: 'modals.prompts.systemVariableOptions.systemRequestId',
value: 'system.request_id',
},
{
labelKey: 'modals.prompts.systemVariableOptions.systemUserId',
value: 'system.user_id',
},
];
const buildSystemVariableOptions = (translate: (key: string) => string) =>
systemVariableOptionDefinitions.map(({ value, labelKey }) => ({
value,
label: translate(labelKey),
}));
type PromptTextareaProps = {
id: string;
value: string;
onChange: (event: React.ChangeEvent<HTMLTextAreaElement>) => void;
ariaLabel: string;
};
function PromptTextarea({
id,
value,
onChange,
ariaLabel,
}: PromptTextareaProps) {
const [scrollOffsets, setScrollOffsets] = React.useState({ top: 0, left: 0 });
const highlightedValue = React.useMemo(
() => highlightPromptVariables(value),
[value],
);
const handleScroll = (event: React.UIEvent<HTMLTextAreaElement>) => {
const { scrollTop, scrollLeft } = event.currentTarget;
setScrollOffsets({
top: scrollTop,
left: scrollLeft,
});
};
return (
<>
<div
className="pointer-events-none absolute inset-0 z-0 overflow-hidden rounded bg-white px-3 py-2 dark:bg-[#26272E]"
aria-hidden="true"
>
<div
className="min-h-full text-base leading-[1.5] break-words whitespace-pre-wrap text-transparent"
style={{
transform: `translate(${-scrollOffsets.left}px, ${-scrollOffsets.top}px)`,
}}
dangerouslySetInnerHTML={{ __html: highlightedValue }}
/>
</div>
<textarea
id={id}
className="peer border-silver dark:border-silver/40 relative z-10 h-48 w-full resize-none rounded border-2 bg-transparent px-3 py-2 text-base text-gray-800 outline-none dark:bg-transparent dark:text-white"
value={value}
onChange={onChange}
onScroll={handleScroll}
placeholder=" "
aria-label={ariaLabel}
/>
</>
);
}
// Custom hook for fetching tool variables
const useToolVariables = () => {
const token = useSelector(selectToken);
const [toolVariables, setToolVariables] = React.useState<
{ label: string; value: string }[]
>([]);
React.useEffect(() => {
const fetchToolVariables = async () => {
try {
const response = await userService.getUserTools(token);
const data = await response.json();
if (data.success && data.tools) {
const filteredActions: { label: string; value: string }[] = [];
data.tools.forEach((tool: UserToolType) => {
if (tool.actions && tool.status) {
// Only include active tools
tool.actions.forEach((action: any) => {
if (action.active) {
const canUseAction =
!action.parameters?.properties ||
Object.entries(action.parameters.properties).every(
([paramName, param]: [string, any]) => {
// Parameter is usable if:
// 1. It's filled by LLM (true) OR
// 2. It has a value in the tool config
return (
param.filled_by_llm === true ||
(tool.config &&
tool.config[paramName] &&
tool.config[paramName] !== '')
);
},
);
if (canUseAction) {
const toolIdentifier = tool.id ?? tool.name;
if (!toolIdentifier) {
return;
}
filteredActions.push({
label: `${action.name} (${tool.displayName || tool.name})`,
value: `tools.${toolIdentifier}.${action.name}`,
});
}
}
});
}
});
setToolVariables(filteredActions);
}
} catch (error) {
console.error('Error fetching tool variables:', error);
}
};
fetchToolVariables();
}, [token]);
return toolVariables;
};
function AddPrompt({
setModalState,
@@ -230,190 +22,52 @@ function AddPrompt({
disableSave: boolean;
}) {
const { t } = useTranslation();
const systemVariableOptions = React.useMemo(
() => buildSystemVariableOptions(t),
[t],
);
const toolVariables = useToolVariables();
return (
<div>
<p className="mb-1 text-xl font-semibold text-[#2B2B2B] dark:text-white">
<p className="text-jet dark:text-bright-gray mb-1 text-xl">
{t('modals.prompts.addPrompt')}
</p>
<p className="mb-6 text-sm text-[#6B6B6B] dark:text-[#9A9AA0]">
<p className="text-sonic-silver mb-7 text-xs dark:text-[#7F7F82]">
{t('modals.prompts.addDescription')}
</p>
<div>
<Input
placeholder={t('modals.prompts.promptName')}
type="text"
className="mb-5"
edgeRoundness="rounded"
textSize="medium"
className="mb-4"
value={newPromptName}
onChange={(e) => setNewPromptName(e.target.value)}
labelBgClassName="bg-white dark:bg-[#26272E]"
borderVariant="thick"
borderVariant="thin"
/>
<div className="relative w-full">
<PromptTextarea
id="new-prompt-content"
value={newPromptContent}
onChange={(e) => setNewPromptContent(e.target.value)}
ariaLabel={t('prompts.textAriaLabel')}
/>
<label
htmlFor="new-prompt-content"
className={`absolute z-20 select-none ${
newPromptContent ? '-top-2.5 left-3 text-xs' : ''
} text-gray-4000 pointer-events-none max-w-[calc(100%-24px)] cursor-none overflow-hidden bg-white px-2 text-ellipsis whitespace-nowrap transition-all peer-placeholder-shown:top-2.5 peer-placeholder-shown:left-3 peer-placeholder-shown:text-base peer-focus:-top-2.5 peer-focus:left-3 peer-focus:text-xs dark:bg-[#26272E] dark:text-gray-400`}
>
<div className="relative top-[7px] left-3">
<span className="text-silver dark:text-silver bg-white px-1 text-xs dark:bg-[#26272E]">
{t('modals.prompts.promptText')}
</label>
</div>
</div>
<div className="mt-6 flex flex-col items-start justify-between gap-4 sm:flex-row sm:items-center sm:gap-4">
<p className="flex flex-col text-sm font-medium text-gray-700 dark:text-gray-300">
<span className="font-bold">
{t('modals.prompts.variablesLabel')}
</span>
<span className="text-xs text-[10px] font-medium text-gray-500">
{t('modals.prompts.variablesDescription')}
</span>
</p>
<div className="flex flex-wrap items-center gap-2 sm:gap-3">
<Dropdown
options={systemVariableOptions}
selectedValue={t('modals.prompts.systemVariablesDropdownLabel')}
onSelect={(option) => {
const textarea = document.getElementById(
'new-prompt-content',
) as HTMLTextAreaElement;
if (textarea) {
const cursorPosition = textarea.selectionStart;
const textBefore = newPromptContent.slice(0, cursorPosition);
const textAfter = newPromptContent.slice(cursorPosition);
// Add leading space if needed
const needsSpace =
cursorPosition > 0 &&
newPromptContent.charAt(cursorPosition - 1) !== ' ';
const newText =
textBefore +
(needsSpace ? ' ' : '') +
`{{ ${option.value} }}` +
textAfter;
setNewPromptContent(newText);
setTimeout(() => {
textarea.focus();
textarea.setSelectionRange(
cursorPosition +
option.value.length +
6 +
(needsSpace ? 1 : 0),
cursorPosition +
option.value.length +
6 +
(needsSpace ? 1 : 0),
);
}, 0);
}
}}
placeholder={t('modals.prompts.systemVariablesDropdownLabel')}
size="w-[140px] sm:w-[185px]"
rounded="3xl"
border="border"
contentSize="text-[12px] sm:text-[14px]"
/>
<Dropdown
options={toolVariables}
selectedValue={'Tool Variables'}
onSelect={(option) => {
const textarea = document.getElementById(
'new-prompt-content',
) as HTMLTextAreaElement;
if (textarea) {
const cursorPosition = textarea.selectionStart;
const textBefore = newPromptContent.slice(0, cursorPosition);
const textAfter = newPromptContent.slice(cursorPosition);
// Add leading space if needed
const needsSpace =
cursorPosition > 0 &&
newPromptContent.charAt(cursorPosition - 1) !== ' ';
const newText =
textBefore +
(needsSpace ? ' ' : '') +
`{{ ${option.value} }}` +
textAfter;
setNewPromptContent(newText);
setTimeout(() => {
textarea.focus();
textarea.setSelectionRange(
cursorPosition +
option.value.length +
6 +
(needsSpace ? 1 : 0),
cursorPosition +
option.value.length +
6 +
(needsSpace ? 1 : 0),
);
}, 0);
}
}}
placeholder="Tool Variables"
size="w-[140px] sm:w-[171px]"
rounded="3xl"
border="border"
contentSize="text-[12px] sm:text-[14px]"
/>
</div>
<label htmlFor="new-prompt-content" className="sr-only">
{t('modals.prompts.promptText')}
</label>
<textarea
id="new-prompt-content"
className="border-silver dark:border-silver/40 h-56 w-full resize-none rounded-lg border-2 px-3 py-2 outline-hidden dark:bg-transparent dark:text-white"
value={newPromptContent}
onChange={(e) => setNewPromptContent(e.target.value)}
aria-label="Prompt Text"
></textarea>
</div>
<div className="mt-4 flex flex-col justify-between gap-4 text-[14px] sm:flex-row sm:gap-0">
<div className="flex justify-start">
<Link
to="https://docs.docsgpt.cloud/Guides/Customising-prompts"
target="_blank"
rel="noopener noreferrer"
className="flex items-center gap-2 text-sm font-medium text-[#6A4DF4] hover:underline"
>
<img
src={BookIcon}
alt=""
className="flex h-4 w-3 flex-shrink-0 items-center justify-center"
aria-hidden="true"
/>
<span className="text-[14px] font-bold">
{t('modals.prompts.learnAboutPrompts')}
</span>
</Link>
</div>
<div className="flex justify-end gap-2 sm:gap-4">
<button
onClick={() => setModalState('INACTIVE')}
className="rounded-3xl border border-[#D9534F] px-5 py-2 text-sm font-medium text-[#D9534F] transition-all hover:bg-[#D9534F] hover:text-white"
>
{t('modals.prompts.cancel')}
</button>
<button
onClick={handleAddPrompt}
className="rounded-3xl bg-[#6A4DF4] px-6 py-2 text-sm font-medium text-white transition-all hover:bg-[#563DD1] disabled:cursor-not-allowed disabled:opacity-50 disabled:hover:bg-[#6A4DF4]"
disabled={disableSave}
>
{t('modals.prompts.save')}
</button>
</div>
<div className="mt-6 flex flex-row-reverse">
<button
onClick={handleAddPrompt}
className="bg-purple-30 hover:bg-violets-are-blue disabled:hover:bg-purple-30 rounded-3xl px-5 py-2 text-sm text-white transition-all"
disabled={disableSave}
title={
disableSave && newPromptName ? t('modals.prompts.nameExists') : ''
}
>
{t('modals.prompts.save')}
</button>
</div>
</div>
);
@@ -439,193 +93,54 @@ function EditPrompt({
disableSave: boolean;
}) {
const { t } = useTranslation();
const systemVariableOptions = React.useMemo(
() => buildSystemVariableOptions(t),
[t],
);
const toolVariables = useToolVariables();
return (
<div>
<p className="mb-1 text-xl font-semibold text-[#2B2B2B] dark:text-white">
{t('modals.prompts.editPrompt')}
</p>
<p className="mb-6 text-sm text-[#6B6B6B] dark:text-[#9A9AA0]">
{t('modals.prompts.editDescription')}
</p>
<div>
<Input
placeholder={t('modals.prompts.promptName')}
type="text"
className="mb-5"
edgeRoundness="rounded"
textSize="medium"
value={editPromptName}
onChange={(e) => setEditPromptName(e.target.value)}
labelBgClassName="bg-white dark:bg-[#26272E]"
borderVariant="thick"
/>
<div className="relative w-full">
<PromptTextarea
id="edit-prompt-content"
value={editPromptContent}
onChange={(e) => setEditPromptContent(e.target.value)}
ariaLabel={t('prompts.textAriaLabel')}
<div className="">
<p className="text-jet dark:text-bright-gray mb-1 text-xl">
{t('modals.prompts.editPrompt')}
</p>
<p className="text-sonic-silver mb-7 text-xs dark:text-[#7F7F82]">
{t('modals.prompts.editDescription')}
</p>
<div>
<Input
placeholder={t('modals.prompts.promptName')}
type="text"
className="mb-4"
value={editPromptName}
onChange={(e) => setEditPromptName(e.target.value)}
labelBgClassName="bg-white dark:bg-charleston-green-2"
borderVariant="thin"
/>
<label
htmlFor="edit-prompt-content"
className={`absolute z-20 select-none ${
editPromptContent ? '-top-2.5 left-3 text-xs' : ''
} text-gray-4000 pointer-events-none max-w-[calc(100%-24px)] cursor-none overflow-hidden bg-white px-2 text-ellipsis whitespace-nowrap transition-all peer-placeholder-shown:top-2.5 peer-placeholder-shown:left-3 peer-placeholder-shown:text-base peer-focus:-top-2.5 peer-focus:left-3 peer-focus:text-xs dark:bg-[#26272E] dark:text-gray-400`}
>
<div className="relative top-[7px] left-3">
<span className="text-silver dark:bg-charleston-green-2 dark:text-silver bg-white px-1 text-xs">
{t('modals.prompts.promptText')}
</span>
</div>
<label htmlFor="edit-prompt-content" className="sr-only">
{t('modals.prompts.promptText')}
</label>
<textarea
id="edit-prompt-content"
className="border-silver dark:border-silver/40 h-56 w-full resize-none rounded-lg border-2 px-3 py-2 outline-hidden dark:bg-transparent dark:text-white"
value={editPromptContent}
onChange={(e) => setEditPromptContent(e.target.value)}
aria-label="Prompt Text"
></textarea>
</div>
</div>
<div className="mt-6 flex flex-col items-start justify-between gap-4 sm:flex-row sm:items-center sm:gap-4">
<p className="flex flex-col text-sm font-medium text-gray-700 dark:text-gray-300">
<span className="font-bold">
{t('modals.prompts.variablesLabel')}
</span>
<span className="text-xs text-[10px] font-medium text-gray-500">
{t('modals.prompts.variablesDescription')}
</span>
</p>
<div className="flex flex-wrap items-center gap-2 sm:gap-3">
<Dropdown
options={systemVariableOptions}
selectedValue={t('modals.prompts.systemVariablesDropdownLabel')}
onSelect={(option) => {
const textarea = document.getElementById(
'edit-prompt-content',
) as HTMLTextAreaElement;
if (textarea) {
const cursorPosition = textarea.selectionStart;
const textBefore = editPromptContent.slice(0, cursorPosition);
const textAfter = editPromptContent.slice(cursorPosition);
// Add leading space if needed
const needsSpace =
cursorPosition > 0 &&
editPromptContent.charAt(cursorPosition - 1) !== ' ';
const newText =
textBefore +
(needsSpace ? ' ' : '') +
`{{ ${option.value} }}` +
textAfter;
setEditPromptContent(newText);
setTimeout(() => {
textarea.focus();
textarea.setSelectionRange(
cursorPosition +
option.value.length +
6 +
(needsSpace ? 1 : 0),
cursorPosition +
option.value.length +
6 +
(needsSpace ? 1 : 0),
);
}, 0);
}
}}
placeholder={t('modals.prompts.systemVariablesDropdownLabel')}
size="w-[140px] sm:w-[185px]"
rounded="3xl"
border="border"
contentSize="text-[12px] sm:text-[14px]"
/>
<Dropdown
options={toolVariables}
selectedValue={'Tool Variables'}
onSelect={(option) => {
const textarea = document.getElementById(
'edit-prompt-content',
) as HTMLTextAreaElement;
if (textarea) {
const cursorPosition = textarea.selectionStart;
const textBefore = editPromptContent.slice(0, cursorPosition);
const textAfter = editPromptContent.slice(cursorPosition);
// Add leading space if needed
const needsSpace =
cursorPosition > 0 &&
editPromptContent.charAt(cursorPosition - 1) !== ' ';
const newText =
textBefore +
(needsSpace ? ' ' : '') +
`{{ ${option.value} }}` +
textAfter;
setEditPromptContent(newText);
setTimeout(() => {
textarea.focus();
textarea.setSelectionRange(
cursorPosition +
option.value.length +
6 +
(needsSpace ? 1 : 0),
cursorPosition +
option.value.length +
6 +
(needsSpace ? 1 : 0),
);
}, 0);
}
}}
placeholder="Tool Variables"
size="w-[140px] sm:w-[171px]"
rounded="3xl"
border="border"
contentSize="text-[12px] sm:text-[14px]"
/>
</div>
</div>
<div className="mt-4 flex flex-col justify-between gap-4 text-[14px] sm:flex-row sm:gap-0">
<div className="flex justify-start">
<Link
to="https://docs.docsgpt.cloud/Guides/Customising-prompts"
target="_blank"
rel="noopener noreferrer"
className="flex items-center gap-2 text-sm font-medium text-[#6A4DF4] hover:underline"
>
<img
src={BookIcon}
alt=""
className="flex h-4 w-3 flex-shrink-0 items-center justify-center"
aria-hidden="true"
/>
<span className="text-[14px] font-bold">
{t('modals.prompts.learnAboutPrompts')}
</span>
</Link>
</div>
<div className="flex justify-end gap-2 sm:gap-4">
<button
onClick={() => setModalState('INACTIVE')}
className="rounded-3xl border border-[#D9534F] px-5 py-2 text-sm font-medium text-[#D9534F] transition-all hover:bg-[#D9534F] hover:text-white"
>
{t('modals.prompts.cancel')}
</button>
<div className="mt-6 flex flex-row-reverse gap-4">
<button
className={`bg-purple-30 hover:bg-violets-are-blue disabled:hover:bg-purple-30 rounded-3xl px-5 py-2 text-sm text-white transition-all ${
currentPromptEdit.type === 'public'
? 'cursor-not-allowed opacity-50'
: ''
}`}
onClick={() => {
handleEditPrompt &&
handleEditPrompt(currentPromptEdit.id, currentPromptEdit.type);
}}
className="rounded-3xl bg-[#6A4DF4] px-6 py-2 text-sm font-medium text-white transition-all hover:bg-[#563DD1] disabled:cursor-not-allowed disabled:opacity-50 disabled:hover:bg-[#6A4DF4]"
disabled={
currentPromptEdit.type === 'public' ||
disableSave ||
!editPromptName
}
disabled={currentPromptEdit.type === 'public' || disableSave}
title={
disableSave && editPromptName
? t('modals.prompts.nameExists')
@@ -685,28 +200,23 @@ export default function PromptsModal({
(prompt) =>
newName === prompt.name && prompt.id !== currentPromptEdit.id,
);
setDisableSave(
!(
newName &&
!nameExists &&
editPromptName &&
editPromptContent.trim() !== ''
),
);
const nameValid = newName && !nameExists;
const contentChanged = editPromptContent !== currentPromptEdit.content;
setDisableSave(!(nameValid || contentChanged));
setEditPromptName(newName);
} else {
const nameExists = existingPrompts.find(
(prompt) => newName === prompt.name,
);
setDisableSave(
!(newName && !nameExists && newPromptContent.trim() !== ''),
);
setDisableSave(!(newName && !nameExists));
setNewPromptName(newName);
}
};
const handleContentChange = (edit: boolean, newContent: string) => {
if (edit) {
const contentChanged = newContent !== currentPromptEdit.content;
const nameValid =
editPromptName &&
!existingPrompts.find(
@@ -714,13 +224,10 @@ export default function PromptsModal({
editPromptName === prompt.name &&
prompt.id !== currentPromptEdit.id,
);
setDisableSave(!(nameValid && newContent.trim() !== ''));
setDisableSave(!(nameValid || contentChanged));
setEditPromptContent(newContent);
} else {
const nameValid =
newPromptName &&
!existingPrompts.find((prompt) => newPromptName === prompt.name);
setDisableSave(!(nameValid && newContent.trim() !== ''));
setNewPromptContent(newContent);
}
};
@@ -765,8 +272,7 @@ export default function PromptsModal({
setNewPromptContent('');
}
}}
className="mx-4 mt-16 w-[95vw] max-w-[650px] rounded-2xl bg-white px-4 py-4 sm:px-6 sm:py-6 md:px-8 md:py-6 dark:bg-[#1E1E2A]"
contentClassName="!overflow-visible"
className="mt-24 sm:w-[512px]"
>
{view}
</WrapperModal>

