Compare commits

..

1 Commits

Author SHA1 Message Date
dependabot[bot]
37c672b891 chore(deps): bump actions/setup-python from 5 to 6
Bumps [actions/setup-python](https://github.com/actions/setup-python) from 5 to 6.
- [Release notes](https://github.com/actions/setup-python/releases)
- [Commits](https://github.com/actions/setup-python/compare/v5...v6)

---
updated-dependencies:
- dependency-name: actions/setup-python
  dependency-version: '6'
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-09-04 20:22:48 +00:00
322 changed files with 11982 additions and 39321 deletions

View File

@@ -13,11 +13,7 @@ updates:
directory: "/frontend" # Location of package manifests
schedule:
interval: "daily"
- package-ecosystem: "npm"
directory: "/extensions/react-widget"
schedule:
interval: "daily"
- package-ecosystem: "github-actions"
directory: "/"
schedule:
interval: "daily"
interval: "daily"

View File

@@ -1,11 +0,0 @@
extends: spelling
level: warning
message: "Did you really mean '%s'?"
ignore:
- "**/node_modules/**"
- "**/dist/**"
- "**/build/**"
- "**/coverage/**"
- "**/public/**"
- "**/static/**"
vocab: DocsGPT

View File

@@ -1,46 +0,0 @@
Ollama
Qdrant
Milvus
Chatwoot
Nextra
VSCode
npm
LLMs
APIs
Groq
SGLang
LMDeploy
OAuth
Vite
LLM
JSONPath
UIs
configs
uncomment
qdrant
vectorstore
docsgpt
llm
GPUs
kubectl
Lightsail
enqueues
chatbot
VSCode's
Shareability
feedbacks
automations
Premade
Signup
Repo
repo
env
URl
agentic
llama_cpp
parsable
SDKs
boolean
bool
hardcode
EOL

View File

@@ -21,7 +21,7 @@ jobs:
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
uses: actions/setup-python@v6
with:
python-version: '3.12'
- name: Install dependencies

View File

@@ -10,21 +10,21 @@ jobs:
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
uses: actions/setup-python@v6
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install pytest pytest-cov
cd application
if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
cd ../tests
if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
- name: Test with pytest and generate coverage report
run: |
python -m pytest --cov=application --cov-report=xml --cov-report=term-missing
python -m pytest --cov=application --cov-report=xml
- name: Upload coverage reports to Codecov
if: github.event_name == 'pull_request' && matrix.python-version == '3.12'
uses: codecov/codecov-action@v5
env:
CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }}

View File

@@ -1,26 +0,0 @@
name: Vale Documentation Linter
on:
pull_request:
paths:
- 'docs/**/*.md'
- 'docs/**/*.mdx'
- '**/*.md'
- '.vale.ini'
- '.github/styles/**'
jobs:
vale:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Vale linter
uses: errata-ai/vale-action@v2
with:
files: docs
fail_on_error: false
version: 3.0.5
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

2
.gitignore vendored
View File

@@ -2,9 +2,7 @@
__pycache__/
*.py[cod]
*$py.class
experiments/
experiments
# C extensions
*.so
*.next

View File

@@ -1,5 +0,0 @@
MinAlertLevel = warning
StylesPath = .github/styles
[*.{md,mdx}]
BasedOnStyles = DocsGPT

33
.vscode/launch.json vendored
View File

@@ -2,11 +2,15 @@
"version": "0.2.0",
"configurations": [
{
"name": "Frontend Debug (npm)",
"type": "node-terminal",
"name": "Docker Debug Frontend",
"request": "launch",
"command": "npm run dev",
"cwd": "${workspaceFolder}/frontend"
"type": "chrome",
"preLaunchTask": "docker-compose: debug:frontend",
"url": "http://127.0.0.1:5173",
"webRoot": "${workspaceFolder}/frontend",
"skipFiles": [
"<node_internals>/**"
]
},
{
"name": "Flask Debugger",
@@ -45,27 +49,6 @@
"--pool=solo"
],
"cwd": "${workspaceFolder}"
},
{
"name": "Dev Containers (Mongo + Redis)",
"type": "node-terminal",
"request": "launch",
"command": "docker compose -f deployment/docker-compose-dev.yaml up --build",
"cwd": "${workspaceFolder}"
}
],
"compounds": [
{
"name": "DocsGPT: Full Stack",
"configurations": [
"Frontend Debug (npm)",
"Flask Debugger",
"Celery Debugger"
],
"presentation": {
"group": "DocsGPT",
"order": 1
}
}
]
}

21
.vscode/tasks.json vendored Normal file
View File

@@ -0,0 +1,21 @@
{
"version": "2.0.0",
"tasks": [
{
"type": "docker-compose",
"label": "docker-compose: debug:frontend",
"dockerCompose": {
"up": {
"detached": true,
"services": [
"frontend"
],
"build": true
},
"files": [
"${workspaceFolder}/docker-compose.yaml"
]
}
}
]
}

View File

@@ -147,5 +147,5 @@ Here's a step-by-step guide on how to contribute to DocsGPT:
Thank you for considering contributing to DocsGPT! 🙏
## Questions/collaboration
Feel free to join our [Discord](https://discord.gg/vN7YFfdMpj). We're very friendly and welcoming to new contributors, so don't hesitate to reach out.
Feel free to join our [Discord](https://discord.gg/n5BX8dh8rU). We're very friendly and welcoming to new contributors, so don't hesitate to reach out.
# Thank you so much for considering to contributing DocsGPT!🙏

View File

@@ -1,39 +0,0 @@
# **🎉 Join the Hacktoberfest with DocsGPT and win a Free T-shirt for a meaningful PR! 🎉**
Welcome, contributors! We're excited to announce that DocsGPT is participating in Hacktoberfest. Get involved by submitting meaningful pull requests.
All Meaningful contributors with accepted PRs that were created for issues with the `hacktoberfest` label (set by our maintainer team: dartpain, siiddhantt, pabik, ManishMadan2882) will receive a cool T-shirt! 🤩.
<img width="1331" height="678" alt="hacktoberfest-mocks-preview" src="https://github.com/user-attachments/assets/633f6377-38db-48f5-b519-a8b3855a9eb4" />
Fill in [this form](https://forms.gle/Npaba4n9Epfyx56S8
) after your PR was merged please
If you are in doubt don't hesitate to ping us on discord, ping me - Alex (dartpain).
## 📜 Here's How to Contribute:
```text
🛠️ Code: This is the golden ticket! Make meaningful contributions through PRs.
🧩 API extension: Build an app utilising DocsGPT API. We prefer submissions that showcase original ideas and turn the API into an AI agent.
They can be a completely separate repos.
For example:
https://github.com/arc53/tg-bot-docsgpt-extenstion or
https://github.com/arc53/DocsGPT-cli
Non-Code Contributions:
📚 Wiki: Improve our documentation, create a guide.
🖥️ Design: Improve the UI/UX or design a new feature.
```
### 📝 Guidelines for Pull Requests:
- Familiarize yourself with the current contributions and our [Roadmap](https://github.com/orgs/arc53/projects/2).
- Before contributing check existing [issues](https://github.com/arc53/DocsGPT/issues) or [create](https://github.com/arc53/DocsGPT/issues/new/choose) an issue and wait to get assigned.
- Once you are finished with your contribution, please fill in this [form](https://forms.gle/Npaba4n9Epfyx56S8).
- Refer to the [Documentation](https://docs.docsgpt.cloud/).
- Feel free to join our [Discord](https://discord.gg/vN7YFfdMpj) server. We're here to help newcomers, so don't hesitate to jump in! Join us [here](https://discord.gg/vN7YFfdMpj).
Thank you very much for considering contributing to DocsGPT during Hacktoberfest! 🙏 Your contributions (not just simple typos) could earn you a stylish new t-shirt.
We will publish a t-shirt design later into the October.

