Compare commits

...

298 Commits

Author SHA1 Message Date
Alex
4025e55b95 Merge pull request #1028 from utin-francis-peter/fix/issue#1023
Fix: adjusted alignment of submit query icon within its container
2024-07-17 00:25:42 +01:00
utin-francis-peter
e1e63ebd64 Merge branch 'main' of https://github.com/utin-francis-peter/DocsGPT into fix/issue#1023 2024-07-16 22:05:12 +01:00
utin-francis-peter
8279df48bf removed shrink 2024-07-16 22:04:26 +01:00
Alex
d86a06fab0 Merge pull request #1027 from utin-francis-peter/feat/issue#1017
Feat Implementation for issue#1017
2024-07-16 14:35:18 +01:00
Siddhant Rai
90b24dd915 fix: removed unused TextArea component 2024-07-16 18:20:13 +05:30
Alex
bacd2a6893 Merge pull request #1034 from ManishMadan2882/main
Feat: sharing endpoints
2024-07-16 12:28:59 +01:00
Alex
0f059f247d fix: ruff lint 2024-07-16 12:28:43 +01:00
ManishMadan2882
e2b76d9c29 feat(share): share btn above conversations 2024-07-16 02:09:36 +05:30
ManishMadan2882
1107a2f2bc refactor App.tsx: better convention 2024-07-15 17:56:23 +05:30
ManishMadan2882
efd43013da minor fix 2024-07-15 05:13:28 +05:30
ManishMadan2882
7b8458b47d fix layout 2024-07-15 05:00:13 +05:30
ManishMadan2882
84eed09a17 feedback visible conditioned, update meta info in shared 2024-07-15 02:55:38 +05:30
ManishMadan2882
35b1a40d49 feat(share) translate 2024-07-14 04:13:25 +05:30
ManishMadan2882
81d7fe3fdb refactor App, add /shared/id page 2024-07-14 03:29:06 +05:30
ManishMadan2882
02187fed4e add timetamp in iso, remove sources 2024-07-14 03:27:53 +05:30
ManishMadan2882
019bf013ac add css class: no-scrollbar 2024-07-12 02:51:59 +05:30
ManishMadan2882
d6e59a6a0a conversation tile: add menu, add share modal 2024-07-11 21:45:47 +05:30
utin-francis-peter
46aa862943 Merge branch 'main' of https://github.com/utin-francis-peter/DocsGPT into feat/issue#1017 2024-07-09 13:34:49 +01:00
utin-francis-peter
0413cab0d9 chore: removed all TextArea related entities from branch as it's outiside scope of branch/issue 2024-07-09 13:32:46 +01:00
Manish Madan
3357ce8f33 Merge branch 'arc53:main' into main 2024-07-09 16:29:04 +05:30
Alex
1776f6e7fd Merge pull request #1024 from blackviking27/feat-bubble-width 2024-07-09 09:06:39 +04:00
ManishMadan2882
edfe5e1156 restrict redundant sharing, add user field 2024-07-08 15:59:19 +05:30
ManishMadan2882
0768992848 add route to share and fetch public conversations 2024-07-08 03:03:46 +05:30
FIRST_NAME LAST_NAME
1224f94879 moved the three icons to the bottom of conversation bubble 2024-07-07 21:52:20 +05:30
Alex
b58c5344b8 Merge pull request #1033 from arc53/dependabot/npm_and_yarn/extensions/web-widget/braces-3.0.3
chore(deps-dev): bump braces from 3.0.2 to 3.0.3 in /extensions/web-widget
2024-07-07 17:24:03 +04:00
dependabot[bot]
7175bc0595 chore(deps-dev): bump braces in /extensions/web-widget
Bumps [braces](https://github.com/micromatch/braces) from 3.0.2 to 3.0.3.
- [Changelog](https://github.com/micromatch/braces/blob/master/CHANGELOG.md)
- [Commits](https://github.com/micromatch/braces/compare/3.0.2...3.0.3)

---
updated-dependencies:
- dependency-name: braces
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-07-07 13:20:00 +00:00
Alex
b7a6f5696d Merge pull request #1032 from utin-francis-peter/fix/issue#1016
FEAT: Auto Language Detection using User's Browser Default
2024-07-07 17:19:32 +04:00
utin-francis-peter
abf5b89c28 refactor: handling applied styles based on colorVariant in a neater manner 2024-07-07 08:33:02 +01:00
utin-francis-peter
d554444b0e chore: updated Input prop from hasSilverBorder to colorVariant 2024-07-06 21:22:41 +01:00
utin-francis-peter
16ae0725e6 chore: took off the option of looking-up docsgpt-locale lang key in localStorage on first load 2024-07-06 20:41:21 +01:00
utin-francis-peter
61feced541 Merge branch 'feat/issue#1017' of https://github.com/utin-francis-peter/DocsGPT into feat/issue#1017 2024-07-05 21:57:46 +01:00
utin-francis-peter
a1d4db2f1e Merge branch 'main' of https://github.com/utin-francis-peter/DocsGPT into feat/issue#1017 2024-07-05 12:15:38 +01:00
Utin Francis Peter
357e9af627 chore: typo elimination
Co-authored-by: Siddhant Rai <47355538+siiddhantt@users.noreply.github.com>
2024-07-05 12:07:33 +01:00
utin-francis-peter
a41519be63 fix: minor typo 2024-07-05 11:41:12 +01:00
FIRST_NAME LAST_NAME
870e6b07c8 Merge branch 'main' of https://github.com/blackviking27/DocsGPT into feat-bubble-width 2024-07-04 19:12:04 +05:30
utin-francis-peter
6f41759519 Merge branch 'main' of https://github.com/utin-francis-peter/DocsGPT into fix/issue#1016 2024-07-04 10:11:57 +01:00
utin-francis-peter
6727c42f18 feat: auto browser lang detection on first visit 2024-07-04 10:05:54 +01:00
utin-francis-peter
90c367842f chore: added browser lang detector package by i18next 2024-07-04 09:00:14 +01:00
Alex
a0bb6e370e Merge pull request #1018 from utin-francis-peter/fix/issue#1014 2024-07-04 00:35:29 +04:00
Alex
f2910ab9d1 Merge pull request #1029 from arc53/dependabot/npm_and_yarn/docs/braces-3.0.3
chore(deps): bump braces from 3.0.2 to 3.0.3 in /docs
2024-07-03 23:11:43 +04:00
utin-francis-peter
b4bfed2ccb style: query submission icon centering 2024-07-03 15:46:35 +01:00
dependabot[bot]
2fcde61b6d chore(deps): bump braces from 3.0.2 to 3.0.3 in /docs
Bumps [braces](https://github.com/micromatch/braces) from 3.0.2 to 3.0.3.
- [Changelog](https://github.com/micromatch/braces/blob/master/CHANGELOG.md)
- [Commits](https://github.com/micromatch/braces/compare/3.0.2...3.0.3)

---
updated-dependencies:
- dependency-name: braces
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-07-03 13:10:18 +00:00
Alex
ffddf10de5 Merge pull request #1026 from ManishMadan2882/main 2024-07-03 17:09:46 +04:00
utin-francis-peter
6e3bd5e6f3 fix: adjusted alignment of submit query icon within its container 2024-07-03 13:29:34 +01:00
utin-francis-peter
b21230c4d6 chore: migrated to using custom Input component to address redundant twClasses 2024-07-03 12:34:13 +01:00
utin-francis-peter
0a533b64e1 chore: migrated prop type definition into a types declaration file for components. other components prop types will live here 2024-07-03 11:49:49 +01:00
utin-francis-peter
15b0e321bd chore: TextArea component to replace Div contentEditable for entering prompts 2024-07-03 11:24:29 +01:00
ManishMadan2882
4d749340a2 fix: lint error - semantic ambiguity 2024-07-03 13:25:47 +05:30
utin-francis-peter
0ef6ffa452 gap between y-borders and prompts input + border-radius reduction as prompts input grows 2024-07-02 19:48:19 +01:00
FIRST_NAME LAST_NAME
d7b1310ba3 conversation bubble width fix 2024-07-02 22:11:21 +05:30
utin-francis-peter
7408454a75 chore: prompts input now uses useState hook for state change and inbuilt autoFocus 2024-07-01 19:54:31 +01:00
utin-francis-peter
07b71468cc style: removed custom padding and used twClasses 2024-06-29 20:45:33 +01:00
utin-francis-peter
522e966194 refactor: custom input component is used. inputRef is also replaced with state value 2024-06-29 18:58:13 +01:00
utin-francis-peter
937c60c9cf style: updated custom css class to match textInput component's 2024-06-29 18:55:10 +01:00
utin-francis-peter
bbb1e22163 style: spacings... 2024-06-28 20:19:01 +01:00
utin-francis-peter
a16e83200a style fix: gap between conversations wrapper and prompts input wrapper 2024-06-28 15:16:55 +01:00
utin-francis-peter
d437521710 style fix: response bubble padding and radius 2024-06-28 14:45:14 +01:00
utin-francis-peter
5cbf4cf352 style fix: padding and radius of question bubble 2024-06-28 14:24:34 +01:00
Alex
2985e3b75b Merge pull request #1013 from arc53/fix/singleton-llama-cpp
fix: use singleton in llama_cpp
2024-06-25 18:25:01 +01:00
Alex
f34a75fc5b Merge pull request #1004 from utin-francis-peter/fix/traning-progress
Fix/training progress
2024-06-25 14:57:26 +01:00
Alex
5aa88714b8 refactor: Add thread lock 2024-06-25 14:41:04 +01:00
Alex
ce56a414e0 fix: use singleton 2024-06-25 14:37:00 +01:00
Alex
ba4a7dcd45 Merge pull request #1012 from siiddhantt/fix/input-box-cutting-content
fix: input box improvements
2024-06-25 13:38:08 +01:00
Siddhant Rai
85c648da6c fix: large spacing + padding issue in input box 2024-06-25 17:58:16 +05:30
Alex
483f8eb690 Merge pull request #1011 from arc53/dependabot/npm_and_yarn/braces-3.0.3
chore(deps-dev): bump braces from 3.0.2 to 3.0.3
2024-06-25 13:10:18 +01:00
dependabot[bot]
93c868d698 chore(deps-dev): bump braces from 3.0.2 to 3.0.3
Bumps [braces](https://github.com/micromatch/braces) from 3.0.2 to 3.0.3.
- [Changelog](https://github.com/micromatch/braces/blob/master/CHANGELOG.md)
- [Commits](https://github.com/micromatch/braces/compare/3.0.2...3.0.3)

---
updated-dependencies:
- dependency-name: braces
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-06-25 12:05:49 +00:00
Alex
a14e70e3f4 Merge pull request #1006 from arc53/dependabot/npm_and_yarn/frontend/braces-3.0.3
chore(deps-dev): bump braces from 3.0.2 to 3.0.3 in /frontend
2024-06-25 13:04:35 +01:00
Alex
a6ff606cae Merge pull request #1008 from utin-francis-peter/fix/issue#998
Fix/issue#998
2024-06-24 22:14:24 +01:00
utin-francis-peter
651eb3374c chore: on language change when active tab is general, active tab is persisted as general 2024-06-23 23:33:27 +01:00
utin-francis-peter
68c71adc5a chore: i18n "General" tab title 2024-06-23 23:29:59 +01:00
utin-francis-peter
0c4ca9c94d refactor: selected language gets stored in local state, triggering an effect that updates lang value in local storage and change language 2024-06-23 23:27:43 +01:00
utin-francis-peter
8c04f5b3f1 chore: selected language isn't included in language options 2024-06-23 23:19:14 +01:00
Alex
35b29a0a1e Merge pull request #1005 from siiddhantt/fix/modals-and-sidebar
fix: modals close on clicking outside
2024-06-23 12:51:51 +01:00
dependabot[bot]
d289f432b1 chore(deps-dev): bump braces from 3.0.2 to 3.0.3 in /frontend
Bumps [braces](https://github.com/micromatch/braces) from 3.0.2 to 3.0.3.
- [Changelog](https://github.com/micromatch/braces/blob/master/CHANGELOG.md)
- [Commits](https://github.com/micromatch/braces/compare/3.0.2...3.0.3)

---
updated-dependencies:
- dependency-name: braces
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-06-21 18:49:54 +00:00
Siddhant Rai
e16e269775 fix: dropdown closes on clicking outside 2024-06-21 23:35:03 +05:30
utin-francis-peter
4e5d0c2e84 Merge branch 'main' of https://github.com/utin-francis-peter/DocsGPT into fix/traning-progress 2024-06-21 18:06:55 +01:00
utin-francis-peter
c9a2034936 chore: adjusted delay time before training starts 2024-06-21 18:04:30 +01:00
Alex
b70fc1151d fix: print error to console 2024-06-21 14:54:32 +01:00
utin-francis-peter
c11034edcd chore: slight delay between uploading and learning progress transition 2024-06-20 23:35:39 +01:00
utin-francis-peter
804d9b42a5 Merge branch 'main' of https://github.com/utin-francis-peter/DocsGPT into fix/traning-progress 2024-06-20 22:33:44 +01:00
utin-francis-peter
b1bb4e6758 fix: uploading/training progress bar 2024-06-20 22:18:18 +01:00
Alex
76ed8f0ba2 Merge pull request #1002 from ManishMadan2882/main
Better Error handling on /stream endpoint
2024-06-20 20:00:55 +01:00
Alex
4dde7eaea1 feat: Improve error handling in /stream route 2024-06-20 19:51:35 +01:00
Alex
2e2149c110 fix: stream stuff 2024-06-20 19:40:29 +01:00
ManishMadan2882
70bb9477c5 update err msg, if req fails from client 2024-06-20 18:21:19 +05:30
Alex
ec5363e9c1 Merge pull request #1001 from utin-francis-peter/latest-srcdoc-as-active
Fix: Set Uploaded/Trained/Latest Source Doc as Selected/Active Source Doc
2024-06-20 13:31:10 +01:00
ManishMadan2882
dba3b1c559 sort local vectors in latest first order 2024-06-20 17:58:59 +05:30
utin-francis-peter
9606e3f80c chore: handleDeleteClick now accepts only doc as param 2024-06-20 06:00:32 +01:00
utin-francis-peter
7bc7b500f5 refactor/chore: migrated away from manually removing a deleted source doc from UI / latest docs are fetched after deletion to update UI 2024-06-20 05:58:39 +01:00
utin-francis-peter
c6e804fa10 Merge branch 'main' of https://github.com/utin-francis-peter/DocsGPT into latest-srcdoc-as-active 2024-06-20 00:19:09 +01:00
utin-francis-peter
1cbaf9bd9d chore: updates from upstream 2024-06-20 00:05:14 +01:00
utin-francis-peter
45145685d5 fix: upon successful training of newly uploaded src doc, the latest doc is auto set as selected doc 2024-06-19 23:41:38 +01:00
utin-francis-peter
2fbec6f21f chore: added cleanup fxn for TrainingProgress timeout fxn 2024-06-19 23:39:16 +01:00
ManishMadan2882
ad29d2765f fix: add reducers to raise error, handle complete_stream() 2024-06-20 00:10:29 +05:30
Alex
e47e751142 fix link 2024-06-19 12:35:30 +01:00
Alex
c63d4ccf3e Merge pull request #1000 from arc53/feat/upgrade-ubuntu-docker
upgrade docker to 24.04
2024-06-19 11:57:37 +01:00
Alex
e5c30cf841 upgrade docker to 24.04 2024-06-19 11:45:37 +01:00
Alex
c80678aac5 Merge pull request #994 from xucailiang/fix-celery-import-error
rename celery.py
2024-06-19 09:47:52 +01:00
xucai
1754570057 rename celery_init.py 2024-06-19 16:17:09 +08:00
xucailiang
d87b411193 Merge branch 'arc53:main' into fix-celery-import-error 2024-06-19 15:16:39 +08:00
utin-francis-peter
8fc6284317 chore: on deleting an uploaded doc, default doc gets set as selected source doc 2024-06-18 23:33:49 +01:00
Alex
eae49d2367 Merge pull request #996 from arc53/feat/memory-embedding-singleton
chore: Refactor embeddings instantiation to use a singleton pattern
2024-06-18 11:52:27 +01:00
ManishMadan2882
69287c5198 feat: err handling /stream 2024-06-18 16:12:18 +05:30
Alex
e6b3984f78 Merge pull request #988 from utin-francis-peter/fix/retry-btn
Fix/retry-btn
2024-06-15 11:36:46 +01:00
Alex
547fe888d4 Merge pull request #991 from vedantbhatter/vedant-branch
Adding in Mandarin translation into DocsGPT
2024-06-14 15:13:45 +01:00
Alex
3454309cbc chore: Refactor embeddings instantiation to use a singleton pattern 2024-06-14 12:58:35 +01:00
utin-francis-peter
544c46cd44 chore: retry btn is side-by-side with error mssg 2024-06-14 00:31:33 +01:00
utin-francis-peter
2c100825cc Merge branch 'main' of https://github.com/utin-francis-peter/DocsGPT into fix/retry-btn 2024-06-13 23:25:33 +01:00
Alex
558ecd84a6 Merge pull request #993 from siiddhantt/fix/input-bar-hidden-safari
fix: input field covered by url bar in safari
2024-06-13 14:18:26 +01:00
utin-francis-peter
df24cfff4f style: improve visibility of bottom-most message bubble 2024-06-12 22:52:43 +01:00
Siddhant Rai
bd5d93a964 fix: unfixed input bar + safe area inset for Safari (iOS) 2024-06-13 00:21:51 +05:30
xucai
ae2ded119f rename celery_init.py 2024-06-12 19:48:28 +08:00
Siddhant Rai
abdb80a6be fix: input field covered by url bar in safari 2024-06-12 15:55:55 +05:30
utin-francis-peter
2f9cbe2bf1 chore: if user types in a new prompt after failed generation (instead of hitting retry btn), the failed query is updated with the new prompt before response is fetched. Ensuring every query object remains useful & relevant 2024-06-11 20:30:12 +01:00
utin-francis-peter
2cca7d60d5 chore: modified "retry" generation flow to give users the option of retrying with prev failed response or entering a new prompt into the provided field 2024-06-11 18:19:35 +01:00
Alex
3df745d1d2 Merge pull request #990 from IlyasOsman/token-format
Denominations on tokens
2024-06-11 10:19:28 +01:00
Alex
9862083e0b Update README.md 2024-06-11 10:11:09 +01:00
Vedant Bhatter
7a4976c470 Addign in Mandarin translation into DocsGPT 2024-06-10 17:47:49 -07:00
ilyasosman
8834a19743 Denominations on tokens 2024-06-10 22:50:35 +03:00
Alex
6e15403f60 Merge pull request #989 from SDanielDev/working
Updated nextra docs with new html code block installation instruction
2024-06-10 10:57:45 +01:00
utin-francis-peter
7e1cf10cb2 style: reduced retry container padding 2024-06-09 13:49:26 +01:00
utin-francis-peter
ee762c3c68 chore: modified handleQuestion params for more clarity 2024-06-09 13:47:51 +01:00
utin-francis-peter
32c06414c5 style: added theme adaptable RetryIcon component to Retry btn 2024-06-08 03:29:18 +01:00
SamDanielDev
e97e1ba4bc Updated nextra docs with new html code block installation instruction 2024-06-07 18:16:50 +01:00
utin-francis-peter
2f580f7800 feat: japan locale config 2024-06-07 17:40:33 +01:00
utin-francis-peter
1ce1459455 Merge branch 'main' of https://github.com/utin-francis-peter/DocsGPT into fix/retry-btn 2024-06-07 17:38:03 +01:00
utin-francis-peter
c26573482e style: retry query generation btn 2024-06-07 17:28:13 +01:00
utin-francis-peter
414ec08dee refactor: modified prepResponseView to prioritize query.response and trigger re-render after a failed generation is retried 2024-06-07 17:26:19 +01:00
Alex
1cc78191eb Merge pull request #987 from charlesnilsson/main
my-japanese-translation
2024-06-07 16:14:25 +01:00
Alex
75c6c6081a feat: Add Japanese translation support fix 2024-06-07 16:08:36 +01:00
utin-francis-peter
8d2ebe9718 feat: "Retry" btn conditionally renders in place of query input when a generation fails. Uses prev query to fetch answer when clicked. 2024-06-07 15:59:56 +01:00
Charles Nilsson
eed974b883 my-japanese-translation 2024-06-07 16:44:16 +02:00
utin-francis-peter
ae846dac4d chore: received changes from upstream 2024-06-07 15:33:24 +01:00
utin-francis-peter
0b09c00b50 chore: modified handleQuestion to favor "Retry" action after a failed response generation 2024-06-07 14:47:29 +01:00
Alex
f7a1874cb3 Merge pull request #979 from arc53/dependabot/pip/application/qdrant-client-1.9.0
chore(deps): bump qdrant-client from 1.8.2 to 1.9.0 in /application
2024-06-04 19:13:55 +01:00
dependabot[bot]
28fb04eb7b chore(deps): bump qdrant-client from 1.8.2 to 1.9.0 in /application
Bumps [qdrant-client](https://github.com/qdrant/qdrant-client) from 1.8.2 to 1.9.0.
- [Release notes](https://github.com/qdrant/qdrant-client/releases)
- [Commits](https://github.com/qdrant/qdrant-client/compare/v1.8.2...v1.9.0)

