mirror of
https://github.com/arc53/DocsGPT.git
synced 2025-11-29 08:33:20 +00:00
Compare commits
47 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
8873428b4b | ||
|
|
ab43c20b8f | ||
|
|
af5e73c8cb | ||
|
|
333b6e60e1 | ||
|
|
1b61337b75 | ||
|
|
77991896b4 | ||
|
|
60a670ce29 | ||
|
|
c1c69ed22b | ||
|
|
d71c74c6fb | ||
|
|
590aa8b43f | ||
|
|
607e0166f6 | ||
|
|
130c83ee92 | ||
|
|
fd5e418abf | ||
|
|
262d160314 | ||
|
|
9146827590 | ||
|
|
062b108259 | ||
|
|
ba796b6be1 | ||
|
|
3d763235e1 | ||
|
|
c30c6d9f10 | ||
|
|
311716ed18 | ||
|
|
19bb1b4aa4 | ||
|
|
b8749e36b9 | ||
|
|
00b6639155 | ||
|
|
71d7daaef3 | ||
|
|
8654c5d471 | ||
|
|
02124b3d38 | ||
|
|
340dcfb70d | ||
|
|
a37b92223a | ||
|
|
7d2b8cb4fc | ||
|
|
8d7a134cb4 | ||
|
|
4b849d7201 | ||
|
|
e03e185d30 | ||
|
|
7a02df5588 | ||
|
|
19494685ba | ||
|
|
1e26943c3e | ||
|
|
83fa850142 | ||
|
|
968a116d14 | ||
|
|
fb55b494d7 | ||
|
|
59b6a83d7d | ||
|
|
aabc4f0d7b | ||
|
|
391f686173 | ||
|
|
8e6f6d46ec | ||
|
|
2ba7a55439 | ||
|
|
fad5f5b81f | ||
|
|
6961f49a0c | ||
|
|
39f0d76b4b | ||
|
|
0a5832ec75 |
14
SECURITY.md
Normal file
14
SECURITY.md
Normal file
@@ -0,0 +1,14 @@
|
||||
# Security Policy
|
||||
|
||||
## Supported Versions
|
||||
|
||||
Supported Versions:
|
||||
|
||||
Currently, we support security patches by committing changes and bumping the version published on Github.
|
||||
|
||||
## Reporting a Vulnerability
|
||||
|
||||
Found a vulnerability? Please email us:
|
||||
|
||||
security@arc53.com
|
||||
|
||||
@@ -8,17 +8,14 @@ import traceback
|
||||
|
||||
from pymongo import MongoClient
|
||||
from bson.objectid import ObjectId
|
||||
from transformers import GPT2TokenizerFast
|
||||
|
||||
|
||||
|
||||
from application.core.settings import settings
|
||||
from application.vectorstore.vector_creator import VectorCreator
|
||||
from application.llm.llm_creator import LLMCreator
|
||||
from application.retriever.retriever_creator import RetrieverCreator
|
||||
from application.error import bad_request
|
||||
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
mongo = MongoClient(settings.MONGO_URI)
|
||||
@@ -27,20 +24,22 @@ conversations_collection = db["conversations"]
|
||||
vectors_collection = db["vectors"]
|
||||
prompts_collection = db["prompts"]
|
||||
api_key_collection = db["api_keys"]
|
||||
answer = Blueprint('answer', __name__)
|
||||
answer = Blueprint("answer", __name__)
|
||||
|
||||
gpt_model = ""
|
||||
# to have some kind of default behaviour
|
||||
if settings.LLM_NAME == "openai":
|
||||
gpt_model = 'gpt-3.5-turbo'
|
||||
gpt_model = "gpt-3.5-turbo"
|
||||
elif settings.LLM_NAME == "anthropic":
|
||||
gpt_model = 'claude-2'
|
||||
gpt_model = "claude-2"
|
||||
|
||||
if settings.MODEL_NAME: # in case there is particular model name configured
|
||||
gpt_model = settings.MODEL_NAME
|
||||
|
||||
# load the prompts
|
||||
current_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
current_dir = os.path.dirname(
|
||||
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
)
|
||||
with open(os.path.join(current_dir, "prompts", "chat_combine_default.txt"), "r") as f:
|
||||
chat_combine_template = f.read()
|
||||
|
||||
@@ -51,7 +50,7 @@ with open(os.path.join(current_dir, "prompts", "chat_combine_creative.txt"), "r"
|
||||
chat_combine_creative = f.read()
|
||||
|
||||
with open(os.path.join(current_dir, "prompts", "chat_combine_strict.txt"), "r") as f:
|
||||
chat_combine_strict = f.read()
|
||||
chat_combine_strict = f.read()
|
||||
|
||||
api_key_set = settings.API_KEY is not None
|
||||
embeddings_key_set = settings.EMBEDDINGS_KEY is not None
|
||||
@@ -62,11 +61,6 @@ async def async_generate(chain, question, chat_history):
|
||||
return result
|
||||
|
||||
|
||||
def count_tokens(string):
|
||||
tokenizer = GPT2TokenizerFast.from_pretrained('gpt2')
|
||||
return len(tokenizer(string)['input_ids'])
|
||||
|
||||
|
||||
def run_async_chain(chain, question, chat_history):
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
@@ -78,17 +72,18 @@ def run_async_chain(chain, question, chat_history):
|
||||
result["answer"] = answer
|
||||
return result
|
||||
|
||||
|
||||
def get_data_from_api_key(api_key):
|
||||
data = api_key_collection.find_one({"key": api_key})
|
||||
if data is None:
|
||||
return bad_request(401, "Invalid API key")
|
||||
return data
|
||||
|
||||
|
||||
|
||||
def get_vectorstore(data):
|
||||
if "active_docs" in data:
|
||||
if data["active_docs"].split("/")[0] == "default":
|
||||
vectorstore = ""
|
||||
vectorstore = ""
|
||||
elif data["active_docs"].split("/")[0] == "local":
|
||||
vectorstore = "indexes/" + data["active_docs"]
|
||||
else:
|
||||
@@ -102,85 +97,99 @@ def get_vectorstore(data):
|
||||
|
||||
|
||||
def is_azure_configured():
|
||||
return settings.OPENAI_API_BASE and settings.OPENAI_API_VERSION and settings.AZURE_DEPLOYMENT_NAME
|
||||
return (
|
||||
settings.OPENAI_API_BASE
|
||||
and settings.OPENAI_API_VERSION
|
||||
and settings.AZURE_DEPLOYMENT_NAME
|
||||
)
|
||||
|
||||
|
||||
def complete_stream(question, docsearch, chat_history, prompt_id, conversation_id, chunks=2):
|
||||
llm = LLMCreator.create_llm(settings.LLM_NAME, api_key=settings.API_KEY)
|
||||
if prompt_id == 'default':
|
||||
prompt = chat_combine_template
|
||||
elif prompt_id == 'creative':
|
||||
prompt = chat_combine_creative
|
||||
elif prompt_id == 'strict':
|
||||
prompt = chat_combine_strict
|
||||
else:
|
||||
prompt = prompts_collection.find_one({"_id": ObjectId(prompt_id)})["content"]
|
||||
|
||||
if chunks == 0:
|
||||
docs = []
|
||||
else:
|
||||
docs = docsearch.search(question, k=chunks)
|
||||
if settings.LLM_NAME == "llama.cpp":
|
||||
docs = [docs[0]]
|
||||
# join all page_content together with a newline
|
||||
docs_together = "\n".join([doc.page_content for doc in docs])
|
||||
p_chat_combine = prompt.replace("{summaries}", docs_together)
|
||||
messages_combine = [{"role": "system", "content": p_chat_combine}]
|
||||
source_log_docs = []
|
||||
for doc in docs:
|
||||
if doc.metadata:
|
||||
source_log_docs.append({"title": doc.metadata['title'].split('/')[-1], "text": doc.page_content})
|
||||
else:
|
||||
source_log_docs.append({"title": doc.page_content, "text": doc.page_content})
|
||||
|
||||
if len(chat_history) > 1:
|
||||
tokens_current_history = 0
|
||||
# count tokens in history
|
||||
chat_history.reverse()
|
||||
for i in chat_history:
|
||||
if "prompt" in i and "response" in i:
|
||||
tokens_batch = count_tokens(i["prompt"]) + count_tokens(i["response"])
|
||||
if tokens_current_history + tokens_batch < settings.TOKENS_MAX_HISTORY:
|
||||
tokens_current_history += tokens_batch
|
||||
messages_combine.append({"role": "user", "content": i["prompt"]})
|
||||
messages_combine.append({"role": "system", "content": i["response"]})
|
||||
messages_combine.append({"role": "user", "content": question})
|
||||
|
||||
response_full = ""
|
||||
completion = llm.gen_stream(model=gpt_model, engine=settings.AZURE_DEPLOYMENT_NAME,
|
||||
messages=messages_combine)
|
||||
for line in completion:
|
||||
data = json.dumps({"answer": str(line)})
|
||||
response_full += str(line)
|
||||
yield f"data: {data}\n\n"
|
||||
|
||||
# save conversation to database
|
||||
if conversation_id is not None:
|
||||
def save_conversation(conversation_id, question, response, source_log_docs, llm):
|
||||
if conversation_id is not None and conversation_id != "None":
|
||||
conversations_collection.update_one(
|
||||
{"_id": ObjectId(conversation_id)},
|
||||
{"$push": {"queries": {"prompt": question, "response": response_full, "sources": source_log_docs}}},
|
||||
{
|
||||
"$push": {
|
||||
"queries": {
|
||||
"prompt": question,
|
||||
"response": response,
|
||||
"sources": source_log_docs,
|
||||
}
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
else:
|
||||
# create new conversation
|
||||
# generate summary
|
||||
messages_summary = [{"role": "assistant", "content": "Summarise following conversation in no more than 3 "
|
||||
"words, respond ONLY with the summary, use the same "
|
||||
"language as the system \n\nUser: " + question + "\n\n" +
|
||||
"AI: " +
|
||||
response_full},
|
||||
{"role": "user", "content": "Summarise following conversation in no more than 3 words, "
|
||||
"respond ONLY with the summary, use the same language as the "
|
||||
"system"}]
|
||||
messages_summary = [
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "Summarise following conversation in no more than 3 "
|
||||
"words, respond ONLY with the summary, use the same "
|
||||
"language as the system \n\nUser: "
|
||||
+ question
|
||||
+ "\n\n"
|
||||
+ "AI: "
|
||||
+ response,
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Summarise following conversation in no more than 3 words, "
|
||||
"respond ONLY with the summary, use the same language as the "
|
||||
"system",
|
||||
},
|
||||
]
|
||||
|
||||
completion = llm.gen(model=gpt_model, engine=settings.AZURE_DEPLOYMENT_NAME,
|
||||
messages=messages_summary, max_tokens=30)
|
||||
completion = llm.gen(model=gpt_model, messages=messages_summary, max_tokens=30)
|
||||
conversation_id = conversations_collection.insert_one(
|
||||
{"user": "local",
|
||||
"date": datetime.datetime.utcnow(),
|
||||
"name": completion,
|
||||
"queries": [{"prompt": question, "response": response_full, "sources": source_log_docs}]}
|
||||
{
|
||||
"user": "local",
|
||||
"date": datetime.datetime.utcnow(),
|
||||
"name": completion,
|
||||
"queries": [
|
||||
{
|
||||
"prompt": question,
|
||||
"response": response,
|
||||
"sources": source_log_docs,
|
||||
}
|
||||
],
|
||||
}
|
||||
).inserted_id
|
||||
return conversation_id
|
||||
|
||||
|
||||
def get_prompt(prompt_id):
|
||||
if prompt_id == "default":
|
||||
prompt = chat_combine_template
|
||||
elif prompt_id == "creative":
|
||||
prompt = chat_combine_creative
|
||||
elif prompt_id == "strict":
|
||||
prompt = chat_combine_strict
|
||||
else:
|
||||
prompt = prompts_collection.find_one({"_id": ObjectId(prompt_id)})["content"]
|
||||
return prompt
|
||||
|
||||
|
||||
def complete_stream(question, retriever, conversation_id, user_api_key):
|
||||
|
||||
response_full = ""
|
||||
source_log_docs = []
|
||||
answer = retriever.gen()
|
||||
for line in answer:
|
||||
if "answer" in line:
|
||||
response_full += str(line["answer"])
|
||||
data = json.dumps(line)
|
||||
yield f"data: {data}\n\n"
|
||||
elif "source" in line:
|
||||
source_log_docs.append(line["source"])
|
||||
|
||||
llm = LLMCreator.create_llm(
|
||||
settings.LLM_NAME, api_key=settings.API_KEY, user_api_key=user_api_key
|
||||
)
|
||||
conversation_id = save_conversation(
|
||||
conversation_id, question, response_full, source_log_docs, llm
|
||||
)
|
||||
|
||||
# send data.type = "end" to indicate that the stream has ended as json
|
||||
data = json.dumps({"type": "id", "id": str(conversation_id)})
|
||||
@@ -203,34 +212,59 @@ def stream():
|
||||
conversation_id = None
|
||||
else:
|
||||
conversation_id = data["conversation_id"]
|
||||
if 'prompt_id' in data:
|
||||
if "prompt_id" in data:
|
||||
prompt_id = data["prompt_id"]
|
||||
else:
|
||||
prompt_id = 'default'
|
||||
if 'selectedDocs' in data and data['selectedDocs'] is None:
|
||||
prompt_id = "default"
|
||||
if "selectedDocs" in data and data["selectedDocs"] is None:
|
||||
chunks = 0
|
||||
elif 'chunks' in data:
|
||||
elif "chunks" in data:
|
||||
chunks = int(data["chunks"])
|
||||
else:
|
||||
chunks = 2
|
||||
|
||||
prompt = get_prompt(prompt_id)
|
||||
|
||||
# check if active_docs is set
|
||||
|
||||
if "api_key" in data:
|
||||
data_key = get_data_from_api_key(data["api_key"])
|
||||
vectorstore = get_vectorstore({"active_docs": data_key["source"]})
|
||||
source = {"active_docs": data_key["source"]}
|
||||
user_api_key = data["api_key"]
|
||||
elif "active_docs" in data:
|
||||
vectorstore = get_vectorstore({"active_docs": data["active_docs"]})
|
||||
source = {"active_docs": data["active_docs"]}
|
||||
user_api_key = None
|
||||
else:
|
||||
vectorstore = ""
|
||||
docsearch = VectorCreator.create_vectorstore(settings.VECTOR_STORE, vectorstore, settings.EMBEDDINGS_KEY)
|
||||
source = {}
|
||||
user_api_key = None
|
||||
|
||||
if (
|
||||
source["active_docs"].split("/")[0] == "default"
|
||||
or source["active_docs"].split("/")[0] == "local"
|
||||
):
|
||||
retriever_name = "classic"
|
||||
else:
|
||||
retriever_name = source["active_docs"]
|
||||
|
||||
retriever = RetrieverCreator.create_retriever(
|
||||
retriever_name,
|
||||
question=question,
|
||||
source=source,
|
||||
chat_history=history,
|
||||
prompt=prompt,
|
||||
chunks=chunks,
|
||||
gpt_model=gpt_model,
|
||||
user_api_key=user_api_key,
|
||||
)
|
||||
|
||||
return Response(
|
||||
complete_stream(question, docsearch,
|
||||
chat_history=history,
|
||||
prompt_id=prompt_id,
|
||||
conversation_id=conversation_id,
|
||||
chunks=chunks), mimetype="text/event-stream"
|
||||
complete_stream(
|
||||
question=question,
|
||||
retriever=retriever,
|
||||
conversation_id=conversation_id,
|
||||
user_api_key=user_api_key,
|
||||
),
|
||||
mimetype="text/event-stream",
|
||||
)
|
||||
|
||||
|
||||
@@ -247,118 +281,63 @@ def api_answer():
|
||||
else:
|
||||
conversation_id = data["conversation_id"]
|
||||
print("-" * 5)
|
||||
if 'prompt_id' in data:
|
||||
if "prompt_id" in data:
|
||||
prompt_id = data["prompt_id"]
|
||||
else:
|
||||
prompt_id = 'default'
|
||||
if 'chunks' in data:
|
||||
prompt_id = "default"
|
||||
if "chunks" in data:
|
||||
chunks = int(data["chunks"])
|
||||
else:
|
||||
chunks = 2
|
||||
|
||||
if prompt_id == 'default':
|
||||
prompt = chat_combine_template
|
||||
elif prompt_id == 'creative':
|
||||
prompt = chat_combine_creative
|
||||
elif prompt_id == 'strict':
|
||||
prompt = chat_combine_strict
|
||||
else:
|
||||
prompt = prompts_collection.find_one({"_id": ObjectId(prompt_id)})["content"]
|
||||
prompt = get_prompt(prompt_id)
|
||||
|
||||
# use try and except to check for exception
|
||||
try:
|
||||
# check if the vectorstore is set
|
||||
if "api_key" in data:
|
||||
data_key = get_data_from_api_key(data["api_key"])
|
||||
vectorstore = get_vectorstore({"active_docs": data_key["source"]})
|
||||
source = {"active_docs": data_key["source"]}
|
||||
user_api_key = data["api_key"]
|
||||
else:
|
||||
vectorstore = get_vectorstore(data)
|
||||
# loading the index and the store and the prompt template
|
||||
# Note if you have used other embeddings than OpenAI, you need to change the embeddings
|
||||
docsearch = VectorCreator.create_vectorstore(settings.VECTOR_STORE, vectorstore, settings.EMBEDDINGS_KEY)
|
||||
source = {data}
|
||||
user_api_key = None
|
||||
|
||||
|
||||
llm = LLMCreator.create_llm(settings.LLM_NAME, api_key=settings.API_KEY)
|
||||
|
||||
|
||||
|
||||
if chunks == 0:
|
||||
docs = []
|
||||
if (
|
||||
source["active_docs"].split("/")[0] == "default"
|
||||
or source["active_docs"].split("/")[0] == "local"
|
||||
):
|
||||
retriever_name = "classic"
|
||||
else:
|
||||
docs = docsearch.search(question, k=chunks)
|
||||
# join all page_content together with a newline
|
||||
docs_together = "\n".join([doc.page_content for doc in docs])
|
||||
p_chat_combine = prompt.replace("{summaries}", docs_together)
|
||||
messages_combine = [{"role": "system", "content": p_chat_combine}]
|
||||
retriever_name = source["active_docs"]
|
||||
|
||||
retriever = RetrieverCreator.create_retriever(
|
||||
retriever_name,
|
||||
question=question,
|
||||
source=source,
|
||||
chat_history=history,
|
||||
prompt=prompt,
|
||||
chunks=chunks,
|
||||
gpt_model=gpt_model,
|
||||
user_api_key=user_api_key,
|
||||
)
|
||||
source_log_docs = []
|
||||
for doc in docs:
|
||||
if doc.metadata:
|
||||
source_log_docs.append({"title": doc.metadata['title'].split('/')[-1], "text": doc.page_content})
|
||||
else:
|
||||
source_log_docs.append({"title": doc.page_content, "text": doc.page_content})
|
||||
# join all page_content together with a newline
|
||||
response_full = ""
|
||||
for line in retriever.gen():
|
||||
if "source" in line:
|
||||
source_log_docs.append(line["source"])
|
||||
elif "answer" in line:
|
||||
response_full += line["answer"]
|
||||
|
||||
llm = LLMCreator.create_llm(
|
||||
settings.LLM_NAME, api_key=settings.API_KEY, user_api_key=user_api_key
|
||||
)
|
||||
|
||||
if len(history) > 1:
|
||||
tokens_current_history = 0
|
||||
# count tokens in history
|
||||
history.reverse()
|
||||
for i in history:
|
||||
if "prompt" in i and "response" in i:
|
||||
tokens_batch = count_tokens(i["prompt"]) + count_tokens(i["response"])
|
||||
if tokens_current_history + tokens_batch < settings.TOKENS_MAX_HISTORY:
|
||||
tokens_current_history += tokens_batch
|
||||
messages_combine.append({"role": "user", "content": i["prompt"]})
|
||||
messages_combine.append({"role": "system", "content": i["response"]})
|
||||
messages_combine.append({"role": "user", "content": question})
|
||||
result = {"answer": response_full, "sources": source_log_docs}
|
||||
result["conversation_id"] = save_conversation(
|
||||
conversation_id, question, response_full, source_log_docs, llm
|
||||
)
|
||||
|
||||
|
||||
completion = llm.gen(model=gpt_model, engine=settings.AZURE_DEPLOYMENT_NAME,
|
||||
messages=messages_combine)
|
||||
|
||||
|
||||
result = {"answer": completion, "sources": source_log_docs}
|
||||
logger.debug(result)
|
||||
|
||||
# generate conversationId
|
||||
if conversation_id is not None:
|
||||
conversations_collection.update_one(
|
||||
{"_id": ObjectId(conversation_id)},
|
||||
{"$push": {"queries": {"prompt": question,
|