View File

@@ -16,26 +16,16 @@
<a href="https://github.com/arc53/DocsGPT">![link to main GitHub showing Forks number](https://img.shields.io/github/forks/arc53/docsgpt?style=social)</a>
<a href="https://github.com/arc53/DocsGPT/blob/main/LICENSE">![link to license file](https://img.shields.io/github/license/arc53/docsgpt)</a>
<a href="https://www.bestpractices.dev/projects/9907"><img src="https://www.bestpractices.dev/projects/9907/badge"></a>
<a href="https://discord.gg/vN7YFfdMpj">![link to discord](https://img.shields.io/discord/1070046503302877216)</a>
<a href="https://x.com/docsgptai">![X (formerly Twitter) URL](https://img.shields.io/twitter/follow/docsgptai)</a>
<a href="https://discord.gg/n5BX8dh8rU">![link to discord](https://img.shields.io/discord/1070046503302877216)</a>
<a href="https://twitter.com/docsgptai">![X (formerly Twitter) URL](https://img.shields.io/twitter/follow/docsgptai)</a>
<a href="https://docs.docsgpt.cloud/quickstart">⚡️ Quickstart</a><a href="https://app.docsgpt.cloud/">☁️ Cloud Version</a><a href="https://discord.gg/vN7YFfdMpj">💬 Discord</a>
<a href="https://docs.docsgpt.cloud/quickstart">⚡️ Quickstart</a><a href="https://app.docsgpt.cloud/">☁️ Cloud Version</a><a href="https://discord.gg/n5BX8dh8rU">💬 Discord</a>
<br>
<a href="https://docs.docsgpt.cloud/">📖 Documentation</a><a href="https://github.com/arc53/DocsGPT/blob/main/CONTRIBUTING.md">👫 Contribute</a><a href="https://blog.docsgpt.cloud/">🗞 Blog</a>
<br>
</div>
<div align="center">
<br>
🎃 <a href="https://github.com/arc53/DocsGPT/blob/main/HACKTOBERFEST.md"> Hacktoberfest Prizes, Rules & Q&A </a> 🎃
<br>
<br>
</div>
<div align="center">
<br>
<img src="https://d3dg1063dc54p9.cloudfront.net/videos/demov7.gif" alt="video-example-of-docs-gpt" width="800" height="450">
</div>
<h3 align="left">
@@ -65,11 +55,9 @@
- [x] Agent optimisations (May 2025)
- [x] Filesystem sources update (July 2025)
- [x] Json Responses (August 2025)
- [x] MCP support (August 2025)
- [x] Google Drive integration (September 2025)
- [x] Add OAuth 2.0 authentication for MCP (September 2025)
- [ ] SharePoint integration (October 2025)
- [ ] Deep Agents (October 2025)
- [ ] Sharepoint integration (August 2025)
- [ ] MCP support (August 2025)
- [ ] Add OAuth 2.0 authentication for tools and sources (August 2025)
- [ ] Agent scheduling
You can find our full roadmap [here](https://github.com/orgs/arc53/projects/2). Please don't hesitate to contribute or create issues, it helps us improve DocsGPT!
@@ -118,7 +106,7 @@ A more detailed [Quickstart](https://docs.docsgpt.cloud/quickstart) is available
PowerShell -ExecutionPolicy Bypass -File .\setup.ps1
```
Either script will guide you through setting up DocsGPT. Five options available: using the public API, running locally, connecting to a local inference engine, using a cloud API provider, or build the docker image locally. Scripts will automatically configure your `.env` file and handle necessary downloads and installations based on your chosen option.
Either script will guide you through setting up DocsGPT. Four options available: using the public API, running locally, connecting to a local inference engine, or using a cloud API provider. Scripts will automatically configure your `.env` file and handle necessary downloads and installations based on your chosen option.
**Navigate to http://localhost:5173/**

View File

@@ -1,8 +1,5 @@
from application.agents.classic_agent import ClassicAgent
from application.agents.react_agent import ReActAgent
import logging
logger = logging.getLogger(__name__)
class AgentCreator:
@@ -16,5 +13,4 @@ class AgentCreator:
agent_class = cls.agents.get(type.lower())
if not agent_class:
raise ValueError(f"No agent class found for type {type}")
return agent_class(*args, **kwargs)

View File

@@ -12,6 +12,7 @@ from application.core.settings import settings
from application.llm.handlers.handler_creator import LLMHandlerCreator
from application.llm.llm_creator import LLMCreator
from application.logging import build_stack_data, log_activity, LogContext
from application.retriever.base import BaseRetriever
logger = logging.getLogger(__name__)
@@ -21,29 +22,23 @@ class BaseAgent(ABC):
self,
endpoint: str,
llm_name: str,
model_id: str,
gpt_model: str,
api_key: str,
user_api_key: Optional[str] = None,
prompt: str = "",
chat_history: Optional[List[Dict]] = None,
retrieved_docs: Optional[List[Dict]] = None,
decoded_token: Optional[Dict] = None,
attachments: Optional[List[Dict]] = None,
json_schema: Optional[Dict] = None,
limited_token_mode: Optional[bool] = False,
token_limit: Optional[int] = settings.DEFAULT_AGENT_LIMITS["token_limit"],
limited_request_mode: Optional[bool] = False,
request_limit: Optional[int] = settings.DEFAULT_AGENT_LIMITS["request_limit"],
compressed_summary: Optional[str] = None,
):
self.endpoint = endpoint
self.llm_name = llm_name
self.model_id = model_id
self.gpt_model = gpt_model
self.api_key = api_key
self.user_api_key = user_api_key
self.prompt = prompt
self.decoded_token = decoded_token or {}
self.user: str = self.decoded_token.get("sub")
self.user: str = decoded_token.get("sub")
self.tool_config: Dict = {}
self.tools: List[Dict] = []
self.tool_calls: List[Dict] = []
@@ -53,31 +48,22 @@ class BaseAgent(ABC):
api_key=api_key,
user_api_key=user_api_key,
decoded_token=decoded_token,
model_id=model_id,
)
self.retrieved_docs = retrieved_docs or []
self.llm_handler = LLMHandlerCreator.create_handler(
llm_name if llm_name else "default"
)
self.attachments = attachments or []
self.json_schema = json_schema
self.limited_token_mode = limited_token_mode
self.token_limit = token_limit
self.limited_request_mode = limited_request_mode
self.request_limit = request_limit
self.compressed_summary = compressed_summary
self.current_token_count = 0
self.context_limit_reached = False
@log_activity()
def gen(
self, query: str, log_context: LogContext = None
self, query: str, retriever: BaseRetriever, log_context: LogContext = None
) -> Generator[Dict, None, None]:
yield from self._gen_inner(query, log_context)
yield from self._gen_inner(query, retriever, log_context)
@abstractmethod
def _gen_inner(
self, query: str, log_context: LogContext
self, query: str, retriever: BaseRetriever, log_context: LogContext
) -> Generator[Dict, None, None]:
pass
@@ -154,31 +140,29 @@ class BaseAgent(ABC):
tool_id, action_name, call_args = parser.parse_args(call)
call_id = getattr(call, "id", None) or str(uuid.uuid4())
# Check if parsing failed
if tool_id is None or action_name is None:
error_message = f"Error: Failed to parse LLM tool call. Tool name: {getattr(call, 'name', 'unknown')}"
logger.error(error_message)
tool_call_data = {
"tool_name": "unknown",
"call_id": call_id,
"action_name": getattr(call, "name", "unknown"),
"action_name": getattr(call, 'name', 'unknown'),
"arguments": call_args or {},
"result": f"Failed to parse tool call. Invalid tool name format: {getattr(call, 'name', 'unknown')}",
}
yield {"type": "tool_call", "data": {**tool_call_data, "status": "error"}}
self.tool_calls.append(tool_call_data)
return "Failed to parse tool call.", call_id
# Check if tool_id exists in available tools
if tool_id not in tools_dict:
error_message = f"Error: Tool ID '{tool_id}' extracted from LLM call not found in available tools_dict. Available IDs: {list(tools_dict.keys())}"
logger.error(error_message)
# Return error result
tool_call_data = {
"tool_name": "unknown",
"call_id": call_id,
@@ -189,6 +173,7 @@ class BaseAgent(ABC):
yield {"type": "tool_call", "data": {**tool_call_data, "status": "error"}}
self.tool_calls.append(tool_call_data)
return f"Tool with ID {tool_id} not found.", call_id
tool_call_data = {
"tool_name": tools_dict[tool_id]["name"],
"call_id": call_id,
@@ -228,26 +213,18 @@ class BaseAgent(ABC):
):
target_dict[param] = value
tm = ToolManager(config={})
# Prepare tool_config and add tool_id for memory tools
if tool_data["name"] == "api_tool":
tool_config = {
"url": tool_data["config"]["actions"][action_name]["url"],
"method": tool_data["config"]["actions"][action_name]["method"],
"headers": headers,
"query_params": query_params,
}
else:
tool_config = tool_data["config"].copy() if tool_data["config"] else {}
# Add tool_id from MongoDB _id for tools that need instance isolation (like memory tool)
# Use MongoDB _id if available, otherwise fall back to enumerated tool_id
tool_config["tool_id"] = str(tool_data.get("_id", tool_id))
tool = tm.load_tool(
tool_data["name"],
tool_config=tool_config,
user_id=self.user, # Pass user ID for MCP tools credential decryption
tool_config=(
{
"url": tool_data["config"]["actions"][action_name]["url"],
"method": tool_data["config"]["actions"][action_name]["method"],
"headers": headers,
"query_params": query_params,
}
if tool_data["name"] == "api_tool"
else tool_data["config"]
),
)
if tool_data["name"] == "api_tool":
print(
@@ -280,83 +257,20 @@ class BaseAgent(ABC):
for tool_call in self.tool_calls
]
def _calculate_current_context_tokens(self, messages: List[Dict]) -> int:
"""
Calculate total tokens in current context (messages).
Args:
messages: List of message dicts
Returns:
Total token count
"""
from application.api.answer.services.compression.token_counter import (
TokenCounter,
)
return TokenCounter.count_message_tokens(messages)
def _check_context_limit(self, messages: List[Dict]) -> bool:
"""
Check if we're approaching context limit (80%).
Args:
messages: Current message list
Returns:
True if at or above 80% of context limit
"""
from application.core.model_utils import get_token_limit
from application.core.settings import settings
try:
# Calculate current tokens
current_tokens = self._calculate_current_context_tokens(messages)
self.current_token_count = current_tokens
# Get context limit for model
context_limit = get_token_limit(self.model_id)
# Calculate threshold (80%)
threshold = int(context_limit * settings.COMPRESSION_THRESHOLD_PERCENTAGE)
# Check if we've reached the limit
if current_tokens >= threshold:
logger.warning(
f"Context limit approaching: {current_tokens}/{context_limit} tokens "
f"({(current_tokens/context_limit)*100:.1f}%)"
)
return True
return False
except Exception as e:
logger.error(f"Error checking context limit: {str(e)}", exc_info=True)
return False
def _build_messages(
self,
system_prompt: str,
query: str,
retrieved_data: List[Dict],
) -> List[Dict]:
"""Build messages using pre-rendered system prompt"""
# Append compression summary to system prompt if present
if self.compressed_summary:
compression_context = (
"\n\n---\n\n"
"This session is being continued from a previous conversation that "
"has been compressed to fit within context limits. "
"The conversation is summarized below:\n\n"
f"{self.compressed_summary}"
)
system_prompt = system_prompt + compression_context
messages = [{"role": "system", "content": system_prompt}]
docs_together = "\n".join([doc["text"] for doc in retrieved_data])
p_chat_combine = system_prompt.replace("{summaries}", docs_together)
messages_combine = [{"role": "system", "content": p_chat_combine}]
for i in self.chat_history:
if "prompt" in i and "response" in i:
messages.append({"role": "user", "content": i["prompt"]})
messages.append({"role": "assistant", "content": i["response"]})
messages_combine.append({"role": "user", "content": i["prompt"]})
messages_combine.append({"role": "assistant", "content": i["response"]})
if "tool_calls" in i:
for tool_call in i["tool_calls"]:
call_id = tool_call.get("call_id") or str(uuid.uuid4())
@@ -376,17 +290,29 @@ class BaseAgent(ABC):
}
}
messages.append(
messages_combine.append(
{"role": "assistant", "content": [function_call_dict]}
)
messages.append(
messages_combine.append(
{"role": "tool", "content": [function_response_dict]}
)
messages.append({"role": "user", "content": query})
return messages
messages_combine.append({"role": "user", "content": query})
return messages_combine
def _retriever_search(
self,
retriever: BaseRetriever,
query: str,
log_context: Optional[LogContext] = None,
) -> List[Dict]:
retrieved_data = retriever.search(query)
if log_context:
data = build_stack_data(retriever, exclude_attributes=["llm"])
log_context.stacks.append({"component": "retriever", "data": data})
return retrieved_data
def _llm_gen(self, messages: List[Dict], log_context: Optional[LogContext] = None):
gen_kwargs = {"model": self.model_id, "messages": messages}
gen_kwargs = {"model": self.gpt_model, "messages": messages}
if (
hasattr(self.llm, "_supports_tools")
@@ -394,6 +320,7 @@ class BaseAgent(ABC):
and self.tools
):
gen_kwargs["tools"] = self.tools
if (
self.json_schema
and hasattr(self.llm, "_supports_structured_output")
@@ -407,6 +334,7 @@ class BaseAgent(ABC):
gen_kwargs["response_format"] = structured_format
elif self.llm_name == "google":
gen_kwargs["response_schema"] = structured_format
resp = self.llm.gen_stream(**gen_kwargs)
if log_context:

View File

@@ -1,20 +1,32 @@
import logging
from typing import Dict, Generator
from application.agents.base import BaseAgent
from application.logging import LogContext
from application.retriever.base import BaseRetriever
import logging
logger = logging.getLogger(__name__)
class ClassicAgent(BaseAgent):
"""A simplified agent with clear execution flow"""
"""A simplified agent with clear execution flow.
Usage:
1. Processes a query through retrieval
2. Sets up available tools
3. Generates responses using LLM
4. Handles tool interactions if needed
5. Returns standardized outputs
Easy to extend by overriding specific steps.
"""
def _gen_inner(
self, query: str, log_context: LogContext
self, query: str, retriever: BaseRetriever, log_context: LogContext
) -> Generator[Dict, None, None]:
"""Core generator function for ClassicAgent execution flow"""
# Step 1: Retrieve relevant data
retrieved_data = self._retriever_search(retriever, query, log_context)
# Step 2: Prepare tools
tools_dict = (
self._get_user_tools(self.user)
if not self.user_api_key
@@ -22,16 +34,20 @@ class ClassicAgent(BaseAgent):
)
self._prepare_tools(tools_dict)
messages = self._build_messages(self.prompt, query)
# Step 3: Build and process messages
messages = self._build_messages(self.prompt, query, retrieved_data)
llm_response = self._llm_gen(messages, log_context)
# Step 4: Handle the response
yield from self._handle_response(
llm_response, tools_dict, messages, log_context
)
yield {"sources": self.retrieved_docs}
# Step 5: Return metadata
yield {"sources": retrieved_data}
yield {"tool_calls": self._get_truncated_tool_calls()}
# Log tool calls for debugging
log_context.stacks.append(
{"component": "agent", "data": {"tool_calls": self.tool_calls.copy()}}
)

View File

@@ -1,238 +1,229 @@
import logging
import os
from typing import Any, Dict, Generator, List
from typing import Dict, Generator, List, Any
import logging
from application.agents.base import BaseAgent
from application.logging import build_stack_data, LogContext
from application.retriever.base import BaseRetriever
logger = logging.getLogger(__name__)
MAX_ITERATIONS_REASONING = 10
current_dir = os.path.dirname(
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
)
with open(
os.path.join(current_dir, "application/prompts", "react_planning_prompt.txt"), "r"
) as f:
PLANNING_PROMPT_TEMPLATE = f.read()
planning_prompt_template = f.read()
with open(
os.path.join(current_dir, "application/prompts", "react_final_prompt.txt"), "r"
os.path.join(current_dir, "application/prompts", "react_final_prompt.txt"),
"r",
) as f:
FINAL_PROMPT_TEMPLATE = f.read()
final_prompt_template = f.read()
MAX_ITERATIONS_REASONING = 10
class ReActAgent(BaseAgent):
"""
Research and Action (ReAct) Agent - Advanced reasoning agent with iterative planning.
Implements a think-act-observe loop for complex problem-solving:
1. Creates a strategic plan based on the query
2. Executes tools and gathers observations
3. Iteratively refines approach until satisfied
4. Synthesizes final answer from all observations
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.plan: str = ""
self.observations: List[str] = []
def _extract_content_from_llm_response(self, resp: Any) -> str:
"""
Helper to extract string content from various LLM response types.
Handles strings, message objects (OpenAI-like), and streams.
Adapt stream handling for your specific LLM client if not OpenAI.
"""
collected_content = []
if isinstance(resp, str):
collected_content.append(resp)
elif ( # OpenAI non-streaming or Anthropic non-streaming (older SDK style)
hasattr(resp, "message")
and hasattr(resp.message, "content")
and resp.message.content is not None
):
collected_content.append(resp.message.content)
elif ( # OpenAI non-streaming (Pydantic model), Anthropic new SDK non-streaming
hasattr(resp, "choices") and resp.choices and
hasattr(resp.choices[0], "message") and
hasattr(resp.choices[0].message, "content") and
resp.choices[0].message.content is not None
):
collected_content.append(resp.choices[0].message.content) # OpenAI
elif ( # Anthropic new SDK non-streaming content block
hasattr(resp, "content") and isinstance(resp.content, list) and resp.content and
hasattr(resp.content[0], "text")
):
collected_content.append(resp.content[0].text) # Anthropic
else:
# Assume resp is a stream if not a recognized object
try:
for chunk in resp: # This will fail if resp is not iterable (e.g. a non-streaming response object)
content_piece = ""
# OpenAI-like stream
if hasattr(chunk, 'choices') and len(chunk.choices) > 0 and \
hasattr(chunk.choices[0], 'delta') and \
hasattr(chunk.choices[0].delta, 'content') and \
chunk.choices[0].delta.content is not None:
content_piece = chunk.choices[0].delta.content
# Anthropic-like stream (ContentBlockDelta)
elif hasattr(chunk, 'type') and chunk.type == 'content_block_delta' and \
hasattr(chunk, 'delta') and hasattr(chunk.delta, 'text'):
content_piece = chunk.delta.text
elif isinstance(chunk, str): # Simplest case: stream of strings
content_piece = chunk
if content_piece:
collected_content.append(content_piece)
except TypeError: # If resp is not iterable (e.g. a final response object that wasn't caught above)
logger.debug(f"Response type {type(resp)} could not be iterated as a stream. It might be a non-streaming object not handled by specific checks.")
except Exception as e:
logger.error(f"Error processing potential stream chunk: {e}, chunk was: {getattr(chunk, '__dict__', chunk)}")
return "".join(collected_content)
def _gen_inner(
self, query: str, log_context: LogContext
self, query: str, retriever: BaseRetriever, log_context: LogContext
) -> Generator[Dict, None, None]:
"""Execute ReAct reasoning loop with planning, action, and observation cycles"""
self._reset_state()
tools_dict = (
self._get_tools(self.user_api_key)
if self.user_api_key
else self._get_user_tools(self.user)
)
self._prepare_tools(tools_dict)
for iteration in range(1, MAX_ITERATIONS_REASONING + 1):
yield {"thought": f"Reasoning... (iteration {iteration})\n\n"}
yield from self._planning_phase(query, log_context)
if not self.plan:
logger.warning(
f"ReActAgent: No plan generated in iteration {iteration}"
)
break
self.observations.append(f"Plan (iteration {iteration}): {self.plan}")
satisfied = yield from self._execution_phase(query, tools_dict, log_context)
if satisfied:
logger.info("ReActAgent: Goal satisfied, stopping reasoning loop")
break
yield from self._synthesis_phase(query, log_context)
def _reset_state(self):
"""Reset agent state for new query"""
# Reset state for this generation call
self.plan = ""
self.observations = []
retrieved_data = self._retriever_search(retriever, query, log_context)
def _planning_phase(
self, query: str, log_context: LogContext
) -> Generator[Dict, None, None]:
"""Generate strategic plan for query"""
logger.info("ReActAgent: Creating plan...")
if self.user_api_key:
tools_dict = self._get_tools(self.user_api_key)
else:
tools_dict = self._get_user_tools(self.user)
self._prepare_tools(tools_dict)
plan_prompt = self._build_planning_prompt(query)
messages = [{"role": "user", "content": plan_prompt}]
docs_together = "\n".join([doc["text"] for doc in retrieved_data])
iterating_reasoning = 0
while iterating_reasoning < MAX_ITERATIONS_REASONING:
iterating_reasoning += 1
# 1. Create Plan
logger.info("ReActAgent: Creating plan...")
plan_stream = self._create_plan(query, docs_together, log_context)
current_plan_parts = []
yield {"thought": f"Reasoning... (iteration {iterating_reasoning})\n\n"}
for line_chunk in plan_stream:
current_plan_parts.append(line_chunk)
yield {"thought": line_chunk}
self.plan = "".join(current_plan_parts)
if self.plan:
self.observations.append(f"Plan: {self.plan} Iteration: {iterating_reasoning}")
plan_stream = self.llm.gen_stream(
model=self.model_id,
messages=messages,
tools=self.tools if self.tools else None,
max_obs_len = 20000
obs_str = "\n".join(self.observations)
if len(obs_str) > max_obs_len:
obs_str = obs_str[:max_obs_len] + "\n...[observations truncated]"
execution_prompt_str = (
(self.prompt or "")
+ f"\n\nFollow this plan:\n{self.plan}"
+ f"\n\nObservations:\n{obs_str}"
+ f"\n\nIf there is enough data to complete user query '{query}', Respond with 'SATISFIED' only. Otherwise, continue. Dont Menstion 'SATISFIED' in your response if you are not ready. "
)
messages = self._build_messages(execution_prompt_str, query, retrieved_data)
resp_from_llm_gen = self._llm_gen(messages, log_context)
initial_llm_thought_content = self._extract_content_from_llm_response(resp_from_llm_gen)
if initial_llm_thought_content:
self.observations.append(f"Initial thought/response: {initial_llm_thought_content}")
else:
logger.info("ReActAgent: Initial LLM response (before handler) had no textual content (might be only tool calls).")
resp_after_handler = self._llm_handler(resp_from_llm_gen, tools_dict, messages, log_context)
for tool_call_info in self.tool_calls: # Iterate over self.tool_calls populated by _llm_handler
observation_string = (
f"Executed Action: Tool '{tool_call_info.get('tool_name', 'N/A')}' "
f"with arguments '{tool_call_info.get('arguments', '{}')}'. Result: '{str(tool_call_info.get('result', ''))[:200]}...'"
)
self.observations.append(observation_string)
content_after_handler = self._extract_content_from_llm_response(resp_after_handler)
if content_after_handler:
self.observations.append(f"Response after tool execution: {content_after_handler}")
else:
logger.info("ReActAgent: LLM response after handler had no textual content.")
if log_context:
log_context.stacks.append(
{"component": "agent_tool_calls", "data": {"tool_calls": self.tool_calls.copy()}}
)
yield {"sources": retrieved_data}
display_tool_calls = []
for tc in self.tool_calls:
cleaned_tc = tc.copy()
if len(str(cleaned_tc.get("result", ""))) > 50:
cleaned_tc["result"] = str(cleaned_tc["result"])[:50] + "..."
display_tool_calls.append(cleaned_tc)
if display_tool_calls:
yield {"tool_calls": display_tool_calls}
if "SATISFIED" in content_after_handler:
logger.info("ReActAgent: LLM satisfied with the plan and data. Stopping reasoning.")
break
# 3. Create Final Answer based on all observations
final_answer_stream = self._create_final_answer(query, self.observations, log_context)
for answer_chunk in final_answer_stream:
yield {"answer": answer_chunk}
logger.info("ReActAgent: Finished generating final answer.")
def _create_plan(
self, query: str, docs_data: str, log_context: LogContext = None
) -> Generator[str, None, None]:
plan_prompt_filled = planning_prompt_template.replace("{query}", query)
if "{summaries}" in plan_prompt_filled:
summaries = docs_data if docs_data else "No documents retrieved."
plan_prompt_filled = plan_prompt_filled.replace("{summaries}", summaries)
plan_prompt_filled = plan_prompt_filled.replace("{prompt}", self.prompt or "")
plan_prompt_filled = plan_prompt_filled.replace("{observations}", "\n".join(self.observations))
messages = [{"role": "user", "content": plan_prompt_filled}]
plan_stream_from_llm = self.llm.gen_stream(
model=self.gpt_model, messages=messages, tools=getattr(self, 'tools', None) # Use self.tools
)
if log_context:
log_context.stacks.append(
{"component": "planning_llm", "data": build_stack_data(self.llm)}
)
plan_parts = []
for chunk in plan_stream:
content = self._extract_content(chunk)
if content:
plan_parts.append(content)
yield {"thought": content}
self.plan = "".join(plan_parts)
data = build_stack_data(self.llm)
log_context.stacks.append({"component": "planning_llm", "data": data})
def _execution_phase(
self, query: str, tools_dict: Dict, log_context: LogContext
) -> Generator[bool, None, None]:
"""Execute plan with tool calls and observations"""
execution_prompt = self._build_execution_prompt(query)
messages = self._build_messages(execution_prompt, query)
for chunk in plan_stream_from_llm:
content_piece = self._extract_content_from_llm_response(chunk)
if content_piece:
yield content_piece
llm_response = self._llm_gen(messages, log_context)
initial_content = self._extract_content(llm_response)
def _create_final_answer(
self, query: str, observations: List[str], log_context: LogContext = None
) -> Generator[str, None, None]:
observation_string = "\n".join(observations)
max_obs_len = 10000
if len(observation_string) > max_obs_len:
observation_string = observation_string[:max_obs_len] + "\n...[observations truncated]"
logger.warning("ReActAgent: Truncated observations for final answer prompt due to length.")
if initial_content:
self.observations.append(f"Initial response: {initial_content}")
processed_response = self._llm_handler(
llm_response, tools_dict, messages, log_context
final_answer_prompt_filled = final_prompt_template.format(
query=query, observations=observation_string
)
for tool_call in self.tool_calls:
observation = (
f"Executed: {tool_call.get('tool_name', 'Unknown')} "
f"with args {tool_call.get('arguments', {})}. "
f"Result: {str(tool_call.get('result', ''))[:200]}"
)
self.observations.append(observation)
final_content = self._extract_content(processed_response)
if final_content:
self.observations.append(f"Response after tools: {final_content}")
messages = [{"role": "user", "content": final_answer_prompt_filled}]
# Final answer should synthesize, not call tools.
final_answer_stream_from_llm = self.llm.gen_stream(
model=self.gpt_model, messages=messages, tools=None
)
if log_context:
log_context.stacks.append(
{
"component": "agent_tool_calls",
"data": {"tool_calls": self.tool_calls.copy()},
}
)
yield {"sources": self.retrieved_docs}
yield {"tool_calls": self._get_truncated_tool_calls()}
data = build_stack_data(self.llm)
log_context.stacks.append({"component": "final_answer_llm", "data": data})
return "SATISFIED" in (final_content or "")
def _synthesis_phase(
self, query: str, log_context: LogContext
) -> Generator[Dict, None, None]:
"""Synthesize final answer from all observations"""
logger.info("ReActAgent: Generating final answer...")
final_prompt = self._build_final_answer_prompt(query)
messages = [{"role": "user", "content": final_prompt}]
final_stream = self.llm.gen_stream(
model=self.model_id, messages=messages, tools=None
)
if log_context:
log_context.stacks.append(
{"component": "final_answer_llm", "data": build_stack_data(self.llm)}
)
for chunk in final_stream:
content = self._extract_content(chunk)
if content:
yield {"answer": content}
def _build_planning_prompt(self, query: str) -> str:
"""Build planning phase prompt"""
prompt = PLANNING_PROMPT_TEMPLATE.replace("{query}", query)
prompt = prompt.replace("{prompt}", self.prompt or "")
prompt = prompt.replace("{summaries}", "")
prompt = prompt.replace("{observations}", "\n".join(self.observations))
return prompt
def _build_execution_prompt(self, query: str) -> str:
"""Build execution phase prompt with plan and observations"""
observations_str = "\n".join(self.observations)
if len(observations_str) > 20000:
observations_str = observations_str[:20000] + "\n...[truncated]"
return (
f"{self.prompt or ''}\n\n"
f"Follow this plan:\n{self.plan}\n\n"
f"Observations:\n{observations_str}\n\n"
f"If sufficient data exists to answer '{query}', respond with 'SATISFIED'. "
f"Otherwise, continue executing the plan."
)
def _build_final_answer_prompt(self, query: str) -> str:
"""Build final synthesis prompt"""
observations_str = "\n".join(self.observations)
if len(observations_str) > 10000:
observations_str = observations_str[:10000] + "\n...[truncated]"
logger.warning("ReActAgent: Observations truncated for final answer")
return FINAL_PROMPT_TEMPLATE.format(query=query, observations=observations_str)
def _extract_content(self, response: Any) -> str:
"""Extract text content from various LLM response formats"""
if not response:
return ""
collected = []
if isinstance(response, str):
return response
if hasattr(response, "message") and hasattr(response.message, "content"):
if response.message.content:
return response.message.content
if hasattr(response, "choices") and response.choices:
if hasattr(response.choices[0], "message"):
content = response.choices[0].message.content
if content:
return content
if hasattr(response, "content") and isinstance(response.content, list):
if response.content and hasattr(response.content[0], "text"):
return response.content[0].text
try:
for chunk in response:
content_piece = ""
if hasattr(chunk, "choices") and chunk.choices:
if hasattr(chunk.choices[0], "delta"):
delta_content = chunk.choices[0].delta.content
if delta_content:
content_piece = delta_content
elif hasattr(chunk, "type") and chunk.type == "content_block_delta":
if hasattr(chunk, "delta") and hasattr(chunk.delta, "text"):
content_piece = chunk.delta.text
elif isinstance(chunk, str):
content_piece = chunk
if content_piece:
collected.append(content_piece)
except (TypeError, AttributeError):
logger.debug(
f"Response not iterable or unexpected format: {type(response)}"
)
except Exception as e:
logger.error(f"Error extracting content: {e}")
return "".join(collected)
for chunk in final_answer_stream_from_llm:
content_piece = self._extract_content_from_llm_response(chunk)
if content_piece:
yield content_piece

View File

@@ -1,861 +0,0 @@
import asyncio
import base64
import json
import logging
import time
from typing import Any, Dict, List, Optional
from urllib.parse import parse_qs, urlparse
from application.agents.tools.base import Tool
from application.api.user.tasks import mcp_oauth_status_task, mcp_oauth_task
from application.cache import get_redis_instance
from application.core.mongo_db import MongoDB
from application.core.settings import settings
from application.security.encryption import decrypt_credentials
from fastmcp import Client
from fastmcp.client.auth import BearerAuth
from fastmcp.client.transports import (
SSETransport,
StdioTransport,
StreamableHttpTransport,
)
from mcp.client.auth import OAuthClientProvider, TokenStorage
from mcp.shared.auth import OAuthClientInformationFull, OAuthClientMetadata, OAuthToken
from pydantic import AnyHttpUrl, ValidationError
from redis import Redis
mongo = MongoDB.get_client()
db = mongo[settings.MONGO_DB_NAME]
_mcp_clients_cache = {}
class MCPTool(Tool):
"""
MCP Tool
Connect to remote Model Context Protocol (MCP) servers to access dynamic tools and resources.
"""
def __init__(self, config: Dict[str, Any], user_id: Optional[str] = None):
"""
Initialize the MCP Tool with configuration.
Args:
config: Dictionary containing MCP server configuration:
- server_url: URL of the remote MCP server
- transport_type: Transport type (auto, sse, http, stdio)
- auth_type: Type of authentication (bearer, oauth, api_key, basic, none)
- encrypted_credentials: Encrypted credentials (if available)
- timeout: Request timeout in seconds (default: 30)
- headers: Custom headers for requests
- command: Command for STDIO transport
- args: Arguments for STDIO transport
- oauth_scopes: OAuth scopes for oauth auth type
- oauth_client_name: OAuth client name for oauth auth type
user_id: User ID for decrypting credentials (required if encrypted_credentials exist)
"""
self.config = config
self.user_id = user_id
self.server_url = config.get("server_url", "")
self.transport_type = config.get("transport_type", "auto")
self.auth_type = config.get("auth_type", "none")
self.timeout = config.get("timeout", 30)
self.custom_headers = config.get("headers", {})
self.auth_credentials = {}
if config.get("encrypted_credentials") and user_id:
self.auth_credentials = decrypt_credentials(
config["encrypted_credentials"], user_id
)
else:
self.auth_credentials = config.get("auth_credentials", {})
self.oauth_scopes = config.get("oauth_scopes", [])
self.oauth_task_id = config.get("oauth_task_id", None)
self.oauth_client_name = config.get("oauth_client_name", "DocsGPT-MCP")
self.redirect_uri = f"{settings.API_URL}/api/mcp_server/callback"
self.available_tools = []
self._cache_key = self._generate_cache_key()
self._client = None
# Only validate and setup if server_url is provided and not OAuth
if self.server_url and self.auth_type != "oauth":
self._setup_client()
def _generate_cache_key(self) -> str:
"""Generate a unique cache key for this MCP server configuration."""
auth_key = ""
if self.auth_type == "oauth":
scopes_str = ",".join(self.oauth_scopes) if self.oauth_scopes else "none"
auth_key = f"oauth:{self.oauth_client_name}:{scopes_str}"
elif self.auth_type in ["bearer"]:
token = self.auth_credentials.get(
"bearer_token", ""
) or self.auth_credentials.get("access_token", "")
auth_key = f"bearer:{token[:10]}..." if token else "bearer:none"
elif self.auth_type == "api_key":
api_key = self.auth_credentials.get("api_key", "")
auth_key = f"apikey:{api_key[:10]}..." if api_key else "apikey:none"
elif self.auth_type == "basic":
username = self.auth_credentials.get("username", "")
auth_key = f"basic:{username}"
else:
auth_key = "none"
return f"{self.server_url}#{self.transport_type}#{auth_key}"
def _setup_client(self):
"""Setup FastMCP client with proper transport and authentication."""
global _mcp_clients_cache
if self._cache_key in _mcp_clients_cache:
cached_data = _mcp_clients_cache[self._cache_key]
if time.time() - cached_data["created_at"] < 1800:
self._client = cached_data["client"]
return
else:
del _mcp_clients_cache[self._cache_key]
transport = self._create_transport()
auth = None
if self.auth_type == "oauth":
redis_client = get_redis_instance()
auth = DocsGPTOAuth(
mcp_url=self.server_url,
scopes=self.oauth_scopes,
redis_client=redis_client,
redirect_uri=self.redirect_uri,
task_id=self.oauth_task_id,
db=db,
user_id=self.user_id,
)
elif self.auth_type == "bearer":
token = self.auth_credentials.get(
"bearer_token", ""
) or self.auth_credentials.get("access_token", "")
if token:
auth = BearerAuth(token)
self._client = Client(transport, auth=auth)
_mcp_clients_cache[self._cache_key] = {
"client": self._client,
"created_at": time.time(),
}
def _create_transport(self):
"""Create appropriate transport based on configuration."""
headers = {"Content-Type": "application/json", "User-Agent": "DocsGPT-MCP/1.0"}
headers.update(self.custom_headers)
if self.auth_type == "api_key":
api_key = self.auth_credentials.get("api_key", "")
header_name = self.auth_credentials.get("api_key_header", "X-API-Key")
if api_key:
headers[header_name] = api_key
elif self.auth_type == "basic":
username = self.auth_credentials.get("username", "")
password = self.auth_credentials.get("password", "")
if username and password:
credentials = base64.b64encode(
f"{username}:{password}".encode()
).decode()
headers["Authorization"] = f"Basic {credentials}"
if self.transport_type == "auto":
if "sse" in self.server_url.lower() or self.server_url.endswith("/sse"):
transport_type = "sse"
else:
transport_type = "http"
else:
transport_type = self.transport_type
if transport_type == "sse":
headers.update({"Accept": "text/event-stream", "Cache-Control": "no-cache"})
return SSETransport(url=self.server_url, headers=headers)
elif transport_type == "http":
return StreamableHttpTransport(url=self.server_url, headers=headers)
elif transport_type == "stdio":
command = self.config.get("command", "python")
args = self.config.get("args", [])
env = self.auth_credentials if self.auth_credentials else None
return StdioTransport(command=command, args=args, env=env)
else:
return StreamableHttpTransport(url=self.server_url, headers=headers)
def _format_tools(self, tools_response) -> List[Dict]:
"""Format tools response to match expected format."""
if hasattr(tools_response, "tools"):
tools = tools_response.tools
elif isinstance(tools_response, list):
tools = tools_response
else:
tools = []
tools_dict = []
for tool in tools:
if hasattr(tool, "name"):
tool_dict = {
"name": tool.name,
"description": tool.description,
}
if hasattr(tool, "inputSchema"):
tool_dict["inputSchema"] = tool.inputSchema
tools_dict.append(tool_dict)
elif isinstance(tool, dict):
tools_dict.append(tool)
else:
if hasattr(tool, "model_dump"):
tools_dict.append(tool.model_dump())
else:
tools_dict.append({"name": str(tool), "description": ""})
return tools_dict
async def _execute_with_client(self, operation: str, *args, **kwargs):
"""Execute operation with FastMCP client."""
if not self._client:
raise Exception("FastMCP client not initialized")
async with self._client:
if operation == "ping":
return await self._client.ping()
elif operation == "list_tools":
tools_response = await self._client.list_tools()
self.available_tools = self._format_tools(tools_response)
return self.available_tools
elif operation == "call_tool":
tool_name = args[0]
tool_args = kwargs
return await self._client.call_tool(tool_name, tool_args)
elif operation == "list_resources":
return await self._client.list_resources()
elif operation == "list_prompts":
return await self._client.list_prompts()
else:
raise Exception(f"Unknown operation: {operation}")
def _run_async_operation(self, operation: str, *args, **kwargs):
"""Run async operation in sync context."""
try:
try:
loop = asyncio.get_running_loop()
import concurrent.futures
def run_in_thread():
new_loop = asyncio.new_event_loop()
asyncio.set_event_loop(new_loop)
try:
return new_loop.run_until_complete(
self._execute_with_client(operation, *args, **kwargs)
)
finally:
new_loop.close()
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(run_in_thread)
return future.result(timeout=self.timeout)
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
return loop.run_until_complete(
self._execute_with_client(operation, *args, **kwargs)
)
finally:
loop.close()
except Exception as e:
print(f"Error occurred while running async operation: {e}")
raise
def discover_tools(self) -> List[Dict]:
"""
Discover available tools from the MCP server using FastMCP.
Returns:
List of tool definitions from the server
"""
if not self.server_url:
return []
if not self._client:
self._setup_client()
try:
tools = self._run_async_operation("list_tools")
self.available_tools = tools
return self.available_tools
except Exception as e:
raise Exception(f"Failed to discover tools from MCP server: {str(e)}")
def execute_action(self, action_name: str, **kwargs) -> Any:
"""
Execute an action on the remote MCP server using FastMCP.
Args:
action_name: Name of the action to execute
**kwargs: Parameters for the action
Returns:
Result from the MCP server
"""
if not self.server_url:
raise Exception("No MCP server configured")
if not self._client:
self._setup_client()
cleaned_kwargs = {}
for key, value in kwargs.items():
if value == "" or value is None:
continue
cleaned_kwargs[key] = value
try:
result = self._run_async_operation(
"call_tool", action_name, **cleaned_kwargs
)
return self._format_result(result)
except Exception as e:
raise Exception(f"Failed to execute action '{action_name}': {str(e)}")
def _format_result(self, result) -> Dict:
"""Format FastMCP result to match expected format."""
if hasattr(result, "content"):
content_list = []
for content_item in result.content:
if hasattr(content_item, "text"):
content_list.append({"type": "text", "text": content_item.text})
elif hasattr(content_item, "data"):
content_list.append({"type": "data", "data": content_item.data})
else:
content_list.append(
{"type": "unknown", "content": str(content_item)}
)
return {
"content": content_list,
"isError": getattr(result, "isError", False),
}
else:
return result
def test_connection(self) -> Dict:
"""
Test the connection to the MCP server and validate functionality.
Returns:
Dictionary with connection test results including tool count
"""
if not self.server_url:
return {
"success": False,
"message": "No MCP server URL configured",
"tools_count": 0,
"transport_type": self.transport_type,
"auth_type": self.auth_type,
"error_type": "ConfigurationError",
}
if not self._client:
self._setup_client()
try:
if self.auth_type == "oauth":
return self._test_oauth_connection()
else:
return self._test_regular_connection()
except Exception as e:
return {
"success": False,
"message": f"Connection failed: {str(e)}",
"tools_count": 0,
"transport_type": self.transport_type,
"auth_type": self.auth_type,
"error_type": type(e).__name__,
}
def _test_regular_connection(self) -> Dict:
"""Test connection for non-OAuth auth types."""
try:
self._run_async_operation("ping")
ping_success = True
except Exception:
ping_success = False
tools = self.discover_tools()
message = f"Successfully connected to MCP server. Found {len(tools)} tools."
if not ping_success:
message += " (Ping not supported, but tool discovery worked)"
return {
"success": True,
"message": message,
"tools_count": len(tools),
"transport_type": self.transport_type,
"auth_type": self.auth_type,
"ping_supported": ping_success,
"tools": [tool.get("name", "unknown") for tool in tools],
}
def _test_oauth_connection(self) -> Dict:
"""Test connection for OAuth auth type with proper async handling."""
try:
task = mcp_oauth_task.delay(config=self.config, user=self.user_id)
if not task:
raise Exception("Failed to start OAuth authentication")
return {
"success": True,
"requires_oauth": True,
"task_id": task.id,
"status": "pending",
"message": "OAuth flow started",
}
except Exception as e:
return {
"success": False,
"message": f"OAuth connection failed: {str(e)}",
"tools_count": 0,
"transport_type": self.transport_type,
"auth_type": self.auth_type,
"error_type": type(e).__name__,
}
def get_actions_metadata(self) -> List[Dict]:
"""
Get metadata for all available actions.
Returns:
List of action metadata dictionaries
"""
actions = []
for tool in self.available_tools:
input_schema = (
tool.get("inputSchema")
or tool.get("input_schema")
or tool.get("schema")
or tool.get("parameters")
)
parameters_schema = {
"type": "object",
"properties": {},
"required": [],
}
if input_schema:
if isinstance(input_schema, dict):
if "properties" in input_schema:
parameters_schema = {
"type": input_schema.get("type", "object"),
"properties": input_schema.get("properties", {}),
"required": input_schema.get("required", []),
}
for key in ["additionalProperties", "description"]:
if key in input_schema:
parameters_schema[key] = input_schema[key]
else:
parameters_schema["properties"] = input_schema
action = {
"name": tool.get("name", ""),
"description": tool.get("description", ""),
"parameters": parameters_schema,
}
actions.append(action)
return actions
def get_config_requirements(self) -> Dict:
"""Get configuration requirements for the MCP tool."""
return {
"server_url": {
"type": "string",
"description": "URL of the remote MCP server (e.g., https://api.example.com/mcp or https://docs.mcp.cloudflare.com/sse)",
"required": True,
},
"transport_type": {
"type": "string",
"description": "Transport type for connection",
"enum": ["auto", "sse", "http", "stdio"],
"default": "auto",
"required": False,
"help": {
"auto": "Automatically detect best transport",
"sse": "Server-Sent Events (for real-time streaming)",
"http": "HTTP streaming (recommended for production)",
"stdio": "Standard I/O (for local servers)",
},
},
"auth_type": {
"type": "string",
"description": "Authentication type",
"enum": ["none", "bearer", "oauth", "api_key", "basic"],
"default": "none",
"required": True,
"help": {
"none": "No authentication",
"bearer": "Bearer token authentication",
"oauth": "OAuth 2.1 authentication (with frontend integration)",
"api_key": "API key authentication",
"basic": "Basic authentication",
},
},
"auth_credentials": {
"type": "object",
"description": "Authentication credentials (varies by auth_type)",
"required": False,
"properties": {
"bearer_token": {
"type": "string",
"description": "Bearer token for bearer auth",
},
"access_token": {
"type": "string",
"description": "Access token for OAuth (if pre-obtained)",
},
"api_key": {
"type": "string",
"description": "API key for api_key auth",
},
"api_key_header": {
"type": "string",
"description": "Header name for API key (default: X-API-Key)",
},
"username": {
"type": "string",
"description": "Username for basic auth",
},
"password": {
"type": "string",
"description": "Password for basic auth",
},
},
},
"oauth_scopes": {
"type": "array",
"description": "OAuth scopes to request (for oauth auth_type)",
"items": {"type": "string"},
"required": False,
"default": [],
},
"oauth_client_name": {
"type": "string",
"description": "Client name for OAuth registration (for oauth auth_type)",
"default": "DocsGPT-MCP",
"required": False,
},
"headers": {
"type": "object",
"description": "Custom headers to send with requests",
"required": False,
},
"timeout": {
"type": "integer",
"description": "Request timeout in seconds",
"default": 30,
"minimum": 1,
"maximum": 300,
"required": False,
},
"command": {
"type": "string",
"description": "Command to run for STDIO transport (e.g., 'python')",
"required": False,
},
"args": {
"type": "array",
"description": "Arguments for STDIO command",
"items": {"type": "string"},
"required": False,
},
}
class DocsGPTOAuth(OAuthClientProvider):
"""
Custom OAuth handler for DocsGPT that uses frontend redirect instead of browser.
"""
def __init__(
self,
mcp_url: str,
redirect_uri: str,
redis_client: Redis | None = None,
redis_prefix: str = "mcp_oauth:",
task_id: str = None,
scopes: str | list[str] | None = None,
client_name: str = "DocsGPT-MCP",
user_id=None,
db=None,
additional_client_metadata: dict[str, Any] | None = None,
):
"""
Initialize custom OAuth client provider for DocsGPT.
Args:
mcp_url: Full URL to the MCP endpoint
redirect_uri: Custom redirect URI for DocsGPT frontend
redis_client: Redis client for storing auth state
redis_prefix: Prefix for Redis keys
task_id: Task ID for tracking auth status
scopes: OAuth scopes to request
client_name: Name for this client during registration
user_id: User ID for token storage
db: Database instance for token storage
additional_client_metadata: Extra fields for OAuthClientMetadata
"""
self.redirect_uri = redirect_uri
self.redis_client = redis_client
self.redis_prefix = redis_prefix
self.task_id = task_id
self.user_id = user_id
self.db = db
parsed_url = urlparse(mcp_url)
self.server_base_url = f"{parsed_url.scheme}://{parsed_url.netloc}"
if isinstance(scopes, list):
scopes = " ".join(scopes)
client_metadata = OAuthClientMetadata(
client_name=client_name,
redirect_uris=[AnyHttpUrl(redirect_uri)],
grant_types=["authorization_code", "refresh_token"],
response_types=["code"],
scope=scopes,
**(additional_client_metadata or {}),
)
storage = DBTokenStorage(
server_url=self.server_base_url, user_id=self.user_id, db_client=self.db
)
super().__init__(
server_url=self.server_base_url,
client_metadata=client_metadata,
storage=storage,
redirect_handler=self.redirect_handler,
callback_handler=self.callback_handler,
)
self.auth_url = None
self.extracted_state = None
def _process_auth_url(self, authorization_url: str) -> tuple[str, str]:
"""Process authorization URL to extract state"""
try:
parsed_url = urlparse(authorization_url)
query_params = parse_qs(parsed_url.query)
state_params = query_params.get("state", [])
if state_params:
state = state_params[0]
else:
raise ValueError("No state in auth URL")
return authorization_url, state
except Exception as e:
raise Exception(f"Failed to process auth URL: {e}")
async def redirect_handler(self, authorization_url: str) -> None:
"""Store auth URL and state in Redis for frontend to use."""
auth_url, state = self._process_auth_url(authorization_url)
logging.info(
"[DocsGPTOAuth] Processed auth_url: %s, state: %s", auth_url, state
)
self.auth_url = auth_url
self.extracted_state = state
if self.redis_client and self.extracted_state:
key = f"{self.redis_prefix}auth_url:{self.extracted_state}"
self.redis_client.setex(key, 600, auth_url)
logging.info("[DocsGPTOAuth] Stored auth_url in Redis: %s", key)
if self.task_id:
status_key = f"mcp_oauth_status:{self.task_id}"
status_data = {
"status": "requires_redirect",
"message": "OAuth authorization required",
"authorization_url": self.auth_url,
"state": self.extracted_state,
"requires_oauth": True,
"task_id": self.task_id,
}
self.redis_client.setex(status_key, 600, json.dumps(status_data))
async def callback_handler(self) -> tuple[str, str | None]:
"""Wait for auth code from Redis using the state value."""
if not self.redis_client or not self.extracted_state:
raise Exception("Redis client or state not configured for OAuth")
poll_interval = 1
max_wait_time = 300
code_key = f"{self.redis_prefix}code:{self.extracted_state}"
if self.task_id:
status_key = f"mcp_oauth_status:{self.task_id}"
status_data = {
"status": "awaiting_callback",
"message": "Waiting for OAuth callback...",
"authorization_url": self.auth_url,
"state": self.extracted_state,
"requires_oauth": True,
"task_id": self.task_id,
}
self.redis_client.setex(status_key, 600, json.dumps(status_data))
start_time = time.time()
while time.time() - start_time < max_wait_time:
code_data = self.redis_client.get(code_key)
if code_data:
code = code_data.decode()
returned_state = self.extracted_state
self.redis_client.delete(code_key)
self.redis_client.delete(
f"{self.redis_prefix}auth_url:{self.extracted_state}"
)
self.redis_client.delete(
f"{self.redis_prefix}state:{self.extracted_state}"
)
if self.task_id:
status_data = {
"status": "callback_received",
"message": "OAuth callback received, completing authentication...",
"task_id": self.task_id,
}
self.redis_client.setex(status_key, 600, json.dumps(status_data))
return code, returned_state
error_key = f"{self.redis_prefix}error:{self.extracted_state}"
error_data = self.redis_client.get(error_key)
if error_data:
error_msg = error_data.decode()
self.redis_client.delete(error_key)
self.redis_client.delete(
f"{self.redis_prefix}auth_url:{self.extracted_state}"
)
self.redis_client.delete(
f"{self.redis_prefix}state:{self.extracted_state}"
)
raise Exception(f"OAuth error: {error_msg}")
await asyncio.sleep(poll_interval)
self.redis_client.delete(f"{self.redis_prefix}auth_url:{self.extracted_state}")
self.redis_client.delete(f"{self.redis_prefix}state:{self.extracted_state}")
raise Exception("OAuth callback timeout: no code received within 5 minutes")
class DBTokenStorage(TokenStorage):
def __init__(self, server_url: str, user_id: str, db_client):
self.server_url = server_url
self.user_id = user_id
self.db_client = db_client
self.collection = db_client["connector_sessions"]
@staticmethod
def get_base_url(url: str) -> str:
parsed = urlparse(url)
return f"{parsed.scheme}://{parsed.netloc}"
def get_db_key(self) -> dict:
return {
"server_url": self.get_base_url(self.server_url),
"user_id": self.user_id,
}
async def get_tokens(self) -> OAuthToken | None:
doc = await asyncio.to_thread(self.collection.find_one, self.get_db_key())
if not doc or "tokens" not in doc:
return None
try:
tokens = OAuthToken.model_validate(doc["tokens"])
return tokens
except ValidationError as e:
logging.error(f"Could not load tokens: {e}")
return None
async def set_tokens(self, tokens: OAuthToken) -> None:
await asyncio.to_thread(
self.collection.update_one,
self.get_db_key(),
{"$set": {"tokens": tokens.model_dump()}},
True,
)
logging.info(f"Saved tokens for {self.get_base_url(self.server_url)}")
async def get_client_info(self) -> OAuthClientInformationFull | None:
doc = await asyncio.to_thread(self.collection.find_one, self.get_db_key())
if not doc or "client_info" not in doc:
return None
try:
client_info = OAuthClientInformationFull.model_validate(doc["client_info"])
tokens = await self.get_tokens()
if tokens is None:
logging.debug(
"No tokens found, clearing client info to force fresh registration."
)
await asyncio.to_thread(
self.collection.update_one,
self.get_db_key(),
{"$unset": {"client_info": ""}},
)
return None
return client_info
except ValidationError as e:
logging.error(f"Could not load client info: {e}")
return None
def _serialize_client_info(self, info: dict) -> dict:
if "redirect_uris" in info and isinstance(info["redirect_uris"], list):
info["redirect_uris"] = [str(u) for u in info["redirect_uris"]]
return info
async def set_client_info(self, client_info: OAuthClientInformationFull) -> None:
serialized_info = self._serialize_client_info(client_info.model_dump())
await asyncio.to_thread(
self.collection.update_one,
self.get_db_key(),
{"$set": {"client_info": serialized_info}},
True,
)
logging.info(f"Saved client info for {self.get_base_url(self.server_url)}")
async def clear(self) -> None:
await asyncio.to_thread(self.collection.delete_one, self.get_db_key())
logging.info(f"Cleared OAuth cache for {self.get_base_url(self.server_url)}")
@classmethod
async def clear_all(cls, db_client) -> None:
collection = db_client["connector_sessions"]
await asyncio.to_thread(collection.delete_many, {})
logging.info("Cleared all OAuth client cache data.")
class MCPOAuthManager:
"""Manager for handling MCP OAuth callbacks."""
def __init__(self, redis_client: Redis | None, redis_prefix: str = "mcp_oauth:"):
self.redis_client = redis_client
self.redis_prefix = redis_prefix
def handle_oauth_callback(
self, state: str, code: str, error: Optional[str] = None
) -> bool:
"""
Handle OAuth callback from provider.
Args:
state: The state parameter from OAuth callback
code: The authorization code from OAuth callback
error: Error message if OAuth failed
Returns:
True if successful, False otherwise
"""
try:
if not self.redis_client or not state:
raise Exception("Redis client or state not provided")
if error:
error_key = f"{self.redis_prefix}error:{state}"
self.redis_client.setex(error_key, 300, error)
raise Exception(f"OAuth error received: {error}")
code_key = f"{self.redis_prefix}code:{state}"
self.redis_client.setex(code_key, 300, code)
state_key = f"{self.redis_prefix}state:{state}"
self.redis_client.setex(state_key, 300, "completed")
return True
except Exception as e:
logging.error(f"Error handling OAuth callback: {e}")
return False
def get_oauth_status(self, task_id: str) -> Dict[str, Any]:
"""Get current status of OAuth flow using provided task_id."""
if not task_id:
return {"status": "not_started", "message": "OAuth flow not started"}
return mcp_oauth_status_task(task_id)

View File

@@ -1,546 +0,0 @@
from datetime import datetime
from pathlib import Path
from typing import Any, Dict, List, Optional
import re
import uuid
from .base import Tool
from application.core.mongo_db import MongoDB
from application.core.settings import settings
class MemoryTool(Tool):
"""Memory
Stores and retrieves information across conversations through a memory file directory.
"""
def __init__(self, tool_config: Optional[Dict[str, Any]] = None, user_id: Optional[str] = None) -> None:
"""Initialize the tool.
Args:
tool_config: Optional tool configuration. Should include:
- tool_id: Unique identifier for this memory tool instance (from user_tools._id)
This ensures each user's tool configuration has isolated memories
user_id: The authenticated user's id (should come from decoded_token["sub"]).
"""
self.user_id: Optional[str] = user_id
# Get tool_id from configuration (passed from user_tools._id in production)
# In production, tool_id is the MongoDB ObjectId string from user_tools collection
if tool_config and "tool_id" in tool_config:
self.tool_id = tool_config["tool_id"]
elif user_id:
# Fallback for backward compatibility or testing
self.tool_id = f"default_{user_id}"
else:
# Last resort fallback (shouldn't happen in normal use)
self.tool_id = str(uuid.uuid4())
db = MongoDB.get_client()[settings.MONGO_DB_NAME]
self.collection = db["memories"]
# -----------------------------
# Action implementations
# -----------------------------
def execute_action(self, action_name: str, **kwargs: Any) -> str:
"""Execute an action by name.
Args:
action_name: One of view, create, str_replace, insert, delete, rename.
**kwargs: Parameters for the action.
Returns:
A human-readable string result.
"""
if not self.user_id:
return "Error: MemoryTool requires a valid user_id."
if action_name == "view":
return self._view(
kwargs.get("path", "/"),
kwargs.get("view_range")
)
if action_name == "create":
return self._create(
kwargs.get("path", ""),
kwargs.get("file_text", "")
)
if action_name == "str_replace":
return self._str_replace(
kwargs.get("path", ""),
kwargs.get("old_str", ""),
kwargs.get("new_str", "")
)
if action_name == "insert":
return self._insert(
kwargs.get("path", ""),
kwargs.get("insert_line", 1),
kwargs.get("insert_text", "")
)
if action_name == "delete":
return self._delete(kwargs.get("path", ""))
if action_name == "rename":
return self._rename(
kwargs.get("old_path", ""),
kwargs.get("new_path", "")
)
return f"Unknown action: {action_name}"
def get_actions_metadata(self) -> List[Dict[str, Any]]:
"""Return JSON metadata describing supported actions for tool schemas."""
return [
{
"name": "view",
"description": "Shows directory contents or file contents with optional line ranges.",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "Path to file or directory (e.g., /notes.txt or /project/ or /)."
},
"view_range": {
"type": "array",
"items": {"type": "integer"},
"description": "Optional [start_line, end_line] to view specific lines (1-indexed)."
}
},
"required": ["path"]
},
},
{
"name": "create",