View File

@@ -90,27 +90,9 @@ export function getLocalApiKey(): string | null {
return key;
}
export function getLocalRecentDocs(sourceDocs?: Doc[] | null): Doc[] | null {
const docsString = localStorage.getItem('DocsGPTRecentDocs');
const selectedDocs = docsString ? (JSON.parse(docsString) as Doc[]) : null;
if (!sourceDocs || !selectedDocs || selectedDocs.length === 0) {
return selectedDocs;
}
const isDocAvailable = (selected: Doc) => {
return sourceDocs.some((source) => {
if (source.id && selected.id) {
return source.id === selected.id;
}
return source.name === selected.name && source.date === selected.date;
});
};
const validDocs = selectedDocs.filter(isDocAvailable);
setLocalRecentDocs(validDocs.length > 0 ? validDocs : null);
return validDocs.length > 0 ? validDocs : null;
export function getLocalRecentDocs(): Doc[] | null {
const docs = localStorage.getItem('DocsGPTRecentDocs');
return docs ? (JSON.parse(docs) as Doc[]) : null;
}
export function getLocalPrompt(): string | null {

View File

@@ -8,11 +8,7 @@ import {
import { Agent } from '../agents/types';
import { ActiveState, Doc } from '../models/misc';
import { RootState } from '../store';
import {
setLocalApiKey,
setLocalRecentDocs,
getLocalRecentDocs,
} from './preferenceApi';
import { setLocalApiKey, setLocalRecentDocs } from './preferenceApi';
export interface Preference {
apiKey: string;
@@ -182,22 +178,6 @@ prefListenerMiddleware.startListening({
},
});
prefListenerMiddleware.startListening({
matcher: isAnyOf(setSourceDocs),
effect: (_action, listenerApi) => {
const state = listenerApi.getState() as RootState;
const sourceDocs = state.preference.sourceDocs;
if (sourceDocs && sourceDocs.length > 0) {
const validatedDocs = getLocalRecentDocs(sourceDocs);
if (validatedDocs !== null) {
listenerApi.dispatch(setSelectedDocs(validatedDocs));
} else {
listenerApi.dispatch(setSelectedDocs([]));
}
}
},
});
export const selectApiKey = (state: RootState) => state.preference.apiKey;
export const selectApiKeyStatus = (state: RootState) =>
!!state.preference.apiKey;

View File

@@ -27,8 +27,8 @@ import {
} from '../preferences/preferenceSlice';
import Upload from '../upload/Upload';
import { formatDate } from '../utils/dateTimeUtils';
import FileTree from '../components/FileTree';
import ConnectorTree from '../components/ConnectorTree';
import FileTreeComponent from '../components/FileTreeComponent';
import ConnectorTreeComponent from '../components/ConnectorTreeComponent';
import Chunks from '../components/Chunks';
const formatTokens = (tokens: number): string => {
@@ -273,13 +273,13 @@ export default function Sources({
<div className="mt-8 flex flex-col">
{documentToView.isNested ? (
documentToView.type === 'connector:file' ? (
<ConnectorTree
<ConnectorTreeComponent
docId={documentToView.id || ''}
sourceName={documentToView.name}
onBackToDocuments={() => setDocumentToView(undefined)}
/>
) : (
<FileTree
<FileTreeComponent
docId={documentToView.id || ''}
sourceName={documentToView.name}
onBackToDocuments={() => setDocumentToView(undefined)}