---
updated-dependencies:
- dependency-name: qdrant-client
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-06-04 17:53:28 +00:00
Alex
34310cf420 Merge pull request #974 from siiddhantt/fix/pr-960
fix/pr-960
2024-06-03 22:44:36 +01:00
Alex
e1d61d7190 Merge pull request #961 from arc53/dependabot/pip/application/requests-2.32.0
build(deps): bump requests from 2.31.0 to 2.32.0 in /application
2024-06-03 22:43:11 +01:00
Alex
9c14ac84cb Merge pull request #977 from shelar1423/main
DocsGPT link update
2024-06-03 17:26:54 +01:00
Siddhant Rai
1d1ea7b6f2 fix: version update 2024-06-03 20:59:52 +05:30
digvijay shelar
92401f5b7c link fix 2024-06-03 20:59:30 +05:30
Siddhant Rai
38ac9218ec fix: unpkg link in readme 2024-06-03 20:43:43 +05:30
Siddhant Rai
48497c749a fix: dompurify import error 2024-06-03 20:36:52 +05:30
Siddhant Rai
72a1892058 fix: added targets for browser environment 2024-06-03 12:57:53 +05:30
Siddhant Rai
f2c328d212 fix: empty types.d.ts generated during build + updated README.md 2024-06-01 14:10:12 +05:30
Alex
e9eafc40a7 Merge pull request #971 from shelar1423/main
FIX: improved documentation
2024-05-30 15:32:48 +01:00
digvijay shelar
933ca1bf81 updated the llm instructions for OS version 2024-05-30 18:51:56 +05:30
digvijay shelar
b4fc9aa7eb new home demo 2024-05-30 18:27:40 +05:30
Digvijay Shelar
dcc475bbef Merge branch 'arc53:main' into main 2024-05-30 18:22:56 +05:30
Alex
1fe35ad0cd Merge pull request #970 from siiddhantt/feature/link-to-source
feat: remote sources have clickable links to original url
2024-05-30 12:06:05 +01:00
Siddhant Rai
f1ed1e0f14 fix: type error 2024-05-30 15:33:16 +05:30
Alex
fcc746fb98 Merge pull request #972 from ManishMadan2882/main
Fix: added translation for the conversation history dropdown
2024-05-29 18:37:43 +01:00
ManishMadan2882
95934a5b7a (i18n): updated for conv history 2024-05-29 22:54:46 +05:30
Digvijay Shelar
d38b101820 Merge branch 'arc53:main' into main 2024-05-29 19:45:35 +05:30
Siddhant Rai
91d730a7bc feat: remote sources have clickable links 2024-05-29 19:07:08 +05:30
Alex
0cfa77b628 chats word in translations 2024-05-29 11:29:00 +01:00
Alex
ca4881ad51 Merge pull request #969 from ManishMadan2882/main
Internationalisation with i18next
2024-05-29 11:23:45 +01:00
digvijay shelar
8c2c064fe2 updated emoji's 2024-05-29 15:25:23 +05:30
Digvijay Shelar
10646b9b86 Merge branch 'arc53:main' into main 2024-05-29 15:04:16 +05:30
Alex
967b195946 Merge pull request #967 from starkgate/empty-response-after-streaming
Fix empty response in the conversation
2024-05-28 23:06:46 +01:00
ManishMadan2882
1ae7771290 add spacing in general, minor change 2024-05-29 03:27:53 +05:30
ManishMadan2882
a585fe4d54 refactored locale json 2024-05-28 21:38:42 +05:30
ManishMadan2882
fa3a9fe70e fix: minor changes 2024-05-28 21:35:10 +05:30
ManishMadan2882
99952a393f feat(i18n): modals, Hero, Nav 2024-05-28 20:50:07 +05:30
digvijay shelar
920a41e3ca api section fixed 2024-05-28 20:47:22 +05:30
digvijay shelar
e5bec957a1 issue #962 2024-05-28 20:32:35 +05:30
Alex
41cb765255 Update README.md 2024-05-28 10:09:06 +01:00
Alex
2d12a3cd7a Merge pull request #965 from siiddhantt/feature/set-tokens-message-history
feat: dropdown to adjust conversational history limits
2024-05-28 09:43:21 +01:00
starkgate
df4fe0176c Fix empty response in the conversation 2024-05-28 10:40:55 +02:00
ManishMadan2882
4fcc80719e feat(i18n): settings static content 2024-05-28 01:39:37 +05:30
Alex
f6c66f6ee4 Merge pull request #964 from ManishMadan2882/main
Feature: Token count for vectors
2024-05-27 11:44:11 +01:00
Siddhant Rai
220d137e66 feat: dropdown to adjust conversational history limits 2024-05-26 23:13:01 +05:30
Alex
425803a1b6 chore: Refactor source assignment in api_answer route 2024-05-24 16:50:00 +01:00
Manish Madan
c794ea614a Merge branch 'arc53:main' into main 2024-05-24 21:12:07 +05:30
ManishMadan2882
9000838aab (feat:vectors): calc, add token in db 2024-05-24 21:10:50 +05:30
Alex
2790bda1e9 feat: Update Kubernetes deployment instructions for DocsGPT 2024-05-24 16:16:32 +01:00
Alex
e13d4daa9a chore: Remove unused VECTOR_STORE variable in docsgpt-secrets.yaml 2024-05-24 16:09:31 +01:00
Alex
2f504a4e03 Merge pull request #963 from arc53/feat/kubes-deployment
feat: k8s deployment
2024-05-24 14:48:22 +01:00
Alex
598a50a133 feat: Add Kubernetes deployment instructions for DocsGPT 2024-05-24 14:40:28 +01:00
Alex
1b06a5a3e0 feat: k8s deployment 2024-05-23 18:23:01 +01:00
Alex
9f1d3b0269 Update README.md 2024-05-22 16:34:04 +01:00
Alex
a09543d38b Update README.md 2024-05-22 16:33:48 +01:00
dependabot[bot]
2ab3539925 ---
updated-dependencies:
- dependency-name: requests
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-05-21 05:53:49 +00:00
Alex
23ddf53abe Update ci.yml 2024-05-20 12:09:11 +01:00
ilyasosman
d8720d0849 Add DocsGPTWidget embedding support for HTML 2024-05-19 22:08:18 +03:00
Alex
6753b55160 Merge pull request #955 from sossost/feat/add_copy_button_on_code_snippet
Feat : add copy button on code snippet
2024-05-18 13:08:25 +01:00
Alex
7f7f48ad56 Merge pull request #958 from arc53/feat-pre-loading-embeds
chore: Update Docker build platforms for application and frontend and…
2024-05-18 12:49:19 +01:00
jang_yoonsu
149ca01029 fix : Add group property to code block parent element and add copy button condition 2024-05-18 20:43:13 +09:00
Alex
5c8133a810 chore: Update Docker build platforms for application and frontend and optimised embedding import 2024-05-18 12:10:24 +01:00
Alex
2adccdd1b0 Merge pull request #957 from ManishMadan2882/main
Update Sidebar
2024-05-17 14:37:44 +01:00
ManishMadan2882
b91068d658 (navbar): shrink navbar 2024-05-17 18:07:06 +05:30
Alex
4534cafd3f Merge pull request #949 from ManishMadan2882/main
Updating Hero
2024-05-16 23:32:49 +01:00
Alex
405e79d729 removed space 2024-05-16 23:32:12 +01:00
ManishMadan2882
4df2349e9d (hero) minor update 2024-05-17 00:59:47 +05:30
jang_yoonsu
a9b61d3e13 design : add style invisible when lg and visible when hover 2024-05-16 23:29:33 +09:00
jang_yoonsu
3767d14e5c feat: add copy button in code snippet 2024-05-16 23:23:46 +09:00
jang_yoonsu
889a050f25 feat : add copy button component 2024-05-16 23:23:06 +09:00
ManishMadan2882
0701fac807 (hero): hover button outline 2024-05-16 18:42:19 +05:30
ManishMadan2882
9fba91069a lint fix 2024-05-16 18:27:36 +05:30
ManishMadan2882
4f9ce70ff8 (hero): demo queries on click 2024-05-16 18:23:45 +05:30
Alex
5e00d4ded7 Merge pull request #953 from shelar1423/main
FIX: Spinner
2024-05-16 10:51:40 +01:00
digvijay shelar
95cd9ee5bb spinner fixed 2024-05-16 15:15:48 +05:30
Alex
40f16f8ef1 Merge pull request #952 from ManishMadan2882/fix-api-key-parse
FIx: API Key Parsing
2024-05-15 16:27:43 +01:00
ManishMadan2882
3d9288f82f fix: override chunks,promps with api-key-data 2024-05-15 20:23:02 +05:30
ManishMadan2882
c51f12f88b (conversation)- taller input field 2024-05-15 16:31:41 +05:30
Alex
0618153390 fix: object id bug 2024-05-14 19:01:45 +01:00
Alex
a7c066291b Update README.md 2024-05-13 17:08:12 +01:00
Alex
a69ac372fa Merge pull request #946 from siiddhantt/refactor/ui-elements
refactor: several small ui refactor for generalisation
2024-05-13 11:47:20 +01:00
Alex
16b2a54981 Merge pull request #936 from Fagner-lourenco/patch-1
Update Dockerfile
2024-05-12 22:36:52 +01:00
Alex
3f68e0d66f chore: Update Dockerfile 2024-05-12 22:33:43 +01:00
Alex
12d483fde6 chore: update documentation links to use the new domain 2024-05-12 11:40:09 +01:00
Siddhant Rai
96034a9712 fix: minor change 2024-05-12 12:56:34 +05:30
Siddhant Rai
d2def4479b refactor: several small ui refactor for generalisation 2024-05-12 12:41:12 +05:30
ManishMadan2882
afbbb913e7 (hero): updating the UI 2024-05-10 16:21:42 +05:30
Alex
ad76f239a3 Merge pull request #943 from arc53/dependabot/npm_and_yarn/docs/next-14.1.1
build(deps): bump next from 14.0.4 to 14.1.1 in /docs
2024-05-10 11:29:37 +01:00
dependabot[bot]
e6b096c9e0 build(deps): bump next from 14.0.4 to 14.1.1 in /docs
Bumps [next](https://github.com/vercel/next.js) from 14.0.4 to 14.1.1.
- [Release notes](https://github.com/vercel/next.js/releases)
- [Changelog](https://github.com/vercel/next.js/blob/canary/release.js)
- [Commits](https://github.com/vercel/next.js/compare/v14.0.4...v14.1.1)

---
updated-dependencies:
- dependency-name: next
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-05-10 04:27:40 +00:00
Alex
6e26b4e6c7 Merge pull request #942 from ManishMadan2882/main
Fix: Abnormal overflow on mobile screens and arbitrary word breaks.
2024-05-09 16:29:42 +01:00
ManishMadan2882
ea79494b6d fix(conversation): overflows in sources, removed tagline below input 2024-05-08 20:50:20 +05:30
ManishMadan2882
afb18a3e4d (conversation) makes overflow auto 2024-05-08 16:17:16 +05:30
ManishMadan2882
f9c9853102 fix(conversation) word breaks 2024-05-08 16:07:49 +05:30
ManishMadan2882
b3eb9fb6fa fix(conversation): mobile abnormal overflows 2024-05-08 15:56:52 +05:30
Alex
d3b97bf51a Merge pull request #941 from ManishMadan2882/main
fix(UI):conversation,settings
2024-05-08 09:50:30 +01:00
ManishMadan2882
7a2e491199 fix(UI):conversation,settings 2024-05-07 20:37:05 +05:30
Alex
25efaf08b7 Merge pull request #935 from arc53/dependabot/pip/application/tqdm-4.66.3
build(deps): bump tqdm from 4.66.1 to 4.66.3 in /application
2024-05-07 09:52:09 +01:00
Alex
f893ea6b98 Merge pull request #934 from arc53/dependabot/pip/scripts/tqdm-4.66.3
build(deps): bump tqdm from 4.66.1 to 4.66.3 in /scripts
2024-05-07 09:51:57 +01:00
dependabot[bot]
500745b62c build(deps): bump tqdm from 4.66.1 to 4.66.3 in /application
Bumps [tqdm](https://github.com/tqdm/tqdm) from 4.66.1 to 4.66.3.
- [Release notes](https://github.com/tqdm/tqdm/releases)
- [Commits](https://github.com/tqdm/tqdm/compare/v4.66.1...v4.66.3)

---
updated-dependencies:
- dependency-name: tqdm
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-05-07 08:24:51 +00:00
Alex
9ebe5bf1a7 Merge pull request #939 from arc53/dependabot/pip/application/werkzeug-3.0.3
build(deps): bump werkzeug from 3.0.1 to 3.0.3 in /application
2024-05-07 09:23:58 +01:00
dependabot[bot]
4aecb86daa build(deps): bump werkzeug from 3.0.1 to 3.0.3 in /application
Bumps [werkzeug](https://github.com/pallets/werkzeug) from 3.0.1 to 3.0.3.
- [Release notes](https://github.com/pallets/werkzeug/releases)
- [Changelog](https://github.com/pallets/werkzeug/blob/main/CHANGES.rst)
- [Commits](https://github.com/pallets/werkzeug/compare/3.0.1...3.0.3)

---
updated-dependencies:
- dependency-name: werkzeug
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-05-06 19:28:27 +00:00
Fagner-lourenco
6924dd6df6 Update Dockerfile 2024-05-04 20:50:11 -03:00
Alex
431755144e fix: Update count_tokens function in utils.py 2024-05-04 10:39:23 +01:00
dependabot[bot]
d182f81754 build(deps): bump tqdm from 4.66.1 to 4.66.3 in /scripts
Bumps [tqdm](https://github.com/tqdm/tqdm) from 4.66.1 to 4.66.3.
- [Release notes](https://github.com/tqdm/tqdm/releases)
- [Commits](https://github.com/tqdm/tqdm/compare/v4.66.1...v4.66.3)