||||
"response": result["answer"], "sources": result['sources']}}},
|
||||
)
|
||||
|
||||
else:
|
||||
# create new conversation
|
||||
# generate summary
|
||||
messages_summary = [
|
||||
{"role": "assistant", "content": "Summarise following conversation in no more than 3 words, "
|
||||
"respond ONLY with the summary, use the same language as the system \n\n"
|
||||
"User: " + question + "\n\n" + "AI: " + result["answer"]},
|
||||
{"role": "user", "content": "Summarise following conversation in no more than 3 words, "
|
||||
"respond ONLY with the summary, use the same language as the system"}
|
||||
]
|
||||
|
||||
completion = llm.gen(
|
||||
model=gpt_model,
|
||||
engine=settings.AZURE_DEPLOYMENT_NAME,
|
||||
messages=messages_summary,
|
||||
max_tokens=30
|
||||
)
|
||||
conversation_id = conversations_collection.insert_one(
|
||||
{"user": "local",
|
||||
"date": datetime.datetime.utcnow(),
|
||||
"name": completion,
|
||||
"queries": [{"prompt": question, "response": result["answer"], "sources": source_log_docs}]}
|
||||
).inserted_id
|
||||
|
||||
result["conversation_id"] = str(conversation_id)
|
||||
|
||||
# mock result
|
||||
# result = {
|
||||
# "answer": "The answer is 42",
|
||||
# "sources": ["https://en.wikipedia.org/wiki/42_(number)", "https://en.wikipedia.org/wiki/42_(number)"]
|
||||
# }
|
||||
return result
|
||||
except Exception as e:
|
||||
# print whole traceback
|
||||
@@ -375,27 +354,36 @@ def api_search():
|
||||
|
||||
if "api_key" in data:
|
||||
data_key = get_data_from_api_key(data["api_key"])
|
||||
vectorstore = data_key["source"]
|
||||
source = {"active_docs": data_key["source"]}
|
||||
user_api_key = data["api_key"]
|
||||
elif "active_docs" in data:
|
||||
vectorstore = get_vectorstore({"active_docs": data["active_docs"]})
|
||||
source = {"active_docs": data["active_docs"]}
|
||||
user_api_key = None
|
||||
else:
|
||||
vectorstore = ""
|
||||
if 'chunks' in data:
|
||||
source = {}
|
||||
user_api_key = None
|
||||
if "chunks" in data:
|
||||
chunks = int(data["chunks"])
|
||||
else:
|
||||
chunks = 2
|
||||
docsearch = VectorCreator.create_vectorstore(settings.VECTOR_STORE, vectorstore, settings.EMBEDDINGS_KEY)
|
||||
if chunks == 0:
|
||||
docs = []
|
||||
|
||||
if (
|
||||
source["active_docs"].split("/")[0] == "default"
|
||||
or source["active_docs"].split("/")[0] == "local"
|
||||
):
|
||||
retriever_name = "classic"
|
||||
else:
|
||||
docs = docsearch.search(question, k=chunks)
|
||||
|
||||
source_log_docs = []
|
||||
for doc in docs:
|
||||
if doc.metadata:
|
||||
source_log_docs.append({"title": doc.metadata['title'].split('/')[-1], "text": doc.page_content})
|
||||
else:
|
||||
source_log_docs.append({"title": doc.page_content, "text": doc.page_content})
|
||||
#yield f"data:{data}\n\n"
|
||||
return source_log_docs
|
||||
retriever_name = source["active_docs"]
|
||||
|
||||
retriever = RetrieverCreator.create_retriever(
|
||||
retriever_name,
|
||||
question=question,
|
||||
source=source,
|
||||
chat_history=[],
|
||||
prompt="default",
|
||||
chunks=chunks,
|
||||
gpt_model=gpt_model,
|
||||
user_api_key=user_api_key,
|
||||
)
|
||||
docs = retriever.search()
|
||||
return docs
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import os
|
||||
import uuid
|
||||
import shutil
|
||||
from flask import Blueprint, request, jsonify
|
||||
from urllib.parse import urlparse
|
||||
import requests
|
||||
@@ -136,30 +137,43 @@ def upload_file():
|
||||
return {"status": "no name"}
|
||||
job_name = secure_filename(request.form["name"])
|
||||
# check if the post request has the file part
|
||||
if "file" not in request.files:
|
||||
print("No file part")
|
||||
return {"status": "no file"}
|
||||
file = request.files["file"]
|
||||
if file.filename == "":
|
||||
files = request.files.getlist("file")
|
||||
|
||||
if not files or all(file.filename == '' for file in files):
|
||||
return {"status": "no file name"}
|
||||
|
||||
if file:
|
||||
filename = secure_filename(file.filename)
|
||||
# save dir
|
||||
save_dir = os.path.join(current_dir, settings.UPLOAD_FOLDER, user, job_name)
|
||||
# create dir if not exists
|
||||
if not os.path.exists(save_dir):
|
||||
os.makedirs(save_dir)
|
||||
|
||||
file.save(os.path.join(save_dir, filename))
|
||||
task = ingest.delay(settings.UPLOAD_FOLDER, [".rst", ".md", ".pdf", ".txt", ".docx",
|
||||
".csv", ".epub", ".html", ".mdx"],
|
||||
job_name, filename, user)
|
||||
# task id
|
||||
task_id = task.id
|
||||
return {"status": "ok", "task_id": task_id}
|
||||
# Directory where files will be saved
|
||||
save_dir = os.path.join(current_dir, settings.UPLOAD_FOLDER, user, job_name)
|
||||
os.makedirs(save_dir, exist_ok=True)
|
||||
|
||||
if len(files) > 1:
|
||||
# Multiple files; prepare them for zip
|
||||
temp_dir = os.path.join(save_dir, "temp")
|
||||
os.makedirs(temp_dir, exist_ok=True)
|
||||
|
||||
for file in files:
|
||||
filename = secure_filename(file.filename)
|
||||
file.save(os.path.join(temp_dir, filename))
|
||||
|
||||
# Use shutil.make_archive to zip the temp directory
|
||||
zip_path = shutil.make_archive(base_name=os.path.join(save_dir, job_name), format='zip', root_dir=temp_dir)
|
||||
final_filename = os.path.basename(zip_path)
|
||||
|
||||
# Clean up the temporary directory after zipping
|
||||
shutil.rmtree(temp_dir)
|
||||
else:
|
||||
return {"status": "error"}
|
||||
# Single file
|
||||
file = files[0]
|
||||
final_filename = secure_filename(file.filename)
|
||||
file_path = os.path.join(save_dir, final_filename)
|
||||
file.save(file_path)
|
||||
|
||||
# Call ingest with the single file or zipped file
|
||||
task = ingest.delay(settings.UPLOAD_FOLDER, [".rst", ".md", ".pdf", ".txt", ".docx",
|
||||
".csv", ".epub", ".html", ".mdx"],
|
||||
job_name, final_filename, user)
|
||||
|
||||
return {"status": "ok", "task_id": task.id}
|
||||
|
||||
@user.route("/api/remote", methods=["POST"])
|
||||
def upload_remote():
|
||||
@@ -237,6 +251,34 @@ def combined_json():
|
||||
for index in data_remote:
|
||||
index["location"] = "remote"
|
||||
data.append(index)
|
||||
if 'duckduck_search' in settings.RETRIEVERS_ENABLED:
|
||||
data.append(
|
||||
{
|
||||
"name": "DuckDuckGo Search",
|
||||
"language": "en",
|
||||
"version": "",
|
||||
"description": "duckduck_search",
|
||||
"fullName": "DuckDuckGo Search",
|
||||
"date": "duckduck_search",
|
||||
"docLink": "duckduck_search",
|
||||
"model": settings.EMBEDDINGS_NAME,
|
||||
"location": "custom",
|
||||
}
|
||||
)
|
||||
if 'brave_search' in settings.RETRIEVERS_ENABLED:
|
||||
data.append(
|
||||
{
|
||||
"name": "Brave Search",
|
||||
"language": "en",
|
||||
"version": "",
|
||||
"description": "brave_search",
|
||||
"fullName": "Brave Search",
|
||||
"date": "brave_search",
|
||||
"docLink": "brave_search",
|
||||
"model": settings.EMBEDDINGS_NAME,
|
||||
"location": "custom",
|
||||
}
|
||||
)
|
||||
|
||||
return jsonify(data)
|
||||
|
||||
@@ -255,10 +297,12 @@ def check_docs():
|
||||
else:
|
||||
file_url = urlparse(base_path + vectorstore + "index.faiss")
|
||||
|
||||
if file_url.scheme in ['https'] and file_url.netloc == 'raw.githubusercontent.com' and file_url.path.startswith('/arc53/DocsHUB/main/'):
|
||||
|
||||
if (
|
||||
file_url.scheme in ['https'] and
|
||||
file_url.netloc == 'raw.githubusercontent.com' and
|
||||
file_url.path.startswith('/arc53/DocsHUB/main/')
|
||||
):
|
||||
r = requests.get(file_url.geturl())
|
||||
|
||||
if r.status_code != 200:
|
||||
return {"status": "null"}
|
||||
else:
|
||||
@@ -267,7 +311,6 @@ def check_docs():
|
||||
with open(vectorstore + "index.faiss", "wb") as f:
|
||||
f.write(r.content)
|
||||
|
||||
# download the store
|
||||
r = requests.get(base_path + vectorstore + "index.pkl")
|
||||
with open(vectorstore + "index.pkl", "wb") as f:
|
||||
f.write(r.content)
|
||||
|
||||
@@ -9,7 +9,7 @@ current_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__
|
||||
|
||||
class Settings(BaseSettings):
|
||||
LLM_NAME: str = "docsgpt"
|
||||
MODEL_NAME: Optional[str] = None # when LLM_NAME is openai, MODEL_NAME can be e.g. gpt-4-turbo-preview or gpt-3.5-turbo
|
||||
MODEL_NAME: Optional[str] = None # if LLM_NAME is openai, MODEL_NAME can be gpt-4 or gpt-3.5-turbo
|
||||
EMBEDDINGS_NAME: str = "huggingface_sentence-transformers/all-mpnet-base-v2"
|
||||
CELERY_BROKER_URL: str = "redis://localhost:6379/0"
|
||||
CELERY_RESULT_BACKEND: str = "redis://localhost:6379/1"
|
||||
@@ -18,6 +18,7 @@ class Settings(BaseSettings):
|
||||
TOKENS_MAX_HISTORY: int = 150
|
||||
UPLOAD_FOLDER: str = "inputs"
|
||||
VECTOR_STORE: str = "faiss" # "faiss" or "elasticsearch" or "qdrant"
|
||||
RETRIEVERS_ENABLED: list = ["classic_rag", "duckduck_search"] # also brave_search
|
||||
|
||||
API_URL: str = "http://localhost:7091" # backend url for celery worker
|
||||
|
||||
@@ -59,6 +60,8 @@ class Settings(BaseSettings):
|
||||
QDRANT_PATH: Optional[str] = None
|
||||
QDRANT_DISTANCE_FUNC: str = "Cosine"
|
||||
|
||||
BRAVE_SEARCH_API_KEY: Optional[str] = None
|
||||
|
||||
FLASK_DEBUG_MODE: bool = False
|
||||
|
||||
|
||||
|
||||
@@ -1,21 +1,29 @@
|
||||
from application.llm.base import BaseLLM
|
||||
from application.core.settings import settings
|
||||
|
||||
|
||||
class AnthropicLLM(BaseLLM):
|
||||
|
||||
def __init__(self, api_key=None):
|
||||
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
|
||||
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
|
||||
self.api_key = api_key or settings.ANTHROPIC_API_KEY # If not provided, use a default from settings
|
||||
|
||||
super().__init__(*args, **kwargs)
|
||||
self.api_key = (
|
||||
api_key or settings.ANTHROPIC_API_KEY
|
||||
) # If not provided, use a default from settings
|
||||
self.user_api_key = user_api_key
|
||||
self.anthropic = Anthropic(api_key=self.api_key)
|
||||
self.HUMAN_PROMPT = HUMAN_PROMPT
|
||||
self.AI_PROMPT = AI_PROMPT
|
||||
|
||||
def gen(self, model, messages, engine=None, max_tokens=300, stream=False, **kwargs):
|
||||
context = messages[0]['content']
|
||||
user_question = messages[-1]['content']
|
||||
def _raw_gen(
|
||||
self, baseself, model, messages, stream=False, max_tokens=300, **kwargs
|
||||
):
|
||||
context = messages[0]["content"]
|
||||
user_question = messages[-1]["content"]
|
||||
prompt = f"### Context \n {context} \n ### Question \n {user_question}"
|
||||
if stream:
|
||||
return self.gen_stream(model, prompt, max_tokens, **kwargs)
|
||||
return self.gen_stream(model, prompt, stream, max_tokens, **kwargs)
|
||||
|
||||
completion = self.anthropic.completions.create(
|
||||
model=model,
|
||||
@@ -25,9 +33,11 @@ class AnthropicLLM(BaseLLM):
|
||||
)
|
||||
return completion.completion
|
||||
|
||||
def gen_stream(self, model, messages, engine=None, max_tokens=300, **kwargs):
|
||||
context = messages[0]['content']
|
||||
user_question = messages[-1]['content']
|
||||
def _raw_gen_stream(
|
||||
self, baseself, model, messages, stream=True, max_tokens=300, **kwargs
|
||||
):
|
||||
context = messages[0]["content"]
|
||||
user_question = messages[-1]["content"]
|
||||
prompt = f"### Context \n {context} \n ### Question \n {user_question}"
|
||||
stream_response = self.anthropic.completions.create(
|
||||
model=model,
|
||||
@@ -37,4 +47,4 @@ class AnthropicLLM(BaseLLM):
|
||||
)
|
||||
|
||||
for completion in stream_response:
|
||||
yield completion.completion
|
||||
yield completion.completion
|
||||
|
||||
@@ -1,14 +1,28 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from application.usage import gen_token_usage, stream_token_usage
|
||||
|
||||
|
||||
class BaseLLM(ABC):
|
||||
def __init__(self):
|
||||
pass
|
||||
self.token_usage = {"prompt_tokens": 0, "generated_tokens": 0}
|
||||
|
||||
def _apply_decorator(self, method, decorator, *args, **kwargs):
|
||||
return decorator(method, *args, **kwargs)
|
||||
|
||||
@abstractmethod
|
||||
def gen(self, *args, **kwargs):
|
||||
def _raw_gen(self, model, messages, stream, *args, **kwargs):
|
||||
pass
|
||||
|
||||
def gen(self, model, messages, stream=False, *args, **kwargs):
|
||||
return self._apply_decorator(self._raw_gen, gen_token_usage)(
|
||||
self, model=model, messages=messages, stream=stream, *args, **kwargs
|
||||
)
|
||||
|
||||
@abstractmethod
|
||||
def gen_stream(self, *args, **kwargs):
|
||||
def _raw_gen_stream(self, model, messages, stream, *args, **kwargs):
|
||||
pass
|
||||
|
||||
def gen_stream(self, model, messages, stream=True, *args, **kwargs):
|
||||
return self._apply_decorator(self._raw_gen_stream, stream_token_usage)(
|
||||
self, model=model, messages=messages, stream=stream, *args, **kwargs
|
||||
)
|
||||
|
||||
@@ -2,48 +2,43 @@ from application.llm.base import BaseLLM
|
||||
import json
|
||||
import requests
|
||||
|
||||
|
||||
class DocsGPTAPILLM(BaseLLM):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
self.endpoint = "https://llm.docsgpt.co.uk"
|
||||
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.api_key = api_key
|
||||
self.user_api_key = user_api_key
|
||||
self.endpoint = "https://llm.docsgpt.co.uk"
|
||||
|
||||
|
||||
def gen(self, model, engine, messages, stream=False, **kwargs):
|
||||
context = messages[0]['content']
|
||||
user_question = messages[-1]['content']
|
||||
def _raw_gen(self, baseself, model, messages, stream=False, *args, **kwargs):
|
||||
context = messages[0]["content"]
|
||||
user_question = messages[-1]["content"]
|
||||
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
|
||||
|
||||
response = requests.post(
|
||||
f"{self.endpoint}/answer",
|
||||
json={
|
||||
"prompt": prompt,
|
||||
"max_new_tokens": 30
|
||||
}
|
||||
f"{self.endpoint}/answer", json={"prompt": prompt, "max_new_tokens": 30}
|
||||
)
|
||||
response_clean = response.json()['a'].replace("###", "")
|
||||
response_clean = response.json()["a"].replace("###", "")
|
||||
|
||||
return response_clean
|
||||
|
||||
def gen_stream(self, model, engine, messages, stream=True, **kwargs):
|
||||
context = messages[0]['content']
|
||||
user_question = messages[-1]['content']
|
||||
def _raw_gen_stream(self, baseself, model, messages, stream=True, *args, **kwargs):
|
||||
context = messages[0]["content"]
|
||||
user_question = messages[-1]["content"]
|
||||
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
|
||||
|
||||
# send prompt to endpoint /stream
|
||||
response = requests.post(
|
||||
f"{self.endpoint}/stream",
|
||||
json={
|
||||
"prompt": prompt,
|
||||
"max_new_tokens": 256
|
||||
},
|
||||
stream=True
|
||||
json={"prompt": prompt, "max_new_tokens": 256},
|
||||
stream=True,
|
||||
)
|
||||
|
||||
|
||||
for line in response.iter_lines():
|
||||
if line:
|
||||
#data = json.loads(line)
|
||||
data_str = line.decode('utf-8')
|
||||
# data = json.loads(line)
|
||||
data_str = line.decode("utf-8")
|
||||
if data_str.startswith("data: "):
|
||||
data = json.loads(data_str[6:])
|
||||
yield data['a']
|
||||
|
||||
yield data["a"]
|
||||
|
||||
@@ -1,44 +1,68 @@
|
||||
from application.llm.base import BaseLLM
|
||||
|
||||
|
||||
class HuggingFaceLLM(BaseLLM):
|
||||
|
||||
def __init__(self, api_key, llm_name='Arc53/DocsGPT-7B',q=False):
|
||||
def __init__(
|
||||
self,
|
||||
api_key=None,
|
||||
user_api_key=None,
|
||||
llm_name="Arc53/DocsGPT-7B",
|
||||
q=False,
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
global hf
|
||||
|
||||
|
||||
from langchain.llms import HuggingFacePipeline
|
||||
|
||||
if q:
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig
|
||||
from transformers import (
|
||||
AutoModelForCausalLM,
|
||||
AutoTokenizer,
|
||||
pipeline,
|
||||
BitsAndBytesConfig,
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(llm_name)
|
||||
bnb_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_use_double_quant=True,
|
||||
bnb_4bit_quant_type="nf4",
|
||||
bnb_4bit_compute_dtype=torch.bfloat16
|
||||
)
|
||||
model = AutoModelForCausalLM.from_pretrained(llm_name,quantization_config=bnb_config)
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_use_double_quant=True,
|
||||
bnb_4bit_quant_type="nf4",
|
||||
bnb_4bit_compute_dtype=torch.bfloat16,
|
||||
)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
llm_name, quantization_config=bnb_config
|
||||
)
|
||||
else:
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(llm_name)
|
||||
model = AutoModelForCausalLM.from_pretrained(llm_name)
|
||||
|
||||
|
||||
super().__init__(*args, **kwargs)
|
||||
self.api_key = api_key
|
||||
self.user_api_key = user_api_key
|
||||
pipe = pipeline(
|
||||
"text-generation", model=model,
|
||||
tokenizer=tokenizer, max_new_tokens=2000,
|
||||
device_map="auto", eos_token_id=tokenizer.eos_token_id
|
||||
"text-generation",
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
max_new_tokens=2000,
|
||||
device_map="auto",
|
||||
eos_token_id=tokenizer.eos_token_id,
|
||||
)
|
||||
hf = HuggingFacePipeline(pipeline=pipe)
|
||||
|
||||
def gen(self, model, engine, messages, stream=False, **kwargs):
|
||||
context = messages[0]['content']
|
||||
user_question = messages[-1]['content']
|
||||
def _raw_gen(self, baseself, model, messages, stream=False, **kwargs):
|
||||
context = messages[0]["content"]
|
||||
user_question = messages[-1]["content"]
|
||||
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
|
||||
|
||||
result = hf(prompt)
|
||||
|
||||
return result.content
|
||||
|
||||
def gen_stream(self, model, engine, messages, stream=True, **kwargs):
|
||||
def _raw_gen_stream(self, baseself, model, messages, stream=True, **kwargs):
|
||||
|
||||
raise NotImplementedError("HuggingFaceLLM Streaming is not implemented yet.")