View File

@@ -192,7 +192,7 @@ export default function Tools() {
<div className="flex w-full flex-col items-center justify-center py-12">
<img
src={isDarkTheme ? NoFilesDarkIcon : NoFilesIcon}
alt={t('settings.tools.noToolsFound')}
alt="No tools found"
className="mx-auto mb-6 h-32 w-32"
/>
<p className="text-center text-lg text-gray-500 dark:text-gray-400">

View File

@@ -1,114 +0,0 @@
#!/usr/bin/env python3
"""
Migration script to convert conversation_id from DBRef to ObjectId in shared_conversations collection.
"""
import pymongo
import logging
from tqdm import tqdm
from bson.dbref import DBRef
from bson.objectid import ObjectId
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger()
# Configuration
MONGO_URI = "mongodb://localhost:27017/"
DB_NAME = "docsgpt"
def backup_collection(collection, backup_collection_name):
"""Backup collection before migration."""
logger.info(f"Backing up collection {collection.name} to {backup_collection_name}")
collection.aggregate([{"$out": backup_collection_name}])
logger.info("Backup completed")
def migrate_conversation_id_dbref_to_objectid():
"""Migrate conversation_id from DBRef to ObjectId."""
client = pymongo.MongoClient(MONGO_URI)
db = client[DB_NAME]
shared_conversations_collection = db["shared_conversations"]
try:
# Backup collection before migration
backup_collection(shared_conversations_collection, "shared_conversations_backup")
# Find all documents and filter for DBRef conversation_id in Python
all_documents = list(shared_conversations_collection.find({}))
documents_with_dbref = []
for doc in all_documents:
conversation_id_field = doc.get("conversation_id")
if isinstance(conversation_id_field, DBRef):
documents_with_dbref.append(doc)
if not documents_with_dbref:
logger.info("No documents with DBRef conversation_id found. Migration not needed.")
return
logger.info(f"Found {len(documents_with_dbref)} documents with DBRef conversation_id")
# Process each document
migrated_count = 0
error_count = 0
for doc in tqdm(documents_with_dbref, desc="Migrating conversation_id"):
try:
conversation_id_field = doc.get("conversation_id")
# Extract the ObjectId from the DBRef
dbref_id = conversation_id_field.id
if dbref_id and ObjectId.is_valid(dbref_id):
# Update the document to use direct ObjectId
result = shared_conversations_collection.update_one(
{"_id": doc["_id"]},
{"$set": {"conversation_id": dbref_id}}
)
if result.modified_count > 0:
migrated_count += 1
logger.debug(f"Successfully migrated document {doc['_id']}")
else:
error_count += 1
logger.warning(f"Failed to update document {doc['_id']}")
else:
error_count += 1
logger.warning(f"Invalid ObjectId in DBRef for document {doc['_id']}: {dbref_id}")
except Exception as e:
error_count += 1
logger.error(f"Error migrating document {doc['_id']}: {e}")
# Final verification
all_docs_after = list(shared_conversations_collection.find({}))
remaining_dbref = 0
for doc in all_docs_after:
if isinstance(doc.get("conversation_id"), DBRef):
remaining_dbref += 1
logger.info("Migration completed:")
logger.info(f" - Total documents processed: {len(documents_with_dbref)}")
logger.info(f" - Successfully migrated: {migrated_count}")
logger.info(f" - Errors encountered: {error_count}")
logger.info(f" - Remaining DBRef documents: {remaining_dbref}")
if remaining_dbref == 0:
logger.info("✅ Migration successful: All DBRef conversation_id fields have been converted to ObjectId")
else:
logger.warning(f"⚠️ Migration incomplete: {remaining_dbref} DBRef documents still exist")
except Exception as e:
logger.error(f"Migration failed: {e}")
raise
finally:
client.close()
if __name__ == "__main__":
try:
logger.info("Starting conversation_id DBRef to ObjectId migration...")
migrate_conversation_id_dbref_to_objectid()
logger.info("Migration completed successfully!")
except Exception as e:
logger.error(f"Migration failed due to error: {e}")
logger.warning("Please verify database state or restore from backups if necessary.")

View File

@@ -84,21 +84,6 @@ def migrate_mongo_atlas_vector_to_v1_vectorstore():
logger.info("Mongo Atlas migration completed")
if __name__ == "__main__":
try:
logger.info("Starting FAISS migration...")
migrate_faiss_to_v1_vectorstore()
logger.info("FAISS migration completed successfully ")
logger.info("Starting local Mongo migration...")
migrate_to_v1_vectorstore_mongo()
logger.info("Local Mongo migration completed successfully ")
logger.info("Starting Mongo Atlas migration...")
migrate_mongo_atlas_vector_to_v1_vectorstore()
logger.info("Mongo Atlas migration completed successfully ")
logger.info(" All migrations completed successfully!")
except Exception as e:
logger.error(f" Migration failed due to error: {e}")
logger.warning(" Please verify database state or restore from backups if necessary.")
migrate_faiss_to_v1_vectorstore()
migrate_to_v1_vectorstore_mongo()
migrate_mongo_atlas_vector_to_v1_vectorstore()

View File

@@ -64,14 +64,17 @@ class TestBaseAgentBuildMessages:
self, agent_base_params, mock_llm_creator, mock_llm_handler_creator
):
agent = ClassicAgent(**agent_base_params)
system_prompt = "System prompt content"
system_prompt = "System: {summaries}"
query = "What is Python?"
retrieved_data = [
{"text": "Python is a programming language", "filename": "python.txt"}
]
messages = agent._build_messages(system_prompt, query)
messages = agent._build_messages(system_prompt, query, retrieved_data)
assert len(messages) >= 2
assert messages[0]["role"] == "system"
assert messages[0]["content"] == system_prompt
assert "Python is a programming language" in messages[0]["content"]
assert messages[-1]["role"] == "user"
assert messages[-1]["content"] == query
@@ -85,10 +88,11 @@ class TestBaseAgentBuildMessages:
agent_base_params["chat_history"] = sample_chat_history
agent = ClassicAgent(**agent_base_params)
system_prompt = "System prompt"
system_prompt = "System: {summaries}"
query = "New question?"
retrieved_data = [{"text": "Data", "filename": "file.txt"}]
messages = agent._build_messages(system_prompt, query)
messages = agent._build_messages(system_prompt, query, retrieved_data)
user_messages = [m for m in messages if m["role"] == "user"]
assistant_messages = [m for m in messages if m["role"] == "assistant"]
@@ -114,7 +118,9 @@ class TestBaseAgentBuildMessages:
agent_base_params["chat_history"] = tool_call_history
agent = ClassicAgent(**agent_base_params)
messages = agent._build_messages("System prompt", "query")
messages = agent._build_messages(
"System: {summaries}", "query", [{"text": "data", "filename": "file.txt"}]
)
tool_messages = [m for m in messages if m["role"] == "tool"]
assert len(tool_messages) > 0
@@ -123,25 +129,32 @@ class TestBaseAgentBuildMessages:
self, agent_base_params, mock_llm_creator, mock_llm_handler_creator
):
agent = ClassicAgent(**agent_base_params)
retrieved_data = [{"text": "Document without filename or title"}]
messages = agent._build_messages("System prompt", "query")
messages = agent._build_messages("System: {summaries}", "query", retrieved_data)
assert messages[0]["role"] == "system"
assert messages[0]["content"] == "System prompt"
assert "Document without filename" in messages[0]["content"]
def test_build_messages_uses_title_as_fallback(
self, agent_base_params, mock_llm_creator, mock_llm_handler_creator
):
agent = ClassicAgent(**agent_base_params)
retrieved_data = [{"text": "Data", "title": "Title Doc"}]
agent._build_messages("System prompt", "query")
messages = agent._build_messages("System: {summaries}", "query", retrieved_data)
assert "Title Doc" in messages[0]["content"]
def test_build_messages_uses_source_as_fallback(
self, agent_base_params, mock_llm_creator, mock_llm_handler_creator
):
agent = ClassicAgent(**agent_base_params)
retrieved_data = [{"text": "Data", "source": "source.txt"}]
agent._build_messages("System prompt", "query")
messages = agent._build_messages("System: {summaries}", "query", retrieved_data)
assert "source.txt" in messages[0]["content"]
@pytest.mark.unit
@@ -462,6 +475,40 @@ class TestBaseAgentToolExecution:
assert truncated[0]["result"].endswith("...")
@pytest.mark.unit
class TestBaseAgentRetrieverSearch:
def test_retriever_search(
self,
agent_base_params,
mock_retriever,
mock_llm_creator,
mock_llm_handler_creator,
log_context,
):
agent = ClassicAgent(**agent_base_params)
results = agent._retriever_search(mock_retriever, "test query", log_context)
assert len(results) == 2
mock_retriever.search.assert_called_once_with("test query")
def test_retriever_search_logs_context(
self,
agent_base_params,
mock_retriever,
mock_llm_creator,
mock_llm_handler_creator,
log_context,
):
agent = ClassicAgent(**agent_base_params)
agent._retriever_search(mock_retriever, "test query", log_context)
assert len(log_context.stacks) == 1
assert log_context.stacks[0]["component"] == "retriever"
@pytest.mark.unit
class TestBaseAgentLLMGeneration:

View File

@@ -19,6 +19,7 @@ class TestClassicAgent:
def test_gen_inner_basic_flow(
self,
agent_base_params,
mock_retriever,
mock_llm,
mock_llm_handler,
mock_llm_creator,
@@ -39,7 +40,7 @@ class TestClassicAgent:
agent = ClassicAgent(**agent_base_params)
results = list(agent._gen_inner("Test query", log_context))
results = list(agent._gen_inner("Test query", mock_retriever, log_context))
assert len(results) >= 2
sources = [r for r in results if "sources" in r]
@@ -51,6 +52,7 @@ class TestClassicAgent:
def test_gen_inner_retrieves_documents(
self,
agent_base_params,
mock_retriever,
mock_llm,
mock_llm_handler,
mock_llm_creator,
@@ -66,11 +68,14 @@ class TestClassicAgent:
mock_llm_handler.process_message_flow = Mock(side_effect=mock_handler)
agent = ClassicAgent(**agent_base_params)
list(agent._gen_inner("Test query", log_context))
list(agent._gen_inner("Test query", mock_retriever, log_context))
mock_retriever.search.assert_called_once_with("Test query")
def test_gen_inner_uses_user_api_key_tools(
self,
agent_base_params,
mock_retriever,
mock_llm,
mock_llm_handler,
mock_llm_creator,
@@ -99,13 +104,14 @@ class TestClassicAgent:
agent_base_params["user_api_key"] = "api_key_123"
agent = ClassicAgent(**agent_base_params)
list(agent._gen_inner("Test query", log_context))
list(agent._gen_inner("Test query", mock_retriever, log_context))
assert len(agent.tools) >= 0
def test_gen_inner_uses_user_tools(
self,
agent_base_params,
mock_retriever,
mock_llm,
mock_llm_handler,
mock_llm_creator,
@@ -127,13 +133,14 @@ class TestClassicAgent:
mock_llm_handler.process_message_flow = Mock(side_effect=mock_handler)
agent = ClassicAgent(**agent_base_params)
list(agent._gen_inner("Test query", log_context))
list(agent._gen_inner("Test query", mock_retriever, log_context))
assert len(agent.tools) >= 0
def test_gen_inner_builds_correct_messages(
self,
agent_base_params,
mock_retriever,
mock_llm,
mock_llm_handler,
mock_llm_creator,
@@ -149,7 +156,7 @@ class TestClassicAgent:
mock_llm_handler.process_message_flow = Mock(side_effect=mock_handler)
agent = ClassicAgent(**agent_base_params)
list(agent._gen_inner("Test query", log_context))
list(agent._gen_inner("Test query", mock_retriever, log_context))
call_kwargs = mock_llm.gen_stream.call_args[1]
messages = call_kwargs["messages"]
@@ -162,6 +169,7 @@ class TestClassicAgent:
def test_gen_inner_logs_tool_calls(
self,
agent_base_params,
mock_retriever,
mock_llm,
mock_llm_handler,
mock_llm_creator,
@@ -179,7 +187,7 @@ class TestClassicAgent:
agent = ClassicAgent(**agent_base_params)
agent.tool_calls = [{"tool": "test", "result": "success"}]
list(agent._gen_inner("Test query", log_context))
list(agent._gen_inner("Test query", mock_retriever, log_context))
agent_logs = [s for s in log_context.stacks if s["component"] == "agent"]
assert len(agent_logs) == 1
@@ -192,6 +200,7 @@ class TestClassicAgentIntegration:
def test_gen_method_with_logging(
self,
agent_base_params,
mock_retriever,
mock_llm,
mock_llm_handler,
mock_llm_creator,
@@ -207,13 +216,14 @@ class TestClassicAgentIntegration:
agent = ClassicAgent(**agent_base_params)
results = list(agent.gen("Test query"))
results = list(agent.gen("Test query", mock_retriever))
assert len(results) >= 1
def test_gen_method_decorator_applied(
self,
agent_base_params,
mock_retriever,
mock_llm,
mock_llm_handler,
mock_llm_creator,