"description": "Create or overwrite a file.",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "File path to create (e.g., /notes.txt or /project/task.txt)."
},
"file_text": {
"type": "string",
"description": "Content to write to the file."
}
},
"required": ["path", "file_text"]
},
},
{
"name": "str_replace",
"description": "Replace text in a file.",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "File path (e.g., /notes.txt)."
},
"old_str": {
"type": "string",
"description": "String to find."
},
"new_str": {
"type": "string",
"description": "String to replace with."
}
},
"required": ["path", "old_str", "new_str"]
},
},
{
"name": "insert",
"description": "Insert text at a specific line in a file.",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "File path (e.g., /notes.txt)."
},
"insert_line": {
"type": "integer",
"description": "Line number to insert at (1-indexed)."
},
"insert_text": {
"type": "string",
"description": "Text to insert."
}
},
"required": ["path", "insert_line", "insert_text"]
},
},
{
"name": "delete",
"description": "Delete a file or directory.",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "Path to delete (e.g., /notes.txt or /project/)."
}
},
"required": ["path"]
},
},
{
"name": "rename",
"description": "Rename or move a file/directory.",
"parameters": {
"type": "object",
"properties": {
"old_path": {
"type": "string",
"description": "Current path (e.g., /old.txt)."
},
"new_path": {
"type": "string",
"description": "New path (e.g., /new.txt)."
}
},
"required": ["old_path", "new_path"]
},
},
]
def get_config_requirements(self) -> Dict[str, Any]:
"""Return configuration requirements."""
return {}
# -----------------------------
# Path validation
# -----------------------------
def _validate_path(self, path: str) -> Optional[str]:
"""Validate and normalize path.
Args:
path: User-provided path.
Returns:
Normalized path or None if invalid.
"""
if not path:
return None
# Remove any leading/trailing whitespace
path = path.strip()
# Preserve whether path ends with / (indicates directory)
is_directory = path.endswith("/")
# Ensure path starts with / for consistency
if not path.startswith("/"):
path = "/" + path
# Check for directory traversal patterns
if ".." in path or path.count("//") > 0:
return None
# Normalize the path
try:
# Convert to Path object and resolve to canonical form
normalized = str(Path(path).as_posix())
# Ensure it still starts with /
if not normalized.startswith("/"):
return None
# Preserve trailing slash for directories
if is_directory and not normalized.endswith("/") and normalized != "/":
normalized = normalized + "/"
return normalized
except Exception:
return None
# -----------------------------
# Internal helpers
# -----------------------------
def _view(self, path: str, view_range: Optional[List[int]] = None) -> str:
"""View directory contents or file contents."""
validated_path = self._validate_path(path)
if not validated_path:
return "Error: Invalid path."
# Check if viewing directory (ends with / or is root)
if validated_path == "/" or validated_path.endswith("/"):
return self._view_directory(validated_path)
# Otherwise view file
return self._view_file(validated_path, view_range)
def _view_directory(self, path: str) -> str:
"""List files in a directory."""
# Ensure path ends with / for proper prefix matching
search_path = path if path.endswith("/") else path + "/"
# Find all files that start with this directory path
query = {
"user_id": self.user_id,
"tool_id": self.tool_id,
"path": {"$regex": f"^{re.escape(search_path)}"}
}
docs = list(self.collection.find(query, {"path": 1}))
if not docs:
return f"Directory: {path}\n(empty)"
# Extract filenames relative to the directory
files = []
for doc in docs:
file_path = doc["path"]
# Remove the directory prefix
if file_path.startswith(search_path):
relative = file_path[len(search_path):]
if relative:
files.append(relative)
files.sort()
file_list = "\n".join(f"- {f}" for f in files)
return f"Directory: {path}\n{file_list}"
def _view_file(self, path: str, view_range: Optional[List[int]] = None) -> str:
"""View file contents with optional line range."""
doc = self.collection.find_one({"user_id": self.user_id, "tool_id": self.tool_id, "path": path})
if not doc or not doc.get("content"):
return f"Error: File not found: {path}"
content = str(doc["content"])
# Apply view_range if specified
if view_range and len(view_range) == 2:
lines = content.split("\n")
start, end = view_range
# Convert to 0-indexed
start_idx = max(0, start - 1)
end_idx = min(len(lines), end)
if start_idx >= len(lines):
return f"Error: Line range out of bounds. File has {len(lines)} lines."
selected_lines = lines[start_idx:end_idx]
# Add line numbers (enumerate with 1-based start)
numbered_lines = [f"{i}: {line}" for i, line in enumerate(selected_lines, start=start)]
return "\n".join(numbered_lines)
return content
def _create(self, path: str, file_text: str) -> str:
"""Create or overwrite a file."""
validated_path = self._validate_path(path)
if not validated_path:
return "Error: Invalid path."
if validated_path == "/" or validated_path.endswith("/"):
return "Error: Cannot create a file at directory path."
self.collection.update_one(
{"user_id": self.user_id, "tool_id": self.tool_id, "path": validated_path},
{
"$set": {
"content": file_text,
"updated_at": datetime.now()
}
},
upsert=True
)
return f"File created: {validated_path}"
def _str_replace(self, path: str, old_str: str, new_str: str) -> str:
"""Replace text in a file."""
validated_path = self._validate_path(path)
if not validated_path:
return "Error: Invalid path."
if not old_str:
return "Error: old_str is required."
doc = self.collection.find_one({"user_id": self.user_id, "tool_id": self.tool_id, "path": validated_path})
if not doc or not doc.get("content"):
return f"Error: File not found: {validated_path}"
current_content = str(doc["content"])
# Check if old_str exists (case-insensitive)
if old_str.lower() not in current_content.lower():
return f"Error: String '{old_str}' not found in file."
# Replace the string (case-insensitive)
import re as regex_module
updated_content = regex_module.sub(regex_module.escape(old_str), new_str, current_content, flags=regex_module.IGNORECASE)
self.collection.update_one(
{"user_id": self.user_id, "tool_id": self.tool_id, "path": validated_path},
{
"$set": {
"content": updated_content,
"updated_at": datetime.now()
}
}
)
return f"File updated: {validated_path}"
def _insert(self, path: str, insert_line: int, insert_text: str) -> str:
"""Insert text at a specific line."""
validated_path = self._validate_path(path)
if not validated_path:
return "Error: Invalid path."
if not insert_text:
return "Error: insert_text is required."
doc = self.collection.find_one({"user_id": self.user_id, "tool_id": self.tool_id, "path": validated_path})
if not doc or not doc.get("content"):
return f"Error: File not found: {validated_path}"
current_content = str(doc["content"])
lines = current_content.split("\n")
# Convert to 0-indexed
index = insert_line - 1
if index < 0 or index > len(lines):
return f"Error: Invalid line number. File has {len(lines)} lines."
lines.insert(index, insert_text)
updated_content = "\n".join(lines)
self.collection.update_one(
{"user_id": self.user_id, "tool_id": self.tool_id, "path": validated_path},
{
"$set": {
"content": updated_content,
"updated_at": datetime.now()
}
}
)
return f"Text inserted at line {insert_line} in {validated_path}"
def _delete(self, path: str) -> str:
"""Delete a file or directory."""
validated_path = self._validate_path(path)
if not validated_path:
return "Error: Invalid path."
if validated_path == "/":
# Delete all files for this user and tool
result = self.collection.delete_many({"user_id": self.user_id, "tool_id": self.tool_id})
return f"Deleted {result.deleted_count} file(s) from memory."
# Check if it's a directory (ends with /)
if validated_path.endswith("/"):
# Delete all files in directory
result = self.collection.delete_many({
"user_id": self.user_id,
"tool_id": self.tool_id,
"path": {"$regex": f"^{re.escape(validated_path)}"}
})
return f"Deleted directory and {result.deleted_count} file(s)."
# Try to delete as directory first (without trailing slash)
# Check if any files start with this path + /
search_path = validated_path + "/"
directory_result = self.collection.delete_many({
"user_id": self.user_id,
"tool_id": self.tool_id,
"path": {"$regex": f"^{re.escape(search_path)}"}
})
if directory_result.deleted_count > 0:
return f"Deleted directory and {directory_result.deleted_count} file(s)."
# Delete single file
result = self.collection.delete_one({
"user_id": self.user_id,
"tool_id": self.tool_id,
"path": validated_path
})
if result.deleted_count:
return f"Deleted: {validated_path}"
return f"Error: File not found: {validated_path}"
def _rename(self, old_path: str, new_path: str) -> str:
"""Rename or move a file/directory."""
validated_old = self._validate_path(old_path)
validated_new = self._validate_path(new_path)
if not validated_old or not validated_new:
return "Error: Invalid path."
if validated_old == "/" or validated_new == "/":
return "Error: Cannot rename root directory."
# Check if renaming a directory
if validated_old.endswith("/"):
# Ensure validated_new also ends with / for proper path replacement
if not validated_new.endswith("/"):
validated_new = validated_new + "/"
# Find all files in the old directory
docs = list(self.collection.find({
"user_id": self.user_id,
"tool_id": self.tool_id,
"path": {"$regex": f"^{re.escape(validated_old)}"}
}))
if not docs:
return f"Error: Directory not found: {validated_old}"
# Update paths for all files
for doc in docs:
old_file_path = doc["path"]
new_file_path = old_file_path.replace(validated_old, validated_new, 1)
self.collection.update_one(
{"_id": doc["_id"]},
{"$set": {"path": new_file_path, "updated_at": datetime.now()}}
)
return f"Renamed directory: {validated_old} -> {validated_new} ({len(docs)} files)"
# Rename single file
doc = self.collection.find_one({
"user_id": self.user_id,
"tool_id": self.tool_id,
"path": validated_old
})
if not doc:
return f"Error: File not found: {validated_old}"
# Check if new path already exists
existing = self.collection.find_one({
"user_id": self.user_id,
"tool_id": self.tool_id,
"path": validated_new
})
if existing:
return f"Error: File already exists at {validated_new}"
# Delete the old document and create a new one with the new path
self.collection.delete_one({"user_id": self.user_id, "tool_id": self.tool_id, "path": validated_old})
self.collection.insert_one({
"user_id": self.user_id,
"tool_id": self.tool_id,
"path": validated_new,
"content": doc.get("content", ""),
"updated_at": datetime.now()
})
return f"Renamed: {validated_old} -> {validated_new}"

View File

@@ -1,199 +0,0 @@
from datetime import datetime
from typing import Any, Dict, List, Optional
import uuid
from .base import Tool
from application.core.mongo_db import MongoDB
from application.core.settings import settings
class NotesTool(Tool):
"""Notepad
Single note. Supports viewing, overwriting, string replacement.
"""
def __init__(self, tool_config: Optional[Dict[str, Any]] = None, user_id: Optional[str] = None) -> None:
"""Initialize the tool.
Args:
tool_config: Optional tool configuration. Should include:
- tool_id: Unique identifier for this notes tool instance (from user_tools._id)
This ensures each user's tool configuration has isolated notes
user_id: The authenticated user's id (should come from decoded_token["sub"]).
"""
self.user_id: Optional[str] = user_id
# Get tool_id from configuration (passed from user_tools._id in production)
# In production, tool_id is the MongoDB ObjectId string from user_tools collection
if tool_config and "tool_id" in tool_config:
self.tool_id = tool_config["tool_id"]
elif user_id:
# Fallback for backward compatibility or testing
self.tool_id = f"default_{user_id}"
else:
# Last resort fallback (shouldn't happen in normal use)
self.tool_id = str(uuid.uuid4())
db = MongoDB.get_client()[settings.MONGO_DB_NAME]
self.collection = db["notes"]
# -----------------------------
# Action implementations
# -----------------------------
def execute_action(self, action_name: str, **kwargs: Any) -> str:
"""Execute an action by name.
Args:
action_name: One of view, overwrite, str_replace, insert, delete.
**kwargs: Parameters for the action.
Returns:
A human-readable string result.
"""
if not self.user_id:
return "Error: NotesTool requires a valid user_id."
if action_name == "view":
return self._get_note()
if action_name == "overwrite":
return self._overwrite_note(kwargs.get("text", ""))
if action_name == "str_replace":
return self._str_replace(kwargs.get("old_str", ""), kwargs.get("new_str", ""))
if action_name == "insert":
return self._insert(kwargs.get("line_number", 1), kwargs.get("text", ""))
if action_name == "delete":
return self._delete_note()
return f"Unknown action: {action_name}"
def get_actions_metadata(self) -> List[Dict[str, Any]]:
"""Return JSON metadata describing supported actions for tool schemas."""
return [
{
"name": "view",
"description": "Retrieve the user's note.",
"parameters": {"type": "object", "properties": {}},
},
{
"name": "overwrite",
"description": "Replace the entire note content (creates if doesn't exist).",
"parameters": {
"type": "object",
"properties": {
"text": {"type": "string", "description": "New note content."}
},
"required": ["text"],
},
},
{
"name": "str_replace",
"description": "Replace occurrences of old_str with new_str in the note.",
"parameters": {
"type": "object",
"properties": {
"old_str": {"type": "string", "description": "String to find."},
"new_str": {"type": "string", "description": "String to replace with."}
},
"required": ["old_str", "new_str"],
},
},
{
"name": "insert",
"description": "Insert text at the specified line number (1-indexed).",
"parameters": {
"type": "object",
"properties": {
"line_number": {"type": "integer", "description": "Line number to insert at (1-indexed)."},
"text": {"type": "string", "description": "Text to insert."}
},
"required": ["line_number", "text"],
},
},
{
"name": "delete",
"description": "Delete the user's note.",
"parameters": {"type": "object", "properties": {}},
},
]
def get_config_requirements(self) -> Dict[str, Any]:
"""Return configuration requirements (none for now)."""
return {}
# -----------------------------
# Internal helpers (single-note)
# -----------------------------
def _get_note(self) -> str:
doc = self.collection.find_one({"user_id": self.user_id, "tool_id": self.tool_id})
if not doc or not doc.get("note"):
return "No note found."
return str(doc["note"])
def _overwrite_note(self, content: str) -> str:
content = (content or "").strip()
if not content:
return "Note content required."
self.collection.update_one(
{"user_id": self.user_id, "tool_id": self.tool_id},
{"$set": {"note": content, "updated_at": datetime.utcnow()}},
upsert=True, # ✅ create if missing
)
return "Note saved."
def _str_replace(self, old_str: str, new_str: str) -> str:
if not old_str:
return "old_str is required."
doc = self.collection.find_one({"user_id": self.user_id, "tool_id": self.tool_id})
if not doc or not doc.get("note"):
return "No note found."
current_note = str(doc["note"])
# Case-insensitive search
if old_str.lower() not in current_note.lower():
return f"String '{old_str}' not found in note."
# Case-insensitive replacement
import re
updated_note = re.sub(re.escape(old_str), new_str, current_note, flags=re.IGNORECASE)
self.collection.update_one(
{"user_id": self.user_id, "tool_id": self.tool_id},
{"$set": {"note": updated_note, "updated_at": datetime.utcnow()}},
)
return "Note updated."
def _insert(self, line_number: int, text: str) -> str:
if not text:
return "Text is required."
doc = self.collection.find_one({"user_id": self.user_id, "tool_id": self.tool_id})
if not doc or not doc.get("note"):
return "No note found."
current_note = str(doc["note"])
lines = current_note.split("\n")
# Convert to 0-indexed and validate
index = line_number - 1
if index < 0 or index > len(lines):
return f"Invalid line number. Note has {len(lines)} lines."
lines.insert(index, text)
updated_note = "\n".join(lines)
self.collection.update_one(
{"user_id": self.user_id, "tool_id": self.tool_id},
{"$set": {"note": updated_note, "updated_at": datetime.utcnow()}},
)
return "Text inserted."
def _delete_note(self) -> str:
res = self.collection.delete_one({"user_id": self.user_id, "tool_id": self.tool_id})
return "Note deleted." if res.deleted_count else "No note found to delete."

View File

@@ -1,321 +0,0 @@
from datetime import datetime
from typing import Any, Dict, List, Optional
import uuid
from .base import Tool
from application.core.mongo_db import MongoDB
from application.core.settings import settings
class TodoListTool(Tool):
"""Todo List
Manages todo items for users. Supports creating, viewing, updating, and deleting todos.
"""
def __init__(self, tool_config: Optional[Dict[str, Any]] = None, user_id: Optional[str] = None) -> None:
"""Initialize the tool.
Args:
tool_config: Optional tool configuration. Should include:
- tool_id: Unique identifier for this todo list tool instance (from user_tools._id)
This ensures each user's tool configuration has isolated todos
user_id: The authenticated user's id (should come from decoded_token["sub"]).
"""
self.user_id: Optional[str] = user_id
# Get tool_id from configuration (passed from user_tools._id in production)
# In production, tool_id is the MongoDB ObjectId string from user_tools collection
if tool_config and "tool_id" in tool_config:
self.tool_id = tool_config["tool_id"]
elif user_id:
# Fallback for backward compatibility or testing
self.tool_id = f"default_{user_id}"
else:
# Last resort fallback (shouldn't happen in normal use)
self.tool_id = str(uuid.uuid4())
db = MongoDB.get_client()[settings.MONGO_DB_NAME]
self.collection = db["todos"]
# -----------------------------
# Action implementations
# -----------------------------
def execute_action(self, action_name: str, **kwargs: Any) -> str:
"""Execute an action by name.
Args:
action_name: One of list, create, get, update, complete, delete.
**kwargs: Parameters for the action.
Returns:
A human-readable string result.
"""
if not self.user_id:
return "Error: TodoListTool requires a valid user_id."
if action_name == "list":
return self._list()
if action_name == "create":
return self._create(kwargs.get("title", ""))
if action_name == "get":
return self._get(kwargs.get("todo_id"))
if action_name == "update":
return self._update(
kwargs.get("todo_id"),
kwargs.get("title", "")
)
if action_name == "complete":
return self._complete(kwargs.get("todo_id"))
if action_name == "delete":
return self._delete(kwargs.get("todo_id"))
return f"Unknown action: {action_name}"
def get_actions_metadata(self) -> List[Dict[str, Any]]:
"""Return JSON metadata describing supported actions for tool schemas."""
return [
{
"name": "list",
"description": "List all todos for the user.",
"parameters": {"type": "object", "properties": {}},
},
{
"name": "create",
"description": "Create a new todo item.",
"parameters": {
"type": "object",
"properties": {
"title": {
"type": "string",
"description": "Title of the todo item."
}
},
"required": ["title"],
},
},
{
"name": "get",
"description": "Get a specific todo by ID.",
"parameters": {
"type": "object",
"properties": {
"todo_id": {
"type": "integer",
"description": "The ID of the todo to retrieve."
}
},
"required": ["todo_id"],
},
},
{
"name": "update",
"description": "Update a todo's title by ID.",
"parameters": {
"type": "object",
"properties": {
"todo_id": {
"type": "integer",
"description": "The ID of the todo to update."
},
"title": {
"type": "string",
"description": "The new title for the todo."
}
},
"required": ["todo_id", "title"],
},
},
{
"name": "complete",
"description": "Mark a todo as completed.",
"parameters": {
"type": "object",
"properties": {
"todo_id": {
"type": "integer",
"description": "The ID of the todo to mark as completed."
}
},
"required": ["todo_id"],
},
},
{
"name": "delete",
"description": "Delete a specific todo by ID.",
"parameters": {
"type": "object",
"properties": {
"todo_id": {
"type": "integer",
"description": "The ID of the todo to delete."
}
},
"required": ["todo_id"],
},
},
]
def get_config_requirements(self) -> Dict[str, Any]:
"""Return configuration requirements."""
return {}
# -----------------------------
# Internal helpers
# -----------------------------
def _coerce_todo_id(self, value: Optional[Any]) -> Optional[int]:
"""Convert todo identifiers to sequential integers."""
if value is None:
return None
if isinstance(value, int):
return value if value > 0 else None
if isinstance(value, str):
stripped = value.strip()
if stripped.isdigit():
numeric_value = int(stripped)
return numeric_value if numeric_value > 0 else None
return None
def _get_next_todo_id(self) -> int:
"""Get the next sequential todo_id for this user and tool.
Returns a simple integer (1, 2, 3, ...) scoped to this user/tool.
With 5-10 todos max, scanning is negligible.
"""
# Find all todos for this user/tool and get their IDs
todos = list(self.collection.find(
{"user_id": self.user_id, "tool_id": self.tool_id},
{"todo_id": 1}
))
# Find the maximum todo_id
max_id = 0
for todo in todos:
todo_id = self._coerce_todo_id(todo.get("todo_id"))
if todo_id is not None:
max_id = max(max_id, todo_id)
return max_id + 1
def _list(self) -> str:
"""List all todos for the user."""
cursor = self.collection.find({"user_id": self.user_id, "tool_id": self.tool_id})
todos = list(cursor)
if not todos:
return "No todos found."
result_lines = ["Todos:"]
for doc in todos:
todo_id = doc.get("todo_id")
title = doc.get("title", "Untitled")
status = doc.get("status", "open")
line = f"[{todo_id}] {title} ({status})"
result_lines.append(line)
return "\n".join(result_lines)
def _create(self, title: str) -> str:
"""Create a new todo item."""
title = (title or "").strip()
if not title:
return "Error: Title is required."
now = datetime.now()
todo_id = self._get_next_todo_id()
doc = {
"todo_id": todo_id,
"user_id": self.user_id,
"tool_id": self.tool_id,
"title": title,
"status": "open",
"created_at": now,
"updated_at": now,
}
self.collection.insert_one(doc)
return f"Todo created with ID {todo_id}: {title}"
def _get(self, todo_id: Optional[Any]) -> str:
"""Get a specific todo by ID."""
parsed_todo_id = self._coerce_todo_id(todo_id)
if parsed_todo_id is None:
return "Error: todo_id must be a positive integer."
doc = self.collection.find_one({
"user_id": self.user_id,
"tool_id": self.tool_id,
"todo_id": parsed_todo_id
})
if not doc:
return f"Error: Todo with ID {parsed_todo_id} not found."
title = doc.get("title", "Untitled")
status = doc.get("status", "open")
result = f"Todo [{parsed_todo_id}]:\nTitle: {title}\nStatus: {status}"
return result
def _update(self, todo_id: Optional[Any], title: str) -> str:
"""Update a todo's title by ID."""
parsed_todo_id = self._coerce_todo_id(todo_id)
if parsed_todo_id is None:
return "Error: todo_id must be a positive integer."
title = (title or "").strip()
if not title:
return "Error: Title is required."
result = self.collection.update_one(
{"user_id": self.user_id, "tool_id": self.tool_id, "todo_id": parsed_todo_id},
{"$set": {"title": title, "updated_at": datetime.now()}}
)
if result.matched_count == 0:
return f"Error: Todo with ID {parsed_todo_id} not found."
return f"Todo {parsed_todo_id} updated to: {title}"
def _complete(self, todo_id: Optional[Any]) -> str:
"""Mark a todo as completed."""
parsed_todo_id = self._coerce_todo_id(todo_id)
if parsed_todo_id is None:
return "Error: todo_id must be a positive integer."
result = self.collection.update_one(
{"user_id": self.user_id, "tool_id": self.tool_id, "todo_id": parsed_todo_id},
{"$set": {"status": "completed", "updated_at": datetime.now()}}
)
if result.matched_count == 0:
return f"Error: Todo with ID {parsed_todo_id} not found."
return f"Todo {parsed_todo_id} marked as completed."
def _delete(self, todo_id: Optional[Any]) -> str:
"""Delete a specific todo by ID."""
parsed_todo_id = self._coerce_todo_id(todo_id)
if parsed_todo_id is None:
return "Error: todo_id must be a positive integer."
result = self.collection.delete_one({
"user_id": self.user_id,
"tool_id": self.tool_id,
"todo_id": parsed_todo_id
})
if result.deleted_count == 0:
return f"Error: Todo with ID {parsed_todo_id} not found."
return f"Todo {parsed_todo_id} deleted."

View File

@@ -20,24 +20,20 @@ class ToolActionParser:
try:
call_args = json.loads(call.arguments)
tool_parts = call.name.split("_")
# If the tool name doesn't contain an underscore, it's likely a hallucinated tool
if len(tool_parts) < 2:
logger.warning(
f"Invalid tool name format: {call.name}. Expected format: action_name_tool_id"
)
logger.warning(f"Invalid tool name format: {call.name}. Expected format: action_name_tool_id")
return None, None, None
tool_id = tool_parts[-1]
action_name = "_".join(tool_parts[:-1])
# Validate that tool_id looks like a numerical ID
if not tool_id.isdigit():
logger.warning(
f"Tool ID '{tool_id}' is not numerical. This might be a hallucinated tool call."
)
except (AttributeError, TypeError, json.JSONDecodeError) as e:
logger.warning(f"Tool ID '{tool_id}' is not numerical. This might be a hallucinated tool call.")
except (AttributeError, TypeError) as e:
logger.error(f"Error parsing OpenAI LLM call: {e}")
return None, None, None
return tool_id, action_name, call_args
@@ -46,23 +42,19 @@ class ToolActionParser:
try:
call_args = call.arguments
tool_parts = call.name.split("_")
# If the tool name doesn't contain an underscore, it's likely a hallucinated tool
if len(tool_parts) < 2:
logger.warning(
f"Invalid tool name format: {call.name}. Expected format: action_name_tool_id"
)
logger.warning(f"Invalid tool name format: {call.name}. Expected format: action_name_tool_id")
return None, None, None
tool_id = tool_parts[-1]
action_name = "_".join(tool_parts[:-1])
# Validate that tool_id looks like a numerical ID
if not tool_id.isdigit():
logger.warning(
f"Tool ID '{tool_id}' is not numerical. This might be a hallucinated tool call."
)
logger.warning(f"Tool ID '{tool_id}' is not numerical. This might be a hallucinated tool call.")
except (AttributeError, TypeError) as e:
logger.error(f"Error parsing Google LLM call: {e}")
return None, None, None

View File

@@ -23,23 +23,16 @@ class ToolManager:
tool_config = self.config.get(name, {})
self.tools[name] = obj(tool_config)
def load_tool(self, tool_name, tool_config, user_id=None):
def load_tool(self, tool_name, tool_config):
self.config[tool_name] = tool_config
module = importlib.import_module(f"application.agents.tools.{tool_name}")
for member_name, obj in inspect.getmembers(module, inspect.isclass):
if issubclass(obj, Tool) and obj is not Tool:
if tool_name in {"mcp_tool", "notes", "memory", "todo_list"} and user_id:
return obj(tool_config, user_id)
else:
return obj(tool_config)
return obj(tool_config)
def execute_action(self, tool_name, action_name, user_id=None, **kwargs):
def execute_action(self, tool_name, action_name, **kwargs):
if tool_name not in self.tools:
raise ValueError(f"Tool '{tool_name}' not loaded")
if tool_name in {"mcp_tool", "memory", "todo_list"} and user_id:
tool_config = self.config.get(tool_name, {})
tool = self.load_tool(tool_name, tool_config, user_id)
return tool.execute_action(action_name, **kwargs)
return self.tools[tool_name].execute_action(action_name, **kwargs)
def get_all_actions_metadata(self):

View File

@@ -54,14 +54,6 @@ class AnswerResource(Resource, BaseAnswerResource):
default=True,
description="Whether to save the conversation",
),
"model_id": fields.String(
required=False,
description="Model ID to use for this request",
),
"passthrough": fields.Raw(
required=False,
description="Dynamic parameters to inject into prompt template",
),
},
)
@@ -77,31 +69,19 @@ class AnswerResource(Resource, BaseAnswerResource):
processor.initialize()
if not processor.decoded_token:
return make_response({"error": "Unauthorized"}, 401)
docs_together, docs_list = processor.pre_fetch_docs(
data.get("question", "")
)
tools_data = processor.pre_fetch_tools()
agent = processor.create_agent(
docs_together=docs_together,
docs=docs_list,
tools_data=tools_data,
)
if error := self.check_usage(processor.agent_config):
return error
agent = processor.create_agent()
retriever = processor.create_retriever()
stream = self.complete_stream(
question=data["question"],
agent=agent,
retriever=retriever,
conversation_id=processor.conversation_id,
user_api_key=processor.agent_config.get("user_api_key"),
decoded_token=processor.decoded_token,
isNoneDoc=data.get("isNoneDoc"),
index=None,
should_save_conversation=data.get("save_conversation", True),
model_id=processor.model_id,
)
stream_result = self.process_response_stream(stream)

View File

@@ -3,20 +3,15 @@ import json
import logging
from typing import Any, Dict, Generator, List, Optional
from flask import jsonify, make_response, Response
from flask import Response
from flask_restx import Namespace
from application.api.answer.services.conversation_service import ConversationService
from application.core.model_utils import (
get_api_key_for_provider,
get_default_model_id,
get_provider_from_model_id,
)
from application.core.mongo_db import MongoDB
from application.core.settings import settings
from application.llm.llm_creator import LLMCreator
from application.utils import check_required_fields
from application.utils import check_required_fields, get_gpt_model
logger = logging.getLogger(__name__)
@@ -30,9 +25,8 @@ class BaseAnswerResource:
def __init__(self):
mongo = MongoDB.get_client()
db = mongo[settings.MONGO_DB_NAME]
self.db = db
self.user_logs_collection = db["user_logs"]
self.default_model_id = get_default_model_id()
self.gpt_model = get_gpt_model()
self.conversation_service = ConversationService()
def validate_request(
@@ -46,104 +40,11 @@ class BaseAnswerResource:
return missing_fields
return None
def check_usage(self, agent_config: Dict) -> Optional[Response]:
"""Check if there is a usage limit and if it is exceeded
Args:
agent_config: The config dict of agent instance
Returns:
None or Response if either of limits exceeded.
"""
api_key = agent_config.get("user_api_key")
if not api_key:
return None
agents_collection = self.db["agents"]
agent = agents_collection.find_one({"key": api_key})
if not agent:
return make_response(
jsonify({"success": False, "message": "Invalid API key."}), 401
)
limited_token_mode_raw = agent.get("limited_token_mode", False)
limited_request_mode_raw = agent.get("limited_request_mode", False)
limited_token_mode = (
limited_token_mode_raw
if isinstance(limited_token_mode_raw, bool)
else limited_token_mode_raw == "True"
)
limited_request_mode = (
limited_request_mode_raw
if isinstance(limited_request_mode_raw, bool)
else limited_request_mode_raw == "True"
)
token_limit = int(
agent.get("token_limit", settings.DEFAULT_AGENT_LIMITS["token_limit"])
)
request_limit = int(
agent.get("request_limit", settings.DEFAULT_AGENT_LIMITS["request_limit"])
)
token_usage_collection = self.db["token_usage"]
end_date = datetime.datetime.now()
start_date = end_date - datetime.timedelta(hours=24)
match_query = {
"timestamp": {"$gte": start_date, "$lte": end_date},
"api_key": api_key,
}
if limited_token_mode:
token_pipeline = [
{"$match": match_query},
{
"$group": {
"_id": None,
"total_tokens": {
"$sum": {"$add": ["$prompt_tokens", "$generated_tokens"]}
},
}
},
]
token_result = list(token_usage_collection.aggregate(token_pipeline))
daily_token_usage = token_result[0]["total_tokens"] if token_result else 0
else:
daily_token_usage = 0
if limited_request_mode:
daily_request_usage = token_usage_collection.count_documents(match_query)
else:
daily_request_usage = 0
if not limited_token_mode and not limited_request_mode:
return None
token_exceeded = (
limited_token_mode and token_limit > 0 and daily_token_usage >= token_limit
)
request_exceeded = (
limited_request_mode
and request_limit > 0
and daily_request_usage >= request_limit
)
if token_exceeded or request_exceeded:
return make_response(
jsonify(
{
"success": False,
"message": "Exceeding usage limit, please try again later.",
}
),
429,
)
return None
def complete_stream(
self,
question: str,
agent: Any,
retriever: Any,
conversation_id: Optional[str],
user_api_key: Optional[str],
decoded_token: Dict[str, Any],
@@ -154,7 +55,6 @@ class BaseAnswerResource:
agent_id: Optional[str] = None,
is_shared_usage: bool = False,
shared_token: Optional[str] = None,
model_id: Optional[str] = None,
) -> Generator[str, None, None]:
"""
Generator function that streams the complete conversation response.
@@ -173,8 +73,6 @@ class BaseAnswerResource:
agent_id: ID of agent used
is_shared_usage: Flag for shared agent usage
shared_token: Token for shared agent
model_id: Model ID used for the request
retrieved_docs: Pre-fetched documents for sources (optional)
Yields:
Server-sent event strings
@@ -185,7 +83,7 @@ class BaseAnswerResource:
schema_info = None
structured_chunks = []
for line in agent.gen(query=question):
for line in agent.gen(query=question, retriever=retriever):
if "answer" in line:
response_full += str(line["answer"])
if line.get("structured"):
@@ -212,8 +110,6 @@ class BaseAnswerResource:
yield f"data: {data}\n\n"
elif "tool_calls" in line:
tool_calls = line["tool_calls"]
data = json.dumps({"type": "tool_calls", "tool_calls": tool_calls})
yield f"data: {data}\n\n"
elif "thought" in line:
thought += line["thought"]
data = json.dumps({"type": "thought", "thought": line["thought"]})
@@ -221,6 +117,7 @@ class BaseAnswerResource:
elif "type" in line:
data = json.dumps(line)
yield f"data: {data}\n\n"
if is_structured and structured_chunks:
structured_data = {
"type": "structured_answer",
@@ -230,22 +127,15 @@ class BaseAnswerResource:
}
data = json.dumps(structured_data)
yield f"data: {data}\n\n"
if isNoneDoc:
for doc in source_log_docs:
doc["source"] = "None"
provider = (
get_provider_from_model_id(model_id)
if model_id
else settings.LLM_PROVIDER
)
system_api_key = get_api_key_for_provider(provider or settings.LLM_PROVIDER)
llm = LLMCreator.create_llm(
provider or settings.LLM_PROVIDER,
api_key=system_api_key,
settings.LLM_PROVIDER,
api_key=settings.API_KEY,
user_api_key=user_api_key,
decoded_token=decoded_token,
model_id=model_id,
)
if should_save_conversation:
@@ -257,7 +147,7 @@ class BaseAnswerResource:
source_log_docs,
tool_calls,
llm,
model_id or self.default_model_id,
self.gpt_model,
decoded_token,
index=index,
api_key=user_api_key,
@@ -266,32 +156,13 @@ class BaseAnswerResource:
shared_token=shared_token,
attachment_ids=attachment_ids,
)
# Persist compression metadata/summary if it exists and wasn't saved mid-execution
compression_meta = getattr(agent, "compression_metadata", None)
compression_saved = getattr(agent, "compression_saved", False)
if conversation_id and compression_meta and not compression_saved:
try:
self.conversation_service.update_compression_metadata(
conversation_id, compression_meta
)
self.conversation_service.append_compression_message(
conversation_id, compression_meta
)
agent.compression_saved = True
logger.info(
f"Persisted compression metadata for conversation {conversation_id}"
)
except Exception as e:
logger.error(
f"Failed to persist compression metadata: {str(e)}",
exc_info=True,
)
else:
conversation_id = None
id_data = {"type": "id", "id": str(conversation_id)}
data = json.dumps(id_data)
yield f"data: {data}\n\n"
retriever_params = retriever.get_params()
log_data = {
"action": "stream_answer",
"level": "info",
@@ -300,6 +171,7 @@ class BaseAnswerResource:
"question": question,
"response": response_full,
"sources": source_log_docs,
"retriever_params": retriever_params,
"attachments": attachment_ids,
"timestamp": datetime.datetime.now(datetime.timezone.utc),
}
@@ -307,71 +179,18 @@ class BaseAnswerResource:
log_data["structured_output"] = True
if schema_info:
log_data["schema"] = schema_info
# Clean up text fields to be no longer than 10000 characters
# clean up text fields to be no longer than 10000 characters
for key, value in log_data.items():
if isinstance(value, str) and len(value) > 10000:
log_data[key] = value[:10000]
self.user_logs_collection.insert_one(log_data)
# End of stream
data = json.dumps({"type": "end"})
yield f"data: {data}\n\n"
except GeneratorExit:
logger.info(f"Stream aborted by client for question: {question[:50]}... ")
# Save partial response
if should_save_conversation and response_full:
try:
if isNoneDoc:
for doc in source_log_docs:
doc["source"] = "None"
llm = LLMCreator.create_llm(
settings.LLM_PROVIDER,
api_key=settings.API_KEY,
user_api_key=user_api_key,
decoded_token=decoded_token,
)
self.conversation_service.save_conversation(
conversation_id,
question,
response_full,
thought,
source_log_docs,
tool_calls,
llm,
model_id or self.default_model_id,
decoded_token,
index=index,
api_key=user_api_key,
agent_id=agent_id,
is_shared_usage=is_shared_usage,
shared_token=shared_token,
attachment_ids=attachment_ids,
)
compression_meta = getattr(agent, "compression_metadata", None)
compression_saved = getattr(agent, "compression_saved", False)
if conversation_id and compression_meta and not compression_saved:
try:
self.conversation_service.update_compression_metadata(
conversation_id, compression_meta
)
self.conversation_service.append_compression_message(
conversation_id, compression_meta
)
agent.compression_saved = True
logger.info(
f"Persisted compression metadata for conversation {conversation_id} (partial stream)"
)
except Exception as e:
logger.error(
f"Failed to persist compression metadata (partial stream): {str(e)}",
exc_info=True,
)
except Exception as e:
logger.error(
f"Error saving partial response: {str(e)}", exc_info=True
)
raise
except Exception as e:
logger.error(f"Error in stream: {str(e)}", exc_info=True)
data = json.dumps(
@@ -415,7 +234,7 @@ class BaseAnswerResource:
thought = event["thought"]
elif event["type"] == "error":
logger.error(f"Error from stream: {event['error']}")
return None, None, None, None, event["error"], None
return None, None, None, None, event["error"]
elif event["type"] == "end":
stream_ended = True
except (json.JSONDecodeError, KeyError) as e:
@@ -423,7 +242,8 @@ class BaseAnswerResource:
continue
if not stream_ended:
logger.error("Stream ended unexpectedly without an 'end' event.")
return None, None, None, None, "Stream ended unexpectedly", None
return None, None, None, None, "Stream ended unexpectedly"
result = (
conversation_id,
response_full,
@@ -435,6 +255,7 @@ class BaseAnswerResource:
if is_structured:
result = result + ({"structured": True, "schema": schema_info},)
return result
def error_stream_generate(self, err_response):

View File

@@ -57,17 +57,9 @@ class StreamResource(Resource, BaseAnswerResource):
default=True,
description="Whether to save the conversation",
),
"model_id": fields.String(
required=False,
description="Model ID to use for this request",
),
"attachments": fields.List(
fields.String, required=False, description="List of attachment IDs"
),
"passthrough": fields.Raw(
required=False,
description="Dynamic parameters to inject into prompt template",
),
},
)
@@ -81,20 +73,14 @@ class StreamResource(Resource, BaseAnswerResource):
processor = StreamProcessor(data, decoded_token)
try:
processor.initialize()
agent = processor.create_agent()
retriever = processor.create_retriever()
docs_together, docs_list = processor.pre_fetch_docs(data["question"])
tools_data = processor.pre_fetch_tools()
agent = processor.create_agent(
docs_together=docs_together, docs=docs_list, tools_data=tools_data
)
if error := self.check_usage(processor.agent_config):
return error
return Response(
self.complete_stream(
question=data["question"],
agent=agent,
retriever=retriever,
conversation_id=processor.conversation_id,
user_api_key=processor.agent_config.get("user_api_key"),
decoded_token=processor.decoded_token,
@@ -105,7 +91,6 @@ class StreamResource(Resource, BaseAnswerResource):
agent_id=data.get("agent_id"),
is_shared_usage=processor.is_shared_usage,
shared_token=processor.shared_token,
model_id=processor.model_id,
),
mimetype="text/event-stream",
)

View File

@@ -1,20 +0,0 @@
"""
Compression module for managing conversation context compression.
"""
from application.api.answer.services.compression.orchestrator import (
CompressionOrchestrator,
)
from application.api.answer.services.compression.service import CompressionService
from application.api.answer.services.compression.types import (
CompressionResult,
CompressionMetadata,
)
__all__ = [
"CompressionOrchestrator",
"CompressionService",
"CompressionResult",
"CompressionMetadata",
]

View File

@@ -1,234 +0,0 @@
"""Message reconstruction utilities for compression."""
import logging
import uuid
from typing import Dict, List, Optional
logger = logging.getLogger(__name__)
class MessageBuilder:
"""Builds message arrays from compressed context."""
@staticmethod
def build_from_compressed_context(
system_prompt: str,
compressed_summary: Optional[str],
recent_queries: List[Dict],
include_tool_calls: bool = False,
context_type: str = "pre_request",
) -> List[Dict]:
"""
Build messages from compressed context.
Args:
system_prompt: Original system prompt
compressed_summary: Compressed summary (if any)
recent_queries: Recent uncompressed queries
include_tool_calls: Whether to include tool calls from history
context_type: Type of context ('pre_request' or 'mid_execution')
Returns:
List of message dicts ready for LLM
"""
# Append compression summary to system prompt if present
if compressed_summary:
system_prompt = MessageBuilder._append_compression_context(
system_prompt, compressed_summary, context_type
)
messages = [{"role": "system", "content": system_prompt}]
# Add recent history
for query in recent_queries:
if "prompt" in query and "response" in query:
messages.append({"role": "user", "content": query["prompt"]})
messages.append({"role": "assistant", "content": query["response"]})
# Add tool calls from history if present
if include_tool_calls and "tool_calls" in query:
for tool_call in query["tool_calls"]:
call_id = tool_call.get("call_id") or str(uuid.uuid4())
function_call_dict = {
"function_call": {
"name": tool_call.get("action_name"),
"args": tool_call.get("arguments"),
"call_id": call_id,
}
}
function_response_dict = {
"function_response": {
"name": tool_call.get("action_name"),
"response": {"result": tool_call.get("result")},
"call_id": call_id,
}
}
messages.append(
{"role": "assistant", "content": [function_call_dict]}
)
messages.append(
{"role": "tool", "content": [function_response_dict]}
)
# If no recent queries (everything was compressed), add a continuation user message
if len(recent_queries) == 0 and compressed_summary:
messages.append({
"role": "user",
"content": "Please continue with the remaining tasks based on the context above."
})
logger.info("Added continuation user message to maintain proper turn-taking after full compression")
return messages
@staticmethod
def _append_compression_context(
system_prompt: str, compressed_summary: str, context_type: str = "pre_request"
) -> str:
"""
Append compression context to system prompt.
Args:
system_prompt: Original system prompt
compressed_summary: Summary to append
context_type: Type of compression context
Returns:
Updated system prompt
"""
# Remove existing compression context if present
if "This session is being continued" in system_prompt or "Context window limit reached" in system_prompt:
parts = system_prompt.split("\n\n---\n\n")
system_prompt = parts[0]
# Build appropriate context message based on type
if context_type == "mid_execution":
context_message = (
"\n\n---\n\n"
"Context window limit reached during execution. "
"Previous conversation has been compressed to fit within limits. "
"The conversation is summarized below:\n\n"
f"{compressed_summary}"
)
else: # pre_request
context_message = (
"\n\n---\n\n"
"This session is being continued from a previous conversation that "
"has been compressed to fit within context limits. "
"The conversation is summarized below:\n\n"
f"{compressed_summary}"
)
return system_prompt + context_message
@staticmethod
def rebuild_messages_after_compression(
messages: List[Dict],
compressed_summary: Optional[str],
recent_queries: List[Dict],
include_current_execution: bool = False,
include_tool_calls: bool = False,
) -> Optional[List[Dict]]:
"""
Rebuild the message list after compression so tool execution can continue.
Args:
messages: Original message list
compressed_summary: Compressed summary
recent_queries: Recent uncompressed queries
include_current_execution: Whether to preserve current execution messages
include_tool_calls: Whether to include tool calls from history
Returns:
Rebuilt message list or None if failed
"""
# Find the system message
system_message = next(
(msg for msg in messages if msg.get("role") == "system"), None
)
if not system_message:
logger.warning("No system message found in messages list")
return None
# Update system message with compressed summary
if compressed_summary:
content = system_message.get("content", "")
system_message["content"] = MessageBuilder._append_compression_context(
content, compressed_summary, "mid_execution"
)
logger.info(
"Appended compression summary to system prompt (truncated): %s",
(
compressed_summary[:500] + "..."
if len(compressed_summary) > 500
else compressed_summary
),
)
rebuilt_messages = [system_message]
# Add recent history from compressed context
for query in recent_queries:
if "prompt" in query and "response" in query:
rebuilt_messages.append({"role": "user", "content": query["prompt"]})
rebuilt_messages.append(
{"role": "assistant", "content": query["response"]}
)
# Add tool calls from history if present
if include_tool_calls and "tool_calls" in query:
for tool_call in query["tool_calls"]:
call_id = tool_call.get("call_id") or str(uuid.uuid4())
function_call_dict = {
"function_call": {
"name": tool_call.get("action_name"),
"args": tool_call.get("arguments"),
"call_id": call_id,
}
}
function_response_dict = {
"function_response": {
"name": tool_call.get("action_name"),
"response": {"result": tool_call.get("result")},
"call_id": call_id,
}
}
rebuilt_messages.append(
{"role": "assistant", "content": [function_call_dict]}
)
rebuilt_messages.append(
{"role": "tool", "content": [function_response_dict]}
)
# If no recent queries (everything was compressed), add a continuation user message
if len(recent_queries) == 0 and compressed_summary:
rebuilt_messages.append({
"role": "user",
"content": "Please continue with the remaining tasks based on the context above."
})
logger.info("Added continuation user message to maintain proper turn-taking after full compression")
if include_current_execution:
# Preserve any messages that were added during the current execution cycle
recent_msg_count = 1 # system message
for query in recent_queries:
if "prompt" in query and "response" in query:
recent_msg_count += 2
if "tool_calls" in query:
recent_msg_count += len(query["tool_calls"]) * 2
if len(messages) > recent_msg_count:
current_execution_messages = messages[recent_msg_count:]
rebuilt_messages.extend(current_execution_messages)
logger.info(
f"Preserved {len(current_execution_messages)} messages from current execution cycle"
)
logger.info(
f"Messages rebuilt: {len(messages)}{len(rebuilt_messages)} messages. "
f"Ready to continue tool execution."
)
return rebuilt_messages

View File

@@ -1,232 +0,0 @@
"""High-level compression orchestration."""
import logging
from typing import Any, Dict, Optional
from application.api.answer.services.compression.service import CompressionService
from application.api.answer.services.compression.threshold_checker import (
CompressionThresholdChecker,
)
from application.api.answer.services.compression.types import CompressionResult
from application.api.answer.services.conversation_service import ConversationService
from application.core.model_utils import (
get_api_key_for_provider,
get_provider_from_model_id,
)
from application.core.settings import settings
from application.llm.llm_creator import LLMCreator
logger = logging.getLogger(__name__)
class CompressionOrchestrator:
"""
Facade for compression operations.
Coordinates between all compression components and provides
a simple interface for callers.
"""
def __init__(
self,
conversation_service: ConversationService,
threshold_checker: Optional[CompressionThresholdChecker] = None,
):
"""
Initialize orchestrator.
Args:
conversation_service: Service for DB operations
threshold_checker: Custom threshold checker (optional)
"""
self.conversation_service = conversation_service
self.threshold_checker = threshold_checker or CompressionThresholdChecker()
def compress_if_needed(
self,
conversation_id: str,
user_id: str,
model_id: str,
decoded_token: Dict[str, Any],
current_query_tokens: int = 500,
) -> CompressionResult:
"""
Check if compression is needed and perform it if so.
This is the main entry point for compression operations.
Args:
conversation_id: Conversation ID
user_id: User ID
model_id: Model being used for conversation
decoded_token: User's decoded JWT token
current_query_tokens: Estimated tokens for current query
Returns:
CompressionResult with summary and recent queries
"""
try:
# Load conversation
conversation = self.conversation_service.get_conversation(
conversation_id, user_id
)
if not conversation:
logger.warning(
f"Conversation {conversation_id} not found for user {user_id}"
)
return CompressionResult.failure("Conversation not found")
# Check if compression is needed
if not self.threshold_checker.should_compress(
conversation, model_id, current_query_tokens
):
# No compression needed, return full history
queries = conversation.get("queries", [])
return CompressionResult.success_no_compression(queries)
# Perform compression
return self._perform_compression(
conversation_id, conversation, model_id, decoded_token
)
except Exception as e:
logger.error(
f"Error in compress_if_needed: {str(e)}", exc_info=True
)
return CompressionResult.failure(str(e))
def _perform_compression(
self,
conversation_id: str,
conversation: Dict[str, Any],
model_id: str,
decoded_token: Dict[str, Any],
) -> CompressionResult:
"""
Perform the actual compression operation.
Args:
conversation_id: Conversation ID
conversation: Conversation document
model_id: Model ID for conversation
decoded_token: User token
Returns:
CompressionResult
"""
try:
# Determine which model to use for compression
compression_model = (
settings.COMPRESSION_MODEL_OVERRIDE
if settings.COMPRESSION_MODEL_OVERRIDE
else model_id
)
# Get provider and API key for compression model
provider = get_provider_from_model_id(compression_model)
api_key = get_api_key_for_provider(provider)
# Create compression LLM
compression_llm = LLMCreator.create_llm(
provider,
api_key=api_key,
user_api_key=None,
decoded_token=decoded_token,
model_id=compression_model,
)
# Create compression service with DB update capability
compression_service = CompressionService(
llm=compression_llm,
model_id=compression_model,
conversation_service=self.conversation_service,
)
# Compress all queries up to the latest
queries_count = len(conversation.get("queries", []))
compress_up_to = queries_count - 1
if compress_up_to < 0:
logger.warning("No queries to compress")
return CompressionResult.success_no_compression([])
logger.info(
f"Initiating compression for conversation {conversation_id}: "
f"compressing all {queries_count} queries (0-{compress_up_to})"
)
# Perform compression and save to DB
metadata = compression_service.compress_and_save(
conversation_id, conversation, compress_up_to
)
logger.info(
f"Compression successful - ratio: {metadata.compression_ratio:.1f}x, "
f"saved {metadata.original_token_count - metadata.compressed_token_count} tokens"
)
# Reload conversation with updated metadata
conversation = self.conversation_service.get_conversation(
conversation_id, user_id=decoded_token.get("sub")
)
# Get compressed context
compressed_summary, recent_queries = (
compression_service.get_compressed_context(conversation)
)
return CompressionResult.success_with_compression(
compressed_summary, recent_queries, metadata
)
except Exception as e:
logger.error(f"Error performing compression: {str(e)}", exc_info=True)
return CompressionResult.failure(str(e))
def compress_mid_execution(
self,
conversation_id: str,
user_id: str,
model_id: str,
decoded_token: Dict[str, Any],
current_conversation: Optional[Dict[str, Any]] = None,
) -> CompressionResult:
"""
Perform compression during tool execution.
Args:
conversation_id: Conversation ID
user_id: User ID
model_id: Model ID
decoded_token: User token
current_conversation: Pre-loaded conversation (optional)
Returns:
CompressionResult
"""
try:
# Load conversation if not provided
if current_conversation:
conversation = current_conversation
else:
conversation = self.conversation_service.get_conversation(
conversation_id, user_id
)
if not conversation:
logger.warning(
f"Could not load conversation {conversation_id} for mid-execution compression"
)
return CompressionResult.failure("Conversation not found")
# Perform compression
return self._perform_compression(
conversation_id, conversation, model_id, decoded_token
)
except Exception as e:
logger.error(
f"Error in mid-execution compression: {str(e)}", exc_info=True
)
return CompressionResult.failure(str(e))

View File

@@ -1,149 +0,0 @@
"""Compression prompt building logic."""
import logging
from pathlib import Path
from typing import Any, Dict, List, Optional
logger = logging.getLogger(__name__)
class CompressionPromptBuilder:
"""Builds prompts for LLM compression calls."""
def __init__(self, version: str = "v1.0"):
"""
Initialize prompt builder.
Args:
version: Prompt template version to use
"""
self.version = version
self.system_prompt = self._load_prompt(version)
def _load_prompt(self, version: str) -> str:
"""
Load prompt template from file.
Args:
version: Version string (e.g., 'v1.0')
Returns:
Prompt template content
Raises:
FileNotFoundError: If prompt template file doesn't exist
"""
current_dir = Path(__file__).resolve().parents[4]
prompt_path = current_dir / "prompts" / "compression" / f"{version}.txt"
try:
with open(prompt_path, "r") as f:
return f.read()
except FileNotFoundError:
logger.error(f"Compression prompt template not found: {prompt_path}")
raise FileNotFoundError(
f"Compression prompt template '{version}' not found at {prompt_path}. "
f"Please ensure the template file exists."
)
def build_prompt(
self,
queries: List[Dict[str, Any]],
existing_compressions: Optional[List[Dict[str, Any]]] = None,
) -> List[Dict[str, str]]:
"""
Build messages for compression LLM call.
Args:
queries: List of query objects to compress
existing_compressions: List of previous compression points
Returns:
List of message dicts for LLM
"""
# Build conversation text
conversation_text = self._format_conversation(queries)
# Add existing compression context if present
existing_compression_context = ""
if existing_compressions and len(existing_compressions) > 0:
existing_compression_context = (
"\n\nIMPORTANT: This conversation has been compressed before. "
"Previous compression summaries:\n\n"
)
for i, comp in enumerate(existing_compressions):
existing_compression_context += (
f"--- Compression {i + 1} (up to message {comp.get('query_index', 'unknown')}) ---\n"
f"{comp.get('compressed_summary', '')}\n\n"
)
existing_compression_context += (
"Your task is to create a NEW summary that incorporates the context from "
"previous compressions AND the new messages below. The final summary should "
"be comprehensive and include all important information from both previous "
"compressions and new messages.\n\n"
)
user_prompt = (
f"{existing_compression_context}"
f"Here is the conversation to summarize:\n\n"
f"{conversation_text}"
)
messages = [
{"role": "system", "content": self.system_prompt},
{"role": "user", "content": user_prompt},
]
return messages
def _format_conversation(self, queries: List[Dict[str, Any]]) -> str:
"""
Format conversation queries into readable text for compression.
Args:
queries: List of query objects
Returns:
Formatted conversation text
"""
conversation_lines = []
for i, query in enumerate(queries):
conversation_lines.append(f"--- Message {i + 1} ---")
conversation_lines.append(f"User: {query.get('prompt', '')}")
# Add tool calls if present
tool_calls = query.get("tool_calls", [])
if tool_calls:
conversation_lines.append("\nTool Calls:")
for tc in tool_calls:
tool_name = tc.get("tool_name", "unknown")
action_name = tc.get("action_name", "unknown")
arguments = tc.get("arguments", {})
result = tc.get("result", "")
if result is None:
result = ""
status = tc.get("status", "unknown")
# Include full tool result for complete compression context
conversation_lines.append(
f" - {tool_name}.{action_name}({arguments}) "
f"[{status}] → {result}"
)
# Add agent thought if present
thought = query.get("thought", "")
if thought:
conversation_lines.append(f"\nAgent Thought: {thought}")
# Add assistant response
conversation_lines.append(f"\nAssistant: {query.get('response', '')}")
# Add sources if present
sources = query.get("sources", [])
if sources:
conversation_lines.append(f"\nSources Used: {len(sources)} documents")
conversation_lines.append("") # Empty line between messages
return "\n".join(conversation_lines)

View File

@@ -1,306 +0,0 @@
"""Core compression service with simplified responsibilities."""
import logging
import re
from datetime import datetime, timezone
from typing import Any, Dict, List, Optional
from application.api.answer.services.compression.prompt_builder import (
CompressionPromptBuilder,
)
from application.api.answer.services.compression.token_counter import TokenCounter
from application.api.answer.services.compression.types import (
CompressionMetadata,
)
from application.core.settings import settings