---
updated-dependencies:
- dependency-name: tqdm
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-05-03 21:48:38 +00:00
Alex
de0193fffc Merge pull request #933 from siiddhantt/fix/remote-upload-issue
fix: remote upload error
2024-05-03 14:54:12 +01:00
Siddhant Rai
53e86205ad fix: added more headers from default 2024-05-03 18:47:30 +05:30
Siddhant Rai
aa670efe3a fix: connection aborted in WebBaseLoader 2024-05-03 18:25:01 +05:30
Alex
e693fe49a7 fix: fixed Dockerfile python path bug 2024-05-03 11:55:51 +01:00
Alex
7eaa32d85f remove gunicorn from final 2024-05-02 14:43:09 +01:00
Alex
ab40d2c37a remove pip from final container 2024-05-01 14:11:16 +01:00
Alex
784206b39b chore: Update Dockerfile to use Ubuntu mantic as base image and upgrade gunicorn to version 22.0.0 2024-05-01 13:19:16 +01:00
Alex
7c8264e221 Merge pull request #929 from TomasMatarazzo/issue-button-to-clean-chat-history
Issue button to clean chat history
2024-05-01 10:54:34 +01:00
TomasMatarazzo
db7195aa30 Update Navigation.tsx 2024-04-29 17:02:22 -03:00
TomasMatarazzo
eb7bbc1612 TS2741 2024-04-27 11:04:28 -03:00
TomasMatarazzo
ee3792181d probando 2024-04-26 20:35:36 -03:00
TomasMatarazzo
9804965a20 style in button and user in back route delete all conv 2024-04-25 23:43:45 -03:00
TomasMatarazzo
b84842df3d Fixing types 2024-04-22 16:35:44 -03:00
TomasMatarazzo
fc170d3033 Update package.json 2024-04-22 16:19:00 -03:00
TomasMatarazzo
8fa4ec7ad8 delete console.log 2024-04-22 16:17:26 -03:00
TomasMatarazzo
480825ddd7 now is working in settings 2024-04-22 16:16:19 -03:00
TomasMatarazzo
260e328cc1 first change 2024-04-22 14:41:59 -03:00
Alex
8873428b4b Merge pull request #926 from siiddhantt/feature
Feature: Logging token usage info to MongoDB
2024-04-22 12:10:00 +01:00
Alex
ab43c20b8f delete test output 2024-04-22 12:08:11 +01:00
TomasMatarazzo
88d9d4f4a3 Update DeleteConvModal.tsx 2024-04-18 13:56:03 -03:00
TomasMatarazzo
d4840f85c0 change text in modal 2024-04-18 13:50:08 -03:00
TomasMatarazzo
6f9ddeaed0 Button to clean chat history 2024-04-17 19:51:29 -03:00
Siddhant Rai
af5e73c8cb fix: user_api_key capturing 2024-04-16 15:31:11 +05:30
Siddhant Rai
333b6e60e1 fix: anthropic llm positional arguments 2024-04-16 10:02:04 +05:30
Siddhant Rai
1b61337b75 fix: skip logging to db during tests 2024-04-16 01:08:39 +05:30
Siddhant Rai
77991896b4 fix: api_key capturing + pytest errors 2024-04-15 22:32:24 +05:30
Siddhant Rai
60a670ce29 fix: changes to llm classes according to base 2024-04-15 19:47:24 +05:30
Siddhant Rai
c1c69ed22b fix: pytest issues 2024-04-15 19:35:59 +05:30
Siddhant Rai
d71c74c6fb Merge branch 'feature' of https://github.com/siiddhantt/DocsGPT into feature 2024-04-15 18:57:46 +05:30
Siddhant Rai
590aa8b43f update: apply decorator to abstract classes 2024-04-15 18:57:28 +05:30
Siddhant Rai
607e0166f6 Merge branch 'arc53:main' into feature 2024-04-15 18:55:09 +05:30
Alex
130c83ee92 Merge pull request #911 from arc53/dependabot/pip/application/pymongo-4.6.3
Bump pymongo from 4.6.1 to 4.6.3 in /application
2024-04-15 12:57:22 +01:00
Alex
fd5e418abf Merge pull request #919 from arc53/dependabot/npm_and_yarn/docs/multi-4407677fd1
build(deps): bump tar and npm in /docs
2024-04-15 12:29:26 +01:00
Siddhant Rai
262d160314 Merge with branch main 2024-04-15 15:18:48 +05:30
Siddhant Rai
9146827590 fix: removed unused import 2024-04-15 15:14:17 +05:30
Siddhant Rai
062b108259 Merge branch 'arc53:main' into feature 2024-04-15 15:04:10 +05:30
Siddhant Rai
ba796b6be1 feat: logging token usage to database 2024-04-15 15:03:00 +05:30
Alex
3d763235e1 Merge pull request #925 from ManishMadan2882/main
Untraced types in react widget
2024-04-14 11:43:03 +01:00
Manish Madan
c30c6d9f10 Merge branch 'arc53:main' into main 2024-04-13 16:20:56 +05:30
ManishMadan2882
311716ed18 refactored fs, fix: untracked dir 2024-04-13 16:01:46 +05:30
Alex
19bb1b4aa4 Create SECURITY.md 2024-04-12 09:39:33 +01:00
Alex
b8749e36b9 Merge pull request #921 from siiddhantt/bugfix
fix for missing fields in API Keys section
2024-04-10 10:25:26 +01:00
Siddhant Rai
00b6639155 fix: minor ui changes 2024-04-10 12:37:29 +05:30
Siddhant Rai
71d7daaef3 fix: minor ui changes 2024-04-10 12:23:37 +05:30
Siddhant Rai
8654c5d471 Merge branch 'bugfix' of https://github.com/siiddhantt/DocsGPT into bugfix 2024-04-10 12:11:51 +05:30
Siddhant Rai
02124b3d38 fix: missing fields from API Keys section 2024-04-10 12:11:34 +05:30
dependabot[bot]
340dcfb70d build(deps): bump tar and npm in /docs
Removes [tar](https://github.com/isaacs/node-tar). It's no longer used after updating ancestor dependency [npm](https://github.com/npm/cli). These dependencies need to be updated together.


Removes `tar`

Updates `npm` from 10.5.0 to 10.5.1
- [Release notes](https://github.com/npm/cli/releases)
- [Changelog](https://github.com/npm/cli/blob/latest/CHANGELOG.md)
- [Commits](https://github.com/npm/cli/compare/v10.5.0...v10.5.1)

---
updated-dependencies:
- dependency-name: tar
  dependency-type: indirect
- dependency-name: npm
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-04-09 21:09:48 +00:00
Alex
a37b92223a Merge pull request #915 from arc53/feat/retrievers-class
Update application files and fix LLM models, create new retriever class
2024-04-09 22:09:11 +01:00
Alex
7d2b8cb4fc Merge pull request #917 from arc53/multiple-uploads
Multiple file upload
2024-04-09 18:13:52 +01:00
Alex
8d7a134cb4 lint: ruff 2024-04-09 17:25:08 +01:00
Alex
4b849d7201 Fix SagemakerAPILLM test 2024-04-09 17:20:26 +01:00
Alex
e03e185d30 Add Brave Search retriever and update application files 2024-04-09 17:11:09 +01:00
Pavel
7a02df5588 Multiple uploads 2024-04-09 19:56:07 +04:00
Alex
19494685ba Update application files, fix LLM models, and create new retriever class 2024-04-09 16:38:42 +01:00
Alex
1e26943c3e Update application files, fix LLM models, and create new retriever class 2024-04-09 15:45:24 +01:00
dependabot[bot]
83fa850142 Bump pymongo from 4.6.1 to 4.6.3 in /application
Bumps [pymongo](https://github.com/mongodb/mongo-python-driver) from 4.6.1 to 4.6.3.
- [Release notes](https://github.com/mongodb/mongo-python-driver/releases)
- [Changelog](https://github.com/mongodb/mongo-python-driver/blob/master/doc/changelog.rst)
- [Commits](https://github.com/mongodb/mongo-python-driver/compare/4.6.1...4.6.3)

---
updated-dependencies:
- dependency-name: pymongo
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-04-09 14:22:15 +00:00
Alex
968a116d14 Merge pull request #916 from siiddhantt/bugfix
fix: updated qdrant-client to v1.8.2
2024-04-09 15:20:46 +01:00
Siddhant Rai
fb55b494d7 Merge branch 'arc53:main' into bugfix 2024-04-09 19:09:44 +05:30
Siddhant Rai
59b6a83d7d fix: issue #884 2024-04-09 19:08:59 +05:30
Alex
aabc4f0d7b Merge pull request #907 from siiddhantt/main
refactor: clean up settings file for better structure
2024-04-09 14:17:56 +01:00
Alex
391f686173 Update application files and fix LLM models, create new retriever class 2024-04-09 14:02:33 +01:00
Siddhant Rai
8e6f6d46ec fix: issue during build 2024-04-09 16:34:51 +05:30
Siddhant Rai
2ba7a55439 Merge branch 'arc53:main' into main 2024-04-09 13:54:48 +05:30
Siddhant Rai
fad5f5b81f fix: added requested changes 2024-04-08 17:45:56 +05:30
Siddhant Rai
6961f49a0c Merge branch 'arc53:main' into main 2024-04-08 17:43:21 +05:30
Siddhant Rai
39f0d76b4b refactor: clean up settings file for better structure 2024-04-05 23:38:59 +05:30
Siddhant Rai
0a5832ec75 refactor: clean up settings file for better structure 2024-04-05 23:33:27 +05:30
132 changed files with 7873 additions and 7285 deletions

View File

@@ -13,7 +13,6 @@ jobs:
permissions:
contents: read
packages: write
steps:
- uses: actions/checkout@v3
@@ -36,7 +35,6 @@ jobs:
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
# Runs a single command using the runners shell
- name: Build and push Docker images to docker.io and ghcr.io
uses: docker/build-push-action@v4
with:

View File

@@ -8,11 +8,11 @@ on:
jobs:
deploy:
if: github.repository == 'arc53/DocsGPT'
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- uses: actions/checkout@v3
@@ -40,7 +40,7 @@ jobs:
uses: docker/build-push-action@v4
with:
file: './frontend/Dockerfile'
platforms: linux/amd64
platforms: linux/amd64, linux/arm64
context: ./frontend
push: true
tags: |

View File

@@ -7,9 +7,9 @@
</p>
<p align="left">
<strong><a href="https://docsgpt.arc53.com/">DocsGPT</a></strong> is a cutting-edge open-source solution that streamlines the process of finding information in the project documentation. With its integration of the powerful <strong>GPT</strong> models, developers can easily ask questions about a project and receive accurate answers.
<strong><a href="https://www.docsgpt.cloud/">DocsGPT</a></strong> is a cutting-edge open-source solution that streamlines the process of finding information in the project documentation. With its integration of the powerful <strong>GPT</strong> models, developers can easily ask questions about a project and receive accurate answers.
Say goodbye to time-consuming manual searches, and let <strong><a href="https://docsgpt.arc53.com/">DocsGPT</a></strong> help you quickly find the information you need. Try it out and see how it revolutionizes your project documentation experience. Contribute to its development and be a part of the future of AI-powered assistance.
Say goodbye to time-consuming manual searches, and let <strong><a href="https://www.docsgpt.cloud/">DocsGPT</a></strong> help you quickly find the information you need. Try it out and see how it revolutionizes your project documentation experience. Contribute to its development and be a part of the future of AI-powered assistance.
</p>
<div align="center">
@@ -27,7 +27,7 @@ Say goodbye to time-consuming manual searches, and let <strong><a href="https://
We're eager to provide personalized assistance when deploying your DocsGPT to a live environment.
- [Book Demo :wave:](https://airtable.com/appdeaL0F1qV8Bl2C/shrrJF1Ll7btCJRbP)
- [Get Enterprise / teams Demo :wave:](https://www.docsgpt.cloud/contact)
- [Send Email :email:](mailto:contact@arc53.com?subject=DocsGPT%20support%2Fsolutions)
![video-example-of-docs-gpt](https://d3dg1063dc54p9.cloudfront.net/videos/demov3.gif)
@@ -52,17 +52,17 @@ If you don't have enough resources to run it, you can use bitsnbytes to quantize
## Useful Links
- :mag: :fire: [Live preview](https://docsgpt.arc53.com/)
- :mag: :fire: [Cloud Version](https://app.docsgpt.cloud/)
- :speech_balloon: :tada: [Join our Discord](https://discord.gg/n5BX8dh8rU)
- :books: :sunglasses: [Guides](https://docs.docsgpt.co.uk/)
- :books: :sunglasses: [Guides](https://docs.docsgpt.cloud/)
- :couple: [Interested in contributing?](https://github.com/arc53/DocsGPT/blob/main/CONTRIBUTING.md)
- :file_folder: :rocket: [How to use any other documentation](https://docs.docsgpt.co.uk/Guides/How-to-train-on-other-documentation)
- :file_folder: :rocket: [How to use any other documentation](https://docs.docsgpt.cloud/Guides/How-to-train-on-other-documentation)
- :house: :closed_lock_with_key: [How to host it locally (so all data will stay on-premises)](https://docs.docsgpt.co.uk/Guides/How-to-use-different-LLM)
- :house: :closed_lock_with_key: [How to host it locally (so all data will stay on-premises)](https://docs.docsgpt.cloud/Guides/How-to-use-different-LLM)
## Project Structure
@@ -85,7 +85,7 @@ On Mac OS or Linux, write:
It will install all the dependencies and allow you to download the local model, use OpenAI or use our LLM API.
Otherwise, refer to this Guide:
Otherwise, refer to this Guide for Windows:
1. Download and open this repository with `git clone https://github.com/arc53/DocsGPT.git`
2. Create a `.env` file in your root directory and set the env variables and `VITE_API_STREAMING` to true or false, depending on whether you want streaming answers or not.

14
SECURITY.md Normal file
View File

@@ -0,0 +1,14 @@
# Security Policy
## Supported Versions
Supported Versions:
Currently, we support security patches by committing changes and bumping the version published on Github.
## Reporting a Vulnerability
Found a vulnerability? Please email us:
security@arc53.com

View File

@@ -1,31 +1,93 @@
FROM python:3.11-slim-bullseye as builder
# Builder Stage
FROM ubuntu:24.04 as builder
# Tiktoken requires Rust toolchain, so build it in a separate stage
RUN apt-get update && apt-get install -y gcc curl
RUN apt-get install -y wget unzip
RUN wget https://d3dg1063dc54p9.cloudfront.net/models/embeddings/mpnet-base-v2.zip
RUN unzip mpnet-base-v2.zip -d model
RUN rm mpnet-base-v2.zip
RUN curl https://sh.rustup.rs -sSf | sh -s -- -y && apt-get install --reinstall libc6-dev -y
ENV PATH="/root/.cargo/bin:${PATH}"
RUN pip install --upgrade pip && pip install tiktoken==0.5.2
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update && \
apt-get install -y software-properties-common
RUN add-apt-repository ppa:deadsnakes/ppa
# Install necessary packages and Python
RUN apt-get update && \
apt-get install -y --no-install-recommends gcc curl wget unzip libc6-dev python3.11 python3.11-distutils python3.11-venv && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
# Verify Python installation and setup symlink
RUN if [ -f /usr/bin/python3.11 ]; then \
ln -s /usr/bin/python3.11 /usr/bin/python; \
else \
echo "Python 3.11 not found"; exit 1; \
fi
# Download and unzip the model
RUN wget https://d3dg1063dc54p9.cloudfront.net/models/embeddings/mpnet-base-v2.zip && \
unzip mpnet-base-v2.zip -d model && \
rm mpnet-base-v2.zip
# Install Rust
RUN curl https://sh.rustup.rs -sSf | sh -s -- -y
# Clean up to reduce container size
RUN apt-get remove --purge -y wget unzip && apt-get autoremove -y && rm -rf /var/lib/apt/lists/*
# Copy requirements.txt
COPY requirements.txt .
RUN pip install -r requirements.txt
# Setup Python virtual environment
RUN python3.11 -m venv /venv
# Activate virtual environment and install Python packages
ENV PATH="/venv/bin:$PATH"
FROM python:3.11-slim-bullseye
# Install Python packages
RUN pip install --no-cache-dir --upgrade pip && \
pip install --no-cache-dir tiktoken && \
pip install --no-cache-dir -r requirements.txt
# Copy pre-built packages and binaries from builder stage
COPY --from=builder /usr/local/ /usr/local/
# Final Stage
FROM ubuntu:24.04 as final
RUN apt-get update && \
apt-get install -y software-properties-common
RUN add-apt-repository ppa:deadsnakes/ppa
# Install Python
RUN apt-get update && apt-get install -y --no-install-recommends python3.11 && \
ln -s /usr/bin/python3.11 /usr/bin/python && \
rm -rf /var/lib/apt/lists/*
# Set working directory
WORKDIR /app
# Create a non-root user: `appuser` (Feel free to choose a name)
RUN groupadd -r appuser && \
useradd -r -g appuser -d /app -s /sbin/nologin -c "Docker image user" appuser
# Copy the virtual environment and model from the builder stage
COPY --from=builder /venv /venv
COPY --from=builder /model /app/model
# Copy your application code
COPY . /app/application
ENV FLASK_APP=app.py
ENV FLASK_DEBUG=true
# Change the ownership of the /app directory to the appuser
RUN mkdir -p /app/application/inputs/local
RUN chown -R appuser:appuser /app
# Set environment variables
ENV FLASK_APP=app.py \
FLASK_DEBUG=true \
PATH="/venv/bin:$PATH"
# Expose the port the app runs on
EXPOSE 7091
CMD ["gunicorn", "-w", "2", "--timeout", "120", "--bind", "0.0.0.0:7091", "application.wsgi:app"]
# Switch to non-root user
USER appuser
# Start Gunicorn
CMD ["gunicorn", "-w", "2", "--timeout", "120", "--bind", "0.0.0.0:7091", "application.wsgi:app"]