View File

@@ -35,7 +35,7 @@ class TestReActAgentContentExtraction:
agent = ReActAgent(**agent_base_params)
response = "Simple string response"
content = agent._extract_content(response)
content = agent._extract_content_from_llm_response(response)
assert content == "Simple string response"
@@ -48,7 +48,7 @@ class TestReActAgentContentExtraction:
response.message = Mock()
response.message.content = "Message content"
content = agent._extract_content(response)
content = agent._extract_content_from_llm_response(response)
assert content == "Message content"
@@ -64,7 +64,7 @@ class TestReActAgentContentExtraction:
response.message = None
response.content = None
content = agent._extract_content(response)
content = agent._extract_content_from_llm_response(response)
assert content == "OpenAI content"
@@ -81,7 +81,7 @@ class TestReActAgentContentExtraction:
response.message = None
response.choices = None
content = agent._extract_content(response)
content = agent._extract_content_from_llm_response(response)
assert content == "Anthropic content"
@@ -101,7 +101,7 @@ class TestReActAgentContentExtraction:
chunk2.choices[0].delta.content = "Part 2"
response = iter([chunk1, chunk2])
content = agent._extract_content(response)
content = agent._extract_content_from_llm_response(response)
assert content == "Part 1 Part 2"
@@ -123,7 +123,7 @@ class TestReActAgentContentExtraction:
chunk2.choices = []
response = iter([chunk1, chunk2])
content = agent._extract_content(response)
content = agent._extract_content_from_llm_response(response)
assert content == "Stream 1 Stream 2"
@@ -133,7 +133,7 @@ class TestReActAgentContentExtraction:
agent = ReActAgent(**agent_base_params)
response = iter(["chunk1", "chunk2", "chunk3"])
content = agent._extract_content(response)
content = agent._extract_content_from_llm_response(response)
assert content == "chunk1chunk2chunk3"
@@ -148,7 +148,7 @@ class TestReActAgentContentExtraction:
response.choices = None
response.content = None
content = agent._extract_content(response)
content = agent._extract_content_from_llm_response(response)
assert content == ""
@@ -161,7 +161,7 @@ class TestReActAgentPlanning:
new_callable=mock_open,
read_data="Test planning prompt: {query} {summaries} {prompt} {observations}",
)
def test_planning_phase(
def test_create_plan(
self,
mock_file,
agent_base_params,
@@ -171,27 +171,24 @@ class TestReActAgentPlanning:
log_context,
):
def mock_gen_stream(*args, **kwargs):
# Return simple strings - _extract_content handles strings directly
yield "Plan "
yield "content"
yield "Plan step 1"
yield "Plan step 2"
mock_llm.gen_stream = Mock(return_value=mock_gen_stream())
agent = ReActAgent(**agent_base_params)
agent.observations = ["Observation 1"]
plan_chunks = list(agent._planning_phase("Test query", log_context))
plan_chunks = list(agent._create_plan("Test query", "Test docs", log_context))
# Should yield thought dicts
assert any("thought" in chunk for chunk in plan_chunks)
assert agent.plan == "Plan content"
assert len(plan_chunks) == 2
assert plan_chunks[0] == "Plan step 1"
assert plan_chunks[1] == "Plan step 2"
mock_llm.gen_stream.assert_called_once()
@patch("builtins.open", new_callable=mock_open, read_data="Test: {query}")
def test_planning_phase_fills_template(
def test_create_plan_fills_template(
self,
mock_file,
agent_base_params,
@@ -200,10 +197,10 @@ class TestReActAgentPlanning:
mock_llm_handler_creator,
log_context,
):
mock_llm.gen_stream = Mock(return_value=iter([]))
mock_llm.gen_stream = Mock(return_value=iter(["Plan"]))
agent = ReActAgent(**agent_base_params)
list(agent._planning_phase("My query", log_context))
list(agent._create_plan("My query", "Docs", log_context))
call_args = mock_llm.gen_stream.call_args[1]
messages = call_args["messages"]
@@ -219,7 +216,7 @@ class TestReActAgentFinalAnswer:
new_callable=mock_open,
read_data="Final answer for: {query} with {observations}",
)
def test_synthesis_phase(
def test_create_final_answer(
self,
mock_file,
agent_base_params,
@@ -229,22 +226,24 @@ class TestReActAgentFinalAnswer:
log_context,
):
def mock_gen_stream(*args, **kwargs):
yield Mock(choices=[Mock(delta=Mock(content="Final "))])
yield Mock(choices=[Mock(delta=Mock(content="answer"))])
yield "Final "
yield "answer"
mock_llm.gen_stream = Mock(return_value=mock_gen_stream())
agent = ReActAgent(**agent_base_params)
agent.observations = ["Obs 1", "Obs 2"]
observations = ["Obs 1", "Obs 2"]
answer_chunks = list(agent._synthesis_phase("Test query", log_context))
answer_chunks = list(
agent._create_final_answer("Test query", observations, log_context)
)
# Should yield answer dicts
assert any("answer" in chunk for chunk in answer_chunks)
assert len(answer_chunks) == 2
assert answer_chunks[0] == "Final "
assert answer_chunks[1] == "answer"
@patch("builtins.open", new_callable=mock_open, read_data="Answer: {observations}")
def test_synthesis_phase_truncates_long_observations(
def test_create_final_answer_truncates_long_observations(
self,
mock_file,
agent_base_params,
@@ -253,20 +252,20 @@ class TestReActAgentFinalAnswer:
mock_llm_handler_creator,
log_context,
):
mock_llm.gen_stream = Mock(return_value=iter([]))
mock_llm.gen_stream = Mock(return_value=iter(["Answer"]))
agent = ReActAgent(**agent_base_params)
agent.observations = ["A" * 15000]
long_obs = ["A" * 15000]
list(agent._synthesis_phase("Query", log_context))
list(agent._create_final_answer("Query", long_obs, log_context))
call_args = mock_llm.gen_stream.call_args[1]
messages = call_args["messages"]
assert "truncated" in messages[0]["content"]
assert "observations truncated" in messages[0]["content"]
@patch("builtins.open", new_callable=mock_open, read_data="Test: {query}")
def test_synthesis_phase_no_tools(
def test_create_final_answer_no_tools(
self,
mock_file,
agent_base_params,
@@ -275,11 +274,10 @@ class TestReActAgentFinalAnswer:
mock_llm_handler_creator,
log_context,
):
mock_llm.gen_stream = Mock(return_value=iter([]))
mock_llm.gen_stream = Mock(return_value=iter(["Answer"]))
agent = ReActAgent(**agent_base_params)
agent.observations = ["Obs"]
list(agent._synthesis_phase("Query", log_context))
list(agent._create_final_answer("Query", ["Obs"], log_context))
call_args = mock_llm.gen_stream.call_args[1]
@@ -296,6 +294,7 @@ class TestReActAgentGenInner:
self,
mock_file,
agent_base_params,
mock_retriever,
mock_llm,
mock_llm_handler,
mock_llm_creator,
@@ -314,7 +313,7 @@ class TestReActAgentGenInner:
agent.plan = "Old plan"
agent.observations = ["Old obs"]
list(agent._gen_inner("New query", log_context))
list(agent._gen_inner("New query", mock_retriever, log_context))
assert agent.plan != "Old plan"
assert len(agent.observations) > 0
@@ -324,6 +323,7 @@ class TestReActAgentGenInner:
self,
mock_file,
agent_base_params,
mock_retriever,
mock_llm,
mock_llm_handler,
mock_llm_creator,
@@ -351,7 +351,7 @@ class TestReActAgentGenInner:
mock_llm_handler.process_message_flow = Mock(side_effect=mock_handler)
agent = ReActAgent(**agent_base_params)
results = list(agent._gen_inner("Test query", log_context))
results = list(agent._gen_inner("Test query", mock_retriever, log_context))
assert any("answer" in r for r in results)
@@ -360,6 +360,7 @@ class TestReActAgentGenInner:
self,
mock_file,
agent_base_params,
mock_retriever,
mock_llm,
mock_llm_handler,
mock_llm_creator,
@@ -385,7 +386,7 @@ class TestReActAgentGenInner:
agent = ReActAgent(**agent_base_params)
results = list(agent._gen_inner("Test query", log_context))
results = list(agent._gen_inner("Test query", mock_retriever, log_context))
thought_results = [r for r in results if "thought" in r]
assert len(thought_results) > 0
@@ -395,6 +396,7 @@ class TestReActAgentGenInner:
self,
mock_file,
agent_base_params,
mock_retriever,
mock_llm,
mock_llm_handler,
mock_llm_creator,
@@ -410,7 +412,7 @@ class TestReActAgentGenInner:
mock_llm_handler.process_message_flow = Mock(side_effect=mock_handler)
agent = ReActAgent(**agent_base_params)
results = list(agent._gen_inner("Test query", log_context))
results = list(agent._gen_inner("Test query", mock_retriever, log_context))
sources = [r for r in results if "sources" in r]
assert len(sources) >= 1
@@ -420,6 +422,7 @@ class TestReActAgentGenInner:
self,
mock_file,
agent_base_params,
mock_retriever,
mock_llm,
mock_llm_handler,
mock_llm_creator,
@@ -437,7 +440,7 @@ class TestReActAgentGenInner:
agent = ReActAgent(**agent_base_params)
agent.tool_calls = [{"tool": "test", "result": "A" * 100}]
results = list(agent._gen_inner("Test query", log_context))
results = list(agent._gen_inner("Test query", mock_retriever, log_context))
tool_call_results = [r for r in results if "tool_calls" in r]
if tool_call_results:
@@ -448,6 +451,7 @@ class TestReActAgentGenInner:
self,
mock_file,
agent_base_params,
mock_retriever,
mock_llm,
mock_llm_handler,
mock_llm_creator,
@@ -463,7 +467,7 @@ class TestReActAgentGenInner:
mock_llm_handler.process_message_flow = Mock(side_effect=mock_handler)
agent = ReActAgent(**agent_base_params)
list(agent._gen_inner("Test query", log_context))
list(agent._gen_inner("Test query", mock_retriever, log_context))
assert len(agent.observations) > 0
@@ -480,6 +484,7 @@ class TestReActAgentIntegration:
self,
mock_file,
agent_base_params,
mock_retriever,
mock_llm,
mock_llm_handler,
mock_llm_creator,
@@ -507,7 +512,7 @@ class TestReActAgentIntegration:
mock_llm_handler.process_message_flow = Mock(side_effect=mock_handler)
agent = ReActAgent(**agent_base_params)
results = list(agent._gen_inner("Complex query", log_context))
results = list(agent._gen_inner("Complex query", mock_retriever, log_context))
assert len(results) > 0
assert any("thought" in r for r in results)