logger = logging.getLogger(__name__)
class CompressionService:
"""
Service for compressing conversation history.
Handles DB updates.
"""
def __init__(
self,
llm,
model_id: str,
conversation_service=None,
prompt_builder: Optional[CompressionPromptBuilder] = None,
):
"""
Initialize compression service.
Args:
llm: LLM instance to use for compression
model_id: Model ID for compression
conversation_service: Service for DB operations (optional, for DB updates)
prompt_builder: Custom prompt builder (optional)
"""
self.llm = llm
self.model_id = model_id
self.conversation_service = conversation_service
self.prompt_builder = prompt_builder or CompressionPromptBuilder(
version=settings.COMPRESSION_PROMPT_VERSION
)
def compress_conversation(
self,
conversation: Dict[str, Any],
compress_up_to_index: int,
) -> CompressionMetadata:
"""
Compress conversation history up to specified index.
Args:
conversation: Full conversation document
compress_up_to_index: Last query index to include in compression
Returns:
CompressionMetadata with compression details
Raises:
ValueError: If compress_up_to_index is invalid
"""
try:
queries = conversation.get("queries", [])
if compress_up_to_index < 0 or compress_up_to_index >= len(queries):
raise ValueError(
f"Invalid compress_up_to_index: {compress_up_to_index} "
f"(conversation has {len(queries)} queries)"
)
# Get queries to compress
queries_to_compress = queries[: compress_up_to_index + 1]
# Check if there are existing compressions
existing_compressions = conversation.get("compression_metadata", {}).get(
"compression_points", []
)
if existing_compressions:
logger.info(
f"Found {len(existing_compressions)} previous compression(s) - "
f"will incorporate into new summary"
)
# Calculate original token count
original_tokens = TokenCounter.count_query_tokens(queries_to_compress)
# Log tool call stats
self._log_tool_call_stats(queries_to_compress)
# Build compression prompt
messages = self.prompt_builder.build_prompt(
queries_to_compress, existing_compressions
)
# Call LLM to generate compression
logger.info(
f"Starting compression: {len(queries_to_compress)} queries "
f"(messages 0-{compress_up_to_index}, {original_tokens} tokens) "
f"using model {self.model_id}"
)
response = self.llm.gen(
model=self.model_id, messages=messages, max_tokens=4000
)
# Extract summary from response
compressed_summary = self._extract_summary(response)
# Calculate compressed token count
compressed_tokens = TokenCounter.count_message_tokens(
[{"content": compressed_summary}]
)
# Calculate compression ratio
compression_ratio = (
original_tokens / compressed_tokens if compressed_tokens > 0 else 0
)
logger.info(
f"Compression complete: {original_tokens}{compressed_tokens} tokens "
f"({compression_ratio:.1f}x compression)"
)
# Build compression metadata
compression_metadata = CompressionMetadata(
timestamp=datetime.now(timezone.utc),
query_index=compress_up_to_index,
compressed_summary=compressed_summary,
original_token_count=original_tokens,
compressed_token_count=compressed_tokens,
compression_ratio=compression_ratio,
model_used=self.model_id,
compression_prompt_version=self.prompt_builder.version,
)
return compression_metadata
except Exception as e:
logger.error(f"Error compressing conversation: {str(e)}", exc_info=True)
raise
def compress_and_save(
self,
conversation_id: str,
conversation: Dict[str, Any],
compress_up_to_index: int,
) -> CompressionMetadata:
"""
Compress conversation and save to database.
Args:
conversation_id: Conversation ID
conversation: Full conversation document
compress_up_to_index: Last query index to include
Returns:
CompressionMetadata
Raises:
ValueError: If conversation_service not provided or invalid index
"""
if not self.conversation_service:
raise ValueError(
"conversation_service required for compress_and_save operation"
)
# Perform compression
metadata = self.compress_conversation(conversation, compress_up_to_index)
# Save to database
self.conversation_service.update_compression_metadata(
conversation_id, metadata.to_dict()
)
logger.info(f"Compression metadata saved to database for {conversation_id}")
return metadata
def get_compressed_context(
self, conversation: Dict[str, Any]
) -> tuple[Optional[str], List[Dict[str, Any]]]:
"""
Get compressed summary + recent uncompressed messages.
Args:
conversation: Full conversation document
Returns:
(compressed_summary, recent_messages)
"""
try:
compression_metadata = conversation.get("compression_metadata", {})
if not compression_metadata.get("is_compressed"):
logger.debug("No compression metadata found - using full history")
queries = conversation.get("queries", [])
if queries is None:
logger.error("Conversation queries is None - returning empty list")
return None, []
return None, queries
compression_points = compression_metadata.get("compression_points", [])
if not compression_points:
logger.debug("No compression points found - using full history")
queries = conversation.get("queries", [])
if queries is None:
logger.error("Conversation queries is None - returning empty list")
return None, []
return None, queries
# Get the most recent compression point
latest_compression = compression_points[-1]
compressed_summary = latest_compression.get("compressed_summary")
last_compressed_index = latest_compression.get("query_index")
compressed_tokens = latest_compression.get("compressed_token_count", 0)
original_tokens = latest_compression.get("original_token_count", 0)
# Get only messages after compression point
queries = conversation.get("queries", [])
total_queries = len(queries)
recent_queries = queries[last_compressed_index + 1 :]
logger.info(
f"Using compressed context: summary ({compressed_tokens} tokens, "
f"compressed from {original_tokens}) + {len(recent_queries)} recent messages "
f"(messages {last_compressed_index + 1}-{total_queries - 1})"
)
return compressed_summary, recent_queries
except Exception as e:
logger.error(
f"Error getting compressed context: {str(e)}", exc_info=True
)
queries = conversation.get("queries", [])
if queries is None:
return None, []
return None, queries
def _extract_summary(self, llm_response: str) -> str:
"""
Extract clean summary from LLM response.
Args:
llm_response: Raw LLM response
Returns:
Cleaned summary text
"""
try:
# Try to extract content within <summary> tags
summary_match = re.search(
r"<summary>(.*?)</summary>", llm_response, re.DOTALL
)
if summary_match:
summary = summary_match.group(1).strip()
else:
# If no summary tags, remove analysis tags and use the rest
summary = re.sub(
r"<analysis>.*?</analysis>", "", llm_response, flags=re.DOTALL
).strip()
return summary
except Exception as e:
logger.warning(f"Error extracting summary: {str(e)}, using full response")
return llm_response
def _log_tool_call_stats(self, queries: List[Dict[str, Any]]) -> None:
"""Log statistics about tool calls in queries."""
total_tool_calls = 0
total_tool_result_chars = 0
tool_call_breakdown = {}
for q in queries:
for tc in q.get("tool_calls", []):
total_tool_calls += 1
tool_name = tc.get("tool_name", "unknown")
action_name = tc.get("action_name", "unknown")
key = f"{tool_name}.{action_name}"
tool_call_breakdown[key] = tool_call_breakdown.get(key, 0) + 1
# Track total tool result size
result = tc.get("result", "")
if result:
total_tool_result_chars += len(str(result))
if total_tool_calls > 0:
tool_breakdown_str = ", ".join(
f"{tool}({count})"
for tool, count in sorted(tool_call_breakdown.items())
)
tool_result_kb = total_tool_result_chars / 1024
logger.info(
f"Tool call breakdown: {tool_breakdown_str} "
f"(total result size: {tool_result_kb:.1f} KB, {total_tool_result_chars:,} chars)"
)

View File

@@ -1,103 +0,0 @@
"""Compression threshold checking logic."""
import logging
from typing import Any, Dict
from application.core.model_utils import get_token_limit
from application.core.settings import settings
from application.api.answer.services.compression.token_counter import TokenCounter
logger = logging.getLogger(__name__)
class CompressionThresholdChecker:
"""Determines if compression is needed based on token thresholds."""
def __init__(self, threshold_percentage: float = None):
"""
Initialize threshold checker.
Args:
threshold_percentage: Percentage of context to use as threshold
(defaults to settings.COMPRESSION_THRESHOLD_PERCENTAGE)
"""
self.threshold_percentage = (
threshold_percentage or settings.COMPRESSION_THRESHOLD_PERCENTAGE
)
def should_compress(
self,
conversation: Dict[str, Any],
model_id: str,
current_query_tokens: int = 500,
) -> bool:
"""
Determine if compression is needed.
Args:
conversation: Full conversation document
model_id: Target model for this request
current_query_tokens: Estimated tokens for current query
Returns:
True if tokens >= threshold% of context window
"""
try:
# Calculate total tokens in conversation
total_tokens = TokenCounter.count_conversation_tokens(conversation)
total_tokens += current_query_tokens
# Get context window limit for model
context_limit = get_token_limit(model_id)
# Calculate threshold
threshold = int(context_limit * self.threshold_percentage)
compression_needed = total_tokens >= threshold
percentage_used = (total_tokens / context_limit) * 100
if compression_needed:
logger.warning(
f"COMPRESSION TRIGGERED: {total_tokens} tokens / {context_limit} limit "
f"({percentage_used:.1f}% used, threshold: {self.threshold_percentage * 100:.0f}%)"
)
else:
logger.info(
f"Compression check: {total_tokens}/{context_limit} tokens "
f"({percentage_used:.1f}% used, threshold: {self.threshold_percentage * 100:.0f}%) - No compression needed"
)
return compression_needed
except Exception as e:
logger.error(f"Error checking compression need: {str(e)}", exc_info=True)
return False
def check_message_tokens(self, messages: list, model_id: str) -> bool:
"""
Check if message list exceeds threshold.
Args:
messages: List of message dicts
model_id: Target model
Returns:
True if at or above threshold
"""
try:
current_tokens = TokenCounter.count_message_tokens(messages)
context_limit = get_token_limit(model_id)
threshold = int(context_limit * self.threshold_percentage)
if current_tokens >= threshold:
logger.warning(
f"Message context limit approaching: {current_tokens}/{context_limit} tokens "
f"({(current_tokens/context_limit)*100:.1f}%)"
)
return True
return False
except Exception as e:
logger.error(f"Error checking message tokens: {str(e)}", exc_info=True)
return False

View File

@@ -1,103 +0,0 @@
"""Token counting utilities for compression."""
import logging
from typing import Any, Dict, List
from application.utils import num_tokens_from_string
from application.core.settings import settings
logger = logging.getLogger(__name__)
class TokenCounter:
"""Centralized token counting for conversations and messages."""
@staticmethod
def count_message_tokens(messages: List[Dict]) -> int:
"""
Calculate total tokens in a list of messages.
Args:
messages: List of message dicts with 'content' field
Returns:
Total token count
"""
total_tokens = 0
for message in messages:
content = message.get("content", "")
if isinstance(content, str):
total_tokens += num_tokens_from_string(content)
elif isinstance(content, list):
# Handle structured content (tool calls, etc.)
for item in content:
if isinstance(item, dict):
total_tokens += num_tokens_from_string(str(item))
return total_tokens
@staticmethod
def count_query_tokens(
queries: List[Dict[str, Any]], include_tool_calls: bool = True
) -> int:
"""
Count tokens across multiple query objects.
Args:
queries: List of query objects from conversation
include_tool_calls: Whether to count tool call tokens
Returns:
Total token count
"""
total_tokens = 0
for query in queries:
# Count prompt and response tokens
if "prompt" in query:
total_tokens += num_tokens_from_string(query["prompt"])
if "response" in query:
total_tokens += num_tokens_from_string(query["response"])
if "thought" in query:
total_tokens += num_tokens_from_string(query.get("thought", ""))
# Count tool call tokens
if include_tool_calls and "tool_calls" in query:
for tool_call in query["tool_calls"]:
tool_call_string = (
f"Tool: {tool_call.get('tool_name')} | "
f"Action: {tool_call.get('action_name')} | "
f"Args: {tool_call.get('arguments')} | "
f"Response: {tool_call.get('result')}"
)
total_tokens += num_tokens_from_string(tool_call_string)
return total_tokens
@staticmethod
def count_conversation_tokens(
conversation: Dict[str, Any], include_system_prompt: bool = False
) -> int:
"""
Calculate total tokens in a conversation.
Args:
conversation: Conversation document
include_system_prompt: Whether to include system prompt in count
Returns:
Total token count
"""
try:
queries = conversation.get("queries", [])
total_tokens = TokenCounter.count_query_tokens(queries)
# Add system prompt tokens if requested
if include_system_prompt:
# Rough estimate for system prompt
total_tokens += settings.RESERVED_TOKENS.get("system_prompt", 500)
return total_tokens
except Exception as e:
logger.error(f"Error calculating conversation tokens: {str(e)}")
return 0

View File

@@ -1,83 +0,0 @@
"""Type definitions for compression module."""
from dataclasses import dataclass, field
from datetime import datetime
from typing import Any, Dict, List, Optional
@dataclass
class CompressionMetadata:
"""Metadata about a compression operation."""
timestamp: datetime
query_index: int
compressed_summary: str
original_token_count: int
compressed_token_count: int
compression_ratio: float
model_used: str
compression_prompt_version: str
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary for DB storage."""
return {
"timestamp": self.timestamp,
"query_index": self.query_index,
"compressed_summary": self.compressed_summary,
"original_token_count": self.original_token_count,
"compressed_token_count": self.compressed_token_count,
"compression_ratio": self.compression_ratio,
"model_used": self.model_used,
"compression_prompt_version": self.compression_prompt_version,
}
@dataclass
class CompressionResult:
"""Result of a compression operation."""
success: bool
compressed_summary: Optional[str] = None
recent_queries: List[Dict[str, Any]] = field(default_factory=list)
metadata: Optional[CompressionMetadata] = None
error: Optional[str] = None
compression_performed: bool = False
@classmethod
def success_with_compression(
cls, summary: str, queries: List[Dict], metadata: CompressionMetadata
) -> "CompressionResult":
"""Create a successful result with compression."""
return cls(
success=True,
compressed_summary=summary,
recent_queries=queries,
metadata=metadata,
compression_performed=True,
)
@classmethod
def success_no_compression(cls, queries: List[Dict]) -> "CompressionResult":
"""Create a successful result without compression needed."""
return cls(
success=True,
recent_queries=queries,
compression_performed=False,
)
@classmethod
def failure(cls, error: str) -> "CompressionResult":
"""Create a failure result."""
return cls(success=False, error=error, compression_performed=False)
def as_history(self) -> List[Dict[str, str]]:
"""
Convert recent queries to history format.
Returns:
List of prompt/response dicts
"""
return [
{"prompt": q["prompt"], "response": q["response"]}
for q in self.recent_queries
]

View File

@@ -52,7 +52,7 @@ class ConversationService:
sources: List[Dict[str, Any]],
tool_calls: List[Dict[str, Any]],
llm: Any,
model_id: str,
gpt_model: str,
decoded_token: Dict[str, Any],
index: Optional[int] = None,
api_key: Optional[str] = None,
@@ -66,7 +66,7 @@ class ConversationService:
if not user_id:
raise ValueError("User ID not found in token")
current_time = datetime.now(timezone.utc)
# clean up in sources array such that we save max 1k characters for text part
for source in sources:
if "text" in source and isinstance(source["text"], str):
@@ -90,7 +90,6 @@ class ConversationService:
f"queries.{index}.tool_calls": tool_calls,
f"queries.{index}.timestamp": current_time,
f"queries.{index}.attachments": attachment_ids,
f"queries.{index}.model_id": model_id,
}
},
)
@@ -121,7 +120,6 @@ class ConversationService:
"tool_calls": tool_calls,
"timestamp": current_time,
"attachments": attachment_ids,
"model_id": model_id,
}
}
},
@@ -135,9 +133,10 @@ class ConversationService:
messages_summary = [
{
"role": "system",
"content": "You are a helpful assistant that creates concise conversation titles. "
"Summarize conversations in 3 words or less using the same language as the user.",
"role": "assistant",
"content": "Summarise following conversation in no more than 3 "
"words, respond ONLY with the summary, use the same "
"language as the user query",
},
{
"role": "user",
@@ -148,7 +147,7 @@ class ConversationService:
]
completion = llm.gen(
model=model_id, messages=messages_summary, max_tokens=30
model=gpt_model, messages=messages_summary, max_tokens=30
)
conversation_data = {
@@ -164,7 +163,6 @@ class ConversationService:
"tool_calls": tool_calls,
"timestamp": current_time,
"attachments": attachment_ids,
"model_id": model_id,
}
],
}
@@ -180,103 +178,3 @@ class ConversationService:
conversation_data["api_key"] = agent["key"]
result = self.conversations_collection.insert_one(conversation_data)
return str(result.inserted_id)
def update_compression_metadata(
self, conversation_id: str, compression_metadata: Dict[str, Any]
) -> None:
"""
Update conversation with compression metadata.
Uses $push with $slice to keep only the most recent compression points,
preventing unbounded array growth. Since each compression incorporates
previous compressions, older points become redundant.
Args:
conversation_id: Conversation ID
compression_metadata: Compression point data
"""
try:
self.conversations_collection.update_one(
{"_id": ObjectId(conversation_id)},
{
"$set": {
"compression_metadata.is_compressed": True,
"compression_metadata.last_compression_at": compression_metadata.get(
"timestamp"
),
},
"$push": {
"compression_metadata.compression_points": {
"$each": [compression_metadata],
"$slice": -settings.COMPRESSION_MAX_HISTORY_POINTS,
}
},
},
)
logger.info(
f"Updated compression metadata for conversation {conversation_id}"
)
except Exception as e:
logger.error(
f"Error updating compression metadata: {str(e)}", exc_info=True
)
raise
def append_compression_message(
self, conversation_id: str, compression_metadata: Dict[str, Any]
) -> None:
"""
Append a synthetic compression summary entry into the conversation history.
This makes the summary visible in the DB alongside normal queries.
"""
try:
summary = compression_metadata.get("compressed_summary", "")
if not summary:
return
timestamp = compression_metadata.get("timestamp", datetime.now(timezone.utc))
self.conversations_collection.update_one(
{"_id": ObjectId(conversation_id)},
{
"$push": {
"queries": {
"prompt": "[Context Compression Summary]",
"response": summary,
"thought": "",
"sources": [],
"tool_calls": [],
"timestamp": timestamp,
"attachments": [],
"model_id": compression_metadata.get("model_used"),
}
}
},
)
logger.info(f"Appended compression summary to conversation {conversation_id}")
except Exception as e:
logger.error(
f"Error appending compression summary: {str(e)}", exc_info=True
)
def get_compression_metadata(
self, conversation_id: str
) -> Optional[Dict[str, Any]]:
"""
Get compression metadata for a conversation.
Args:
conversation_id: Conversation ID
Returns:
Compression metadata dict or None
"""
try:
conversation = self.conversations_collection.find_one(
{"_id": ObjectId(conversation_id)}, {"compression_metadata": 1}
)
return conversation.get("compression_metadata") if conversation else None
except Exception as e:
logger.error(
f"Error getting compression metadata: {str(e)}", exc_info=True
)
return None

View File

@@ -1,97 +0,0 @@
import logging
from typing import Any, Dict, Optional
from application.templates.namespaces import NamespaceManager
from application.templates.template_engine import TemplateEngine, TemplateRenderError
logger = logging.getLogger(__name__)
class PromptRenderer:
"""Service for rendering prompts with dynamic context using namespaces"""
def __init__(self):
self.template_engine = TemplateEngine()
self.namespace_manager = NamespaceManager()
def render_prompt(
self,
prompt_content: str,
user_id: Optional[str] = None,
request_id: Optional[str] = None,
passthrough_data: Optional[Dict[str, Any]] = None,
docs: Optional[list] = None,
docs_together: Optional[str] = None,
tools_data: Optional[Dict[str, Any]] = None,
**kwargs,
) -> str:
"""
Render prompt with full context from all namespaces.
Args:
prompt_content: Raw prompt template string
user_id: Current user identifier
request_id: Unique request identifier
passthrough_data: Parameters from web request
docs: RAG retrieved documents
docs_together: Concatenated document content
tools_data: Pre-fetched tool results organized by tool name
**kwargs: Additional parameters for namespace builders
Returns:
Rendered prompt string with all variables substituted
Raises:
TemplateRenderError: If template rendering fails
"""
if not prompt_content:
return ""
uses_template = self._uses_template_syntax(prompt_content)
if not uses_template:
return self._apply_legacy_substitutions(prompt_content, docs_together)
try:
context = self.namespace_manager.build_context(
user_id=user_id,
request_id=request_id,
passthrough_data=passthrough_data,
docs=docs,
docs_together=docs_together,
tools_data=tools_data,
**kwargs,
)
return self.template_engine.render(prompt_content, context)
except TemplateRenderError:
raise
except Exception as e:
error_msg = f"Prompt rendering failed: {str(e)}"
logger.error(error_msg)
raise TemplateRenderError(error_msg) from e
def _uses_template_syntax(self, prompt_content: str) -> bool:
"""Check if prompt uses Jinja2 template syntax"""
return "{{" in prompt_content and "}}" in prompt_content
def _apply_legacy_substitutions(
self, prompt_content: str, docs_together: Optional[str] = None
) -> str:
"""
Apply backward-compatible substitutions for old prompt format.
Handles legacy {summaries} and {query} placeholders during transition period.
"""
if docs_together:
prompt_content = prompt_content.replace("{summaries}", docs_together)
return prompt_content
def validate_template(self, prompt_content: str) -> bool:
"""Validate prompt template syntax"""
return self.template_engine.validate_template(prompt_content)
def extract_variables(self, prompt_content: str) -> set[str]:
"""Extract all variable names from prompt template"""
return self.template_engine.extract_variables(prompt_content)

View File

@@ -3,30 +3,18 @@ import json
import logging
import os
from pathlib import Path
from typing import Any, Dict, Optional, Set
from typing import Any, Dict, Optional
from bson.dbref import DBRef
from bson.objectid import ObjectId
from application.agents.agent_creator import AgentCreator
from application.api.answer.services.compression import CompressionOrchestrator
from application.api.answer.services.compression.token_counter import TokenCounter
from application.api.answer.services.conversation_service import ConversationService
from application.api.answer.services.prompt_renderer import PromptRenderer
from application.core.model_utils import (
get_api_key_for_provider,
get_default_model_id,
get_provider_from_model_id,
validate_model_id,
)
from application.core.mongo_db import MongoDB
from application.core.settings import settings
from application.retriever.retriever_creator import RetrieverCreator
from application.utils import (
calculate_doc_token_budget,
limit_chat_history,
)
from application.utils import get_gpt_model, limit_chat_history
logger = logging.getLogger(__name__)
@@ -81,31 +69,22 @@ class StreamProcessor:
self.decoded_token.get("sub") if self.decoded_token is not None else None
)
self.conversation_id = self.data.get("conversation_id")
self.source = {}
self.all_sources = []
self.source = (
{"active_docs": self.data["active_docs"]}
if "active_docs" in self.data
else {}
)
self.attachments = []
self.history = []
self.retrieved_docs = []
self.agent_config = {}
self.retriever_config = {}
self.is_shared_usage = False
self.shared_token = None
self.model_id: Optional[str] = None
self.gpt_model = get_gpt_model()
self.conversation_service = ConversationService()
self.compression_orchestrator = CompressionOrchestrator(
self.conversation_service
)
self.prompt_renderer = PromptRenderer()
self._prompt_content: Optional[str] = None
self._required_tool_actions: Optional[Dict[str, Set[Optional[str]]]] = None
self.compressed_summary: Optional[str] = None
self.compressed_summary_tokens: int = 0
def initialize(self):
"""Initialize all required components for processing"""
self._validate_and_set_model()
self._configure_agent()
self._configure_source()
self._configure_retriever()
self._configure_agent()
self._load_conversation_history()
@@ -119,71 +98,14 @@ class StreamProcessor:
)
if not conversation:
raise ValueError("Conversation not found or unauthorized")
# Check if compression is enabled and needed
if settings.ENABLE_CONVERSATION_COMPRESSION:
self._handle_compression(conversation)
else:
# Original behavior - load all history
self.history = [
{"prompt": query["prompt"], "response": query["response"]}
for query in conversation.get("queries", [])
]
else:
self.history = limit_chat_history(
json.loads(self.data.get("history", "[]")), model_id=self.model_id
)
def _handle_compression(self, conversation: Dict[str, Any]):
"""
Handle conversation compression logic using orchestrator.
Args:
conversation: Full conversation document
"""
try:
# Use orchestrator to handle all compression logic
result = self.compression_orchestrator.compress_if_needed(
conversation_id=self.conversation_id,
user_id=self.initial_user_id,
model_id=self.model_id,
decoded_token=self.decoded_token,
)
if not result.success:
logger.error(
f"Compression failed: {result.error}, using full history"
)
self.history = [
{"prompt": query["prompt"], "response": query["response"]}
for query in conversation.get("queries", [])
]
return
# Set compressed summary if compression was performed
if result.compression_performed and result.compressed_summary:
self.compressed_summary = result.compressed_summary
self.compressed_summary_tokens = TokenCounter.count_message_tokens(
[{"content": result.compressed_summary}]
)
logger.info(
f"Using compressed summary ({self.compressed_summary_tokens} tokens) "
f"+ {len(result.recent_queries)} recent messages"
)
# Build history from recent queries
self.history = result.as_history()
except Exception as e:
logger.error(
f"Error handling compression, falling back to standard history: {str(e)}",
exc_info=True,
)
# Fallback to original behavior
self.history = [
{"prompt": query["prompt"], "response": query["response"]}
for query in conversation.get("queries", [])
]
else:
self.history = limit_chat_history(
json.loads(self.data.get("history", "[]")), gpt_model=self.gpt_model
)
def _process_attachments(self):
"""Process any attachments in the request"""
@@ -213,25 +135,6 @@ class StreamProcessor:
)
return attachments
def _validate_and_set_model(self):
"""Validate and set model_id from request"""
from application.core.model_settings import ModelRegistry
requested_model = self.data.get("model_id")
if requested_model:
if not validate_model_id(requested_model):
registry = ModelRegistry.get_instance()
available_models = [m.id for m in registry.get_enabled_models()]
raise ValueError(
f"Invalid model_id '{requested_model}'. "
f"Available models: {', '.join(available_models[:5])}"
+ (f" and {len(available_models) - 5} more" if len(available_models) > 5 else "")
)
self.model_id = requested_model
else:
self.model_id = get_default_model_id()
def _get_agent_key(self, agent_id: Optional[str], user_id: Optional[str]) -> tuple:
"""Get API key for agent with access control"""
if not agent_id:
@@ -268,77 +171,13 @@ class StreamProcessor:
source = data.get("source")
if isinstance(source, DBRef):
source_doc = self.db.dereference(source)
if source_doc:
data["source"] = str(source_doc["_id"])
data["retriever"] = source_doc.get("retriever", data.get("retriever"))
data["chunks"] = source_doc.get("chunks", data.get("chunks"))
else:
data["source"] = None
elif source == "default":
data["source"] = "default"
data["source"] = str(source_doc["_id"])
data["retriever"] = source_doc.get("retriever", data.get("retriever"))
data["chunks"] = source_doc.get("chunks", data.get("chunks"))
else:
data["source"] = None
# Handle multiple sources
sources = data.get("sources", [])
if sources and isinstance(sources, list):
sources_list = []
for i, source_ref in enumerate(sources):
if source_ref == "default":
processed_source = {
"id": "default",
"retriever": "classic",
"chunks": data.get("chunks", "2"),
}
sources_list.append(processed_source)
elif isinstance(source_ref, DBRef):
source_doc = self.db.dereference(source_ref)
if source_doc:
processed_source = {
"id": str(source_doc["_id"]),
"retriever": source_doc.get("retriever", "classic"),
"chunks": source_doc.get("chunks", data.get("chunks", "2")),
}
sources_list.append(processed_source)
data["sources"] = sources_list
else:
data["sources"] = []
return data
def _configure_source(self):
"""Configure the source based on agent data"""
api_key = self.data.get("api_key") or self.agent_key
if api_key:
agent_data = self._get_data_from_api_key(api_key)
if agent_data.get("sources") and len(agent_data["sources"]) > 0:
source_ids = [
source["id"] for source in agent_data["sources"] if source.get("id")
]
if source_ids:
self.source = {"active_docs": source_ids}
else:
self.source = {}
self.all_sources = agent_data["sources"]
elif agent_data.get("source"):
self.source = {"active_docs": agent_data["source"]}
self.all_sources = [
{
"id": agent_data["source"],
"retriever": agent_data.get("retriever", "classic"),
}
]
else:
self.source = {}
self.all_sources = []
return
if "active_docs" in self.data:
self.source = {"active_docs": self.data["active_docs"]}
return
self.source = {}
self.all_sources = []
def _configure_agent(self):
"""Configure the agent based on request data"""
agent_id = self.data.get("agent_id")
@@ -364,13 +203,7 @@ class StreamProcessor:
if data_key.get("retriever"):
self.retriever_config["retriever_name"] = data_key["retriever"]
if data_key.get("chunks") is not None:
try:
self.retriever_config["chunks"] = int(data_key["chunks"])
except (ValueError, TypeError):
logger.warning(
f"Invalid chunks value: {data_key['chunks']}, using default value 2"
)
self.retriever_config["chunks"] = 2
self.retriever_config["chunks"] = data_key["chunks"]
elif self.agent_key:
data_key = self._get_data_from_api_key(self.agent_key)
self.agent_config.update(
@@ -391,13 +224,7 @@ class StreamProcessor:
if data_key.get("retriever"):
self.retriever_config["retriever_name"] = data_key["retriever"]
if data_key.get("chunks") is not None:
try:
self.retriever_config["chunks"] = int(data_key["chunks"])
except (ValueError, TypeError):
logger.warning(
f"Invalid chunks value: {data_key['chunks']}, using default value 2"
)
self.retriever_config["chunks"] = 2
self.retriever_config["chunks"] = data_key["chunks"]
else:
self.agent_config.update(
{
@@ -409,336 +236,42 @@ class StreamProcessor:
)
def _configure_retriever(self):
history_token_limit = int(self.data.get("token_limit", 2000))
doc_token_limit = calculate_doc_token_budget(
model_id=self.model_id, history_token_limit=history_token_limit
)
"""Configure the retriever based on request data"""
self.retriever_config = {
"retriever_name": self.data.get("retriever", "classic"),
"chunks": int(self.data.get("chunks", 2)),
"doc_token_limit": doc_token_limit,
"history_token_limit": history_token_limit,
"token_limit": self.data.get("token_limit", settings.DEFAULT_MAX_HISTORY),
}
api_key = self.data.get("api_key") or self.agent_key
if not api_key and "isNoneDoc" in self.data and self.data["isNoneDoc"]:
if "isNoneDoc" in self.data and self.data["isNoneDoc"]:
self.retriever_config["chunks"] = 0
def create_agent(self):
"""Create and return the configured agent"""
return AgentCreator.create_agent(
self.agent_config["agent_type"],
endpoint="stream",
llm_name=settings.LLM_PROVIDER,
gpt_model=self.gpt_model,
api_key=settings.API_KEY,
user_api_key=self.agent_config["user_api_key"],
prompt=get_prompt(self.agent_config["prompt_id"], self.prompts_collection),
chat_history=self.history,
decoded_token=self.decoded_token,
attachments=self.attachments,
json_schema=self.agent_config.get("json_schema"),
)
def create_retriever(self):
"""Create and return the configured retriever"""
return RetrieverCreator.create_retriever(
self.retriever_config["retriever_name"],
source=self.source,
chat_history=self.history,
prompt=get_prompt(self.agent_config["prompt_id"], self.prompts_collection),
chunks=self.retriever_config["chunks"],
doc_token_limit=self.retriever_config.get("doc_token_limit", 50000),
model_id=self.model_id,
token_limit=self.retriever_config["token_limit"],
gpt_model=self.gpt_model,
user_api_key=self.agent_config["user_api_key"],
decoded_token=self.decoded_token,
)
def pre_fetch_docs(self, question: str) -> tuple[Optional[str], Optional[list]]:
"""Pre-fetch documents for template rendering before agent creation"""
if self.data.get("isNoneDoc", False):
logger.info("Pre-fetch skipped: isNoneDoc=True")
return None, None
try:
retriever = self.create_retriever()
logger.info(
f"Pre-fetching docs with chunks={retriever.chunks}, doc_token_limit={retriever.doc_token_limit}"
)
docs = retriever.search(question)
logger.info(f"Pre-fetch retrieved {len(docs) if docs else 0} documents")
if not docs:
logger.info("Pre-fetch: No documents returned from search")
return None, None
self.retrieved_docs = docs
docs_with_filenames = []
for doc in docs:
filename = doc.get("filename") or doc.get("title") or doc.get("source")
if filename:
chunk_header = str(filename)
docs_with_filenames.append(f"{chunk_header}\n{doc['text']}")
else:
docs_with_filenames.append(doc["text"])
docs_together = "\n\n".join(docs_with_filenames)
logger.info(f"Pre-fetch docs_together size: {len(docs_together)} chars")
return docs_together, docs
except Exception as e:
logger.error(f"Failed to pre-fetch docs: {str(e)}", exc_info=True)
return None, None
def pre_fetch_tools(self) -> Optional[Dict[str, Any]]:
"""Pre-fetch tool data for template rendering before agent creation
Can be controlled via:
1. Global setting: ENABLE_TOOL_PREFETCH in .env
2. Per-request: disable_tool_prefetch in request data
"""
if not settings.ENABLE_TOOL_PREFETCH:
logger.info(
"Tool pre-fetching disabled globally via ENABLE_TOOL_PREFETCH setting"
)
return None
if self.data.get("disable_tool_prefetch", False):
logger.info("Tool pre-fetching disabled for this request")
return None
required_tool_actions = self._get_required_tool_actions()
filtering_enabled = required_tool_actions is not None
try:
user_tools_collection = self.db["user_tools"]
user_id = self.initial_user_id or "local"
user_tools = list(
user_tools_collection.find({"user": user_id, "status": True})
)
if not user_tools:
return None
tools_data = {}
for tool_doc in user_tools:
tool_name = tool_doc.get("name")
tool_id = str(tool_doc.get("_id"))
if filtering_enabled:
required_actions_by_name = required_tool_actions.get(
tool_name, set()
)
required_actions_by_id = required_tool_actions.get(tool_id, set())
required_actions = required_actions_by_name | required_actions_by_id
if not required_actions:
continue
else:
required_actions = None
tool_data = self._fetch_tool_data(tool_doc, required_actions)
if tool_data:
tools_data[tool_name] = tool_data
tools_data[tool_id] = tool_data
return tools_data if tools_data else None
except Exception as e:
logger.warning(f"Failed to pre-fetch tools: {type(e).__name__}")
return None
def _fetch_tool_data(
self,
tool_doc: Dict[str, Any],
required_actions: Optional[Set[Optional[str]]],
) -> Optional[Dict[str, Any]]:
"""Fetch and execute tool actions with saved parameters"""
try:
from application.agents.tools.tool_manager import ToolManager
tool_name = tool_doc.get("name")
tool_config = tool_doc.get("config", {}).copy()
tool_config["tool_id"] = str(tool_doc["_id"])
tool_manager = ToolManager(config={tool_name: tool_config})
user_id = self.initial_user_id or "local"
tool = tool_manager.load_tool(tool_name, tool_config, user_id=user_id)
if not tool:
logger.debug(f"Tool '{tool_name}' failed to load")
return None
tool_actions = tool.get_actions_metadata()
if not tool_actions:
logger.debug(f"Tool '{tool_name}' has no actions")
return None
saved_actions = tool_doc.get("actions", [])
include_all_actions = required_actions is None or (
required_actions and None in required_actions
)
allowed_actions: Set[str] = (
{action for action in required_actions if isinstance(action, str)}
if required_actions
else set()
)
action_results = {}
for action_meta in tool_actions:
action_name = action_meta.get("name")
if action_name is None:
continue
if (
not include_all_actions
and allowed_actions
and action_name not in allowed_actions
):
continue
try:
saved_action = None
for sa in saved_actions:
if sa.get("name") == action_name:
saved_action = sa
break
action_params = action_meta.get("parameters", {})
properties = action_params.get("properties", {})
kwargs = {}
for param_name, param_spec in properties.items():
if saved_action:
saved_props = saved_action.get("parameters", {}).get(
"properties", {}
)
if param_name in saved_props:
param_value = saved_props[param_name].get("value")
if param_value is not None:
kwargs[param_name] = param_value
continue
if param_name in tool_config:
kwargs[param_name] = tool_config[param_name]
elif "default" in param_spec:
kwargs[param_name] = param_spec["default"]
result = tool.execute_action(action_name, **kwargs)
action_results[action_name] = result
except Exception as e:
logger.debug(
f"Action '{action_name}' execution failed: {type(e).__name__}"
)
continue
return action_results if action_results else None
except Exception as e:
logger.debug(f"Tool pre-fetch failed for '{tool_name}': {type(e).__name__}")
return None
def _get_prompt_content(self) -> Optional[str]:
"""Retrieve and cache the raw prompt content for the current agent configuration."""
if self._prompt_content is not None:
return self._prompt_content
prompt_id = (
self.agent_config.get("prompt_id")
if isinstance(self.agent_config, dict)
else None
)
if not prompt_id:
return None
try:
self._prompt_content = get_prompt(prompt_id, self.prompts_collection)
except ValueError as e:
logger.debug(f"Invalid prompt ID '{prompt_id}': {str(e)}")
self._prompt_content = None
except Exception as e:
logger.debug(f"Failed to fetch prompt '{prompt_id}': {type(e).__name__}")
self._prompt_content = None
return self._prompt_content
def _get_required_tool_actions(self) -> Optional[Dict[str, Set[Optional[str]]]]:
"""Determine which tool actions are referenced in the prompt template"""
if self._required_tool_actions is not None:
return self._required_tool_actions
prompt_content = self._get_prompt_content()
if prompt_content is None:
return None
if "{{" not in prompt_content or "}}" not in prompt_content:
self._required_tool_actions = {}
return self._required_tool_actions
try:
from application.templates.template_engine import TemplateEngine
template_engine = TemplateEngine()
usages = template_engine.extract_tool_usages(prompt_content)
self._required_tool_actions = usages
return self._required_tool_actions
except Exception as e:
logger.debug(f"Failed to extract tool usages: {type(e).__name__}")
self._required_tool_actions = {}
return self._required_tool_actions
def _fetch_memory_tool_data(
self, tool_doc: Dict[str, Any]
) -> Optional[Dict[str, Any]]:
"""Fetch memory tool data for pre-injection into prompt"""
try:
tool_config = tool_doc.get("config", {}).copy()
tool_config["tool_id"] = str(tool_doc["_id"])
from application.agents.tools.memory import MemoryTool
memory_tool = MemoryTool(tool_config, self.initial_user_id)
root_view = memory_tool.execute_action("view", path="/")
if "Error:" in root_view or not root_view.strip():
return None
return {"root": root_view, "available": True}
except Exception as e:
logger.warning(f"Failed to fetch memory tool data: {str(e)}")
return None
def create_agent(
self,
docs_together: Optional[str] = None,
docs: Optional[list] = None,
tools_data: Optional[Dict[str, Any]] = None,
):
"""Create and return the configured agent with rendered prompt"""
raw_prompt = self._get_prompt_content()
if raw_prompt is None:
raw_prompt = get_prompt(
self.agent_config["prompt_id"], self.prompts_collection
)
self._prompt_content = raw_prompt
rendered_prompt = self.prompt_renderer.render_prompt(
prompt_content=raw_prompt,
user_id=self.initial_user_id,
request_id=self.data.get("request_id"),
passthrough_data=self.data.get("passthrough"),
docs=docs,
docs_together=docs_together,
tools_data=tools_data,
)
provider = (
get_provider_from_model_id(self.model_id)
if self.model_id
else settings.LLM_PROVIDER
)
system_api_key = get_api_key_for_provider(provider or settings.LLM_PROVIDER)
agent = AgentCreator.create_agent(
self.agent_config["agent_type"],
endpoint="stream",
llm_name=provider or settings.LLM_PROVIDER,
model_id=self.model_id,
api_key=system_api_key,
user_api_key=self.agent_config["user_api_key"],
prompt=rendered_prompt,
chat_history=self.history,
retrieved_docs=self.retrieved_docs,
decoded_token=self.decoded_token,
attachments=self.attachments,
json_schema=self.agent_config.get("json_schema"),
compressed_summary=self.compressed_summary,
)
agent.conversation_id = self.conversation_id
agent.initial_user_id = self.initial_user_id
return agent

View File

@@ -1,7 +1,6 @@
import base64
import datetime
import json
import uuid
import logging
from bson.objectid import ObjectId
@@ -15,6 +14,8 @@ from flask import (
from flask_restx import fields, Namespace, Resource
from application.api.user.tasks import (
ingest_connector_task,
)
@@ -23,9 +24,15 @@ from application.core.settings import settings
from application.api import api
from application.utils import (
check_required_fields
)
from application.parser.connectors.connector_creator import ConnectorCreator
mongo = MongoDB.get_client()
db = mongo[settings.MONGO_DB_NAME]
sources_collection = db["sources"]
@@ -37,6 +44,185 @@ api.add_namespace(connectors_ns)
@connectors_ns.route("/api/connectors/upload")
class UploadConnector(Resource):
@api.expect(
api.model(
"ConnectorUploadModel",
{
"user": fields.String(required=True, description="User ID"),
"source": fields.String(
required=True, description="Source type (google_drive, github, etc.)"
),
"name": fields.String(required=True, description="Job name"),
"data": fields.String(required=True, description="Configuration data"),
"repo_url": fields.String(description="GitHub repository URL"),
},
)
)
@api.doc(
description="Uploads connector source for vectorization",
)
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
data = request.form
required_fields = ["user", "source", "name", "data"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
config = json.loads(data["data"])
source_data = None
sync_frequency = config.get("sync_frequency", "never")
if data["source"] == "github":
source_data = config.get("repo_url")
elif data["source"] in ["crawler", "url"]:
source_data = config.get("url")
elif data["source"] == "reddit":
source_data = config
elif data["source"] in ConnectorCreator.get_supported_connectors():
session_token = config.get("session_token")
if not session_token:
return make_response(jsonify({
"success": False,
"error": f"Missing session_token in {data['source']} configuration"
}), 400)
file_ids = config.get("file_ids", [])
if isinstance(file_ids, str):
file_ids = [id.strip() for id in file_ids.split(',') if id.strip()]
elif not isinstance(file_ids, list):
file_ids = []
folder_ids = config.get("folder_ids", [])
if isinstance(folder_ids, str):
folder_ids = [id.strip() for id in folder_ids.split(',') if id.strip()]
elif not isinstance(folder_ids, list):
folder_ids = []
config["file_ids"] = file_ids
config["folder_ids"] = folder_ids
task = ingest_connector_task.delay(
job_name=data["name"],
user=decoded_token.get("sub"),
source_type=data["source"],
session_token=session_token,
file_ids=file_ids,
folder_ids=folder_ids,
recursive=config.get("recursive", False),
retriever=config.get("retriever", "classic"),
sync_frequency=sync_frequency
)
return make_response(jsonify({"success": True, "task_id": task.id}), 200)
task = ingest_connector_task.delay(
source_data=source_data,
job_name=data["name"],
user=decoded_token.get("sub"),
loader=data["source"],
sync_frequency=sync_frequency
)
except Exception as err:
current_app.logger.error(
f"Error uploading connector source: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True, "task_id": task.id}), 200)
@connectors_ns.route("/api/connectors/task_status")
class ConnectorTaskStatus(Resource):
task_status_model = api.model(
"ConnectorTaskStatusModel",
{"task_id": fields.String(required=True, description="Task ID")},
)
@api.expect(task_status_model)
@api.doc(description="Get connector task status")
def get(self):
task_id = request.args.get("task_id")
if not task_id:
return make_response(
jsonify({"success": False, "message": "Task ID is required"}), 400
)
try:
from application.celery_init import celery
task = celery.AsyncResult(task_id)
task_meta = task.info
print(f"Task status: {task.status}")
if not isinstance(
task_meta, (dict, list, str, int, float, bool, type(None))
):
task_meta = str(task_meta)
except Exception as err:
current_app.logger.error(f"Error getting task status: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"status": task.status, "result": task_meta}), 200)
@connectors_ns.route("/api/connectors/sources")
class ConnectorSources(Resource):
@api.doc(description="Get connector sources")
def get(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
try:
sources = sources_collection.find({"user": user, "type": "connector"}).sort("date", -1)
connector_sources = []
for source in sources:
connector_sources.append({
"id": str(source["_id"]),
"name": source.get("name"),
"date": source.get("date"),
"type": source.get("type"),
"source": source.get("source"),
"tokens": source.get("tokens", ""),
"retriever": source.get("retriever", "classic"),
"syncFrequency": source.get("sync_frequency", ""),
})
except Exception as err:
current_app.logger.error(f"Error retrieving connector sources: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify(connector_sources), 200)
@connectors_ns.route("/api/connectors/delete")
class DeleteConnectorSource(Resource):
@api.doc(
description="Delete a connector source",
params={"source_id": "The source ID to delete"},
)
def delete(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
source_id = request.args.get("source_id")
if not source_id:
return make_response(
jsonify({"success": False, "message": "source_id is required"}), 400
)
try:
result = sources_collection.delete_one(
{"_id": ObjectId(source_id), "user": decoded_token.get("sub")}
)
if result.deleted_count == 0:
return make_response(
jsonify({"success": False, "message": "Source not found"}), 404
)
except Exception as err:
current_app.logger.error(
f"Error deleting connector source: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True}), 200)
@connectors_ns.route("/api/connectors/auth")
class ConnectorAuth(Resource):
@api.doc(description="Get connector OAuth authorization URL", params={"provider": "Connector provider (e.g., google_drive)"})
@@ -49,24 +235,8 @@ class ConnectorAuth(Resource):
if not ConnectorCreator.is_supported(provider):
return make_response(jsonify({"success": False, "error": f"Unsupported provider: {provider}"}), 400)
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False, "error": "Unauthorized"}), 401)
user_id = decoded_token.get('sub')
now = datetime.datetime.now(datetime.timezone.utc)
result = sessions_collection.insert_one({
"provider": provider,
"user": user_id,
"status": "pending",
"created_at": now
})
state_dict = {
"provider": provider,
"object_id": str(result.inserted_id)
}
state = base64.urlsafe_b64encode(json.dumps(state_dict).encode()).decode()
import uuid
state = str(uuid.uuid4())
auth = ConnectorCreator.create_auth(provider)
authorization_url = auth.get_authorization_url(state=state)
return make_response(jsonify({
@@ -87,30 +257,25 @@ class ConnectorsCallback(Resource):
try:
from application.parser.connectors.connector_creator import ConnectorCreator
from flask import request, redirect
import uuid
provider = request.args.get('provider', 'google_drive')
authorization_code = request.args.get('code')
state = request.args.get('state')
_ = request.args.get('state')
error = request.args.get('error')
state_dict = json.loads(base64.urlsafe_b64decode(state.encode()).decode())
provider = state_dict["provider"]
state_object_id = state_dict["object_id"]
if error:
if error == "access_denied":
return redirect(f"/api/connectors/callback-status?status=cancelled&message=Authentication+was+cancelled.+You+can+try+again+if+you'd+like+to+connect+your+account.&provider={provider}")
else:
current_app.logger.warning(f"OAuth error in callback: {error}")
return redirect(f"/api/connectors/callback-status?status=error&message=Authentication+failed.+Please+try+again+and+make+sure+to+grant+all+requested+permissions.&provider={provider}")
return redirect(f"/api/connectors/callback-status?status=error&message=OAuth+error:+{error}.+Please+try+again+and+make+sure+to+grant+all+requested+permissions,+including+offline+access.&provider={provider}")
if not authorization_code:
return redirect(f"/api/connectors/callback-status?status=error&message=Authentication+failed.+Please+try+again+and+make+sure+to+grant+all+requested+permissions.&provider={provider}")
return redirect(f"/api/connectors/callback-status?status=error&message=Authorization+code+not+provided.+Please+complete+the+authorization+process+and+make+sure+to+grant+offline+access.&provider={provider}")
try:
auth = ConnectorCreator.create_auth(provider)
token_info = auth.exchange_code_for_tokens(authorization_code)
session_token = str(uuid.uuid4())
try:
credentials = auth.create_credentials_from_token_info(token_info)
@@ -125,44 +290,57 @@ class ConnectorsCallback(Resource):
"access_token": token_info.get("access_token"),
"refresh_token": token_info.get("refresh_token"),
"token_uri": token_info.get("token_uri"),
"expiry": token_info.get("expiry")
"expiry": token_info.get("expiry"),
"scopes": token_info.get("scopes")
}
sessions_collection.find_one_and_update(
{"_id": ObjectId(state_object_id), "provider": provider},
{
"$set": {
"session_token": session_token,
"token_info": sanitized_token_info,
"user_email": user_email,
"status": "authorized"
}
}
)
user_id = request.decoded_token.get("sub") if getattr(request, "decoded_token", None) else None
sessions_collection.insert_one({
"session_token": session_token,
"user": user_id,
"token_info": sanitized_token_info,
"created_at": datetime.datetime.now(datetime.timezone.utc),
"user_email": user_email,
"provider": provider
})
# Redirect to success page with session token and user email
return redirect(f"/api/connectors/callback-status?status=success&message=Authentication+successful&provider={provider}&session_token={session_token}&user_email={user_email}")
except Exception as e:
current_app.logger.error(f"Error exchanging code for tokens: {str(e)}", exc_info=True)
return redirect(f"/api/connectors/callback-status?status=error&message=Authentication+failed.+Please+try+again+and+make+sure+to+grant+all+requested+permissions.&provider={provider}")
return redirect(f"/api/connectors/callback-status?status=error&message=Failed+to+exchange+authorization+code+for+tokens:+{str(e)}&provider={provider}")
except Exception as e:
current_app.logger.error(f"Error handling connector callback: {e}")
return redirect("/api/connectors/callback-status?status=error&message=Authentication+failed.+Please+try+again+and+make+sure+to+grant+all+requested+permissions.")
return redirect(f"/api/connectors/callback-status?status=error&message=Failed+to+complete+connector+authentication:+{str(e)}.+Please+try+again+and+make+sure+to+grant+all+requested+permissions,+including+offline+access.")
@connectors_ns.route("/api/connectors/refresh")
class ConnectorRefresh(Resource):
@api.expect(api.model("ConnectorRefreshModel", {"provider": fields.String(required=True), "refresh_token": fields.String(required=True)}))
@api.doc(description="Refresh connector access token")
def post(self):
try:
data = request.get_json()
provider = data.get('provider')
refresh_token = data.get('refresh_token')
if not provider or not refresh_token:
return make_response(jsonify({"success": False, "error": "provider and refresh_token are required"}), 400)
auth = ConnectorCreator.create_auth(provider)
token_info = auth.refresh_access_token(refresh_token)
return make_response(jsonify({"success": True, "token_info": token_info}), 200)
except Exception as e:
current_app.logger.error(f"Error refreshing token for connector: {e}")
return make_response(jsonify({"success": False, "error": str(e)}), 500)
@connectors_ns.route("/api/connectors/files")
class ConnectorFiles(Resource):
@api.expect(api.model("ConnectorFilesModel", {
"provider": fields.String(required=True),
"session_token": fields.String(required=True),
"folder_id": fields.String(required=False),
"limit": fields.Integer(required=False),
"page_token": fields.String(required=False),
"search_query": fields.String(required=False)
}))
@api.doc(description="List files from a connector provider (supports pagination and search)")
@api.expect(api.model("ConnectorFilesModel", {"provider": fields.String(required=True), "session_token": fields.String(required=True), "folder_id": fields.String(required=False), "limit": fields.Integer(required=False), "page_token": fields.String(required=False)}))
@api.doc(description="List files from a connector provider (supports pagination)")
def post(self):
try:
data = request.get_json()
@@ -171,11 +349,10 @@ class ConnectorFiles(Resource):
folder_id = data.get('folder_id')
limit = data.get('limit', 10)
page_token = data.get('page_token')
search_query = data.get('search_query')
if not provider or not session_token:
return make_response(jsonify({"success": False, "error": "provider and session_token are required"}), 400)
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False, "error": "Unauthorized"}), 401)
@@ -185,17 +362,13 @@ class ConnectorFiles(Resource):
return make_response(jsonify({"success": False, "error": "Invalid or unauthorized session"}), 401)
loader = ConnectorCreator.create_connector(provider, session_token)
input_config = {
documents = loader.load_data({
'limit': limit,
'list_only': True,
'session_token': session_token,
'folder_id': folder_id,
'page_token': page_token
}
if search_query:
input_config['search_query'] = search_query
documents = loader.load_data(input_config)
})
files = []
for doc in documents[:limit]:
@@ -213,20 +386,13 @@ class ConnectorFiles(Resource):
'name': metadata.get('file_name', 'Unknown File'),
'type': metadata.get('mime_type', 'unknown'),
'size': metadata.get('size', None),
'modifiedTime': formatted_time,
'isFolder': metadata.get('is_folder', False)
'modifiedTime': formatted_time
})
next_token = getattr(loader, 'next_page_token', None)
has_more = bool(next_token)
return make_response(jsonify({
"success": True,
"files": files,
"total": len(files),
"next_page_token": next_token,
"has_more": has_more
}), 200)
return make_response(jsonify({"success": True, "files": files, "total": len(files), "next_page_token": next_token, "has_more": has_more}), 200)
except Exception as e:
current_app.logger.error(f"Error loading connector files: {e}")
return make_response(jsonify({"success": False, "error": f"Failed to load files: {str(e)}"}), 500)
@@ -235,7 +401,7 @@ class ConnectorFiles(Resource):
@connectors_ns.route("/api/connectors/validate-session")
class ConnectorValidateSession(Resource):
@api.expect(api.model("ConnectorValidateSessionModel", {"provider": fields.String(required=True), "session_token": fields.String(required=True)}))
@api.doc(description="Validate connector session token and return user info and access token")
@api.doc(description="Validate connector session token and return user info")
def post(self):
try:
data = request.get_json()
@@ -244,6 +410,7 @@ class ConnectorValidateSession(Resource):
if not provider or not session_token:
return make_response(jsonify({"success": False, "error": "provider and session_token are required"}), 400)
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False, "error": "Unauthorized"}), 401)
@@ -257,36 +424,10 @@ class ConnectorValidateSession(Resource):
auth = ConnectorCreator.create_auth(provider)
is_expired = auth.is_token_expired(token_info)
if is_expired and token_info.get('refresh_token'):
try:
refreshed_token_info = auth.refresh_access_token(token_info.get('refresh_token'))
sanitized_token_info = {
"access_token": refreshed_token_info.get("access_token"),
"refresh_token": refreshed_token_info.get("refresh_token"),
"token_uri": refreshed_token_info.get("token_uri"),
"expiry": refreshed_token_info.get("expiry")
}
sessions_collection.update_one(
{"session_token": session_token},
{"$set": {"token_info": sanitized_token_info}}
)
token_info = sanitized_token_info
is_expired = False
except Exception as refresh_error:
current_app.logger.error(f"Failed to refresh token: {refresh_error}")
if is_expired:
return make_response(jsonify({
"success": False,
"expired": True,
"error": "Session token has expired. Please reconnect."
}), 401)
return make_response(jsonify({
"success": True,
"expired": False,
"user_email": session.get('user_email', 'Connected User'),
"access_token": token_info.get('access_token')
"expired": is_expired,
"user_email": session.get('user_email', 'Connected User')
}), 200)
except Exception as e:
current_app.logger.error(f"Error validating connector session: {e}")
@@ -446,23 +587,20 @@ class ConnectorCallbackStatus(Resource):
.container {{ max-width: 600px; margin: 0 auto; }}