View File

@@ -1,5 +1,6 @@
import asyncio
import os
import sys
from flask import Blueprint, request, Response
import json
import datetime
@@ -8,17 +9,12 @@ import traceback
from pymongo import MongoClient
from bson.objectid import ObjectId
from transformers import GPT2TokenizerFast
from application.core.settings import settings
from application.vectorstore.vector_creator import VectorCreator
from application.llm.llm_creator import LLMCreator
from application.retriever.retriever_creator import RetrieverCreator
from application.error import bad_request
logger = logging.getLogger(__name__)
mongo = MongoClient(settings.MONGO_URI)
@@ -27,20 +23,22 @@ conversations_collection = db["conversations"]
vectors_collection = db["vectors"]
prompts_collection = db["prompts"]
api_key_collection = db["api_keys"]
answer = Blueprint('answer', __name__)
answer = Blueprint("answer", __name__)
gpt_model = ""
# to have some kind of default behaviour
if settings.LLM_NAME == "openai":
gpt_model = 'gpt-3.5-turbo'
gpt_model = "gpt-3.5-turbo"
elif settings.LLM_NAME == "anthropic":
gpt_model = 'claude-2'
gpt_model = "claude-2"
if settings.MODEL_NAME: # in case there is particular model name configured
gpt_model = settings.MODEL_NAME
# load the prompts
current_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
current_dir = os.path.dirname(
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
)
with open(os.path.join(current_dir, "prompts", "chat_combine_default.txt"), "r") as f:
chat_combine_template = f.read()
@@ -51,7 +49,7 @@ with open(os.path.join(current_dir, "prompts", "chat_combine_creative.txt"), "r"
chat_combine_creative = f.read()
with open(os.path.join(current_dir, "prompts", "chat_combine_strict.txt"), "r") as f:
chat_combine_strict = f.read()
chat_combine_strict = f.read()
api_key_set = settings.API_KEY is not None
embeddings_key_set = settings.EMBEDDINGS_KEY is not None
@@ -62,11 +60,6 @@ async def async_generate(chain, question, chat_history):
return result
def count_tokens(string):
tokenizer = GPT2TokenizerFast.from_pretrained('gpt2')
return len(tokenizer(string)['input_ids'])
def run_async_chain(chain, question, chat_history):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
@@ -78,17 +71,20 @@ def run_async_chain(chain, question, chat_history):
result["answer"] = answer
return result
def get_data_from_api_key(api_key):
data = api_key_collection.find_one({"key": api_key})
if data is None:
return bad_request(401, "Invalid API key")
return data
# # Raise custom exception if the API key is not found
if data is None:
raise Exception("Invalid API Key, please generate new key", 401)
return data
def get_vectorstore(data):
if "active_docs" in data:
if data["active_docs"].split("/")[0] == "default":
vectorstore = ""
vectorstore = ""
elif data["active_docs"].split("/")[0] == "local":
vectorstore = "indexes/" + data["active_docs"]
else:
@@ -102,95 +98,116 @@ def get_vectorstore(data):
def is_azure_configured():
return settings.OPENAI_API_BASE and settings.OPENAI_API_VERSION and settings.AZURE_DEPLOYMENT_NAME
return (
settings.OPENAI_API_BASE
and settings.OPENAI_API_VERSION
and settings.AZURE_DEPLOYMENT_NAME
)
def complete_stream(question, docsearch, chat_history, prompt_id, conversation_id, chunks=2):
llm = LLMCreator.create_llm(settings.LLM_NAME, api_key=settings.API_KEY)
if prompt_id == 'default':
prompt = chat_combine_template
elif prompt_id == 'creative':
prompt = chat_combine_creative
elif prompt_id == 'strict':
prompt = chat_combine_strict
else:
prompt = prompts_collection.find_one({"_id": ObjectId(prompt_id)})["content"]
if chunks == 0:
docs = []
else:
docs = docsearch.search(question, k=chunks)
if settings.LLM_NAME == "llama.cpp":
docs = [docs[0]]
# join all page_content together with a newline
docs_together = "\n".join([doc.page_content for doc in docs])
p_chat_combine = prompt.replace("{summaries}", docs_together)
messages_combine = [{"role": "system", "content": p_chat_combine}]
source_log_docs = []
for doc in docs:
if doc.metadata:
source_log_docs.append({"title": doc.metadata['title'].split('/')[-1], "text": doc.page_content})
else:
source_log_docs.append({"title": doc.page_content, "text": doc.page_content})
if len(chat_history) > 1:
tokens_current_history = 0
# count tokens in history
chat_history.reverse()
for i in chat_history:
if "prompt" in i and "response" in i:
tokens_batch = count_tokens(i["prompt"]) + count_tokens(i["response"])
if tokens_current_history + tokens_batch < settings.TOKENS_MAX_HISTORY:
tokens_current_history += tokens_batch
messages_combine.append({"role": "user", "content": i["prompt"]})
messages_combine.append({"role": "system", "content": i["response"]})
messages_combine.append({"role": "user", "content": question})
response_full = ""
completion = llm.gen_stream(model=gpt_model, engine=settings.AZURE_DEPLOYMENT_NAME,
messages=messages_combine)
for line in completion:
data = json.dumps({"answer": str(line)})
response_full += str(line)
yield f"data: {data}\n\n"
# save conversation to database
if conversation_id is not None:
def save_conversation(conversation_id, question, response, source_log_docs, llm):
if conversation_id is not None and conversation_id != "None":
conversations_collection.update_one(
{"_id": ObjectId(conversation_id)},
{"$push": {"queries": {"prompt": question, "response": response_full, "sources": source_log_docs}}},
{
"$push": {
"queries": {
"prompt": question,
"response": response,
"sources": source_log_docs,
}
}
},
)
else:
# create new conversation
# generate summary
messages_summary = [{"role": "assistant", "content": "Summarise following conversation in no more than 3 "
"words, respond ONLY with the summary, use the same "
"language as the system \n\nUser: " + question + "\n\n" +
"AI: " +
response_full},
{"role": "user", "content": "Summarise following conversation in no more than 3 words, "
"respond ONLY with the summary, use the same language as the "
"system"}]
messages_summary = [
{
"role": "assistant",
"content": "Summarise following conversation in no more than 3 "
"words, respond ONLY with the summary, use the same "
"language as the system \n\nUser: "
+question
+"\n\n"
+"AI: "
+response,
},
{
"role": "user",
"content": "Summarise following conversation in no more than 3 words, "
"respond ONLY with the summary, use the same language as the "
"system",
},
]
completion = llm.gen(model=gpt_model, engine=settings.AZURE_DEPLOYMENT_NAME,
messages=messages_summary, max_tokens=30)
completion = llm.gen(model=gpt_model, messages=messages_summary, max_tokens=30)
conversation_id = conversations_collection.insert_one(
{"user": "local",
"date": datetime.datetime.utcnow(),
"name": completion,
"queries": [{"prompt": question, "response": response_full, "sources": source_log_docs}]}
{
"user": "local",
"date": datetime.datetime.utcnow(),
"name": completion,
"queries": [
{
"prompt": question,
"response": response,
"sources": source_log_docs,
}
],
}
).inserted_id
return conversation_id
# send data.type = "end" to indicate that the stream has ended as json
data = json.dumps({"type": "id", "id": str(conversation_id)})
yield f"data: {data}\n\n"
data = json.dumps({"type": "end"})
yield f"data: {data}\n\n"
def get_prompt(prompt_id):
if prompt_id == "default":
prompt = chat_combine_template
elif prompt_id == "creative":
prompt = chat_combine_creative
elif prompt_id == "strict":
prompt = chat_combine_strict
else:
prompt = prompts_collection.find_one({"_id": ObjectId(prompt_id)})["content"]
return prompt
def complete_stream(question, retriever, conversation_id, user_api_key):
try:
response_full = ""
source_log_docs = []
answer = retriever.gen()
for line in answer:
if "answer" in line:
response_full += str(line["answer"])
data = json.dumps(line)
yield f"data: {data}\n\n"
elif "source" in line:
source_log_docs.append(line["source"])
llm = LLMCreator.create_llm(
settings.LLM_NAME, api_key=settings.API_KEY, user_api_key=user_api_key
)
conversation_id = save_conversation(
conversation_id, question, response_full, source_log_docs, llm
)
# send data.type = "end" to indicate that the stream has ended as json
data = json.dumps({"type": "id", "id": str(conversation_id)})
yield f"data: {data}\n\n"
data = json.dumps({"type": "end"})
yield f"data: {data}\n\n"
except Exception as e:
print("\033[91merr", str(e), file=sys.stderr)
data = json.dumps({"type": "error","error":"Please try again later. We apologize for any inconvenience.",
"error_exception": str(e)})
yield f"data: {data}\n\n"
return
@answer.route("/stream", methods=["POST"])
def stream():
try:
data = request.get_json()
# get parameter from url question
question = data["question"]
@@ -203,36 +220,91 @@ def stream():
conversation_id = None
else:
conversation_id = data["conversation_id"]
if 'prompt_id' in data:
if "prompt_id" in data:
prompt_id = data["prompt_id"]
else:
prompt_id = 'default'
if 'selectedDocs' in data and data['selectedDocs'] is None:
prompt_id = "default"
if "selectedDocs" in data and data["selectedDocs"] is None:
chunks = 0
elif 'chunks' in data:
elif "chunks" in data:
chunks = int(data["chunks"])
else:
chunks = 2
if "token_limit" in data:
token_limit = data["token_limit"]
else:
token_limit = settings.DEFAULT_MAX_HISTORY
# check if active_docs is set
# check if active_docs or api_key is set
if "api_key" in data:
data_key = get_data_from_api_key(data["api_key"])
vectorstore = get_vectorstore({"active_docs": data_key["source"]})
chunks = int(data_key["chunks"])
prompt_id = data_key["prompt_id"]
source = {"active_docs": data_key["source"]}
user_api_key = data["api_key"]
elif "active_docs" in data:
vectorstore = get_vectorstore({"active_docs": data["active_docs"]})
source = {"active_docs": data["active_docs"]}
user_api_key = None
else:
vectorstore = ""
docsearch = VectorCreator.create_vectorstore(settings.VECTOR_STORE, vectorstore, settings.EMBEDDINGS_KEY)
source = {}
user_api_key = None
return Response(
complete_stream(question, docsearch,
chat_history=history,
prompt_id=prompt_id,
conversation_id=conversation_id,
chunks=chunks), mimetype="text/event-stream"
if (
source["active_docs"].split("/")[0] == "default"
or source["active_docs"].split("/")[0] == "local"
):
retriever_name = "classic"
else:
retriever_name = source["active_docs"]
prompt = get_prompt(prompt_id)
retriever = RetrieverCreator.create_retriever(
retriever_name,
question=question,
source=source,
chat_history=history,
prompt=prompt,
chunks=chunks,
token_limit=token_limit,
gpt_model=gpt_model,
user_api_key=user_api_key,
)
return Response(
complete_stream(
question=question,
retriever=retriever,
conversation_id=conversation_id,
user_api_key=user_api_key,
),
mimetype="text/event-stream",
)
except ValueError:
message = "Malformed request body"
print("\033[91merr", str(message), file=sys.stderr)
return Response(
error_stream_generate(message),
status=400,
mimetype="text/event-stream",
)
except Exception as e:
print("\033[91merr", str(e), file=sys.stderr)
message = e.args[0]
status_code = 400
# # Custom exceptions with two arguments, index 1 as status code
if(len(e.args) >= 2):
status_code = e.args[1]
return Response(
error_stream_generate(message),
status=status_code,
mimetype="text/event-stream",
)
def error_stream_generate(err_response):
data = json.dumps({"type": "error", "error":err_response})
yield f"data: {data}\n\n"
@answer.route("/api/answer", methods=["POST"])
def api_answer():
@@ -247,118 +319,70 @@ def api_answer():
else:
conversation_id = data["conversation_id"]
print("-" * 5)
if 'prompt_id' in data:
if "prompt_id" in data:
prompt_id = data["prompt_id"]
else:
prompt_id = 'default'
if 'chunks' in data:
prompt_id = "default"
if "chunks" in data:
chunks = int(data["chunks"])
else:
chunks = 2
if prompt_id == 'default':
prompt = chat_combine_template
elif prompt_id == 'creative':
prompt = chat_combine_creative
elif prompt_id == 'strict':
prompt = chat_combine_strict
if "token_limit" in data:
token_limit = data["token_limit"]
else:
prompt = prompts_collection.find_one({"_id": ObjectId(prompt_id)})["content"]
token_limit = settings.DEFAULT_MAX_HISTORY
# use try and except to check for exception
try:
# check if the vectorstore is set
if "api_key" in data:
data_key = get_data_from_api_key(data["api_key"])
vectorstore = get_vectorstore({"active_docs": data_key["source"]})
chunks = int(data_key["chunks"])
prompt_id = data_key["prompt_id"]
source = {"active_docs": data_key["source"]}
user_api_key = data["api_key"]
else:
vectorstore = get_vectorstore(data)
# loading the index and the store and the prompt template
# Note if you have used other embeddings than OpenAI, you need to change the embeddings
docsearch = VectorCreator.create_vectorstore(settings.VECTOR_STORE, vectorstore, settings.EMBEDDINGS_KEY)
source = data
user_api_key = None
llm = LLMCreator.create_llm(settings.LLM_NAME, api_key=settings.API_KEY)
if chunks == 0:
docs = []
if (
source["active_docs"].split("/")[0] == "default"
or source["active_docs"].split("/")[0] == "local"
):
retriever_name = "classic"
else:
docs = docsearch.search(question, k=chunks)
# join all page_content together with a newline
docs_together = "\n".join([doc.page_content for doc in docs])
p_chat_combine = prompt.replace("{summaries}", docs_together)
messages_combine = [{"role": "system", "content": p_chat_combine}]
retriever_name = source["active_docs"]
prompt = get_prompt(prompt_id)
retriever = RetrieverCreator.create_retriever(
retriever_name,
question=question,
source=source,
chat_history=history,
prompt=prompt,
chunks=chunks,
token_limit=token_limit,
gpt_model=gpt_model,
user_api_key=user_api_key,
)
source_log_docs = []
for doc in docs:
if doc.metadata:
source_log_docs.append({"title": doc.metadata['title'].split('/')[-1], "text": doc.page_content})
else:
source_log_docs.append({"title": doc.page_content, "text": doc.page_content})
# join all page_content together with a newline
response_full = ""
for line in retriever.gen():
if "source" in line:
source_log_docs.append(line["source"])
elif "answer" in line:
response_full += line["answer"]
llm = LLMCreator.create_llm(
settings.LLM_NAME, api_key=settings.API_KEY, user_api_key=user_api_key
)
if len(history) > 1:
tokens_current_history = 0
# count tokens in history
history.reverse()
for i in history:
if "prompt" in i and "response" in i:
tokens_batch = count_tokens(i["prompt"]) + count_tokens(i["response"])
if tokens_current_history + tokens_batch < settings.TOKENS_MAX_HISTORY:
tokens_current_history += tokens_batch
messages_combine.append({"role": "user", "content": i["prompt"]})
messages_combine.append({"role": "system", "content": i["response"]})
messages_combine.append({"role": "user", "content": question})
result = {"answer": response_full, "sources": source_log_docs}
result["conversation_id"] = save_conversation(
conversation_id, question, response_full, source_log_docs, llm
)
completion = llm.gen(model=gpt_model, engine=settings.AZURE_DEPLOYMENT_NAME,
messages=messages_combine)
result = {"answer": completion, "sources": source_log_docs}
logger.debug(result)
# generate conversationId
if conversation_id is not None:
conversations_collection.update_one(
{"_id": ObjectId(conversation_id)},
{"$push": {"queries": {"prompt": question,
"response": result["answer"], "sources": result['sources']}}},
)
else:
# create new conversation
# generate summary
messages_summary = [
{"role": "assistant", "content": "Summarise following conversation in no more than 3 words, "
"respond ONLY with the summary, use the same language as the system \n\n"
"User: " + question + "\n\n" + "AI: " + result["answer"]},
{"role": "user", "content": "Summarise following conversation in no more than 3 words, "
"respond ONLY with the summary, use the same language as the system"}
]
completion = llm.gen(
model=gpt_model,
engine=settings.AZURE_DEPLOYMENT_NAME,
messages=messages_summary,
max_tokens=30
)
conversation_id = conversations_collection.insert_one(
{"user": "local",
"date": datetime.datetime.utcnow(),
"name": completion,
"queries": [{"prompt": question, "response": result["answer"], "sources": source_log_docs}]}
).inserted_id
result["conversation_id"] = str(conversation_id)
# mock result
# result = {
# "answer": "The answer is 42",
# "sources": ["https://en.wikipedia.org/wiki/42_(number)", "https://en.wikipedia.org/wiki/42_(number)"]
# }
return result
except Exception as e:
# print whole traceback
@@ -372,30 +396,44 @@ def api_search():
data = request.get_json()
# get parameter from url question
question = data["question"]
if "api_key" in data:
data_key = get_data_from_api_key(data["api_key"])
vectorstore = data_key["source"]
elif "active_docs" in data:
vectorstore = get_vectorstore({"active_docs": data["active_docs"]})
else:
vectorstore = ""
if 'chunks' in data:
if "chunks" in data:
chunks = int(data["chunks"])
else:
chunks = 2
docsearch = VectorCreator.create_vectorstore(settings.VECTOR_STORE, vectorstore, settings.EMBEDDINGS_KEY)
if chunks == 0:
docs = []
if "api_key" in data:
data_key = get_data_from_api_key(data["api_key"])
chunks = int(data_key["chunks"])
source = {"active_docs": data_key["source"]}
user_api_key = data["api_key"]
elif "active_docs" in data:
source = {"active_docs": data["active_docs"]}
user_api_key = None
else:
docs = docsearch.search(question, k=chunks)
source = {}
user_api_key = None
source_log_docs = []
for doc in docs:
if doc.metadata:
source_log_docs.append({"title": doc.metadata['title'].split('/')[-1], "text": doc.page_content})
else:
source_log_docs.append({"title": doc.page_content, "text": doc.page_content})
#yield f"data:{data}\n\n"
return source_log_docs
if (
source["active_docs"].split("/")[0] == "default"
or source["active_docs"].split("/")[0] == "local"
):
retriever_name = "classic"
else:
retriever_name = source["active_docs"]
if "token_limit" in data:
token_limit = data["token_limit"]
else:
token_limit = settings.DEFAULT_MAX_HISTORY
retriever = RetrieverCreator.create_retriever(
retriever_name,
question=question,
source=source,
chat_history=[],
prompt="default",
chunks=chunks,
token_limit=token_limit,
gpt_model=gpt_model,
user_api_key=user_api_key,
)
docs = retriever.search()
return docs

2
application/api/internal/routes.py Normal file → Executable file
View File

@@ -34,6 +34,7 @@ def upload_index_files():
if "name" not in request.form:
return {"status": "no name"}
job_name = secure_filename(request.form["name"])
tokens = secure_filename(request.form["tokens"])
save_dir = os.path.join(current_dir, "indexes", user, job_name)
if settings.VECTOR_STORE == "faiss":
if "file_faiss" not in request.files:
@@ -64,6 +65,7 @@ def upload_index_files():
"date": datetime.datetime.now().strftime("%d/%m/%Y %H:%M:%S"),
"model": settings.EMBEDDINGS_NAME,
"type": "local",
"tokens": tokens
}
)
return {"status": "ok"}