View File

@@ -315,12 +315,16 @@ class TestCompleteStreamMethod:
]
)
mock_retriever = MagicMock()
mock_retriever.get_params.return_value = {}
decoded_token = {"sub": "user123"}
stream = list(
resource.complete_stream(
question="Test question",
agent=mock_agent,
retriever=mock_retriever,
conversation_id=None,
user_api_key=None,
decoded_token=decoded_token,
@@ -347,12 +351,16 @@ class TestCompleteStreamMethod:
]
)
mock_retriever = MagicMock()
mock_retriever.get_params.return_value = {}
decoded_token = {"sub": "user123"}
stream = list(
resource.complete_stream(
question="Test?",
agent=mock_agent,
retriever=mock_retriever,
conversation_id=None,
user_api_key=None,
decoded_token=decoded_token,
@@ -373,12 +381,16 @@ class TestCompleteStreamMethod:
mock_agent = MagicMock()
mock_agent.gen.side_effect = Exception("Test error")
mock_retriever = MagicMock()
mock_retriever.get_params.return_value = {}
decoded_token = {"sub": "user123"}
stream = list(
resource.complete_stream(
question="Test?",
agent=mock_agent,
retriever=mock_retriever,
conversation_id=None,
user_api_key=None,
decoded_token=decoded_token,
@@ -401,6 +413,9 @@ class TestCompleteStreamMethod:
]
)
mock_retriever = MagicMock()
mock_retriever.get_params.return_value = {}
decoded_token = {"sub": "user123"}
with patch.object(
@@ -412,7 +427,8 @@ class TestCompleteStreamMethod:
resource.complete_stream(
question="Test?",
agent=mock_agent,
conversation_id=None,
retriever=mock_retriever,
conversation_id=None,
user_api_key=None,
decoded_token=decoded_token,
should_save_conversation=True,
@@ -445,6 +461,7 @@ class TestCompleteStreamMethod:
resource.complete_stream(
question="Test question?",
agent=mock_agent,
retriever=mock_retriever,
conversation_id=None,
user_api_key="test_key",
decoded_token=decoded_token,