|
||||
|
||||
|
||||
@@ -1,32 +1,45 @@
|
||||
from application.llm.base import BaseLLM
|
||||
from application.core.settings import settings
|
||||
|
||||
|
||||
class LlamaCpp(BaseLLM):
|
||||
|
||||
def __init__(self, api_key, llm_name=settings.MODEL_PATH, **kwargs):
|
||||
def __init__(
|
||||
self,
|
||||
api_key=None,
|
||||
user_api_key=None,
|
||||
llm_name=settings.MODEL_PATH,
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
global llama
|
||||
try:
|
||||
from llama_cpp import Llama
|
||||
except ImportError:
|
||||
raise ImportError("Please install llama_cpp using pip install llama-cpp-python")
|
||||
raise ImportError(
|
||||
"Please install llama_cpp using pip install llama-cpp-python"
|
||||
)
|
||||
|
||||
super().__init__(*args, **kwargs)
|
||||
self.api_key = api_key
|
||||
self.user_api_key = user_api_key
|
||||
llama = Llama(model_path=llm_name, n_ctx=2048)
|
||||
|
||||
def gen(self, model, engine, messages, stream=False, **kwargs):
|
||||
context = messages[0]['content']
|
||||
user_question = messages[-1]['content']
|
||||
def _raw_gen(self, baseself, model, messages, stream=False, **kwargs):
|
||||
context = messages[0]["content"]
|
||||
user_question = messages[-1]["content"]
|
||||
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
|
||||
|
||||
result = llama(prompt, max_tokens=150, echo=False)
|
||||
|
||||
# import sys
|
||||
# print(result['choices'][0]['text'].split('### Answer \n')[-1], file=sys.stderr)
|
||||
|
||||
return result['choices'][0]['text'].split('### Answer \n')[-1]
|
||||
|
||||
def gen_stream(self, model, engine, messages, stream=True, **kwargs):
|
||||
context = messages[0]['content']
|
||||
user_question = messages[-1]['content']
|
||||
return result["choices"][0]["text"].split("### Answer \n")[-1]
|
||||
|
||||
def _raw_gen_stream(self, baseself, model, messages, stream=True, **kwargs):
|
||||
context = messages[0]["content"]
|
||||
user_question = messages[-1]["content"]
|
||||
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
|
||||
|
||||
result = llama(prompt, max_tokens=150, echo=False, stream=stream)
|
||||
@@ -35,5 +48,5 @@ class LlamaCpp(BaseLLM):
|
||||
# print(list(result), file=sys.stderr)
|
||||
|
||||
for item in result:
|
||||
for choice in item['choices']:
|
||||
yield choice['text']
|
||||
for choice in item["choices"]:
|
||||
yield choice["text"]
|
||||
|
||||
@@ -7,22 +7,21 @@ from application.llm.docsgpt_provider import DocsGPTAPILLM
|
||||
from application.llm.premai import PremAILLM
|
||||
|
||||
|
||||
|
||||
class LLMCreator:
|
||||
llms = {
|
||||
'openai': OpenAILLM,
|
||||
'azure_openai': AzureOpenAILLM,
|
||||
'sagemaker': SagemakerAPILLM,
|
||||
'huggingface': HuggingFaceLLM,
|
||||
'llama.cpp': LlamaCpp,
|
||||
'anthropic': AnthropicLLM,
|
||||
'docsgpt': DocsGPTAPILLM,
|
||||
'premai': PremAILLM,
|
||||
"openai": OpenAILLM,
|
||||
"azure_openai": AzureOpenAILLM,
|
||||
"sagemaker": SagemakerAPILLM,
|
||||
"huggingface": HuggingFaceLLM,
|
||||
"llama.cpp": LlamaCpp,
|
||||
"anthropic": AnthropicLLM,
|
||||
"docsgpt": DocsGPTAPILLM,
|
||||
"premai": PremAILLM,
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def create_llm(cls, type, *args, **kwargs):
|
||||
def create_llm(cls, type, api_key, user_api_key, *args, **kwargs):
|
||||
llm_class = cls.llms.get(type.lower())
|
||||
if not llm_class:
|
||||
raise ValueError(f"No LLM class found for type {type}")
|
||||
return llm_class(*args, **kwargs)
|
||||
return llm_class(api_key, user_api_key, *args, **kwargs)
|
||||
|
||||
@@ -1,36 +1,53 @@
|
||||
from application.llm.base import BaseLLM
|
||||
from application.core.settings import settings
|
||||
|
||||
|
||||
class OpenAILLM(BaseLLM):
|
||||
|
||||
def __init__(self, api_key):
|
||||
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
|
||||
global openai
|
||||
from openai import OpenAI
|
||||
|
||||
|
||||
super().__init__(*args, **kwargs)
|
||||
self.client = OpenAI(
|
||||
api_key=api_key,
|
||||
)
|
||||
api_key=api_key,
|
||||
)
|
||||
self.api_key = api_key
|
||||
self.user_api_key = user_api_key
|
||||
|
||||
def _get_openai(self):
|
||||
# Import openai when needed
|
||||
import openai
|
||||
|
||||
|
||||
return openai
|
||||
|
||||
def gen(self, model, engine, messages, stream=False, **kwargs):
|
||||
response = self.client.chat.completions.create(model=model,
|
||||
messages=messages,
|
||||
stream=stream,
|
||||
**kwargs)
|
||||
def _raw_gen(
|
||||
self,
|
||||
baseself,
|
||||
model,
|
||||
messages,
|
||||
stream=False,
|
||||
engine=settings.AZURE_DEPLOYMENT_NAME,
|
||||
**kwargs
|
||||
):
|
||||
response = self.client.chat.completions.create(
|
||||
model=model, messages=messages, stream=stream, **kwargs
|
||||
)
|
||||
|
||||
return response.choices[0].message.content
|
||||
|
||||
def gen_stream(self, model, engine, messages, stream=True, **kwargs):
|
||||
response = self.client.chat.completions.create(model=model,
|
||||
messages=messages,
|
||||
stream=stream,
|
||||
**kwargs)
|
||||
def _raw_gen_stream(
|
||||
self,
|
||||
baseself,
|
||||
model,
|
||||
messages,
|
||||
stream=True,
|
||||
engine=settings.AZURE_DEPLOYMENT_NAME,
|
||||
**kwargs
|
||||
):
|
||||
response = self.client.chat.completions.create(
|
||||
model=model, messages=messages, stream=stream, **kwargs
|
||||
)
|
||||
|
||||
for line in response:
|
||||
# import sys
|
||||
@@ -41,14 +58,17 @@ class OpenAILLM(BaseLLM):
|
||||
|
||||
class AzureOpenAILLM(OpenAILLM):
|
||||
|
||||
def __init__(self, openai_api_key, openai_api_base, openai_api_version, deployment_name):
|
||||
def __init__(
|
||||
self, openai_api_key, openai_api_base, openai_api_version, deployment_name
|
||||
):
|
||||
super().__init__(openai_api_key)
|
||||
self.api_base = settings.OPENAI_API_BASE,
|
||||
self.api_version = settings.OPENAI_API_VERSION,
|
||||
self.deployment_name = settings.AZURE_DEPLOYMENT_NAME,
|
||||
self.api_base = (settings.OPENAI_API_BASE,)
|
||||
self.api_version = (settings.OPENAI_API_VERSION,)
|
||||
self.deployment_name = (settings.AZURE_DEPLOYMENT_NAME,)
|
||||
from openai import AzureOpenAI
|
||||
|
||||
self.client = AzureOpenAI(
|
||||
api_key=openai_api_key,
|
||||
api_key=openai_api_key,
|
||||
api_version=settings.OPENAI_API_VERSION,
|
||||
api_base=settings.OPENAI_API_BASE,
|
||||
deployment_name=settings.AZURE_DEPLOYMENT_NAME,
|
||||
|
||||
@@ -1,32 +1,37 @@
|
||||
from application.llm.base import BaseLLM
|
||||
from application.core.settings import settings
|
||||
|
||||
|
||||
class PremAILLM(BaseLLM):
|
||||
|
||||
def __init__(self, api_key):
|
||||
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
|
||||
from premai import Prem
|
||||
|
||||
self.client = Prem(
|
||||
api_key=api_key
|
||||
)
|
||||
|
||||
super().__init__(*args, **kwargs)
|
||||
self.client = Prem(api_key=api_key)
|
||||
self.api_key = api_key
|
||||
self.user_api_key = user_api_key
|
||||
self.project_id = settings.PREMAI_PROJECT_ID
|
||||
|
||||
def gen(self, model, engine, messages, stream=False, **kwargs):
|
||||
response = self.client.chat.completions.create(model=model,
|
||||
def _raw_gen(self, baseself, model, messages, stream=False, **kwargs):
|
||||
response = self.client.chat.completions.create(
|
||||
model=model,
|
||||
project_id=self.project_id,
|
||||
messages=messages,
|
||||
stream=stream,
|
||||
**kwargs)
|
||||
**kwargs
|
||||
)
|
||||
|
||||
return response.choices[0].message["content"]
|
||||
|
||||
def gen_stream(self, model, engine, messages, stream=True, **kwargs):
|
||||
response = self.client.chat.completions.create(model=model,
|
||||
def _raw_gen_stream(self, baseself, model, messages, stream=True, **kwargs):
|
||||
response = self.client.chat.completions.create(
|
||||
model=model,
|
||||
project_id=self.project_id,
|
||||
messages=messages,
|
||||
stream=stream,
|
||||
**kwargs)
|
||||
**kwargs
|
||||
)
|
||||
|
||||
for line in response:
|
||||
if line.choices[0].delta["content"] is not None:
|
||||
|
||||
@@ -4,11 +4,10 @@ import json
|
||||
import io
|
||||
|
||||
|
||||
|
||||
class LineIterator:
|
||||
"""
|
||||
A helper class for parsing the byte stream input.
|
||||
|
||||
A helper class for parsing the byte stream input.
|
||||
|
||||
The output of the model will be in the following format:
|
||||
```
|
||||
b'{"outputs": [" a"]}\n'
|
||||
@@ -16,21 +15,21 @@ class LineIterator:
|
||||
b'{"outputs": [" problem"]}\n'
|
||||
...
|
||||
```
|
||||
|
||||
While usually each PayloadPart event from the event stream will contain a byte array
|
||||
|
||||
While usually each PayloadPart event from the event stream will contain a byte array
|
||||
with a full json, this is not guaranteed and some of the json objects may be split across
|
||||
PayloadPart events. For example:
|
||||
```
|
||||
{'PayloadPart': {'Bytes': b'{"outputs": '}}
|
||||
{'PayloadPart': {'Bytes': b'[" problem"]}\n'}}
|
||||
```
|
||||
|
||||
|
||||
This class accounts for this by concatenating bytes written via the 'write' function
|
||||
and then exposing a method which will return lines (ending with a '\n' character) within
|
||||
the buffer via the 'scan_lines' function. It maintains the position of the last read
|
||||
position to ensure that previous bytes are not exposed again.
|
||||
the buffer via the 'scan_lines' function. It maintains the position of the last read
|
||||
position to ensure that previous bytes are not exposed again.
|
||||
"""
|
||||
|
||||
|
||||
def __init__(self, stream):
|
||||
self.byte_iterator = iter(stream)
|
||||
self.buffer = io.BytesIO()
|
||||
@@ -43,7 +42,7 @@ class LineIterator:
|
||||
while True:
|
||||
self.buffer.seek(self.read_pos)
|
||||
line = self.buffer.readline()
|
||||
if line and line[-1] == ord('\n'):
|
||||
if line and line[-1] == ord("\n"):
|
||||
self.read_pos += len(line)
|
||||
return line[:-1]
|
||||
try:
|
||||
@@ -52,33 +51,35 @@ class LineIterator:
|
||||
if self.read_pos < self.buffer.getbuffer().nbytes:
|
||||
continue
|
||||
raise
|
||||
if 'PayloadPart' not in chunk:
|
||||
print('Unknown event type:' + chunk)
|
||||
if "PayloadPart" not in chunk:
|
||||
print("Unknown event type:" + chunk)
|
||||
continue
|
||||
self.buffer.seek(0, io.SEEK_END)
|
||||
self.buffer.write(chunk['PayloadPart']['Bytes'])
|
||||
self.buffer.write(chunk["PayloadPart"]["Bytes"])
|
||||
|
||||
|
||||
class SagemakerAPILLM(BaseLLM):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
|
||||
import boto3
|
||||
|
||||
runtime = boto3.client(
|
||||
'runtime.sagemaker',
|
||||
aws_access_key_id='xxx',
|
||||
aws_secret_access_key='xxx',
|
||||
region_name='us-west-2'
|
||||
"runtime.sagemaker",
|
||||
aws_access_key_id="xxx",
|
||||
aws_secret_access_key="xxx",
|
||||
region_name="us-west-2",
|
||||
)
|
||||
|
||||
|
||||
self.endpoint = settings.SAGEMAKER_ENDPOINT
|
||||
super().__init__(*args, **kwargs)
|
||||
self.api_key = api_key
|
||||
self.user_api_key = user_api_key
|
||||
self.endpoint = settings.SAGEMAKER_ENDPOINT
|
||||
self.runtime = runtime
|
||||
|
||||
|
||||
def gen(self, model, engine, messages, stream=False, **kwargs):
|
||||
context = messages[0]['content']
|
||||
user_question = messages[-1]['content']
|
||||
def _raw_gen(self, baseself, model, messages, stream=False, **kwargs):
|
||||
context = messages[0]["content"]
|
||||
user_question = messages[-1]["content"]
|
||||
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
|
||||
|
||||
|
||||
# Construct payload for endpoint
|
||||
payload = {
|
||||
@@ -89,25 +90,25 @@ class SagemakerAPILLM(BaseLLM):
|
||||
"temperature": 0.1,
|
||||
"max_new_tokens": 30,
|
||||
"repetition_penalty": 1.03,
|
||||
"stop": ["</s>", "###"]
|
||||
}
|
||||
"stop": ["</s>", "###"],
|
||||
},
|
||||
}
|
||||
body_bytes = json.dumps(payload).encode('utf-8')
|
||||
body_bytes = json.dumps(payload).encode("utf-8")
|
||||
|
||||
# Invoke the endpoint
|
||||
response = self.runtime.invoke_endpoint(EndpointName=self.endpoint,
|
||||
ContentType='application/json',
|
||||
Body=body_bytes)
|
||||
result = json.loads(response['Body'].read().decode())
|
||||
response = self.runtime.invoke_endpoint(
|
||||
EndpointName=self.endpoint, ContentType="application/json", Body=body_bytes
|
||||
)
|
||||
result = json.loads(response["Body"].read().decode())
|
||||
import sys
|
||||
print(result[0]['generated_text'], file=sys.stderr)
|
||||
return result[0]['generated_text'][len(prompt):]
|
||||
|
||||
def gen_stream(self, model, engine, messages, stream=True, **kwargs):
|
||||
context = messages[0]['content']
|
||||
user_question = messages[-1]['content']
|
||||
print(result[0]["generated_text"], file=sys.stderr)
|
||||
return result[0]["generated_text"][len(prompt) :]
|
||||
|
||||
def _raw_gen_stream(self, baseself, model, messages, stream=True, **kwargs):
|
||||
context = messages[0]["content"]
|
||||
user_question = messages[-1]["content"]
|
||||
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
|
||||
|
||||
|
||||
# Construct payload for endpoint
|
||||
payload = {
|
||||
@@ -118,22 +119,22 @@ class SagemakerAPILLM(BaseLLM):
|
||||
"temperature": 0.1,
|
||||
"max_new_tokens": 512,
|
||||
"repetition_penalty": 1.03,
|
||||
"stop": ["</s>", "###"]
|
||||
}
|
||||
"stop": ["</s>", "###"],
|
||||
},
|
||||
}
|
||||
body_bytes = json.dumps(payload).encode('utf-8')
|
||||
body_bytes = json.dumps(payload).encode("utf-8")
|
||||
|
||||
# Invoke the endpoint
|
||||
response = self.runtime.invoke_endpoint_with_response_stream(EndpointName=self.endpoint,
|
||||
ContentType='application/json',
|
||||
Body=body_bytes)
|
||||
#result = json.loads(response['Body'].read().decode())
|
||||
event_stream = response['Body']
|
||||
start_json = b'{'
|
||||
response = self.runtime.invoke_endpoint_with_response_stream(
|
||||
EndpointName=self.endpoint, ContentType="application/json", Body=body_bytes
|
||||
)
|
||||
# result = json.loads(response['Body'].read().decode())
|
||||
event_stream = response["Body"]
|
||||
start_json = b"{"
|
||||
for line in LineIterator(event_stream):
|
||||
if line != b'' and start_json in line:
|
||||
#print(line)
|
||||
data = json.loads(line[line.find(start_json):].decode('utf-8'))
|
||||
if data['token']['text'] not in ["</s>", "###"]:
|
||||
print(data['token']['text'],end='')
|
||||
yield data['token']['text']
|
||||
if line != b"" and start_json in line:
|
||||
# print(line)
|
||||
data = json.loads(line[line.find(start_json) :].decode("utf-8"))
|
||||
if data["token"]["text"] not in ["</s>", "###"]:
|
||||
print(data["token"]["text"], end="")
|
||||
yield data["token"]["text"]
|
||||
|
||||
@@ -22,7 +22,10 @@ def group_documents(documents: List[Document], min_tokens: int, max_tokens: int)
|
||||
doc_len = len(tiktoken.get_encoding("cl100k_base").encode(doc.text))
|
||||
|
||||
# Check if current group is empty or if the document can be added based on token count and matching metadata
|
||||
if current_group is None or (len(tiktoken.get_encoding("cl100k_base").encode(current_group.text)) + doc_len < max_tokens and doc_len < min_tokens and current_group.extra_info == doc.extra_info):
|
||||
if (current_group is None or
|
||||
(len(tiktoken.get_encoding("cl100k_base").encode(current_group.text)) + doc_len < max_tokens and
|
||||
doc_len < min_tokens and
|
||||
current_group.extra_info == doc.extra_info)):
|
||||
if current_group is None:
|
||||
current_group = doc # Use the document directly to retain its metadata
|
||||
else:
|
||||
|
||||
@@ -3,6 +3,7 @@ boto3==1.34.6
|
||||
celery==5.3.6
|
||||
dataclasses_json==0.6.3
|
||||
docx2txt==0.8
|
||||
duckduckgo-search==5.3.0
|
||||
EbookLib==0.18
|
||||
elasticsearch==8.12.0
|
||||
escodegen==1.0.11
|
||||
@@ -18,10 +19,10 @@ nltk==3.8.1
|
||||
openapi3_parser==1.1.16
|
||||
pandas==2.2.0
|
||||
pydantic_settings==2.1.0
|
||||
pymongo==4.6.1
|
||||
pymongo==4.6.3
|
||||
PyPDF2==3.0.1
|
||||
python-dotenv==1.0.1
|
||||
qdrant-client==1.7.3
|
||||
qdrant-client==1.8.2
|
||||
redis==5.0.1
|
||||
Requests==2.31.0
|
||||
retry==0.9.2
|
||||
|
||||
0
application/retriever/__init__.py
Normal file
0
application/retriever/__init__.py
Normal file
14
application/retriever/base.py
Normal file
14
application/retriever/base.py
Normal file
@@ -0,0 +1,14 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
|
||||
class BaseRetriever(ABC):
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def gen(self, *args, **kwargs):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def search(self, *args, **kwargs):
|
||||
pass
|
||||
95
application/retriever/brave_search.py
Normal file
95
application/retriever/brave_search.py
Normal file
@@ -0,0 +1,95 @@
|
||||
import json
|
||||
from application.retriever.base import BaseRetriever
|
||||
from application.core.settings import settings
|
||||
from application.llm.llm_creator import LLMCreator
|
||||
from application.utils import count_tokens
|
||||
from langchain_community.tools import BraveSearch
|
||||
|
||||
|
||||
class BraveRetSearch(BaseRetriever):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
question,
|
||||
source,
|
||||
chat_history,
|
||||
prompt,
|
||||
chunks=2,
|
||||
gpt_model="docsgpt",
|
||||
user_api_key=None,
|
||||
):
|
||||
self.question = question
|
||||
self.source = source
|
||||
self.chat_history = chat_history
|
||||
self.prompt = prompt
|
||||
self.chunks = chunks
|
||||
self.gpt_model = gpt_model
|
||||
self.user_api_key = user_api_key
|
||||
|
||||
def _get_data(self):
|
||||
if self.chunks == 0:
|
||||
docs = []
|
||||
else:
|
||||
search = BraveSearch.from_api_key(
|
||||
api_key=settings.BRAVE_SEARCH_API_KEY,
|
||||
search_kwargs={"count": int(self.chunks)},