View File

@@ -1,12 +1,14 @@
import os
import uuid
import shutil
from flask import Blueprint, request, jsonify
from urllib.parse import urlparse
import requests
from pymongo import MongoClient
from bson.objectid import ObjectId
from bson.binary import Binary, UuidRepresentation
from werkzeug.utils import secure_filename
from bson.dbref import DBRef
from application.api.user.tasks import ingest, ingest_remote
from application.core.settings import settings
@@ -19,9 +21,14 @@ vectors_collection = db["vectors"]
prompts_collection = db["prompts"]
feedback_collection = db["feedback"]
api_key_collection = db["api_keys"]
user = Blueprint('user', __name__)
shared_conversations_collections = db["shared_conversations"]
user = Blueprint("user", __name__)
current_dir = os.path.dirname(
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
)
current_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
@user.route("/api/delete_conversation", methods=["POST"])
def delete_conversation():
@@ -36,15 +43,25 @@ def delete_conversation():
return {"status": "ok"}
@user.route("/api/delete_all_conversations", methods=["POST"])
def delete_all_conversations():
user_id = "local"
conversations_collection.delete_many({"user": user_id})
return {"status": "ok"}
@user.route("/api/get_conversations", methods=["get"])
def get_conversations():
# provides a list of conversations
conversations = conversations_collection.find().sort("date", -1).limit(30)
list_conversations = []
for conversation in conversations:
list_conversations.append({"id": str(conversation["_id"]), "name": conversation["name"]})
list_conversations.append(
{"id": str(conversation["_id"]), "name": conversation["name"]}
)
#list_conversations = [{"id": "default", "name": "default"}, {"id": "jeff", "name": "jeff"}]
# list_conversations = [{"id": "default", "name": "default"}, {"id": "jeff", "name": "jeff"}]
return jsonify(list_conversations)
@@ -54,7 +71,8 @@ def get_single_conversation():
# provides data for a conversation
conversation_id = request.args.get("id")
conversation = conversations_collection.find_one({"_id": ObjectId(conversation_id)})
return jsonify(conversation['queries'])
return jsonify(conversation["queries"])
@user.route("/api/update_conversation_name", methods=["POST"])
def update_conversation_name():
@@ -62,7 +80,7 @@ def update_conversation_name():
data = request.get_json()
id = data["id"]
name = data["name"]
conversations_collection.update_one({"_id": ObjectId(id)},{"$set":{"name":name}})
conversations_collection.update_one({"_id": ObjectId(id)}, {"$set": {"name": name}})
return {"status": "ok"}
@@ -73,7 +91,6 @@ def api_feedback():
answer = data["answer"]
feedback = data["feedback"]
feedback_collection.insert_one(
{
"question": question,
@@ -83,6 +100,7 @@ def api_feedback():
)
return {"status": "ok"}
@user.route("/api/delete_by_ids", methods=["get"])
def delete_by_ids():
"""Delete by ID. These are the IDs in the vectorstore"""
@@ -97,6 +115,7 @@ def delete_by_ids():
return {"status": "ok"}
return {"status": "error"}
@user.route("/api/delete_old", methods=["get"])
def delete_old():
"""Delete old indexes."""
@@ -112,7 +131,7 @@ def delete_old():
if dirs_clean[0] not in ["indexes", "vectors"]:
return {"status": "error"}
path_clean = "/".join(dirs_clean)
vectors_collection.delete_one({"name": dirs_clean[-1], 'user': dirs_clean[-2]})
vectors_collection.delete_one({"name": dirs_clean[-1], "user": dirs_clean[-2]})
if settings.VECTOR_STORE == "faiss":
try:
shutil.rmtree(os.path.join(current_dir, path_clean))
@@ -123,9 +142,10 @@ def delete_old():
settings.VECTOR_STORE, path=os.path.join(current_dir, path_clean)
)
vetorstore.delete_index()
return {"status": "ok"}
@user.route("/api/upload", methods=["POST"])
def upload_file():
"""Upload a file to get vectorized and indexed."""
@@ -136,31 +156,51 @@ def upload_file():
return {"status": "no name"}
job_name = secure_filename(request.form["name"])
# check if the post request has the file part
if "file" not in request.files:
print("No file part")
return {"status": "no file"}
file = request.files["file"]
if file.filename == "":
files = request.files.getlist("file")
if not files or all(file.filename == "" for file in files):
return {"status": "no file name"}
if file:
filename = secure_filename(file.filename)
# save dir
save_dir = os.path.join(current_dir, settings.UPLOAD_FOLDER, user, job_name)
# create dir if not exists
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# Directory where files will be saved
save_dir = os.path.join(current_dir, settings.UPLOAD_FOLDER, user, job_name)
os.makedirs(save_dir, exist_ok=True)
file.save(os.path.join(save_dir, filename))
task = ingest.delay(settings.UPLOAD_FOLDER, [".rst", ".md", ".pdf", ".txt", ".docx",
".csv", ".epub", ".html", ".mdx"],
job_name, filename, user)
# task id
task_id = task.id
return {"status": "ok", "task_id": task_id}
if len(files) > 1:
# Multiple files; prepare them for zip
temp_dir = os.path.join(save_dir, "temp")
os.makedirs(temp_dir, exist_ok=True)
for file in files:
filename = secure_filename(file.filename)
file.save(os.path.join(temp_dir, filename))
# Use shutil.make_archive to zip the temp directory
zip_path = shutil.make_archive(
base_name=os.path.join(save_dir, job_name), format="zip", root_dir=temp_dir
)
final_filename = os.path.basename(zip_path)
# Clean up the temporary directory after zipping
shutil.rmtree(temp_dir)
else:
return {"status": "error"}
# Single file
file = files[0]
final_filename = secure_filename(file.filename)
file_path = os.path.join(save_dir, final_filename)
file.save(file_path)
# Call ingest with the single file or zipped file
task = ingest.delay(
settings.UPLOAD_FOLDER,
[".rst", ".md", ".pdf", ".txt", ".docx", ".csv", ".epub", ".html", ".mdx"],
job_name,
final_filename,
user,
)
return {"status": "ok", "task_id": task.id}
@user.route("/api/remote", methods=["POST"])
def upload_remote():
"""Upload a remote source to get vectorized and indexed."""
@@ -173,25 +213,27 @@ def upload_remote():
if "name" not in request.form:
return {"status": "no name"}
job_name = secure_filename(request.form["name"])
# check if the post request has the file part
if "data" not in request.form:
print("No data")
return {"status": "no data"}
source_data = request.form["data"]
if source_data:
task = ingest_remote.delay(source_data=source_data, job_name=job_name, user=user, loader=source)
# task id
task = ingest_remote.delay(
source_data=source_data, job_name=job_name, user=user, loader=source
)
task_id = task.id
return {"status": "ok", "task_id": task_id}
else:
return {"status": "error"}
@user.route("/api/task_status", methods=["GET"])
def task_status():
"""Get celery job status."""
task_id = request.args.get("task_id")
from application.celery import celery
from application.celery_init import celery
task = celery.AsyncResult(task_id)
task_meta = task.info
return {"status": task.status, "result": task_meta}
@@ -214,11 +256,12 @@ def combined_json():
"docLink": "default",
"model": settings.EMBEDDINGS_NAME,
"location": "remote",
"tokens":""
}
]
# structure: name, language, version, description, fullName, date, docLink
# append data from vectors_collection
for index in vectors_collection.find({"user": user}):
# append data from vectors_collection in sorted order in descending order of date
for index in vectors_collection.find({"user": user}).sort("date", -1):
data.append(
{
"name": index["name"],
@@ -230,13 +273,46 @@ def combined_json():
"docLink": index["location"],
"model": settings.EMBEDDINGS_NAME,
"location": "local",
"tokens" : index["tokens"] if ("tokens" in index.keys()) else ""
}
)
if settings.VECTOR_STORE == "faiss":
data_remote = requests.get("https://d3dg1063dc54p9.cloudfront.net/combined.json").json()
data_remote = requests.get(
"https://d3dg1063dc54p9.cloudfront.net/combined.json"
).json()
for index in data_remote:
index["location"] = "remote"
data.append(index)
if "duckduck_search" in settings.RETRIEVERS_ENABLED:
data.append(
{
"name": "DuckDuckGo Search",
"language": "en",
"version": "",
"description": "duckduck_search",
"fullName": "DuckDuckGo Search",
"date": "duckduck_search",
"docLink": "duckduck_search",
"model": settings.EMBEDDINGS_NAME,
"location": "custom",
"tokens":""
}
)
if "brave_search" in settings.RETRIEVERS_ENABLED:
data.append(
{
"name": "Brave Search",
"language": "en",
"version": "",
"description": "brave_search",
"fullName": "Brave Search",
"date": "brave_search",
"docLink": "brave_search",
"model": settings.EMBEDDINGS_NAME,
"location": "custom",
"tokens":""
}
)
return jsonify(data)
@@ -254,11 +330,13 @@ def check_docs():
return {"status": "exists"}
else:
file_url = urlparse(base_path + vectorstore + "index.faiss")
if file_url.scheme in ['https'] and file_url.netloc == 'raw.githubusercontent.com' and file_url.path.startswith('/arc53/DocsHUB/main/'):
r = requests.get(file_url.geturl())
if (
file_url.scheme in ["https"]
and file_url.netloc == "raw.githubusercontent.com"
and file_url.path.startswith("/arc53/DocsHUB/main/")
):
r = requests.get(file_url.geturl())
if r.status_code != 200:
return {"status": "null"}
else:
@@ -267,7 +345,6 @@ def check_docs():
with open(vectorstore + "index.faiss", "wb") as f:
f.write(r.content)
# download the store
r = requests.get(base_path + vectorstore + "index.pkl")
with open(vectorstore + "index.pkl", "wb") as f:
f.write(r.content)
@@ -276,6 +353,7 @@ def check_docs():
return {"status": "loaded"}
@user.route("/api/create_prompt", methods=["POST"])
def create_prompt():
data = request.get_json()
@@ -294,6 +372,7 @@ def create_prompt():
new_id = str(resp.inserted_id)
return {"id": new_id}
@user.route("/api/get_prompts", methods=["GET"])
def get_prompts():
user = "local"
@@ -303,30 +382,39 @@ def get_prompts():
list_prompts.append({"id": "creative", "name": "creative", "type": "public"})
list_prompts.append({"id": "strict", "name": "strict", "type": "public"})
for prompt in prompts:
list_prompts.append({"id": str(prompt["_id"]), "name": prompt["name"], "type": "private"})
list_prompts.append(
{"id": str(prompt["_id"]), "name": prompt["name"], "type": "private"}
)
return jsonify(list_prompts)
@user.route("/api/get_single_prompt", methods=["GET"])
def get_single_prompt():
prompt_id = request.args.get("id")
if prompt_id == 'default':
with open(os.path.join(current_dir, "prompts", "chat_combine_default.txt"), "r") as f:
if prompt_id == "default":
with open(
os.path.join(current_dir, "prompts", "chat_combine_default.txt"), "r"
) as f:
chat_combine_template = f.read()
return jsonify({"content": chat_combine_template})
elif prompt_id == 'creative':
with open(os.path.join(current_dir, "prompts", "chat_combine_creative.txt"), "r") as f:
elif prompt_id == "creative":
with open(
os.path.join(current_dir, "prompts", "chat_combine_creative.txt"), "r"
) as f:
chat_reduce_creative = f.read()
return jsonify({"content": chat_reduce_creative})
elif prompt_id == 'strict':
with open(os.path.join(current_dir, "prompts", "chat_combine_strict.txt"), "r") as f:
chat_reduce_strict = f.read()
elif prompt_id == "strict":
with open(
os.path.join(current_dir, "prompts", "chat_combine_strict.txt"), "r"
) as f:
chat_reduce_strict = f.read()
return jsonify({"content": chat_reduce_strict})
prompt = prompts_collection.find_one({"_id": ObjectId(prompt_id)})
return jsonify({"content": prompt["content"]})
@user.route("/api/delete_prompt", methods=["POST"])
def delete_prompt():
data = request.get_json()
@@ -338,6 +426,7 @@ def delete_prompt():
)
return {"status": "ok"}
@user.route("/api/update_prompt", methods=["POST"])
def update_prompt_name():
data = request.get_json()
@@ -347,27 +436,31 @@ def update_prompt_name():
# check if name is null
if name == "":
return {"status": "error"}
prompts_collection.update_one({"_id": ObjectId(id)},{"$set":{"name":name, "content": content}})
prompts_collection.update_one(
{"_id": ObjectId(id)}, {"$set": {"name": name, "content": content}}
)
return {"status": "ok"}
@user.route("/api/get_api_keys", methods=["GET"])
def get_api_keys():
user = "local"
keys = api_key_collection.find({"user": user})
list_keys = []
for key in keys:
list_keys.append({
"id": str(key["_id"]),
"name": key["name"],
"key": key["key"][:4] + "..." + key["key"][-4:],
"source": key["source"],
"prompt_id": key["prompt_id"],
"chunks": key["chunks"]
})
list_keys.append(
{
"id": str(key["_id"]),
"name": key["name"],
"key": key["key"][:4] + "..." + key["key"][-4:],
"source": key["source"],
"prompt_id": key["prompt_id"],
"chunks": key["chunks"],
}
)
return jsonify(list_keys)
@user.route("/api/create_api_key", methods=["POST"])
def create_api_key():
data = request.get_json()
@@ -384,12 +477,13 @@ def create_api_key():
"source": source,
"user": user,
"prompt_id": prompt_id,
"chunks": chunks
"chunks": chunks,
}
)
new_id = str(resp.inserted_id)
return {"id": new_id, "key": key}
@user.route("/api/delete_api_key", methods=["POST"])
def delete_api_key():
data = request.get_json()
@@ -401,3 +495,72 @@ def delete_api_key():
)
return {"status": "ok"}
#route to share conversation
##isPromptable should be passed through queries
@user.route("/api/share",methods=["POST"])
def share_conversation():
try:
data = request.get_json()
user = "local"
if(hasattr(data,"user")):
user = data["user"]
conversation_id = data["conversation_id"]
isPromptable = request.args.get("isPromptable").lower() == "true"
conversation = conversations_collection.find_one({"_id": ObjectId(conversation_id)})
current_n_queries = len(conversation["queries"])
pre_existing = shared_conversations_collections.find_one({
"conversation_id":DBRef("conversations",ObjectId(conversation_id)),
"isPromptable":isPromptable,
"first_n_queries":current_n_queries
})
print("pre_existing",pre_existing)
if(pre_existing is not None):
explicit_binary = pre_existing["uuid"]
return jsonify({"success":True, "identifier":str(explicit_binary.as_uuid())}),200
else:
explicit_binary = Binary.from_uuid(uuid.uuid4(), UuidRepresentation.STANDARD)
shared_conversations_collections.insert_one({
"uuid":explicit_binary,
"conversation_id": {
"$ref":"conversations",
"$id":ObjectId(conversation_id)
} ,
"isPromptable":isPromptable,
"first_n_queries":current_n_queries,
"user":user
})
## Identifier as route parameter in frontend
return jsonify({"success":True, "identifier":str(explicit_binary.as_uuid())}),201
except Exception as err:
return jsonify({"success":False,"error":str(err)}),400
#route to get publicly shared conversations
@user.route("/api/shared_conversation/<string:identifier>",methods=["GET"])
def get_publicly_shared_conversations(identifier : str):
try:
query_uuid = Binary.from_uuid(uuid.UUID(identifier), UuidRepresentation.STANDARD)
shared = shared_conversations_collections.find_one({"uuid":query_uuid})
conversation_queries=[]
if shared and 'conversation_id' in shared and isinstance(shared['conversation_id'], DBRef):
# Resolve the DBRef
conversation_ref = shared['conversation_id']
conversation = db.dereference(conversation_ref)
if(conversation is None):
return jsonify({"sucess":False,"error":"might have broken url or the conversation does not exist"}),404
conversation_queries = conversation['queries'][:(shared["first_n_queries"])]
for query in conversation_queries:
query.pop("sources") ## avoid exposing sources
else:
return jsonify({"sucess":False,"error":"might have broken url or the conversation does not exist"}),404
date = conversation["_id"].generation_time.isoformat()
return jsonify({
"success":True,
"queries":conversation_queries,
"title":conversation["name"],
"timestamp":date
}), 200
except Exception as err:
print (err)
return jsonify({"success":False,"error":str(err)}),400

View File

@@ -1,5 +1,5 @@
from application.worker import ingest_worker, remote_worker
from application.celery import celery
from application.celery_init import celery
@celery.task(bind=True)
def ingest(self, directory, formats, name_job, filename, user):

View File

@@ -1,6 +1,6 @@
import platform
import dotenv
from application.celery import celery
from application.celery_init import celery
from flask import Flask, request, redirect
from application.core.settings import settings
from application.api.user.routes import user

View File

@@ -9,15 +9,17 @@ current_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__
class Settings(BaseSettings):
LLM_NAME: str = "docsgpt"
MODEL_NAME: Optional[str] = None # when LLM_NAME is openai, MODEL_NAME can be e.g. gpt-4-turbo-preview or gpt-3.5-turbo
MODEL_NAME: Optional[str] = None # if LLM_NAME is openai, MODEL_NAME can be gpt-4 or gpt-3.5-turbo
EMBEDDINGS_NAME: str = "huggingface_sentence-transformers/all-mpnet-base-v2"
CELERY_BROKER_URL: str = "redis://localhost:6379/0"
CELERY_RESULT_BACKEND: str = "redis://localhost:6379/1"
MONGO_URI: str = "mongodb://localhost:27017/docsgpt"
MODEL_PATH: str = os.path.join(current_dir, "models/docsgpt-7b-f16.gguf")
TOKENS_MAX_HISTORY: int = 150
DEFAULT_MAX_HISTORY: int = 150
MODEL_TOKEN_LIMITS: dict = {"gpt-3.5-turbo": 4096, "claude-2": 1e5}
UPLOAD_FOLDER: str = "inputs"
VECTOR_STORE: str = "faiss" # "faiss" or "elasticsearch" or "qdrant"
RETRIEVERS_ENABLED: list = ["classic_rag", "duckduck_search"] # also brave_search
API_URL: str = "http://localhost:7091" # backend url for celery worker
@@ -59,6 +61,8 @@ class Settings(BaseSettings):
QDRANT_PATH: Optional[str] = None
QDRANT_DISTANCE_FUNC: str = "Cosine"
BRAVE_SEARCH_API_KEY: Optional[str] = None
FLASK_DEBUG_MODE: bool = False

View File

@@ -1,21 +1,29 @@
from application.llm.base import BaseLLM
from application.core.settings import settings
class AnthropicLLM(BaseLLM):
def __init__(self, api_key=None):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
self.api_key = api_key or settings.ANTHROPIC_API_KEY # If not provided, use a default from settings
super().__init__(*args, **kwargs)
self.api_key = (
api_key or settings.ANTHROPIC_API_KEY
) # If not provided, use a default from settings
self.user_api_key = user_api_key
self.anthropic = Anthropic(api_key=self.api_key)
self.HUMAN_PROMPT = HUMAN_PROMPT
self.AI_PROMPT = AI_PROMPT
def gen(self, model, messages, engine=None, max_tokens=300, stream=False, **kwargs):
context = messages[0]['content']
user_question = messages[-1]['content']
def _raw_gen(
self, baseself, model, messages, stream=False, max_tokens=300, **kwargs
):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Context \n {context} \n ### Question \n {user_question}"
if stream:
return self.gen_stream(model, prompt, max_tokens, **kwargs)
return self.gen_stream(model, prompt, stream, max_tokens, **kwargs)
completion = self.anthropic.completions.create(
model=model,
@@ -25,9 +33,11 @@ class AnthropicLLM(BaseLLM):
)
return completion.completion
def gen_stream(self, model, messages, engine=None, max_tokens=300, **kwargs):
context = messages[0]['content']
user_question = messages[-1]['content']
def _raw_gen_stream(
self, baseself, model, messages, stream=True, max_tokens=300, **kwargs
):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Context \n {context} \n ### Question \n {user_question}"
stream_response = self.anthropic.completions.create(
model=model,
@@ -37,4 +47,4 @@ class AnthropicLLM(BaseLLM):
)
for completion in stream_response:
yield completion.completion
yield completion.completion

View File

@@ -1,14 +1,28 @@
from abc import ABC, abstractmethod
from application.usage import gen_token_usage, stream_token_usage
class BaseLLM(ABC):
def __init__(self):
pass
self.token_usage = {"prompt_tokens": 0, "generated_tokens": 0}
def _apply_decorator(self, method, decorator, *args, **kwargs):
return decorator(method, *args, **kwargs)
@abstractmethod
def gen(self, *args, **kwargs):
def _raw_gen(self, model, messages, stream, *args, **kwargs):
pass
def gen(self, model, messages, stream=False, *args, **kwargs):
return self._apply_decorator(self._raw_gen, gen_token_usage)(
self, model=model, messages=messages, stream=stream, *args, **kwargs
)
@abstractmethod
def gen_stream(self, *args, **kwargs):
def _raw_gen_stream(self, model, messages, stream, *args, **kwargs):
pass
def gen_stream(self, model, messages, stream=True, *args, **kwargs):
return self._apply_decorator(self._raw_gen_stream, stream_token_usage)(
self, model=model, messages=messages, stream=stream, *args, **kwargs
)