.success {{ color: #4CAF50; }}
.error {{ color: #F44336; }}
.cancelled {{ color: #FF9800; }}
</style>
<script>
window.onload = function() {{
const status = "{status}";
const sessionToken = "{session_token}";
const userEmail = "{user_email}";
if (status === "success" && window.opener) {{
window.opener.postMessage({{
type: '{provider}_auth_success',
session_token: sessionToken,
user_email: userEmail
}}, '*');
setTimeout(() => window.close(), 3000);
}} else if (status === "cancelled" || status === "error") {{
setTimeout(() => window.close(), 3000);
}}
}};
@@ -475,7 +613,7 @@ class ConnectorCallbackStatus(Resource):
<p>{message}</p>
{f'<p>Connected as: {user_email}</p>' if status == 'success' else ''}
</div>
<p><small>You can close this window. {f"Your {provider.replace('_', ' ').title()} is now connected and ready to use." if status == 'success' else "Feel free to close this window."}</small></p>
<p><small>You can close this window. {f"Your {provider.replace('_', ' ').title()} is now connected and ready to use." if status == 'success' else ''}</small></p>
</div>
</body>
</html>

View File

@@ -1,5 +0,0 @@
"""User API module - provides all user-related API endpoints"""
from .routes import user
__all__ = ["user"]

View File

@@ -1,7 +0,0 @@
"""Agents module."""
from .routes import agents_ns
from .sharing import agents_sharing_ns
from .webhooks import agents_webhooks_ns
__all__ = ["agents_ns", "agents_sharing_ns", "agents_webhooks_ns"]

File diff suppressed because it is too large Load Diff

View File

@@ -1,263 +0,0 @@
"""Agent management sharing functionality."""
import datetime
import secrets
from bson import DBRef
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, request
from flask_restx import fields, Namespace, Resource
from application.api import api
from application.core.settings import settings
from application.api.user.base import (
agents_collection,
db,
ensure_user_doc,
resolve_tool_details,
user_tools_collection,
users_collection,
)
from application.utils import generate_image_url
agents_sharing_ns = Namespace(
"agents", description="Agent management operations", path="/api"
)
@agents_sharing_ns.route("/shared_agent")
class SharedAgent(Resource):
@api.doc(
params={
"token": "Shared token of the agent",
},
description="Get a shared agent by token or ID",
)
def get(self):
shared_token = request.args.get("token")
if not shared_token:
return make_response(
jsonify({"success": False, "message": "Token or ID is required"}), 400
)
try:
query = {
"shared_publicly": True,
"shared_token": shared_token,
}
shared_agent = agents_collection.find_one(query)
if not shared_agent:
return make_response(
jsonify({"success": False, "message": "Shared agent not found"}),
404,
)
agent_id = str(shared_agent["_id"])
data = {
"id": agent_id,
"user": shared_agent.get("user", ""),
"name": shared_agent.get("name", ""),
"image": (
generate_image_url(shared_agent["image"])
if shared_agent.get("image")
else ""
),
"description": shared_agent.get("description", ""),
"source": (
str(source_doc["_id"])
if isinstance(shared_agent.get("source"), DBRef)
and (source_doc := db.dereference(shared_agent.get("source")))
else ""
),
"chunks": shared_agent.get("chunks", "0"),
"retriever": shared_agent.get("retriever", "classic"),
"prompt_id": shared_agent.get("prompt_id", "default"),
"tools": shared_agent.get("tools", []),
"tool_details": resolve_tool_details(shared_agent.get("tools", [])),
"agent_type": shared_agent.get("agent_type", ""),
"status": shared_agent.get("status", ""),
"json_schema": shared_agent.get("json_schema"),
"limited_token_mode": shared_agent.get("limited_token_mode", False),
"token_limit": shared_agent.get("token_limit", settings.DEFAULT_AGENT_LIMITS["token_limit"]),
"limited_request_mode": shared_agent.get("limited_request_mode", False),
"request_limit": shared_agent.get("request_limit", settings.DEFAULT_AGENT_LIMITS["request_limit"]),
"created_at": shared_agent.get("createdAt", ""),
"updated_at": shared_agent.get("updatedAt", ""),
"shared": shared_agent.get("shared_publicly", False),
"shared_token": shared_agent.get("shared_token", ""),
"shared_metadata": shared_agent.get("shared_metadata", {}),
}
if data["tools"]:
enriched_tools = []
for tool in data["tools"]:
tool_data = user_tools_collection.find_one({"_id": ObjectId(tool)})
if tool_data:
enriched_tools.append(tool_data.get("name", ""))
data["tools"] = enriched_tools
decoded_token = getattr(request, "decoded_token", None)
if decoded_token:
user_id = decoded_token.get("sub")
owner_id = shared_agent.get("user")
if user_id != owner_id:
ensure_user_doc(user_id)
users_collection.update_one(
{"user_id": user_id},
{"$addToSet": {"agent_preferences.shared_with_me": agent_id}},
)
return make_response(jsonify(data), 200)
except Exception as err:
current_app.logger.error(f"Error retrieving shared agent: {err}")
return make_response(jsonify({"success": False}), 400)
@agents_sharing_ns.route("/shared_agents")
class SharedAgents(Resource):
@api.doc(description="Get shared agents explicitly shared with the user")
def get(self):
try:
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user_id = decoded_token.get("sub")
user_doc = ensure_user_doc(user_id)
shared_with_ids = user_doc.get("agent_preferences", {}).get(
"shared_with_me", []
)
shared_object_ids = [ObjectId(id) for id in shared_with_ids]
shared_agents_cursor = agents_collection.find(
{"_id": {"$in": shared_object_ids}, "shared_publicly": True}
)
shared_agents = list(shared_agents_cursor)
found_ids_set = {str(agent["_id"]) for agent in shared_agents}
stale_ids = [id for id in shared_with_ids if id not in found_ids_set]
if stale_ids:
users_collection.update_one(
{"user_id": user_id},
{"$pullAll": {"agent_preferences.shared_with_me": stale_ids}},
)
pinned_ids = set(user_doc.get("agent_preferences", {}).get("pinned", []))
list_shared_agents = [
{
"id": str(agent["_id"]),
"name": agent.get("name", ""),
"description": agent.get("description", ""),
"image": (
generate_image_url(agent["image"]) if agent.get("image") else ""
),
"tools": agent.get("tools", []),
"tool_details": resolve_tool_details(agent.get("tools", [])),
"agent_type": agent.get("agent_type", ""),
"status": agent.get("status", ""),
"json_schema": agent.get("json_schema"),
"limited_token_mode": agent.get("limited_token_mode", False),
"token_limit": agent.get("token_limit", settings.DEFAULT_AGENT_LIMITS["token_limit"]),
"limited_request_mode": agent.get("limited_request_mode", False),
"request_limit": agent.get("request_limit", settings.DEFAULT_AGENT_LIMITS["request_limit"]),
"created_at": agent.get("createdAt", ""),
"updated_at": agent.get("updatedAt", ""),
"pinned": str(agent["_id"]) in pinned_ids,
"shared": agent.get("shared_publicly", False),
"shared_token": agent.get("shared_token", ""),
"shared_metadata": agent.get("shared_metadata", {}),
}
for agent in shared_agents
]
return make_response(jsonify(list_shared_agents), 200)
except Exception as err:
current_app.logger.error(f"Error retrieving shared agents: {err}")
return make_response(jsonify({"success": False}), 400)
@agents_sharing_ns.route("/share_agent")
class ShareAgent(Resource):
@api.expect(
api.model(
"ShareAgentModel",
{
"id": fields.String(required=True, description="ID of the agent"),
"shared": fields.Boolean(
required=True, description="Share or unshare the agent"
),
"username": fields.String(
required=False, description="Name of the user"
),
},
)
)
@api.doc(description="Share or unshare an agent")
def put(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
if not data:
return make_response(
jsonify({"success": False, "message": "Missing JSON body"}), 400
)
agent_id = data.get("id")
shared = data.get("shared")
username = data.get("username", "")
if not agent_id:
return make_response(
jsonify({"success": False, "message": "ID is required"}), 400
)
if shared is None:
return make_response(
jsonify(
{
"success": False,
"message": "Shared parameter is required and must be true or false",
}
),
400,
)
try:
try:
agent_oid = ObjectId(agent_id)
except Exception:
return make_response(
jsonify({"success": False, "message": "Invalid agent ID"}), 400
)
agent = agents_collection.find_one({"_id": agent_oid, "user": user})
if not agent:
return make_response(
jsonify({"success": False, "message": "Agent not found"}), 404
)
if shared:
shared_metadata = {
"shared_by": username,
"shared_at": datetime.datetime.now(datetime.timezone.utc),
}
shared_token = secrets.token_urlsafe(32)
agents_collection.update_one(
{"_id": agent_oid, "user": user},
{
"$set": {
"shared_publicly": shared,
"shared_metadata": shared_metadata,
"shared_token": shared_token,
}
},
)
else:
agents_collection.update_one(
{"_id": agent_oid, "user": user},
{"$set": {"shared_publicly": shared, "shared_token": None}},
{"$unset": {"shared_metadata": ""}},
)
except Exception as err:
current_app.logger.error(f"Error sharing/unsharing agent: {err}")
return make_response(jsonify({"success": False, "error": str(err)}), 400)
shared_token = shared_token if shared else None
return make_response(
jsonify({"success": True, "shared_token": shared_token}), 200
)

View File

@@ -1,119 +0,0 @@
"""Agent management webhook handlers."""
import secrets
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, request
from flask_restx import Namespace, Resource
from application.api import api
from application.api.user.base import agents_collection, require_agent
from application.api.user.tasks import process_agent_webhook
from application.core.settings import settings
agents_webhooks_ns = Namespace(
"agents", description="Agent management operations", path="/api"
)
@agents_webhooks_ns.route("/agent_webhook")
class AgentWebhook(Resource):
@api.doc(
params={"id": "ID of the agent"},
description="Generate webhook URL for the agent",
)
def get(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
agent_id = request.args.get("id")
if not agent_id:
return make_response(
jsonify({"success": False, "message": "ID is required"}), 400
)
try:
agent = agents_collection.find_one(
{"_id": ObjectId(agent_id), "user": user}
)
if not agent:
return make_response(
jsonify({"success": False, "message": "Agent not found"}), 404
)
webhook_token = agent.get("incoming_webhook_token")
if not webhook_token:
webhook_token = secrets.token_urlsafe(32)
agents_collection.update_one(
{"_id": ObjectId(agent_id), "user": user},
{"$set": {"incoming_webhook_token": webhook_token}},
)
base_url = settings.API_URL.rstrip("/")
full_webhook_url = f"{base_url}/api/webhooks/agents/{webhook_token}"
except Exception as err:
current_app.logger.error(
f"Error generating webhook URL: {err}", exc_info=True
)
return make_response(
jsonify({"success": False, "message": "Error generating webhook URL"}),
400,
)
return make_response(
jsonify({"success": True, "webhook_url": full_webhook_url}), 200
)
@agents_webhooks_ns.route("/webhooks/agents/<string:webhook_token>")
class AgentWebhookListener(Resource):
method_decorators = [require_agent]
def _enqueue_webhook_task(self, agent_id_str, payload, source_method):
if not payload:
current_app.logger.warning(
f"Webhook ({source_method}) received for agent {agent_id_str} with empty payload."
)
current_app.logger.info(
f"Incoming {source_method} webhook for agent {agent_id_str}. Enqueuing task with payload: {payload}"
)
try:
task = process_agent_webhook.delay(
agent_id=agent_id_str,
payload=payload,
)
current_app.logger.info(
f"Task {task.id} enqueued for agent {agent_id_str} ({source_method})."
)
return make_response(jsonify({"success": True, "task_id": task.id}), 200)
except Exception as err:
current_app.logger.error(
f"Error enqueuing webhook task ({source_method}) for agent {agent_id_str}: {err}",
exc_info=True,
)
return make_response(
jsonify({"success": False, "message": "Error processing webhook"}), 500
)
@api.doc(
description="Webhook listener for agent events (POST). Expects JSON payload, which is used to trigger processing.",
)
def post(self, webhook_token, agent, agent_id_str):
payload = request.get_json()
if payload is None:
return make_response(
jsonify(
{
"success": False,
"message": "Invalid or missing JSON data in request body",
}
),
400,
)
return self._enqueue_webhook_task(agent_id_str, payload, source_method="POST")
@api.doc(
description="Webhook listener for agent events (GET). Uses URL query parameters as payload to trigger processing.",
)
def get(self, webhook_token, agent, agent_id_str):
payload = request.args.to_dict(flat=True)
return self._enqueue_webhook_task(agent_id_str, payload, source_method="GET")

View File

@@ -1,5 +0,0 @@
"""Analytics module."""
from .routes import analytics_ns
__all__ = ["analytics_ns"]

View File

@@ -1,540 +0,0 @@
"""Analytics and reporting routes."""
import datetime
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, request
from flask_restx import fields, Namespace, Resource
from application.api import api
from application.api.user.base import (
agents_collection,
conversations_collection,
generate_date_range,
generate_hourly_range,
generate_minute_range,
token_usage_collection,
user_logs_collection,
)
analytics_ns = Namespace(
"analytics", description="Analytics and reporting operations", path="/api"
)
@analytics_ns.route("/get_message_analytics")
class GetMessageAnalytics(Resource):
get_message_analytics_model = api.model(
"GetMessageAnalyticsModel",
{
"api_key_id": fields.String(required=False, description="API Key ID"),
"filter_option": fields.String(
required=False,
description="Filter option for analytics",
default="last_30_days",
enum=[
"last_hour",
"last_24_hour",
"last_7_days",
"last_15_days",
"last_30_days",
],
),
},
)
@api.expect(get_message_analytics_model)
@api.doc(description="Get message analytics based on filter option")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
api_key_id = data.get("api_key_id")
filter_option = data.get("filter_option", "last_30_days")
try:
api_key = (
agents_collection.find_one({"_id": ObjectId(api_key_id), "user": user})[
"key"
]
if api_key_id
else None
)
except Exception as err:
current_app.logger.error(f"Error getting API key: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
end_date = datetime.datetime.now(datetime.timezone.utc)
if filter_option == "last_hour":
start_date = end_date - datetime.timedelta(hours=1)
group_format = "%Y-%m-%d %H:%M:00"
elif filter_option == "last_24_hour":
start_date = end_date - datetime.timedelta(hours=24)
group_format = "%Y-%m-%d %H:00"
else:
if filter_option in ["last_7_days", "last_15_days", "last_30_days"]:
filter_days = (
6
if filter_option == "last_7_days"
else 14 if filter_option == "last_15_days" else 29
)
else:
return make_response(
jsonify({"success": False, "message": "Invalid option"}), 400
)
start_date = end_date - datetime.timedelta(days=filter_days)
start_date = start_date.replace(hour=0, minute=0, second=0, microsecond=0)
end_date = end_date.replace(
hour=23, minute=59, second=59, microsecond=999999
)
group_format = "%Y-%m-%d"
try:
match_stage = {
"$match": {
"user": user,
}
}
if api_key:
match_stage["$match"]["api_key"] = api_key
pipeline = [
match_stage,
{"$unwind": "$queries"},
{
"$match": {
"queries.timestamp": {"$gte": start_date, "$lte": end_date}
}
},
{
"$group": {
"_id": {
"$dateToString": {
"format": group_format,
"date": "$queries.timestamp",
}
},
"count": {"$sum": 1},
}
},
{"$sort": {"_id": 1}},
]
message_data = conversations_collection.aggregate(pipeline)
if filter_option == "last_hour":
intervals = generate_minute_range(start_date, end_date)
elif filter_option == "last_24_hour":
intervals = generate_hourly_range(start_date, end_date)
else:
intervals = generate_date_range(start_date, end_date)
daily_messages = {interval: 0 for interval in intervals}
for entry in message_data:
daily_messages[entry["_id"]] = entry["count"]
except Exception as err:
current_app.logger.error(
f"Error getting message analytics: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(
jsonify({"success": True, "messages": daily_messages}), 200
)
@analytics_ns.route("/get_token_analytics")
class GetTokenAnalytics(Resource):
get_token_analytics_model = api.model(
"GetTokenAnalyticsModel",
{
"api_key_id": fields.String(required=False, description="API Key ID"),
"filter_option": fields.String(
required=False,
description="Filter option for analytics",
default="last_30_days",
enum=[
"last_hour",
"last_24_hour",
"last_7_days",
"last_15_days",
"last_30_days",
],
),
},
)
@api.expect(get_token_analytics_model)
@api.doc(description="Get token analytics data")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
api_key_id = data.get("api_key_id")
filter_option = data.get("filter_option", "last_30_days")
try:
api_key = (
agents_collection.find_one({"_id": ObjectId(api_key_id), "user": user})[
"key"
]
if api_key_id
else None
)
except Exception as err:
current_app.logger.error(f"Error getting API key: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
end_date = datetime.datetime.now(datetime.timezone.utc)
if filter_option == "last_hour":
start_date = end_date - datetime.timedelta(hours=1)
group_format = "%Y-%m-%d %H:%M:00"
group_stage = {
"$group": {
"_id": {
"minute": {
"$dateToString": {
"format": group_format,
"date": "$timestamp",
}
}
},
"total_tokens": {
"$sum": {"$add": ["$prompt_tokens", "$generated_tokens"]}
},
}
}
elif filter_option == "last_24_hour":
start_date = end_date - datetime.timedelta(hours=24)
group_format = "%Y-%m-%d %H:00"
group_stage = {
"$group": {
"_id": {
"hour": {
"$dateToString": {
"format": group_format,
"date": "$timestamp",
}
}
},
"total_tokens": {
"$sum": {"$add": ["$prompt_tokens", "$generated_tokens"]}
},
}
}
else:
if filter_option in ["last_7_days", "last_15_days", "last_30_days"]:
filter_days = (
6
if filter_option == "last_7_days"
else (14 if filter_option == "last_15_days" else 29)
)
else:
return make_response(
jsonify({"success": False, "message": "Invalid option"}), 400
)
start_date = end_date - datetime.timedelta(days=filter_days)
start_date = start_date.replace(hour=0, minute=0, second=0, microsecond=0)
end_date = end_date.replace(
hour=23, minute=59, second=59, microsecond=999999
)
group_format = "%Y-%m-%d"
group_stage = {
"$group": {
"_id": {
"day": {
"$dateToString": {
"format": group_format,
"date": "$timestamp",
}
}
},
"total_tokens": {
"$sum": {"$add": ["$prompt_tokens", "$generated_tokens"]}
},
}
}
try:
match_stage = {
"$match": {
"user_id": user,
"timestamp": {"$gte": start_date, "$lte": end_date},
}
}
if api_key:
match_stage["$match"]["api_key"] = api_key
token_usage_data = token_usage_collection.aggregate(
[
match_stage,
group_stage,
{"$sort": {"_id": 1}},
]
)
if filter_option == "last_hour":
intervals = generate_minute_range(start_date, end_date)
elif filter_option == "last_24_hour":
intervals = generate_hourly_range(start_date, end_date)
else:
intervals = generate_date_range(start_date, end_date)
daily_token_usage = {interval: 0 for interval in intervals}
for entry in token_usage_data:
if filter_option == "last_hour":
daily_token_usage[entry["_id"]["minute"]] = entry["total_tokens"]
elif filter_option == "last_24_hour":
daily_token_usage[entry["_id"]["hour"]] = entry["total_tokens"]
else:
daily_token_usage[entry["_id"]["day"]] = entry["total_tokens"]
except Exception as err:
current_app.logger.error(
f"Error getting token analytics: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(
jsonify({"success": True, "token_usage": daily_token_usage}), 200
)
@analytics_ns.route("/get_feedback_analytics")
class GetFeedbackAnalytics(Resource):
get_feedback_analytics_model = api.model(
"GetFeedbackAnalyticsModel",
{
"api_key_id": fields.String(required=False, description="API Key ID"),
"filter_option": fields.String(
required=False,
description="Filter option for analytics",
default="last_30_days",
enum=[
"last_hour",
"last_24_hour",
"last_7_days",
"last_15_days",
"last_30_days",
],
),
},
)
@api.expect(get_feedback_analytics_model)
@api.doc(description="Get feedback analytics data")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
api_key_id = data.get("api_key_id")
filter_option = data.get("filter_option", "last_30_days")
try:
api_key = (
agents_collection.find_one({"_id": ObjectId(api_key_id), "user": user})[
"key"
]
if api_key_id
else None
)
except Exception as err:
current_app.logger.error(f"Error getting API key: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
end_date = datetime.datetime.now(datetime.timezone.utc)
if filter_option == "last_hour":
start_date = end_date - datetime.timedelta(hours=1)
group_format = "%Y-%m-%d %H:%M:00"
date_field = {
"$dateToString": {
"format": group_format,
"date": "$queries.feedback_timestamp",
}
}
elif filter_option == "last_24_hour":
start_date = end_date - datetime.timedelta(hours=24)
group_format = "%Y-%m-%d %H:00"
date_field = {
"$dateToString": {
"format": group_format,
"date": "$queries.feedback_timestamp",
}
}
else:
if filter_option in ["last_7_days", "last_15_days", "last_30_days"]:
filter_days = (
6
if filter_option == "last_7_days"
else (14 if filter_option == "last_15_days" else 29)
)
else:
return make_response(
jsonify({"success": False, "message": "Invalid option"}), 400
)
start_date = end_date - datetime.timedelta(days=filter_days)
start_date = start_date.replace(hour=0, minute=0, second=0, microsecond=0)
end_date = end_date.replace(
hour=23, minute=59, second=59, microsecond=999999
)
group_format = "%Y-%m-%d"
date_field = {
"$dateToString": {
"format": group_format,
"date": "$queries.feedback_timestamp",
}
}
try:
match_stage = {
"$match": {
"queries.feedback_timestamp": {
"$gte": start_date,
"$lte": end_date,
},
"queries.feedback": {"$exists": True},
}
}
if api_key:
match_stage["$match"]["api_key"] = api_key
pipeline = [
match_stage,
{"$unwind": "$queries"},
{"$match": {"queries.feedback": {"$exists": True}}},
{
"$group": {
"_id": {"time": date_field, "feedback": "$queries.feedback"},
"count": {"$sum": 1},
}
},
{
"$group": {
"_id": "$_id.time",
"positive": {
"$sum": {
"$cond": [
{"$eq": ["$_id.feedback", "LIKE"]},
"$count",
0,
]
}
},
"negative": {
"$sum": {
"$cond": [
{"$eq": ["$_id.feedback", "DISLIKE"]},
"$count",
0,
]
}
},
}
},
{"$sort": {"_id": 1}},
]
feedback_data = conversations_collection.aggregate(pipeline)
if filter_option == "last_hour":
intervals = generate_minute_range(start_date, end_date)
elif filter_option == "last_24_hour":
intervals = generate_hourly_range(start_date, end_date)
else:
intervals = generate_date_range(start_date, end_date)
daily_feedback = {
interval: {"positive": 0, "negative": 0} for interval in intervals
}
for entry in feedback_data:
daily_feedback[entry["_id"]] = {
"positive": entry["positive"],
"negative": entry["negative"],
}
except Exception as err:
current_app.logger.error(
f"Error getting feedback analytics: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(
jsonify({"success": True, "feedback": daily_feedback}), 200
)
@analytics_ns.route("/get_user_logs")
class GetUserLogs(Resource):
get_user_logs_model = api.model(
"GetUserLogsModel",
{
"page": fields.Integer(
required=False,
description="Page number for pagination",
default=1,
),
"api_key_id": fields.String(required=False, description="API Key ID"),
"page_size": fields.Integer(
required=False,
description="Number of logs per page",
default=10,
),
},
)
@api.expect(get_user_logs_model)
@api.doc(description="Get user logs with pagination")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
page = int(data.get("page", 1))
api_key_id = data.get("api_key_id")
page_size = int(data.get("page_size", 10))
skip = (page - 1) * page_size
try:
api_key = (
agents_collection.find_one({"_id": ObjectId(api_key_id)})["key"]
if api_key_id
else None
)
except Exception as err:
current_app.logger.error(f"Error getting API key: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
query = {"user": user}
if api_key:
query = {"api_key": api_key}
items_cursor = (
user_logs_collection.find(query)
.sort("timestamp", -1)
.skip(skip)
.limit(page_size + 1)
)
items = list(items_cursor)
results = [
{
"id": str(item.get("_id")),
"action": item.get("action"),
"level": item.get("level"),
"user": item.get("user"),
"question": item.get("question"),
"sources": item.get("sources"),
"retriever_params": item.get("retriever_params"),
"timestamp": item.get("timestamp"),
}
for item in items[:page_size]
]
has_more = len(items) > page_size
return make_response(
jsonify(
{
"success": True,
"logs": results,
"page": page,
"page_size": page_size,
"has_more": has_more,
}
),
200,
)

View File

@@ -1,5 +0,0 @@
"""Attachments module."""
from .routes import attachments_ns
__all__ = ["attachments_ns"]

View File

@@ -1,198 +0,0 @@
"""File attachments and media routes."""
import os
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, request
from flask_restx import fields, Namespace, Resource
from application.api import api
from application.api.user.base import agents_collection, storage
from application.api.user.tasks import store_attachment
from application.core.settings import settings
from application.tts.tts_creator import TTSCreator
from application.utils import safe_filename
attachments_ns = Namespace(
"attachments", description="File attachments and media operations", path="/api"
)
@attachments_ns.route("/store_attachment")
class StoreAttachment(Resource):
@api.expect(
api.model(
"AttachmentModel",
{
"file": fields.Raw(required=True, description="File(s) to upload"),
"api_key": fields.String(
required=False, description="API key (optional)"
),
},
)
)
@api.doc(
description="Stores one or multiple attachments without vectorization or training. Supports user or API key authentication."
)
def post(self):
decoded_token = getattr(request, "decoded_token", None)
api_key = request.form.get("api_key") or request.args.get("api_key")
files = request.files.getlist("file")
if not files:
single_file = request.files.get("file")
if single_file:
files = [single_file]
if not files or all(f.filename == "" for f in files):
return make_response(
jsonify({"status": "error", "message": "Missing file(s)"}),
400,
)
user = None
if decoded_token:
user = safe_filename(decoded_token.get("sub"))
elif api_key:
agent = agents_collection.find_one({"key": api_key})
if not agent:
return make_response(
jsonify({"success": False, "message": "Invalid API key"}), 401
)
user = safe_filename(agent.get("user"))
else:
return make_response(
jsonify({"success": False, "message": "Authentication required"}), 401
)
try:
tasks = []
errors = []
original_file_count = len(files)
for idx, file in enumerate(files):
try:
attachment_id = ObjectId()
original_filename = safe_filename(os.path.basename(file.filename))
relative_path = f"{settings.UPLOAD_FOLDER}/{user}/attachments/{str(attachment_id)}/{original_filename}"
metadata = storage.save_file(file, relative_path)
file_info = {
"filename": original_filename,
"attachment_id": str(attachment_id),
"path": relative_path,
"metadata": metadata,
}
task = store_attachment.delay(file_info, user)
tasks.append({
"task_id": task.id,
"filename": original_filename,
"attachment_id": str(attachment_id),
})
except Exception as file_err:
current_app.logger.error(f"Error processing file {idx} ({file.filename}): {file_err}", exc_info=True)
errors.append({
"filename": file.filename,
"error": str(file_err)
})
if not tasks:
error_msg = "No valid files to upload"
if errors:
error_msg += f". Errors: {errors}"
return make_response(
jsonify({"status": "error", "message": error_msg, "errors": errors}),
400,
)
if original_file_count == 1 and len(tasks) == 1:
current_app.logger.info("Returning single task_id response")
return make_response(
jsonify(
{
"success": True,
"task_id": tasks[0]["task_id"],
"message": "File uploaded successfully. Processing started.",
}
),
200,
)
else:
response_data = {
"success": True,
"tasks": tasks,
"message": f"{len(tasks)} file(s) uploaded successfully. Processing started.",
}
if errors:
response_data["errors"] = errors
response_data["message"] += f" {len(errors)} file(s) failed."
return make_response(
jsonify(response_data),
200,
)
except Exception as err:
current_app.logger.error(f"Error storing attachment: {err}", exc_info=True)
return make_response(jsonify({"success": False, "error": str(err)}), 400)
@attachments_ns.route("/images/<path:image_path>")
class ServeImage(Resource):
@api.doc(description="Serve an image from storage")
def get(self, image_path):
try:
file_obj = storage.get_file(image_path)
extension = image_path.split(".")[-1].lower()
content_type = f"image/{extension}"
if extension == "jpg":
content_type = "image/jpeg"
response = make_response(file_obj.read())
response.headers.set("Content-Type", content_type)
response.headers.set("Cache-Control", "max-age=86400")
return response
except FileNotFoundError:
return make_response(
jsonify({"success": False, "message": "Image not found"}), 404
)
except Exception as e:
current_app.logger.error(f"Error serving image: {e}")
return make_response(
jsonify({"success": False, "message": "Error retrieving image"}), 500
)
@attachments_ns.route("/tts")
class TextToSpeech(Resource):
tts_model = api.model(
"TextToSpeechModel",
{
"text": fields.String(
required=True, description="Text to be synthesized as audio"
),
},
)
@api.expect(tts_model)
@api.doc(description="Synthesize audio speech from text")
def post(self):
data = request.get_json()
text = data["text"]
try:
tts_instance = TTSCreator.create_tts(settings.TTS_PROVIDER)
audio_base64, detected_language = tts_instance.text_to_speech(text)
return make_response(
jsonify(
{
"success": True,
"audio_base64": audio_base64,
"lang": detected_language,
}
),
200,
)
except Exception as err:
current_app.logger.error(f"Error synthesizing audio: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)

View File

@@ -1,222 +0,0 @@
"""
Shared utilities, database connections, and helper functions for user API routes.
"""
import datetime
import os
import uuid
from functools import wraps
from typing import Optional, Tuple
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, Response
from pymongo import ReturnDocument
from werkzeug.utils import secure_filename
from application.core.mongo_db import MongoDB
from application.core.settings import settings
from application.storage.storage_creator import StorageCreator
from application.vectorstore.vector_creator import VectorCreator
storage = StorageCreator.get_storage()
mongo = MongoDB.get_client()
db = mongo[settings.MONGO_DB_NAME]
conversations_collection = db["conversations"]
sources_collection = db["sources"]
prompts_collection = db["prompts"]
feedback_collection = db["feedback"]
agents_collection = db["agents"]
token_usage_collection = db["token_usage"]
shared_conversations_collections = db["shared_conversations"]
users_collection = db["users"]
user_logs_collection = db["user_logs"]
user_tools_collection = db["user_tools"]
attachments_collection = db["attachments"]
try:
agents_collection.create_index(
[("shared", 1)],
name="shared_index",
background=True,
)
users_collection.create_index("user_id", unique=True)
except Exception as e:
print("Error creating indexes:", e)
current_dir = os.path.dirname(
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
)
def generate_minute_range(start_date, end_date):
"""Generate a dictionary with minute-level time ranges."""
return {
(start_date + datetime.timedelta(minutes=i)).strftime("%Y-%m-%d %H:%M:00"): 0
for i in range(int((end_date - start_date).total_seconds() // 60) + 1)
}
def generate_hourly_range(start_date, end_date):
"""Generate a dictionary with hourly time ranges."""
return {
(start_date + datetime.timedelta(hours=i)).strftime("%Y-%m-%d %H:00"): 0
for i in range(int((end_date - start_date).total_seconds() // 3600) + 1)
}
def generate_date_range(start_date, end_date):
"""Generate a dictionary with daily date ranges."""
return {
(start_date + datetime.timedelta(days=i)).strftime("%Y-%m-%d"): 0
for i in range((end_date - start_date).days + 1)
}
def ensure_user_doc(user_id):
"""
Ensure user document exists with proper agent preferences structure.
Args:
user_id: The user ID to ensure
Returns:
The user document
"""
default_prefs = {
"pinned": [],
"shared_with_me": [],
}
user_doc = users_collection.find_one_and_update(
{"user_id": user_id},
{"$setOnInsert": {"agent_preferences": default_prefs}},
upsert=True,
return_document=ReturnDocument.AFTER,
)
prefs = user_doc.get("agent_preferences", {})
updates = {}
if "pinned" not in prefs:
updates["agent_preferences.pinned"] = []
if "shared_with_me" not in prefs:
updates["agent_preferences.shared_with_me"] = []
if updates:
users_collection.update_one({"user_id": user_id}, {"$set": updates})
user_doc = users_collection.find_one({"user_id": user_id})
return user_doc
def resolve_tool_details(tool_ids):
"""
Resolve tool IDs to their details.
Args:
tool_ids: List of tool IDs
Returns:
List of tool details with id, name, and display_name
"""
tools = user_tools_collection.find(
{"_id": {"$in": [ObjectId(tid) for tid in tool_ids]}}
)
return [
{
"id": str(tool["_id"]),
"name": tool.get("name", ""),
"display_name": tool.get("displayName", tool.get("name", "")),
}
for tool in tools
]
def get_vector_store(source_id):
"""
Get the Vector Store for a given source ID.
Args:
source_id (str): source id of the document
Returns:
Vector store instance
"""
store = VectorCreator.create_vectorstore(
settings.VECTOR_STORE,
source_id=source_id,
embeddings_key=os.getenv("EMBEDDINGS_KEY"),
)
return store
def handle_image_upload(
request, existing_url: str, user: str, storage, base_path: str = "attachments/"
) -> Tuple[str, Optional[Response]]:
"""
Handle image file upload from request.
Args:
request: Flask request object
existing_url: Existing image URL (fallback)
user: User ID
storage: Storage instance
base_path: Base path for upload
Returns:
Tuple of (image_url, error_response)
"""
image_url = existing_url
if "image" in request.files:
file = request.files["image"]
if file.filename != "":
filename = secure_filename(file.filename)
upload_path = f"{settings.UPLOAD_FOLDER.rstrip('/')}/{user}/{base_path.rstrip('/')}/{uuid.uuid4()}_{filename}"
try:
storage.save_file(file, upload_path, storage_class="STANDARD")
image_url = upload_path
except Exception as e:
current_app.logger.error(f"Error uploading image: {e}")
return None, make_response(
jsonify({"success": False, "message": "Image upload failed"}),
400,
)
return image_url, None
def require_agent(func):
"""
Decorator to require valid agent webhook token.
Args:
func: Function to decorate
Returns:
Wrapped function
"""
@wraps(func)
def wrapper(*args, **kwargs):
webhook_token = kwargs.get("webhook_token")
if not webhook_token:
return make_response(
jsonify({"success": False, "message": "Webhook token missing"}), 400
)
agent = agents_collection.find_one(
{"incoming_webhook_token": webhook_token}, {"_id": 1}
)
if not agent:
current_app.logger.warning(
f"Webhook attempt with invalid token: {webhook_token}"
)
return make_response(
jsonify({"success": False, "message": "Agent not found"}), 404
)
kwargs["agent"] = agent
kwargs["agent_id_str"] = str(agent["_id"])
return func(*args, **kwargs)
return wrapper

View File

@@ -1,5 +0,0 @@
"""Conversation management module."""
from .routes import conversations_ns
__all__ = ["conversations_ns"]

View File

@@ -1,280 +0,0 @@
"""Conversation management routes."""
import datetime
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, request
from flask_restx import fields, Namespace, Resource
from application.api import api
from application.api.user.base import attachments_collection, conversations_collection
from application.utils import check_required_fields
conversations_ns = Namespace(
"conversations", description="Conversation management operations", path="/api"
)
@conversations_ns.route("/delete_conversation")
class DeleteConversation(Resource):
@api.doc(
description="Deletes a conversation by ID",
params={"id": "The ID of the conversation to delete"},
)
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
conversation_id = request.args.get("id")
if not conversation_id:
return make_response(
jsonify({"success": False, "message": "ID is required"}), 400
)
try:
conversations_collection.delete_one(
{"_id": ObjectId(conversation_id), "user": decoded_token["sub"]}
)
except Exception as err:
current_app.logger.error(
f"Error deleting conversation: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True}), 200)
@conversations_ns.route("/delete_all_conversations")
class DeleteAllConversations(Resource):
@api.doc(
description="Deletes all conversations for a specific user",
)
def get(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user_id = decoded_token.get("sub")
try:
conversations_collection.delete_many({"user": user_id})
except Exception as err:
current_app.logger.error(
f"Error deleting all conversations: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True}), 200)
@conversations_ns.route("/get_conversations")
class GetConversations(Resource):
@api.doc(
description="Retrieve a list of the latest 30 conversations (excluding API key conversations)",
)
def get(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
try:
conversations = (
conversations_collection.find(
{
"$or": [
{"api_key": {"$exists": False}},
{"agent_id": {"$exists": True}},
],
"user": decoded_token.get("sub"),
}
)
.sort("date", -1)
.limit(30)
)
list_conversations = [
{
"id": str(conversation["_id"]),
"name": conversation["name"],
"agent_id": conversation.get("agent_id", None),
"is_shared_usage": conversation.get("is_shared_usage", False),
"shared_token": conversation.get("shared_token", None),
}
for conversation in conversations
]
except Exception as err:
current_app.logger.error(
f"Error retrieving conversations: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify(list_conversations), 200)
@conversations_ns.route("/get_single_conversation")
class GetSingleConversation(Resource):
@api.doc(
description="Retrieve a single conversation by ID",
params={"id": "The conversation ID"},
)
def get(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
conversation_id = request.args.get("id")
if not conversation_id:
return make_response(
jsonify({"success": False, "message": "ID is required"}), 400
)
try:
conversation = conversations_collection.find_one(
{"_id": ObjectId(conversation_id), "user": decoded_token.get("sub")}
)
if not conversation:
return make_response(jsonify({"status": "not found"}), 404)
# Process queries to include attachment names
queries = conversation["queries"]
for query in queries:
if "attachments" in query and query["attachments"]:
attachment_details = []
for attachment_id in query["attachments"]:
try:
attachment = attachments_collection.find_one(
{"_id": ObjectId(attachment_id)}
)
if attachment:
attachment_details.append(
{
"id": str(attachment["_id"]),
"fileName": attachment.get(
"filename", "Unknown file"
),
}
)
except Exception as e:
current_app.logger.error(
f"Error retrieving attachment {attachment_id}: {e}",
exc_info=True,
)
query["attachments"] = attachment_details
except Exception as err:
current_app.logger.error(
f"Error retrieving conversation: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
data = {
"queries": queries,
"agent_id": conversation.get("agent_id"),
"is_shared_usage": conversation.get("is_shared_usage", False),
"shared_token": conversation.get("shared_token", None),
}
return make_response(jsonify(data), 200)
@conversations_ns.route("/update_conversation_name")
class UpdateConversationName(Resource):
@api.expect(
api.model(
"UpdateConversationModel",
{
"id": fields.String(required=True, description="Conversation ID"),
"name": fields.String(
required=True, description="New name of the conversation"
),
},
)
)
@api.doc(
description="Updates the name of a conversation",
)
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
data = request.get_json()
required_fields = ["id", "name"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
conversations_collection.update_one(
{"_id": ObjectId(data["id"]), "user": decoded_token.get("sub")},
{"$set": {"name": data["name"]}},
)
except Exception as err:
current_app.logger.error(
f"Error updating conversation name: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True}), 200)
@conversations_ns.route("/feedback")
class SubmitFeedback(Resource):
@api.expect(
api.model(
"FeedbackModel",
{
"question": fields.String(
required=False, description="The user question"
),
"answer": fields.String(required=False, description="The AI answer"),
"feedback": fields.String(required=True, description="User feedback"),
"question_index": fields.Integer(
required=True,
description="The question number in that particular conversation",
),
"conversation_id": fields.String(
required=True, description="id of the particular conversation"
),
"api_key": fields.String(description="Optional API key"),
},
)
)
@api.doc(
description="Submit feedback for a conversation",
)
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
data = request.get_json()
required_fields = ["feedback", "conversation_id", "question_index"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
if data["feedback"] is None:
# Remove feedback and feedback_timestamp if feedback is null
conversations_collection.update_one(
{
"_id": ObjectId(data["conversation_id"]),
"user": decoded_token.get("sub"),
f"queries.{data['question_index']}": {"$exists": True},
},
{
"$unset": {
f"queries.{data['question_index']}.feedback": "",
f"queries.{data['question_index']}.feedback_timestamp": "",
}
},
)
else:
# Set feedback and feedback_timestamp if feedback has a value
conversations_collection.update_one(
{
"_id": ObjectId(data["conversation_id"]),
"user": decoded_token.get("sub"),
f"queries.{data['question_index']}": {"$exists": True},
},
{
"$set": {
f"queries.{data['question_index']}.feedback": data[
"feedback"
],
f"queries.{data['question_index']}.feedback_timestamp": datetime.datetime.now(
datetime.timezone.utc
),
}
},
)
except Exception as err:
current_app.logger.error(f"Error submitting feedback: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True}), 200)

View File

@@ -1,3 +0,0 @@
from .routes import models_ns
__all__ = ["models_ns"]

View File

@@ -1,25 +0,0 @@
from flask import current_app, jsonify, make_response
from flask_restx import Namespace, Resource
from application.core.model_settings import ModelRegistry
models_ns = Namespace("models", description="Available models", path="/api")
@models_ns.route("/models")
class ModelsListResource(Resource):
def get(self):
"""Get list of available models with their capabilities."""
try:
registry = ModelRegistry.get_instance()
models = registry.get_enabled_models()
response = {
"models": [model.to_dict() for model in models],
"default_model_id": registry.default_model_id,
"count": len(models),
}
except Exception as err:
current_app.logger.error(f"Error fetching models: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 500)
return make_response(jsonify(response), 200)

View File

@@ -1,5 +0,0 @@
"""Prompts module."""
from .routes import prompts_ns
__all__ = ["prompts_ns"]

View File

@@ -1,191 +0,0 @@
"""Prompt management routes."""
import os
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, request
from flask_restx import fields, Namespace, Resource
from application.api import api
from application.api.user.base import current_dir, prompts_collection
from application.utils import check_required_fields
prompts_ns = Namespace(
"prompts", description="Prompt management operations", path="/api"
)
@prompts_ns.route("/create_prompt")
class CreatePrompt(Resource):
create_prompt_model = api.model(
"CreatePromptModel",
{
"content": fields.String(
required=True, description="Content of the prompt"
),
"name": fields.String(required=True, description="Name of the prompt"),
},
)
@api.expect(create_prompt_model)
@api.doc(description="Create a new prompt")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
data = request.get_json()
required_fields = ["content", "name"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
user = decoded_token.get("sub")
try:
resp = prompts_collection.insert_one(
{
"name": data["name"],
"content": data["content"],
"user": user,
}
)
new_id = str(resp.inserted_id)
except Exception as err:
current_app.logger.error(f"Error creating prompt: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"id": new_id}), 200)
@prompts_ns.route("/get_prompts")
class GetPrompts(Resource):
@api.doc(description="Get all prompts for the user")
def get(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
try:
prompts = prompts_collection.find({"user": user})
list_prompts = [
{"id": "default", "name": "default", "type": "public"},
{"id": "creative", "name": "creative", "type": "public"},
{"id": "strict", "name": "strict", "type": "public"},
]
for prompt in prompts:
list_prompts.append(
{
"id": str(prompt["_id"]),
"name": prompt["name"],
"type": "private",
}
)
except Exception as err:
current_app.logger.error(f"Error retrieving prompts: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify(list_prompts), 200)
@prompts_ns.route("/get_single_prompt")
class GetSinglePrompt(Resource):
@api.doc(params={"id": "ID of the prompt"}, description="Get a single prompt by ID")
def get(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
prompt_id = request.args.get("id")
if not prompt_id:
return make_response(
jsonify({"success": False, "message": "ID is required"}), 400
)
try:
if prompt_id == "default":
with open(
os.path.join(current_dir, "prompts", "chat_combine_default.txt"),
"r",
) as f:
chat_combine_template = f.read()
return make_response(jsonify({"content": chat_combine_template}), 200)
elif prompt_id == "creative":
with open(
os.path.join(current_dir, "prompts", "chat_combine_creative.txt"),
"r",
) as f:
chat_reduce_creative = f.read()
return make_response(jsonify({"content": chat_reduce_creative}), 200)
elif prompt_id == "strict":
with open(
os.path.join(current_dir, "prompts", "chat_combine_strict.txt"), "r"
) as f:
chat_reduce_strict = f.read()
return make_response(jsonify({"content": chat_reduce_strict}), 200)
prompt = prompts_collection.find_one(
{"_id": ObjectId(prompt_id), "user": user}
)
except Exception as err:
current_app.logger.error(f"Error retrieving prompt: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"content": prompt["content"]}), 200)
@prompts_ns.route("/delete_prompt")
class DeletePrompt(Resource):
delete_prompt_model = api.model(
"DeletePromptModel",
{"id": fields.String(required=True, description="Prompt ID to delete")},
)
@api.expect(delete_prompt_model)
@api.doc(description="Delete a prompt by ID")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["id"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
prompts_collection.delete_one({"_id": ObjectId(data["id"]), "user": user})
except Exception as err:
current_app.logger.error(f"Error deleting prompt: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True}), 200)
@prompts_ns.route("/update_prompt")
class UpdatePrompt(Resource):
update_prompt_model = api.model(
"UpdatePromptModel",
{
"id": fields.String(required=True, description="Prompt ID to update"),
"name": fields.String(required=True, description="New name of the prompt"),
"content": fields.String(
required=True, description="New content of the prompt"
),
},
)
@api.expect(update_prompt_model)
@api.doc(description="Update an existing prompt")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["id", "name", "content"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
prompts_collection.update_one(
{"_id": ObjectId(data["id"]), "user": user},
{"$set": {"name": data["name"], "content": data["content"]}},
)
except Exception as err:
current_app.logger.error(f"Error updating prompt: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True}), 200)

File diff suppressed because it is too large Load Diff

View File

@@ -1,5 +0,0 @@
"""Sharing module."""
from .routes import sharing_ns
__all__ = ["sharing_ns"]

View File

@@ -1,289 +0,0 @@
"""Conversation sharing routes."""
import uuid
from bson.binary import Binary, UuidRepresentation
from bson.dbref import DBRef
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, request
from flask_restx import fields, inputs, Namespace, Resource
from application.api import api
from application.api.user.base import (
agents_collection,
attachments_collection,
conversations_collection,
shared_conversations_collections,
)
from application.utils import check_required_fields
sharing_ns = Namespace(
"sharing", description="Conversation sharing operations", path="/api"
)
@sharing_ns.route("/share")
class ShareConversation(Resource):
share_conversation_model = api.model(
"ShareConversationModel",
{
"conversation_id": fields.String(
required=True, description="Conversation ID"
),
"user": fields.String(description="User ID (optional)"),
"prompt_id": fields.String(description="Prompt ID (optional)"),
"chunks": fields.Integer(description="Chunks count (optional)"),
},
)
@api.expect(share_conversation_model)
@api.doc(description="Share a conversation")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["conversation_id"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
is_promptable = request.args.get("isPromptable", type=inputs.boolean)
if is_promptable is None:
return make_response(
jsonify({"success": False, "message": "isPromptable is required"}), 400
)
conversation_id = data["conversation_id"]
try:
conversation = conversations_collection.find_one(
{"_id": ObjectId(conversation_id)}
)
if conversation is None:
return make_response(
jsonify(
{
"status": "error",
"message": "Conversation does not exist",
}
),
404,
)
current_n_queries = len(conversation["queries"])
explicit_binary = Binary.from_uuid(
uuid.uuid4(), UuidRepresentation.STANDARD
)
if is_promptable:
prompt_id = data.get("prompt_id", "default")
chunks = data.get("chunks", "2")
name = conversation["name"] + "(shared)"
new_api_key_data = {
"prompt_id": prompt_id,
"chunks": chunks,
"user": user,
}
if "source" in data and ObjectId.is_valid(data["source"]):
new_api_key_data["source"] = DBRef(
"sources", ObjectId(data["source"])
)
if "retriever" in data:
new_api_key_data["retriever"] = data["retriever"]
pre_existing_api_document = agents_collection.find_one(new_api_key_data)
if pre_existing_api_document:
api_uuid = pre_existing_api_document["key"]
pre_existing = shared_conversations_collections.find_one(
{
"conversation_id": ObjectId(conversation_id),
"isPromptable": is_promptable,
"first_n_queries": current_n_queries,
"user": user,
"api_key": api_uuid,
}
)
if pre_existing is not None:
return make_response(
jsonify(
{
"success": True,
"identifier": str(pre_existing["uuid"].as_uuid()),
}
),
200,
)
else:
shared_conversations_collections.insert_one(
{
"uuid": explicit_binary,
"conversation_id": ObjectId(conversation_id),
"isPromptable": is_promptable,
"first_n_queries": current_n_queries,
"user": user,
"api_key": api_uuid,
}
)
return make_response(
jsonify(
{
"success": True,
"identifier": str(explicit_binary.as_uuid()),
}
),
201,
)
else:
api_uuid = str(uuid.uuid4())
new_api_key_data["key"] = api_uuid
new_api_key_data["name"] = name
if "source" in data and ObjectId.is_valid(data["source"]):
new_api_key_data["source"] = DBRef(
"sources", ObjectId(data["source"])
)
if "retriever" in data:
new_api_key_data["retriever"] = data["retriever"]
agents_collection.insert_one(new_api_key_data)
shared_conversations_collections.insert_one(
{
"uuid": explicit_binary,
"conversation_id": ObjectId(conversation_id),
"isPromptable": is_promptable,
"first_n_queries": current_n_queries,
"user": user,
"api_key": api_uuid,
}
)
return make_response(
jsonify(
{
"success": True,
"identifier": str(explicit_binary.as_uuid()),
}
),
201,
)
pre_existing = shared_conversations_collections.find_one(
{
"conversation_id": ObjectId(conversation_id),
"isPromptable": is_promptable,
"first_n_queries": current_n_queries,
"user": user,
}
)
if pre_existing is not None:
return make_response(
jsonify(
{
"success": True,
"identifier": str(pre_existing["uuid"].as_uuid()),
}
),
200,
)
else:
shared_conversations_collections.insert_one(
{
"uuid": explicit_binary,
"conversation_id": ObjectId(conversation_id),
"isPromptable": is_promptable,
"first_n_queries": current_n_queries,
"user": user,
}
)
return make_response(
jsonify(
{"success": True, "identifier": str(explicit_binary.as_uuid())}
),
201,
)
except Exception as err:
current_app.logger.error(
f"Error sharing conversation: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
@sharing_ns.route("/shared_conversation/<string:identifier>")
class GetPubliclySharedConversations(Resource):
@api.doc(description="Get publicly shared conversations by identifier")
def get(self, identifier: str):
try:
query_uuid = Binary.from_uuid(
uuid.UUID(identifier), UuidRepresentation.STANDARD
)
shared = shared_conversations_collections.find_one({"uuid": query_uuid})
conversation_queries = []
if (
shared
and "conversation_id" in shared
):
# conversation_id is now stored as an ObjectId, not a DBRef
conversation_id = shared["conversation_id"]
conversation = conversations_collection.find_one(
{"_id": conversation_id}
)
if conversation is None:
return make_response(
jsonify(
{
"success": False,
"error": "might have broken url or the conversation does not exist",
}
),
404,
)
conversation_queries = conversation["queries"][
: (shared["first_n_queries"])
]
for query in conversation_queries:
if "attachments" in query and query["attachments"]:
attachment_details = []
for attachment_id in query["attachments"]:
try:
attachment = attachments_collection.find_one(
{"_id": ObjectId(attachment_id)}
)
if attachment:
attachment_details.append(
{
"id": str(attachment["_id"]),
"fileName": attachment.get(
"filename", "Unknown file"
),
}
)
except Exception as e:
current_app.logger.error(
f"Error retrieving attachment {attachment_id}: {e}",
exc_info=True,
)
query["attachments"] = attachment_details
else:
return make_response(
jsonify(
{
"success": False,
"error": "might have broken url or the conversation does not exist",
}
),
404,
)
date = conversation["_id"].generation_time.isoformat()
res = {
"success": True,
"queries": conversation_queries,
"title": conversation["name"],
"timestamp": date,
}
if shared["isPromptable"] and "api_key" in shared:
res["api_key"] = shared["api_key"]
return make_response(jsonify(res), 200)
except Exception as err:
current_app.logger.error(
f"Error getting shared conversation: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)

View File

@@ -1,7 +0,0 @@
"""Sources module."""
from .chunks import sources_chunks_ns
from .routes import sources_ns
from .upload import sources_upload_ns
__all__ = ["sources_ns", "sources_chunks_ns", "sources_upload_ns"]

View File

@@ -1,278 +0,0 @@
"""Source document management chunk management."""
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, request
from flask_restx import fields, Namespace, Resource
from application.api import api
from application.api.user.base import get_vector_store, sources_collection
from application.utils import check_required_fields, num_tokens_from_string
sources_chunks_ns = Namespace(
"sources", description="Source document management operations", path="/api"
)
@sources_chunks_ns.route("/get_chunks")
class GetChunks(Resource):
@api.doc(
description="Retrieves chunks from a document, optionally filtered by file path and search term",
params={
"id": "The document ID",
"page": "Page number for pagination",
"per_page": "Number of chunks per page",
"path": "Optional: Filter chunks by relative file path",
"search": "Optional: Search term to filter chunks by title or content",
},
)
def get(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
doc_id = request.args.get("id")
page = int(request.args.get("page", 1))
per_page = int(request.args.get("per_page", 10))
path = request.args.get("path")
search_term = request.args.get("search", "").strip().lower()
if not ObjectId.is_valid(doc_id):
return make_response(jsonify({"error": "Invalid doc_id"}), 400)
doc = sources_collection.find_one({"_id": ObjectId(doc_id), "user": user})
if not doc:
return make_response(
jsonify({"error": "Document not found or access denied"}), 404
)
try:
store = get_vector_store(doc_id)
chunks = store.get_chunks()
filtered_chunks = []
for chunk in chunks:
metadata = chunk.get("metadata", {})
# Filter by path if provided
if path:
chunk_source = metadata.get("source", "")
# Check if the chunk's source matches the requested path
if not chunk_source or not chunk_source.endswith(path):
continue
# Filter by search term if provided
if search_term:
text_match = search_term in chunk.get("text", "").lower()
title_match = search_term in metadata.get("title", "").lower()
if not (text_match or title_match):
continue
filtered_chunks.append(chunk)
chunks = filtered_chunks
total_chunks = len(chunks)
start = (page - 1) * per_page
end = start + per_page
paginated_chunks = chunks[start:end]
return make_response(
jsonify(
{
"page": page,
"per_page": per_page,
"total": total_chunks,
"chunks": paginated_chunks,
"path": path if path else None,
"search": search_term if search_term else None,
}
),
200,
)
except Exception as e:
current_app.logger.error(f"Error getting chunks: {e}", exc_info=True)
return make_response(jsonify({"success": False}), 500)
@sources_chunks_ns.route("/add_chunk")
class AddChunk(Resource):
@api.expect(
api.model(
"AddChunkModel",
{
"id": fields.String(required=True, description="Document ID"),
"text": fields.String(required=True, description="Text of the chunk"),
"metadata": fields.Raw(
required=False,
description="Metadata associated with the chunk",
),
},
)
)
@api.doc(
description="Adds a new chunk to the document",
)
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["id", "text"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
doc_id = data.get("id")
text = data.get("text")
metadata = data.get("metadata", {})
token_count = num_tokens_from_string(text)
metadata["token_count"] = token_count
if not ObjectId.is_valid(doc_id):