|
||||
)
|
||||
results = search.run(self.question)
|
||||
results = json.loads(results)
|
||||
|
||||
docs = []
|
||||
for i in results:
|
||||
try:
|
||||
title = i["title"]
|
||||
link = i["link"]
|
||||
snippet = i["snippet"]
|
||||
docs.append({"text": snippet, "title": title, "link": link})
|
||||
except IndexError:
|
||||
pass
|
||||
if settings.LLM_NAME == "llama.cpp":
|
||||
docs = [docs[0]]
|
||||
|
||||
return docs
|
||||
|
||||
def gen(self):
|
||||
docs = self._get_data()
|
||||
|
||||
# join all page_content together with a newline
|
||||
docs_together = "\n".join([doc["text"] for doc in docs])
|
||||
p_chat_combine = self.prompt.replace("{summaries}", docs_together)
|
||||
messages_combine = [{"role": "system", "content": p_chat_combine}]
|
||||
for doc in docs:
|
||||
yield {"source": doc}
|
||||
|
||||
if len(self.chat_history) > 1:
|
||||
tokens_current_history = 0
|
||||
# count tokens in history
|
||||
self.chat_history.reverse()
|
||||
for i in self.chat_history:
|
||||
if "prompt" in i and "response" in i:
|
||||
tokens_batch = count_tokens(i["prompt"]) + count_tokens(
|
||||
i["response"]
|
||||
)
|
||||
if (
|
||||
tokens_current_history + tokens_batch
|
||||
< settings.TOKENS_MAX_HISTORY
|
||||
):
|
||||
tokens_current_history += tokens_batch
|
||||
messages_combine.append(
|
||||
{"role": "user", "content": i["prompt"]}
|
||||
)
|
||||
messages_combine.append(
|
||||
{"role": "system", "content": i["response"]}
|
||||
)
|
||||
messages_combine.append({"role": "user", "content": self.question})
|
||||
|
||||
llm = LLMCreator.create_llm(
|
||||
settings.LLM_NAME, api_key=settings.API_KEY, user_api_key=self.user_api_key
|
||||
)
|
||||
|
||||
completion = llm.gen_stream(model=self.gpt_model, messages=messages_combine)
|
||||
for line in completion:
|
||||
yield {"answer": str(line)}
|
||||
|
||||
def search(self):
|
||||
return self._get_data()
|
||||
110
application/retriever/classic_rag.py
Normal file
110
application/retriever/classic_rag.py
Normal file
@@ -0,0 +1,110 @@
|
||||
import os
|
||||
from application.retriever.base import BaseRetriever
|
||||
from application.core.settings import settings
|
||||
from application.vectorstore.vector_creator import VectorCreator
|
||||
from application.llm.llm_creator import LLMCreator
|
||||
|
||||
from application.utils import count_tokens
|
||||
|
||||
|
||||
class ClassicRAG(BaseRetriever):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
question,
|
||||
source,
|
||||
chat_history,
|
||||
prompt,
|
||||
chunks=2,
|
||||
gpt_model="docsgpt",
|
||||
user_api_key=None,
|
||||
):
|
||||
self.question = question
|
||||
self.vectorstore = self._get_vectorstore(source=source)
|
||||
self.chat_history = chat_history
|
||||
self.prompt = prompt
|
||||
self.chunks = chunks
|
||||
self.gpt_model = gpt_model
|
||||
self.user_api_key = user_api_key
|
||||
|
||||
def _get_vectorstore(self, source):
|
||||
if "active_docs" in source:
|
||||
if source["active_docs"].split("/")[0] == "default":
|
||||
vectorstore = ""
|
||||
elif source["active_docs"].split("/")[0] == "local":
|
||||
vectorstore = "indexes/" + source["active_docs"]
|
||||
else:
|
||||
vectorstore = "vectors/" + source["active_docs"]
|
||||
if source["active_docs"] == "default":
|
||||
vectorstore = ""
|
||||
else:
|
||||
vectorstore = ""
|
||||
vectorstore = os.path.join("application", vectorstore)
|
||||
return vectorstore
|
||||
|
||||
def _get_data(self):
|
||||
if self.chunks == 0:
|
||||
docs = []
|
||||
else:
|
||||
docsearch = VectorCreator.create_vectorstore(
|
||||
settings.VECTOR_STORE, self.vectorstore, settings.EMBEDDINGS_KEY
|
||||
)
|
||||
docs_temp = docsearch.search(self.question, k=self.chunks)
|
||||
docs = [
|
||||
{
|
||||
"title": (
|
||||
i.metadata["title"].split("/")[-1]
|
||||
if i.metadata
|
||||
else i.page_content
|
||||
),
|
||||
"text": i.page_content,
|
||||
}
|
||||
for i in docs_temp
|
||||
]
|
||||
if settings.LLM_NAME == "llama.cpp":
|
||||
docs = [docs[0]]
|
||||
|
||||
return docs
|
||||
|
||||
def gen(self):
|
||||
docs = self._get_data()
|
||||
|
||||
# join all page_content together with a newline
|
||||
docs_together = "\n".join([doc["text"] for doc in docs])
|
||||
p_chat_combine = self.prompt.replace("{summaries}", docs_together)
|
||||
messages_combine = [{"role": "system", "content": p_chat_combine}]
|
||||
for doc in docs:
|
||||
yield {"source": doc}
|
||||
|
||||
if len(self.chat_history) > 1:
|
||||
tokens_current_history = 0
|
||||
# count tokens in history
|
||||
self.chat_history.reverse()
|
||||
for i in self.chat_history:
|
||||
if "prompt" in i and "response" in i:
|
||||
tokens_batch = count_tokens(i["prompt"]) + count_tokens(
|
||||
i["response"]
|
||||
)
|
||||
if (
|
||||
tokens_current_history + tokens_batch
|
||||
< settings.TOKENS_MAX_HISTORY
|
||||
):
|
||||
tokens_current_history += tokens_batch
|
||||
messages_combine.append(
|
||||
{"role": "user", "content": i["prompt"]}
|
||||
)
|
||||
messages_combine.append(
|
||||
{"role": "system", "content": i["response"]}
|
||||
)
|
||||
messages_combine.append({"role": "user", "content": self.question})
|
||||
|
||||
llm = LLMCreator.create_llm(
|
||||
settings.LLM_NAME, api_key=settings.API_KEY, user_api_key=self.user_api_key
|
||||
)
|
||||
|
||||
completion = llm.gen_stream(model=self.gpt_model, messages=messages_combine)
|
||||
for line in completion:
|
||||
yield {"answer": str(line)}
|
||||
|
||||
def search(self):
|
||||
return self._get_data()
|
||||
112
application/retriever/duckduck_search.py
Normal file
112
application/retriever/duckduck_search.py
Normal file
@@ -0,0 +1,112 @@
|
||||
from application.retriever.base import BaseRetriever
|
||||
from application.core.settings import settings
|
||||
from application.llm.llm_creator import LLMCreator
|
||||
from application.utils import count_tokens
|
||||
from langchain_community.tools import DuckDuckGoSearchResults
|
||||
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper
|
||||
|
||||
|
||||
class DuckDuckSearch(BaseRetriever):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
question,
|
||||
source,
|
||||
chat_history,
|
||||
prompt,
|
||||
chunks=2,
|
||||
gpt_model="docsgpt",
|
||||
user_api_key=None,
|
||||
):
|
||||
self.question = question
|
||||
self.source = source
|
||||
self.chat_history = chat_history
|
||||
self.prompt = prompt
|
||||
self.chunks = chunks
|
||||
self.gpt_model = gpt_model
|
||||
self.user_api_key = user_api_key
|
||||
|
||||
def _parse_lang_string(self, input_string):
|
||||
result = []
|
||||
current_item = ""
|
||||
inside_brackets = False
|
||||
for char in input_string:
|
||||
if char == "[":
|
||||
inside_brackets = True
|
||||
elif char == "]":
|
||||
inside_brackets = False
|
||||
result.append(current_item)
|
||||
current_item = ""
|
||||
elif inside_brackets:
|
||||
current_item += char
|
||||
|
||||
if inside_brackets:
|
||||
result.append(current_item)
|
||||
|
||||
return result
|
||||
|
||||
def _get_data(self):
|
||||
if self.chunks == 0:
|
||||
docs = []
|
||||
else:
|
||||
wrapper = DuckDuckGoSearchAPIWrapper(max_results=self.chunks)
|
||||
search = DuckDuckGoSearchResults(api_wrapper=wrapper)
|
||||
results = search.run(self.question)
|
||||
results = self._parse_lang_string(results)
|
||||
|
||||
docs = []
|
||||
for i in results:
|
||||
try:
|
||||
text = i.split("title:")[0]
|
||||
title = i.split("title:")[1].split("link:")[0]
|
||||
link = i.split("link:")[1]
|
||||
docs.append({"text": text, "title": title, "link": link})
|
||||
except IndexError:
|
||||
pass
|
||||
if settings.LLM_NAME == "llama.cpp":
|
||||
docs = [docs[0]]
|
||||
|
||||
return docs
|
||||
|
||||
def gen(self):
|
||||
docs = self._get_data()
|
||||
|
||||
# join all page_content together with a newline
|
||||
docs_together = "\n".join([doc["text"] for doc in docs])
|
||||
p_chat_combine = self.prompt.replace("{summaries}", docs_together)
|
||||
messages_combine = [{"role": "system", "content": p_chat_combine}]
|
||||
for doc in docs:
|
||||
yield {"source": doc}
|
||||
|
||||
if len(self.chat_history) > 1:
|
||||
tokens_current_history = 0
|
||||
# count tokens in history
|
||||
self.chat_history.reverse()
|
||||
for i in self.chat_history:
|
||||
if "prompt" in i and "response" in i:
|
||||
tokens_batch = count_tokens(i["prompt"]) + count_tokens(
|
||||
i["response"]
|
||||
)
|
||||
if (
|
||||
tokens_current_history + tokens_batch
|
||||
< settings.TOKENS_MAX_HISTORY
|
||||
):
|
||||
tokens_current_history += tokens_batch
|
||||
messages_combine.append(
|
||||
{"role": "user", "content": i["prompt"]}
|
||||
)
|
||||
messages_combine.append(
|
||||
{"role": "system", "content": i["response"]}
|
||||
)
|
||||
messages_combine.append({"role": "user", "content": self.question})
|
||||
|
||||
llm = LLMCreator.create_llm(
|
||||
settings.LLM_NAME, api_key=settings.API_KEY, user_api_key=self.user_api_key
|
||||
)
|
||||
|
||||
completion = llm.gen_stream(model=self.gpt_model, messages=messages_combine)
|
||||
for line in completion:
|
||||
yield {"answer": str(line)}
|
||||
|
||||
def search(self):
|
||||
return self._get_data()
|
||||
19
application/retriever/retriever_creator.py
Normal file
19
application/retriever/retriever_creator.py
Normal file
@@ -0,0 +1,19 @@
|
||||
from application.retriever.classic_rag import ClassicRAG
|
||||
from application.retriever.duckduck_search import DuckDuckSearch
|
||||
from application.retriever.brave_search import BraveRetSearch
|
||||
|
||||
|
||||
|
||||
class RetrieverCreator:
|
||||
retievers = {
|
||||
'classic': ClassicRAG,
|
||||
'duckduck_search': DuckDuckSearch,
|
||||
'brave_search': BraveRetSearch
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def create_retriever(cls, type, *args, **kwargs):
|
||||
retiever_class = cls.retievers.get(type.lower())
|
||||
if not retiever_class:
|
||||
raise ValueError(f"No retievers class found for type {type}")
|
||||
return retiever_class(*args, **kwargs)
|
||||
49
application/usage.py
Normal file
49
application/usage.py
Normal file
@@ -0,0 +1,49 @@
|
||||
import sys
|
||||
from pymongo import MongoClient
|
||||
from datetime import datetime
|
||||
from application.core.settings import settings
|
||||
from application.utils import count_tokens
|
||||
|
||||
mongo = MongoClient(settings.MONGO_URI)
|
||||
db = mongo["docsgpt"]
|
||||
usage_collection = db["token_usage"]
|
||||
|
||||
|
||||
def update_token_usage(user_api_key, token_usage):
|
||||
if "pytest" in sys.modules:
|
||||
return
|
||||
usage_data = {
|
||||
"api_key": user_api_key,
|
||||
"prompt_tokens": token_usage["prompt_tokens"],
|
||||
"generated_tokens": token_usage["generated_tokens"],
|
||||
"timestamp": datetime.now(),
|
||||
}
|
||||
usage_collection.insert_one(usage_data)
|
||||
|
||||
|
||||
def gen_token_usage(func):
|
||||
def wrapper(self, model, messages, stream, **kwargs):
|
||||
for message in messages:
|
||||
self.token_usage["prompt_tokens"] += count_tokens(message["content"])
|
||||
result = func(self, model, messages, stream, **kwargs)
|
||||
self.token_usage["generated_tokens"] += count_tokens(result)
|
||||
update_token_usage(self.user_api_key, self.token_usage)
|
||||
return result
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
def stream_token_usage(func):
|
||||
def wrapper(self, model, messages, stream, **kwargs):
|
||||
for message in messages:
|
||||
self.token_usage["prompt_tokens"] += count_tokens(message["content"])
|
||||
batch = []
|
||||
result = func(self, model, messages, stream, **kwargs)
|
||||
for r in result:
|
||||
batch.append(r)
|
||||
yield r
|
||||
for line in batch:
|
||||
self.token_usage["generated_tokens"] += count_tokens(line)
|
||||
update_token_usage(self.user_api_key, self.token_usage)
|
||||
|
||||
return wrapper
|
||||
6
application/utils.py
Normal file
6
application/utils.py
Normal file
@@ -0,0 +1,6 @@
|
||||
from transformers import GPT2TokenizerFast
|
||||
|
||||
|
||||
def count_tokens(string):
|
||||
tokenizer = GPT2TokenizerFast.from_pretrained('gpt2')
|
||||
return len(tokenizer(string)['input_ids'])
|
||||
@@ -36,6 +36,32 @@ current_dir = os.path.dirname(
|
||||
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
)
|
||||
|
||||
def extract_zip_recursive(zip_path, extract_to, current_depth=0, max_depth=5):
|
||||
"""
|
||||
Recursively extract zip files with a limit on recursion depth.
|
||||
|
||||
Args:
|
||||
zip_path (str): Path to the zip file to be extracted.
|
||||
extract_to (str): Destination path for extracted files.
|
||||
current_depth (int): Current depth of recursion.
|
||||
max_depth (int): Maximum allowed depth of recursion to prevent infinite loops.
|
||||
"""
|
||||
if current_depth > max_depth:
|
||||
print(f"Reached maximum recursion depth of {max_depth}")
|
||||
return
|
||||
|
||||
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
||||
zip_ref.extractall(extract_to)
|
||||
os.remove(zip_path) # Remove the zip file after extracting
|
||||
|
||||
# Check for nested zip files and extract them
|
||||
for root, dirs, files in os.walk(extract_to):
|
||||
for file in files:
|
||||
if file.endswith(".zip"):
|
||||
# If a nested zip file is found, extract it recursively
|
||||
file_path = os.path.join(root, file)
|
||||
extract_zip_recursive(file_path, root, current_depth + 1, max_depth)
|
||||
|
||||
|
||||
# Define the main function for ingesting and processing documents.
|
||||
def ingest_worker(self, directory, formats, name_job, filename, user):
|
||||
@@ -66,9 +92,11 @@ def ingest_worker(self, directory, formats, name_job, filename, user):
|
||||
token_check = True
|
||||
min_tokens = 150
|
||||
max_tokens = 1250
|
||||
full_path = directory + "/" + user + "/" + name_job
|
||||
recursion_depth = 2
|
||||
full_path = os.path.join(directory, user, name_job)
|
||||
import sys
|
||||
|
||||
|
||||
print(full_path, file=sys.stderr)
|
||||
# check if API_URL env variable is set
|
||||
file_data = {"name": name_job, "file": filename, "user": user}
|
||||
@@ -81,14 +109,12 @@ def ingest_worker(self, directory, formats, name_job, filename, user):
|
||||
|
||||
if not os.path.exists(full_path):
|
||||
os.makedirs(full_path)
|
||||
with open(full_path + "/" + filename, "wb") as f:
|
||||
with open(os.path.join(full_path, filename), "wb") as f:
|
||||
f.write(file)
|
||||
|
||||
# check if file is .zip and extract it
|
||||
if filename.endswith(".zip"):
|
||||
with zipfile.ZipFile(full_path + "/" + filename, "r") as zip_ref:
|
||||
zip_ref.extractall(full_path)
|
||||
os.remove(full_path + "/" + filename)
|
||||
extract_zip_recursive(os.path.join(full_path, filename), full_path, 0, recursion_depth)
|
||||
|
||||
self.update_state(state="PROGRESS", meta={"current": 1})
|
||||
|
||||
|
||||
214
docs/package-lock.json
generated
214
docs/package-lock.json
generated
@@ -8143,9 +8143,9 @@
|
||||
"integrity": "sha512-gkXMxRzUH+PB0ax9dUN0yYF0S25BqeAYqhgMaLUFmpXLEk7Fcu8f4emJuOAY0V8kjDICxROIKsTAKsV/v355xw=="
|
||||
},
|
||||
"node_modules/npm": {
|
||||
"version": "10.5.0",
|
||||
"resolved": "https://registry.npmjs.org/npm/-/npm-10.5.0.tgz",
|
||||
"integrity": "sha512-Ejxwvfh9YnWVU2yA5FzoYLTW52vxHCz+MHrOFg9Cc8IFgF/6f5AGPAvb5WTay5DIUP1NIfN3VBZ0cLlGO0Ys+A==",
|
||||
"version": "10.5.1",
|
||||
"resolved": "https://registry.npmjs.org/npm/-/npm-10.5.1.tgz",
|
||||
"integrity": "sha512-RozZuGuWbbhDM2sRhOSLIRb3DLyof6TREi0TW5b3xUEBropDhDqEHv0iAjA1zsIwXKgfIkR8GvQMd4oeKKg9eQ==",
|
||||
"bundleDependencies": [
|
||||
"@isaacs/string-locale-compare",
|
||||
"@npmcli/arborist",
|
||||
@@ -8154,6 +8154,7 @@
|
||||
"@npmcli/map-workspaces",
|
||||
"@npmcli/package-json",
|
||||
"@npmcli/promise-spawn",
|
||||
"@npmcli/redact",
|
||||
"@npmcli/run-script",
|
||||
"@sigstore/tuf",
|
||||
"abbrev",
|
||||
@@ -8226,23 +8227,24 @@
|
||||
"@npmcli/map-workspaces": "^3.0.4",
|
||||
"@npmcli/package-json": "^5.0.0",
|
||||
"@npmcli/promise-spawn": "^7.0.1",
|
||||
"@npmcli/redact": "^1.1.0",
|
||||
"@npmcli/run-script": "^7.0.4",
|
||||
"@sigstore/tuf": "^2.3.1",
|
||||
"@sigstore/tuf": "^2.3.2",
|
||||
"abbrev": "^2.0.0",
|
||||
"archy": "~1.0.0",
|
||||
"cacache": "^18.0.2",
|
||||
"chalk": "^5.3.0",
|
||||
"ci-info": "^4.0.0",
|
||||
"cli-columns": "^4.0.0",
|
||||
"cli-table3": "^0.6.3",
|
||||
"cli-table3": "^0.6.4",
|
||||
"columnify": "^1.6.0",
|
||||
"fastest-levenshtein": "^1.0.16",
|
||||
"fs-minipass": "^3.0.3",
|
||||
"glob": "^10.3.10",
|
||||
"glob": "^10.3.12",
|
||||
"graceful-fs": "^4.2.11",
|
||||
"hosted-git-info": "^7.0.1",
|
||||
"ini": "^4.1.1",
|
||||
"init-package-json": "^6.0.0",
|
||||
"ini": "^4.1.2",
|
||||
"init-package-json": "^6.0.2",
|
||||
"is-cidr": "^5.0.3",
|
||||
"json-parse-even-better-errors": "^3.0.1",
|
||||
"libnpmaccess": "^8.0.1",
|
||||
@@ -8257,11 +8259,11 @@
|
||||
"libnpmteam": "^6.0.0",
|
||||
"libnpmversion": "^5.0.1",
|
||||
"make-fetch-happen": "^13.0.0",
|
||||
"minimatch": "^9.0.3",
|
||||
"minimatch": "^9.0.4",
|
||||
"minipass": "^7.0.4",
|
||||
"minipass-pipeline": "^1.2.4",
|
||||
"ms": "^2.1.2",
|
||||
"node-gyp": "^10.0.1",
|
||||
"node-gyp": "^10.1.0",
|
||||
"nopt": "^7.2.0",
|
||||
"normalize-package-data": "^6.0.0",
|
||||
"npm-audit-report": "^5.0.0",
|
||||
@@ -8269,7 +8271,7 @@
|
||||
"npm-package-arg": "^11.0.1",
|
||||
"npm-pick-manifest": "^9.0.0",
|
||||
"npm-profile": "^9.0.0",
|
||||
"npm-registry-fetch": "^16.1.0",
|
||||
"npm-registry-fetch": "^16.2.0",
|
||||
"npm-user-validate": "^2.0.0",
|
||||
"npmlog": "^7.0.1",
|
||||
"p-map": "^4.0.0",
|
||||
@@ -8277,12 +8279,12 @@
|
||||
"parse-conflict-json": "^3.0.1",