View File

@@ -2,48 +2,43 @@ from application.llm.base import BaseLLM
import json
import requests
class DocsGPTAPILLM(BaseLLM):
def __init__(self, *args, **kwargs):
self.endpoint = "https://llm.docsgpt.co.uk"
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
super().__init__(*args, **kwargs)
self.api_key = api_key
self.user_api_key = user_api_key
self.endpoint = "https://llm.docsgpt.co.uk"
def gen(self, model, engine, messages, stream=False, **kwargs):
context = messages[0]['content']
user_question = messages[-1]['content']
def _raw_gen(self, baseself, model, messages, stream=False, *args, **kwargs):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
response = requests.post(
f"{self.endpoint}/answer",
json={
"prompt": prompt,
"max_new_tokens": 30
}
f"{self.endpoint}/answer", json={"prompt": prompt, "max_new_tokens": 30}
)
response_clean = response.json()['a'].replace("###", "")
response_clean = response.json()["a"].replace("###", "")
return response_clean
def gen_stream(self, model, engine, messages, stream=True, **kwargs):
context = messages[0]['content']
user_question = messages[-1]['content']
def _raw_gen_stream(self, baseself, model, messages, stream=True, *args, **kwargs):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
# send prompt to endpoint /stream
response = requests.post(
f"{self.endpoint}/stream",
json={
"prompt": prompt,
"max_new_tokens": 256
},
stream=True
json={"prompt": prompt, "max_new_tokens": 256},
stream=True,
)
for line in response.iter_lines():
if line:
#data = json.loads(line)
data_str = line.decode('utf-8')
# data = json.loads(line)
data_str = line.decode("utf-8")
if data_str.startswith("data: "):
data = json.loads(data_str[6:])
yield data['a']
yield data["a"]

View File

@@ -1,44 +1,68 @@
from application.llm.base import BaseLLM
class HuggingFaceLLM(BaseLLM):
def __init__(self, api_key, llm_name='Arc53/DocsGPT-7B',q=False):
def __init__(
self,
api_key=None,
user_api_key=None,
llm_name="Arc53/DocsGPT-7B",
q=False,
*args,
**kwargs,
):
global hf
from langchain.llms import HuggingFacePipeline
if q:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
pipeline,
BitsAndBytesConfig,
)
tokenizer = AutoTokenizer.from_pretrained(llm_name)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(llm_name,quantization_config=bnb_config)
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(
llm_name, quantization_config=bnb_config
)
else:
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained(llm_name)
model = AutoModelForCausalLM.from_pretrained(llm_name)
super().__init__(*args, **kwargs)
self.api_key = api_key
self.user_api_key = user_api_key
pipe = pipeline(
"text-generation", model=model,
tokenizer=tokenizer, max_new_tokens=2000,
device_map="auto", eos_token_id=tokenizer.eos_token_id
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=2000,
device_map="auto",
eos_token_id=tokenizer.eos_token_id,
)
hf = HuggingFacePipeline(pipeline=pipe)
def gen(self, model, engine, messages, stream=False, **kwargs):
context = messages[0]['content']
user_question = messages[-1]['content']
def _raw_gen(self, baseself, model, messages, stream=False, **kwargs):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
result = hf(prompt)
return result.content
def gen_stream(self, model, engine, messages, stream=True, **kwargs):
def _raw_gen_stream(self, baseself, model, messages, stream=True, **kwargs):
raise NotImplementedError("HuggingFaceLLM Streaming is not implemented yet.")

View File

@@ -1,39 +1,55 @@
from application.llm.base import BaseLLM
from application.core.settings import settings
import threading
class LlamaSingleton:
_instances = {}
_lock = threading.Lock() # Add a lock for thread synchronization
@classmethod
def get_instance(cls, llm_name):
if llm_name not in cls._instances:
try:
from llama_cpp import Llama
except ImportError:
raise ImportError(
"Please install llama_cpp using pip install llama-cpp-python"
)
cls._instances[llm_name] = Llama(model_path=llm_name, n_ctx=2048)
return cls._instances[llm_name]
@classmethod
def query_model(cls, llm, prompt, **kwargs):
with cls._lock:
return llm(prompt, **kwargs)
class LlamaCpp(BaseLLM):
def __init__(
self,
api_key=None,
user_api_key=None,
llm_name=settings.MODEL_PATH,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.api_key = api_key
self.user_api_key = user_api_key
self.llama = LlamaSingleton.get_instance(llm_name)
def __init__(self, api_key, llm_name=settings.MODEL_PATH, **kwargs):
global llama
try:
from llama_cpp import Llama
except ImportError:
raise ImportError("Please install llama_cpp using pip install llama-cpp-python")
llama = Llama(model_path=llm_name, n_ctx=2048)
def gen(self, model, engine, messages, stream=False, **kwargs):
context = messages[0]['content']
user_question = messages[-1]['content']
def _raw_gen(self, baseself, model, messages, stream=False, **kwargs):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
result = LlamaSingleton.query_model(self.llama, prompt, max_tokens=150, echo=False)
return result["choices"][0]["text"].split("### Answer \n")[-1]
result = llama(prompt, max_tokens=150, echo=False)
# import sys
# print(result['choices'][0]['text'].split('### Answer \n')[-1], file=sys.stderr)
return result['choices'][0]['text'].split('### Answer \n')[-1]
def gen_stream(self, model, engine, messages, stream=True, **kwargs):
context = messages[0]['content']
user_question = messages[-1]['content']
def _raw_gen_stream(self, baseself, model, messages, stream=True, **kwargs):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
result = llama(prompt, max_tokens=150, echo=False, stream=stream)
# import sys
# print(list(result), file=sys.stderr)
result = LlamaSingleton.query_model(self.llama, prompt, max_tokens=150, echo=False, stream=stream)
for item in result:
for choice in item['choices']:
yield choice['text']
for choice in item["choices"]:
yield choice["text"]

View File

@@ -7,22 +7,21 @@ from application.llm.docsgpt_provider import DocsGPTAPILLM
from application.llm.premai import PremAILLM
class LLMCreator:
llms = {
'openai': OpenAILLM,
'azure_openai': AzureOpenAILLM,
'sagemaker': SagemakerAPILLM,
'huggingface': HuggingFaceLLM,
'llama.cpp': LlamaCpp,
'anthropic': AnthropicLLM,
'docsgpt': DocsGPTAPILLM,
'premai': PremAILLM,
"openai": OpenAILLM,
"azure_openai": AzureOpenAILLM,
"sagemaker": SagemakerAPILLM,
"huggingface": HuggingFaceLLM,
"llama.cpp": LlamaCpp,
"anthropic": AnthropicLLM,
"docsgpt": DocsGPTAPILLM,
"premai": PremAILLM,
}
@classmethod
def create_llm(cls, type, *args, **kwargs):
def create_llm(cls, type, api_key, user_api_key, *args, **kwargs):
llm_class = cls.llms.get(type.lower())
if not llm_class:
raise ValueError(f"No LLM class found for type {type}")
return llm_class(*args, **kwargs)
return llm_class(api_key, user_api_key, *args, **kwargs)

View File

@@ -1,36 +1,53 @@
from application.llm.base import BaseLLM
from application.core.settings import settings
class OpenAILLM(BaseLLM):
def __init__(self, api_key):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
global openai
from openai import OpenAI
super().__init__(*args, **kwargs)
self.client = OpenAI(
api_key=api_key,
)
api_key=api_key,
)
self.api_key = api_key
self.user_api_key = user_api_key
def _get_openai(self):
# Import openai when needed
import openai
return openai
def gen(self, model, engine, messages, stream=False, **kwargs):
response = self.client.chat.completions.create(model=model,
messages=messages,
stream=stream,
**kwargs)
def _raw_gen(
self,
baseself,
model,
messages,
stream=False,
engine=settings.AZURE_DEPLOYMENT_NAME,
**kwargs
):
response = self.client.chat.completions.create(
model=model, messages=messages, stream=stream, **kwargs
)
return response.choices[0].message.content
def gen_stream(self, model, engine, messages, stream=True, **kwargs):
response = self.client.chat.completions.create(model=model,
messages=messages,
stream=stream,
**kwargs)
def _raw_gen_stream(
self,
baseself,
model,
messages,
stream=True,
engine=settings.AZURE_DEPLOYMENT_NAME,
**kwargs
):
response = self.client.chat.completions.create(
model=model, messages=messages, stream=stream, **kwargs
)
for line in response:
# import sys
@@ -41,14 +58,17 @@ class OpenAILLM(BaseLLM):
class AzureOpenAILLM(OpenAILLM):
def __init__(self, openai_api_key, openai_api_base, openai_api_version, deployment_name):
def __init__(
self, openai_api_key, openai_api_base, openai_api_version, deployment_name
):
super().__init__(openai_api_key)
self.api_base = settings.OPENAI_API_BASE,
self.api_version = settings.OPENAI_API_VERSION,
self.deployment_name = settings.AZURE_DEPLOYMENT_NAME,
self.api_base = (settings.OPENAI_API_BASE,)
self.api_version = (settings.OPENAI_API_VERSION,)
self.deployment_name = (settings.AZURE_DEPLOYMENT_NAME,)
from openai import AzureOpenAI
self.client = AzureOpenAI(
api_key=openai_api_key,
api_key=openai_api_key,
api_version=settings.OPENAI_API_VERSION,
api_base=settings.OPENAI_API_BASE,
deployment_name=settings.AZURE_DEPLOYMENT_NAME,

View File

@@ -1,32 +1,37 @@
from application.llm.base import BaseLLM
from application.core.settings import settings
class PremAILLM(BaseLLM):
def __init__(self, api_key):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
from premai import Prem
self.client = Prem(
api_key=api_key
)
super().__init__(*args, **kwargs)
self.client = Prem(api_key=api_key)
self.api_key = api_key
self.user_api_key = user_api_key
self.project_id = settings.PREMAI_PROJECT_ID
def gen(self, model, engine, messages, stream=False, **kwargs):
response = self.client.chat.completions.create(model=model,
def _raw_gen(self, baseself, model, messages, stream=False, **kwargs):
response = self.client.chat.completions.create(
model=model,
project_id=self.project_id,
messages=messages,
stream=stream,
**kwargs)
**kwargs
)
return response.choices[0].message["content"]
def gen_stream(self, model, engine, messages, stream=True, **kwargs):
response = self.client.chat.completions.create(model=model,
def _raw_gen_stream(self, baseself, model, messages, stream=True, **kwargs):
response = self.client.chat.completions.create(
model=model,
project_id=self.project_id,
messages=messages,
stream=stream,
**kwargs)
**kwargs
)
for line in response:
if line.choices[0].delta["content"] is not None:

View File

@@ -4,11 +4,10 @@ import json
import io
class LineIterator:
"""
A helper class for parsing the byte stream input.
A helper class for parsing the byte stream input.
The output of the model will be in the following format:
```
b'{"outputs": [" a"]}\n'
@@ -16,21 +15,21 @@ class LineIterator:
b'{"outputs": [" problem"]}\n'
...
```
While usually each PayloadPart event from the event stream will contain a byte array
While usually each PayloadPart event from the event stream will contain a byte array
with a full json, this is not guaranteed and some of the json objects may be split across
PayloadPart events. For example:
```
{'PayloadPart': {'Bytes': b'{"outputs": '}}
{'PayloadPart': {'Bytes': b'[" problem"]}\n'}}
```
This class accounts for this by concatenating bytes written via the 'write' function
and then exposing a method which will return lines (ending with a '\n' character) within
the buffer via the 'scan_lines' function. It maintains the position of the last read
position to ensure that previous bytes are not exposed again.
the buffer via the 'scan_lines' function. It maintains the position of the last read
position to ensure that previous bytes are not exposed again.
"""
def __init__(self, stream):
self.byte_iterator = iter(stream)
self.buffer = io.BytesIO()
@@ -43,7 +42,7 @@ class LineIterator:
while True:
self.buffer.seek(self.read_pos)
line = self.buffer.readline()
if line and line[-1] == ord('\n'):
if line and line[-1] == ord("\n"):
self.read_pos += len(line)
return line[:-1]
try:
@@ -52,33 +51,35 @@ class LineIterator:
if self.read_pos < self.buffer.getbuffer().nbytes:
continue
raise
if 'PayloadPart' not in chunk:
print('Unknown event type:' + chunk)
if "PayloadPart" not in chunk:
print("Unknown event type:" + chunk)
continue
self.buffer.seek(0, io.SEEK_END)
self.buffer.write(chunk['PayloadPart']['Bytes'])
self.buffer.write(chunk["PayloadPart"]["Bytes"])
class SagemakerAPILLM(BaseLLM):
def __init__(self, *args, **kwargs):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
import boto3
runtime = boto3.client(
'runtime.sagemaker',
aws_access_key_id='xxx',
aws_secret_access_key='xxx',
region_name='us-west-2'
"runtime.sagemaker",
aws_access_key_id="xxx",
aws_secret_access_key="xxx",
region_name="us-west-2",
)
self.endpoint = settings.SAGEMAKER_ENDPOINT
super().__init__(*args, **kwargs)
self.api_key = api_key
self.user_api_key = user_api_key
self.endpoint = settings.SAGEMAKER_ENDPOINT
self.runtime = runtime
def gen(self, model, engine, messages, stream=False, **kwargs):
context = messages[0]['content']
user_question = messages[-1]['content']
def _raw_gen(self, baseself, model, messages, stream=False, **kwargs):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
# Construct payload for endpoint
payload = {
@@ -89,25 +90,25 @@ class SagemakerAPILLM(BaseLLM):
"temperature": 0.1,
"max_new_tokens": 30,
"repetition_penalty": 1.03,
"stop": ["</s>", "###"]
}
"stop": ["</s>", "###"],
},
}
body_bytes = json.dumps(payload).encode('utf-8')
body_bytes = json.dumps(payload).encode("utf-8")
# Invoke the endpoint
response = self.runtime.invoke_endpoint(EndpointName=self.endpoint,
ContentType='application/json',
Body=body_bytes)
result = json.loads(response['Body'].read().decode())
response = self.runtime.invoke_endpoint(
EndpointName=self.endpoint, ContentType="application/json", Body=body_bytes
)
result = json.loads(response["Body"].read().decode())
import sys
print(result[0]['generated_text'], file=sys.stderr)
return result[0]['generated_text'][len(prompt):]
def gen_stream(self, model, engine, messages, stream=True, **kwargs):
context = messages[0]['content']
user_question = messages[-1]['content']
print(result[0]["generated_text"], file=sys.stderr)
return result[0]["generated_text"][len(prompt) :]
def _raw_gen_stream(self, baseself, model, messages, stream=True, **kwargs):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
# Construct payload for endpoint
payload = {
@@ -118,22 +119,22 @@ class SagemakerAPILLM(BaseLLM):
"temperature": 0.1,
"max_new_tokens": 512,
"repetition_penalty": 1.03,
"stop": ["</s>", "###"]
}
"stop": ["</s>", "###"],
},
}
body_bytes = json.dumps(payload).encode('utf-8')
body_bytes = json.dumps(payload).encode("utf-8")
# Invoke the endpoint
response = self.runtime.invoke_endpoint_with_response_stream(EndpointName=self.endpoint,
ContentType='application/json',
Body=body_bytes)
#result = json.loads(response['Body'].read().decode())
event_stream = response['Body']
start_json = b'{'
response = self.runtime.invoke_endpoint_with_response_stream(
EndpointName=self.endpoint, ContentType="application/json", Body=body_bytes
)
# result = json.loads(response['Body'].read().decode())
event_stream = response["Body"]
start_json = b"{"
for line in LineIterator(event_stream):
if line != b'' and start_json in line:
#print(line)
data = json.loads(line[line.find(start_json):].decode('utf-8'))
if data['token']['text'] not in ["</s>", "###"]:
print(data['token']['text'],end='')
yield data['token']['text']
if line != b"" and start_json in line:
# print(line)
data = json.loads(line[line.find(start_json) :].decode("utf-8"))
if data["token"]["text"] not in ["</s>", "###"]:
print(data["token"]["text"], end="")
yield data["token"]["text"]

52
application/parser/open_ai_func.py Normal file → Executable file
View File

@@ -1,6 +1,5 @@
import os
import tiktoken
from application.vectorstore.vector_creator import VectorCreator
from application.core.settings import settings
from retry import retry
@@ -11,14 +10,6 @@ from retry import retry
# from langchain_community.embeddings import CohereEmbeddings
def num_tokens_from_string(string: str, encoding_name: str) -> int:
# Function to convert string to tokens and estimate user cost.
encoding = tiktoken.get_encoding(encoding_name)
num_tokens = len(encoding.encode(string))
total_price = ((num_tokens / 1000) * 0.0004)
return num_tokens, total_price
@retry(tries=10, delay=60)
def store_add_texts_with_retry(store, i):
store.add_texts([i.page_content], metadatas=[i.metadata])
@@ -26,13 +17,13 @@ def store_add_texts_with_retry(store, i):
def call_openai_api(docs, folder_name, task_status):
# Function to create a vector store from the documents and save it to disk.
# Function to create a vector store from the documents and save it to disk
# create output folder if it doesn't exist
if not os.path.exists(f"{folder_name}"):
os.makedirs(f"{folder_name}")
from tqdm import tqdm
c1 = 0
if settings.VECTOR_STORE == "faiss":
docs_init = [docs[0]]
@@ -40,25 +31,32 @@ def call_openai_api(docs, folder_name, task_status):
store = VectorCreator.create_vectorstore(
settings.VECTOR_STORE,
docs_init = docs_init,
docs_init=docs_init,
path=f"{folder_name}",
embeddings_key=os.getenv("EMBEDDINGS_KEY")
embeddings_key=os.getenv("EMBEDDINGS_KEY"),
)
else:
store = VectorCreator.create_vectorstore(
settings.VECTOR_STORE,
path=f"{folder_name}",
embeddings_key=os.getenv("EMBEDDINGS_KEY")
embeddings_key=os.getenv("EMBEDDINGS_KEY"),
)
# Uncomment for MPNet embeddings
# model_name = "sentence-transformers/all-mpnet-base-v2"
# hf = HuggingFaceEmbeddings(model_name=model_name)
# store = FAISS.from_documents(docs_test, hf)
s1 = len(docs)
for i in tqdm(docs, desc="Embedding 🦖", unit="docs", total=len(docs),
bar_format='{l_bar}{bar}| Time Left: {remaining}'):
for i in tqdm(
docs,
desc="Embedding 🦖",
unit="docs",
total=len(docs),
bar_format="{l_bar}{bar}| Time Left: {remaining}",
):
try:
task_status.update_state(state='PROGRESS', meta={'current': int((c1 / s1) * 100)})
task_status.update_state(
state="PROGRESS", meta={"current": int((c1 / s1) * 100)}
)
store_add_texts_with_retry(store, i)
except Exception as e:
print(e)
@@ -72,23 +70,3 @@ def call_openai_api(docs, folder_name, task_status):
store.save_local(f"{folder_name}")
def get_user_permission(docs, folder_name):
# Function to ask user permission to call the OpenAI api and spend their OpenAI funds.
# Here we convert the docs list to a string and calculate the number of OpenAI tokens the string represents.
# docs_content = (" ".join(docs))
docs_content = ""
for doc in docs:
docs_content += doc.page_content
tokens, total_price = num_tokens_from_string(string=docs_content, encoding_name="cl100k_base")
# Here we print the number of tokens and the approx user cost with some visually appealing formatting.
print(f"Number of Tokens = {format(tokens, ',d')}")
print(f"Approx Cost = ${format(total_price, ',.2f')}")
# Here we check for user permission before calling the API.
user_input = input("Price Okay? (Y/N) \n").lower()
if user_input == "y":
call_openai_api(docs, folder_name)
elif user_input == "":
call_openai_api(docs, folder_name)
else:
print("The API was not called. No money was spent.")