View File

@@ -1,850 +0,0 @@
import pytest
@pytest.mark.unit
class TestTemplateEngine:
def test_render_simple_template(self):
from application.templates.template_engine import TemplateEngine
engine = TemplateEngine()
result = engine.render("Hello {{ name }}", {"name": "World"})
assert result == "Hello World"
def test_render_with_namespace(self):
from application.templates.template_engine import TemplateEngine
engine = TemplateEngine()
context = {
"user": {"name": "Alice", "role": "admin"},
"system": {"date": "2025-10-22"},
}
result = engine.render(
"{{ user.name }} is a {{ user.role }} on {{ system.date }}", context
)
assert result == "Alice is a admin on 2025-10-22"
def test_render_empty_template(self):
from application.templates.template_engine import TemplateEngine
engine = TemplateEngine()
result = engine.render("", {"key": "value"})
assert result == ""
def test_render_template_without_variables(self):
from application.templates.template_engine import TemplateEngine
engine = TemplateEngine()
result = engine.render("Just plain text", {})
assert result == "Just plain text"
def test_render_undefined_variable_returns_empty_string(self):
from application.templates.template_engine import TemplateEngine
engine = TemplateEngine()
result = engine.render("Hello {{ undefined_var }}", {})
assert result == "Hello "
def test_render_syntax_error_raises_error(self):
from application.templates.template_engine import (
TemplateEngine,
TemplateRenderError,
)
engine = TemplateEngine()
with pytest.raises(TemplateRenderError, match="Template syntax error"):
engine.render("Hello {{ name", {"name": "World"})
def test_validate_template_valid(self):
from application.templates.template_engine import TemplateEngine
engine = TemplateEngine()
assert engine.validate_template("Valid {{ variable }}") is True
def test_validate_template_invalid(self):
from application.templates.template_engine import TemplateEngine
engine = TemplateEngine()
assert engine.validate_template("Invalid {{ variable") is False
def test_validate_empty_template(self):
from application.templates.template_engine import TemplateEngine
engine = TemplateEngine()
assert engine.validate_template("") is True
def test_extract_variables(self):
from application.templates.template_engine import TemplateEngine
engine = TemplateEngine()
template = "{{ user.name }} and {{ user.email }}"
result = engine.extract_variables(template)
assert isinstance(result, set)
@pytest.mark.unit
class TestSystemNamespace:
def test_system_namespace_build(self):
from application.templates.namespaces import SystemNamespace
builder = SystemNamespace()
context = builder.build(
request_id="req_123", user_id="user_456", extra_param="ignored"
)
assert context["request_id"] == "req_123"
assert context["user_id"] == "user_456"
assert "date" in context
assert "time" in context
assert "timestamp" in context
def test_system_namespace_generates_request_id(self):
from application.templates.namespaces import SystemNamespace
builder = SystemNamespace()
context = builder.build(user_id="user_123")
assert context["request_id"] is not None
assert len(context["request_id"]) > 0
def test_system_namespace_name(self):
from application.templates.namespaces import SystemNamespace
builder = SystemNamespace()
assert builder.namespace_name == "system"
def test_system_namespace_date_format(self):
from application.templates.namespaces import SystemNamespace
builder = SystemNamespace()
context = builder.build()
import re
assert re.match(r"\d{4}-\d{2}-\d{2}", context["date"])
assert re.match(r"\d{2}:\d{2}:\d{2}", context["time"])
@pytest.mark.unit
class TestPassthroughNamespace:
def test_passthrough_namespace_build(self):
from application.templates.namespaces import PassthroughNamespace
builder = PassthroughNamespace()
passthrough_data = {"company": "Acme", "user_name": "John", "count": 42}
context = builder.build(passthrough_data=passthrough_data)
assert context["company"] == "Acme"
assert context["user_name"] == "John"
assert context["count"] == 42
def test_passthrough_namespace_empty(self):
from application.templates.namespaces import PassthroughNamespace
builder = PassthroughNamespace()
context = builder.build(passthrough_data=None)
assert context == {}
def test_passthrough_namespace_filters_unsafe_values(self):
from application.templates.namespaces import PassthroughNamespace
builder = PassthroughNamespace()
passthrough_data = {
"safe_string": "value",
"unsafe_object": {"key": "value"},
"safe_bool": True,
"unsafe_list": [1, 2, 3],
"safe_float": 3.14,
}
context = builder.build(passthrough_data=passthrough_data)
assert context["safe_string"] == "value"
assert context["safe_bool"] is True
assert context["safe_float"] == 3.14
assert "unsafe_object" not in context
assert "unsafe_list" not in context
def test_passthrough_namespace_allows_none_values(self):
from application.templates.namespaces import PassthroughNamespace
builder = PassthroughNamespace()
passthrough_data = {"nullable_field": None}
context = builder.build(passthrough_data=passthrough_data)
assert context["nullable_field"] is None
def test_passthrough_namespace_name(self):
from application.templates.namespaces import PassthroughNamespace
builder = PassthroughNamespace()
assert builder.namespace_name == "passthrough"
@pytest.mark.unit
class TestSourceNamespace:
def test_source_namespace_build_with_docs(self):
from application.templates.namespaces import SourceNamespace
builder = SourceNamespace()
docs = [
{"text": "Doc 1", "filename": "file1.txt"},
{"text": "Doc 2", "filename": "file2.txt"},
]
docs_together = "Doc 1 content\n\nDoc 2 content"
context = builder.build(docs=docs, docs_together=docs_together)
assert context["documents"] == docs
assert context["count"] == 2
assert context["content"] == docs_together
assert context["summaries"] == docs_together
def test_source_namespace_build_empty(self):
from application.templates.namespaces import SourceNamespace
builder = SourceNamespace()
context = builder.build(docs=None, docs_together=None)
assert context == {}
def test_source_namespace_build_docs_only(self):
from application.templates.namespaces import SourceNamespace
builder = SourceNamespace()
docs = [{"text": "Doc 1"}]
context = builder.build(docs=docs)
assert context["documents"] == docs
assert context["count"] == 1
assert "content" not in context
def test_source_namespace_build_docs_together_only(self):
from application.templates.namespaces import SourceNamespace
builder = SourceNamespace()
docs_together = "Content here"
context = builder.build(docs_together=docs_together)
assert context["content"] == docs_together
assert context["summaries"] == docs_together
assert "documents" not in context
def test_source_namespace_name(self):
from application.templates.namespaces import SourceNamespace
builder = SourceNamespace()
assert builder.namespace_name == "source"
@pytest.mark.unit
class TestToolsNamespace:
def test_tools_namespace_build_with_memory_data(self):
from application.templates.namespaces import ToolsNamespace
builder = ToolsNamespace()
tools_data = {
"memory": {"root": "Files:\n- /notes.txt\n- /tasks.txt", "available": True}
}
context = builder.build(tools_data=tools_data)
assert context["memory"]["root"] == "Files:\n- /notes.txt\n- /tasks.txt"
assert context["memory"]["available"] is True
def test_tools_namespace_build_empty(self):
from application.templates.namespaces import ToolsNamespace
builder = ToolsNamespace()
context = builder.build(tools_data=None)
assert context == {}
def test_tools_namespace_build_multiple_tools(self):
from application.templates.namespaces import ToolsNamespace
builder = ToolsNamespace()
tools_data = {
"memory": {"root": "content", "available": True},
"search": {"results": ["result1", "result2"]},
"api": {"status": "success"},
}
context = builder.build(tools_data=tools_data)
assert "memory" in context
assert "search" in context
assert "api" in context
assert context["memory"]["root"] == "content"
assert context["search"]["results"] == ["result1", "result2"]
assert context["api"]["status"] == "success"
def test_tools_namespace_filters_unsafe_values(self):
from application.templates.namespaces import ToolsNamespace
builder = ToolsNamespace()
class UnsafeObject:
pass
tools_data = {"safe_tool": {"result": "success"}, "unsafe_tool": UnsafeObject()}
context = builder.build(tools_data=tools_data)
assert "safe_tool" in context
assert "unsafe_tool" not in context
def test_tools_namespace_name(self):
from application.templates.namespaces import ToolsNamespace
builder = ToolsNamespace()
assert builder.namespace_name == "tools"
def test_tools_namespace_with_empty_dict(self):
from application.templates.namespaces import ToolsNamespace
builder = ToolsNamespace()
context = builder.build(tools_data={})
assert context == {}
@pytest.mark.unit
class TestNamespaceManagerWithTools:
def test_namespace_manager_includes_tools_in_context(self):
from application.templates.namespaces import NamespaceManager
manager = NamespaceManager()
tools_data = {"memory": {"root": "content", "available": True}}
context = manager.build_context(tools_data=tools_data)
assert "tools" in context
assert context["tools"]["memory"]["root"] == "content"
def test_namespace_manager_build_context_all_namespaces(self):
from application.templates.namespaces import NamespaceManager
manager = NamespaceManager()
context = manager.build_context(
request_id="req_123",
user_id="user_456",
passthrough_data={"key": "value"},
docs_together="Document content",
tools_data={"memory": {"root": "notes"}},
)
assert "system" in context
assert "passthrough" in context
assert "source" in context
assert "tools" in context
assert context["tools"]["memory"]["root"] == "notes"
def test_namespace_manager_build_context_partial_data(self):
from application.templates.namespaces import NamespaceManager
manager = NamespaceManager()
context = manager.build_context(request_id="req_123")
assert "system" in context
assert context["system"]["request_id"] == "req_123"
def test_namespace_manager_get_builder(self):
from application.templates.namespaces import NamespaceManager, SystemNamespace
manager = NamespaceManager()
builder = manager.get_builder("system")
assert isinstance(builder, SystemNamespace)
def test_namespace_manager_get_builder_nonexistent(self):
from application.templates.namespaces import NamespaceManager
manager = NamespaceManager()
builder = manager.get_builder("nonexistent")
assert builder is None
def test_namespace_manager_handles_builder_exceptions(self):
from unittest.mock import patch
from application.templates.namespaces import NamespaceManager
manager = NamespaceManager()
with patch.object(
manager._builders["system"],
"build",
side_effect=Exception("Builder error"),
):
context = manager.build_context()
# Namespace should be present but empty when builder fails
assert "system" in context
assert context["system"] == {}
@pytest.mark.unit
class TestPromptRenderer:
def test_render_prompt_with_template_syntax(self):
from application.api.answer.services.prompt_renderer import PromptRenderer
renderer = PromptRenderer()
prompt = "Hello {{ system.user_id }}, today is {{ system.date }}"
result = renderer.render_prompt(prompt, user_id="user_123")
assert "user_123" in result
assert "202" in result
def test_render_prompt_with_passthrough_data(self):
from application.api.answer.services.prompt_renderer import PromptRenderer
renderer = PromptRenderer()
prompt = "Company: {{ passthrough.company }}\nUser: {{ passthrough.user_name }}"
passthrough_data = {"company": "Acme", "user_name": "John"}
result = renderer.render_prompt(prompt, passthrough_data=passthrough_data)
assert "Company: Acme" in result
assert "User: John" in result
def test_render_prompt_with_source_docs(self):
from application.api.answer.services.prompt_renderer import PromptRenderer
renderer = PromptRenderer()
prompt = "Use this information:\n{{ source.content }}"
docs_together = "Important document content"
result = renderer.render_prompt(prompt, docs_together=docs_together)
assert "Use this information:" in result
assert "Important document content" in result
def test_render_prompt_empty_content(self):
from application.api.answer.services.prompt_renderer import PromptRenderer
renderer = PromptRenderer()
result = renderer.render_prompt("")
assert result == ""
def test_render_prompt_legacy_format_with_summaries(self):
from application.api.answer.services.prompt_renderer import PromptRenderer
renderer = PromptRenderer()
prompt = "Context: {summaries}\nQuestion: What is this?"
docs_together = "This is the document content"
result = renderer.render_prompt(prompt, docs_together=docs_together)
assert "Context: This is the document content" in result
def test_render_prompt_legacy_format_without_docs(self):
from application.api.answer.services.prompt_renderer import PromptRenderer
renderer = PromptRenderer()
prompt = "Context: {summaries}\nQuestion: What is this?"
result = renderer.render_prompt(prompt)
assert "Context: {summaries}" in result
def test_render_prompt_combined_namespace_variables(self):
from application.api.answer.services.prompt_renderer import PromptRenderer
renderer = PromptRenderer()
prompt = "User: {{ passthrough.user }}, Date: {{ system.date }}, Docs: {{ source.content }}"
passthrough_data = {"user": "Alice"}
docs_together = "Doc content"
result = renderer.render_prompt(
prompt,
passthrough_data=passthrough_data,
docs_together=docs_together,
)
assert "User: Alice" in result
assert "Date: 202" in result
assert "Doc content" in result
def test_render_prompt_with_tools_data(self):
from application.api.answer.services.prompt_renderer import PromptRenderer
renderer = PromptRenderer()
prompt = "Memory contents:\n{{ tools.memory.root }}\n\nStatus: {{ tools.memory.available }}"
tools_data = {
"memory": {"root": "Files:\n- /notes.txt\n- /tasks.txt", "available": True}
}
result = renderer.render_prompt(prompt, tools_data=tools_data)
assert "Memory contents:" in result
assert "Files:" in result
assert "/notes.txt" in result
assert "/tasks.txt" in result
assert "Status: True" in result
def test_render_prompt_with_all_namespaces(self):
from application.api.answer.services.prompt_renderer import PromptRenderer
renderer = PromptRenderer()
prompt = """
System: {{ system.date }}
User: {{ passthrough.user }}
Docs: {{ source.content }}
Memory: {{ tools.memory.root }}
"""
passthrough_data = {"user": "Alice"}
docs_together = "Important docs"
tools_data = {"memory": {"root": "Notes content", "available": True}}
result = renderer.render_prompt(
prompt,
passthrough_data=passthrough_data,
docs_together=docs_together,
tools_data=tools_data,
)
assert "202" in result
assert "Alice" in result
assert "Important docs" in result
assert "Notes content" in result
def test_render_prompt_undefined_variable_returns_empty_string(self):
from application.api.answer.services.prompt_renderer import PromptRenderer
renderer = PromptRenderer()
prompt = "Hello {{ undefined_var }}"
result = renderer.render_prompt(prompt)
assert result == "Hello "
def test_render_prompt_with_undefined_variable_in_template(self):
from application.api.answer.services.prompt_renderer import PromptRenderer
renderer = PromptRenderer()
prompt = "Hello {{ undefined_name }}"
result = renderer.render_prompt(prompt)
assert result == "Hello "
def test_validate_template_valid(self):
from application.api.answer.services.prompt_renderer import PromptRenderer
renderer = PromptRenderer()
assert renderer.validate_template("Valid {{ variable }}") is True
def test_validate_template_invalid(self):
from application.api.answer.services.prompt_renderer import PromptRenderer
renderer = PromptRenderer()
assert renderer.validate_template("Invalid {{ variable") is False
def test_extract_variables(self):
from application.api.answer.services.prompt_renderer import PromptRenderer
renderer = PromptRenderer()
template = "{{ var1 }} and {{ var2 }}"
result = renderer.extract_variables(template)
assert isinstance(result, set)
def test_uses_template_syntax_detection(self):
from application.api.answer.services.prompt_renderer import PromptRenderer
renderer = PromptRenderer()
assert renderer._uses_template_syntax("Text with {{ var }}") is True
assert renderer._uses_template_syntax("Text with {var}") is False
assert renderer._uses_template_syntax("Plain text") is False
def test_apply_legacy_substitutions(self):
from application.api.answer.services.prompt_renderer import PromptRenderer
renderer = PromptRenderer()
prompt = "Use {summaries} to answer"
docs_together = "Important info"
result = renderer._apply_legacy_substitutions(prompt, docs_together)
assert "Use Important info to answer" in result
def test_apply_legacy_substitutions_without_docs(self):
from application.api.answer.services.prompt_renderer import PromptRenderer
renderer = PromptRenderer()
prompt = "Use {summaries} to answer"
result = renderer._apply_legacy_substitutions(prompt, None)
assert result == prompt
@pytest.mark.unit
class TestPromptRendererIntegration:
def test_render_prompt_real_world_scenario(self):
from application.api.answer.services.prompt_renderer import PromptRenderer
renderer = PromptRenderer()
prompt = "You are helping {{ passthrough.company }}.\n\nUser: {{ passthrough.user_name }}\n\nRequest ID: {{ system.request_id }}\n\nDate: {{ system.date }}\n\nReference Documents:\n\n{{ source.content }}\n\nPlease answer the question professionally."
passthrough_data = {"company": "Tech Corp", "user_name": "Alice"}
docs_together = "Document 1: Technical specs\nDocument 2: Requirements"
result = renderer.render_prompt(
prompt,
request_id="req_123",
user_id="user_456",
passthrough_data=passthrough_data,
docs_together=docs_together,
)
assert "Tech Corp" in result
assert "Alice" in result
assert "req_123" in result
assert "Technical specs" in result
assert "professionally" in result
def test_render_prompt_multiple_doc_references(self):
from application.api.answer.services.prompt_renderer import PromptRenderer
renderer = PromptRenderer()
prompt = """Documents: {{ source.content }} \n\nAlso summaries: {{ source.summaries }}"""
docs_together = "Content here"
result = renderer.render_prompt(prompt, docs_together=docs_together)
assert result.count("Content here") == 2
@pytest.mark.unit
class TestStreamProcessorPromptRendering:
def test_stream_processor_pre_fetch_docs_none_doc_mode(self, mock_mongo_db):
from application.api.answer.services.stream_processor import StreamProcessor
request_data = {"question": "Test question", "isNoneDoc": True}
processor = StreamProcessor(request_data, None)
docs_together, docs_list = processor.pre_fetch_docs("Test question")
assert docs_together is None
assert docs_list is None
def test_pre_fetch_tools_disabled_globally(self, mock_mongo_db, monkeypatch):
from application.api.answer.services.stream_processor import StreamProcessor
from application.core.settings import settings
monkeypatch.setattr(settings, "ENABLE_TOOL_PREFETCH", False)
request_data = {"question": "test"}
processor = StreamProcessor(request_data, {"sub": "user1"})
result = processor.pre_fetch_tools()
assert result is None
def test_pre_fetch_tools_disabled_per_request(self, mock_mongo_db):
from application.api.answer.services.stream_processor import StreamProcessor
request_data = {"question": "test", "disable_tool_prefetch": True}
processor = StreamProcessor(request_data, {"sub": "user1"})
result = processor.pre_fetch_tools()
assert result is None
def test_pre_fetch_tools_skips_tool_with_no_actions(self, mock_mongo_db):
from unittest.mock import MagicMock, patch
from application.api.answer.services.stream_processor import StreamProcessor
from application.core.mongo_db import MongoDB
from bson import ObjectId
db = MongoDB.get_client()[list(MongoDB.get_client().keys())[0]]
tool_doc = {
"_id": ObjectId(),
"name": "memory",
"user": "user1",
"status": True,
"config": {},
}
db["user_tools"].insert_one(tool_doc)
request_data = {"question": "test"}
processor = StreamProcessor(request_data, {"sub": "user1"})
with patch(
"application.agents.tools.tool_manager.ToolManager"
) as mock_manager_class:
mock_manager = MagicMock()
mock_manager_class.return_value = mock_manager
# Mock the tool instance
mock_tool = MagicMock()
mock_manager.load_tool.return_value = mock_tool
# Tool has no actions
mock_tool.get_actions_metadata.return_value = []
result = processor.pre_fetch_tools()
# Should return None when tool has no actions
assert result is None
def test_pre_fetch_tools_enabled_by_default(self, mock_mongo_db, monkeypatch):
from unittest.mock import MagicMock, patch
from application.api.answer.services.stream_processor import StreamProcessor
from application.core.mongo_db import MongoDB
from bson import ObjectId
db = MongoDB.get_client()[list(MongoDB.get_client().keys())[0]]
tool_doc = {
"_id": ObjectId(),
"name": "memory",
"user": "user1",
"status": True,
"config": {},
}
db["user_tools"].insert_one(tool_doc)
request_data = {"question": "test"}
processor = StreamProcessor(request_data, {"sub": "user1"})
with patch(
"application.agents.tools.tool_manager.ToolManager"
) as mock_manager_class:
mock_manager = MagicMock()
mock_manager_class.return_value = mock_manager
# Mock the tool instance returned by load_tool
mock_tool = MagicMock()
mock_manager.load_tool.return_value = mock_tool
# Mock get_actions_metadata on the tool instance
mock_tool.get_actions_metadata.return_value = [
{"name": "memory_ls", "description": "List files", "parameters": {"properties": {}}}
]
mock_tool.execute_action.return_value = "Directory: /\n- file.txt"
result = processor.pre_fetch_tools()
assert result is not None
assert "memory" in result
assert "memory_ls" in result["memory"]
def test_pre_fetch_tools_no_tools_configured(self, mock_mongo_db):
from application.api.answer.services.stream_processor import StreamProcessor
request_data = {"question": "test"}
processor = StreamProcessor(request_data, {"sub": "user1"})
result = processor.pre_fetch_tools()
assert result is None
def test_pre_fetch_tools_memory_returns_error(self, mock_mongo_db):
from unittest.mock import MagicMock, patch
from application.api.answer.services.stream_processor import StreamProcessor
from application.core.mongo_db import MongoDB
from bson import ObjectId
db = MongoDB.get_client()[list(MongoDB.get_client().keys())[0]]
tool_doc = {
"_id": ObjectId(),
"name": "memory",
"user": "user1",
"status": True,
"config": {},
}
db["user_tools"].insert_one(tool_doc)
request_data = {"question": "test"}
processor = StreamProcessor(request_data, {"sub": "user1"})
with patch(
"application.agents.tools.tool_manager.ToolManager"
) as mock_manager_class:
mock_manager = MagicMock()
mock_manager_class.return_value = mock_manager
# Mock the tool instance
mock_tool = MagicMock()
mock_manager.load_tool.return_value = mock_tool
mock_tool.get_actions_metadata.return_value = [
{"name": "memory_ls", "description": "List files", "parameters": {"properties": {}}}
]
# Simulate execution error
mock_tool.execute_action.side_effect = Exception("Tool error")
result = processor.pre_fetch_tools()
# Should return None when all actions fail
assert result is None
def test_pre_fetch_tools_memory_returns_empty(self, mock_mongo_db):
from unittest.mock import MagicMock, patch
from application.api.answer.services.stream_processor import StreamProcessor
from application.core.mongo_db import MongoDB
from bson import ObjectId
db = MongoDB.get_client()[list(MongoDB.get_client().keys())[0]]
tool_doc = {
"_id": ObjectId(),
"name": "memory",
"user": "user1",
"status": True,
"config": {},
}
db["user_tools"].insert_one(tool_doc)
request_data = {"question": "test"}
processor = StreamProcessor(request_data, {"sub": "user1"})
with patch(
"application.agents.tools.tool_manager.ToolManager"
) as mock_manager_class:
mock_manager = MagicMock()
mock_manager_class.return_value = mock_manager
# Mock the tool instance
mock_tool = MagicMock()
mock_manager.load_tool.return_value = mock_tool
mock_tool.get_actions_metadata.return_value = [
{"name": "memory_ls", "description": "List files", "parameters": {"properties": {}}}
]
# Return empty string
mock_tool.execute_action.return_value = ""
result = processor.pre_fetch_tools()
# Empty result should still be included
assert result is not None
assert "memory" in result