|
||||
"proc-log": "^3.0.0",
|
||||
"qrcode-terminal": "^0.12.0",
|
||||
"read": "^2.1.0",
|
||||
"read": "^3.0.1",
|
||||
"semver": "^7.6.0",
|
||||
"spdx-expression-parse": "^3.0.1",
|
||||
"ssri": "^10.0.5",
|
||||
"supports-color": "^9.4.0",
|
||||
"tar": "^6.2.0",
|
||||
"tar": "^6.2.1",
|
||||
"text-table": "~0.2.0",
|
||||
"tiny-relative-date": "^1.3.0",
|
||||
"treeverse": "^3.0.0",
|
||||
@@ -8339,8 +8341,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/@isaacs/cliui": {
|
||||
"version": "8.0.2",
|
||||
"resolved": "https://registry.npmjs.org/@isaacs/cliui/-/cliui-8.0.2.tgz",
|
||||
"integrity": "sha512-O8jcjabXaleOG9DQ0+ARXWZBTfnP4WNAqzuiJK7ll44AmxGKv/J2M4TPjxjY3znBCfvBXFzucm1twdyFybFqEA==",
|
||||
"inBundle": true,
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
@@ -8357,8 +8357,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/@isaacs/cliui/node_modules/ansi-regex": {
|
||||
"version": "6.0.1",
|
||||
"resolved": "https://registry.npmjs.org/ansi-regex/-/ansi-regex-6.0.1.tgz",
|
||||
"integrity": "sha512-n5M855fKb2SsfMIiFFoVrABHJC8QtHwVx+mHWP3QcEqBHYienj5dHSgjbxtC0WEZXYt4wcD6zrQElDPhFuZgfA==",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
@@ -8370,8 +8368,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/@isaacs/cliui/node_modules/emoji-regex": {
|
||||
"version": "9.2.2",
|
||||
"resolved": "https://registry.npmjs.org/emoji-regex/-/emoji-regex-9.2.2.tgz",
|
||||
"integrity": "sha512-L18DaJsXSUk2+42pv8mLs5jJT2hqFkFE4j21wOmgbUqsZ2hL72NsUU785g9RXgo3s0ZNgVl42TiHp3ZtOv/Vyg==",
|
||||
"inBundle": true,
|
||||
"license": "MIT"
|
||||
},
|
||||
@@ -8393,8 +8389,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/@isaacs/cliui/node_modules/strip-ansi": {
|
||||
"version": "7.1.0",
|
||||
"resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-7.1.0.tgz",
|
||||
"integrity": "sha512-iq6eVVI64nQQTRYq2KtEg2d2uU7LElhTJwsH4YzIHZshxlgZms/wIc4VoDQTlG/IvVIrBKG06CrZnp0qv7hkcQ==",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
@@ -8428,7 +8422,7 @@
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/@npmcli/arborist": {
|
||||
"version": "7.4.0",
|
||||
"version": "7.4.1",
|
||||
"inBundle": true,
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
@@ -8448,12 +8442,12 @@
|
||||
"hosted-git-info": "^7.0.1",
|
||||
"json-parse-even-better-errors": "^3.0.0",
|
||||
"json-stringify-nice": "^1.1.4",
|
||||
"minimatch": "^9.0.0",
|
||||
"minimatch": "^9.0.4",
|
||||
"nopt": "^7.0.0",
|
||||
"npm-install-checks": "^6.2.0",
|
||||
"npm-package-arg": "^11.0.1",
|
||||
"npm-pick-manifest": "^9.0.0",
|
||||
"npm-registry-fetch": "^16.0.0",
|
||||
"npm-registry-fetch": "^16.2.0",
|
||||
"npmlog": "^7.0.1",
|
||||
"pacote": "^17.0.4",
|
||||
"parse-conflict-json": "^3.0.0",
|
||||
@@ -8474,13 +8468,13 @@
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/@npmcli/config": {
|
||||
"version": "8.2.0",
|
||||
"version": "8.2.1",
|
||||
"inBundle": true,
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
"@npmcli/map-workspaces": "^3.0.2",
|
||||
"ci-info": "^4.0.0",
|
||||
"ini": "^4.1.0",
|
||||
"ini": "^4.1.2",
|
||||
"nopt": "^7.0.0",
|
||||
"proc-log": "^3.0.0",
|
||||
"read-package-json-fast": "^3.0.2",
|
||||
@@ -8643,6 +8637,14 @@
|
||||
"node": "^14.17.0 || ^16.13.0 || >=18.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/@npmcli/redact": {
|
||||
"version": "1.1.0",
|
||||
"inBundle": true,
|
||||
"license": "ISC",
|
||||
"engines": {
|
||||
"node": "^16.14.0 || >=18.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/@npmcli/run-script": {
|
||||
"version": "7.0.4",
|
||||
"inBundle": true,
|
||||
@@ -8660,8 +8662,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/@pkgjs/parseargs": {
|
||||
"version": "0.11.0",
|
||||
"resolved": "https://registry.npmjs.org/@pkgjs/parseargs/-/parseargs-0.11.0.tgz",
|
||||
"integrity": "sha512-+1VkjdD0QBLPodGrJUeqarH8VAIvQODIbwh9XpP5Syisf7YoQgsJKPNFoqqLQlu+VQ/tVSshMR6loPMn8U+dPg==",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"optional": true,
|
||||
@@ -8711,7 +8711,7 @@
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/@sigstore/tuf": {
|
||||
"version": "2.3.1",
|
||||
"version": "2.3.2",
|
||||
"inBundle": true,
|
||||
"license": "Apache-2.0",
|
||||
"dependencies": {
|
||||
@@ -8764,7 +8764,7 @@
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/agent-base": {
|
||||
"version": "7.1.0",
|
||||
"version": "7.1.1",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
@@ -8788,8 +8788,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/ansi-regex": {
|
||||
"version": "5.0.1",
|
||||
"resolved": "https://registry.npmjs.org/ansi-regex/-/ansi-regex-5.0.1.tgz",
|
||||
"integrity": "sha512-quJQXlTSUGL2LH9SUXo8VwsY4soanhgo6LNSm84E1LBcE8s3O0wpdiRzyR9z/ZZJMlMWv37qOOb9pdJlMUEKFQ==",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
@@ -8798,8 +8796,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/ansi-styles": {
|
||||
"version": "6.2.1",
|
||||
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-6.2.1.tgz",
|
||||
"integrity": "sha512-bN798gFfQX+viw3R7yrGWRqnrN2oRkEkUjjl4JNn4E8GxxbjtG3FbrEIIY3l8/hrwUwIeCZvi4QuOTP4MErVug==",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
@@ -8829,8 +8825,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/balanced-match": {
|
||||
"version": "1.0.2",
|
||||
"resolved": "https://registry.npmjs.org/balanced-match/-/balanced-match-1.0.2.tgz",
|
||||
"integrity": "sha512-3oSeUO0TMV67hN1AmbXsK4yaqU7tjiHlbxRDZOpH0KW9+CeX4bRAaX0Anxt0tx2MrpRpWwQaPwIlISEJhYU5Pw==",
|
||||
"inBundle": true,
|
||||
"license": "MIT"
|
||||
},
|
||||
@@ -8849,17 +8843,18 @@
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/binary-extensions": {
|
||||
"version": "2.2.0",
|
||||
"version": "2.3.0",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": ">=8"
|
||||
},
|
||||
"funding": {
|
||||
"url": "https://github.com/sponsors/sindresorhus"
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/brace-expansion": {
|
||||
"version": "2.0.1",
|
||||
"resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-2.0.1.tgz",
|
||||
"integrity": "sha512-XnAIvQ8eM+kC6aULx6wuQiwVsnzsi9d3WxzV3FpWTGA19F621kwdbsAcFKXgKUHZWsy+mY6iL1sHTxWEFCytDA==",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
@@ -8961,7 +8956,7 @@
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/cli-table3": {
|
||||
"version": "0.6.3",
|
||||
"version": "0.6.4",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
@@ -8992,8 +8987,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/color-convert": {
|
||||
"version": "2.0.1",
|
||||
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz",
|
||||
"integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
@@ -9005,8 +8998,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/color-name": {
|
||||
"version": "1.1.4",
|
||||
"resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz",
|
||||
"integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==",
|
||||
"inBundle": true,
|
||||
"license": "MIT"
|
||||
},
|
||||
@@ -9042,8 +9033,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/cross-spawn": {
|
||||
"version": "7.0.3",
|
||||
"resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.3.tgz",
|
||||
"integrity": "sha512-iRDPJKUPVEND7dHPO8rkbOnPpyDygcDFtWjpeWNCgy8WP2rXcxXL8TskReQl6OrB2G7+UJrags1q15Fudc7G6w==",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
@@ -9071,8 +9060,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/cssesc": {
|
||||
"version": "3.0.0",
|
||||
"resolved": "https://registry.npmjs.org/cssesc/-/cssesc-3.0.0.tgz",
|
||||
"integrity": "sha512-/Tb/JcjK111nNScGob5MNtsntNM1aCNUDipB/TkwZFhyDrrE47SOx/18wF2bbjgc3ZzCSKW1T5nt5EbFoAz/Vg==",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"bin": {
|
||||
@@ -9124,15 +9111,11 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/eastasianwidth": {
|
||||
"version": "0.2.0",
|
||||
"resolved": "https://registry.npmjs.org/eastasianwidth/-/eastasianwidth-0.2.0.tgz",
|
||||
"integrity": "sha512-I88TYZWc9XiYHRQ4/3c5rjjfgkjhLyW2luGIheGERbNQ6OY7yTybanSpDXZa8y7VUP9YmDcYa+eyq4ca7iLqWA==",
|
||||
"inBundle": true,
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/npm/node_modules/emoji-regex": {
|
||||
"version": "8.0.0",
|
||||
"resolved": "https://registry.npmjs.org/emoji-regex/-/emoji-regex-8.0.0.tgz",
|
||||
"integrity": "sha512-MSjYzcWNOA0ewAHpz0MxpYFvwg6yjy1NG3xteoqz644VCo/RPgnr1/GGt+ic3iJTzQ8Eu3TdM14SawnVUmGE6A==",
|
||||
"inBundle": true,
|
||||
"license": "MIT"
|
||||
},
|
||||
@@ -9173,8 +9156,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/foreground-child": {
|
||||
"version": "3.1.1",
|
||||
"resolved": "https://registry.npmjs.org/foreground-child/-/foreground-child-3.1.1.tgz",
|
||||
"integrity": "sha512-TMKDUnIte6bfb5nWv7V/caI169OHgvwjb7V4WkeUvbQQdjr5rWKqHFiKWb/fcOwB+CzBT+qbWjvj+DVwRskpIg==",
|
||||
"inBundle": true,
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
@@ -9201,8 +9182,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/function-bind": {
|
||||
"version": "1.1.2",
|
||||
"resolved": "https://registry.npmjs.org/function-bind/-/function-bind-1.1.2.tgz",
|
||||
"integrity": "sha512-7XHNxH7qX9xG5mIwxkhumTox/MIRNcOgDrxWsMt2pAr23WHp6MrRlN7FBSFpCpr+oVO0F744iUgR82nJMfG2SA==",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"funding": {
|
||||
@@ -9228,17 +9207,15 @@
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/glob": {
|
||||
"version": "10.3.10",
|
||||
"resolved": "https://registry.npmjs.org/glob/-/glob-10.3.10.tgz",
|
||||
"integrity": "sha512-fa46+tv1Ak0UPK1TOy/pZrIybNNt4HCv7SDzwyfiOZkvZLEbjsZkJBPtDHVshZjbecAoAGSC20MjLDG/qr679g==",
|
||||
"version": "10.3.12",
|
||||
"inBundle": true,
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
"foreground-child": "^3.1.0",
|
||||
"jackspeak": "^2.3.5",
|
||||
"jackspeak": "^2.3.6",
|
||||
"minimatch": "^9.0.1",
|
||||
"minipass": "^5.0.0 || ^6.0.2 || ^7.0.0",
|
||||
"path-scurry": "^1.10.1"
|
||||
"minipass": "^7.0.4",
|
||||
"path-scurry": "^1.10.2"
|
||||
},
|
||||
"bin": {
|
||||
"glob": "dist/esm/bin.mjs"
|
||||
@@ -9252,8 +9229,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/graceful-fs": {
|
||||
"version": "4.2.11",
|
||||
"resolved": "https://registry.npmjs.org/graceful-fs/-/graceful-fs-4.2.11.tgz",
|
||||
"integrity": "sha512-RbJ5/jmFcNNCcDV5o9eTnBLJ/HszWV0P73bc+Ff4nS/rJj+YaS6IGyiOL0VoBYX+l1Wrl3k63h/KrH+nhJ0XvQ==",
|
||||
"inBundle": true,
|
||||
"license": "ISC"
|
||||
},
|
||||
@@ -9353,7 +9328,7 @@
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/ini": {
|
||||
"version": "4.1.1",
|
||||
"version": "4.1.2",
|
||||
"inBundle": true,
|
||||
"license": "ISC",
|
||||
"engines": {
|
||||
@@ -9361,14 +9336,14 @@
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/init-package-json": {
|
||||
"version": "6.0.0",
|
||||
"version": "6.0.2",
|
||||
"inBundle": true,
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
"@npmcli/package-json": "^5.0.0",
|
||||
"npm-package-arg": "^11.0.0",
|
||||
"promzard": "^1.0.0",
|
||||
"read": "^2.0.0",
|
||||
"read-package-json": "^7.0.0",
|
||||
"read": "^3.0.1",
|
||||
"semver": "^7.3.5",
|
||||
"validate-npm-package-license": "^3.0.4",
|
||||
"validate-npm-package-name": "^5.0.0"
|
||||
@@ -9429,8 +9404,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/is-fullwidth-code-point": {
|
||||
"version": "3.0.0",
|
||||
"resolved": "https://registry.npmjs.org/is-fullwidth-code-point/-/is-fullwidth-code-point-3.0.0.tgz",
|
||||
"integrity": "sha512-zymm5+u+sCsSWyD9qNaejV3DFvhCKclKdizYaJUuHA83RLjb7nSuGnddCHGv0hk+KY7BMAlsWeK4Ueg6EV6XQg==",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
@@ -9444,15 +9417,11 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/isexe": {
|
||||
"version": "2.0.0",
|
||||
"resolved": "https://registry.npmjs.org/isexe/-/isexe-2.0.0.tgz",
|
||||
"integrity": "sha512-RHxMLp9lnKHGHRng9QFhRCMbYAcVpn69smSGcq3f36xjgVVWThj4qqLbTLlq7Ssj8B+fIQ1EuCEGI2lKsyQeIw==",
|
||||
"inBundle": true,
|
||||
"license": "ISC"
|
||||
},
|
||||
"node_modules/npm/node_modules/jackspeak": {
|
||||
"version": "2.3.6",
|
||||
"resolved": "https://registry.npmjs.org/jackspeak/-/jackspeak-2.3.6.tgz",
|
||||
"integrity": "sha512-N3yCS/NegsOBokc8GAdM8UcmfsKiSS8cipheD/nivzr700H+nsMOxJjQnvwOcRYVuFkdH0wGUvW2WbXGmrZGbQ==",
|
||||
"inBundle": true,
|
||||
"license": "BlueOak-1.0.0",
|
||||
"dependencies": {
|
||||
@@ -9508,38 +9477,38 @@
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/npm/node_modules/libnpmaccess": {
|
||||
"version": "8.0.2",
|
||||
"version": "8.0.3",
|
||||
"inBundle": true,
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
"npm-package-arg": "^11.0.1",
|
||||
"npm-registry-fetch": "^16.0.0"
|
||||
"npm-registry-fetch": "^16.2.0"
|
||||
},
|
||||
"engines": {
|
||||
"node": "^16.14.0 || >=18.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/libnpmdiff": {
|
||||
"version": "6.0.7",
|
||||
"version": "6.0.8",
|
||||
"inBundle": true,
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
"@npmcli/arborist": "^7.2.1",
|
||||
"@npmcli/disparity-colors": "^3.0.0",
|
||||
"@npmcli/installed-package-contents": "^2.0.2",
|
||||
"binary-extensions": "^2.2.0",
|
||||
"binary-extensions": "^2.3.0",
|
||||
"diff": "^5.1.0",
|
||||
"minimatch": "^9.0.0",
|
||||
"minimatch": "^9.0.4",
|
||||
"npm-package-arg": "^11.0.1",
|
||||
"pacote": "^17.0.4",
|
||||
"tar": "^6.2.0"
|
||||
"tar": "^6.2.1"
|
||||
},
|
||||
"engines": {
|
||||
"node": "^16.14.0 || >=18.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/libnpmexec": {
|
||||
"version": "7.0.8",
|
||||
"version": "7.0.9",
|
||||
"inBundle": true,
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
@@ -9550,7 +9519,7 @@
|
||||
"npmlog": "^7.0.1",
|
||||
"pacote": "^17.0.4",
|
||||
"proc-log": "^3.0.0",
|
||||
"read": "^2.0.0",
|
||||
"read": "^3.0.1",
|
||||
"read-package-json-fast": "^3.0.2",
|
||||
"semver": "^7.3.7",
|
||||
"walk-up-path": "^3.0.1"
|
||||
@@ -9560,7 +9529,7 @@
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/libnpmfund": {
|
||||
"version": "5.0.5",
|
||||
"version": "5.0.6",
|
||||
"inBundle": true,
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
@@ -9571,31 +9540,31 @@
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/libnpmhook": {
|
||||
"version": "10.0.1",
|
||||
"version": "10.0.2",
|
||||
"inBundle": true,
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
"aproba": "^2.0.0",
|
||||
"npm-registry-fetch": "^16.0.0"
|
||||
"npm-registry-fetch": "^16.2.0"
|
||||
},
|
||||
"engines": {
|
||||
"node": "^16.14.0 || >=18.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/libnpmorg": {
|
||||
"version": "6.0.2",
|
||||
"version": "6.0.3",
|
||||
"inBundle": true,
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
"aproba": "^2.0.0",
|
||||
"npm-registry-fetch": "^16.0.0"
|
||||
"npm-registry-fetch": "^16.2.0"
|
||||
},
|
||||
"engines": {
|
||||
"node": "^16.14.0 || >=18.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/libnpmpack": {
|
||||
"version": "6.0.7",
|
||||
"version": "6.0.8",
|
||||
"inBundle": true,
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
@@ -9609,14 +9578,14 @@
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/libnpmpublish": {
|
||||
"version": "9.0.4",
|
||||
"version": "9.0.5",
|
||||
"inBundle": true,
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
"ci-info": "^4.0.0",
|
||||
"normalize-package-data": "^6.0.0",
|
||||
"npm-package-arg": "^11.0.1",
|
||||
"npm-registry-fetch": "^16.0.0",
|
||||
"npm-registry-fetch": "^16.2.0",
|
||||
"proc-log": "^3.0.0",
|
||||
"semver": "^7.3.7",
|
||||
"sigstore": "^2.2.0",
|
||||
@@ -9627,23 +9596,23 @@
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/libnpmsearch": {
|
||||
"version": "7.0.1",
|
||||
"version": "7.0.2",
|
||||
"inBundle": true,
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
"npm-registry-fetch": "^16.0.0"
|
||||
"npm-registry-fetch": "^16.2.0"
|
||||
},
|
||||
"engines": {
|
||||
"node": "^16.14.0 || >=18.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/libnpmteam": {
|
||||
"version": "6.0.1",
|
||||
"version": "6.0.2",
|
||||
"inBundle": true,
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
"aproba": "^2.0.0",
|
||||
"npm-registry-fetch": "^16.0.0"
|
||||
"npm-registry-fetch": "^16.2.0"
|
||||
},
|
||||
"engines": {
|
||||
"node": "^16.14.0 || >=18.0.0"
|
||||
@@ -9694,9 +9663,7 @@
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/minimatch": {
|
||||
"version": "9.0.3",
|
||||
"resolved": "https://registry.npmjs.org/minimatch/-/minimatch-9.0.3.tgz",
|
||||
"integrity": "sha512-RHiac9mvaRw0x3AYRgDC1CxAP7HTcNrrECeA8YYJeWnpo+2Q5CegtZjaotWTWxDG3UeGA1coE05iH1mPjT/2mg==",
|
||||
"version": "9.0.4",
|
||||
"inBundle": true,
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
@@ -9711,8 +9678,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/minipass": {
|
||||
"version": "7.0.4",
|
||||
"resolved": "https://registry.npmjs.org/minipass/-/minipass-7.0.4.tgz",
|
||||
"integrity": "sha512-jYofLM5Dam9279rdkWzqHozUo4ybjdZmCsDHePy5V/PbBcVMiSZR97gmAy45aqi8CK1lG2ECd356FU86avfwUQ==",
|
||||
"inBundle": true,
|
||||
"license": "ISC",
|
||||
"engines": {
|
||||
@@ -9888,7 +9853,7 @@
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/node-gyp": {
|
||||
"version": "10.0.1",
|
||||
"version": "10.1.0",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
@@ -10028,10 +9993,11 @@
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/npm-registry-fetch": {
|
||||
"version": "16.1.0",
|
||||
"version": "16.2.0",
|
||||
"inBundle": true,
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
"@npmcli/redact": "^1.1.0",
|