View File

@@ -1,22 +1,32 @@
from application.parser.remote.base import BaseRemote
from langchain_community.document_loaders import WebBaseLoader
headers = {
"User-Agent": "Mozilla/5.0",
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*"
";q=0.8",
"Accept-Language": "en-US,en;q=0.5",
"Referer": "https://www.google.com/",
"DNT": "1",
"Connection": "keep-alive",
"Upgrade-Insecure-Requests": "1",
}
class WebLoader(BaseRemote):
def __init__(self):
from langchain.document_loaders import WebBaseLoader
self.loader = WebBaseLoader
def load_data(self, inputs):
urls = inputs
if isinstance(urls, str):
urls = [urls] # Convert string to list if a single URL is passed
urls = [urls]
documents = []
for url in urls:
try:
loader = self.loader([url]) # Process URLs one by one
loader = self.loader([url], header_template=headers)
documents.extend(loader.load())
except Exception as e:
print(f"Error processing URL {url}: {e}")
continue # Continue with the next URL if an error occurs
return documents
continue
return documents

View File

@@ -22,7 +22,10 @@ def group_documents(documents: List[Document], min_tokens: int, max_tokens: int)
doc_len = len(tiktoken.get_encoding("cl100k_base").encode(doc.text))
# Check if current group is empty or if the document can be added based on token count and matching metadata
if current_group is None or (len(tiktoken.get_encoding("cl100k_base").encode(current_group.text)) + doc_len < max_tokens and doc_len < min_tokens and current_group.extra_info == doc.extra_info):
if (current_group is None or
(len(tiktoken.get_encoding("cl100k_base").encode(current_group.text)) + doc_len < max_tokens and
doc_len < min_tokens and
current_group.extra_info == doc.extra_info)):
if current_group is None:
current_group = doc # Use the document directly to retain its metadata
else:

View File

@@ -3,32 +3,32 @@ boto3==1.34.6
celery==5.3.6
dataclasses_json==0.6.3
docx2txt==0.8
duckduckgo-search==5.3.0
EbookLib==0.18
elasticsearch==8.12.0
escodegen==1.0.11
esprima==4.0.1
faiss-cpu==1.7.4
Flask==3.0.1
gunicorn==21.2.0
gunicorn==22.0.0
html2text==2020.1.16
javalang==0.13.0
langchain==0.1.4
langchain-openai==0.0.5
nltk==3.8.1
openapi3_parser==1.1.16
pandas==2.2.0
pydantic_settings==2.1.0
pymongo==4.6.1
pymongo==4.6.3
PyPDF2==3.0.1
python-dotenv==1.0.1
qdrant-client==1.7.3
qdrant-client==1.9.0
redis==5.0.1
Requests==2.31.0
Requests==2.32.0
retry==0.9.2
sentence-transformers
tiktoken==0.5.2
torch==2.1.2
tqdm==4.66.1
tiktoken
torch
tqdm==4.66.3
transformers==4.36.2
unstructured==0.12.2
Werkzeug==3.0.1
Werkzeug==3.0.3

View File

View File

@@ -0,0 +1,14 @@
from abc import ABC, abstractmethod
class BaseRetriever(ABC):
def __init__(self):
pass
@abstractmethod
def gen(self, *args, **kwargs):
pass
@abstractmethod
def search(self, *args, **kwargs):
pass

View File

@@ -0,0 +1,103 @@
import json
from application.retriever.base import BaseRetriever
from application.core.settings import settings
from application.llm.llm_creator import LLMCreator
from application.utils import count_tokens
from langchain_community.tools import BraveSearch
class BraveRetSearch(BaseRetriever):
def __init__(
self,
question,
source,
chat_history,
prompt,
chunks=2,
token_limit=150,
gpt_model="docsgpt",
user_api_key=None,
):
self.question = question
self.source = source
self.chat_history = chat_history
self.prompt = prompt
self.chunks = chunks
self.gpt_model = gpt_model
self.token_limit = (
token_limit
if token_limit
< settings.MODEL_TOKEN_LIMITS.get(
self.gpt_model, settings.DEFAULT_MAX_HISTORY
)
else settings.MODEL_TOKEN_LIMITS.get(
self.gpt_model, settings.DEFAULT_MAX_HISTORY
)
)
self.user_api_key = user_api_key
def _get_data(self):
if self.chunks == 0:
docs = []
else:
search = BraveSearch.from_api_key(
api_key=settings.BRAVE_SEARCH_API_KEY,
search_kwargs={"count": int(self.chunks)},
)
results = search.run(self.question)
results = json.loads(results)
docs = []
for i in results:
try:
title = i["title"]
link = i["link"]
snippet = i["snippet"]
docs.append({"text": snippet, "title": title, "link": link})
except IndexError:
pass
if settings.LLM_NAME == "llama.cpp":
docs = [docs[0]]
return docs
def gen(self):
docs = self._get_data()
# join all page_content together with a newline
docs_together = "\n".join([doc["text"] for doc in docs])
p_chat_combine = self.prompt.replace("{summaries}", docs_together)
messages_combine = [{"role": "system", "content": p_chat_combine}]
for doc in docs:
yield {"source": doc}
if len(self.chat_history) > 1:
tokens_current_history = 0
# count tokens in history
self.chat_history.reverse()
for i in self.chat_history:
if "prompt" in i and "response" in i:
tokens_batch = count_tokens(i["prompt"]) + count_tokens(
i["response"]
)
if tokens_current_history + tokens_batch < self.token_limit:
tokens_current_history += tokens_batch
messages_combine.append(
{"role": "user", "content": i["prompt"]}
)
messages_combine.append(
{"role": "system", "content": i["response"]}
)
messages_combine.append({"role": "user", "content": self.question})
llm = LLMCreator.create_llm(
settings.LLM_NAME, api_key=settings.API_KEY, user_api_key=self.user_api_key
)
completion = llm.gen_stream(model=self.gpt_model, messages=messages_combine)
for line in completion:
yield {"answer": str(line)}
def search(self):
return self._get_data()

View File

@@ -0,0 +1,123 @@
import os
from application.retriever.base import BaseRetriever
from application.core.settings import settings
from application.vectorstore.vector_creator import VectorCreator
from application.llm.llm_creator import LLMCreator
from application.utils import count_tokens
class ClassicRAG(BaseRetriever):
def __init__(
self,
question,
source,
chat_history,
prompt,
chunks=2,
token_limit=150,
gpt_model="docsgpt",
user_api_key=None,
):
self.question = question
self.vectorstore = self._get_vectorstore(source=source)
self.chat_history = chat_history
self.prompt = prompt
self.chunks = chunks
self.gpt_model = gpt_model
self.token_limit = (
token_limit
if token_limit
< settings.MODEL_TOKEN_LIMITS.get(
self.gpt_model, settings.DEFAULT_MAX_HISTORY
)
else settings.MODEL_TOKEN_LIMITS.get(
self.gpt_model, settings.DEFAULT_MAX_HISTORY
)
)
self.user_api_key = user_api_key
def _get_vectorstore(self, source):
if "active_docs" in source:
if source["active_docs"].split("/")[0] == "default":
vectorstore = ""
elif source["active_docs"].split("/")[0] == "local":
vectorstore = "indexes/" + source["active_docs"]
else:
vectorstore = "vectors/" + source["active_docs"]
if source["active_docs"] == "default":
vectorstore = ""
else:
vectorstore = ""
vectorstore = os.path.join("application", vectorstore)
return vectorstore
def _get_data(self):
if self.chunks == 0:
docs = []
else:
docsearch = VectorCreator.create_vectorstore(
settings.VECTOR_STORE, self.vectorstore, settings.EMBEDDINGS_KEY
)
docs_temp = docsearch.search(self.question, k=self.chunks)
docs = [
{
"title": (
i.metadata["title"].split("/")[-1]
if i.metadata
else i.page_content
),
"text": i.page_content,
"source": (
i.metadata.get("source")
if i.metadata.get("source")
else "local"
),
}
for i in docs_temp
]
if settings.LLM_NAME == "llama.cpp":
docs = [docs[0]]
return docs
def gen(self):
docs = self._get_data()
# join all page_content together with a newline
docs_together = "\n".join([doc["text"] for doc in docs])
p_chat_combine = self.prompt.replace("{summaries}", docs_together)
messages_combine = [{"role": "system", "content": p_chat_combine}]
for doc in docs:
yield {"source": doc}
if len(self.chat_history) > 1:
tokens_current_history = 0
# count tokens in history
self.chat_history.reverse()
for i in self.chat_history:
if "prompt" in i and "response" in i:
tokens_batch = count_tokens(i["prompt"]) + count_tokens(
i["response"]
)
if tokens_current_history + tokens_batch < self.token_limit:
tokens_current_history += tokens_batch
messages_combine.append(
{"role": "user", "content": i["prompt"]}
)
messages_combine.append(
{"role": "system", "content": i["response"]}
)
messages_combine.append({"role": "user", "content": self.question})
llm = LLMCreator.create_llm(
settings.LLM_NAME, api_key=settings.API_KEY, user_api_key=self.user_api_key
)
completion = llm.gen_stream(model=self.gpt_model, messages=messages_combine)
for line in completion:
yield {"answer": str(line)}
def search(self):
return self._get_data()

View File

@@ -0,0 +1,120 @@
from application.retriever.base import BaseRetriever
from application.core.settings import settings
from application.llm.llm_creator import LLMCreator
from application.utils import count_tokens
from langchain_community.tools import DuckDuckGoSearchResults
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper
class DuckDuckSearch(BaseRetriever):
def __init__(
self,
question,
source,
chat_history,
prompt,
chunks=2,
token_limit=150,
gpt_model="docsgpt",
user_api_key=None,
):
self.question = question
self.source = source
self.chat_history = chat_history
self.prompt = prompt
self.chunks = chunks
self.gpt_model = gpt_model
self.token_limit = (
token_limit
if token_limit
< settings.MODEL_TOKEN_LIMITS.get(
self.gpt_model, settings.DEFAULT_MAX_HISTORY
)
else settings.MODEL_TOKEN_LIMITS.get(
self.gpt_model, settings.DEFAULT_MAX_HISTORY
)
)
self.user_api_key = user_api_key
def _parse_lang_string(self, input_string):
result = []
current_item = ""
inside_brackets = False
for char in input_string:
if char == "[":
inside_brackets = True
elif char == "]":
inside_brackets = False
result.append(current_item)
current_item = ""
elif inside_brackets:
current_item += char
if inside_brackets:
result.append(current_item)
return result
def _get_data(self):
if self.chunks == 0:
docs = []
else:
wrapper = DuckDuckGoSearchAPIWrapper(max_results=self.chunks)
search = DuckDuckGoSearchResults(api_wrapper=wrapper)
results = search.run(self.question)
results = self._parse_lang_string(results)
docs = []
for i in results:
try:
text = i.split("title:")[0]
title = i.split("title:")[1].split("link:")[0]
link = i.split("link:")[1]
docs.append({"text": text, "title": title, "link": link})
except IndexError:
pass
if settings.LLM_NAME == "llama.cpp":
docs = [docs[0]]
return docs
def gen(self):
docs = self._get_data()
# join all page_content together with a newline
docs_together = "\n".join([doc["text"] for doc in docs])
p_chat_combine = self.prompt.replace("{summaries}", docs_together)
messages_combine = [{"role": "system", "content": p_chat_combine}]
for doc in docs:
yield {"source": doc}
if len(self.chat_history) > 1:
tokens_current_history = 0
# count tokens in history
self.chat_history.reverse()
for i in self.chat_history:
if "prompt" in i and "response" in i:
tokens_batch = count_tokens(i["prompt"]) + count_tokens(
i["response"]
)
if tokens_current_history + tokens_batch < self.token_limit:
tokens_current_history += tokens_batch
messages_combine.append(
{"role": "user", "content": i["prompt"]}
)
messages_combine.append(
{"role": "system", "content": i["response"]}
)
messages_combine.append({"role": "user", "content": self.question})
llm = LLMCreator.create_llm(
settings.LLM_NAME, api_key=settings.API_KEY, user_api_key=self.user_api_key
)
completion = llm.gen_stream(model=self.gpt_model, messages=messages_combine)
for line in completion:
yield {"answer": str(line)}
def search(self):
return self._get_data()

View File

@@ -0,0 +1,19 @@
from application.retriever.classic_rag import ClassicRAG
from application.retriever.duckduck_search import DuckDuckSearch
from application.retriever.brave_search import BraveRetSearch
class RetrieverCreator:
retievers = {
'classic': ClassicRAG,
'duckduck_search': DuckDuckSearch,
'brave_search': BraveRetSearch
}
@classmethod
def create_retriever(cls, type, *args, **kwargs):
retiever_class = cls.retievers.get(type.lower())
if not retiever_class:
raise ValueError(f"No retievers class found for type {type}")
return retiever_class(*args, **kwargs)

49
application/usage.py Normal file
View File

@@ -0,0 +1,49 @@
import sys
from pymongo import MongoClient
from datetime import datetime
from application.core.settings import settings
from application.utils import count_tokens
mongo = MongoClient(settings.MONGO_URI)
db = mongo["docsgpt"]
usage_collection = db["token_usage"]
def update_token_usage(user_api_key, token_usage):
if "pytest" in sys.modules:
return
usage_data = {
"api_key": user_api_key,
"prompt_tokens": token_usage["prompt_tokens"],
"generated_tokens": token_usage["generated_tokens"],
"timestamp": datetime.now(),
}
usage_collection.insert_one(usage_data)
def gen_token_usage(func):
def wrapper(self, model, messages, stream, **kwargs):
for message in messages:
self.token_usage["prompt_tokens"] += count_tokens(message["content"])
result = func(self, model, messages, stream, **kwargs)
self.token_usage["generated_tokens"] += count_tokens(result)
update_token_usage(self.user_api_key, self.token_usage)
return result
return wrapper
def stream_token_usage(func):
def wrapper(self, model, messages, stream, **kwargs):
for message in messages:
self.token_usage["prompt_tokens"] += count_tokens(message["content"])
batch = []
result = func(self, model, messages, stream, **kwargs)
for r in result:
batch.append(r)
yield r
for line in batch:
self.token_usage["generated_tokens"] += count_tokens(line)
update_token_usage(self.user_api_key, self.token_usage)
return wrapper

6
application/utils.py Normal file
View File

@@ -0,0 +1,6 @@
from transformers import GPT2TokenizerFast
tokenizer = GPT2TokenizerFast.from_pretrained('gpt2')
tokenizer.model_max_length = 100000
def count_tokens(string):
return len(tokenizer(string)['input_ids'])

View File

@@ -8,6 +8,32 @@ from langchain_community.embeddings import (
from langchain_openai import OpenAIEmbeddings
from application.core.settings import settings
class EmbeddingsSingleton:
_instances = {}
@staticmethod
def get_instance(embeddings_name, *args, **kwargs):
if embeddings_name not in EmbeddingsSingleton._instances:
EmbeddingsSingleton._instances[embeddings_name] = EmbeddingsSingleton._create_instance(
embeddings_name, *args, **kwargs
)
return EmbeddingsSingleton._instances[embeddings_name]
@staticmethod
def _create_instance(embeddings_name, *args, **kwargs):
embeddings_factory = {
"openai_text-embedding-ada-002": OpenAIEmbeddings,
"huggingface_sentence-transformers/all-mpnet-base-v2": HuggingFaceEmbeddings,
"huggingface_sentence-transformers-all-mpnet-base-v2": HuggingFaceEmbeddings,
"huggingface_hkunlp/instructor-large": HuggingFaceInstructEmbeddings,
"cohere_medium": CohereEmbeddings
}
if embeddings_name not in embeddings_factory:
raise ValueError(f"Invalid embeddings_name: {embeddings_name}")
return embeddings_factory[embeddings_name](*args, **kwargs)
class BaseVectorStore(ABC):
def __init__(self):
pass
@@ -20,37 +46,36 @@ class BaseVectorStore(ABC):
return settings.OPENAI_API_BASE and settings.OPENAI_API_VERSION and settings.AZURE_DEPLOYMENT_NAME
def _get_embeddings(self, embeddings_name, embeddings_key=None):
embeddings_factory = {
"openai_text-embedding-ada-002": OpenAIEmbeddings,
"huggingface_sentence-transformers/all-mpnet-base-v2": HuggingFaceEmbeddings,
"huggingface_hkunlp/instructor-large": HuggingFaceInstructEmbeddings,
"cohere_medium": CohereEmbeddings
}
if embeddings_name not in embeddings_factory:
raise ValueError(f"Invalid embeddings_name: {embeddings_name}")
if embeddings_name == "openai_text-embedding-ada-002":
if self.is_azure_configured():
os.environ["OPENAI_API_TYPE"] = "azure"
embedding_instance = embeddings_factory[embeddings_name](
embedding_instance = EmbeddingsSingleton.get_instance(
embeddings_name,
model=settings.AZURE_EMBEDDINGS_DEPLOYMENT_NAME
)
else:
embedding_instance = embeddings_factory[embeddings_name](
embedding_instance = EmbeddingsSingleton.get_instance(
embeddings_name,
openai_api_key=embeddings_key
)
elif embeddings_name == "cohere_medium":
embedding_instance = embeddings_factory[embeddings_name](
embedding_instance = EmbeddingsSingleton.get_instance(
embeddings_name,
cohere_api_key=embeddings_key
)
elif embeddings_name == "huggingface_sentence-transformers/all-mpnet-base-v2":
embedding_instance = embeddings_factory[embeddings_name](
#model_name="./model/all-mpnet-base-v2",
model_kwargs={"device": "cpu"},
)
if os.path.exists("./model/all-mpnet-base-v2"):
embedding_instance = EmbeddingsSingleton.get_instance(
embeddings_name,
model_name="./model/all-mpnet-base-v2",
model_kwargs={"device": "cpu"}
)
else:
embedding_instance = EmbeddingsSingleton.get_instance(
embeddings_name,
model_kwargs={"device": "cpu"}
)
else:
embedding_instance = embeddings_factory[embeddings_name]()
return embedding_instance
embedding_instance = EmbeddingsSingleton.get_instance(embeddings_name)
return embedding_instance