return make_response(jsonify({"error": "Invalid doc_id"}), 400)
doc = sources_collection.find_one({"_id": ObjectId(doc_id), "user": user})
if not doc:
return make_response(
jsonify({"error": "Document not found or access denied"}), 404
)
try:
store = get_vector_store(doc_id)
chunk_id = store.add_chunk(text, metadata)
return make_response(
jsonify({"message": "Chunk added successfully", "chunk_id": chunk_id}),
201,
)
except Exception as e:
current_app.logger.error(f"Error adding chunk: {e}", exc_info=True)
return make_response(jsonify({"success": False}), 500)
@sources_chunks_ns.route("/delete_chunk")
class DeleteChunk(Resource):
@api.doc(
description="Deletes a specific chunk from the document.",
params={"id": "The document ID", "chunk_id": "The ID of the chunk to delete"},
)
def delete(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
doc_id = request.args.get("id")
chunk_id = request.args.get("chunk_id")
if not ObjectId.is_valid(doc_id):
return make_response(jsonify({"error": "Invalid doc_id"}), 400)
doc = sources_collection.find_one({"_id": ObjectId(doc_id), "user": user})
if not doc:
return make_response(
jsonify({"error": "Document not found or access denied"}), 404
)
try:
store = get_vector_store(doc_id)
deleted = store.delete_chunk(chunk_id)
if deleted:
return make_response(
jsonify({"message": "Chunk deleted successfully"}), 200
)
else:
return make_response(
jsonify({"message": "Chunk not found or could not be deleted"}),
404,
)
except Exception as e:
current_app.logger.error(f"Error deleting chunk: {e}", exc_info=True)
return make_response(jsonify({"success": False}), 500)
@sources_chunks_ns.route("/update_chunk")
class UpdateChunk(Resource):
@api.expect(
api.model(
"UpdateChunkModel",
{
"id": fields.String(required=True, description="Document ID"),
"chunk_id": fields.String(
required=True, description="Chunk ID to update"
),
"text": fields.String(
required=False, description="New text of the chunk"
),
"metadata": fields.Raw(
required=False,
description="Updated metadata associated with the chunk",
),
},
)
)
@api.doc(
description="Updates an existing chunk in the document.",
)
def put(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["id", "chunk_id"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
doc_id = data.get("id")
chunk_id = data.get("chunk_id")
text = data.get("text")
metadata = data.get("metadata")
if text is not None:
token_count = num_tokens_from_string(text)
if metadata is None:
metadata = {}
metadata["token_count"] = token_count
if not ObjectId.is_valid(doc_id):
return make_response(jsonify({"error": "Invalid doc_id"}), 400)
doc = sources_collection.find_one({"_id": ObjectId(doc_id), "user": user})
if not doc:
return make_response(
jsonify({"error": "Document not found or access denied"}), 404
)
try:
store = get_vector_store(doc_id)
chunks = store.get_chunks()
existing_chunk = next((c for c in chunks if c["doc_id"] == chunk_id), None)
if not existing_chunk:
return make_response(jsonify({"error": "Chunk not found"}), 404)
new_text = text if text is not None else existing_chunk["text"]
if metadata is not None:
new_metadata = existing_chunk["metadata"].copy()
new_metadata.update(metadata)
else:
new_metadata = existing_chunk["metadata"].copy()
if text is not None:
new_metadata["token_count"] = num_tokens_from_string(new_text)
try:
new_chunk_id = store.add_chunk(new_text, new_metadata)
deleted = store.delete_chunk(chunk_id)
if not deleted:
current_app.logger.warning(
f"Failed to delete old chunk {chunk_id}, but new chunk {new_chunk_id} was created"
)
return make_response(
jsonify(
{
"message": "Chunk updated successfully",
"chunk_id": new_chunk_id,
"original_chunk_id": chunk_id,
}
),
200,
)
except Exception as add_error:
current_app.logger.error(f"Failed to add updated chunk: {add_error}")
return make_response(
jsonify({"error": "Failed to update chunk - addition failed"}), 500
)
except Exception as e:
current_app.logger.error(f"Error updating chunk: {e}", exc_info=True)
return make_response(jsonify({"success": False}), 500)

View File

@@ -1,323 +0,0 @@
"""Source document management routes."""
import json
import math
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, redirect, request
from flask_restx import fields, Namespace, Resource
from application.api import api
from application.api.user.base import sources_collection
from application.core.settings import settings
from application.storage.storage_creator import StorageCreator
from application.utils import check_required_fields
from application.vectorstore.vector_creator import VectorCreator
sources_ns = Namespace(
"sources", description="Source document management operations", path="/api"
)
@sources_ns.route("/sources")
class CombinedJson(Resource):
@api.doc(description="Provide JSON file with combined available indexes")
def get(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = [
{
"name": "Default",
"date": "default",
"model": settings.EMBEDDINGS_NAME,
"location": "remote",
"tokens": "",
"retriever": "classic",
}
]
try:
for index in sources_collection.find({"user": user}).sort("date", -1):
data.append(
{
"id": str(index["_id"]),
"name": index.get("name"),
"date": index.get("date"),
"model": settings.EMBEDDINGS_NAME,
"location": "local",
"tokens": index.get("tokens", ""),
"retriever": index.get("retriever", "classic"),
"syncFrequency": index.get("sync_frequency", ""),
"is_nested": bool(index.get("directory_structure")),
"type": index.get(
"type", "file"
), # Add type field with default "file"
}
)
except Exception as err:
current_app.logger.error(f"Error retrieving sources: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify(data), 200)
@sources_ns.route("/sources/paginated")
class PaginatedSources(Resource):
@api.doc(description="Get document with pagination, sorting and filtering")
def get(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
sort_field = request.args.get("sort", "date") # Default to 'date'
sort_order = request.args.get("order", "desc") # Default to 'desc'
page = int(request.args.get("page", 1)) # Default to 1
rows_per_page = int(request.args.get("rows", 10)) # Default to 10
# add .strip() to remove leading and trailing whitespaces
search_term = request.args.get(
"search", ""
).strip() # add search for filter documents
# Prepare query for filtering
query = {"user": user}
if search_term:
query["name"] = {
"$regex": search_term,
"$options": "i", # using case-insensitive search
}
total_documents = sources_collection.count_documents(query)
total_pages = max(1, math.ceil(total_documents / rows_per_page))
page = min(
max(1, page), total_pages
) # add this to make sure page inbound is within the range
sort_order = 1 if sort_order == "asc" else -1
skip = (page - 1) * rows_per_page
try:
documents = (
sources_collection.find(query)
.sort(sort_field, sort_order)
.skip(skip)
.limit(rows_per_page)
)
paginated_docs = []
for doc in documents:
doc_data = {
"id": str(doc["_id"]),
"name": doc.get("name", ""),
"date": doc.get("date", ""),
"model": settings.EMBEDDINGS_NAME,
"location": "local",
"tokens": doc.get("tokens", ""),
"retriever": doc.get("retriever", "classic"),
"syncFrequency": doc.get("sync_frequency", ""),
"isNested": bool(doc.get("directory_structure")),
"type": doc.get("type", "file"),
}
paginated_docs.append(doc_data)
response = {
"total": total_documents,
"totalPages": total_pages,
"currentPage": page,
"paginated": paginated_docs,
}
return make_response(jsonify(response), 200)
except Exception as err:
current_app.logger.error(
f"Error retrieving paginated sources: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
@sources_ns.route("/delete_by_ids")
class DeleteByIds(Resource):
@api.doc(
description="Deletes documents from the vector store by IDs",
params={"path": "Comma-separated list of IDs"},
)
def get(self):
ids = request.args.get("path")
if not ids:
return make_response(
jsonify({"success": False, "message": "Missing required fields"}), 400
)
try:
result = sources_collection.delete_index(ids=ids)
if result:
return make_response(jsonify({"success": True}), 200)
except Exception as err:
current_app.logger.error(f"Error deleting indexes: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": False}), 400)
@sources_ns.route("/delete_old")
class DeleteOldIndexes(Resource):
@api.doc(
description="Deletes old indexes and associated files",
params={"source_id": "The source ID to delete"},
)
def get(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
source_id = request.args.get("source_id")
if not source_id:
return make_response(
jsonify({"success": False, "message": "Missing required fields"}), 400
)
doc = sources_collection.find_one(
{"_id": ObjectId(source_id), "user": decoded_token.get("sub")}
)
if not doc:
return make_response(jsonify({"status": "not found"}), 404)
storage = StorageCreator.get_storage()
try:
# Delete vector index
if settings.VECTOR_STORE == "faiss":
index_path = f"indexes/{str(doc['_id'])}"
if storage.file_exists(f"{index_path}/index.faiss"):
storage.delete_file(f"{index_path}/index.faiss")
if storage.file_exists(f"{index_path}/index.pkl"):
storage.delete_file(f"{index_path}/index.pkl")
else:
vectorstore = VectorCreator.create_vectorstore(
settings.VECTOR_STORE, source_id=str(doc["_id"])
)
vectorstore.delete_index()
if "file_path" in doc and doc["file_path"]:
file_path = doc["file_path"]
if storage.is_directory(file_path):
files = storage.list_files(file_path)
for f in files:
storage.delete_file(f)
else:
storage.delete_file(file_path)
except FileNotFoundError:
pass
except Exception as err:
current_app.logger.error(
f"Error deleting files and indexes: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
sources_collection.delete_one({"_id": ObjectId(source_id)})
return make_response(jsonify({"success": True}), 200)
@sources_ns.route("/combine")
class RedirectToSources(Resource):
@api.doc(
description="Redirects /api/combine to /api/sources for backward compatibility"
)
def get(self):
return redirect("/api/sources", code=301)
@sources_ns.route("/manage_sync")
class ManageSync(Resource):
manage_sync_model = api.model(
"ManageSyncModel",
{
"source_id": fields.String(required=True, description="Source ID"),
"sync_frequency": fields.String(
required=True,
description="Sync frequency (never, daily, weekly, monthly)",
),
},
)
@api.expect(manage_sync_model)
@api.doc(description="Manage sync frequency for sources")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["source_id", "sync_frequency"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
source_id = data["source_id"]
sync_frequency = data["sync_frequency"]
if sync_frequency not in ["never", "daily", "weekly", "monthly"]:
return make_response(
jsonify({"success": False, "message": "Invalid frequency"}), 400
)
update_data = {"$set": {"sync_frequency": sync_frequency}}
try:
sources_collection.update_one(
{
"_id": ObjectId(source_id),
"user": user,
},
update_data,
)
except Exception as err:
current_app.logger.error(
f"Error updating sync frequency: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True}), 200)
@sources_ns.route("/directory_structure")
class DirectoryStructure(Resource):
@api.doc(
description="Get the directory structure for a document",
params={"id": "The document ID"},
)
def get(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
doc_id = request.args.get("id")
if not doc_id:
return make_response(jsonify({"error": "Document ID is required"}), 400)
if not ObjectId.is_valid(doc_id):
return make_response(jsonify({"error": "Invalid document ID"}), 400)
try:
doc = sources_collection.find_one({"_id": ObjectId(doc_id), "user": user})
if not doc:
return make_response(
jsonify({"error": "Document not found or access denied"}), 404
)
directory_structure = doc.get("directory_structure", {})
base_path = doc.get("file_path", "")
provider = None
remote_data = doc.get("remote_data")
try:
if isinstance(remote_data, str) and remote_data:
remote_data_obj = json.loads(remote_data)
provider = remote_data_obj.get("provider")
except Exception as e:
current_app.logger.warning(
f"Failed to parse remote_data for doc {doc_id}: {e}"
)
return make_response(
jsonify(
{
"success": True,
"directory_structure": directory_structure,
"base_path": base_path,
"provider": provider,
}
),
200,
)
except Exception as e:
current_app.logger.error(
f"Error retrieving directory structure: {e}", exc_info=True
)
return make_response(jsonify({"success": False, "error": str(e)}), 500)

View File

@@ -1,583 +0,0 @@
"""Source document management upload functionality."""
import json
import os
import tempfile
import zipfile
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, request
from flask_restx import fields, Namespace, Resource
from application.api import api
from application.api.user.base import sources_collection
from application.api.user.tasks import ingest, ingest_connector_task, ingest_remote
from application.core.settings import settings
from application.parser.connectors.connector_creator import ConnectorCreator
from application.storage.storage_creator import StorageCreator
from application.utils import check_required_fields, safe_filename
sources_upload_ns = Namespace(
"sources", description="Source document management operations", path="/api"
)
@sources_upload_ns.route("/upload")
class UploadFile(Resource):
@api.expect(
api.model(
"UploadModel",
{
"user": fields.String(required=True, description="User ID"),
"name": fields.String(required=True, description="Job name"),
"file": fields.Raw(required=True, description="File(s) to upload"),
},
)
)
@api.doc(
description="Uploads a file to be vectorized and indexed",
)
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
data = request.form
files = request.files.getlist("file")
required_fields = ["user", "name"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields or not files or all(file.filename == "" for file in files):
return make_response(
jsonify(
{
"status": "error",
"message": "Missing required fields or files",
}
),
400,
)
user = decoded_token.get("sub")
job_name = request.form["name"]
# Create safe versions for filesystem operations
safe_user = safe_filename(user)
dir_name = safe_filename(job_name)
base_path = f"{settings.UPLOAD_FOLDER}/{safe_user}/{dir_name}"
try:
storage = StorageCreator.get_storage()
for file in files:
original_filename = file.filename
safe_file = safe_filename(original_filename)
with tempfile.TemporaryDirectory() as temp_dir:
temp_file_path = os.path.join(temp_dir, safe_file)
file.save(temp_file_path)
if zipfile.is_zipfile(temp_file_path):
try:
with zipfile.ZipFile(temp_file_path, "r") as zip_ref:
zip_ref.extractall(path=temp_dir)
# Walk through extracted files and upload them
for root, _, files in os.walk(temp_dir):
for extracted_file in files:
if (
os.path.join(root, extracted_file)
== temp_file_path
):
continue
rel_path = os.path.relpath(
os.path.join(root, extracted_file), temp_dir
)
storage_path = f"{base_path}/{rel_path}"
with open(
os.path.join(root, extracted_file), "rb"
) as f:
storage.save_file(f, storage_path)
except Exception as e:
current_app.logger.error(
f"Error extracting zip: {e}", exc_info=True
)
# If zip extraction fails, save the original zip file
file_path = f"{base_path}/{safe_file}"
with open(temp_file_path, "rb") as f:
storage.save_file(f, file_path)
else:
# For non-zip files, save directly
file_path = f"{base_path}/{safe_file}"
with open(temp_file_path, "rb") as f:
storage.save_file(f, file_path)
task = ingest.delay(
settings.UPLOAD_FOLDER,
[
".rst",
".md",
".pdf",
".txt",
".docx",
".csv",
".epub",
".html",
".mdx",
".json",
".xlsx",
".pptx",
".png",
".jpg",
".jpeg",
],
job_name,
user,
file_path=base_path,
filename=dir_name,
)
except Exception as err:
current_app.logger.error(f"Error uploading file: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True, "task_id": task.id}), 200)
@sources_upload_ns.route("/remote")
class UploadRemote(Resource):
@api.expect(
api.model(
"RemoteUploadModel",
{
"user": fields.String(required=True, description="User ID"),
"source": fields.String(
required=True, description="Source of the data"
),
"name": fields.String(required=True, description="Job name"),
"data": fields.String(required=True, description="Data to process"),
"repo_url": fields.String(description="GitHub repository URL"),
},
)
)
@api.doc(
description="Uploads remote source for vectorization",
)
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
data = request.form
required_fields = ["user", "source", "name", "data"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
config = json.loads(data["data"])
source_data = None
if data["source"] == "github":
source_data = config.get("repo_url")
elif data["source"] in ["crawler", "url"]:
source_data = config.get("url")
elif data["source"] == "reddit":
source_data = config
elif data["source"] in ConnectorCreator.get_supported_connectors():
session_token = config.get("session_token")
if not session_token:
return make_response(
jsonify(
{
"success": False,
"error": f"Missing session_token in {data['source']} configuration",
}
),
400,
)
# Process file_ids
file_ids = config.get("file_ids", [])
if isinstance(file_ids, str):
file_ids = [id.strip() for id in file_ids.split(",") if id.strip()]
elif not isinstance(file_ids, list):
file_ids = []
# Process folder_ids
folder_ids = config.get("folder_ids", [])
if isinstance(folder_ids, str):
folder_ids = [
id.strip() for id in folder_ids.split(",") if id.strip()
]
elif not isinstance(folder_ids, list):
folder_ids = []
config["file_ids"] = file_ids
config["folder_ids"] = folder_ids
task = ingest_connector_task.delay(
job_name=data["name"],
user=decoded_token.get("sub"),
source_type=data["source"],
session_token=session_token,
file_ids=file_ids,
folder_ids=folder_ids,
recursive=config.get("recursive", False),
retriever=config.get("retriever", "classic"),
)
return make_response(
jsonify({"success": True, "task_id": task.id}), 200
)
task = ingest_remote.delay(
source_data=source_data,
job_name=data["name"],
user=decoded_token.get("sub"),
loader=data["source"],
)
except Exception as err:
current_app.logger.error(
f"Error uploading remote source: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True, "task_id": task.id}), 200)
@sources_upload_ns.route("/manage_source_files")
class ManageSourceFiles(Resource):
@api.expect(
api.model(
"ManageSourceFilesModel",
{
"source_id": fields.String(
required=True, description="Source ID to modify"
),
"operation": fields.String(
required=True,
description="Operation: 'add', 'remove', or 'remove_directory'",
),
"file_paths": fields.List(
fields.String,
required=False,
description="File paths to remove (for remove operation)",
),
"directory_path": fields.String(
required=False,
description="Directory path to remove (for remove_directory operation)",
),
"file": fields.Raw(
required=False, description="Files to add (for add operation)"
),
"parent_dir": fields.String(
required=False,
description="Parent directory path relative to source root",
),
},
)
)
@api.doc(
description="Add files, remove files, or remove directories from an existing source",
)
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(
jsonify({"success": False, "message": "Unauthorized"}), 401
)
user = decoded_token.get("sub")
source_id = request.form.get("source_id")
operation = request.form.get("operation")
if not source_id or not operation:
return make_response(
jsonify(
{
"success": False,
"message": "source_id and operation are required",
}
),
400,
)
if operation not in ["add", "remove", "remove_directory"]:
return make_response(
jsonify(
{
"success": False,
"message": "operation must be 'add', 'remove', or 'remove_directory'",
}
),
400,
)
try:
ObjectId(source_id)
except Exception:
return make_response(
jsonify({"success": False, "message": "Invalid source ID format"}), 400
)
try:
source = sources_collection.find_one(
{"_id": ObjectId(source_id), "user": user}
)
if not source:
return make_response(
jsonify(
{
"success": False,
"message": "Source not found or access denied",
}
),
404,
)
except Exception as err:
current_app.logger.error(f"Error finding source: {err}", exc_info=True)
return make_response(
jsonify({"success": False, "message": "Database error"}), 500
)
try:
storage = StorageCreator.get_storage()
source_file_path = source.get("file_path", "")
parent_dir = request.form.get("parent_dir", "")
if parent_dir and (parent_dir.startswith("/") or ".." in parent_dir):
return make_response(
jsonify(
{"success": False, "message": "Invalid parent directory path"}
),
400,
)
if operation == "add":
files = request.files.getlist("file")
if not files or all(file.filename == "" for file in files):
return make_response(
jsonify(
{
"success": False,
"message": "No files provided for add operation",
}
),
400,
)
added_files = []
target_dir = source_file_path
if parent_dir:
target_dir = f"{source_file_path}/{parent_dir}"
for file in files:
if file.filename:
safe_filename_str = safe_filename(file.filename)
file_path = f"{target_dir}/{safe_filename_str}"
# Save file to storage
storage.save_file(file, file_path)
added_files.append(safe_filename_str)
# Trigger re-ingestion pipeline
from application.api.user.tasks import reingest_source_task
task = reingest_source_task.delay(source_id=source_id, user=user)
return make_response(
jsonify(
{
"success": True,
"message": f"Added {len(added_files)} files",
"added_files": added_files,
"parent_dir": parent_dir,
"reingest_task_id": task.id,
}
),
200,
)
elif operation == "remove":
file_paths_str = request.form.get("file_paths")
if not file_paths_str:
return make_response(
jsonify(
{
"success": False,
"message": "file_paths required for remove operation",
}
),
400,
)
try:
file_paths = (
json.loads(file_paths_str)
if isinstance(file_paths_str, str)
else file_paths_str
)
except Exception:
return make_response(
jsonify(
{"success": False, "message": "Invalid file_paths format"}
),
400,
)
# Remove files from storage and directory structure
removed_files = []
for file_path in file_paths:
full_path = f"{source_file_path}/{file_path}"
# Remove from storage
if storage.file_exists(full_path):
storage.delete_file(full_path)
removed_files.append(file_path)
# Trigger re-ingestion pipeline
from application.api.user.tasks import reingest_source_task
task = reingest_source_task.delay(source_id=source_id, user=user)
return make_response(
jsonify(
{
"success": True,
"message": f"Removed {len(removed_files)} files",
"removed_files": removed_files,
"reingest_task_id": task.id,
}
),
200,
)
elif operation == "remove_directory":
directory_path = request.form.get("directory_path")
if not directory_path:
return make_response(
jsonify(
{
"success": False,
"message": "directory_path required for remove_directory operation",
}
),
400,
)
# Validate directory path (prevent path traversal)
if directory_path.startswith("/") or ".." in directory_path:
current_app.logger.warning(
f"Invalid directory path attempted for removal. "
f"User: {user}, Source ID: {source_id}, Directory path: {directory_path}"
)
return make_response(
jsonify(
{"success": False, "message": "Invalid directory path"}
),
400,
)
full_directory_path = (
f"{source_file_path}/{directory_path}"
if directory_path
else source_file_path
)
if not storage.is_directory(full_directory_path):
current_app.logger.warning(
f"Directory not found or is not a directory for removal. "
f"User: {user}, Source ID: {source_id}, Directory path: {directory_path}, "
f"Full path: {full_directory_path}"
)
return make_response(
jsonify(
{
"success": False,
"message": "Directory not found or is not a directory",
}
),
404,
)
success = storage.remove_directory(full_directory_path)
if not success:
current_app.logger.error(
f"Failed to remove directory from storage. "
f"User: {user}, Source ID: {source_id}, Directory path: {directory_path}, "
f"Full path: {full_directory_path}"
)
return make_response(
jsonify(
{"success": False, "message": "Failed to remove directory"}
),
500,
)
current_app.logger.info(
f"Successfully removed directory. "
f"User: {user}, Source ID: {source_id}, Directory path: {directory_path}, "
f"Full path: {full_directory_path}"
)
# Trigger re-ingestion pipeline
from application.api.user.tasks import reingest_source_task
task = reingest_source_task.delay(source_id=source_id, user=user)
return make_response(
jsonify(
{
"success": True,
"message": f"Successfully removed directory: {directory_path}",
"removed_directory": directory_path,
"reingest_task_id": task.id,
}
),
200,
)
except Exception as err:
error_context = f"operation={operation}, user={user}, source_id={source_id}"
if operation == "remove_directory":
directory_path = request.form.get("directory_path", "")
error_context += f", directory_path={directory_path}"
elif operation == "remove":
file_paths_str = request.form.get("file_paths", "")
error_context += f", file_paths={file_paths_str}"
elif operation == "add":
parent_dir = request.form.get("parent_dir", "")
error_context += f", parent_dir={parent_dir}"
current_app.logger.error(
f"Error managing source files: {err} ({error_context})", exc_info=True
)
return make_response(
jsonify({"success": False, "message": "Operation failed"}), 500
)
@sources_upload_ns.route("/task_status")
class TaskStatus(Resource):
task_status_model = api.model(
"TaskStatusModel",
{"task_id": fields.String(required=True, description="Task ID")},
)
@api.expect(task_status_model)
@api.doc(description="Get celery job status")
def get(self):
task_id = request.args.get("task_id")
if not task_id:
return make_response(
jsonify({"success": False, "message": "Task ID is required"}), 400
)
try:
from application.celery_init import celery
task = celery.AsyncResult(task_id)
task_meta = task.info
print(f"Task status: {task.status}")
if task.status == "PENDING":
inspect = celery.control.inspect()
active_workers = inspect.ping()
if not active_workers:
raise ConnectionError("Service unavailable")
if not isinstance(
task_meta, (dict, list, str, int, float, bool, type(None))
):
task_meta = str(task_meta) # Convert to a string representation
except ConnectionError as err:
return make_response(
jsonify({"success": False, "message": str(err)}), 503
)
except Exception as err:
current_app.logger.error(f"Error getting task status: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"status": task.status, "result": task_meta}), 200)

View File

@@ -5,8 +5,6 @@ from application.worker import (
agent_webhook_worker,
attachment_worker,
ingest_worker,
mcp_oauth,
mcp_oauth_status,
remote_worker,
sync_worker,
)
@@ -27,7 +25,6 @@ def ingest_remote(self, source_data, job_name, user, loader):
@celery.task(bind=True)
def reingest_source_task(self, source_id, user):
from application.worker import reingest_source_worker
resp = reingest_source_worker(self, source_id, user)
return resp
@@ -63,10 +60,9 @@ def ingest_connector_task(
retriever="classic",
operation_mode="upload",
doc_id=None,
sync_frequency="never",
sync_frequency="never"
):
from application.worker import ingest_connector
resp = ingest_connector(
self,
job_name,
@@ -79,7 +75,7 @@ def ingest_connector_task(
retriever=retriever,
operation_mode=operation_mode,
doc_id=doc_id,
sync_frequency=sync_frequency,
sync_frequency=sync_frequency
)
return resp
@@ -98,15 +94,3 @@ def setup_periodic_tasks(sender, **kwargs):
timedelta(days=30),
schedule_syncs.s("monthly"),
)
@celery.task(bind=True)
def mcp_oauth_task(self, config, user):
resp = mcp_oauth(self, config, user)
return resp
@celery.task(bind=True)
def mcp_oauth_status_task(self, task_id):
resp = mcp_oauth_status(self, task_id)
return resp

View File

@@ -1,6 +0,0 @@
"""Tools module."""
from .mcp import tools_mcp_ns
from .routes import tools_ns
__all__ = ["tools_ns", "tools_mcp_ns"]

View File

@@ -1,333 +0,0 @@
"""Tool management MCP server integration."""
import json
from email.quoprimime import unquote
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, redirect, request
from flask_restx import fields, Namespace, Resource
from application.agents.tools.mcp_tool import MCPOAuthManager, MCPTool
from application.api import api
from application.api.user.base import user_tools_collection
from application.cache import get_redis_instance
from application.security.encryption import encrypt_credentials
from application.utils import check_required_fields
tools_mcp_ns = Namespace("tools", description="Tool management operations", path="/api")
@tools_mcp_ns.route("/mcp_server/test")
class TestMCPServerConfig(Resource):
@api.expect(
api.model(
"MCPServerTestModel",
{
"config": fields.Raw(
required=True, description="MCP server configuration to test"
),
},
)
)
@api.doc(description="Test MCP server connection with provided configuration")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["config"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
config = data["config"]
auth_credentials = {}
auth_type = config.get("auth_type", "none")
if auth_type == "api_key" and "api_key" in config:
auth_credentials["api_key"] = config["api_key"]
if "api_key_header" in config:
auth_credentials["api_key_header"] = config["api_key_header"]
elif auth_type == "bearer" and "bearer_token" in config:
auth_credentials["bearer_token"] = config["bearer_token"]
elif auth_type == "basic":
if "username" in config:
auth_credentials["username"] = config["username"]
if "password" in config:
auth_credentials["password"] = config["password"]
test_config = config.copy()
test_config["auth_credentials"] = auth_credentials
mcp_tool = MCPTool(config=test_config, user_id=user)
result = mcp_tool.test_connection()
return make_response(jsonify(result), 200)
except Exception as e:
current_app.logger.error(f"Error testing MCP server: {e}", exc_info=True)
return make_response(
jsonify(
{"success": False, "error": f"Connection test failed: {str(e)}"}
),
500,
)
@tools_mcp_ns.route("/mcp_server/save")
class MCPServerSave(Resource):
@api.expect(
api.model(
"MCPServerSaveModel",
{
"id": fields.String(
required=False, description="Tool ID for updates (optional)"
),
"displayName": fields.String(
required=True, description="Display name for the MCP server"
),
"config": fields.Raw(
required=True, description="MCP server configuration"
),
"status": fields.Boolean(
required=False, default=True, description="Tool status"
),
},
)
)
@api.doc(description="Create or update MCP server with automatic tool discovery")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["displayName", "config"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
config = data["config"]
auth_credentials = {}
auth_type = config.get("auth_type", "none")
if auth_type == "api_key":
if "api_key" in config and config["api_key"]:
auth_credentials["api_key"] = config["api_key"]
if "api_key_header" in config:
auth_credentials["api_key_header"] = config["api_key_header"]
elif auth_type == "bearer":
if "bearer_token" in config and config["bearer_token"]:
auth_credentials["bearer_token"] = config["bearer_token"]
elif auth_type == "basic":
if "username" in config and config["username"]:
auth_credentials["username"] = config["username"]
if "password" in config and config["password"]:
auth_credentials["password"] = config["password"]
mcp_config = config.copy()
mcp_config["auth_credentials"] = auth_credentials
if auth_type == "oauth":
if not config.get("oauth_task_id"):
return make_response(
jsonify(
{
"success": False,
"error": "Connection not authorized. Please complete the OAuth authorization first.",
}
),
400,
)
redis_client = get_redis_instance()
manager = MCPOAuthManager(redis_client)
result = manager.get_oauth_status(config["oauth_task_id"])
if not result.get("status") == "completed":
return make_response(
jsonify(
{
"success": False,
"error": "OAuth failed or not completed. Please try authorizing again.",
}
),
400,
)
actions_metadata = result.get("tools", [])
elif auth_type == "none" or auth_credentials:
mcp_tool = MCPTool(config=mcp_config, user_id=user)
mcp_tool.discover_tools()
actions_metadata = mcp_tool.get_actions_metadata()
else:
raise Exception(
"No valid credentials provided for the selected authentication type"
)
storage_config = config.copy()
if auth_credentials:
encrypted_credentials_string = encrypt_credentials(
auth_credentials, user
)
storage_config["encrypted_credentials"] = encrypted_credentials_string
for field in [
"api_key",
"bearer_token",
"username",
"password",
"api_key_header",
]:
storage_config.pop(field, None)
transformed_actions = []
for action in actions_metadata:
action["active"] = True
if "parameters" in action:
if "properties" in action["parameters"]:
for param_name, param_details in action["parameters"][
"properties"
].items():
param_details["filled_by_llm"] = True
param_details["value"] = ""
transformed_actions.append(action)
tool_data = {
"name": "mcp_tool",
"displayName": data["displayName"],
"customName": data["displayName"],
"description": f"MCP Server: {storage_config.get('server_url', 'Unknown')}",
"config": storage_config,
"actions": transformed_actions,
"status": data.get("status", True),
"user": user,
}
tool_id = data.get("id")
if tool_id:
result = user_tools_collection.update_one(
{"_id": ObjectId(tool_id), "user": user, "name": "mcp_tool"},
{"$set": {k: v for k, v in tool_data.items() if k != "user"}},
)
if result.matched_count == 0:
return make_response(
jsonify(
{
"success": False,
"error": "Tool not found or access denied",
}
),
404,
)
response_data = {
"success": True,
"id": tool_id,
"message": f"MCP server updated successfully! Discovered {len(transformed_actions)} tools.",
"tools_count": len(transformed_actions),
}
else:
result = user_tools_collection.insert_one(tool_data)
tool_id = str(result.inserted_id)
response_data = {
"success": True,
"id": tool_id,
"message": f"MCP server created successfully! Discovered {len(transformed_actions)} tools.",
"tools_count": len(transformed_actions),
}
return make_response(jsonify(response_data), 200)
except Exception as e:
current_app.logger.error(f"Error saving MCP server: {e}", exc_info=True)
return make_response(
jsonify(
{"success": False, "error": f"Failed to save MCP server: {str(e)}"}
),
500,
)
@tools_mcp_ns.route("/mcp_server/callback")
class MCPOAuthCallback(Resource):
@api.expect(
api.model(
"MCPServerCallbackModel",
{
"code": fields.String(required=True, description="Authorization code"),
"state": fields.String(required=True, description="State parameter"),
"error": fields.String(
required=False, description="Error message (if any)"
),
},
)
)
@api.doc(
description="Handle OAuth callback by providing the authorization code and state"
)
def get(self):
code = request.args.get("code")
state = request.args.get("state")
error = request.args.get("error")
if error:
return redirect(
f"/api/connectors/callback-status?status=error&message=OAuth+error:+{error}.+Please+try+again+and+make+sure+to+grant+all+requested+permissions,+including+offline+access.&provider=mcp_tool"
)
if not code or not state:
return redirect(
"/api/connectors/callback-status?status=error&message=Authorization+code+or+state+not+provided.+Please+complete+the+authorization+process+and+make+sure+to+grant+offline+access.&provider=mcp_tool"
)
try:
redis_client = get_redis_instance()
if not redis_client:
return redirect(
"/api/connectors/callback-status?status=error&message=Internal+server+error:+Redis+not+available.&provider=mcp_tool"
)
code = unquote(code)
manager = MCPOAuthManager(redis_client)
success = manager.handle_oauth_callback(state, code, error)
if success:
return redirect(
"/api/connectors/callback-status?status=success&message=Authorization+code+received+successfully.+You+can+close+this+window.&provider=mcp_tool"
)
else:
return redirect(
"/api/connectors/callback-status?status=error&message=OAuth+callback+failed.&provider=mcp_tool"
)
except Exception as e:
current_app.logger.error(
f"Error handling MCP OAuth callback: {str(e)}", exc_info=True
)
return redirect(
f"/api/connectors/callback-status?status=error&message=Internal+server+error:+{str(e)}.&provider=mcp_tool"
)
@tools_mcp_ns.route("/mcp_server/oauth_status/<string:task_id>")
class MCPOAuthStatus(Resource):
def get(self, task_id):
"""
Get current status of OAuth flow.
Frontend should poll this endpoint periodically.
"""
try:
redis_client = get_redis_instance()
status_key = f"mcp_oauth_status:{task_id}"
status_data = redis_client.get(status_key)
if status_data:
status = json.loads(status_data)
return make_response(
jsonify({"success": True, "task_id": task_id, **status})
)
else:
return make_response(
jsonify(
{
"success": False,
"error": "Task not found or expired",
"task_id": task_id,
}
),
404,
)
except Exception as e:
current_app.logger.error(
f"Error getting OAuth status for task {task_id}: {str(e)}"
)
return make_response(
jsonify({"success": False, "error": str(e), "task_id": task_id}), 500
)

View File

@@ -1,416 +0,0 @@
"""Tool management routes."""
from bson.objectid import ObjectId
from flask import current_app, jsonify, make_response, request
from flask_restx import fields, Namespace, Resource
from application.agents.tools.tool_manager import ToolManager
from application.api import api
from application.api.user.base import user_tools_collection
from application.security.encryption import decrypt_credentials, encrypt_credentials
from application.utils import check_required_fields, validate_function_name
tool_config = {}
tool_manager = ToolManager(config=tool_config)
tools_ns = Namespace("tools", description="Tool management operations", path="/api")
@tools_ns.route("/available_tools")
class AvailableTools(Resource):
@api.doc(description="Get available tools for a user")
def get(self):
try:
tools_metadata = []
for tool_name, tool_instance in tool_manager.tools.items():
doc = tool_instance.__doc__.strip()
lines = doc.split("\n", 1)
name = lines[0].strip()
description = lines[1].strip() if len(lines) > 1 else ""
tools_metadata.append(
{
"name": tool_name,
"displayName": name,
"description": description,
"configRequirements": tool_instance.get_config_requirements(),
}
)
except Exception as err:
current_app.logger.error(
f"Error getting available tools: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True, "data": tools_metadata}), 200)
@tools_ns.route("/get_tools")
class GetTools(Resource):
@api.doc(description="Get tools created by a user")
def get(self):
try:
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
tools = user_tools_collection.find({"user": user})
user_tools = []
for tool in tools:
tool_copy = {**tool}
tool_copy["id"] = str(tool["_id"])
tool_copy.pop("_id", None)
user_tools.append(tool_copy)
except Exception as err:
current_app.logger.error(f"Error getting user tools: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True, "tools": user_tools}), 200)
@tools_ns.route("/create_tool")
class CreateTool(Resource):
@api.expect(
api.model(
"CreateToolModel",
{
"name": fields.String(required=True, description="Name of the tool"),
"displayName": fields.String(
required=True, description="Display name for the tool"
),
"description": fields.String(
required=True, description="Tool description"
),
"config": fields.Raw(
required=True, description="Configuration of the tool"
),
"customName": fields.String(
required=False, description="Custom name for the tool"
),
"status": fields.Boolean(
required=True, description="Status of the tool"
),
},
)
)
@api.doc(description="Create a new tool")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = [
"name",
"displayName",
"description",
"config",
"status",
]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
tool_instance = tool_manager.tools.get(data["name"])
if not tool_instance:
return make_response(
jsonify({"success": False, "message": "Tool not found"}), 404
)
actions_metadata = tool_instance.get_actions_metadata()
transformed_actions = []
for action in actions_metadata:
action["active"] = True
if "parameters" in action:
if "properties" in action["parameters"]:
for param_name, param_details in action["parameters"][
"properties"
].items():
param_details["filled_by_llm"] = True
param_details["value"] = ""
transformed_actions.append(action)
except Exception as err:
current_app.logger.error(
f"Error getting tool actions: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
try:
new_tool = {
"user": user,
"name": data["name"],
"displayName": data["displayName"],
"description": data["description"],
"customName": data.get("customName", ""),
"actions": transformed_actions,
"config": data["config"],
"status": data["status"],
}
resp = user_tools_collection.insert_one(new_tool)
new_id = str(resp.inserted_id)
except Exception as err:
current_app.logger.error(f"Error creating tool: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"id": new_id}), 200)
@tools_ns.route("/update_tool")
class UpdateTool(Resource):
@api.expect(
api.model(
"UpdateToolModel",
{
"id": fields.String(required=True, description="Tool ID"),
"name": fields.String(description="Name of the tool"),
"displayName": fields.String(description="Display name for the tool"),
"customName": fields.String(description="Custom name for the tool"),
"description": fields.String(description="Tool description"),
"config": fields.Raw(description="Configuration of the tool"),
"actions": fields.List(
fields.Raw, description="Actions the tool can perform"
),
"status": fields.Boolean(description="Status of the tool"),
},
)
)
@api.doc(description="Update a tool by ID")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["id"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
update_data = {}
if "name" in data:
update_data["name"] = data["name"]
if "displayName" in data:
update_data["displayName"] = data["displayName"]
if "customName" in data:
update_data["customName"] = data["customName"]
if "description" in data:
update_data["description"] = data["description"]
if "actions" in data:
update_data["actions"] = data["actions"]
if "config" in data:
if "actions" in data["config"]:
for action_name in list(data["config"]["actions"].keys()):
if not validate_function_name(action_name):
return make_response(
jsonify(
{
"success": False,
"message": f"Invalid function name '{action_name}'. Function names must match pattern '^[a-zA-Z0-9_-]+$'.",
"param": "tools[].function.name",
}
),
400,
)
tool_doc = user_tools_collection.find_one(
{"_id": ObjectId(data["id"]), "user": user}
)
if tool_doc and tool_doc.get("name") == "mcp_tool":
config = data["config"]
existing_config = tool_doc.get("config", {})
storage_config = existing_config.copy()
storage_config.update(config)
existing_credentials = {}
if "encrypted_credentials" in existing_config:
existing_credentials = decrypt_credentials(
existing_config["encrypted_credentials"], user
)
auth_credentials = existing_credentials.copy()
auth_type = storage_config.get("auth_type", "none")
if auth_type == "api_key":
if "api_key" in config and config["api_key"]:
auth_credentials["api_key"] = config["api_key"]
if "api_key_header" in config:
auth_credentials["api_key_header"] = config[
"api_key_header"
]
elif auth_type == "bearer":
if "bearer_token" in config and config["bearer_token"]:
auth_credentials["bearer_token"] = config["bearer_token"]
elif "encrypted_token" in config and config["encrypted_token"]:
auth_credentials["bearer_token"] = config["encrypted_token"]
elif auth_type == "basic":
if "username" in config and config["username"]:
auth_credentials["username"] = config["username"]
if "password" in config and config["password"]:
auth_credentials["password"] = config["password"]
if auth_type != "none" and auth_credentials:
encrypted_credentials_string = encrypt_credentials(
auth_credentials, user
)
storage_config["encrypted_credentials"] = (
encrypted_credentials_string
)
elif auth_type == "none":
storage_config.pop("encrypted_credentials", None)
for field in [
"api_key",
"bearer_token",
"encrypted_token",
"username",
"password",
"api_key_header",
]:
storage_config.pop(field, None)
update_data["config"] = storage_config
else:
update_data["config"] = data["config"]
if "status" in data:
update_data["status"] = data["status"]
user_tools_collection.update_one(
{"_id": ObjectId(data["id"]), "user": user},
{"$set": update_data},
)
except Exception as err:
current_app.logger.error(f"Error updating tool: {err}", exc_info=True)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True}), 200)
@tools_ns.route("/update_tool_config")
class UpdateToolConfig(Resource):
@api.expect(
api.model(
"UpdateToolConfigModel",
{
"id": fields.String(required=True, description="Tool ID"),
"config": fields.Raw(
required=True, description="Configuration of the tool"
),
},
)
)
@api.doc(description="Update the configuration of a tool")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["id", "config"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
user_tools_collection.update_one(
{"_id": ObjectId(data["id"]), "user": user},
{"$set": {"config": data["config"]}},
)
except Exception as err:
current_app.logger.error(
f"Error updating tool config: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True}), 200)
@tools_ns.route("/update_tool_actions")
class UpdateToolActions(Resource):
@api.expect(
api.model(
"UpdateToolActionsModel",
{
"id": fields.String(required=True, description="Tool ID"),
"actions": fields.List(
fields.Raw,
required=True,
description="Actions the tool can perform",
),
},
)
)
@api.doc(description="Update the actions of a tool")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["id", "actions"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
user_tools_collection.update_one(
{"_id": ObjectId(data["id"]), "user": user},
{"$set": {"actions": data["actions"]}},
)
except Exception as err:
current_app.logger.error(
f"Error updating tool actions: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True}), 200)
@tools_ns.route("/update_tool_status")
class UpdateToolStatus(Resource):
@api.expect(
api.model(
"UpdateToolStatusModel",
{
"id": fields.String(required=True, description="Tool ID"),
"status": fields.Boolean(
required=True, description="Status of the tool"
),
},
)
)
@api.doc(description="Update the status of a tool")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["id", "status"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
user_tools_collection.update_one(
{"_id": ObjectId(data["id"]), "user": user},
{"$set": {"status": data["status"]}},
)
except Exception as err:
current_app.logger.error(
f"Error updating tool status: {err}", exc_info=True
)
return make_response(jsonify({"success": False}), 400)
return make_response(jsonify({"success": True}), 200)
@tools_ns.route("/delete_tool")
class DeleteTool(Resource):
@api.expect(
api.model(
"DeleteToolModel",
{"id": fields.String(required=True, description="Tool ID")},
)
)
@api.doc(description="Delete a tool by ID")
def post(self):
decoded_token = request.decoded_token
if not decoded_token:
return make_response(jsonify({"success": False}), 401)
user = decoded_token.get("sub")
data = request.get_json()
required_fields = ["id"]
missing_fields = check_required_fields(data, required_fields)
if missing_fields:
return missing_fields
try:
result = user_tools_collection.delete_one(
{"_id": ObjectId(data["id"]), "user": user}
)
if result.deleted_count == 0:
return {"success": False, "message": "Tool not found"}, 404
except Exception as err:
current_app.logger.error(f"Error deleting tool: {err}", exc_info=True)
return {"success": False}, 400
return {"success": True}, 200

View File

@@ -1,189 +0,0 @@
"""
Model configurations for all supported LLM providers.
"""
from application.core.model_settings import (
AvailableModel,
ModelCapabilities,
ModelProvider,
)
OPENAI_ATTACHMENTS = [
"application/pdf",
"image/png",
"image/jpeg",
"image/jpg",
"image/webp",
"image/gif",
]
GOOGLE_ATTACHMENTS = [
"application/pdf",
"image/png",
"image/jpeg",
"image/jpg",
"image/webp",
"image/gif",
]
OPENAI_MODELS = [
AvailableModel(
id="gpt-5.1",
provider=ModelProvider.OPENAI,
display_name="GPT-5.1",
description="Flagship model with enhanced reasoning, coding, and agentic capabilities",
capabilities=ModelCapabilities(
supports_tools=True,
supports_structured_output=True,
supported_attachment_types=OPENAI_ATTACHMENTS,
context_window=400000,
),
),
AvailableModel(
id="gpt-5-mini",
provider=ModelProvider.OPENAI,
display_name="GPT-5 Mini",
description="Faster, cost-effective variant of GPT-5.1",
capabilities=ModelCapabilities(
supports_tools=True,
supports_structured_output=True,
supported_attachment_types=OPENAI_ATTACHMENTS,
context_window=400000,
),
)
]
ANTHROPIC_MODELS = [
AvailableModel(
id="claude-3-5-sonnet-20241022",
provider=ModelProvider.ANTHROPIC,
display_name="Claude 3.5 Sonnet (Latest)",
description="Latest Claude 3.5 Sonnet with enhanced capabilities",
capabilities=ModelCapabilities(
supports_tools=True,
context_window=200000,
),
),
AvailableModel(
id="claude-3-5-sonnet",
provider=ModelProvider.ANTHROPIC,
display_name="Claude 3.5 Sonnet",
description="Balanced performance and capability",
capabilities=ModelCapabilities(
supports_tools=True,
context_window=200000,
),
),
AvailableModel(
id="claude-3-opus",
provider=ModelProvider.ANTHROPIC,
display_name="Claude 3 Opus",
description="Most capable Claude model",
capabilities=ModelCapabilities(
supports_tools=True,
context_window=200000,
),
),
AvailableModel(
id="claude-3-haiku",
provider=ModelProvider.ANTHROPIC,
display_name="Claude 3 Haiku",
description="Fastest Claude model",
capabilities=ModelCapabilities(
supports_tools=True,
context_window=200000,
),
),
]
GOOGLE_MODELS = [
AvailableModel(
id="gemini-flash-latest",
provider=ModelProvider.GOOGLE,
display_name="Gemini Flash (Latest)",
description="Latest experimental Gemini model",
capabilities=ModelCapabilities(
supports_tools=True,
supports_structured_output=True,
supported_attachment_types=GOOGLE_ATTACHMENTS,
context_window=int(1e6),
),
),
AvailableModel(
id="gemini-flash-lite-latest",
provider=ModelProvider.GOOGLE,
display_name="Gemini Flash Lite (Latest)",
description="Fast with huge context window",
capabilities=ModelCapabilities(
supports_tools=True,
supports_structured_output=True,
supported_attachment_types=GOOGLE_ATTACHMENTS,
context_window=int(1e6),
),
),
AvailableModel(
id="gemini-3-pro-preview",
provider=ModelProvider.GOOGLE,
display_name="Gemini 3 Pro",
description="Most capable Gemini model",
capabilities=ModelCapabilities(
supports_tools=True,
supports_structured_output=True,
supported_attachment_types=GOOGLE_ATTACHMENTS,
context_window=20000, # Set low for testing compression
),
),
]
GROQ_MODELS = [
AvailableModel(
id="llama-3.3-70b-versatile",
provider=ModelProvider.GROQ,
display_name="Llama 3.3 70B",
description="Latest Llama model with high-speed inference",
capabilities=ModelCapabilities(
supports_tools=True,
context_window=128000,
),
),
AvailableModel(
id="llama-3.1-8b-instant",
provider=ModelProvider.GROQ,
display_name="Llama 3.1 8B",
description="Ultra-fast inference",
capabilities=ModelCapabilities(
supports_tools=True,
context_window=128000,
),
),
AvailableModel(
id="mixtral-8x7b-32768",
provider=ModelProvider.GROQ,
display_name="Mixtral 8x7B",
description="High-speed inference with tools",
capabilities=ModelCapabilities(
supports_tools=True,
context_window=32768,
),
),
]
AZURE_OPENAI_MODELS = [
AvailableModel(
id="azure-gpt-4",
provider=ModelProvider.AZURE_OPENAI,
display_name="Azure OpenAI GPT-4",
description="Azure-hosted GPT model",
capabilities=ModelCapabilities(
supports_tools=True,
supports_structured_output=True,
supported_attachment_types=OPENAI_ATTACHMENTS,
context_window=8192,
),
),
]

View File

@@ -1,236 +0,0 @@
import logging
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional
logger = logging.getLogger(__name__)
class ModelProvider(str, Enum):
OPENAI = "openai"
AZURE_OPENAI = "azure_openai"
ANTHROPIC = "anthropic"
GROQ = "groq"
GOOGLE = "google"
HUGGINGFACE = "huggingface"
LLAMA_CPP = "llama.cpp"
DOCSGPT = "docsgpt"
PREMAI = "premai"
SAGEMAKER = "sagemaker"
NOVITA = "novita"
@dataclass
class ModelCapabilities:
supports_tools: bool = False
supports_structured_output: bool = False
supports_streaming: bool = True
supported_attachment_types: List[str] = field(default_factory=list)
context_window: int = 128000
input_cost_per_token: Optional[float] = None
output_cost_per_token: Optional[float] = None
@dataclass
class AvailableModel:
id: str
provider: ModelProvider
display_name: str
description: str = ""
capabilities: ModelCapabilities = field(default_factory=ModelCapabilities)
enabled: bool = True
base_url: Optional[str] = None
def to_dict(self) -> Dict:
result = {
"id": self.id,
"provider": self.provider.value,
"display_name": self.display_name,
"description": self.description,
"supported_attachment_types": self.capabilities.supported_attachment_types,
"supports_tools": self.capabilities.supports_tools,
"supports_structured_output": self.capabilities.supports_structured_output,
"supports_streaming": self.capabilities.supports_streaming,
"context_window": self.capabilities.context_window,
"enabled": self.enabled,
}
if self.base_url:
result["base_url"] = self.base_url
return result
class ModelRegistry:
_instance = None
_initialized = False
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
def __init__(self):
if not ModelRegistry._initialized:
self.models: Dict[str, AvailableModel] = {}
self.default_model_id: Optional[str] = None
self._load_models()
ModelRegistry._initialized = True
@classmethod
def get_instance(cls) -> "ModelRegistry":
return cls()
def _load_models(self):
from application.core.settings import settings
self.models.clear()
self._add_docsgpt_models(settings)
if settings.OPENAI_API_KEY or (
settings.LLM_PROVIDER == "openai" and settings.API_KEY
):
self._add_openai_models(settings)
if settings.OPENAI_API_BASE or (
settings.LLM_PROVIDER == "azure_openai" and settings.API_KEY
):
self._add_azure_openai_models(settings)
if settings.ANTHROPIC_API_KEY or (
settings.LLM_PROVIDER == "anthropic" and settings.API_KEY
):
self._add_anthropic_models(settings)
if settings.GOOGLE_API_KEY or (
settings.LLM_PROVIDER == "google" and settings.API_KEY
):
self._add_google_models(settings)
if settings.GROQ_API_KEY or (
settings.LLM_PROVIDER == "groq" and settings.API_KEY
):
self._add_groq_models(settings)
if settings.HUGGINGFACE_API_KEY or (
settings.LLM_PROVIDER == "huggingface" and settings.API_KEY
):
self._add_huggingface_models(settings)
# Default model selection
if settings.LLM_NAME and settings.LLM_NAME in self.models:
self.default_model_id = settings.LLM_NAME
elif settings.LLM_PROVIDER and settings.API_KEY:
for model_id, model in self.models.items():
if model.provider.value == settings.LLM_PROVIDER:
self.default_model_id = model_id
break
else:
self.default_model_id = next(iter(self.models.keys()))
logger.info(
f"ModelRegistry loaded {len(self.models)} models, default: {self.default_model_id}"
)
def _add_openai_models(self, settings):
from application.core.model_configs import OPENAI_MODELS
if settings.OPENAI_API_KEY:
for model in OPENAI_MODELS:
self.models[model.id] = model
return
if settings.LLM_PROVIDER == "openai" and settings.LLM_NAME:
for model in OPENAI_MODELS:
if model.id == settings.LLM_NAME:
self.models[model.id] = model
return
for model in OPENAI_MODELS:
self.models[model.id] = model
def _add_azure_openai_models(self, settings):
from application.core.model_configs import AZURE_OPENAI_MODELS
if settings.LLM_PROVIDER == "azure_openai" and settings.LLM_NAME:
for model in AZURE_OPENAI_MODELS:
if model.id == settings.LLM_NAME:
self.models[model.id] = model
return
for model in AZURE_OPENAI_MODELS:
self.models[model.id] = model
def _add_anthropic_models(self, settings):
from application.core.model_configs import ANTHROPIC_MODELS
if settings.ANTHROPIC_API_KEY:
for model in ANTHROPIC_MODELS:
self.models[model.id] = model
return
if settings.LLM_PROVIDER == "anthropic" and settings.LLM_NAME:
for model in ANTHROPIC_MODELS:
if model.id == settings.LLM_NAME:
self.models[model.id] = model
return
for model in ANTHROPIC_MODELS:
self.models[model.id] = model
def _add_google_models(self, settings):
from application.core.model_configs import GOOGLE_MODELS
if settings.GOOGLE_API_KEY:
for model in GOOGLE_MODELS:
self.models[model.id] = model
return
if settings.LLM_PROVIDER == "google" and settings.LLM_NAME:
for model in GOOGLE_MODELS:
if model.id == settings.LLM_NAME:
self.models[model.id] = model
return
for model in GOOGLE_MODELS:
self.models[model.id] = model
def _add_groq_models(self, settings):
from application.core.model_configs import GROQ_MODELS
if settings.GROQ_API_KEY:
for model in GROQ_MODELS:
self.models[model.id] = model
return
if settings.LLM_PROVIDER == "groq" and settings.LLM_NAME:
for model in GROQ_MODELS:
if model.id == settings.LLM_NAME:
self.models[model.id] = model
return
for model in GROQ_MODELS:
self.models[model.id] = model
def _add_docsgpt_models(self, settings):
model_id = "docsgpt-local"
model = AvailableModel(
id=model_id,
provider=ModelProvider.DOCSGPT,
display_name="DocsGPT Model",
description="Local model",
capabilities=ModelCapabilities(
supports_tools=False,
supported_attachment_types=[],
),
)
self.models[model_id] = model
def _add_huggingface_models(self, settings):
model_id = "huggingface-local"
model = AvailableModel(
id=model_id,
provider=ModelProvider.HUGGINGFACE,
display_name="Hugging Face Model",
description="Local Hugging Face model",
capabilities=ModelCapabilities(
supports_tools=False,
supported_attachment_types=[],
),
)
self.models[model_id] = model
def get_model(self, model_id: str) -> Optional[AvailableModel]:
return self.models.get(model_id)
def get_all_models(self) -> List[AvailableModel]:
return list(self.models.values())
def get_enabled_models(self) -> List[AvailableModel]:
return [m for m in self.models.values() if m.enabled]
def model_exists(self, model_id: str) -> bool:
return model_id in self.models

View File

@@ -1,91 +0,0 @@
from typing import Any, Dict, Optional
from application.core.model_settings import ModelRegistry
def get_api_key_for_provider(provider: str) -> Optional[str]:
"""Get the appropriate API key for a provider"""
from application.core.settings import settings
provider_key_map = {
"openai": settings.OPENAI_API_KEY,
"anthropic": settings.ANTHROPIC_API_KEY,
"google": settings.GOOGLE_API_KEY,
"groq": settings.GROQ_API_KEY,
"huggingface": settings.HUGGINGFACE_API_KEY,
"azure_openai": settings.API_KEY,
"docsgpt": None,
"llama.cpp": None,
}
provider_key = provider_key_map.get(provider)
if provider_key:
return provider_key
return settings.API_KEY
def get_all_available_models() -> Dict[str, Dict[str, Any]]:
"""Get all available models with metadata for API response"""
registry = ModelRegistry.get_instance()
return {model.id: model.to_dict() for model in registry.get_enabled_models()}
def validate_model_id(model_id: str) -> bool:
"""Check if a model ID exists in registry"""
registry = ModelRegistry.get_instance()
return registry.model_exists(model_id)
def get_model_capabilities(model_id: str) -> Optional[Dict[str, Any]]:
"""Get capabilities for a specific model"""
registry = ModelRegistry.get_instance()
model = registry.get_model(model_id)
if model:
return {
"supported_attachment_types": model.capabilities.supported_attachment_types,
"supports_tools": model.capabilities.supports_tools,
"supports_structured_output": model.capabilities.supports_structured_output,
"context_window": model.capabilities.context_window,
}
return None
def get_default_model_id() -> str:
"""Get the system default model ID"""
registry = ModelRegistry.get_instance()
return registry.default_model_id
def get_provider_from_model_id(model_id: str) -> Optional[str]:
"""Get the provider name for a given model_id"""
registry = ModelRegistry.get_instance()
model = registry.get_model(model_id)
if model:
return model.provider.value
return None
def get_token_limit(model_id: str) -> int:
"""
Get context window (token limit) for a model.
Returns model's context_window or default 128000 if model not found.
"""
from application.core.settings import settings
registry = ModelRegistry.get_instance()
model = registry.get_model(model_id)
if model:
return model.capabilities.context_window
return settings.DEFAULT_LLM_TOKEN_LIMIT
def get_base_url_for_model(model_id: str) -> Optional[str]:
"""
Get the custom base_url for a specific model if configured.
Returns None if no custom base_url is set.
"""
registry = ModelRegistry.get_instance()
model = registry.get_model(model_id)
if model:
return model.base_url
return None

View File

@@ -22,15 +22,11 @@ class Settings(BaseSettings):
MONGO_DB_NAME: str = "docsgpt"
LLM_PATH: str = os.path.join(current_dir, "models/docsgpt-7b-f16.gguf")
DEFAULT_MAX_HISTORY: int = 150
DEFAULT_LLM_TOKEN_LIMIT: int = 128000 # Fallback when model not found in registry
RESERVED_TOKENS: dict = {
"system_prompt": 500,
"current_query": 500,
"safety_buffer": 1000,
}
DEFAULT_AGENT_LIMITS: dict = {
"token_limit": 50000,
"request_limit": 500,
LLM_TOKEN_LIMITS: dict = {
"gpt-4o-mini": 128000,
"gpt-3.5-turbo": 4096,
"claude-2": 1e5,
"gemini-2.0-flash-exp": 1e6,
}
UPLOAD_FOLDER: str = "inputs"
PARSE_PDF_AS_IMAGE: bool = False
@@ -45,33 +41,18 @@ class Settings(BaseSettings):
FALLBACK_LLM_API_KEY: Optional[str] = None # api key for fallback llm
# Google Drive integration
GOOGLE_CLIENT_ID: Optional[str] = (
None # Replace with your actual Google OAuth client ID
)
GOOGLE_CLIENT_SECRET: Optional[str] = (
None # Replace with your actual Google OAuth client secret
)
CONNECTOR_REDIRECT_BASE_URI: Optional[str] = (
"http://127.0.0.1:7091/api/connectors/callback" ##add redirect url as it is to your provider's console(gcp)
)
GOOGLE_CLIENT_ID: Optional[str] = None # Replace with your actual Google OAuth client ID
GOOGLE_CLIENT_SECRET: Optional[str] = None# Replace with your actual Google OAuth client secret
CONNECTOR_REDIRECT_BASE_URI: Optional[str] = "http://127.0.0.1:7091/api/connectors/callback"
##append ?provider={provider_name} in your Provider console like http://127.0.0.1:7091/api/connectors/callback?provider=google_drive
# GitHub source
GITHUB_ACCESS_TOKEN: Optional[str] = None # PAT token with read repo access
# LLM Cache
CACHE_REDIS_URL: str = "redis://localhost:6379/2"
API_URL: str = "http://localhost:7091" # backend url for celery worker
API_KEY: Optional[str] = None # LLM api key (used by LLM_PROVIDER)
# Provider-specific API keys (for multi-model support)
OPENAI_API_KEY: Optional[str] = None
ANTHROPIC_API_KEY: Optional[str] = None
GOOGLE_API_KEY: Optional[str] = None
GROQ_API_KEY: Optional[str] = None
HUGGINGFACE_API_KEY: Optional[str] = None
API_KEY: Optional[str] = None # LLM api key
EMBEDDINGS_KEY: Optional[str] = (
None # api key for embeddings (if using openai, just copy API_KEY)
)
@@ -115,7 +96,7 @@ class Settings(BaseSettings):
QDRANT_HOST: Optional[str] = None
QDRANT_PATH: Optional[str] = None
QDRANT_DISTANCE_FUNC: str = "Cosine"
# PGVector vectorstore config
PGVECTOR_CONNECTION_STRING: Optional[str] = None
# Milvus vectorstore config
@@ -135,22 +116,6 @@ class Settings(BaseSettings):
JWT_SECRET_KEY: str = ""
# Encryption settings
ENCRYPTION_SECRET_KEY: str = "default-docsgpt-encryption-key"
TTS_PROVIDER: str = "google_tts" # google_tts or elevenlabs
ELEVENLABS_API_KEY: Optional[str] = None
# Tool pre-fetch settings
ENABLE_TOOL_PREFETCH: bool = True
# Conversation Compression Settings
ENABLE_CONVERSATION_COMPRESSION: bool = True
COMPRESSION_THRESHOLD_PERCENTAGE: float = 0.8 # Trigger at 80% of context
COMPRESSION_MODEL_OVERRIDE: Optional[str] = None # Use different model for compression
COMPRESSION_PROMPT_VERSION: str = "v1.0" # Track prompt iterations
COMPRESSION_MAX_HISTORY_POINTS: int = 3 # Keep only last N compression points to prevent DB bloat
path = Path(__file__).parent.parent.absolute()
settings = Settings(_env_file=path.joinpath(".env"), _env_file_encoding="utf-8")

View File

@@ -1,41 +1,30 @@
from anthropic import AI_PROMPT, Anthropic, HUMAN_PROMPT
from application.core.settings import settings
from application.llm.base import BaseLLM
from application.core.settings import settings
class AnthropicLLM(BaseLLM):
def __init__(self, api_key=None, user_api_key=None, base_url=None, *args, **kwargs):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
super().__init__(*args, **kwargs)
self.api_key = api_key or settings.ANTHROPIC_API_KEY or settings.API_KEY
self.api_key = (
api_key or settings.ANTHROPIC_API_KEY
) # If not provided, use a default from settings
self.user_api_key = user_api_key
# Use custom base_url if provided
if base_url:
self.anthropic = Anthropic(api_key=self.api_key, base_url=base_url)
else:
self.anthropic = Anthropic(api_key=self.api_key)
self.anthropic = Anthropic(api_key=self.api_key)
self.HUMAN_PROMPT = HUMAN_PROMPT
self.AI_PROMPT = AI_PROMPT
def _raw_gen(
self,
baseself,
model,
messages,
stream=False,
tools=None,
max_tokens=300,
**kwargs,
self, baseself, model, messages, stream=False, tools=None, max_tokens=300, **kwargs
):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Context \n {context} \n ### Question \n {user_question}"
if stream:
return self.gen_stream(model, prompt, stream, max_tokens, **kwargs)
completion = self.anthropic.completions.create(
model=model,
max_tokens_to_sample=max_tokens,
@@ -45,14 +34,7 @@ class AnthropicLLM(BaseLLM):
return completion.completion
def _raw_gen_stream(
self,
baseself,
model,
messages,
stream=True,
tools=None,
max_tokens=300,
**kwargs,
self, baseself, model, messages, stream=True, tools=None, max_tokens=300, **kwargs
):
context = messages[0]["content"]
user_question = messages[-1]["content"]
@@ -64,9 +46,5 @@ class AnthropicLLM(BaseLLM):
stream=True,
)
try:
for completion in stream_response:
yield completion.completion
finally:
if hasattr(stream_response, "close"):
stream_response.close()
for completion in stream_response:
yield completion.completion

View File

@@ -13,32 +13,30 @@ class BaseLLM(ABC):
def __init__(
self,
decoded_token=None,
model_id=None,
base_url=None,
):
self.decoded_token = decoded_token
self.model_id = model_id
self.base_url = base_url
self.token_usage = {"prompt_tokens": 0, "generated_tokens": 0}
self.fallback_provider = settings.FALLBACK_LLM_PROVIDER
self.fallback_model_name = settings.FALLBACK_LLM_NAME
self.fallback_llm_api_key = settings.FALLBACK_LLM_API_KEY
self._fallback_llm = None
self._fallback_sequence_index = 0
@property
def fallback_llm(self):
"""Lazy-loaded fallback LLM from FALLBACK_* settings."""
if self._fallback_llm is None and settings.FALLBACK_LLM_PROVIDER:
"""Lazy-loaded fallback LLM instance."""
if (
self._fallback_llm is None
and self.fallback_provider
and self.fallback_model_name
):
try:
from application.llm.llm_creator import LLMCreator
self._fallback_llm = LLMCreator.create_llm(
settings.FALLBACK_LLM_PROVIDER,
api_key=settings.FALLBACK_LLM_API_KEY or settings.API_KEY,
user_api_key=None,
decoded_token=self.decoded_token,
model_id=settings.FALLBACK_LLM_NAME,
)
logger.info(
f"Fallback LLM initialized: {settings.FALLBACK_LLM_PROVIDER}/{settings.FALLBACK_LLM_NAME}"
self.fallback_provider,
self.fallback_llm_api_key,
None,
self.decoded_token,
)
except Exception as e:
logger.error(
@@ -46,17 +44,11 @@ class BaseLLM(ABC):
)
return self._fallback_llm
@staticmethod
def _remove_null_values(args_dict):
if not isinstance(args_dict, dict):
return args_dict
return {k: v for k, v in args_dict.items() if v is not None}
def _execute_with_fallback(
self, method_name: str, decorators: list, *args, **kwargs
):
"""
Execute method with fallback support.
Unified method execution with fallback support.
Args:
method_name: Name of the raw method ('_raw_gen' or '_raw_gen_stream')
@@ -75,10 +67,10 @@ class BaseLLM(ABC):
return decorated_method()
except Exception as e:
if not self.fallback_llm:
logger.error(f"Primary LLM failed and no fallback configured: {str(e)}")
logger.error(f"Primary LLM failed and no fallback available: {str(e)}")
raise
logger.warning(
f"Primary LLM failed. Falling back to {settings.FALLBACK_LLM_PROVIDER}/{settings.FALLBACK_LLM_NAME}. Error: {str(e)}"
f"Falling back to {self.fallback_provider}/{self.fallback_model_name}. Error: {str(e)}"
)
fallback_method = getattr(

View File

@@ -1,7 +1,5 @@
import json
from openai import OpenAI
from application.core.settings import settings
from application.llm.base import BaseLLM
@@ -9,11 +7,12 @@ from application.llm.base import BaseLLM
class DocsGPTAPILLM(BaseLLM):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
from openai import OpenAI
super().__init__(*args, **kwargs)
self.api_key = "sk-docsgpt-public"
self.client = OpenAI(api_key=self.api_key, base_url="https://oai.arc53.com")
self.client = OpenAI(api_key="sk-docsgpt-public", base_url="https://oai.arc53.com")
self.user_api_key = user_api_key
self.api_key = api_key
def _clean_messages_openai(self, messages):
cleaned_messages = []
@@ -23,6 +22,7 @@ class DocsGPTAPILLM(BaseLLM):
if role == "model":
role = "assistant"
if role and content is not None:
if isinstance(content, str):
cleaned_messages.append({"role": role, "content": content})
@@ -33,15 +33,14 @@ class DocsGPTAPILLM(BaseLLM):
{"role": role, "content": item["text"]}
)
elif "function_call" in item:
cleaned_args = self._remove_null_values(
item["function_call"]["args"]
)
tool_call = {
"id": item["function_call"]["call_id"],
"type": "function",
"function": {
"name": item["function_call"]["name"],
"arguments": json.dumps(cleaned_args),
"arguments": json.dumps(
item["function_call"]["args"]
),
},
}
cleaned_messages.append(
@@ -69,6 +68,7 @@ class DocsGPTAPILLM(BaseLLM):
)
else:
raise ValueError(f"Unexpected content type: {type(content)}")
return cleaned_messages
def _raw_gen(
@@ -120,19 +120,12 @@ class DocsGPTAPILLM(BaseLLM):
response = self.client.chat.completions.create(
model="docsgpt", messages=messages, stream=stream, **kwargs
)
try:
for line in response:
if (
len(line.choices) > 0
and line.choices[0].delta.content is not None
and len(line.choices[0].delta.content) > 0
):
yield line.choices[0].delta.content
elif len(line.choices) > 0:
yield line.choices[0]
finally:
if hasattr(response, "close"):
response.close()
for line in response:
if len(line.choices) > 0 and line.choices[0].delta.content is not None and len(line.choices[0].delta.content) > 0:
yield line.choices[0].delta.content
elif len(line.choices) > 0:
yield line.choices[0]
def _supports_tools(self):
return True
return True

View File

@@ -1,3 +1,4 @@
import json
import logging
from google import genai
@@ -10,13 +11,10 @@ from application.storage.storage_creator import StorageCreator
class GoogleLLM(BaseLLM):
def __init__(
self, api_key=None, user_api_key=None, decoded_token=None, *args, **kwargs
):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
super().__init__(*args, **kwargs)
self.api_key = api_key or settings.GOOGLE_API_KEY or settings.API_KEY
self.api_key = api_key
self.user_api_key = user_api_key
self.client = genai.Client(api_key=self.api_key)
self.storage = StorageCreator.get_storage()
@@ -34,12 +32,6 @@ class GoogleLLM(BaseLLM):
"image/jpg",
"image/webp",
"image/gif",
"application/pdf",
"image/png",
"image/jpeg",
"image/jpg",
"image/webp",
"image/gif",
]
def prepare_messages_with_attachments(self, messages, attachments=None):
@@ -55,19 +47,21 @@ class GoogleLLM(BaseLLM):
"""
if not attachments:
return messages
prepared_messages = messages.copy()
# Find the user message to attach files to the last one
user_message_index = None
for i in range(len(prepared_messages) - 1, -1, -1):
if prepared_messages[i].get("role") == "user":
user_message_index = i
break
if user_message_index is None:
user_message = {"role": "user", "content": []}
prepared_messages.append(user_message)
user_message_index = len(prepared_messages) - 1
if isinstance(prepared_messages[user_message_index].get("content"), str):
text_content = prepared_messages[user_message_index]["content"]
prepared_messages[user_message_index]["content"] = [
@@ -75,6 +69,7 @@ class GoogleLLM(BaseLLM):
]
elif not isinstance(prepared_messages[user_message_index].get("content"), list):
prepared_messages[user_message_index]["content"] = []
files = []
for attachment in attachments:
mime_type = attachment.get("mime_type")
@@ -97,9 +92,11 @@ class GoogleLLM(BaseLLM):
"text": f"[File could not be processed: {attachment.get('path', 'unknown')}]",
}
)
if files:
logging.info(f"GoogleLLM: Adding {len(files)} files to message")
prepared_messages[user_message_index]["content"].append({"files": files})
return prepared_messages
def _upload_file_to_google(self, attachment):
@@ -114,11 +111,14 @@ class GoogleLLM(BaseLLM):
"""
if "google_file_uri" in attachment:
return attachment["google_file_uri"]
file_path = attachment.get("path")
if not file_path:
raise ValueError("No file path provided in attachment")
if not self.storage.file_exists(file_path):
raise FileNotFoundError(f"File not found: {file_path}")
try:
file_uri = self.storage.process_file(
file_path,
@@ -136,48 +136,21 @@ class GoogleLLM(BaseLLM):
attachments_collection.update_one(
{"_id": attachment["_id"]}, {"$set": {"google_file_uri": file_uri}}
)
return file_uri
except Exception as e:
logging.error(f"Error uploading file to Google AI: {e}", exc_info=True)
raise
def _clean_messages_google(self, messages):
"""
Convert OpenAI format messages to Google AI format and collect system prompts.
Returns:
tuple[list[types.Content], Optional[str]]: cleaned messages and optional
combined system instruction.
"""
cleaned_messages = []
system_instructions = []
def _extract_system_text(content):
if isinstance(content, str):
return content
if isinstance(content, list):
parts = []
for item in content:
if isinstance(item, dict) and "text" in item and item["text"] is not None:
parts.append(item["text"])
return "\n".join(parts)
return ""
for message in messages:
role = message.get("role")
content = message.get("content")
# Gemini only accepts user/model in the contents list.
if role == "system":
sys_text = _extract_system_text(content)
if sys_text:
system_instructions.append(sys_text)
continue
if role == "assistant":
role = "model"
elif role == "tool":
role = "model"
parts = []
if role and content is not None:
if isinstance(content, str):
@@ -187,32 +160,12 @@ class GoogleLLM(BaseLLM):
if "text" in item:
parts.append(types.Part.from_text(text=item["text"]))
elif "function_call" in item:
# Remove null values from args to avoid API errors
cleaned_args = self._remove_null_values(
item["function_call"]["args"]
parts.append(
types.Part.from_function_call(
name=item["function_call"]["name"],
args=item["function_call"]["args"],
)
)
# Create function call part with thought_signature if present
# For Gemini 3 models, we need to include thought_signature
if "thought_signature" in item:
# Use Part constructor with functionCall and thoughtSignature
parts.append(
types.Part(
functionCall=types.FunctionCall(
name=item["function_call"]["name"],
args=cleaned_args,
),
thoughtSignature=item["thought_signature"],
)
)
else:
# Use helper method when no thought_signature
parts.append(
types.Part.from_function_call(
name=item["function_call"]["name"],
args=cleaned_args,
)
)
elif "function_response" in item:
parts.append(
types.Part.from_function_response(
@@ -234,62 +187,12 @@ class GoogleLLM(BaseLLM):
)
else:
raise ValueError(f"Unexpected content type: {type(content)}")
if parts:
cleaned_messages.append(types.Content(role=role, parts=parts))
system_instruction = "\n\n".join(system_instructions) if system_instructions else None
return cleaned_messages, system_instruction
def _clean_schema(self, schema_obj):
"""
Recursively remove unsupported fields from schema objects
and validate required properties.
"""
if not isinstance(schema_obj, dict):
return schema_obj
allowed_fields = {
"type",
"description",
"items",
"properties",
"required",
"enum",
"pattern",
"minimum",
"maximum",
"nullable",
"default",
}
cleaned_messages.append(types.Content(role=role, parts=parts))
cleaned = {}
for key, value in schema_obj.items():
if key not in allowed_fields:
continue
elif key == "type" and isinstance(value, str):
cleaned[key] = value.upper()
elif isinstance(value, dict):
cleaned[key] = self._clean_schema(value)
elif isinstance(value, list):
cleaned[key] = [self._clean_schema(item) for item in value]
else:
cleaned[key] = value
# Validate that required properties actually exist in properties
if "required" in cleaned and "properties" in cleaned:
valid_required = []
properties_keys = set(cleaned["properties"].keys())
for required_prop in cleaned["required"]:
if required_prop in properties_keys:
valid_required.append(required_prop)
if valid_required:
cleaned["required"] = valid_required
else:
cleaned.pop("required", None)
elif "required" in cleaned and "properties" not in cleaned:
cleaned.pop("required", None)
return cleaned
return cleaned_messages
def _clean_tools_format(self, tools_list):
"""Convert OpenAI format tools to Google AI format."""
genai_tools = []
for tool_data in tools_list:
if tool_data["type"] == "function":
@@ -298,15 +201,18 @@ class GoogleLLM(BaseLLM):
properties = parameters.get("properties", {})
if properties:
cleaned_properties = {}
for k, v in properties.items():
cleaned_properties[k] = self._clean_schema(v)
genai_function = dict(
name=function["name"],
description=function["description"],
parameters={
"type": "OBJECT",
"properties": cleaned_properties,
"properties": {
k: {
**v,
"type": v["type"].upper() if v["type"] else None,
}
for k, v in properties.items()
},
"required": (
parameters["required"]
if "required" in parameters
@@ -319,65 +225,12 @@ class GoogleLLM(BaseLLM):
name=function["name"],
description=function["description"],
)
genai_tool = types.Tool(function_declarations=[genai_function])
genai_tools.append(genai_tool)
return genai_tools
def _extract_preview_from_message(self, message):
"""Get a short, human-readable preview from the last message."""
try:
if hasattr(message, "parts"):
for part in reversed(message.parts):
if getattr(part, "text", None):
return part.text
function_call = getattr(part, "function_call", None)
if function_call:
name = getattr(function_call, "name", "") or "function_call"
return f"function_call:{name}"
function_response = getattr(part, "function_response", None)
if function_response:
name = getattr(function_response, "name", "") or "function_response"
return f"function_response:{name}"
if isinstance(message, dict):
content = message.get("content")
if isinstance(content, str):
return content
if isinstance(content, list):
for item in reversed(content):
if isinstance(item, str):
return item
if isinstance(item, dict):
if item.get("text"):
return item["text"]
if item.get("function_call"):
fn = item["function_call"]
if isinstance(fn, dict):
name = fn.get("name") or "function_call"
return f"function_call:{name}"
return "function_call"
if item.get("function_response"):
resp = item["function_response"]
if isinstance(resp, dict):
name = resp.get("name") or "function_response"
return f"function_response:{name}"
return "function_response"
if "text" in message and isinstance(message["text"], str):
return message["text"]
except Exception:
pass
return str(message)
def _summarize_messages_for_log(self, messages, preview_chars=20):
"""Return a compact summary for logging to avoid huge payloads."""
message_count = len(messages) if messages else 0
last_preview = ""
if messages:
last_preview = self._extract_preview_from_message(messages[-1]) or ""
last_preview = str(last_preview).replace("\n", " ")
if len(last_preview) > preview_chars:
last_preview = f"{last_preview[:preview_chars]}..."
return f"count={message_count}, last='{last_preview}'"
def _raw_gen(
self,
baseself,
@@ -389,22 +242,23 @@ class GoogleLLM(BaseLLM):
response_schema=None,
**kwargs,
):
"""Generate content using Google AI API without streaming."""
client = genai.Client(api_key=self.api_key)
system_instruction = None
if formatting == "openai":
messages, system_instruction = self._clean_messages_google(messages)
messages = self._clean_messages_google(messages)
config = types.GenerateContentConfig()
if system_instruction:
config.system_instruction = system_instruction
if messages[0].role == "system":
config.system_instruction = messages[0].parts[0].text
messages = messages[1:]
if tools:
cleaned_tools = self._clean_tools_format(tools)
config.tools = cleaned_tools
# Add response schema for structured output if provided
# Add response schema for structured output if provided
if response_schema:
config.response_schema = response_schema
config.response_mime_type = "application/json"
response = client.models.generate_content(
model=model,
contents=messages,
@@ -427,24 +281,24 @@ class GoogleLLM(BaseLLM):
response_schema=None,
**kwargs,
):
"""Generate content using Google AI API with streaming."""
client = genai.Client(api_key=self.api_key)
system_instruction = None
if formatting == "openai":
messages, system_instruction = self._clean_messages_google(messages)
messages = self._clean_messages_google(messages)
config = types.GenerateContentConfig()
if system_instruction:
config.system_instruction = system_instruction
if messages[0].role == "system":
config.system_instruction = messages[0].parts[0].text
messages = messages[1:]
if tools:
cleaned_tools = self._clean_tools_format(tools)
config.tools = cleaned_tools
# Add response schema for structured output if provided
# Add response schema for structured output if provided
if response_schema:
config.response_schema = response_schema
config.response_mime_type = "application/json"
# Check if we have both tools and file attachments
# Check if we have both tools and file attachments
has_attachments = False
for message in messages:
for part in message.parts:
@@ -453,12 +307,9 @@ class GoogleLLM(BaseLLM):
break
if has_attachments:
break
messages_summary = self._summarize_messages_for_log(messages)
logging.info(
"GoogleLLM: Starting stream generation. Model: %s, Messages: %s, Has attachments: %s",
model,
messages_summary,
has_attachments,
f"GoogleLLM: Starting stream generation. Model: {model}, Messages: {json.dumps(messages, default=str)}, Has attachments: {has_attachments}"
)
response = client.models.generate_content_stream(
@@ -467,34 +318,28 @@ class GoogleLLM(BaseLLM):
config=config,
)
try:
for chunk in response:
if hasattr(chunk, "candidates") and chunk.candidates:
for candidate in chunk.candidates:
if candidate.content and candidate.content.parts:
for part in candidate.content.parts:
if part.function_call:
yield part
elif part.text:
yield part.text
elif hasattr(chunk, "text"):
yield chunk.text
finally:
if hasattr(response, "close"):
response.close()
for chunk in response:
if hasattr(chunk, "candidates") and chunk.candidates:
for candidate in chunk.candidates:
if candidate.content and candidate.content.parts:
for part in candidate.content.parts:
if part.function_call:
yield part
elif part.text:
yield part.text
elif hasattr(chunk, "text"):
yield chunk.text
def _supports_tools(self):
"""Return whether this LLM supports function calling."""
return True
def _supports_structured_output(self):
"""Return whether this LLM supports structured JSON output."""
return True
def prepare_structured_output_format(self, json_schema):
"""Convert JSON schema to Google AI structured output format."""
if not json_schema:
return None
type_map = {
"object": "OBJECT",
"array": "ARRAY",
@@ -507,10 +352,12 @@ class GoogleLLM(BaseLLM):
def convert(schema):
if not isinstance(schema, dict):
return schema
result = {}
schema_type = schema.get("type")
if schema_type:
result["type"] = type_map.get(schema_type.lower(), schema_type.upper())
for key in [
"description",
"nullable",
@@ -522,6 +369,7 @@ class GoogleLLM(BaseLLM):
]:
if key in schema:
result[key] = schema[key]
if "format" in schema:
format_value = schema["format"]
if schema_type == "string":
@@ -531,17 +379,21 @@ class GoogleLLM(BaseLLM):
result["format"] = format_value
else:
result["format"] = format_value
if "properties" in schema:
result["properties"] = {
k: convert(v) for k, v in schema["properties"].items()
}
if "propertyOrdering" not in result and result.get("type") == "OBJECT":
result["propertyOrdering"] = list(result["properties"].keys())
if "items" in schema:
result["items"] = convert(schema["items"])
for field in ["anyOf", "oneOf", "allOf"]:
if field in schema:
result[field] = [convert(s) for s in schema[field]]
return result
try:

View File

@@ -1,18 +1,13 @@
from openai import OpenAI
from application.core.settings import settings
from application.llm.base import BaseLLM
from openai import OpenAI
class GroqLLM(BaseLLM):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
super().__init__(*args, **kwargs)
self.api_key = api_key or settings.GROQ_API_KEY or settings.API_KEY
self.client = OpenAI(api_key=api_key, base_url="https://api.groq.com/openai/v1")
self.api_key = api_key
self.user_api_key = user_api_key
self.client = OpenAI(
api_key=self.api_key, base_url="https://api.groq.com/openai/v1"
)
def _raw_gen(self, baseself, model, messages, stream=False, tools=None, **kwargs):
if tools:

View File

@@ -1,5 +1,4 @@
import logging
import uuid
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Any, Dict, Generator, List, Optional, Union
@@ -17,7 +16,6 @@ class ToolCall:
name: str
arguments: Union[str, Dict]
index: Optional[int] = None
thought_signature: Optional[str] = None
@classmethod
def from_dict(cls, data: Dict) -> "ToolCall":
@@ -180,406 +178,6 @@ class LLMHandler(ABC):
system_msg["content"] += f"\n\n{combined_text}"
return prepared_messages
def _prune_messages_minimal(self, messages: List[Dict]) -> Optional[List[Dict]]:
"""
Build a minimal context: system prompt + latest user message only.
Drops all tool/function messages to shrink context aggressively.
"""
system_message = next((m for m in messages if m.get("role") == "system"), None)
if not system_message:
logger.warning("Cannot prune messages minimally: missing system message.")
return None
last_non_system = None
for m in reversed(messages):
if m.get("role") == "user":
last_non_system = m
break
if not last_non_system and m.get("role") not in ("system", None):
last_non_system = m
if not last_non_system:
logger.warning("Cannot prune messages minimally: missing user/assistant messages.")
return None
logger.info("Pruning context to system + latest user/assistant message to proceed.")
return [system_message, last_non_system]
def _extract_text_from_content(self, content: Any) -> str:
"""
Convert message content (str or list of parts) to plain text for compression.
"""
if isinstance(content, str):
return content
if isinstance(content, list):
parts_text = []
for item in content:
if isinstance(item, dict):
if "text" in item and item["text"] is not None:
parts_text.append(str(item["text"]))
elif "function_call" in item or "function_response" in item:
# Keep serialized function calls/responses so the compressor sees actions
parts_text.append(str(item))
elif "files" in item:
parts_text.append(str(item))
return "\n".join(parts_text)
return ""
def _build_conversation_from_messages(self, messages: List[Dict]) -> Optional[Dict]:
"""
Build a conversation-like dict from current messages so we can compress
even when the conversation isn't persisted yet. Includes tool calls/results.
"""
queries = []
current_prompt = None
current_tool_calls = {}
def _commit_query(response_text: str):
nonlocal current_prompt, current_tool_calls
if current_prompt is None and not response_text:
return
tool_calls_list = list(current_tool_calls.values())
queries.append(
{
"prompt": current_prompt or "",
"response": response_text,
"tool_calls": tool_calls_list,
}
)
current_prompt = None
current_tool_calls = {}
for message in messages:
role = message.get("role")
content = message.get("content")
if role == "user":
current_prompt = self._extract_text_from_content(content)
elif role in {"assistant", "model"}:
# If this assistant turn contains tool calls, collect them; otherwise commit a response.
if isinstance(content, list):
for item in content:
if "function_call" in item:
fc = item["function_call"]
call_id = fc.get("call_id") or str(uuid.uuid4())
current_tool_calls[call_id] = {
"tool_name": "unknown_tool",
"action_name": fc.get("name"),
"arguments": fc.get("args"),
"result": None,
"status": "called",
"call_id": call_id,
}
elif "function_response" in item:
fr = item["function_response"]
call_id = fr.get("call_id") or str(uuid.uuid4())
current_tool_calls[call_id] = {
"tool_name": "unknown_tool",
"action_name": fr.get("name"),
"arguments": None,
"result": fr.get("response", {}).get("result"),
"status": "completed",
"call_id": call_id,
}
# No direct assistant text here; continue to next message
continue
response_text = self._extract_text_from_content(content)
_commit_query(response_text)
elif role == "tool":
# Attach tool outputs to the latest pending tool call if possible
tool_text = self._extract_text_from_content(content)
# Attempt to parse function_response style
call_id = None
if isinstance(content, list):
for item in content:
if "function_response" in item and item["function_response"].get("call_id"):
call_id = item["function_response"]["call_id"]
break
if call_id and call_id in current_tool_calls:
current_tool_calls[call_id]["result"] = tool_text
current_tool_calls[call_id]["status"] = "completed"
elif queries:
queries[-1].setdefault("tool_calls", []).append(
{
"tool_name": "unknown_tool",
"action_name": "unknown_action",
"arguments": {},
"result": tool_text,
"status": "completed",
}
)
# If there's an unfinished prompt with tool_calls but no response yet, commit it
if current_prompt is not None or current_tool_calls:
_commit_query(response_text="")
if not queries:
return None
return {
"queries": queries,
"compression_metadata": {
"is_compressed": False,
"compression_points": [],
},
}
def _rebuild_messages_after_compression(
self,
messages: List[Dict],
compressed_summary: Optional[str],
recent_queries: List[Dict],
include_current_execution: bool = False,
include_tool_calls: bool = False,
) -> Optional[List[Dict]]:
"""
Rebuild the message list after compression so tool execution can continue.
Delegates to MessageBuilder for the actual reconstruction.
"""
from application.api.answer.services.compression.message_builder import (
MessageBuilder,
)
return MessageBuilder.rebuild_messages_after_compression(
messages=messages,
compressed_summary=compressed_summary,
recent_queries=recent_queries,
include_current_execution=include_current_execution,
include_tool_calls=include_tool_calls,
)
def _perform_mid_execution_compression(
self, agent, messages: List[Dict]
) -> tuple[bool, Optional[List[Dict]]]:
"""
Perform compression during tool execution and rebuild messages.
Uses the new orchestrator for simplified compression.
Args:
agent: The agent instance
messages: Current conversation messages
Returns:
(success: bool, rebuilt_messages: Optional[List[Dict]])
"""
try:
from application.api.answer.services.compression import (
CompressionOrchestrator,
)
from application.api.answer.services.conversation_service import (
ConversationService,
)
conversation_service = ConversationService()
orchestrator = CompressionOrchestrator(conversation_service)
# Get conversation from database (may be None for new sessions)
conversation = conversation_service.get_conversation(
agent.conversation_id, agent.initial_user_id
)
if conversation:
# Merge current in-flight messages (including tool calls)
conversation_from_msgs = self._build_conversation_from_messages(messages)
if conversation_from_msgs:
conversation = conversation_from_msgs
else:
logger.warning(
"Could not load conversation for compression; attempting in-memory compression"
)
return self._perform_in_memory_compression(agent, messages)
# Use orchestrator to perform compression
result = orchestrator.compress_mid_execution(
conversation_id=agent.conversation_id,
user_id=agent.initial_user_id,
model_id=agent.model_id,
decoded_token=getattr(agent, "decoded_token", {}),
current_conversation=conversation,
)
if not result.success:
logger.warning(f"Mid-execution compression failed: {result.error}")
# Try minimal pruning as fallback
pruned = self._prune_messages_minimal(messages)
if pruned:
agent.context_limit_reached = False
agent.current_token_count = 0
return True, pruned
return False, None
if not result.compression_performed:
logger.warning("Compression not performed")
return False, None
# Check if compression actually reduced tokens
if result.metadata:
if result.metadata.compressed_token_count >= result.metadata.original_token_count:
logger.warning(
"Compression did not reduce token count; falling back to minimal pruning"
)
pruned = self._prune_messages_minimal(messages)
if pruned:
agent.context_limit_reached = False
agent.current_token_count = 0
return True, pruned
return False, None
logger.info(
f"Mid-execution compression successful - ratio: {result.metadata.compression_ratio:.1f}x, "
f"saved {result.metadata.original_token_count - result.metadata.compressed_token_count} tokens"
)
# Also store the compression summary as a visible message
if result.metadata:
conversation_service.append_compression_message(
agent.conversation_id, result.metadata.to_dict()
)
# Update agent's compressed summary for downstream persistence
agent.compressed_summary = result.compressed_summary
agent.compression_metadata = result.metadata.to_dict() if result.metadata else None
agent.compression_saved = False
# Reset the context limit flag so tools can continue
agent.context_limit_reached = False
agent.current_token_count = 0
# Rebuild messages
rebuilt_messages = self._rebuild_messages_after_compression(
messages,
result.compressed_summary,
result.recent_queries,
include_current_execution=False,
include_tool_calls=False,
)
if rebuilt_messages is None:
return False, None
return True, rebuilt_messages
except Exception as e:
logger.error(
f"Error performing mid-execution compression: {str(e)}", exc_info=True
)
return False, None
def _perform_in_memory_compression(
self, agent, messages: List[Dict]
) -> tuple[bool, Optional[List[Dict]]]:
"""
Fallback compression path when the conversation is not yet persisted.
Uses CompressionService directly without DB persistence.
"""
try:
from application.api.answer.services.compression.service import (
CompressionService,
)
from application.core.model_utils import (
get_api_key_for_provider,
get_provider_from_model_id,
)
from application.core.settings import settings
from application.llm.llm_creator import LLMCreator
conversation = self._build_conversation_from_messages(messages)
if not conversation:
logger.warning(
"Cannot perform in-memory compression: no user/assistant turns found"
)
return False, None
compression_model = (
settings.COMPRESSION_MODEL_OVERRIDE
if settings.COMPRESSION_MODEL_OVERRIDE
else agent.model_id
)
provider = get_provider_from_model_id(compression_model)
api_key = get_api_key_for_provider(provider)
compression_llm = LLMCreator.create_llm(
provider,
api_key,
getattr(agent, "user_api_key", None),
getattr(agent, "decoded_token", None),
model_id=compression_model,
)
# Create service without DB persistence capability
compression_service = CompressionService(
llm=compression_llm,
model_id=compression_model,
conversation_service=None, # No DB updates for in-memory
)
queries_count = len(conversation.get("queries", []))
compress_up_to = queries_count - 1
if compress_up_to < 0 or queries_count == 0:
logger.warning("Not enough queries to compress in-memory context")
return False, None
metadata = compression_service.compress_conversation(
conversation,
compress_up_to_index=compress_up_to,
)
# If compression doesn't reduce tokens, fall back to minimal pruning
if (
metadata.compressed_token_count
>= metadata.original_token_count
):
logger.warning(
"In-memory compression did not reduce token count; falling back to minimal pruning"
)
pruned = self._prune_messages_minimal(messages)
if pruned:
agent.context_limit_reached = False
agent.current_token_count = 0
return True, pruned
return False, None
# Attach metadata to synthetic conversation
conversation["compression_metadata"] = {
"is_compressed": True,
"compression_points": [metadata.to_dict()],
}
compressed_summary, recent_queries = (
compression_service.get_compressed_context(conversation)
)
agent.compressed_summary = compressed_summary
agent.compression_metadata = metadata.to_dict()
agent.compression_saved = False
agent.context_limit_reached = False
agent.current_token_count = 0
rebuilt_messages = self._rebuild_messages_after_compression(
messages,
compressed_summary,
recent_queries,
include_current_execution=False,
include_tool_calls=False,
)
if rebuilt_messages is None:
return False, None
logger.info(
f"In-memory compression successful - ratio: {metadata.compression_ratio:.1f}x, "
f"saved {metadata.original_token_count - metadata.compressed_token_count} tokens"
)
return True, rebuilt_messages
except Exception as e:
logger.error(
f"Error performing in-memory compression: {str(e)}", exc_info=True
)
return False, None
def handle_tool_calls(
self, agent, tool_calls: List[ToolCall], tools_dict: Dict, messages: List[Dict]
) -> Generator:
@@ -597,110 +195,7 @@ class LLMHandler(ABC):
"""
updated_messages = messages.copy()
for i, call in enumerate(tool_calls):
# Check context limit before executing tool call
if hasattr(agent, '_check_context_limit') and agent._check_context_limit(updated_messages):
# Context limit reached - attempt mid-execution compression
compression_attempted = False
compression_successful = False
try:
from application.core.settings import settings
compression_enabled = settings.ENABLE_CONVERSATION_COMPRESSION
except Exception:
compression_enabled = False
if compression_enabled:
compression_attempted = True
try:
logger.info(
f"Context limit reached with {len(tool_calls) - i} remaining tool calls. "
f"Attempting mid-execution compression..."
)
# Trigger mid-execution compression (DB-backed if available, otherwise in-memory)
compression_successful, rebuilt_messages = self._perform_mid_execution_compression(
agent, updated_messages
)
if compression_successful and rebuilt_messages is not None:
# Update the messages list with rebuilt compressed version
updated_messages = rebuilt_messages
# Yield compression success message
yield {
"type": "info",
"data": {
"message": "Context window limit reached. Compressed conversation history to continue processing."
}
}
logger.info(
f"Mid-execution compression successful. Continuing with {len(tool_calls) - i} remaining tool calls."
)
# Proceed to execute the current tool call with the reduced context
else:
logger.warning("Mid-execution compression attempted but failed. Skipping remaining tools.")
except Exception as e:
logger.error(f"Error during mid-execution compression: {str(e)}", exc_info=True)
compression_attempted = True
compression_successful = False
# If compression wasn't attempted or failed, skip remaining tools
if not compression_successful:
if i == 0:
# Special case: limit reached before executing any tools
# This can happen when previous tool responses pushed context over limit
if compression_attempted:
logger.warning(
f"Context limit reached before executing any tools. "
f"Compression attempted but failed. "
f"Skipping all {len(tool_calls)} pending tool call(s). "
f"This typically occurs when previous tool responses contained large amounts of data."
)
else:
logger.warning(
f"Context limit reached before executing any tools. "
f"Skipping all {len(tool_calls)} pending tool call(s). "
f"This typically occurs when previous tool responses contained large amounts of data. "
f"Consider enabling compression or using a model with larger context window."
)
else:
# Normal case: executed some tools, now stopping
tool_word = "tool call" if i == 1 else "tool calls"
remaining = len(tool_calls) - i
remaining_word = "tool call" if remaining == 1 else "tool calls"
if compression_attempted:
logger.warning(
f"Context limit reached after executing {i} {tool_word}. "
f"Compression attempted but failed. "
f"Skipping remaining {remaining} {remaining_word}."
)
else:
logger.warning(
f"Context limit reached after executing {i} {tool_word}. "
f"Skipping remaining {remaining} {remaining_word}. "
f"Consider enabling compression or using a model with larger context window."
)
# Mark remaining tools as skipped
for remaining_call in tool_calls[i:]:
skip_message = {
"type": "tool_call",
"data": {
"tool_name": "system",
"call_id": remaining_call.id,
"action_name": remaining_call.name,
"arguments": {},
"result": "Skipped: Context limit reached. Too many tool calls in conversation.",
"status": "skipped"
}
}
yield skip_message
# Set flag on agent
agent.context_limit_reached = True
break
for call in tool_calls:
try:
self.tool_calls.append(call)
tool_executor_gen = agent._execute_tool_action(tools_dict, call)
@@ -710,57 +205,34 @@ class LLMHandler(ABC):
except StopIteration as e:
tool_response, call_id = e.value
break
function_call_content = {
"function_call": {
"name": call.name,
"args": call.arguments,
"call_id": call_id,
}
}
# Include thought_signature for Google Gemini 3 models
# It should be at the same level as function_call, not inside it
if call.thought_signature:
function_call_content["thought_signature"] = call.thought_signature
updated_messages.append(
{
"role": "assistant",
"content": [function_call_content],
"content": [
{
"function_call": {
"name": call.name,
"args": call.arguments,
"call_id": call_id,
}
}
],
}
)
updated_messages.append(self.create_tool_message(call, tool_response))
except Exception as e:
logger.error(f"Error executing tool: {str(e)}", exc_info=True)
error_call = ToolCall(
id=call.id, name=call.name, arguments=call.arguments
updated_messages.append(
{
"role": "tool",
"content": f"Error executing tool: {str(e)}",
"tool_call_id": call.id,
}
)
error_response = f"Error executing tool: {str(e)}"
error_message = self.create_tool_message(error_call, error_response)
updated_messages.append(error_message)
call_parts = call.name.split("_")
if len(call_parts) >= 2:
tool_id = call_parts[-1] # Last part is tool ID (e.g., "1")
action_name = "_".join(call_parts[:-1])
tool_name = tools_dict.get(tool_id, {}).get("name", "unknown_tool")
full_action_name = f"{action_name}_{tool_id}"
else:
tool_name = "unknown_tool"
action_name = call.name
full_action_name = call.name
yield {
"type": "tool_call",
"data": {
"tool_name": tool_name,
"call_id": call.id,
"action_name": full_action_name,
"arguments": call.arguments,
"error": error_response,
"status": "error",
},
}
return updated_messages
def handle_non_streaming(
@@ -791,11 +263,13 @@ class LLMHandler(ABC):
except StopIteration as e:
messages = e.value
break
response = agent.llm.gen(
model=agent.model_id, messages=messages, tools=agent.tools
model=agent.gpt_model, messages=messages, tools=agent.tools
)
parsed = self.parse_response(response)
self.llm_calls.append(build_stack_data(agent.llm))
return parsed.content
def handle_streaming(
@@ -834,9 +308,6 @@ class LLMHandler(ABC):
existing.name = call.name
if call.arguments:
existing.arguments += call.arguments
# Preserve thought_signature for Google Gemini 3 models
if call.thought_signature:
existing.thought_signature = call.thought_signature
if parsed.finish_reason == "tool_calls":
tool_handler_gen = self.handle_tool_calls(
agent, list(tool_calls.values()), tools_dict, messages
@@ -849,21 +320,8 @@ class LLMHandler(ABC):
break
tool_calls = {}
# Check if context limit was reached during tool execution
if hasattr(agent, 'context_limit_reached') and agent.context_limit_reached:
# Add system message warning about context limit
messages.append({
"role": "system",
"content": (
"WARNING: Context window limit has been reached. "
"Please provide a final response to the user without making additional tool calls. "
"Summarize the work completed so far."
)
})
logger.info("Context limit reached - instructing agent to wrap up")
response = agent.llm.gen_stream(
model=agent.model_id, messages=messages, tools=agent.tools if not agent.context_limit_reached else None
model=agent.gpt_model, messages=messages, tools=agent.tools
)
self.llm_calls.append(build_stack_data(agent.llm))

View File

@@ -17,22 +17,18 @@ class GoogleLLMHandler(LLMHandler):
finish_reason="stop",
raw_response=response,
)
if hasattr(response, "candidates"):
parts = response.candidates[0].content.parts if response.candidates else []
tool_calls = []
for idx, part in enumerate(parts):
if hasattr(part, "function_call") and part.function_call is not None:
has_sig = hasattr(part, "thought_signature") and part.thought_signature is not None
thought_sig = part.thought_signature if has_sig else None
tool_calls.append(
ToolCall(
id=str(uuid.uuid4()),
name=part.function_call.name,
arguments=part.function_call.args,
index=idx,
thought_signature=thought_sig,
)
)
tool_calls = [
ToolCall(
id=str(uuid.uuid4()),
name=part.function_call.name,
arguments=part.function_call.args,
)
for part in parts
if hasattr(part, "function_call") and part.function_call is not None
]
content = " ".join(
part.text
@@ -45,18 +41,15 @@ class GoogleLLMHandler(LLMHandler):
finish_reason="tool_calls" if tool_calls else "stop",
raw_response=response,
)
else:
# This branch handles individual Part objects from streaming responses
tool_calls = []
if hasattr(response, "function_call") and response.function_call is not None:
has_sig = hasattr(response, "thought_signature") and response.thought_signature is not None
thought_sig = response.thought_signature if has_sig else None
if hasattr(response, "function_call"):
tool_calls.append(
ToolCall(
id=str(uuid.uuid4()),
name=response.function_call.name,
arguments=response.function_call.args,
thought_signature=thought_sig,
)
)
return LLMResponse(
@@ -68,16 +61,14 @@ class GoogleLLMHandler(LLMHandler):
def create_tool_message(self, tool_call: ToolCall, result: Any) -> Dict:
"""Create Google-style tool message."""
from google.genai import types
return {
"role": "model",
"role": "tool",
"content": [
{
"function_response": {
"name": tool_call.name,
"response": {"result": result},
}
}
types.Part.from_function_response(
name=tool_call.name, response={"result": result}
).to_json_dict()
],
}

View File

@@ -1,17 +1,13 @@
import logging
from application.llm.anthropic import AnthropicLLM
from application.llm.docsgpt_provider import DocsGPTAPILLM
from application.llm.google_ai import GoogleLLM
from application.llm.groq import GroqLLM
from application.llm.openai import OpenAILLM, AzureOpenAILLM
from application.llm.sagemaker import SagemakerAPILLM
from application.llm.huggingface import HuggingFaceLLM
from application.llm.llama_cpp import LlamaCpp
from application.llm.novita import NovitaLLM
from application.llm.openai import AzureOpenAILLM, OpenAILLM
from application.llm.anthropic import AnthropicLLM
from application.llm.docsgpt_provider import DocsGPTAPILLM
from application.llm.premai import PremAILLM
from application.llm.sagemaker import SagemakerAPILLM
logger = logging.getLogger(__name__)
from application.llm.google_ai import GoogleLLM
from application.llm.novita import NovitaLLM
class LLMCreator:
@@ -30,26 +26,10 @@ class LLMCreator:
}
@classmethod
def create_llm(
cls, type, api_key, user_api_key, decoded_token, model_id=None, *args, **kwargs
):
from application.core.model_utils import get_base_url_for_model
def create_llm(cls, type, api_key, user_api_key, decoded_token, *args, **kwargs):
llm_class = cls.llms.get(type.lower())
if not llm_class:
raise ValueError(f"No LLM class found for type {type}")
# Extract base_url from model configuration if model_id is provided
base_url = None
if model_id:
base_url = get_base_url_for_model(model_id)
return llm_class(
api_key,
user_api_key,
decoded_token=decoded_token,
model_id=model_id,
base_url=base_url,
*args,
**kwargs,
api_key, user_api_key, decoded_token=decoded_token, *args, **kwargs
)

View File

@@ -2,8 +2,6 @@ import base64
import json
import logging
from openai import OpenAI
from application.core.settings import settings
from application.llm.base import BaseLLM
from application.storage.storage_creator import StorageCreator
@@ -11,25 +9,20 @@ from application.storage.storage_creator import StorageCreator
class OpenAILLM(BaseLLM):
def __init__(self, api_key=None, user_api_key=None, base_url=None, *args, **kwargs):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
from openai import OpenAI
super().__init__(*args, **kwargs)
self.api_key = api_key or settings.OPENAI_API_KEY or settings.API_KEY
self.user_api_key = user_api_key
# Priority: 1) Parameter base_url, 2) Settings OPENAI_BASE_URL, 3) Default
effective_base_url = None
if base_url and isinstance(base_url, str) and base_url.strip():
effective_base_url = base_url
elif (
if (
isinstance(settings.OPENAI_BASE_URL, str)
and settings.OPENAI_BASE_URL.strip()
):
effective_base_url = settings.OPENAI_BASE_URL
self.client = OpenAI(api_key=api_key, base_url=settings.OPENAI_BASE_URL)
else:
effective_base_url = "https://api.openai.com/v1"
self.client = OpenAI(api_key=self.api_key, base_url=effective_base_url)
DEFAULT_OPENAI_API_BASE = "https://api.openai.com/v1"
self.client = OpenAI(api_key=api_key, base_url=DEFAULT_OPENAI_API_BASE)
self.api_key = api_key
self.user_api_key = user_api_key
self.storage = StorageCreator.get_storage()
def _clean_messages_openai(self, messages):
@@ -40,6 +33,7 @@ class OpenAILLM(BaseLLM):
if role == "model":
role = "assistant"
if role and content is not None:
if isinstance(content, str):
cleaned_messages.append({"role": role, "content": content})
@@ -50,15 +44,14 @@ class OpenAILLM(BaseLLM):
{"role": role, "content": item["text"]}
)
elif "function_call" in item:
cleaned_args = self._remove_null_values(
item["function_call"]["args"]
)
tool_call = {
"id": item["function_call"]["call_id"],
"type": "function",
"function": {
"name": item["function_call"]["name"],
"arguments": json.dumps(cleaned_args),
"arguments": json.dumps(
item["function_call"]["args"]
),
},
}
cleaned_messages.append(
@@ -113,6 +106,7 @@ class OpenAILLM(BaseLLM):
)
else:
raise ValueError(f"Unexpected content type: {type(content)}")
return cleaned_messages
def _raw_gen(
@@ -128,10 +122,6 @@ class OpenAILLM(BaseLLM):
):
messages = self._clean_messages_openai(messages)
# Convert max_tokens to max_completion_tokens for newer models
if "max_tokens" in kwargs:
kwargs["max_completion_tokens"] = kwargs.pop("max_tokens")
request_params = {
"model": model,
"messages": messages,
@@ -141,8 +131,10 @@ class OpenAILLM(BaseLLM):
if tools:
request_params["tools"] = tools
if response_format:
request_params["response_format"] = response_format
response = self.client.chat.completions.create(**request_params)
if tools:
@@ -163,10 +155,6 @@ class OpenAILLM(BaseLLM):
):
messages = self._clean_messages_openai(messages)
# Convert max_tokens to max_completion_tokens for newer models
if "max_tokens" in kwargs:
kwargs["max_completion_tokens"] = kwargs.pop("max_tokens")
request_params = {
"model": model,
"messages": messages,
@@ -176,23 +164,21 @@ class OpenAILLM(BaseLLM):
if tools:
request_params["tools"] = tools
if response_format:
request_params["response_format"] = response_format
response = self.client.chat.completions.create(**request_params)
try:
for line in response:
if (
len(line.choices) > 0
and line.choices[0].delta.content is not None
and len(line.choices[0].delta.content) > 0
):
yield line.choices[0].delta.content
elif len(line.choices) > 0:
yield line.choices[0]
finally:
if hasattr(response, "close"):
response.close()
for line in response:
if (
len(line.choices) > 0
and line.choices[0].delta.content is not None
and len(line.choices[0].delta.content) > 0
):
yield line.choices[0].delta.content
elif len(line.choices) > 0:
yield line.choices[0]
def _supports_tools(self):
return True
@@ -203,6 +189,7 @@ class OpenAILLM(BaseLLM):
def prepare_structured_output_format(self, json_schema):
if not json_schema:
return None
try:
def add_additional_properties_false(schema_obj):
@@ -212,11 +199,11 @@ class OpenAILLM(BaseLLM):
if schema_copy.get("type") == "object":
schema_copy["additionalProperties"] = False
# Ensure 'required' includes all properties for OpenAI strict mode
if "properties" in schema_copy:
schema_copy["required"] = list(
schema_copy["properties"].keys()
)
for key, value in schema_copy.items():
if key == "properties" and isinstance(value, dict):
schema_copy[key] = {
@@ -232,6 +219,7 @@ class OpenAILLM(BaseLLM):
add_additional_properties_false(sub_schema)
for sub_schema in value
]
return schema_copy
return schema_obj
@@ -250,6 +238,7 @@ class OpenAILLM(BaseLLM):
}
return result
except Exception as e:
logging.error(f"Error preparing structured output format: {e}")
return None
@@ -283,19 +272,21 @@ class OpenAILLM(BaseLLM):
"""
if not attachments:
return messages
prepared_messages = messages.copy()
# Find the user message to attach file_id to the last one
user_message_index = None
for i in range(len(prepared_messages) - 1, -1, -1):
if prepared_messages[i].get("role") == "user":
user_message_index = i
break
if user_message_index is None:
user_message = {"role": "user", "content": []}
prepared_messages.append(user_message)
user_message_index = len(prepared_messages) - 1
if isinstance(prepared_messages[user_message_index].get("content"), str):
text_content = prepared_messages[user_message_index]["content"]
prepared_messages[user_message_index]["content"] = [
@@ -303,6 +294,7 @@ class OpenAILLM(BaseLLM):
]
elif not isinstance(prepared_messages[user_message_index].get("content"), list):
prepared_messages[user_message_index]["content"] = []
for attachment in attachments:
mime_type = attachment.get("mime_type")
@@ -329,7 +321,6 @@ class OpenAILLM(BaseLLM):
}
)
# Handle PDFs using the file API
elif mime_type == "application/pdf":
try:
file_id = self._upload_file_to_openai(attachment)
@@ -345,6 +336,7 @@ class OpenAILLM(BaseLLM):
"text": f"File content:\n\n{attachment['content']}",
}
)
return prepared_messages
def _get_base64_image(self, attachment):
@@ -360,6 +352,7 @@ class OpenAILLM(BaseLLM):
file_path = attachment.get("path")
if not file_path:
raise ValueError("No file path provided in attachment")
try:
with self.storage.get_file(file_path) as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
@@ -383,10 +376,12 @@ class OpenAILLM(BaseLLM):
if "openai_file_id" in attachment:
return attachment["openai_file_id"]
file_path = attachment.get("path")
if not self.storage.file_exists(file_path):
raise FileNotFoundError(f"File not found: {file_path}")
try:
file_id = self.storage.process_file(
file_path,
@@ -404,6 +399,7 @@ class OpenAILLM(BaseLLM):
attachments_collection.update_one(
{"_id": attachment["_id"]}, {"$set": {"openai_file_id": file_id}}
)
return file_id
except Exception as e:
logging.error(f"Error uploading file to OpenAI: {e}", exc_info=True)

View File

@@ -17,13 +17,14 @@ class GoogleDriveAuth(BaseConnectorAuth):
"""
SCOPES = [
'https://www.googleapis.com/auth/drive.file'
'https://www.googleapis.com/auth/drive.readonly',
'https://www.googleapis.com/auth/drive.metadata.readonly'
]
def __init__(self):
self.client_id = settings.GOOGLE_CLIENT_ID
self.client_secret = settings.GOOGLE_CLIENT_SECRET
self.redirect_uri = f"{settings.CONNECTOR_REDIRECT_BASE_URI}"
self.redirect_uri = f"{settings.CONNECTOR_REDIRECT_BASE_URI}?provider=google_drive"
if not self.client_id or not self.client_secret:
raise ValueError("Google OAuth credentials not configured. Please set GOOGLE_CLIENT_ID and GOOGLE_CLIENT_SECRET in settings.")
@@ -49,7 +50,7 @@ class GoogleDriveAuth(BaseConnectorAuth):
authorization_url, _ = flow.authorization_url(
access_type='offline',
prompt='consent',
include_granted_scopes='false',
include_granted_scopes='true',
state=state
)

View File

@@ -32,10 +32,6 @@ class GoogleDriveLoader(BaseConnectorLoader):
'text/plain': '.txt',
'text/csv': '.csv',
'text/html': '.html',
'text/markdown': '.md',
'text/x-rst': '.rst',
'application/json': '.json',
'application/epub+zip': '.epub',
'application/rtf': '.rtf',
'image/jpeg': '.jpg',
'image/jpg': '.jpg',
@@ -124,7 +120,6 @@ class GoogleDriveLoader(BaseConnectorLoader):