||||
"make-fetch-happen": "^13.0.0",
|
||||
"minipass": "^7.0.2",
|
||||
"minipass-fetch": "^3.0.0",
|
||||
@@ -10126,8 +10092,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/path-key": {
|
||||
"version": "3.1.1",
|
||||
"resolved": "https://registry.npmjs.org/path-key/-/path-key-3.1.1.tgz",
|
||||
"integrity": "sha512-ojmeN0qd+y0jszEtoY48r0Peq5dwMEkIlCOu6Q5f41lfkswXuKtYrhgoTpLnyIcHm24Uhqx+5Tqm2InSwLhE6Q==",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
@@ -10135,13 +10099,11 @@
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/path-scurry": {
|
||||
"version": "1.10.1",
|
||||
"resolved": "https://registry.npmjs.org/path-scurry/-/path-scurry-1.10.1.tgz",
|
||||
"integrity": "sha512-MkhCqzzBEpPvxxQ71Md0b1Kk51W01lrYvlMzSUaIzNsODdd7mqhiimSZlr+VegAz5Z6Vzt9Xg2ttE//XBhH3EQ==",
|
||||
"version": "1.10.2",
|
||||
"inBundle": true,
|
||||
"license": "BlueOak-1.0.0",
|
||||
"dependencies": {
|
||||
"lru-cache": "^9.1.1 || ^10.0.0",
|
||||
"lru-cache": "^10.2.0",
|
||||
"minipass": "^5.0.0 || ^6.0.2 || ^7.0.0"
|
||||
},
|
||||
"engines": {
|
||||
@@ -10205,11 +10167,11 @@
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/promzard": {
|
||||
"version": "1.0.0",
|
||||
"version": "1.0.1",
|
||||
"inBundle": true,
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
"read": "^2.0.0"
|
||||
"read": "^3.0.1"
|
||||
},
|
||||
"engines": {
|
||||
"node": "^14.17.0 || ^16.13.0 || >=18.0.0"
|
||||
@@ -10223,11 +10185,11 @@
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/read": {
|
||||
"version": "2.1.0",
|
||||
"version": "3.0.1",
|
||||
"inBundle": true,
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
"mute-stream": "~1.0.0"
|
||||
"mute-stream": "^1.0.0"
|
||||
},
|
||||
"engines": {
|
||||
"node": "^14.17.0 || ^16.13.0 || >=18.0.0"
|
||||
@@ -10277,8 +10239,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/safer-buffer": {
|
||||
"version": "2.1.2",
|
||||
"resolved": "https://registry.npmjs.org/safer-buffer/-/safer-buffer-2.1.2.tgz",
|
||||
"integrity": "sha512-YZo3K82SD7Riyi0E1EQPojLz7kpepnSQI9IyPbHHg1XXXevb5dJI7tpyN2ADxGcQbHG7vcyRHk0cbwqcQriUtg==",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"optional": true
|
||||
@@ -10315,8 +10275,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/shebang-command": {
|
||||
"version": "2.0.0",
|
||||
"resolved": "https://registry.npmjs.org/shebang-command/-/shebang-command-2.0.0.tgz",
|
||||
"integrity": "sha512-kHxr2zZpYtdmrN1qDjrrX/Z1rR1kG8Dx+gkpK1G4eXmvXswmcE1hTWBWYUzlraYw1/yZp6YuDY77YtvbN0dmDA==",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
@@ -10328,8 +10286,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/shebang-regex": {
|
||||
"version": "3.0.0",
|
||||
"resolved": "https://registry.npmjs.org/shebang-regex/-/shebang-regex-3.0.0.tgz",
|
||||
"integrity": "sha512-7++dFhtcx3353uBaq8DDR4NuxBetBzC7ZQOhmTQInHEd6bSrXdiEyzCvG07Z44UYdLShWUyXt5M/yhz8ekcb1A==",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
@@ -10338,8 +10294,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/signal-exit": {
|
||||
"version": "4.1.0",
|
||||
"resolved": "https://registry.npmjs.org/signal-exit/-/signal-exit-4.1.0.tgz",
|
||||
"integrity": "sha512-bzyZ1e88w9O1iNJbKnOlvYTrWPDl46O1bG0D3XInv+9tkPrxrN8jUUTiFlDkkmKWgn1M6CfIA13SuGqOa9Korw==",
|
||||
"inBundle": true,
|
||||
"license": "ISC",
|
||||
"engines": {
|
||||
@@ -10441,8 +10395,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/string-width": {
|
||||
"version": "4.2.3",
|
||||
"resolved": "https://registry.npmjs.org/string-width/-/string-width-4.2.3.tgz",
|
||||
"integrity": "sha512-wKyQRQpjJ0sIp62ErSZdGsjMJWsap5oRNihHhu6G7JVO/9jIB6UyevL+tXuOqrng8j/cxKTWyWUwvSTriiZz/g==",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
@@ -10457,8 +10409,6 @@
|
||||
"node_modules/npm/node_modules/string-width-cjs": {
|
||||
"name": "string-width",
|
||||
"version": "4.2.3",
|
||||
"resolved": "https://registry.npmjs.org/string-width/-/string-width-4.2.3.tgz",
|
||||
"integrity": "sha512-wKyQRQpjJ0sIp62ErSZdGsjMJWsap5oRNihHhu6G7JVO/9jIB6UyevL+tXuOqrng8j/cxKTWyWUwvSTriiZz/g==",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
@@ -10472,8 +10422,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/strip-ansi": {
|
||||
"version": "6.0.1",
|
||||
"resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-6.0.1.tgz",
|
||||
"integrity": "sha512-Y38VPSHcqkFrCpFnQ9vuSXmquuv5oXOKpGeT6aGrr3o3Gc9AlVa6JBfUSOCnbxGGZF+/0ooI7KrPuUSztUdU5A==",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
@@ -10486,8 +10434,6 @@
|
||||
"node_modules/npm/node_modules/strip-ansi-cjs": {
|
||||
"name": "strip-ansi",
|
||||
"version": "6.0.1",
|
||||
"resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-6.0.1.tgz",
|
||||
"integrity": "sha512-Y38VPSHcqkFrCpFnQ9vuSXmquuv5oXOKpGeT6aGrr3o3Gc9AlVa6JBfUSOCnbxGGZF+/0ooI7KrPuUSztUdU5A==",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
@@ -10509,7 +10455,7 @@
|
||||
}
|
||||
},
|
||||
"node_modules/npm/node_modules/tar": {
|
||||
"version": "6.2.0",
|
||||
"version": "6.2.1",
|
||||
"inBundle": true,
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
@@ -10609,8 +10555,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/util-deprecate": {
|
||||
"version": "1.0.2",
|
||||
"resolved": "https://registry.npmjs.org/util-deprecate/-/util-deprecate-1.0.2.tgz",
|
||||
"integrity": "sha512-EPD5q1uXyFxJpCrLnCc1nHnq3gOa6DZBocAIiI2TaSCA7VCJ1UJDMagCzIkXNsUYfD1daK//LTEQ8xiIbrHtcw==",
|
||||
"inBundle": true,
|
||||
"license": "MIT"
|
||||
},
|
||||
@@ -10679,8 +10623,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/wrap-ansi": {
|
||||
"version": "8.1.0",
|
||||
"resolved": "https://registry.npmjs.org/wrap-ansi/-/wrap-ansi-8.1.0.tgz",
|
||||
"integrity": "sha512-si7QWI6zUMq56bESFvagtmzMdGOtoxfR+Sez11Mobfc7tm+VkUckk9bW2UeffTGVUbOksxmSw0AA2gs8g71NCQ==",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
@@ -10698,8 +10640,6 @@
|
||||
"node_modules/npm/node_modules/wrap-ansi-cjs": {
|
||||
"name": "wrap-ansi",
|
||||
"version": "7.0.0",
|
||||
"resolved": "https://registry.npmjs.org/wrap-ansi/-/wrap-ansi-7.0.0.tgz",
|
||||
"integrity": "sha512-YVGIj2kamLSTxw6NsZjoBxfSwsn0ycdesmc4p+Q21c5zPuZ1pl+NfxVdxPtdHvmNVOQ6XSYG4AUtyt/Fi7D16Q==",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
@@ -10730,8 +10670,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/wrap-ansi/node_modules/ansi-regex": {
|
||||
"version": "6.0.1",
|
||||
"resolved": "https://registry.npmjs.org/ansi-regex/-/ansi-regex-6.0.1.tgz",
|
||||
"integrity": "sha512-n5M855fKb2SsfMIiFFoVrABHJC8QtHwVx+mHWP3QcEqBHYienj5dHSgjbxtC0WEZXYt4wcD6zrQElDPhFuZgfA==",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
@@ -10743,8 +10681,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/wrap-ansi/node_modules/emoji-regex": {
|
||||
"version": "9.2.2",
|
||||
"resolved": "https://registry.npmjs.org/emoji-regex/-/emoji-regex-9.2.2.tgz",
|
||||
"integrity": "sha512-L18DaJsXSUk2+42pv8mLs5jJT2hqFkFE4j21wOmgbUqsZ2hL72NsUU785g9RXgo3s0ZNgVl42TiHp3ZtOv/Vyg==",
|
||||
"inBundle": true,
|
||||
"license": "MIT"
|
||||
},
|
||||
@@ -10766,8 +10702,6 @@
|
||||
},
|
||||
"node_modules/npm/node_modules/wrap-ansi/node_modules/strip-ansi": {
|
||||
"version": "7.1.0",
|
||||
"resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-7.1.0.tgz",
|
||||
"integrity": "sha512-iq6eVVI64nQQTRYq2KtEg2d2uU7LElhTJwsH4YzIHZshxlgZms/wIc4VoDQTlG/IvVIrBKG06CrZnp0qv7hkcQ==",
|
||||
"inBundle": true,
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
|
||||
4
extensions/react-widget/package-lock.json
generated
4
extensions/react-widget/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "docsgpt",
|
||||
"version": "0.3.6",
|
||||
"version": "0.3.7",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "docsgpt",
|
||||
"version": "0.3.6",
|
||||
"version": "0.3.7",
|
||||
"license": "Apache-2.0",
|
||||
"dependencies": {
|
||||
"@babel/plugin-transform-flow-strip-types": "^7.23.3",
|
||||
|
||||
@@ -19,7 +19,7 @@
|
||||
},
|
||||
"scripts": {
|
||||
"build": "parcel build src/index.ts",
|
||||
"dev": "parcel",
|
||||
"dev": "parcel src/index.html -p 3000",
|
||||
"test": "jest",
|
||||
"lint": "eslint",
|
||||
"check": "tsc --noEmit",
|
||||
|
||||
@@ -1,8 +1,7 @@
|
||||
"use client";
|
||||
import { Fragment, useEffect, useRef, useState } from 'react'
|
||||
import { PaperPlaneIcon, RocketIcon, ExclamationTriangleIcon, Cross2Icon } from '@radix-ui/react-icons';
|
||||
import { MESSAGE_TYPE } from '../models/types';
|
||||
import { Query, Status } from '../models/types';
|
||||
import { MESSAGE_TYPE, Query, Status } from '../types/index';
|
||||
import MessageIcon from '../assets/message.svg'
|
||||
import { fetchAnswerStreaming } from '../requests/streamingApi';
|
||||
import styled, { keyframes, createGlobalStyle } from 'styled-components';
|
||||
|
||||
13
extensions/react-widget/src/types/index.ts
Normal file
13
extensions/react-widget/src/types/index.ts
Normal file
@@ -0,0 +1,13 @@
|
||||
export type MESSAGE_TYPE = 'QUESTION' | 'ANSWER' | 'ERROR';
|
||||
export type Status = 'idle' | 'loading' | 'failed';
|
||||
export type FEEDBACK = 'LIKE' | 'DISLIKE';
|
||||
|
||||
export interface Query {
|
||||
prompt: string;
|
||||
response?: string;
|
||||
feedback?: FEEDBACK;
|
||||
error?: string;
|
||||
sources?: { title: string; text: string }[];
|
||||
conversationId?: string | null;
|
||||
title?: string | null;
|
||||
}
|
||||
@@ -6,7 +6,7 @@ import PageNotFound from './PageNotFound';
|
||||
import { inject } from '@vercel/analytics';
|
||||
import { useMediaQuery } from './hooks';
|
||||
import { useState } from 'react';
|
||||
import Setting from './Setting';
|
||||
import Setting from './settings';
|
||||
|
||||
inject();
|
||||
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,4 +1,4 @@
|
||||
import { useState } from 'react';
|
||||
import React from 'react';
|
||||
import Arrow2 from '../assets/dropdown-arrow.svg';
|
||||
import Edit from '../assets/edit.svg';
|
||||
import Trash from '../assets/trash.svg';
|
||||
@@ -14,8 +14,6 @@ function Dropdown({
|
||||
showDelete,
|
||||
onDelete,
|
||||
placeholder,
|
||||
fullWidth,
|
||||
alignMidddle,
|
||||
}: {
|
||||
options:
|
||||
| string[]
|
||||
@@ -33,10 +31,8 @@ function Dropdown({
|
||||
showDelete?: boolean;
|
||||
onDelete?: (value: string) => void;
|
||||
placeholder?: string;
|
||||
fullWidth?: boolean;
|
||||
alignMidddle?: boolean;
|
||||
}) {
|
||||
const [isOpen, setIsOpen] = useState(false);
|
||||
const [isOpen, setIsOpen] = React.useState(false);
|
||||
return (
|
||||
<div
|
||||
className={[
|
||||
@@ -58,9 +54,7 @@ function Dropdown({
|
||||
</span>
|
||||
) : (
|
||||
<span
|
||||
className={`${
|
||||
alignMidddle && 'flex-1'
|
||||
} overflow-hidden text-ellipsis dark:text-bright-gray ${
|
||||
className={`overflow-hidden text-ellipsis dark:text-bright-gray ${
|
||||
!selectedValue && 'text-silver dark:text-gray-400'
|
||||
}`}
|
||||
>
|
||||
@@ -80,7 +74,7 @@ function Dropdown({
|
||||
/>
|
||||
</button>
|
||||
{isOpen && (
|
||||
<div className="absolute left-0 right-0 z-20 -mt-1 max-h-40 overflow-y-auto rounded-b-xl border-2 bg-white shadow-lg dark:border-chinese-silver dark:bg-dark-charcoal">
|
||||
<div className="absolute left-0 right-0 z-20 -mt-1 max-h-40 overflow-y-auto rounded-b-xl border-2 border-silver bg-white shadow-lg dark:border-chinese-silver dark:bg-dark-charcoal">
|
||||
{options.map((option: any, index) => (
|
||||
<div
|
||||
key={index}
|
||||
@@ -91,7 +85,7 @@ function Dropdown({
|
||||
onSelect(option);
|
||||
setIsOpen(false);
|
||||
}}
|
||||
className="ml-2 flex-1 overflow-hidden overflow-ellipsis whitespace-nowrap py-3 dark:text-light-gray"
|
||||
className="ml-5 flex-1 overflow-hidden overflow-ellipsis whitespace-nowrap py-3 dark:text-light-gray"
|
||||
>
|
||||
{typeof option === 'string'
|
||||
? option
|
||||
|
||||
@@ -3,6 +3,33 @@ import { Doc } from '../preferences/preferenceApi';
|
||||
|
||||
const apiHost = import.meta.env.VITE_API_HOST || 'https://docsapi.arc53.com';
|
||||
|
||||
function getDocPath(selectedDocs: Doc | null): string {
|
||||
let docPath = 'default';
|
||||
|
||||
if (selectedDocs) {
|
||||
let namePath = selectedDocs.name;
|
||||
if (selectedDocs.language === namePath) {
|
||||
namePath = '.project';
|
||||
}
|
||||
if (selectedDocs.location === 'local') {
|
||||
docPath = 'local' + '/' + selectedDocs.name + '/';
|
||||
} else if (selectedDocs.location === 'remote') {
|
||||
docPath =
|
||||
selectedDocs.language +
|
||||
'/' +
|
||||
namePath +
|
||||
'/' +
|
||||
selectedDocs.version +
|
||||
'/' +
|
||||
selectedDocs.model +
|
||||
'/';
|
||||
} else if (selectedDocs.location === 'custom') {
|
||||
docPath = selectedDocs.docLink;
|
||||
}
|
||||
}
|
||||
|
||||
return docPath;
|
||||
}
|
||||
export function fetchAnswerApi(
|
||||
question: string,
|
||||
signal: AbortSignal,
|
||||
@@ -28,27 +55,7 @@ export function fetchAnswerApi(
|
||||
title: any;
|
||||
}
|
||||
> {
|
||||
let docPath = 'default';
|
||||
|
||||
if (selectedDocs) {
|
||||
let namePath = selectedDocs.name;
|
||||
if (selectedDocs.language === namePath) {
|
||||
namePath = '.project';
|
||||
}
|
||||
if (selectedDocs.location === 'local') {
|
||||
docPath = 'local' + '/' + selectedDocs.name + '/';
|
||||
} else if (selectedDocs.location === 'remote') {
|
||||
docPath =
|
||||
selectedDocs.language +
|
||||
'/' +
|
||||
namePath +
|
||||
'/' +
|
||||
selectedDocs.version +
|
||||
'/' +
|
||||
selectedDocs.model +
|
||||
'/';
|
||||
}
|
||||
}
|
||||
const docPath = getDocPath(selectedDocs);
|
||||
//in history array remove all keys except prompt and response
|
||||
history = history.map((item) => {
|
||||
return { prompt: item.prompt, response: item.response };
|
||||
@@ -98,27 +105,7 @@ export function fetchAnswerSteaming(
|
||||
chunks: string,
|
||||
onEvent: (event: MessageEvent) => void,
|
||||
): Promise<Answer> {
|
||||
let docPath = 'default';
|
||||
|
||||
if (selectedDocs) {
|
||||
let namePath = selectedDocs.name;
|
||||
if (selectedDocs.language === namePath) {
|
||||
namePath = '.project';
|
||||
}
|
||||
if (selectedDocs.location === 'local') {
|
||||
docPath = 'local' + '/' + selectedDocs.name + '/';
|
||||
} else if (selectedDocs.location === 'remote') {
|
||||
docPath =
|
||||
selectedDocs.language +
|
||||
'/' +
|
||||
namePath +
|
||||
'/' +
|
||||
selectedDocs.version +
|
||||
'/' +
|
||||
selectedDocs.model +
|
||||
'/';
|
||||
}
|
||||
}
|
||||
const docPath = getDocPath(selectedDocs);
|
||||
|
||||
history = history.map((item) => {
|
||||
return { prompt: item.prompt, response: item.response };
|
||||
@@ -195,31 +182,7 @@ export function searchEndpoint(
|
||||
history: Array<any> = [],
|
||||
chunks: string,
|
||||
) {
|
||||
/*
|
||||
"active_docs": "default",
|
||||
"question": "Summarise",
|
||||
"conversation_id": null,
|
||||
"history": "[]" */
|
||||
let docPath = 'default';
|
||||
if (selectedDocs) {
|
||||
let namePath = selectedDocs.name;
|
||||
if (selectedDocs.language === namePath) {
|
||||
namePath = '.project';
|
||||
}
|
||||
if (selectedDocs.location === 'local') {
|
||||
docPath = 'local' + '/' + selectedDocs.name + '/';
|
||||
} else if (selectedDocs.location === 'remote') {
|
||||
docPath =
|
||||
selectedDocs.language +
|
||||
'/' +
|
||||
namePath +
|
||||
'/' +
|
||||
selectedDocs.version +
|
||||
'/' +
|
||||
selectedDocs.model +
|
||||
'/';
|
||||
}
|
||||
}
|
||||
const docPath = getDocPath(selectedDocs);
|
||||
|
||||
const body = {
|
||||
question: question,
|
||||
|
||||
@@ -3,3 +3,42 @@ export type ActiveState = 'ACTIVE' | 'INACTIVE';
|
||||
export type User = {
|
||||
avatar: string;
|
||||
};
|
||||
export type Doc = {
|
||||
location: string;
|
||||
name: string;
|
||||
language: string;
|
||||
version: string;
|
||||
description: string;
|
||||
fullName: string;
|
||||
date: string;
|
||||
docLink: string;
|
||||
model: string;
|
||||
};
|
||||
|
||||
export type PromptProps = {
|
||||
prompts: { name: string; id: string; type: string }[];
|
||||
selectedPrompt: { name: string; id: string; type: string };
|
||||
onSelectPrompt: (name: string, id: string, type: string) => void;
|
||||
setPrompts: (prompts: { name: string; id: string; type: string }[]) => void;
|
||||
apiHost: string;
|
||||
};
|
||||
|
||||
export type DocumentsProps = {
|
||||
documents: Doc[] | null;
|
||||
handleDeleteDocument: (index: number, document: Doc) => void;
|
||||
};
|
||||
|
||||
export type CreateAPIKeyModalProps = {
|
||||
close: () => void;
|
||||
createAPIKey: (payload: {
|
||||
name: string;
|
||||
source: string;
|
||||
prompt_id: string;
|
||||
chunks: string;
|
||||
}) => void;
|
||||
};
|
||||
|
||||
export type SaveAPIKeyModalProps = {
|
||||
apiKey: string;
|
||||
close: () => void;
|
||||
};
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import { ActiveState } from '../models/misc';
|
||||
import Exit from '../assets/exit.svg';
|
||||
|
||||
function AddPrompt({
|
||||
setModalState,
|
||||
@@ -16,50 +17,54 @@ function AddPrompt({
|
||||
setNewPromptContent: (content: string) => void;
|
||||
}) {
|
||||
return (
|
||||
<div className="rounded-3xl px-4 py-2">
|
||||
<p className="mb-1 text-xl text-jet dark:text-bright-gray">Add Prompt</p>
|
||||
<p className="mb-7 text-xs text-[#747474] dark:text-[#7F7F82]">
|
||||
Add your custom prompt and save it to DocsGPT
|
||||
</p>
|
||||
<div>
|
||||
<input
|
||||
placeholder="Prompt Name"
|
||||
type="text"
|
||||
className="h-10 w-full rounded-lg border-2 border-silver px-3 outline-none dark:bg-transparent dark:text-silver"
|
||||