View File

@@ -250,330 +250,3 @@ class TestStreamProcessorAttachments:
"attachments" not in processor.data
or processor.data.get("attachments") is None
)
@pytest.mark.unit
class TestToolPreFetch:
"""Tests for tool pre-fetching with saved parameter values from MongoDB"""
def test_cryptoprice_prefetch_with_saved_parameters(self, mock_mongo_db):
"""Test that cryptoprice tool is pre-fetched with saved parameter values from MongoDB structure"""
from application.api.answer.services.stream_processor import StreamProcessor
from application.core.settings import settings
from unittest.mock import patch, MagicMock
# Setup MongoDB with cryptoprice tool configuration
# NOTE: The collection is called "user_tools" not "tools"
tools_collection = mock_mongo_db[settings.MONGO_DB_NAME]["user_tools"]
tool_id = ObjectId()
tools_collection.insert_one(
{
"_id": tool_id,
"name": "cryptoprice",
"user": "user_123",
"status": True, # Must be True for tool to be included
"actions": [
{
"name": "cryptoprice_get",
"description": "Get cryptocurrency price",
"parameters": {
"type": "object",
"properties": {
"symbol": {
"type": "string",
"description": "Crypto symbol",
"value": "BTC" # Saved value in MongoDB
},
"currency": {
"type": "string",
"description": "Currency for price",
"value": "USD" # Saved value in MongoDB
}
},
"required": ["symbol", "currency"]
}
}
],
"config": {
"token": ""
}
}
)
request_data = {
"question": "What is the price of Bitcoin?",
"tools": [str(tool_id)]
}
processor = StreamProcessor(request_data, {"sub": "user_123"})
processor._required_tool_actions = {"cryptoprice": {"cryptoprice_get"}}
# Mock the ToolManager and tool instance
with patch("application.agents.tools.tool_manager.ToolManager") as mock_manager_class:
mock_manager = MagicMock()
mock_manager_class.return_value = mock_manager
# Mock the tool instance returned by load_tool
mock_tool = MagicMock()
mock_manager.load_tool.return_value = mock_tool
# Mock get_actions_metadata on the tool instance
mock_tool.get_actions_metadata.return_value = [
{
"name": "cryptoprice_get",
"description": "Get cryptocurrency price",
"parameters": {
"type": "object",
"properties": {
"symbol": {"type": "string", "description": "Crypto symbol"},
"currency": {"type": "string", "description": "Currency for price"}
},
"required": ["symbol", "currency"]
}
}
]
# Mock execute_action on the tool instance to return price data
mock_tool.execute_action.return_value = {
"status_code": 200,
"price": 45000.50,
"message": "Price of BTC in USD retrieved successfully."
}
# Execute pre-fetch
tools_data = processor.pre_fetch_tools()
# Verify the tool was called
assert mock_tool.execute_action.called
# Verify it was called with the saved parameters from MongoDB
call_args = mock_tool.execute_action.call_args
assert call_args is not None
# Check action name uses the full metadata name for execution
assert call_args[0][0] == "cryptoprice_get"
# Check kwargs contain saved values
kwargs = call_args[1]
assert kwargs.get("symbol") == "BTC"
assert kwargs.get("currency") == "USD"
# Verify tools_data structure
assert "cryptoprice" in tools_data
# Results are exposed under the full action name
assert "cryptoprice_get" in tools_data["cryptoprice"]
assert tools_data["cryptoprice"]["cryptoprice_get"]["price"] == 45000.50
def test_prefetch_with_missing_saved_values_uses_defaults(self, mock_mongo_db):
"""Test that pre-fetch falls back to defaults when saved values are missing"""
from application.api.answer.services.stream_processor import StreamProcessor
from application.core.settings import settings
from unittest.mock import patch, MagicMock
tools_collection = mock_mongo_db[settings.MONGO_DB_NAME]["user_tools"]
tool_id = ObjectId()
# Tool configuration without saved values
tools_collection.insert_one(
{
"_id": tool_id,
"name": "cryptoprice",
"user": "user_123",
"status": True,
"actions": [
{
"name": "cryptoprice_get",
"description": "Get cryptocurrency price",
"parameters": {
"type": "object",
"properties": {
"symbol": {
"type": "string",
"description": "Crypto symbol",
"default": "ETH" # Only default, no saved value
},
"currency": {
"type": "string",
"description": "Currency",
"default": "EUR"
}
},
"required": ["symbol", "currency"]
}
}
],
"config": {}
}
)
request_data = {
"question": "Crypto price?",
"tools": [str(tool_id)]
}
processor = StreamProcessor(request_data, {"sub": "user_123"})
processor._required_tool_actions = {"cryptoprice": {"cryptoprice_get"}}
with patch("application.agents.tools.tool_manager.ToolManager") as mock_manager_class:
mock_manager = MagicMock()
mock_manager_class.return_value = mock_manager
# Mock the tool instance
mock_tool = MagicMock()
mock_manager.load_tool.return_value = mock_tool
mock_tool.get_actions_metadata.return_value = [
{
"name": "cryptoprice_get",
"parameters": {
"type": "object",
"properties": {
"symbol": {"type": "string", "default": "ETH"},
"currency": {"type": "string", "default": "EUR"}
}
}
}
]
mock_tool.execute_action.return_value = {
"status_code": 200,
"price": 2500.00
}
processor.pre_fetch_tools()
# Should use default values when saved values are missing
call_args = mock_tool.execute_action.call_args
if call_args:
kwargs = call_args[1]
# Either uses defaults or skips if no values available
assert kwargs.get("symbol") in ["ETH", None]
assert kwargs.get("currency") in ["EUR", None]
def test_prefetch_with_tool_id_reference(self, mock_mongo_db):
"""Test that tools can be referenced by MongoDB ObjectId in templates"""
from application.api.answer.services.stream_processor import StreamProcessor
from application.core.settings import settings
from unittest.mock import patch, MagicMock
tools_collection = mock_mongo_db[settings.MONGO_DB_NAME]["user_tools"]
tool_id = ObjectId()
# Create a tool in the database
tools_collection.insert_one(
{
"_id": tool_id,
"name": "memory",
"user": "user_123",
"status": True,
"actions": [
{
"name": "memory_ls",
"description": "List files",
"parameters": {
"type": "object",
"properties": {}
}
}
],
"config": {},
}
)
request_data = {"question": "test"}
processor = StreamProcessor(request_data, {"sub": "user_123"})
# Mock the filtering to require this specific tool by ID
processor._required_tool_actions = {
str(tool_id): {"memory_ls"} # Reference by ObjectId string
}
with patch(
"application.agents.tools.tool_manager.ToolManager"
) as mock_manager_class:
mock_manager = MagicMock()
mock_manager_class.return_value = mock_manager
# Mock the tool instance
mock_tool = MagicMock()
mock_manager.load_tool.return_value = mock_tool
mock_tool.get_actions_metadata.return_value = [
{"name": "memory_ls", "description": "List files", "parameters": {"properties": {}}}
]
mock_tool.execute_action.return_value = "Directory: /\n- file.txt"
result = processor.pre_fetch_tools()
# Tool data should be available under both name and ID
assert result is not None
assert "memory" in result
assert str(tool_id) in result
# Both should point to the same data
assert result["memory"] == result[str(tool_id)]
assert "memory_ls" in result[str(tool_id)]
def test_prefetch_with_multiple_same_name_tools(self, mock_mongo_db):
"""Test that multiple tools with the same name can be distinguished by ID"""
from application.api.answer.services.stream_processor import StreamProcessor
from application.core.settings import settings
from unittest.mock import patch, MagicMock
tools_collection = mock_mongo_db[settings.MONGO_DB_NAME]["user_tools"]
# Create two memory tools with different IDs
tool_id_1 = ObjectId()
tool_id_2 = ObjectId()
tools_collection.insert_many([
{
"_id": tool_id_1,
"name": "memory",
"user": "user_123",
"status": True,
"actions": [{"name": "memory_ls", "parameters": {"properties": {}}}],
"config": {"path": "/home"},
},
{
"_id": tool_id_2,
"name": "memory",
"user": "user_123",
"status": True,
"actions": [{"name": "memory_ls", "parameters": {"properties": {}}}],
"config": {"path": "/work"},
}
])
request_data = {"question": "test"}
processor = StreamProcessor(request_data, {"sub": "user_123"})
# Mock the filtering to require only the second tool by ID
processor._required_tool_actions = {
str(tool_id_2): {"memory_ls"} # Only reference the second one
}
with patch(
"application.agents.tools.tool_manager.ToolManager"
) as mock_manager_class:
mock_manager = MagicMock()
mock_manager_class.return_value = mock_manager
# Mock the tool instance
mock_tool = MagicMock()
mock_manager.load_tool.return_value = mock_tool
mock_tool.get_actions_metadata.return_value = [
{"name": "memory_ls", "parameters": {"properties": {}}}
]
mock_tool.execute_action.return_value = "Work directory"
result = processor.pre_fetch_tools()
# Only the second tool should be fetched (referenced by ID)
assert result is not None
assert str(tool_id_2) in result
# Since filtering is enabled and only tool_id_2 is referenced,
# only tool_id_2 should be pre-fetched
# The "memory" key will still exist because we store under both name and ID
assert "memory" in result