list_only = inputs.get('list_only', False)
load_content = not list_only
page_token = inputs.get('page_token')
search_query = inputs.get('search_query')
self.next_page_token = None
if file_ids:
@@ -133,18 +128,12 @@ class GoogleDriveLoader(BaseConnectorLoader):
try:
doc = self._load_file_by_id(file_id, load_content=load_content)
if doc:
if not search_query or (
search_query.lower() in doc.extra_info.get('file_name', '').lower()
):
documents.append(doc)
documents.append(doc)
elif hasattr(self, '_credential_refreshed') and self._credential_refreshed:
self._credential_refreshed = False
logging.info(f"Retrying load of file {file_id} after credential refresh")
doc = self._load_file_by_id(file_id, load_content=load_content)
if doc and (
not search_query or
search_query.lower() in doc.extra_info.get('file_name', '').lower()
):
if doc:
documents.append(doc)
except Exception as e:
logging.error(f"Error loading file {file_id}: {e}")
@@ -152,13 +141,7 @@ class GoogleDriveLoader(BaseConnectorLoader):
else:
# Browsing mode: list immediate children of provided folder or root
parent_id = folder_id if folder_id else 'root'
documents = self._list_items_in_parent(
parent_id,
limit=limit,
load_content=load_content,
page_token=page_token,
search_query=search_query
)
documents = self._list_items_in_parent(parent_id, limit=limit, load_content=load_content, page_token=page_token)
logging.info(f"Loaded {len(documents)} documents from Google Drive")
return documents
@@ -201,18 +184,13 @@ class GoogleDriveLoader(BaseConnectorLoader):
return None
def _list_items_in_parent(self, parent_id: str, limit: int = 100, load_content: bool = False, page_token: Optional[str] = None, search_query: Optional[str] = None) -> List[Document]:
def _list_items_in_parent(self, parent_id: str, limit: int = 100, load_content: bool = False, page_token: Optional[str] = None) -> List[Document]:
self._ensure_service()
documents: List[Document] = []
try:
query = f"'{parent_id}' in parents and trashed=false"
if search_query:
safe_search = search_query.replace("'", "\\'")
query += f" and name contains '{safe_search}'"
next_token_out: Optional[str] = None
while True:
@@ -227,8 +205,7 @@ class GoogleDriveLoader(BaseConnectorLoader):
q=query,
fields='nextPageToken,files(id,name,mimeType,size,createdTime,modifiedTime,parents)',
pageToken=page_token,
pageSize=page_size,
orderBy='name'
pageSize=page_size
).execute()
items = results.get('files', [])

View File

@@ -1,6 +1,5 @@
import os
import logging
from typing import List, Any
from retry import retry
from tqdm import tqdm
from application.core.settings import settings
@@ -23,16 +22,13 @@ def sanitize_content(content: str) -> str:
@retry(tries=10, delay=60)
def add_text_to_store_with_retry(store: Any, doc: Any, source_id: str) -> None:
"""Add a document's text and metadata to the vector store with retry logic.
def add_text_to_store_with_retry(store, doc, source_id):
"""
Add a document's text and metadata to the vector store with retry logic.
Args:
store: The vector store object.
doc: The document to be added.
source_id: Unique identifier for the source.
Raises:
Exception: If document addition fails after all retry attempts.
"""
try:
# Sanitize content to remove NUL characters that cause ingestion failures
@@ -45,21 +41,18 @@ def add_text_to_store_with_retry(store: Any, doc: Any, source_id: str) -> None:
raise
def embed_and_store_documents(docs: List[Any], folder_name: str, source_id: str, task_status: Any) -> None:
"""Embeds documents and stores them in a vector store.
def embed_and_store_documents(docs, folder_name, source_id, task_status):
"""
Embeds documents and stores them in a vector store.
Args:
docs: List of documents to be embedded and stored.
folder_name: Directory to save the vector store.
source_id: Unique identifier for the source.
docs (list): List of documents to be embedded and stored.
folder_name (str): Directory to save the vector store.
source_id (str): Unique identifier for the source.
task_status: Task state manager for progress updates.
Returns:
None
Raises:
OSError: If unable to create folder or save vector store.
Exception: If vector store creation or document embedding fails.
"""
# Ensure the folder exists
if not os.path.exists(folder_name):
@@ -102,21 +95,10 @@ def embed_and_store_documents(docs: List[Any], folder_name: str, source_id: str,
except Exception as e:
logging.error(f"Error embedding document {idx}: {e}", exc_info=True)
logging.info(f"Saving progress at document {idx} out of {total_docs}")
try:
store.save_local(folder_name)
logging.info("Progress saved successfully")
except Exception as save_error:
logging.error(f"CRITICAL: Failed to save progress: {save_error}", exc_info=True)
# Continue without breaking to attempt final save
store.save_local(folder_name)
break
# Save the vector store
if settings.VECTOR_STORE == "faiss":
try:
store.save_local(folder_name)
logging.info("Vector store saved successfully.")
except Exception as e:
logging.error(f"CRITICAL: Failed to save final vector store: {e}", exc_info=True)
raise OSError(f"Unable to save vector store to {folder_name}: {e}") from e
else:
logging.info("Vector store saved successfully.")
store.save_local(folder_name)
logging.info("Vector store saved successfully.")

View File

@@ -1,135 +1,44 @@
import base64
import requests
import time
from typing import List, Optional
from typing import List
from application.parser.remote.base import BaseRemote
from application.parser.schema.base import Document
from langchain_core.documents import Document
import mimetypes
from application.core.settings import settings
class GitHubLoader(BaseRemote):
def __init__(self):
self.access_token = settings.GITHUB_ACCESS_TOKEN
self.access_token = None
self.headers = {
"Authorization": f"token {self.access_token}",
"Accept": "application/vnd.github.v3+json"
} if self.access_token else {
"Accept": "application/vnd.github.v3+json"
}
"Authorization": f"token {self.access_token}"
} if self.access_token else {}
return
def is_text_file(self, file_path: str) -> bool:
"""Determine if a file is a text file based on extension."""
# Common text file extensions
text_extensions = {
'.txt', '.md', '.markdown', '.rst', '.json', '.xml', '.yaml', '.yml',
'.py', '.js', '.ts', '.jsx', '.tsx', '.java', '.c', '.cpp', '.h', '.hpp',
'.cs', '.go', '.rs', '.rb', '.php', '.swift', '.kt', '.scala',
'.html', '.css', '.scss', '.sass', '.less',
'.sh', '.bash', '.zsh', '.fish',
'.sql', '.r', '.m', '.mat',
'.ini', '.cfg', '.conf', '.config', '.env',
'.gitignore', '.dockerignore', '.editorconfig',
'.log', '.csv', '.tsv'
}
# Get file extension
file_lower = file_path.lower()
for ext in text_extensions:
if file_lower.endswith(ext):
return True
# Also check MIME type
mime_type, _ = mimetypes.guess_type(file_path)
if mime_type and (mime_type.startswith("text") or mime_type in ["application/json", "application/xml"]):
return True
return False
def fetch_file_content(self, repo_url: str, file_path: str) -> Optional[str]:
"""Fetch file content. Returns None if file should be skipped (binary files or empty files)."""
def fetch_file_content(self, repo_url: str, file_path: str) -> str:
url = f"https://api.github.com/repos/{repo_url}/contents/{file_path}"
response = self._make_request(url)
response = requests.get(url, headers=self.headers)
content = response.json()
if response.status_code == 200:
content = response.json()
mime_type, _ = mimetypes.guess_type(file_path) # Guess the MIME type based on the file extension
if content.get("encoding") == "base64":
if self.is_text_file(file_path): # Handle only text files
try:
decoded_content = base64.b64decode(content["content"]).decode("utf-8").strip()
# Skip empty files
if not decoded_content:
return None
return decoded_content
except Exception:
# If decoding fails, it's probably a binary file
return None
if content.get("encoding") == "base64":
if mime_type and mime_type.startswith("text"): # Handle only text files
try:
decoded_content = base64.b64decode(content["content"]).decode("utf-8")
return f"Filename: {file_path}\n\n{decoded_content}"
except Exception as e:
raise e
else:
return f"Filename: {file_path} is a binary file and was skipped."
else:
# Skip binary files by returning None
return None
return f"Filename: {file_path}\n\n{content['content']}"
else:
file_content = content['content'].strip()
# Skip empty files
if not file_content:
return None
return file_content
def _make_request(self, url: str, max_retries: int = 3) -> requests.Response:
"""Make a request with retry logic for rate limiting"""
for attempt in range(max_retries):
response = requests.get(url, headers=self.headers)
if response.status_code == 200:
return response
elif response.status_code == 403:
# Check if it's a rate limit issue
try:
error_data = response.json()
error_msg = error_data.get("message", "")
# Check rate limit headers
remaining = response.headers.get("X-RateLimit-Remaining", "unknown")
reset_time = response.headers.get("X-RateLimit-Reset", "unknown")
print(f"GitHub API 403 Error: {error_msg}")
print(f"Rate limit remaining: {remaining}, Reset time: {reset_time}")
if "rate limit" in error_msg.lower():
if attempt < max_retries - 1:
wait_time = 2 ** attempt # Exponential backoff
print(f"Rate limit hit, waiting {wait_time} seconds before retry...")
time.sleep(wait_time)
continue
# Provide helpful error message
if remaining == "0":
raise Exception(f"GitHub API rate limit exceeded. Please set GITHUB_ACCESS_TOKEN environment variable. Reset time: {reset_time}")
else:
raise Exception(f"GitHub API error: {error_msg}. This may require authentication - set GITHUB_ACCESS_TOKEN environment variable.")
except Exception as e:
if isinstance(e, Exception) and "GitHub API" in str(e):
raise
# If we can't parse the response, raise the original error
response.raise_for_status()
else:
response.raise_for_status()
return response
response.raise_for_status()
def fetch_repo_files(self, repo_url: str, path: str = "") -> List[str]:
url = f"https://api.github.com/repos/{repo_url}/contents/{path}"
response = self._make_request(url)
response = requests.get(url, headers={**self.headers, "Accept": "application/vnd.github.v3.raw"})
contents = response.json()
# Handle error responses from GitHub API
if isinstance(contents, dict) and "message" in contents:
raise Exception(f"GitHub API error: {contents.get('message')}")
# Ensure contents is a list
if not isinstance(contents, list):
raise TypeError(f"Expected list from GitHub API, got {type(contents).__name__}: {contents}")
files = []
for item in contents:
if item["type"] == "file":
@@ -144,15 +53,6 @@ class GitHubLoader(BaseRemote):
documents = []
for file_path in files:
content = self.fetch_file_content(repo_name, file_path)
# Skip binary files (content is None)
if content is None:
continue
documents.append(Document(
text=content,
doc_id=file_path,
extra_info={
"title": file_path,
"source": f"https://github.com/{repo_name}/blob/main/{file_path}"
}
))
documents.append(Document(page_content=content, metadata={"title": file_path,
"source": f"https://github.com/{repo_name}/blob/main/{file_path}"}))
return documents

View File

@@ -1,35 +0,0 @@
Your task is to create a detailed summary of the conversation so far, paying close attention to the user's explicit requests and your previous actions.
This summary should be thorough in capturing technical details, code patterns, and architectural decisions that would be essential for continuing work without losing context.
Before providing your final summary, wrap your analysis in <analysis> tags to organize your thoughts and ensure you've covered all necessary points. In your analysis process:
1. Chronologically analyze each message, tool call and section of the conversation. For each section thoroughly identify:
- The user's explicit requests and intents
- Your approach to addressing the user's requests
- Key decisions, concepts and patterns
- Specific details like if applicable:
- file names
- full code snippets
- function signatures
- file edits
- Errors that you ran into and how you fixed them
- Pay special attention to specific user feedback that you received, especially if the user told you to do something differently.
2. Double-check for accuracy and completeness, addressing each required element thoroughly.
Your summary should include the following sections:
1. Primary Request and Intent: Capture all of the user's explicit requests and intents in detail
2. Key Concepts: List all important concepts discussed.
3. Files and Code Sections: Enumerate specific files and code sections examined, modified, or created. Pay special attention to the most recent messages and include full code snippets where applicable and include a summary of why this file read or edit is important.
4. Errors and fixes: List all errors that you ran into, and how you fixed them. Pay special attention to specific user feedback that you received, especially if the user told you to do something differently.
5. Problem Solving: Document problems solved and any ongoing troubleshooting efforts.
6. All user messages: List ALL user messages that are not tool results. These are critical for understanding the users' feedback and changing intent.
7. Tool Calls: List ALL tool calls made, including their inputs relevant parts of the outputs.
8. Pending Tasks: Outline any pending tasks that you have explicitly been asked to work on.
9. Current Work: Describe in detail precisely what was being worked on immediately before this summary request, paying special attention to the most recent messages from both user and assistant. Include file names and code snippets where applicable.
10. Optional Next Step: List the next step that you will take that is related to the most recent work you were doing. IMPORTANT: ensure that this step is DIRECTLY in line with the user's most recent explicit requests, and the task you were working on immediately before this summary request. If your last task was concluded, then only list next steps if they are explicitly in line with the users request. Do not start on tangential requests or really old requests that were already completed without confirming with the user first.
If there is a next step, include direct quotes from the most recent conversation showing exactly what task you were working on and where you left off. This should be verbatim to ensure there's no drift in task interpretation.
Please provide your summary based on the conversation and tools used so far, following this structure and ensuring precision and thoroughness in your response.

View File

@@ -2,7 +2,6 @@ anthropic==0.49.0
boto3==1.38.18
beautifulsoup4==4.13.4
celery==5.4.0
cryptography==42.0.8
dataclasses-json==0.6.7
docx2txt==0.8
duckduckgo-search==7.5.2
@@ -10,12 +9,10 @@ ebooklib==0.18
escodegen==1.0.11
esprima==4.0.1
esutils==1.0.1
elevenlabs==2.17.0
Flask==3.1.1
faiss-cpu==1.9.0.post1
fastmcp==2.11.0
flask-restx==1.3.0
google-genai==1.49.0
google-genai==1.3.0
google-api-python-client==2.179.0
google-auth-httplib2==0.2.0
google-auth-oauthlib==1.2.2
@@ -58,13 +55,13 @@ prompt-toolkit==3.0.51
protobuf==5.29.3
psycopg2-binary==2.9.10
py==1.11.0
pydantic
pydantic-core
pydantic-settings
pydantic==2.10.6
pydantic-core==2.27.2
pydantic-settings==2.7.1
pymongo==4.11.3
pypdf==5.5.0
python-dateutil==2.9.0.post0
python-dotenv
python-dotenv==1.0.1
python-jose==3.4.0
python-pptx==1.0.2
redis==5.2.1
@@ -84,7 +81,7 @@ tzdata==2024.2
urllib3==2.3.0
vine==5.1.0
wcwidth==0.2.13
werkzeug>=3.1.0,<3.1.2
werkzeug==3.1.3
yarl==1.20.0
markdownify==1.1.0
tldextract==5.1.3

View File

@@ -5,6 +5,14 @@ class BaseRetriever(ABC):
def __init__(self):
pass
@abstractmethod
def gen(self, *args, **kwargs):
pass
@abstractmethod
def search(self, *args, **kwargs):
pass
@abstractmethod
def get_params(self):
pass

View File

@@ -1,10 +1,8 @@
import logging
import os
from application.core.settings import settings
from application.llm.llm_creator import LLMCreator
from application.retriever.base import BaseRetriever
from application.utils import num_tokens_from_string
from application.vectorstore.vector_creator import VectorCreator
@@ -15,33 +13,28 @@ class ClassicRAG(BaseRetriever):
chat_history=None,
prompt="",
chunks=2,
doc_token_limit=50000,
model_id="docsgpt-local",
token_limit=150,
gpt_model="docsgpt",
user_api_key=None,
llm_name=settings.LLM_PROVIDER,
api_key=settings.API_KEY,
decoded_token=None,
):
self.original_question = source.get("question", "")
self.original_question = ""
self.chat_history = chat_history if chat_history is not None else []
self.prompt = prompt
if isinstance(chunks, str):
try:
self.chunks = int(chunks)
except ValueError:
logging.warning(
f"Invalid chunks value '{chunks}', using default value 2"
)
self.chunks = 2
else:
self.chunks = chunks
user_identifier = user_api_key if user_api_key else "default"
logging.info(
f"ClassicRAG initialized with chunks={self.chunks}, user_api_key={user_identifier}, "
f"sources={'active_docs' in source and source['active_docs'] is not None}"
self.chunks = chunks
self.gpt_model = gpt_model
self.token_limit = (
token_limit
if token_limit
< settings.LLM_TOKEN_LIMITS.get(
self.gpt_model, settings.DEFAULT_MAX_HISTORY
)
else settings.LLM_TOKEN_LIMITS.get(
self.gpt_model, settings.DEFAULT_MAX_HISTORY
)
)
self.model_id = model_id
self.doc_token_limit = doc_token_limit
self.user_api_key = user_api_key
self.llm_name = llm_name
self.api_key = api_key
@@ -51,48 +44,26 @@ class ClassicRAG(BaseRetriever):
user_api_key=self.user_api_key,
decoded_token=decoded_token,
)
if "active_docs" in source and source["active_docs"] is not None:
if isinstance(source["active_docs"], list):
self.vectorstores = source["active_docs"]
else:
self.vectorstores = [source["active_docs"]]
else:
self.vectorstores = []
self.vectorstore = source["active_docs"] if "active_docs" in source else None
self.question = self._rephrase_query()
self.decoded_token = decoded_token
self._validate_vectorstore_config()
def _validate_vectorstore_config(self):
"""Validate vectorstore IDs and remove any empty/invalid entries"""
if not self.vectorstores:
logging.warning("No vectorstores configured for retrieval")
return
invalid_ids = [
vs_id for vs_id in self.vectorstores if not vs_id or not vs_id.strip()
]
if invalid_ids:
logging.warning(f"Found invalid vectorstore IDs: {invalid_ids}")
self.vectorstores = [
vs_id for vs_id in self.vectorstores if vs_id and vs_id.strip()
]
def _rephrase_query(self):
"""Rephrase user query with chat history context for better retrieval"""
if (
not self.original_question
or not self.chat_history
or self.chat_history == []
or self.chunks == 0
or not self.vectorstores
or self.vectorstore is None
):
return self.original_question
prompt = (
"Given the following conversation history:\n"
f"{self.chat_history}\n\n"
"Rephrase the following user question to be a standalone search query "
"that captures all relevant context from the conversation:\n"
)
prompt = f"""Given the following conversation history:
{self.chat_history}
Rephrase the following user question to be a standalone search query
that captures all relevant context from the conversation:
"""
messages = [
{"role": "system", "content": prompt},
@@ -100,7 +71,7 @@ class ClassicRAG(BaseRetriever):
]
try:
rephrased_query = self.llm.gen(model=self.model_id, messages=messages)
rephrased_query = self.llm.gen(model=self.gpt_model, messages=messages)
print(f"Rephrased query: {rephrased_query}")
return rephrased_query if rephrased_query else self.original_question
except Exception as e:
@@ -108,93 +79,46 @@ class ClassicRAG(BaseRetriever):
return self.original_question
def _get_data(self):
if self.chunks == 0 or not self.vectorstores:
logging.info(
f"ClassicRAG._get_data: Skipping retrieval - chunks={self.chunks}, "
f"vectorstores_count={len(self.vectorstores) if self.vectorstores else 0}"
if self.chunks == 0 or self.vectorstore is None:
docs = []
else:
docsearch = VectorCreator.create_vectorstore(
settings.VECTOR_STORE, self.vectorstore, settings.EMBEDDINGS_KEY
)
return []
docs_temp = docsearch.search(self.question, k=self.chunks)
docs = [
{
"title": i.metadata.get(
"title", i.metadata.get("post_title", i.page_content)
).split("/")[-1],
"text": i.page_content,
"source": (
i.metadata.get("source")
if i.metadata.get("source")
else "local"
),
}
for i in docs_temp
]
all_docs = []
chunks_per_source = max(1, self.chunks // len(self.vectorstores))
token_budget = max(int(self.doc_token_limit * 0.9), 100)
cumulative_tokens = 0
return docs
for vectorstore_id in self.vectorstores:
if vectorstore_id:
try:
docsearch = VectorCreator.create_vectorstore(
settings.VECTOR_STORE, vectorstore_id, settings.EMBEDDINGS_KEY
)
docs_temp = docsearch.search(
self.question, k=max(chunks_per_source * 2, 20)
)
for doc in docs_temp:
if cumulative_tokens >= token_budget:
break
if hasattr(doc, "page_content") and hasattr(doc, "metadata"):
page_content = doc.page_content
metadata = doc.metadata
else:
page_content = doc.get("text", doc.get("page_content", ""))
metadata = doc.get("metadata", {})
title = metadata.get(
"title", metadata.get("post_title", page_content)
)
if not isinstance(title, str):
title = str(title)
title = title.split("/")[-1]
filename = (
metadata.get("filename")
or metadata.get("file_name")
or metadata.get("source")
)
if isinstance(filename, str):
filename = os.path.basename(filename) or filename
else:
filename = title
if not filename:
filename = title
source_path = metadata.get("source") or vectorstore_id
doc_text_with_header = f"{filename}\n{page_content}"
doc_tokens = num_tokens_from_string(doc_text_with_header)
if cumulative_tokens + doc_tokens < token_budget:
all_docs.append(
{
"title": title,
"text": page_content,
"source": source_path,
"filename": filename,
}
)
cumulative_tokens += doc_tokens
if cumulative_tokens >= token_budget:
break
except Exception as e:
logging.error(
f"Error searching vectorstore {vectorstore_id}: {e}",
exc_info=True,
)
continue
logging.info(
f"ClassicRAG._get_data: Retrieval complete - retrieved {len(all_docs)} documents "
f"(requested chunks={self.chunks}, chunks_per_source={chunks_per_source}, "
f"cumulative_tokens={cumulative_tokens}/{token_budget})"
)
return all_docs
def gen():
pass
def search(self, query: str = ""):
"""Search for documents using optional query override"""
if query:
self.original_question = query
self.question = self._rephrase_query()
return self._get_data()
def get_params(self):
return {
"question": self.original_question,
"rephrased_question": self.question,
"source": self.vectorstore,
"chunks": self.chunks,
"token_limit": self.token_limit,
"gpt_model": self.gpt_model,
"user_api_key": self.user_api_key,
}

View File

@@ -1,85 +0,0 @@
import base64
import json
import os
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.ciphers import algorithms, Cipher, modes
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
from application.core.settings import settings
def _derive_key(user_id: str, salt: bytes) -> bytes:
app_secret = settings.ENCRYPTION_SECRET_KEY
password = f"{app_secret}#{user_id}".encode()
kdf = PBKDF2HMAC(
algorithm=hashes.SHA256(),
length=32,
salt=salt,
iterations=100000,
backend=default_backend(),
)
return kdf.derive(password)
def encrypt_credentials(credentials: dict, user_id: str) -> str:
if not credentials:
return ""
try:
salt = os.urandom(16)
iv = os.urandom(16)
key = _derive_key(user_id, salt)
json_str = json.dumps(credentials)
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=default_backend())
encryptor = cipher.encryptor()
padded_data = _pad_data(json_str.encode())
encrypted_data = encryptor.update(padded_data) + encryptor.finalize()
result = salt + iv + encrypted_data
return base64.b64encode(result).decode()
except Exception as e:
print(f"Warning: Failed to encrypt credentials: {e}")
return ""
def decrypt_credentials(encrypted_data: str, user_id: str) -> dict:
if not encrypted_data:
return {}
try:
data = base64.b64decode(encrypted_data.encode())
salt = data[:16]
iv = data[16:32]
encrypted_content = data[32:]
key = _derive_key(user_id, salt)
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=default_backend())
decryptor = cipher.decryptor()
decrypted_padded = decryptor.update(encrypted_content) + decryptor.finalize()
decrypted_data = _unpad_data(decrypted_padded)
return json.loads(decrypted_data.decode())
except Exception as e:
print(f"Warning: Failed to decrypt credentials: {e}")
return {}
def _pad_data(data: bytes) -> bytes:
block_size = 16
padding_len = block_size - (len(data) % block_size)
padding = bytes([padding_len]) * padding_len
return data + padding
def _unpad_data(data: bytes) -> bytes:
padding_len = data[-1]
return data[:-padding_len]

View File

@@ -1,26 +0,0 @@
import click
from application.core.mongo_db import MongoDB
from application.core.settings import settings
from application.seed.seeder import DatabaseSeeder
@click.group()
def seed():
"""Database seeding commands"""
pass
@seed.command()
@click.option("--force", is_flag=True, help="Force reseeding even if data exists")
def init(force):
"""Initialize database with seed data"""
mongo = MongoDB.get_client()
db = mongo[settings.MONGO_DB_NAME]
seeder = DatabaseSeeder(db)
seeder.seed_initial_data(force=force)
if __name__ == "__main__":
seed()

View File

@@ -1,36 +0,0 @@
# Configuration for Premade Agents
# This file contains template agents that will be seeded into the database
agents:
# Basic Agent Template
- name: "Agent Name" # Required: Unique name for the agent
description: "What this agent does" # Required: Brief description of the agent's purpose
image: "URL_TO_IMAGE" # Optional: URL to agent's avatar/image
agent_type: "classic" # Required: Type of agent (e.g., classic, react, etc.)
prompt_id: "default" # Optional: Reference to prompt template
prompt: # Optional: Define new prompt
name: "New Prompt"
content: "You are new agent with cool new prompt."
chunks: "0" # Optional: Chunking strategy for documents
retriever: "" # Optional: Retriever type for document search
# Source Configuration (where the agent gets its knowledge)
source: # Optional: Select a source to link with agent
name: "Source Display Name" # Human-readable name for the source
url: "https://example.com/data-source" # URL or path to knowledge source
loader: "url" # Type of loader (url, pdf, txt, etc.)
# Tools Configuration (what capabilities the agent has)
tools: # Optional: Remove if agent doesn't need tools
- name: "tool_name" # Must match a supported tool name
display_name: "Tool Display Name" # Optional: Human-readable name for the tool
config:
# Tool-specific configuration
# Example for DuckDuckGo:
# token: "${DDG_API_KEY}" # ${} denotes environment variable
# Add more tools as needed
# - name: "another_tool"
# config:
# param1: "value1"
# param2: "${ENV_VAR}"

View File

@@ -1,94 +0,0 @@
# Configuration for Premade Agents
agents:
- name: "Assistant"
description: "Your general-purpose AI assistant. Ready to help with a wide range of tasks."
image: "https://d3dg1063dc54p9.cloudfront.net/imgs/agents/agent-logo.svg"
agent_type: "classic"
prompt_id: "default"
chunks: "0"
retriever: ""
# Tools Configuration
tools:
- name: "tool_name"
display_name: "read_webpage"
config:
- name: "Researcher"
description: "A specialized research agent that performs deep dives into subjects."
image: "https://d3dg1063dc54p9.cloudfront.net/imgs/agents/agent-researcher.svg"
agent_type: "react"
prompt:
name: "Researcher-Agent"
content: |
You are a specialized AI research assistant, DocsGPT. Your primary function is to conduct in-depth research on a given subject or question. You are methodical, thorough, and analytical. You should perform multiple iterations of thinking to gather and synthesize information before providing a final, comprehensive answer.
You have access to the 'Read Webpage' tool. Use this tool to explore sources, gather data, and deepen your understanding. Be proactive in using the tool to fill in knowledge gaps and validate information.
Users can Upload documents for your context as attachments or sources via UI using the Conversation input box.
If appropriate, your answers can include code examples, formatted as follows:
```(language)
(code)
```
Users are also able to see charts and diagrams if you use them with valid mermaid syntax in your responses. Try to respond with mermaid charts if visualization helps with users queries. You effectively utilize chat history, ensuring relevant and tailored responses. Try to use additional provided context if it's available, otherwise use your knowledge and tool capabilities.
----------------
Possible additional context from uploaded sources:
{summaries}
chunks: "0"
retriever: ""
# Tools Configuration
tools:
- name: "tool_name"
display_name: "read_webpage"
config:
- name: "Search Widget"
description: "A powerful search widget agent. Ask it anything about DocsGPT"
image: "https://d3dg1063dc54p9.cloudfront.net/imgs/agents/agent-search.svg"
agent_type: "classic"
prompt:
name: "Search-Agent"
content: |
You are a website search assistant, DocsGPT. Your sole purpose is to help users find information within the provided context of the DocsGPT documentation. Act as a specialized search engine.
Your answers must be based *only* on the provided context. Do not use any external knowledge. If the answer is not in the context, inform the user that you could not find the information within the documentation.
Keep your responses concise and directly related to the user's query, pointing them to the most relevant information.
----------------
Possible additional context from uploaded sources:
{summaries}
chunks: "8"
retriever: ""
source:
name: "DocsGPT-Docs"
url: "https://d3dg1063dc54p9.cloudfront.net/agent-source/docsgpt-documentation.md" # URL to DocsGPT documentation
loader: "url"
- name: "Support Widget"
description: "A friendly support widget agent to help you with any questions."
image: "https://d3dg1063dc54p9.cloudfront.net/imgs/agents/agent-support.svg"
agent_type: "classic"
prompt:
name: "Support-Agent"
content: |
You are a helpful AI support widget agent, DocsGPT. Your goal is to assist users by answering their questions about our website, product and its features. Provide friendly, clear, and direct support.
Your knowledge is strictly limited to the provided context from the DocsGPT documentation. You must not answer questions outside of this scope. If a user asks something you cannot answer from the context, politely state that you can only help with questions about this website.
Effectively utilize chat history to understand the user's issue fully. Guide users to the information they need in a helpful and conversational manner.
----------------
Possible additional context from uploaded sources:
{summaries}
chunks: "8"
retriever: ""
source:
name: "DocsGPT-Docs"
url: "https://d3dg1063dc54p9.cloudfront.net/agent-source/docsgpt-documentation.md" # URL to DocsGPT documentation
loader: "url"

View File

@@ -1,277 +0,0 @@
import logging
import os
from datetime import datetime, timezone
from typing import Dict, List, Optional, Union
import yaml
from bson import ObjectId
from bson.dbref import DBRef
from dotenv import load_dotenv
from pymongo import MongoClient
from application.agents.tools.tool_manager import ToolManager
from application.api.user.tasks import ingest_remote
load_dotenv()
tool_config = {}
tool_manager = ToolManager(config=tool_config)
class DatabaseSeeder:
def __init__(self, db):
self.db = db
self.tools_collection = self.db["user_tools"]
self.sources_collection = self.db["sources"]
self.agents_collection = self.db["agents"]
self.prompts_collection = self.db["prompts"]
self.system_user_id = "system"
self.logger = logging.getLogger(__name__)
def seed_initial_data(self, config_path: str = None, force=False):
"""Main entry point for seeding all initial data"""
if not force and self._is_already_seeded():
self.logger.info("Database already seeded. Use force=True to reseed.")
return
config_path = config_path or os.path.join(
os.path.dirname(__file__), "config", "premade_agents.yaml"
)
try:
with open(config_path, "r") as f:
config = yaml.safe_load(f)
self._seed_from_config(config)
except Exception as e:
self.logger.error(f"Failed to load seeding config: {str(e)}")
raise
def _seed_from_config(self, config: Dict):
"""Seed all data from configuration"""
self.logger.info("🌱 Starting seeding...")
if not config.get("agents"):
self.logger.warning("No agents found in config")
return
used_tool_ids = set()
for agent_config in config["agents"]:
try:
self.logger.info(f"Processing agent: {agent_config['name']}")
# 1. Handle Source
source_result = self._handle_source(agent_config)
if source_result is False:
self.logger.error(
f"Skipping agent {agent_config['name']} due to source ingestion failure"
)
continue
source_id = source_result
# 2. Handle Tools
tool_ids = self._handle_tools(agent_config)
if len(tool_ids) == 0:
self.logger.warning(
f"No valid tools for agent {agent_config['name']}"
)
used_tool_ids.update(tool_ids)
# 3. Handle Prompt
prompt_id = self._handle_prompt(agent_config)
# 4. Create Agent
agent_data = {
"user": self.system_user_id,
"name": agent_config["name"],
"description": agent_config["description"],
"image": agent_config.get("image", ""),
"source": (
DBRef("sources", ObjectId(source_id)) if source_id else ""
),
"tools": [str(tid) for tid in tool_ids],
"agent_type": agent_config["agent_type"],
"prompt_id": prompt_id or agent_config.get("prompt_id", "default"),
"chunks": agent_config.get("chunks", "0"),
"retriever": agent_config.get("retriever", ""),
"status": "template",
"createdAt": datetime.now(timezone.utc),
"updatedAt": datetime.now(timezone.utc),
}
existing = self.agents_collection.find_one(
{"user": self.system_user_id, "name": agent_config["name"]}
)
if existing:
self.logger.info(f"Updating existing agent: {agent_config['name']}")
self.agents_collection.update_one(
{"_id": existing["_id"]}, {"$set": agent_data}
)
agent_id = existing["_id"]
else:
self.logger.info(f"Creating new agent: {agent_config['name']}")
result = self.agents_collection.insert_one(agent_data)
agent_id = result.inserted_id
self.logger.info(
f"Successfully processed agent: {agent_config['name']} (ID: {agent_id})"
)
except Exception as e:
self.logger.error(
f"Error processing agent {agent_config['name']}: {str(e)}"
)
continue
self.logger.info("✅ Database seeding completed")
def _handle_source(self, agent_config: Dict) -> Union[ObjectId, None, bool]:
"""Handle source ingestion and return source ID"""
if not agent_config.get("source"):
self.logger.info(
"No source provided for agent - will create agent without source"
)
return None
source_config = agent_config["source"]
self.logger.info(f"Ingesting source: {source_config['url']}")
try:
existing = self.sources_collection.find_one(
{"user": self.system_user_id, "remote_data": source_config["url"]}
)
if existing:
self.logger.info(f"Source already exists: {existing['_id']}")
return existing["_id"]
# Ingest new source using worker
task = ingest_remote.delay(
source_data=source_config["url"],
job_name=source_config["name"],
user=self.system_user_id,
loader=source_config.get("loader", "url"),
)
result = task.get(timeout=300)
if not task.successful():
raise Exception(f"Source ingestion failed: {result}")
source_id = None
if isinstance(result, dict) and "id" in result:
source_id = result["id"]
else:
raise Exception(f"Source ingestion result missing 'id': {result}")
self.logger.info(f"Source ingested successfully: {source_id}")
return source_id
except Exception as e:
self.logger.error(f"Failed to ingest source: {str(e)}")
return False
def _handle_tools(self, agent_config: Dict) -> List[ObjectId]:
"""Handle tool creation and return list of tool IDs"""
tool_ids = []
if not agent_config.get("tools"):
return tool_ids
for tool_config in agent_config["tools"]:
try:
tool_name = tool_config["name"]
processed_config = self._process_config(tool_config.get("config", {}))
self.logger.info(f"Processing tool: {tool_name}")
existing = self.tools_collection.find_one(
{
"user": self.system_user_id,
"name": tool_name,
"config": processed_config,
}
)
if existing:
self.logger.info(f"Tool already exists: {existing['_id']}")
tool_ids.append(existing["_id"])
continue
tool_data = {
"user": self.system_user_id,
"name": tool_name,
"displayName": tool_config.get("display_name", tool_name),
"description": tool_config.get("description", ""),
"actions": tool_manager.tools[tool_name].get_actions_metadata(),
"config": processed_config,
"status": True,
}
result = self.tools_collection.insert_one(tool_data)
tool_ids.append(result.inserted_id)
self.logger.info(f"Created new tool: {result.inserted_id}")
except Exception as e:
self.logger.error(f"Failed to process tool {tool_name}: {str(e)}")
continue
return tool_ids
def _handle_prompt(self, agent_config: Dict) -> Optional[str]:
"""Handle prompt creation and return prompt ID"""
if not agent_config.get("prompt"):
return None
prompt_config = agent_config["prompt"]
prompt_name = prompt_config.get("name", f"{agent_config['name']} Prompt")
prompt_content = prompt_config.get("content", "")
if not prompt_content:
self.logger.warning(
f"No prompt content provided for agent {agent_config['name']}"
)
return None
self.logger.info(f"Processing prompt: {prompt_name}")
try:
existing = self.prompts_collection.find_one(
{
"user": self.system_user_id,
"name": prompt_name,
"content": prompt_content,
}
)
if existing:
self.logger.info(f"Prompt already exists: {existing['_id']}")
return str(existing["_id"])
prompt_data = {
"name": prompt_name,
"content": prompt_content,
"user": self.system_user_id,
}
result = self.prompts_collection.insert_one(prompt_data)
prompt_id = str(result.inserted_id)
self.logger.info(f"Created new prompt: {prompt_id}")
return prompt_id
except Exception as e:
self.logger.error(f"Failed to process prompt {prompt_name}: {str(e)}")
return None
def _process_config(self, config: Dict) -> Dict:
"""Process config values to replace environment variables"""
processed = {}
for key, value in config.items():
if (
isinstance(value, str)
and value.startswith("${")
and value.endswith("}")
):
env_var = value[2:-1]
processed[key] = os.getenv(env_var, "")
else:
processed[key] = value
return processed
def _is_already_seeded(self) -> bool:
"""Check if premade agents already exist"""
return self.agents_collection.count_documents({"user": self.system_user_id}) > 0
@classmethod
def initialize_from_env(cls, worker=None):
"""Factory method to create seeder from environment"""
mongo_uri = os.getenv("MONGO_URI", "mongodb://localhost:27017")
db_name = os.getenv("MONGO_DB_NAME", "docsgpt")
client = MongoClient(mongo_uri)
db = client[db_name]
return cls(db)

View File

@@ -26,7 +26,7 @@ class LocalStorage(BaseStorage):
return path
return os.path.join(self.base_dir, path)
def save_file(self, file_data: BinaryIO, path: str, **kwargs) -> dict:
def save_file(self, file_data: BinaryIO, path: str) -> dict:
"""Save a file to local storage."""
full_path = self._get_full_path(path)

View File

@@ -1,190 +0,0 @@
import logging
import uuid
from abc import ABC, abstractmethod
from datetime import datetime, timezone
from typing import Any, Dict, Optional
logger = logging.getLogger(__name__)
class NamespaceBuilder(ABC):
"""Base class for building template context namespaces"""
@abstractmethod
def build(self, **kwargs) -> Dict[str, Any]:
"""Build namespace context dictionary"""
pass
@property
@abstractmethod
def namespace_name(self) -> str:
"""Name of this namespace for template access"""
pass
class SystemNamespace(NamespaceBuilder):
"""System metadata namespace: {{ system.* }}"""
@property
def namespace_name(self) -> str:
return "system"
def build(
self, request_id: Optional[str] = None, user_id: Optional[str] = None, **kwargs
) -> Dict[str, Any]:
"""
Build system context with metadata.
Args:
request_id: Unique request identifier
user_id: Current user identifier
Returns:
Dictionary with system variables
"""
now = datetime.now(timezone.utc)
return {
"date": now.strftime("%Y-%m-%d"),
"time": now.strftime("%H:%M:%S"),
"timestamp": now.isoformat(),
"request_id": request_id or str(uuid.uuid4()),
"user_id": user_id,
}
class PassthroughNamespace(NamespaceBuilder):
"""Request parameters namespace: {{ passthrough.* }}"""
@property
def namespace_name(self) -> str:
return "passthrough"
def build(
self, passthrough_data: Optional[Dict[str, Any]] = None, **kwargs
) -> Dict[str, Any]:
"""
Build passthrough context from request parameters.
Args:
passthrough_data: Dictionary of parameters from web request
Returns:
Dictionary with passthrough variables
"""
if not passthrough_data:
return {}
safe_data = {}
for key, value in passthrough_data.items():
if isinstance(value, (str, int, float, bool, type(None))):
safe_data[key] = value
else:
logger.warning(
f"Skipping non-serializable passthrough value for key '{key}': {type(value)}"
)
return safe_data
class SourceNamespace(NamespaceBuilder):
"""RAG source documents namespace: {{ source.* }}"""
@property
def namespace_name(self) -> str:
return "source"
def build(
self, docs: Optional[list] = None, docs_together: Optional[str] = None, **kwargs
) -> Dict[str, Any]:
"""
Build source context from RAG retrieval results.
Args:
docs: List of retrieved documents
docs_together: Concatenated document content (for backward compatibility)
Returns:
Dictionary with source variables
"""
context = {}
if docs:
context["documents"] = docs
context["count"] = len(docs)
if docs_together:
context["docs_together"] = docs_together # Add docs_together for custom templates
context["content"] = docs_together
context["summaries"] = docs_together
return context
class ToolsNamespace(NamespaceBuilder):
"""Pre-executed tools namespace: {{ tools.* }}"""
@property
def namespace_name(self) -> str:
return "tools"
def build(
self, tools_data: Optional[Dict[str, Any]] = None, **kwargs
) -> Dict[str, Any]:
"""
Build tools context with pre-executed tool results.
Args:
tools_data: Dictionary of pre-fetched tool results organized by tool name
e.g., {"memory": {"notes": "content", "tasks": "list"}}
Returns:
Dictionary with tool results organized by tool name
"""
if not tools_data:
return {}
safe_data = {}
for tool_name, tool_result in tools_data.items():
if isinstance(tool_result, (str, dict, list, int, float, bool, type(None))):
safe_data[tool_name] = tool_result
else:
logger.warning(
f"Skipping non-serializable tool result for '{tool_name}': {type(tool_result)}"
)
return safe_data
class NamespaceManager:
"""Manages all namespace builders and context assembly"""
def __init__(self):
self._builders = {
"system": SystemNamespace(),
"passthrough": PassthroughNamespace(),
"source": SourceNamespace(),
"tools": ToolsNamespace(),
}
def build_context(self, **kwargs) -> Dict[str, Any]:
"""
Build complete template context from all namespaces.
Args:
**kwargs: Parameters to pass to namespace builders
Returns:
Complete context dictionary for template rendering
"""
context = {}
for namespace_name, builder in self._builders.items():
try:
namespace_context = builder.build(**kwargs)
# Always include namespace, even if empty, to prevent undefined errors
context[namespace_name] = namespace_context if namespace_context else {}
except Exception as e:
logger.error(f"Failed to build {namespace_name} namespace: {str(e)}")
# Include empty namespace on error to prevent template failures
context[namespace_name] = {}
return context
def get_builder(self, namespace_name: str) -> Optional[NamespaceBuilder]:
"""Get specific namespace builder"""
return self._builders.get(namespace_name)

View File

@@ -1,161 +0,0 @@
import logging
from typing import Any, Dict, List, Optional, Set
from jinja2 import (
ChainableUndefined,
Environment,
nodes,
select_autoescape,
TemplateSyntaxError,
)
from jinja2.exceptions import UndefinedError
logger = logging.getLogger(__name__)
class TemplateRenderError(Exception):
"""Raised when template rendering fails"""
pass
class TemplateEngine:
"""Jinja2-based template engine for dynamic prompt rendering"""
def __init__(self):
self._env = Environment(
undefined=ChainableUndefined,
trim_blocks=True,
lstrip_blocks=True,
autoescape=select_autoescape(default_for_string=True, default=True),
)
def render(self, template_content: str, context: Dict[str, Any]) -> str:
"""
Render template with provided context.
Args:
template_content: Raw template string with Jinja2 syntax
context: Dictionary of variables to inject into template
Returns:
Rendered template string
Raises:
TemplateRenderError: If template syntax is invalid or variables undefined
"""
if not template_content:
return ""
try:
template = self._env.from_string(template_content)
return template.render(**context)
except TemplateSyntaxError as e:
error_msg = f"Template syntax error at line {e.lineno}: {e.message}"
logger.error(error_msg)
raise TemplateRenderError(error_msg) from e
except UndefinedError as e:
error_msg = f"Undefined variable in template: {e.message}"
logger.error(error_msg)
raise TemplateRenderError(error_msg) from e
except Exception as e:
error_msg = f"Template rendering failed: {str(e)}"
logger.error(error_msg)
raise TemplateRenderError(error_msg) from e
def validate_template(self, template_content: str) -> bool:
"""
Validate template syntax without rendering.
Args:
template_content: Template string to validate
Returns:
True if template is syntactically valid
"""
if not template_content:
return True
try:
self._env.from_string(template_content)
return True
except TemplateSyntaxError as e:
logger.debug(f"Template syntax invalid at line {e.lineno}: {e.message}")
return False
except Exception as e:
logger.debug(f"Template validation error: {type(e).__name__}: {str(e)}")
return False
def extract_variables(self, template_content: str) -> Set[str]:
"""
Extract all variable names from template.
Args:
template_content: Template string to analyze
Returns:
Set of variable names found in template
"""
if not template_content:
return set()
try:
ast = self._env.parse(template_content)
return set(self._env.get_template_module(ast).make_module().keys())
except TemplateSyntaxError as e:
logger.debug(f"Cannot extract variables - syntax error at line {e.lineno}")
return set()
except Exception as e:
logger.debug(f"Cannot extract variables: {type(e).__name__}")
return set()
def extract_tool_usages(
self, template_content: str
) -> Dict[str, Set[Optional[str]]]:
"""Extract tool and action references from a template"""
if not template_content:
return {}
try:
ast = self._env.parse(template_content)
except TemplateSyntaxError as e:
logger.debug(f"extract_tool_usages - syntax error at line {e.lineno}")
return {}
except Exception as e:
logger.debug(f"extract_tool_usages - parse error: {type(e).__name__}")
return {}
usages: Dict[str, Set[Optional[str]]] = {}
def record(path: List[str]) -> None:
if not path:
return
tool_name = path[0]
action_name = path[1] if len(path) > 1 else None
if not tool_name:
return
tool_entry = usages.setdefault(tool_name, set())
tool_entry.add(action_name)
for node in ast.find_all(nodes.Getattr):
path = []
current = node
while isinstance(current, nodes.Getattr):
path.append(current.attr)
current = current.node
if isinstance(current, nodes.Name) and current.name == "tools":
path.reverse()
record(path)
for node in ast.find_all(nodes.Getitem):
path = []
current = node
while isinstance(current, nodes.Getitem):
key = current.arg
if isinstance(key, nodes.Const) and isinstance(key.value, str):
path.append(key.value)
else:
path = []
break
current = current.node
if path and isinstance(current, nodes.Name) and current.name == "tools":
path.reverse()
record(path)
return usages

View File

@@ -1,31 +1,84 @@
from io import BytesIO
import asyncio
import websockets
import json
import base64
from io import BytesIO
from application.tts.base import BaseTTS
from application.core.settings import settings
class ElevenlabsTTS(BaseTTS):
def __init__(self):
from elevenlabs.client import ElevenLabs
self.client = ElevenLabs(
api_key=settings.ELEVENLABS_API_KEY,
)
def __init__(self):
self.api_key = 'ELEVENLABS_API_KEY'# here you should put your api key
self.model = "eleven_flash_v2_5"
self.voice = "VOICE_ID" # this is the hash code for the voice not the name!
self.write_audio = 1
def text_to_speech(self, text):
lang = "en"
audio = self.client.text_to_speech.convert(
voice_id="nPczCjzI2devNBz1zQrb",
model_id="eleven_multilingual_v2",
text=text,
output_format="mp3_44100_128"
)
audio_data = BytesIO()
for chunk in audio:
audio_data.write(chunk)
audio_bytes = audio_data.getvalue()
asyncio.run(self._text_to_speech_websocket(text))
# Encode to base64
audio_base64 = base64.b64encode(audio_bytes).decode("utf-8")
return audio_base64, lang
async def _text_to_speech_websocket(self, text):
uri = f"wss://api.elevenlabs.io/v1/text-to-speech/{self.voice}/stream-input?model_id={self.model}"
websocket = await websockets.connect(uri)
payload = {
"text": " ",
"voice_settings": {
"stability": 0.5,
"similarity_boost": 0.8,
},
"xi_api_key": self.api_key,
}
await websocket.send(json.dumps(payload))
async def listen():
while 1:
try:
msg = await websocket.recv()
data = json.loads(msg)
if data.get("audio"):
print("audio received")
yield base64.b64decode(data["audio"])
elif data.get("isFinal"):
break
except websockets.exceptions.ConnectionClosed:
print("websocket closed")
break
listen_task = asyncio.create_task(self.stream(listen()))
await websocket.send(json.dumps({"text": text}))
# this is to signal the end of the text, either use this or flush
await websocket.send(json.dumps({"text": ""}))
await listen_task
async def stream(self, audio_stream):
if self.write_audio:
audio_bytes = BytesIO()
async for chunk in audio_stream:
if chunk:
audio_bytes.write(chunk)
with open("output_audio.mp3", "wb") as f:
f.write(audio_bytes.getvalue())
else:
async for chunk in audio_stream:
pass # depends on the streamer!
def test_elevenlabs_websocket():
"""
Tests the ElevenlabsTTS text_to_speech method with a sample prompt.
Prints out the base64-encoded result and writes it to 'output_audio.mp3'.
"""
# Instantiate your TTS class
tts = ElevenlabsTTS()
# Call the method with some sample text
tts.text_to_speech("Hello from ElevenLabs WebSocket!")
print("Saved audio to output_audio.mp3.")
if __name__ == "__main__":
test_elevenlabs_websocket()

View File

@@ -1,18 +0,0 @@
from application.tts.google_tts import GoogleTTS
from application.tts.elevenlabs import ElevenlabsTTS
from application.tts.base import BaseTTS
class TTSCreator:
tts_providers = {
"google_tts": GoogleTTS,
"elevenlabs": ElevenlabsTTS,
}
@classmethod
def create_tts(cls, tts_type, *args, **kwargs)-> BaseTTS:
tts_class = cls.tts_providers.get(tts_type.lower())
if not tts_class:
raise ValueError(f"No tts class found for type {tts_type}")
return tts_class(*args, **kwargs)

View File

@@ -7,8 +7,6 @@ import tiktoken
from flask import jsonify, make_response
from werkzeug.utils import secure_filename
from application.core.model_utils import get_token_limit
from application.core.settings import settings
@@ -23,7 +21,7 @@ def get_encoding():
def get_gpt_model() -> str:
"""Get GPT model based on provider"""
"""Get the appropriate GPT model based on provider"""
model_map = {
"openai": "gpt-4o-mini",
"anthropic": "claude-2",
@@ -34,7 +32,16 @@ def get_gpt_model() -> str:
def safe_filename(filename):
"""Create safe filename, preserving extension. Handles non-Latin characters."""
"""
Creates a safe filename that preserves the original extension.
Uses secure_filename, but ensures a proper filename is returned even with non-Latin characters.
Args:
filename (str): The original filename
Returns:
str: A safe filename that can be used for storage
"""
if not filename:
return str(uuid.uuid4())
_, extension = os.path.splitext(filename)
@@ -76,23 +83,8 @@ def count_tokens_docs(docs):
return tokens
def calculate_doc_token_budget(
model_id: str = "gpt-4o", history_token_limit: int = 2000
) -> int:
total_context = get_token_limit(model_id)
reserved = sum(settings.RESERVED_TOKENS.values())
doc_budget = total_context - history_token_limit - reserved
return max(doc_budget, 1000)
def get_missing_fields(data, required_fields):
"""Check for missing required fields. Returns list of missing field names."""
return [field for field in required_fields if field not in data]
def check_required_fields(data, required_fields):
"""Validate required fields. Returns Flask 400 response if validation fails, None otherwise."""
missing_fields = get_missing_fields(data, required_fields)
missing_fields = [field for field in required_fields if field not in data]
if missing_fields:
return make_response(
jsonify(
@@ -106,8 +98,7 @@ def check_required_fields(data, required_fields):
return None
def get_field_validation_errors(data, required_fields):
"""Check for missing and empty fields. Returns dict with 'missing_fields' and 'empty_fields', or None."""
def validate_required_fields(data, required_fields):
missing_fields = []
empty_fields = []
@@ -116,24 +107,12 @@ def get_field_validation_errors(data, required_fields):
missing_fields.append(field)
elif not data[field]:
empty_fields.append(field)
if missing_fields or empty_fields:
return {"missing_fields": missing_fields, "empty_fields": empty_fields}
return None
def validate_required_fields(data, required_fields):
"""Validate required fields (must exist and be non-empty). Returns Flask 400 response if validation fails, None otherwise."""
errors_dict = get_field_validation_errors(data, required_fields)
if errors_dict:
errors = []
if errors_dict["missing_fields"]:
errors.append(
f"Missing required fields: {', '.join(errors_dict['missing_fields'])}"
)
if errors_dict["empty_fields"]:
errors.append(
f"Empty values in required fields: {', '.join(errors_dict['empty_fields'])}"
)
errors = []
if missing_fields:
errors.append(f"Missing required fields: {', '.join(missing_fields)}")
if empty_fields:
errors.append(f"Empty values in required fields: {', '.join(empty_fields)}")
if errors:
return make_response(
jsonify({"success": False, "message": " | ".join(errors)}), 400
)
@@ -144,13 +123,19 @@ def get_hash(data):
return hashlib.md5(data.encode(), usedforsecurity=False).hexdigest()
def limit_chat_history(history, max_token_limit=None, model_id="docsgpt-local"):
"""Limit chat history to fit within token limit."""
model_token_limit = get_token_limit(model_id)
def limit_chat_history(history, max_token_limit=None, gpt_model="docsgpt"):
"""
Limits chat history based on token count.
Returns a list of messages that fit within the token limit.
"""
from application.core.settings import settings
max_token_limit = (
max_token_limit
if max_token_limit and max_token_limit < model_token_limit
else model_token_limit
if max_token_limit
and max_token_limit
< settings.LLM_TOKEN_LIMITS.get(gpt_model, settings.DEFAULT_MAX_HISTORY)
else settings.LLM_TOKEN_LIMITS.get(gpt_model, settings.DEFAULT_MAX_HISTORY)
)
if not history:
@@ -176,17 +161,13 @@ def limit_chat_history(history, max_token_limit=None, model_id="docsgpt-local"):
def validate_function_name(function_name):
"""Validate function name matches allowed pattern (alphanumeric, underscore, hyphen)."""
"""Validates if a function name matches the allowed pattern."""
if not re.match(r"^[a-zA-Z0-9_-]+$", function_name):
return False
return True
def generate_image_url(image_path):
if isinstance(image_path, str) and (
image_path.startswith("http://") or image_path.startswith("https://")
):
return image_path
strategy = getattr(settings, "URL_STRATEGY", "backend")
if strategy == "s3":
bucket_name = getattr(settings, "S3_BUCKET_NAME", "docsgpt-test-bucket")
@@ -195,69 +176,3 @@ def generate_image_url(image_path):
else:
base_url = getattr(settings, "API_URL", "http://localhost:7091")
return f"{base_url}/api/images/{image_path}"
def calculate_compression_threshold(
model_id: str, threshold_percentage: float = 0.8
) -> int:
"""
Calculate token threshold for triggering compression.
Args:
model_id: Model identifier
threshold_percentage: Percentage of context window (default 80%)
Returns:
Token count threshold
"""
total_context = get_token_limit(model_id)
threshold = int(total_context * threshold_percentage)
return threshold
def clean_text_for_tts(text: str) -> str:
"""
clean text for Text-to-Speech processing.
"""
# Handle code blocks and links
text = re.sub(r"```mermaid[\s\S]*?```", " flowchart, ", text) ## ```mermaid...```
text = re.sub(r"```[\s\S]*?```", " code block, ", text) ## ```code```
text = re.sub(r"\[([^\]]+)\]\([^\)]+\)", r"\1", text) ## [text](url)
text = re.sub(r"!\[([^\]]*)\]\([^\)]+\)", "", text) ## ![alt](url)
# Remove markdown formatting
text = re.sub(r"`([^`]+)`", r"\1", text) ## `code`
text = re.sub(r"\{([^}]*)\}", r" \1 ", text) ## {text}
text = re.sub(r"[{}]", " ", text) ## unmatched {}
text = re.sub(r"\[([^\]]+)\]", r" \1 ", text) ## [text]
text = re.sub(r"[\[\]]", " ", text) ## unmatched []
text = re.sub(r"(\*\*|__)(.*?)\1", r"\2", text) ## **bold** __bold__
text = re.sub(r"(\*|_)(.*?)\1", r"\2", text) ## *italic* _italic_
text = re.sub(r"^#{1,6}\s+", "", text, flags=re.MULTILINE) ## # headers
text = re.sub(r"^>\s+", "", text, flags=re.MULTILINE) ## > blockquotes
text = re.sub(r"^[\s]*[-\*\+]\s+", "", text, flags=re.MULTILINE) ## - * + lists
text = re.sub(r"^[\s]*\d+\.\s+", "", text, flags=re.MULTILINE) ## 1. numbered lists
text = re.sub(
r"^[\*\-_]{3,}\s*$", "", text, flags=re.MULTILINE
) ## --- *** ___ rules
text = re.sub(r"<[^>]*>", "", text) ## <html> tags
# Remove non-ASCII (emojis, special Unicode)
text = re.sub(r"[^\x20-\x7E\n\r\t]", "", text)
# Replace special sequences
text = re.sub(r"-->", ", ", text) ## -->
text = re.sub(r"<--", ", ", text) ## <--
text = re.sub(r"=>", ", ", text) ## =>
text = re.sub(r"::", " ", text) ## ::
# Normalize whitespace
text = re.sub(r"\s+", " ", text)
text = text.strip()
return text

Some files were not shown because too many files have changed in this diff Show More