value={newPromptName}
|
||||
onChange={(e) => setNewPromptName(e.target.value)}
|
||||
></input>
|
||||
<div className="relative bottom-12 left-3 mt-[-3.00px]">
|
||||
<span className="bg-white px-1 text-xs text-silver dark:bg-outer-space dark:text-silver">
|
||||
Prompt Name
|
||||
</span>
|
||||
<div className="relative">
|
||||
<button
|
||||
className="absolute top-3 right-4 m-2 w-3"
|
||||
onClick={() => {
|
||||
setModalState('INACTIVE');
|
||||
}}
|
||||
>
|
||||
<img className="filter dark:invert" src={Exit} />
|
||||
</button>
|
||||
<div className="p-8">
|
||||
<p className="mb-1 text-xl text-jet dark:text-bright-gray">
|
||||
Add Prompt
|
||||
</p>
|
||||
<p className="mb-7 text-xs text-[#747474] dark:text-[#7F7F82]">
|
||||
Add your custom prompt and save it to DocsGPT
|
||||
</p>
|
||||
<div>
|
||||
<input
|
||||
placeholder="Prompt Name"
|
||||
type="text"
|
||||
className="h-10 w-full rounded-lg border-2 border-silver px-3 outline-none dark:bg-transparent dark:text-silver"
|
||||
value={newPromptName}
|
||||
onChange={(e) => setNewPromptName(e.target.value)}
|
||||
></input>
|
||||
<div className="relative bottom-12 left-3 mt-[-3.00px]">
|
||||
<span className="bg-white px-1 text-xs text-silver dark:bg-outer-space dark:text-silver">
|
||||
Prompt Name
|
||||
</span>
|
||||
</div>
|
||||
<div className="relative top-[7px] left-3">
|
||||
<span className="bg-white px-1 text-xs text-silver dark:bg-outer-space dark:text-silver">
|
||||
Prompt Text
|
||||
</span>
|
||||
</div>
|
||||
<textarea
|
||||
className="h-56 w-full rounded-lg border-2 border-silver px-3 py-2 outline-none dark:bg-transparent dark:text-silver"
|
||||
value={newPromptContent}
|
||||
onChange={(e) => setNewPromptContent(e.target.value)}
|
||||
></textarea>
|
||||
</div>
|
||||
<div className="relative top-[7px] left-3">
|
||||
<span className="bg-white px-1 text-xs text-silver dark:bg-outer-space dark:text-silver">
|
||||
Prompt Text
|
||||
</span>
|
||||
<div className="mt-6 flex flex-row-reverse">
|
||||
<button
|
||||
onClick={handleAddPrompt}
|
||||
className="rounded-3xl bg-purple-30 px-5 py-2 text-sm text-white transition-all hover:opacity-90"
|
||||
>
|
||||
Save
|
||||
</button>
|
||||
</div>
|
||||
<textarea
|
||||
className="h-56 w-full rounded-lg border-2 border-silver px-3 py-2 outline-none dark:bg-transparent dark:text-silver"
|
||||
value={newPromptContent}
|
||||
onChange={(e) => setNewPromptContent(e.target.value)}
|
||||
></textarea>
|
||||
</div>
|
||||
<div className="mt-6 flex flex-row-reverse gap-4">
|
||||
<button
|
||||
onClick={handleAddPrompt}
|
||||
className="rounded-3xl bg-purple-30 px-5 py-2 text-white transition-all hover:opacity-90"
|
||||
>
|
||||
Save
|
||||
</button>
|
||||
<button
|
||||
onClick={() => {
|
||||
setModalState('INACTIVE');
|
||||
}}
|
||||
className="cursor-pointer font-medium dark:text-light-gray"
|
||||
>
|
||||
Cancel
|
||||
</button>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
@@ -83,58 +88,62 @@ function EditPrompt({
|
||||
currentPromptEdit: { name: string; id: string; type: string };
|
||||
}) {
|
||||
return (
|
||||
<div className="rounded-3xl px-4 py-2">
|
||||
<p className="mb-1 text-xl text-jet dark:text-bright-gray">Edit Prompt</p>
|
||||
<p className="mb-7 text-xs text-[#747474] dark:text-[#7F7F82]">
|
||||
Edit your custom prompt and save it to DocsGPT
|
||||
</p>
|
||||
<div>
|
||||
<input
|
||||
placeholder="Prompt Name"
|
||||
type="text"
|
||||
className="h-10 w-full rounded-lg border-2 border-silver px-3 outline-none dark:bg-transparent dark:text-silver"
|
||||
value={editPromptName}
|
||||
onChange={(e) => setEditPromptName(e.target.value)}
|
||||
></input>
|
||||
<div className="relative bottom-12 left-3 mt-[-3.00px]">
|
||||
<span className="bg-white px-1 text-xs text-silver dark:bg-outer-space dark:text-silver">
|
||||
Prompt Name
|
||||
</span>
|
||||
<div className="relative">
|
||||
<button
|
||||
className="absolute top-3 right-4 m-2 w-3"
|
||||
onClick={() => {
|
||||
setModalState('INACTIVE');
|
||||
}}
|
||||
>
|
||||
<img className="filter dark:invert" src={Exit} />
|
||||
</button>
|
||||
<div className="p-8">
|
||||
<p className="mb-1 text-xl text-jet dark:text-bright-gray">
|
||||
Edit Prompt
|
||||
</p>
|
||||
<p className="mb-7 text-xs text-[#747474] dark:text-[#7F7F82]">
|
||||
Edit your custom prompt and save it to DocsGPT
|
||||
</p>
|
||||
<div>
|
||||
<input
|
||||
placeholder="Prompt Name"
|
||||
type="text"
|
||||
className="h-10 w-full rounded-lg border-2 border-silver px-3 outline-none dark:bg-transparent dark:text-silver"
|
||||
value={editPromptName}
|
||||
onChange={(e) => setEditPromptName(e.target.value)}
|
||||
></input>
|
||||
<div className="relative bottom-12 left-3 mt-[-3.00px]">
|
||||
<span className="bg-white px-1 text-xs text-silver dark:bg-outer-space dark:text-silver">
|
||||
Prompt Name
|
||||
</span>
|
||||
</div>
|
||||
<div className="relative top-[7px] left-3">
|
||||
<span className="bg-white px-1 text-xs text-silver dark:bg-outer-space dark:text-silver">
|
||||
Prompt Text
|
||||
</span>
|
||||
</div>
|
||||
<textarea
|
||||
className="h-56 w-full rounded-lg border-2 border-silver px-3 py-2 outline-none dark:bg-transparent dark:text-silver"
|
||||
value={editPromptContent}
|
||||
onChange={(e) => setEditPromptContent(e.target.value)}
|
||||
></textarea>
|
||||
</div>
|
||||
<div className="relative top-[7px] left-3">
|
||||
<span className="bg-white px-1 text-xs text-silver dark:bg-outer-space dark:text-silver">
|
||||
Prompt Text
|
||||
</span>
|
||||
<div className="mt-6 flex flex-row-reverse gap-4">
|
||||
<button
|
||||
className={`rounded-3xl bg-purple-30 px-5 py-2 text-sm text-white transition-all ${
|
||||
currentPromptEdit.type === 'public'
|
||||
? 'cursor-not-allowed opacity-50'
|
||||
: 'hover:opacity-90'
|
||||
}`}
|
||||
onClick={() => {
|
||||
handleEditPrompt &&
|
||||
handleEditPrompt(currentPromptEdit.id, currentPromptEdit.type);
|
||||
}}
|
||||
disabled={currentPromptEdit.type === 'public'}
|
||||
>
|
||||
Save
|
||||
</button>
|
||||
</div>
|
||||
<textarea
|
||||
className="h-56 w-full rounded-lg border-2 border-silver px-3 py-2 outline-none dark:bg-transparent dark:text-silver"
|
||||
value={editPromptContent}
|
||||
onChange={(e) => setEditPromptContent(e.target.value)}
|
||||
></textarea>
|
||||
</div>
|
||||
<div className="mt-6 flex flex-row-reverse gap-4">
|
||||
<button
|
||||
className={`rounded-3xl bg-purple-30 px-5 py-2 text-white transition-all ${
|
||||
currentPromptEdit.type === 'public'
|
||||
? 'cursor-not-allowed opacity-50'
|
||||
: 'hover:opacity-90'
|
||||
}`}
|
||||
onClick={() => {
|
||||
handleEditPrompt &&
|
||||
handleEditPrompt(currentPromptEdit.id, currentPromptEdit.type);
|
||||
}}
|
||||
disabled={currentPromptEdit.type === 'public'}
|
||||
>
|
||||
Save
|
||||
</button>
|
||||
<button
|
||||
onClick={() => {
|
||||
setModalState('INACTIVE');
|
||||
}}
|
||||
className="cursor-pointer font-medium dark:text-light-gray"
|
||||
>
|
||||
Cancel
|
||||
</button>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
@@ -205,7 +214,7 @@ export default function PromptsModal({
|
||||
modalState === 'ACTIVE' ? 'visible' : 'hidden'
|
||||
} fixed top-0 left-0 z-30 h-screen w-screen bg-gray-alpha`}
|
||||
>
|
||||
<article className="mx-auto mt-24 flex w-[90vw] max-w-lg flex-col gap-4 rounded-lg bg-white p-6 shadow-lg dark:bg-outer-space">
|
||||
<article className="mx-auto mt-24 flex w-[90vw] max-w-lg flex-col gap-4 rounded-2xl bg-white shadow-lg dark:bg-outer-space">
|
||||
{view}
|
||||
</article>
|
||||
</article>
|
||||
|
||||
336
frontend/src/settings/APIKeys.tsx
Normal file
336
frontend/src/settings/APIKeys.tsx
Normal file
@@ -0,0 +1,336 @@
|
||||
import React from 'react';
|
||||
import { useSelector } from 'react-redux';
|
||||
import Dropdown from '../components/Dropdown';
|
||||
import {
|
||||
Doc,
|
||||
CreateAPIKeyModalProps,
|
||||
SaveAPIKeyModalProps,
|
||||
} from '../models/misc';
|
||||
import { selectSourceDocs } from '../preferences/preferenceSlice';
|
||||
import Exit from '../assets/exit.svg';
|
||||
import Trash from '../assets/trash.svg';
|
||||
|
||||
const apiHost = import.meta.env.VITE_API_HOST || 'https://docsapi.arc53.com';
|
||||
const embeddingsName =
|
||||
import.meta.env.VITE_EMBEDDINGS_NAME ||
|
||||
'huggingface_sentence-transformers/all-mpnet-base-v2';
|
||||
|
||||
const APIKeys: React.FC = () => {
|
||||
const [isCreateModalOpen, setCreateModal] = React.useState(false);
|
||||
const [isSaveKeyModalOpen, setSaveKeyModal] = React.useState(false);
|
||||
const [newKey, setNewKey] = React.useState('');
|
||||
const [apiKeys, setApiKeys] = React.useState<
|
||||
{ name: string; key: string; source: string; id: string }[]
|
||||
>([]);
|
||||
const handleDeleteKey = (id: string) => {
|
||||
fetch(`${apiHost}/api/delete_api_key`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
body: JSON.stringify({ id }),
|
||||
})
|
||||
.then((response) => {
|
||||
if (!response.ok) {
|
||||
throw new Error('Failed to delete API Key');
|
||||
}
|
||||
return response.json();
|
||||
})
|
||||
.then((data) => {
|
||||
data.status === 'ok' &&
|
||||
setApiKeys((previous) => previous.filter((elem) => elem.id !== id));
|
||||
})
|
||||
.catch((error) => {
|
||||
console.error(error);
|
||||
});
|
||||
};
|
||||
React.useEffect(() => {
|
||||
fetchAPIKeys();
|
||||
}, []);
|
||||
const fetchAPIKeys = async () => {
|
||||
try {
|
||||
const response = await fetch(`${apiHost}/api/get_api_keys`);
|
||||
if (!response.ok) {
|
||||
throw new Error('Failed to fetch API Keys');
|
||||
}
|
||||
const apiKeys = await response.json();
|
||||
setApiKeys(apiKeys);
|
||||
} catch (error) {
|
||||
console.log(error);
|
||||
}
|
||||
};
|
||||
const createAPIKey = (payload: {
|
||||
name: string;
|
||||
source: string;
|
||||
prompt_id: string;
|
||||
chunks: string;
|
||||
}) => {
|
||||
fetch(`${apiHost}/api/create_api_key`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
body: JSON.stringify(payload),
|
||||
})
|
||||
.then((response) => {
|
||||
if (!response.ok) {
|
||||
throw new Error('Failed to create API Key');
|
||||
}
|
||||
return response.json();
|
||||
})
|
||||
.then((data) => {
|
||||
setApiKeys([...apiKeys, data]);
|
||||
setCreateModal(false);
|
||||
setNewKey(data.key);
|
||||
setSaveKeyModal(true);
|
||||
fetchAPIKeys();
|
||||
})
|
||||
.catch((error) => {
|
||||
console.error(error);
|
||||
});
|
||||
};
|
||||
return (
|
||||
<div className="mt-8">
|
||||
<div className="flex w-full flex-col lg:w-max">
|
||||
<div className="flex justify-end">
|
||||
<button
|
||||
onClick={() => setCreateModal(true)}
|
||||
className="rounded-full bg-purple-30 px-4 py-3 text-sm text-white hover:opacity-90"
|
||||
>
|
||||
Create new
|
||||
</button>
|
||||
</div>
|
||||
{isCreateModalOpen && (
|
||||
<CreateAPIKeyModal
|
||||
close={() => setCreateModal(false)}
|
||||
createAPIKey={createAPIKey}
|
||||
/>
|
||||
)}
|
||||
{isSaveKeyModalOpen && (
|
||||
<SaveAPIKeyModal
|
||||
apiKey={newKey}
|
||||
close={() => setSaveKeyModal(false)}
|
||||
/>
|
||||
)}
|
||||
<div className="mt-[27px] w-full">
|
||||
<div className="w-full overflow-x-auto">
|
||||
<table className="block w-max table-auto content-center justify-center rounded-xl border text-center dark:border-chinese-silver dark:text-bright-gray">
|
||||
<thead>
|
||||
<tr>
|
||||
<th className="border-r p-4 md:w-[244px]">Name</th>
|
||||
<th className="w-[244px] border-r px-4 py-2">
|
||||
Source document
|
||||
</th>
|
||||
<th className="w-[244px] border-r px-4 py-2">API Key</th>
|
||||
<th className="px-4 py-2"></th>
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody>
|
||||
{apiKeys?.map((element, index) => (
|
||||
<tr key={index}>
|
||||
<td className="border-r border-t p-4">{element.name}</td>
|
||||
<td className="border-r border-t p-4">{element.source}</td>
|
||||
<td className="border-r border-t p-4">{element.key}</td>
|
||||
<td className="border-t p-4">
|
||||
<img
|
||||
src={Trash}
|
||||
alt="Delete"
|
||||
className="h-4 w-4 cursor-pointer hover:opacity-50"
|
||||
id={`img-${index}`}
|
||||
onClick={() => handleDeleteKey(element.id)}
|
||||
/>
|
||||
</td>
|
||||
</tr>
|
||||
))}
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
};
|
||||
|
||||
const CreateAPIKeyModal: React.FC<CreateAPIKeyModalProps> = ({
|
||||
close,
|
||||
createAPIKey,
|
||||
}) => {
|
||||
const [APIKeyName, setAPIKeyName] = React.useState<string>('');
|
||||
const [sourcePath, setSourcePath] = React.useState<{
|
||||
label: string;
|
||||
value: string;
|
||||
} | null>(null);
|
||||
|
||||
const chunkOptions = ['0', '2', '4', '6', '8', '10'];
|
||||
const [chunk, setChunk] = React.useState<string>('2');
|
||||
const [activePrompts, setActivePrompts] = React.useState<
|
||||
{ name: string; id: string; type: string }[]
|
||||
>([]);
|
||||
const [prompt, setPrompt] = React.useState<{
|
||||
name: string;
|
||||
id: string;
|
||||
type: string;
|
||||
} | null>(null);
|
||||
const docs = useSelector(selectSourceDocs);
|
||||
React.useEffect(() => {
|
||||
const fetchPrompts = async () => {
|
||||
try {
|
||||
const response = await fetch(`${apiHost}/api/get_prompts`);
|
||||
if (!response.ok) {
|
||||
throw new Error('Failed to fetch prompts');
|
||||
}
|
||||
const promptsData = await response.json();
|
||||
setActivePrompts(promptsData);
|
||||
} catch (error) {
|
||||
console.error(error);
|
||||
}
|
||||
};
|
||||
fetchPrompts();
|
||||
}, []);
|
||||
const extractDocPaths = () =>
|
||||
docs
|
||||
? docs
|
||||
.filter((doc) => doc.model === embeddingsName)
|
||||
.map((doc: Doc) => {
|
||||
let namePath = doc.name;
|
||||
if (doc.language === namePath) {
|
||||
namePath = '.project';
|
||||
}
|
||||
let docPath = 'default';
|
||||
if (doc.location === 'local') {
|
||||
docPath = 'local' + '/' + doc.name + '/';
|
||||
} else if (doc.location === 'remote') {
|
||||
docPath =
|
||||
doc.language +
|
||||
'/' +
|
||||
namePath +
|
||||
'/' +
|
||||
doc.version +
|
||||
'/' +
|
||||
doc.model +
|
||||
'/';
|
||||
}
|
||||
return {
|
||||
label: doc.name,
|
||||
value: docPath,
|
||||
};
|
||||
})
|
||||
: [];
|
||||
|
||||
return (
|
||||
<div className="fixed top-0 left-0 z-30 flex h-screen w-screen items-center justify-center bg-gray-alpha bg-opacity-50">
|
||||
<div className="relative w-11/12 rounded-2xl bg-white p-10 dark:bg-outer-space sm:w-[512px]">
|
||||
<button className="absolute top-3 right-4 m-2 w-3" onClick={close}>
|
||||
<img className="filter dark:invert" src={Exit} />
|
||||
</button>
|
||||
<div className="mb-6">
|
||||
<span className="text-xl text-jet dark:text-bright-gray">
|
||||
Create New API Key
|
||||
</span>
|
||||
</div>
|
||||
<div className="relative mt-5 mb-4">
|
||||
<span className="absolute left-2 -top-2 bg-white px-2 text-xs text-gray-4000 dark:bg-outer-space dark:text-silver">
|
||||
API Key Name
|
||||
</span>
|
||||
<input
|
||||
type="text"
|
||||
className="h-10 w-full rounded-md border-2 border-silver px-3 outline-none dark:bg-transparent dark:text-silver"
|
||||
value={APIKeyName}
|
||||
onChange={(e) => setAPIKeyName(e.target.value)}
|
||||
/>
|
||||
</div>
|
||||
<div className="my-4">
|
||||
<Dropdown
|
||||
placeholder="Source document"
|
||||
selectedValue={sourcePath}
|
||||
onSelect={(selection: { label: string; value: string }) =>
|
||||
setSourcePath(selection)
|
||||
}
|
||||
options={extractDocPaths()}
|
||||
size="w-full"
|
||||
rounded="xl"
|
||||
/>
|
||||
</div>
|
||||
<div className="my-4">
|
||||
<Dropdown
|
||||
options={activePrompts}
|
||||
selectedValue={prompt ? prompt.name : null}
|
||||
placeholder="Select active prompt"
|
||||
onSelect={(value: { name: string; id: string; type: string }) =>
|
||||
setPrompt(value)
|
||||
}
|
||||
size="w-full"
|
||||
/>
|
||||
</div>
|
||||
<div className="my-4">
|
||||
<p className="mb-2 ml-2 font-bold text-jet dark:text-bright-gray">
|
||||
Chunks processed per query
|
||||
</p>
|
||||
<Dropdown
|
||||
options={chunkOptions}
|
||||
selectedValue={chunk}
|
||||
onSelect={(value: string) => setChunk(value)}
|
||||
size="w-full"
|
||||
/>
|
||||
</div>
|
||||
<button
|
||||
disabled={!sourcePath || APIKeyName.length === 0 || !prompt}
|
||||
onClick={() =>
|
||||
sourcePath &&
|
||||
prompt &&
|
||||
createAPIKey({
|
||||
name: APIKeyName,
|
||||
source: sourcePath.value,
|
||||
prompt_id: prompt.id,
|
||||
chunks: chunk,
|
||||
})
|
||||
}
|
||||
className="float-right mt-4 rounded-full bg-purple-30 px-4 py-3 text-white disabled:opacity-50"
|
||||
>
|
||||
Create
|
||||
</button>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
};
|
||||
|
||||
const SaveAPIKeyModal: React.FC<SaveAPIKeyModalProps> = ({ apiKey, close }) => {
|
||||
const [isCopied, setIsCopied] = React.useState(false);
|
||||
const handleCopyKey = () => {
|
||||
navigator.clipboard.writeText(apiKey);
|
||||
setIsCopied(true);
|
||||
};
|
||||
return (
|
||||
<div className="fixed top-0 left-0 z-30 flex h-screen w-screen items-center justify-center bg-gray-alpha bg-opacity-50">
|
||||
<div className="relative w-11/12 rounded-3xl bg-white px-6 py-8 dark:bg-outer-space dark:text-bright-gray sm:w-[512px]">
|
||||
<button className="absolute top-3 right-4 m-2 w-3" onClick={close}>
|
||||
<img className="filter dark:invert" src={Exit} />
|
||||
</button>
|
||||
<h1 className="my-0 text-xl font-medium">Please save your Key</h1>
|
||||
<h3 className="text-sm font-normal text-outer-space">
|
||||
This is the only time your key will be shown.