View File

@@ -1,138 +0,0 @@
import pytest
import logging
from unittest.mock import patch, MagicMock
from application.parser.embedding_pipeline import (
sanitize_content,
add_text_to_store_with_retry,
embed_and_store_documents,
)
def test_sanitize_content_removes_nulls():
content = "This\x00is\x00a\x00test"
result = sanitize_content(content)
assert "\x00" not in result
assert result == "Thisisatest"
def test_sanitize_content_empty_or_none():
assert sanitize_content("") == ""
assert sanitize_content(None) is None
def test_add_text_to_store_with_retry_success():
store = MagicMock()
doc = MagicMock()
doc.page_content = "Test content"
doc.metadata = {}
add_text_to_store_with_retry(store, doc, "123")
store.add_texts.assert_called_once_with(
["Test content"], metadatas=[{"source_id": "123"}]
)
@pytest.fixture
def mock_settings(monkeypatch):
mock_settings = MagicMock()
monkeypatch.setattr(
"application.parser.embedding_pipeline.settings", mock_settings
)
return mock_settings
@pytest.fixture
def mock_vector_creator(monkeypatch):
mock_creator = MagicMock()
monkeypatch.setattr(
"application.parser.embedding_pipeline.VectorCreator", mock_creator
)
return mock_creator
def test_embed_and_store_documents_creates_folder(tmp_path, mock_settings, mock_vector_creator):
mock_settings.VECTOR_STORE = "faiss"
docs = [MagicMock(page_content="doc1", metadata={}), MagicMock(page_content="doc2", metadata={})]
folder_name = tmp_path / "test_store"
source_id = "xyz"
task_status = MagicMock()
mock_store = MagicMock()
mock_vector_creator.create_vectorstore.return_value = mock_store
embed_and_store_documents(docs, str(folder_name), source_id, task_status)
assert folder_name.exists()
mock_vector_creator.create_vectorstore.assert_called_once()
mock_store.save_local.assert_called_once_with(str(folder_name))
task_status.update_state.assert_called()
def test_embed_and_store_documents_non_faiss(tmp_path, mock_settings, mock_vector_creator):
mock_settings.VECTOR_STORE = "chromadb"
docs = [MagicMock(page_content="doc1", metadata={}), MagicMock(page_content="doc2", metadata={})]
folder_name = tmp_path / "chromadb_store"
source_id = "test123"
task_status = MagicMock()
mock_store = MagicMock()
mock_vector_creator.create_vectorstore.return_value = mock_store
embed_and_store_documents(docs, str(folder_name), source_id, task_status)
mock_store.delete_index.assert_called_once()
task_status.update_state.assert_called()
assert folder_name.exists()
@patch("application.parser.embedding_pipeline.add_text_to_store_with_retry")
def test_embed_and_store_documents_partial_failure(
mock_add_retry, tmp_path, mock_settings, mock_vector_creator, caplog
):
mock_settings.VECTOR_STORE = "faiss"
docs = [MagicMock(page_content="good", metadata={}), MagicMock(page_content="bad", metadata={})]
folder_name = tmp_path / "partial_fail"
source_id = "id123"
task_status = MagicMock()
mock_store = MagicMock()
mock_vector_creator.create_vectorstore.return_value = mock_store
# First document succeeds, second fails
def side_effect(*args, **kwargs):
if "bad" in args[1].page_content:
raise Exception("Embedding failed")
mock_add_retry.side_effect = side_effect
with caplog.at_level(logging.ERROR):
embed_and_store_documents(docs, str(folder_name), source_id, task_status)
assert "Error embedding document" in caplog.text
mock_store.save_local.assert_called()
def test_embed_and_store_documents_save_fails_raises_oserror(
tmp_path, mock_settings, mock_vector_creator
):
mock_settings.VECTOR_STORE = "faiss"
docs = [MagicMock(page_content="good", metadata={})]
folder_name = tmp_path / "save_fail"
source_id = "id789"
task_status = MagicMock()
mock_store = MagicMock()
mock_store.save_local.side_effect = Exception("Disk full")
mock_vector_creator.create_vectorstore.return_value = mock_store
with pytest.raises(OSError, match="Unable to save vector store"):
embed_and_store_documents(docs, str(folder_name), source_id, task_status)

View File

@@ -29,15 +29,15 @@ class FakeCollection:
pass
def insert_one(self, doc):
key = (doc["user_id"], doc["tool_id"], doc["todo_id"])
key = (doc["user_id"], doc["tool_id"], int(doc["todo_id"]))
self.docs[key] = doc
return type("res", (), {"inserted_id": key})
def find_one(self, query):
key = (query.get("user_id"), query.get("tool_id"), query.get("todo_id"))
key = (query.get("user_id"), query.get("tool_id"), int(query.get("todo_id")))
return self.docs.get(key)
def find(self, query, projection=None):
def find(self, query):
user_id = query.get("user_id")
tool_id = query.get("tool_id")
filtered = [
@@ -47,7 +47,7 @@ class FakeCollection:
return FakeCursor(filtered)
def update_one(self, query, update, upsert=False):
key = (query.get("user_id"), query.get("tool_id"), query.get("todo_id"))
key = (query.get("user_id"), query.get("tool_id"), int(query.get("todo_id")))
if key in self.docs:
self.docs[key].update(update.get("$set", {}))
return type("res", (), {"matched_count": 1})
@@ -59,7 +59,7 @@ class FakeCollection:
return type("res", (), {"matched_count": 0})
def delete_one(self, query):
key = (query.get("user_id"), query.get("tool_id"), query.get("todo_id"))
key = (query.get("user_id"), query.get("tool_id"), int(query.get("todo_id")))
if key in self.docs:
del self.docs[key]
return type("res", (), {"deleted_count": 1})
@@ -69,10 +69,6 @@ class FakeCollection:
@pytest.fixture
def todo_tool(monkeypatch) -> TodoListTool:
"""Provides a TodoListTool with a fake MongoDB backend."""
# Reset the MongoDB client cache to ensure our mock is used
from application.core.mongo_db import MongoDB
MongoDB._client = None
fake_collection = FakeCollection()
fake_client = {settings.MONGO_DB_NAME: {"todos": fake_collection}}
monkeypatch.setattr("application.core.mongo_db.MongoDB.get_client", lambda: fake_client)
@@ -80,72 +76,52 @@ def todo_tool(monkeypatch) -> TodoListTool:
def test_create_and_get(todo_tool: TodoListTool):
res = todo_tool.execute_action("create", title="Write tests")
assert "Todo created with ID" in res
# Extract todo_id from response like "Todo created with ID test_user_test_tool_1: Write tests"
todo_id = res.split("ID ")[1].split(":")[0].strip()
res = todo_tool.execute_action("todo_create", title="Write tests", description="Write pytest cases")
assert res["status_code"] == 201
todo_id = res["todo_id"]
get_res = todo_tool.execute_action("get", todo_id=todo_id)
assert "Error" not in get_res
assert "Write tests" in get_res
get_res = todo_tool.execute_action("todo_get", todo_id=todo_id)
assert get_res["status_code"] == 200
assert get_res["todo"]["title"] == "Write tests"
assert get_res["todo"]["description"] == "Write pytest cases"
def test_get_all_todos(todo_tool: TodoListTool):
todo_tool.execute_action("create", title="Task 1")
todo_tool.execute_action("create", title="Task 2")
todo_tool.execute_action("todo_create", title="Task 1")
todo_tool.execute_action("todo_create", title="Task 2")
list_res = todo_tool.execute_action("list")
assert "Task 1" in list_res
assert "Task 2" in list_res
list_res = todo_tool.execute_action("todo_list")
assert list_res["status_code"] == 200
titles = [todo["title"] for todo in list_res["todos"]]
assert "Task 1" in titles
assert "Task 2" in titles
def test_update_todo(todo_tool: TodoListTool):
create_res = todo_tool.execute_action("create", title="Initial Title")
todo_id = create_res.split("ID ")[1].split(":")[0].strip()
create_res = todo_tool.execute_action("todo_create", title="Initial Title")
todo_id = create_res["todo_id"]
update_res = todo_tool.execute_action("update", todo_id=todo_id, title="Updated Title")
assert "updated" in update_res.lower()
assert "Updated Title" in update_res
update_res = todo_tool.execute_action("todo_update", todo_id=todo_id, updates={"title": "Updated Title", "status": "done"})
assert update_res["status_code"] == 200
get_res = todo_tool.execute_action("get", todo_id=todo_id)
assert "Updated Title" in get_res
def test_complete_todo(todo_tool: TodoListTool):
create_res = todo_tool.execute_action("create", title="To Complete")
todo_id = create_res.split("ID ")[1].split(":")[0].strip()
# Check initial status is open
get_res = todo_tool.execute_action("get", todo_id=todo_id)
assert "open" in get_res
# Mark as completed
complete_res = todo_tool.execute_action("complete", todo_id=todo_id)
assert "completed" in complete_res.lower()
# Verify status changed to completed
get_res = todo_tool.execute_action("get", todo_id=todo_id)
assert "completed" in get_res
get_res = todo_tool.execute_action("todo_get", todo_id=todo_id)
assert get_res["todo"]["title"] == "Updated Title"
assert get_res["todo"]["status"] == "done"
def test_delete_todo(todo_tool: TodoListTool):
create_res = todo_tool.execute_action("create", title="To Delete")
todo_id = create_res.split("ID ")[1].split(":")[0].strip()
create_res = todo_tool.execute_action("todo_create", title="To Delete")
todo_id = create_res["todo_id"]
delete_res = todo_tool.execute_action("delete", todo_id=todo_id)
assert "deleted" in delete_res.lower()
delete_res = todo_tool.execute_action("todo_delete", todo_id=todo_id)
assert delete_res["status_code"] == 200
get_res = todo_tool.execute_action("get", todo_id=todo_id)
assert "Error" in get_res
assert "not found" in get_res
get_res = todo_tool.execute_action("todo_get", todo_id=todo_id)
assert get_res["status_code"] == 404
def test_isolation_and_default_tool_id(monkeypatch):
"""Ensure todos are isolated by tool_id and user_id."""
# Reset the MongoDB client cache to ensure our mock is used
from application.core.mongo_db import MongoDB
MongoDB._client = None
fake_collection = FakeCollection()
fake_client = {settings.MONGO_DB_NAME: {"todos": fake_collection}}
monkeypatch.setattr("application.core.mongo_db.MongoDB.get_client", lambda: fake_client)
@@ -154,20 +130,17 @@ def test_isolation_and_default_tool_id(monkeypatch):
tool1 = TodoListTool({"tool_id": "tool_1"}, user_id="u1")
tool2 = TodoListTool({"tool_id": "tool_2"}, user_id="u1")
r1_create = tool1.execute_action("create", title="from tool 1")
r2_create = tool2.execute_action("create", title="from tool 2")
r1_create = tool1.execute_action("todo_create", title="from tool 1")
r2_create = tool2.execute_action("todo_create", title="from tool 2")
todo_id_1 = r1_create.split("ID ")[1].split(":")[0].strip()
todo_id_2 = r2_create.split("ID ")[1].split(":")[0].strip()
r1 = tool1.execute_action("todo_get", todo_id=r1_create["todo_id"])
r2 = tool2.execute_action("todo_get", todo_id=r2_create["todo_id"])
r1 = tool1.execute_action("get", todo_id=todo_id_1)
r2 = tool2.execute_action("get", todo_id=todo_id_2)
assert r1["status_code"] == 200
assert r1["todo"]["title"] == "from tool 1"
assert "Error" not in r1
assert "from tool 1" in r1
assert "Error" not in r2
assert "from tool 2" in r2
assert r2["status_code"] == 200
assert r2["todo"]["title"] == "from tool 2"
# Same user, no tool_id → should default to same value
t3 = TodoListTool({}, user_id="default_user")
@@ -176,9 +149,8 @@ def test_isolation_and_default_tool_id(monkeypatch):
assert t3.tool_id == "default_default_user"
assert t4.tool_id == "default_default_user"
create_res = t3.execute_action("create", title="shared default")
todo_id = create_res.split("ID ")[1].split(":")[0].strip()
r = t4.execute_action("get", todo_id=todo_id)
create_res = t3.execute_action("todo_create", title="shared default")
r = t4.execute_action("todo_get", todo_id=create_res["todo_id"])
assert "Error" not in r
assert "shared default" in r
assert r["status_code"] == 200
assert r["todo"]["title"] == "shared default"