|
||||
</h3>
|
||||
<div className="flex justify-between py-2">
|
||||
<div>
|
||||
<h2 className="text-base font-semibold">API Key</h2>
|
||||
<span className="text-sm font-normal leading-7 ">{apiKey}</span>
|
||||
</div>
|
||||
<button
|
||||
className="my-1 h-10 w-20 rounded-full border border-purple-30 p-2 text-sm text-purple-30 hover:bg-purple-30 hover:text-white dark:border-purple-500 dark:text-purple-500"
|
||||
onClick={handleCopyKey}
|
||||
>
|
||||
{isCopied ? 'Copied' : 'Copy'}
|
||||
</button>
|
||||
</div>
|
||||
<button
|
||||
onClick={close}
|
||||
className="rounded-full bg-philippine-yellow px-4 py-3 font-medium text-black hover:bg-[#E6B91A]"
|
||||
>
|
||||
I saved the Key
|
||||
</button>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
};
|
||||
|
||||
export default APIKeys;
|
||||
60
frontend/src/settings/Documents.tsx
Normal file
60
frontend/src/settings/Documents.tsx
Normal file
@@ -0,0 +1,60 @@
|
||||
import { DocumentsProps } from '../models/misc';
|
||||
import Trash from '../assets/trash.svg';
|
||||
|
||||
const Documents: React.FC<DocumentsProps> = ({
|
||||
documents,
|
||||
handleDeleteDocument,
|
||||
}) => {
|
||||
return (
|
||||
<div className="mt-8">
|
||||
<div className="flex flex-col">
|
||||
<div className="mt-[27px] w-max overflow-x-auto rounded-xl border dark:border-chinese-silver">
|
||||
<table className="block w-full table-auto content-center justify-center text-center dark:text-bright-gray">
|
||||
<thead>
|
||||
<tr>
|
||||
<th className="border-r p-4 md:w-[244px]">Document Name</th>
|
||||
<th className="w-[244px] border-r px-4 py-2">Vector Date</th>
|
||||
<th className="w-[244px] border-r px-4 py-2">Type</th>
|
||||
<th className="px-4 py-2"></th>
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody>
|
||||
{documents &&
|
||||
documents.map((document, index) => (
|
||||
<tr key={index}>
|
||||
<td className="border-r border-t px-4 py-2">
|
||||
{document.name}
|
||||
</td>
|
||||
<td className="border-r border-t px-4 py-2">
|
||||
{document.date}
|
||||
</td>
|
||||
<td className="border-r border-t px-4 py-2">
|
||||
{document.location === 'remote'
|
||||
? 'Pre-loaded'
|
||||
: 'Private'}
|
||||
</td>
|
||||
<td className="border-t px-4 py-2">
|
||||
{document.location !== 'remote' && (
|
||||
<img
|
||||
src={Trash}
|
||||
alt="Delete"
|
||||
className="h-4 w-4 cursor-pointer hover:opacity-50"
|
||||
id={`img-${index}`}
|
||||
onClick={(event) => {
|
||||
event.stopPropagation();
|
||||
handleDeleteDocument(index, document);
|
||||
}}
|
||||
/>
|
||||
)}
|
||||
</td>
|
||||
</tr>
|
||||
))}
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
};
|
||||
|
||||
export default Documents;
|
||||
100
frontend/src/settings/General.tsx
Normal file
100
frontend/src/settings/General.tsx
Normal file
@@ -0,0 +1,100 @@
|
||||
import React from 'react';
|
||||
import { useSelector, useDispatch } from 'react-redux';
|
||||
import Prompts from './Prompts';
|
||||
import { useDarkTheme } from '../hooks';
|
||||
import Dropdown from '../components/Dropdown';
|
||||
import {
|
||||
selectPrompt,
|
||||
setPrompt,
|
||||
setChunks,
|
||||
selectChunks,
|
||||
} from '../preferences/preferenceSlice';
|
||||
|
||||
const apiHost = import.meta.env.VITE_API_HOST || 'https://docsapi.arc53.com';
|
||||
|
||||
const General: React.FC = () => {
|
||||
const themes = ['Light', 'Dark'];
|
||||
const languages = ['English'];
|
||||
const chunks = ['0', '2', '4', '6', '8', '10'];
|
||||
const [prompts, setPrompts] = React.useState<
|
||||
{ name: string; id: string; type: string }[]
|
||||
>([]);
|
||||
const selectedChunks = useSelector(selectChunks);
|
||||
const [isDarkTheme, toggleTheme] = useDarkTheme();
|
||||
const [selectedTheme, setSelectedTheme] = React.useState(
|
||||
isDarkTheme ? 'Dark' : 'Light',
|
||||
);
|
||||
const dispatch = useDispatch();
|
||||
const [selectedLanguage, setSelectedLanguage] = React.useState(languages[0]);
|
||||
const selectedPrompt = useSelector(selectPrompt);
|
||||
|
||||
React.useEffect(() => {
|
||||
const fetchPrompts = async () => {
|
||||
try {
|
||||
const response = await fetch(`${apiHost}/api/get_prompts`);
|
||||
if (!response.ok) {
|
||||
throw new Error('Failed to fetch prompts');
|
||||
}
|
||||
const promptsData = await response.json();
|
||||
setPrompts(promptsData);
|
||||
} catch (error) {
|
||||
console.error(error);
|
||||
}
|
||||
};
|
||||
fetchPrompts();
|
||||
}, []);
|
||||
return (
|
||||
<div className="mt-[59px]">
|
||||
<div className="mb-4">
|
||||
<p className="font-bold text-jet dark:text-bright-gray">Select Theme</p>
|
||||
<Dropdown
|
||||
options={themes}
|
||||
selectedValue={selectedTheme}
|
||||
onSelect={(option: string) => {
|
||||
setSelectedTheme(option);
|
||||
option !== selectedTheme && toggleTheme();
|
||||
}}
|
||||
size="w-56"
|
||||
rounded="3xl"
|
||||
/>
|
||||
</div>
|
||||
<div className="mb-4">
|
||||
<p className="font-bold text-jet dark:text-bright-gray">
|
||||
Select Language
|
||||
</p>
|
||||
<Dropdown
|
||||
options={languages}
|
||||
selectedValue={selectedLanguage}
|
||||
onSelect={setSelectedLanguage}
|
||||
size="w-56"
|
||||
rounded="3xl"
|
||||
/>
|
||||
</div>
|
||||
<div className="mb-4">
|
||||
<p className="font-bold text-jet dark:text-bright-gray">
|
||||
Chunks processed per query
|
||||
</p>
|
||||
<Dropdown
|
||||
options={chunks}
|
||||
selectedValue={selectedChunks}
|
||||
onSelect={(value: string) => dispatch(setChunks(value))}
|
||||
size="w-56"
|
||||
rounded="3xl"
|
||||
/>
|
||||
</div>
|
||||
<div>
|
||||
<Prompts
|
||||
prompts={prompts}
|
||||
selectedPrompt={selectedPrompt}
|
||||
onSelectPrompt={(name, id, type) =>
|
||||
dispatch(setPrompt({ name: name, id: id, type: type }))
|
||||
}
|
||||
setPrompts={setPrompts}
|
||||
apiHost={apiHost}
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
};
|
||||
|
||||
export default General;
|
||||
219
frontend/src/settings/Prompts.tsx
Normal file
219
frontend/src/settings/Prompts.tsx
Normal file
@@ -0,0 +1,219 @@
|
||||
import React from 'react';
|
||||
import { PromptProps, ActiveState } from '../models/misc';
|
||||
import Dropdown from '../components/Dropdown';
|
||||
import PromptsModal from '../preferences/PromptsModal';
|
||||
|
||||
const apiHost = import.meta.env.VITE_API_HOST || 'https://docsapi.arc53.com';
|
||||
|
||||
const Prompts: React.FC<PromptProps> = ({
|
||||
prompts,
|
||||
selectedPrompt,
|
||||
onSelectPrompt,
|
||||
setPrompts,
|
||||
}) => {
|
||||
const handleSelectPrompt = ({
|
||||
name,
|
||||
id,
|
||||
type,
|
||||
}: {
|
||||
name: string;
|
||||
id: string;
|
||||
type: string;
|
||||
}) => {
|
||||
setEditPromptName(name);
|
||||
onSelectPrompt(name, id, type);
|
||||
};
|
||||
const [newPromptName, setNewPromptName] = React.useState('');
|
||||
const [newPromptContent, setNewPromptContent] = React.useState('');
|
||||
const [editPromptName, setEditPromptName] = React.useState('');
|
||||
const [editPromptContent, setEditPromptContent] = React.useState('');
|
||||
const [currentPromptEdit, setCurrentPromptEdit] = React.useState({
|
||||
id: '',
|
||||
name: '',
|
||||
type: '',
|
||||
});
|
||||
const [modalType, setModalType] = React.useState<'ADD' | 'EDIT'>('ADD');
|
||||
const [modalState, setModalState] = React.useState<ActiveState>('INACTIVE');
|
||||
|
||||
const handleAddPrompt = async () => {
|
||||
try {
|
||||
const response = await fetch(`${apiHost}/api/create_prompt`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
body: JSON.stringify({
|
||||
name: newPromptName,
|
||||
content: newPromptContent,
|
||||
}),
|
||||
});
|
||||
if (!response.ok) {
|
||||
throw new Error('Failed to add prompt');
|
||||
}
|
||||
const newPrompt = await response.json();
|
||||
if (setPrompts) {
|
||||
setPrompts([
|
||||
...prompts,
|
||||
{ name: newPromptName, id: newPrompt.id, type: 'private' },
|
||||
]);
|
||||
}
|
||||
setModalState('INACTIVE');
|
||||
onSelectPrompt(newPromptName, newPrompt.id, newPromptContent);
|
||||
setNewPromptName(newPromptName);
|
||||
} catch (error) {
|
||||
console.error(error);
|
||||
}
|
||||
};
|
||||
|
||||
const handleDeletePrompt = (id: string) => {
|
||||
setPrompts(prompts.filter((prompt) => prompt.id !== id));
|
||||
fetch(`${apiHost}/api/delete_prompt`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
body: JSON.stringify({ id: id }),
|
||||
})
|
||||
.then((response) => {
|
||||
if (!response.ok) {
|
||||
throw new Error('Failed to delete prompt');
|
||||
}
|
||||
// get 1st prompt and set it as selected
|
||||
if (prompts.length > 0) {
|
||||
onSelectPrompt(prompts[0].name, prompts[0].id, prompts[0].type);
|
||||
}
|
||||
})
|
||||
.catch((error) => {
|
||||
console.error(error);
|
||||
});
|
||||
};
|
||||
|
||||
const fetchPromptContent = async (id: string) => {
|
||||
console.log('fetching prompt content');
|
||||
try {
|
||||
const response = await fetch(
|
||||
`${apiHost}/api/get_single_prompt?id=${id}`,
|
||||
{
|
||||
method: 'GET',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
},
|
||||
);
|
||||
if (!response.ok) {
|
||||
throw new Error('Failed to fetch prompt content');
|
||||
}
|
||||
const promptContent = await response.json();
|
||||
setEditPromptContent(promptContent.content);
|
||||
} catch (error) {
|
||||
console.error(error);
|
||||
}
|
||||
};
|
||||
|
||||
const handleSaveChanges = (id: string, type: string) => {
|
||||
fetch(`${apiHost}/api/update_prompt`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
},
|
||||
body: JSON.stringify({
|
||||
id: id,
|
||||
name: editPromptName,
|
||||
content: editPromptContent,
|
||||
}),
|
||||
})
|
||||
.then((response) => {
|
||||
if (!response.ok) {
|
||||
throw new Error('Failed to update prompt');
|
||||
}
|
||||
if (setPrompts) {
|
||||
const existingPromptIndex = prompts.findIndex(
|
||||
(prompt) => prompt.id === id,
|
||||
);
|
||||
if (existingPromptIndex === -1) {
|
||||
setPrompts([
|
||||
...prompts,
|
||||
{ name: editPromptName, id: id, type: type },
|
||||
]);
|
||||
} else {
|
||||
const updatedPrompts = [...prompts];
|
||||
updatedPrompts[existingPromptIndex] = {
|
||||
name: editPromptName,
|
||||
id: id,
|
||||
type: type,
|
||||
};
|
||||
setPrompts(updatedPrompts);
|
||||
}
|
||||
}
|
||||
setModalState('INACTIVE');
|
||||
onSelectPrompt(editPromptName, id, type);
|
||||
})
|
||||
.catch((error) => {
|
||||
console.error(error);
|
||||
});
|
||||
};
|
||||
|
||||
return (
|
||||
<>
|
||||
<div>
|
||||
<div className="mb-4 flex flex-row items-center gap-8">
|
||||
<div>
|
||||
<p className="font-semibold dark:text-bright-gray">Active Prompt</p>
|
||||
<Dropdown
|
||||
options={prompts}
|
||||
selectedValue={selectedPrompt.name}
|
||||
onSelect={handleSelectPrompt}
|
||||
size="w-56"
|
||||
rounded="3xl"
|
||||
showEdit
|
||||
showDelete
|
||||
onEdit={({
|
||||
id,
|
||||
name,
|
||||
type,
|
||||
}: {
|
||||
id: string;
|
||||
name: string;
|
||||
type: string;
|
||||
}) => {
|
||||
setModalType('EDIT');
|
||||
setEditPromptName(name);
|
||||
fetchPromptContent(id);
|
||||
setCurrentPromptEdit({ id: id, name: name, type: type });
|
||||
setModalState('ACTIVE');
|
||||
}}
|
||||
onDelete={handleDeletePrompt}
|
||||
/>
|
||||
</div>
|
||||
<button
|
||||
className="mt-[24px] rounded-3xl border-2 border-solid border-purple-30 px-5 py-3 text-purple-30 hover:bg-purple-30 hover:text-white"
|
||||
onClick={() => {
|
||||
setModalType('ADD');
|
||||
setModalState('ACTIVE');
|
||||
}}
|
||||
>
|
||||
Add new
|
||||
</button>
|
||||
</div>
|
||||
</div>
|
||||
<PromptsModal
|
||||
type={modalType}
|
||||
modalState={modalState}
|
||||
setModalState={setModalState}
|
||||
newPromptName={newPromptName}
|
||||
setNewPromptName={setNewPromptName}
|
||||
newPromptContent={newPromptContent}
|
||||
setNewPromptContent={setNewPromptContent}
|
||||
editPromptName={editPromptName}
|
||||
setEditPromptName={setEditPromptName}
|
||||
editPromptContent={editPromptContent}
|
||||
setEditPromptContent={setEditPromptContent}
|
||||
currentPromptEdit={currentPromptEdit}
|
||||
handleAddPrompt={handleAddPrompt}
|
||||
handleEditPrompt={handleSaveChanges}
|
||||
/>
|
||||
</>
|
||||
);
|
||||
};
|
||||
|
||||
export default Prompts;
|
||||
112
frontend/src/settings/Widgets.tsx
Normal file
112
frontend/src/settings/Widgets.tsx
Normal file
@@ -0,0 +1,112 @@
|
||||
import React from 'react';
|
||||
import Dropdown from '../components/Dropdown';
|
||||
|
||||
const Widgets: React.FC<{
|
||||
widgetScreenshot: File | null;
|
||||
onWidgetScreenshotChange: (screenshot: File | null) => void;
|
||||
}> = ({ widgetScreenshot, onWidgetScreenshotChange }) => {
|
||||
const widgetSources = ['Source 1', 'Source 2', 'Source 3'];
|
||||
const widgetMethods = ['Method 1', 'Method 2', 'Method 3'];
|
||||
const widgetTypes = ['Type 1', 'Type 2', 'Type 3'];
|
||||
|
||||
const [selectedWidgetSource, setSelectedWidgetSource] = React.useState(
|
||||
widgetSources[0],
|
||||
);
|
||||
const [selectedWidgetMethod, setSelectedWidgetMethod] = React.useState(
|
||||
widgetMethods[0],
|
||||
);
|
||||
const [selectedWidgetType, setSelectedWidgetType] = React.useState(
|
||||
widgetTypes[0],
|
||||
);
|
||||
|
||||
// const [widgetScreenshot, setWidgetScreenshot] = useState<File | null>(null);
|
||||
const [widgetCode, setWidgetCode] = React.useState<string>(''); // Your widget code state
|
||||
|
||||
const handleScreenshotChange = (
|
||||
event: React.ChangeEvent<HTMLInputElement>,
|
||||
) => {
|
||||
const files = event.target.files;
|
||||
|
||||
if (files && files.length > 0) {
|
||||
const selectedScreenshot = files[0];
|
||||
onWidgetScreenshotChange(selectedScreenshot); // Update the screenshot in the parent component
|
||||
}
|
||||
};
|
||||
|
||||
const handleCopyToClipboard = () => {
|
||||
// Create a new textarea element to select the text
|
||||
const textArea = document.createElement('textarea');
|
||||
textArea.value = widgetCode;
|
||||
document.body.appendChild(textArea);
|
||||
|
||||
// Select and copy the text
|
||||
textArea.select();
|
||||
document.execCommand('copy');
|
||||
|
||||
// Clean up the textarea element
|
||||
document.body.removeChild(textArea);
|
||||
};
|
||||
|
||||
return (
|
||||
<div>
|
||||
<div className="mt-[59px]">
|
||||
<p className="font-bold text-jet">Widget Source</p>
|
||||
<Dropdown
|
||||
options={widgetSources}
|
||||
selectedValue={selectedWidgetSource}
|
||||
onSelect={setSelectedWidgetSource}
|
||||
/>
|
||||
</div>
|
||||
<div className="mt-5">
|
||||
<p className="font-bold text-jet">Widget Method</p>
|
||||
<Dropdown
|
||||
options={widgetMethods}
|
||||
selectedValue={selectedWidgetMethod}
|
||||
onSelect={setSelectedWidgetMethod}
|
||||
/>
|
||||
</div>
|
||||
<div className="mt-5">
|
||||
<p className="font-bold text-jet">Widget Type</p>
|
||||
<Dropdown
|
||||
options={widgetTypes}
|
||||
selectedValue={selectedWidgetType}
|
||||
onSelect={setSelectedWidgetType}
|
||||
/>
|
||||
</div>
|
||||
<div className="mt-6">
|
||||
<p className="font-bold text-jet">Widget Code Snippet</p>
|
||||
<textarea
|
||||
rows={4}
|
||||
value={widgetCode}
|
||||
onChange={(e) => setWidgetCode(e.target.value)}
|
||||
className="mt-3 w-full rounded-lg border-2 p-2"
|
||||
/>
|
||||
</div>
|
||||
<div className="mt-1">
|
||||
<button
|
||||
onClick={handleCopyToClipboard}
|
||||
className="rounded-lg bg-blue-400 px-2 py-2 font-bold text-white transition-all hover:bg-blue-600"
|
||||
>
|
||||
Copy
|
||||
</button>
|
||||
</div>
|
||||
|
||||
<div className="mt-4">
|
||||
<p className="text-lg font-semibold">Widget Screenshot</p>
|
||||
<input type="file" accept="image/*" onChange={handleScreenshotChange} />
|
||||
</div>
|
||||
|
||||
{widgetScreenshot && (
|
||||
<div className="mt-4">
|
||||
<img
|
||||
src={URL.createObjectURL(widgetScreenshot)}
|
||||
alt="Widget Screenshot"
|
||||
className="max-w-full rounded-lg border border-gray-300"
|
||||
/>
|
||||
</div>
|
||||
)}
|
||||
</div>
|
||||
);
|
||||
};
|
||||
|
||||
export default Widgets;
|
||||
127
frontend/src/settings/index.tsx
Normal file
127
frontend/src/settings/index.tsx
Normal file
@@ -0,0 +1,127 @@
|
||||
import React from 'react';
|
||||
import { useSelector, useDispatch } from 'react-redux';
|
||||
import General from './General';
|
||||
import Documents from './Documents';
|
||||
import APIKeys from './APIKeys';
|
||||
import Widgets from './Widgets';
|
||||
import {
|
||||
selectSourceDocs,
|
||||
setSourceDocs,
|
||||
} from '../preferences/preferenceSlice';
|
||||
import { Doc } from '../preferences/preferenceApi';
|
||||
import ArrowLeft from '../assets/arrow-left.svg';
|
||||
import ArrowRight from '../assets/arrow-right.svg';
|
||||
|
||||
const apiHost = import.meta.env.VITE_API_HOST || 'https://docsapi.arc53.com';
|
||||
|
||||
const Settings: React.FC = () => {
|
||||
const dispatch = useDispatch();
|
||||
const tabs = ['General', 'Documents', 'API Keys'];
|
||||
const [activeTab, setActiveTab] = React.useState('General');
|
||||
const [widgetScreenshot, setWidgetScreenshot] = React.useState<File | null>(
|
||||
null,
|
||||
);
|
||||
|
||||
const documents = useSelector(selectSourceDocs);
|
||||
const updateWidgetScreenshot = (screenshot: File | null) => {
|
||||
setWidgetScreenshot(screenshot);
|
||||
};
|
||||
const handleDeleteClick = (index: number, doc: Doc) => {
|
||||
const docPath = 'indexes/' + 'local' + '/' + doc.name;
|
||||
fetch(`${apiHost}/api/delete_old?path=${docPath}`, {
|
||||
method: 'GET',
|
||||
})
|
||||
.then((response) => {
|
||||
if (response.ok && documents) {
|
||||
const updatedDocuments = [
|
||||
...documents.slice(0, index),
|
||||
...documents.slice(index + 1),
|
||||
];
|
||||
dispatch(setSourceDocs(updatedDocuments));
|
||||
}
|
||||
})
|
||||
.catch((error) => console.error(error));
|
||||
};
|
||||
return (
|
||||
<div className="wa p-4 pt-20 md:p-12">
|
||||
<p className="text-2xl font-bold text-eerie-black dark:text-bright-gray">
|
||||
Settings
|
||||
</p>
|
||||
<div className="mt-6 flex flex-row items-center space-x-4 overflow-x-auto md:space-x-8 ">
|
||||
<div className="md:hidden">
|
||||
<button
|
||||
onClick={() => scrollTabs(-1)}
|
||||
className="flex h-8 w-8 items-center justify-center rounded-full border-2 border-purple-30 transition-all hover:bg-gray-100"
|
||||
>
|
||||
<img src={ArrowLeft} alt="left-arrow" className="h-6 w-6" />
|
||||
</button>
|
||||
</div>
|
||||
<div className="flex flex-nowrap space-x-4 overflow-x-auto md:space-x-8">
|
||||
{tabs.map((tab, index) => (
|
||||
<button
|
||||
key={index}
|
||||
onClick={() => setActiveTab(tab)}
|
||||
className={`h-9 rounded-3xl px-4 font-bold ${
|
||||
activeTab === tab
|
||||
? 'bg-purple-3000 text-purple-30 dark:bg-dark-charcoal'
|
||||
: 'text-gray-6000'
|
||||
}`}
|
||||
>
|
||||
{tab}
|
||||
</button>
|
||||
))}
|
||||
</div>
|
||||
<div className="md:hidden">
|
||||
<button
|
||||
onClick={() => scrollTabs(1)}
|
||||
className="flex h-8 w-8 items-center justify-center rounded-full border-2 border-purple-30 hover:bg-gray-100"
|
||||
>
|
||||
<img src={ArrowRight} alt="right-arrow" className="h-6 w-6" />
|
||||
</button>
|
||||
</div>
|
||||
</div>
|
||||
{renderActiveTab()}
|
||||
|
||||
{/* {activeTab === 'Widgets' && (
|
||||
<Widgets
|
||||
widgetScreenshot={widgetScreenshot}
|
||||
onWidgetScreenshotChange={updateWidgetScreenshot}
|
||||
/>
|
||||
)} */}
|
||||
</div>
|
||||
);
|
||||
|
||||
function scrollTabs(direction: number) {
|
||||
const container = document.querySelector('.flex-nowrap');
|
||||
if (container) {
|
||||
container.scrollLeft += direction * 100; // Adjust the scroll amount as needed
|
||||
}
|
||||
}
|
||||
|
||||
function renderActiveTab() {
|
||||
switch (activeTab) {
|
||||
case 'General':
|
||||
return <General />;
|
||||
case 'Documents':
|
||||
return (
|
||||
<Documents
|
||||
documents={documents}
|
||||
handleDeleteDocument={handleDeleteClick}
|
||||
/>
|
||||
);
|
||||
case 'Widgets':
|
||||
return (
|
||||
<Widgets
|
||||
widgetScreenshot={widgetScreenshot} // Add this line
|
||||
onWidgetScreenshotChange={updateWidgetScreenshot} // Add this line
|
||||
/>
|
||||
);
|
||||
case 'API Keys':
|
||||
return <APIKeys />;
|
||||
default:
|
||||
return null;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
export default Settings;
|
||||
@@ -201,7 +201,7 @@ export default function Upload({
|
||||
|
||||
const { getRootProps, getInputProps, isDragActive } = useDropzone({
|
||||
onDrop,
|
||||
multiple: false,
|
||||
multiple: true,
|
||||
onDragEnter: doNothing,
|
||||
onDragOver: doNothing,
|
||||
onDragLeave: doNothing,
|
||||
@@ -302,7 +302,6 @@ export default function Upload({
|
||||
{activeTab === 'remote' && (
|
||||
<>
|
||||
<Dropdown
|
||||
fullWidth
|
||||
options={urlOptions}
|
||||
selectedValue={urlType}
|
||||
onSelect={(value: { label: string; value: string }) =>
|
||||
@@ -420,7 +419,7 @@ export default function Upload({
|
||||
disabled={
|
||||
(files.length === 0 || docName.trim().length === 0) &&
|
||||
activeTab === 'file'
|
||||
} // Disable the button if no file is selected or docName is empty
|
||||
}
|
||||
>
|
||||
Train
|
||||
</button>
|
||||
@@ -451,4 +450,3 @@ export default function Upload({
|
||||
</article>
|
||||
);
|
||||
}
|
||||
// TODO: sanitize all inputs
|
||||
|
||||
@@ -54,7 +54,7 @@ class TestSagemakerAPILLM(unittest.TestCase):
|
||||
def test_gen(self):
|
||||
with patch.object(self.sagemaker.runtime, 'invoke_endpoint',
|
||||
return_value=self.response) as mock_invoke_endpoint:
|
||||
output = self.sagemaker.gen(None, None, self.messages)
|
||||
output = self.sagemaker.gen(None, self.messages)
|
||||
mock_invoke_endpoint.assert_called_once_with(
|
||||
EndpointName=self.sagemaker.endpoint,
|
||||
ContentType='application/json',
|
||||
@@ -66,7 +66,7 @@ class TestSagemakerAPILLM(unittest.TestCase):
|
||||
def test_gen_stream(self):
|
||||
with patch.object(self.sagemaker.runtime, 'invoke_endpoint_with_response_stream',
|
||||
return_value=self.response) as mock_invoke_endpoint:
|
||||
output = list(self.sagemaker.gen_stream(None, None, self.messages))
|
||||
output = list(self.sagemaker.gen_stream(None, self.messages))
|
||||
mock_invoke_endpoint.assert_called_once_with(
|
||||
EndpointName=self.sagemaker.endpoint,
|
||||
ContentType='application/json',
|
||||
|
||||
Reference in New Issue
Block a user