83
application/worker.py Normal file → Executable file
View File

@@ -2,9 +2,9 @@ import os
import shutil
import string
import zipfile
import tiktoken
from urllib.parse import urljoin
import nltk
import requests
from application.core.settings import settings
@@ -14,13 +14,6 @@ from application.parser.open_ai_func import call_openai_api
from application.parser.schema.base import Document
from application.parser.token_func import group_split
try:
nltk.download("punkt", quiet=True)
nltk.download("averaged_perceptron_tagger", quiet=True)
except FileExistsError:
pass
# Define a function to extract metadata from a given filename.
def metadata_from_filename(title):
store = "/".join(title.split("/")[1:3])
@@ -37,6 +30,33 @@ current_dir = os.path.dirname(
)
def extract_zip_recursive(zip_path, extract_to, current_depth=0, max_depth=5):
"""
Recursively extract zip files with a limit on recursion depth.
Args:
zip_path (str): Path to the zip file to be extracted.
extract_to (str): Destination path for extracted files.
current_depth (int): Current depth of recursion.
max_depth (int): Maximum allowed depth of recursion to prevent infinite loops.
"""
if current_depth > max_depth:
print(f"Reached maximum recursion depth of {max_depth}")
return
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(extract_to)
os.remove(zip_path) # Remove the zip file after extracting
# Check for nested zip files and extract them
for root, dirs, files in os.walk(extract_to):
for file in files:
if file.endswith(".zip"):
# If a nested zip file is found, extract it recursively
file_path = os.path.join(root, file)
extract_zip_recursive(file_path, root, current_depth + 1, max_depth)
# Define the main function for ingesting and processing documents.
def ingest_worker(self, directory, formats, name_job, filename, user):
"""
@@ -66,7 +86,8 @@ def ingest_worker(self, directory, formats, name_job, filename, user):
token_check = True
min_tokens = 150
max_tokens = 1250
full_path = directory + "/" + user + "/" + name_job
recursion_depth = 2
full_path = os.path.join(directory, user, name_job)
import sys
print(full_path, file=sys.stderr)
@@ -81,14 +102,14 @@ def ingest_worker(self, directory, formats, name_job, filename, user):
if not os.path.exists(full_path):
os.makedirs(full_path)
with open(full_path + "/" + filename, "wb") as f:
with open(os.path.join(full_path, filename), "wb") as f:
f.write(file)
# check if file is .zip and extract it
if filename.endswith(".zip"):
with zipfile.ZipFile(full_path + "/" + filename, "r") as zip_ref:
zip_ref.extractall(full_path)
os.remove(full_path + "/" + filename)
extract_zip_recursive(
os.path.join(full_path, filename), full_path, 0, recursion_depth
)
self.update_state(state="PROGRESS", meta={"current": 1})
@@ -111,6 +132,7 @@ def ingest_worker(self, directory, formats, name_job, filename, user):
docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
call_openai_api(docs, full_path, self)
tokens = count_tokens_docs(docs)
self.update_state(state="PROGRESS", meta={"current": 100})
if sample:
@@ -119,7 +141,7 @@ def ingest_worker(self, directory, formats, name_job, filename, user):
# get files from outputs/inputs/index.faiss and outputs/inputs/index.pkl
# and send them to the server (provide user and name in form)
file_data = {"name": name_job, "user": user}
file_data = {"name": name_job, "user": user, "tokens":tokens}
if settings.VECTOR_STORE == "faiss":
files = {
"file_faiss": open(full_path + "/index.faiss", "rb"),
@@ -150,7 +172,6 @@ def ingest_worker(self, directory, formats, name_job, filename, user):
def remote_worker(self, source_data, name_job, user, loader, directory="temp"):
# sample = False
token_check = True
min_tokens = 150
max_tokens = 1250
@@ -158,12 +179,8 @@ def remote_worker(self, source_data, name_job, user, loader, directory="temp"):
if not os.path.exists(full_path):
os.makedirs(full_path)
self.update_state(state="PROGRESS", meta={"current": 1})
# source_data {"data": [url]} for url type task just urls
# Use RemoteCreator to load data from URL
remote_loader = RemoteCreator.create_loader(loader)
raw_docs = remote_loader.load_data(source_data)
@@ -173,19 +190,19 @@ def remote_worker(self, source_data, name_job, user, loader, directory="temp"):
max_tokens=max_tokens,
token_check=token_check,
)
# docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
call_openai_api(docs, full_path, self)
tokens = count_tokens_docs(docs)
self.update_state(state="PROGRESS", meta={"current": 100})
# Proceed with uploading and cleaning as in the original function
file_data = {"name": name_job, "user": user}
file_data = {"name": name_job, "user": user, "tokens":tokens}
if settings.VECTOR_STORE == "faiss":
files = {
"file_faiss": open(full_path + "/index.faiss", "rb"),
"file_pkl": open(full_path + "/index.pkl", "rb"),
}
requests.post(
urljoin(settings.API_URL, "/api/upload_index"), files=files, data=file_data
)
@@ -196,3 +213,25 @@ def remote_worker(self, source_data, name_job, user, loader, directory="temp"):
shutil.rmtree(full_path)
return {"urls": source_data, "name_job": name_job, "user": user, "limited": False}
def count_tokens_docs(docs):
# Here we convert the docs list to a string and calculate the number of tokens the string represents.
# docs_content = (" ".join(docs))
docs_content = ""
for doc in docs:
docs_content += doc.page_content
tokens, total_price = num_tokens_from_string(
string=docs_content, encoding_name="cl100k_base"
)
# Here we print the number of tokens and the approx user cost with some visually appealing formatting.
return tokens
def num_tokens_from_string(string: str, encoding_name: str) -> int:
# Function to convert string to tokens and estimate user cost.
encoding = tiktoken.get_encoding(encoding_name)
num_tokens = len(encoding.encode(string))
total_price = (num_tokens / 1000) * 0.0004
return num_tokens, total_price

500
docs/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -8,7 +8,7 @@
"dependencies": {
"@vercel/analytics": "^1.1.1",
"docsgpt": "^0.3.7",
"next": "^14.0.4",
"next": "^14.1.1",
"nextra": "^2.13.2",
"nextra-theme-docs": "^2.13.2",
"react": "^18.2.0",

10
docs/pages/API/_meta.json Normal file
View File

@@ -0,0 +1,10 @@
{
"API-docs": {
"title": "🗂️️ API-docs",
"href": "/API/API-docs"
},
"api-key-guide": {
"title": "🔐 API Keys guide",
"href": "/API/api-key-guide"
}
}

View File

@@ -14,7 +14,7 @@ Before creating your first API key, you must upload the document that will be li
After uploading your document, you can obtain an API key either through the graphical user interface or via an API call:
- **Graphical User Interface:** Navigate to the Settings section of the DocsGPT web app, find the API Keys option, and press 'Create New' to generate your key.
- **API Call:** Alternatively, you can use the `/api/create_api_key` endpoint to create a new API key. For detailed instructions, visit [DocsGPT API Documentation](https://docs.docsgpt.co.uk/Developing/API-docs#8-apicreate_api_key).
- **API Call:** Alternatively, you can use the `/api/create_api_key` endpoint to create a new API key. For detailed instructions, visit [DocsGPT API Documentation](https://docs.docsgpt.cloud/API/API-docs#8-apicreate_api_key).
### Understanding Key Variables
@@ -27,4 +27,4 @@ Upon creating your API key, you will encounter several key variables. Each serve
With your API key ready, you can now integrate DocsGPT into your application, such as the DocsGPT Widget or any other software, via `/api/answer` or `/stream` endpoints. The source document is preset with the API key, allowing you to bypass fields like `selectDocs` and `active_docs` during implementation.
Congratulations on taking the first step towards enhancing your applications with DocsGPT! With this guide, you're now equipped to navigate the process of obtaining and understanding DocsGPT API keys.
Congratulations on taking the first step towards enhancing your applications with DocsGPT! With this guide, you're now equipped to navigate the process of obtaining and understanding DocsGPT API keys.

View File

@@ -0,0 +1,100 @@
# Self-hosting DocsGPT on Kubernetes
This guide will walk you through deploying DocsGPT on Kubernetes.
## Prerequisites
Ensure you have the following installed before proceeding:
- [kubectl](https://kubernetes.io/docs/tasks/tools/install-kubectl/)
- Access to a Kubernetes cluster
## Folder Structure
The `k8s` folder contains the necessary deployment and service configuration files:
- `deployments/`
- `services/`
- `docsgpt-secrets.yaml`
## Deployment Instructions
1. **Clone the Repository**
```sh
git clone https://github.com/arc53/DocsGPT.git
cd docsgpt/k8s
```
2. **Configure Secrets (optional)**
Ensure that you have all the necessary secrets in `docsgpt-secrets.yaml`. Update it with your secrets before applying if you want. By default we will use qdrant as a vectorstore and public docsgpt llm as llm for inference.
3. **Apply Kubernetes Deployments**
Deploy your DocsGPT resources using the following commands:
```sh
kubectl apply -f deployments/
```
4. **Apply Kubernetes Services**
Set up your services using the following commands:
```sh
kubectl apply -f services/
```
5. **Apply Secrets**
Apply the secret configurations:
```sh
kubectl apply -f docsgpt-secrets.yaml
```
6. **Substitute API URL**
After deploying the services, you need to update the environment variable `VITE_API_HOST` in your deployment file `deployments/docsgpt-deploy.yaml` with the actual endpoint URL created by your `docsgpt-api-service`.
```sh
kubectl get services/docsgpt-api-service -o jsonpath='{.status.loadBalancer.ingress[0].ip}' | xargs -I {} sed -i "s|<your-api-endpoint>|{}|g" deployments/docsgpt-deploy.yaml
```
7. **Rerun Deployment**
After making the changes, reapply the deployment configuration to update the environment variables:
```sh
kubectl apply -f deployments/
```
## Verifying the Deployment
To verify if everything is set up correctly, you can run the following:
```sh
kubectl get pods
kubectl get services
```
Ensure that the pods are running and the services are available.
## Accessing DocsGPT
To access DocsGPT, you need to find the external IP address of the frontend service. You can do this by running:
```sh
kubectl get services/docsgpt-frontend-service | awk 'NR>1 {print "http://" $4}'
```
## Troubleshooting
If you encounter any issues, you can check the logs of the pods for more details:
```sh
kubectl logs <pod-name>
```
Replace `<pod-name>` with the actual name of your DocsGPT pod.

View File

@@ -110,19 +110,3 @@ Option 2: Using Git Bash or Command Prompt (CMD):
6. To stop the setup, just press **Ctrl + C** in the Git Bash or Command Prompt terminal.
These steps should help you set up and run the project on Windows using either WSL or Git Bash/Command Prompt. Make sure you have Docker installed and properly configured on your Windows system for this to work.
### Chrome Extension
#### Installing the Chrome extension:
To enhance your DocsGPT experience, you can install the DocsGPT Chrome extension. Here's how:
1. In the DocsGPT GitHub repository, click on the **Code** button and select **Download ZIP**.
2. Unzip the downloaded file to a location you can easily access.
3. Open the Google Chrome browser and click on the three dots menu (upper right corner).
4. Select **More Tools** and then **Extensions**.
5. Turn on the **Developer mode** switch in the top right corner of the **Extensions page**.
6. Click on the **Load unpacked** button.
7. Select the **Chrome** folder where the DocsGPT files have been unzipped (docsgpt-main > extensions > chrome).
8. The extension should now be added to Google Chrome and can be managed on the Extensions page.
9. To disable or remove the extension, simply turn off the toggle switch on the extension card or click the **Remove** button.

View File

@@ -10,5 +10,9 @@
"Railway-Deploying": {
"title": "🚂Deploying on Railway",
"href": "/Deploying/Railway-Deploying"
},
"Kubernetes-Deploying": {
"title": "☸Deploying on Kubernetes",
"href": "/Deploying/Kubernetes-Deploying"
}
}
}

View File

@@ -1,6 +0,0 @@
{
"API-docs": {
"title": "🗂️️ API-docs",
"href": "/Developing/API-docs"
}
}

View File

@@ -0,0 +1,34 @@
import {Steps} from 'nextra/components'
import { Callout } from 'nextra/components'
## Chrome Extension Setup Guide
To enhance your DocsGPT experience, you can install the DocsGPT Chrome extension. Here's how:
<Steps >
### Step 1
In the DocsGPT GitHub repository, click on the **Code** button and select **Download ZIP**.
### Step 2
Unzip the downloaded file to a location you can easily access.
### Step 3
Open the Google Chrome browser and click on the three dots menu (upper right corner).
### Step 4
Select **More Tools** and then **Extensions**.
### Step 5
Turn on the **Developer mode** switch in the top right corner of the **Extensions page**.
### Step 6
Click on the **Load unpacked** button.
### Step 7
7. Select the **Chrome** folder where the DocsGPT files have been unzipped (docsgpt-main > extensions > chrome).
### Step 8
The extension should now be added to Google Chrome and can be managed on the Extensions page.
### Step 9
To disable or remove the extension, simply turn off the toggle switch on the extension card or click the **Remove** button.
</Steps>

View File

@@ -7,8 +7,8 @@
"title": "🏗️ Widget setup",
"href": "/Extensions/react-widget"
},
"api-key-guide": {
"title": "🔐 API Keys guide",
"href": "/Extensions/api-key-guide"
"Chrome-extension": {
"title": "🌐 Chrome Extension",
"href": "/Extensions/Chrome-extension"
}
}

View File

@@ -51,6 +51,59 @@ export default function MyApp({ Component, pageProps }) {
)
}
```
### How to use DocsGPTWidget with HTML
```html
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>DocsGPT Widget</title>
</head>
<body>
<div id="app"></div>
<!-- Include the widget script from dist/modern or dist/legacy -->
<script src="https://unpkg.com/docsgpt/dist/modern/main.js" type="module"></script>
<script type="module">
window.onload = function() {
renderDocsGPTWidget('app');
}
</script>
</body>
</html>
```
To link the widget to your api and your documents you can pass parameters to the renderDocsGPTWidget('div id', { parameters }).
```html
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>DocsGPT Widget</title>
</head>
<body>
<div id="app"></div>
<!-- Include the widget script from dist/modern or dist/legacy -->
<script src="https://unpkg.com/docsgpt/dist/modern/main.js" type="module"></script>
<script type="module">
window.onload = function() {
renderDocsGPTWidget('app', {
apiHost: 'http://localhost:7001',
selectDocs: 'default',
apiKey: '',
avatar: 'https://d3dg1063dc54p9.cloudfront.net/cute-docsgpt.png',
title: 'Get AI assistance',
description: "DocsGPT's AI Chatbot is here to help",
heroTitle: 'Welcome to DocsGPT!',
heroDescription: 'This chatbot is built with DocsGPT and utilises GenAI, please review important information using sources.'
});
}
</script>
</body>
</html>
```
For more information about React, refer to this [link here](https://react.dev/learn)

View File

@@ -1,10 +1,25 @@
import Image from 'next/image'
# Customizing the Main Prompt
Customizing the main prompt for DocsGPT gives you the ability to tailor the AI's responses to your specific requirements. By modifying the prompt text, you can achieve more accurate and relevant answers. Here's how you can do it:
1. Navigate to `/application/prompts/combine_prompt.txt`.
1. Navigate to `SideBar -> Settings`.
2.In Settings select the `Active Prompt` now you will be able to see various prompts style.x
3.Click on the `edit icon` on the prompt of your choice and you will be able to see the current prompt for it,you can now customise the prompt as per your choice.
### Video Demo
<Image src="/prompts.gif" alt="prompts" width={800} height={500} />
2. Open the `combine_prompt.txt` file and modify the prompt text to suit your needs. You can experiment with different phrasings and structures to observe how the model responds. The main prompt serves as guidance to the AI model on how to generate responses.
## Example Prompt Modification

View File

@@ -1,63 +0,0 @@
## How to train on other documentation
This AI can utilize any documentation, but it requires preparation for similarity search. Follow these steps to get your documentation ready:
**Step 1: Prepare Your Documentation**
![video-example-of-how-to-do-it](https://d3dg1063dc54p9.cloudfront.net/videos/how-to-vectorise.gif)
Start by going to `/scripts/` folder.
If you open this file, you will see that it uses RST files from the folder to create a `index.faiss` and `index.pkl`.
It currently uses OPENAI to create the vector store, so make sure your documentation is not too large. Using Pandas cost me around $3-$4.
You can typically find documentation on GitHub in the `docs/` folder for most open-source projects.
### 1. Find documentation in .rst/.md format and create a folder with it in your scripts directory.
- Name it `inputs/`.
- Put all your .rst/.md files in there.
- The search is recursive, so you don't need to flatten them.
If there are no .rst/.md files, convert whatever you find to a .txt file and feed it. (Don't forget to change the extension in the script).
### Step 2: Configure Your OpenAI API Key
1. Create a .env file in the scripts/ folder.
- Add your OpenAI API key inside: OPENAI_API_KEY=<your-api-key>.
### Step 3: Run the Ingestion Script
`python ingest.py ingest`
It will provide you with the estimated cost.
### Step 4: Move `index.faiss` and `index.pkl` generated in `scripts/output` to `application/` folder.
### Step 5: Run the Web App
Once you run it, it will use new context relevant to your documentation.Make sure you select default in the dropdown in the UI.
## Customization
You can learn more about options while running ingest.py by running:
- Make sure you select 'default' from the dropdown in the UI.
## Customization
You can learn more about options while running ingest.py by executing:
`python ingest.py --help`
| Options | |
|:--------------------------------:|:------------------------------------------------------------------------------------------------------------------------------:|
| **ingest** | Runs 'ingest' function, converting documentation to Faiss plus Index format |
| --dir TEXT | List of paths to directory for index creation. E.g. --dir inputs --dir inputs2 [default: inputs] |
| --file TEXT | File paths to use (Optional; overrides directory) E.g. --files inputs/1.md --files inputs/2.md |
| --recursive / --no-recursive | Whether to recursively search in subdirectories [default: recursive] |
| --limit INTEGER | Maximum number of files to read |
| --formats TEXT | List of required extensions (list with .) Currently supported: .rst, .md, .pdf, .docx, .csv, .epub, .html [default: .rst, .md] |
| --exclude / --no-exclude | Whether to exclude hidden files (dotfiles) [default: exclude] |
| -y, --yes | Whether to skip price confirmation |
| --sample / --no-sample | Whether to output sample of the first 5 split documents. [default: no-sample] |
| --token-check / --no-token-check | Whether to group small documents and split large. Improves semantics. [default: token-check] |
| --min_tokens INTEGER | Minimum number of tokens to not group. [default: 150] |
| --max_tokens INTEGER | Maximum number of tokens to not split. [default: 2000] |
| | |
| **convert** | Creates documentation in .md format from source code |
| --dir TEXT | Path to a directory with source code. E.g. --dir inputs [default: inputs] |
| --formats TEXT | Source code language from which to create documentation. Supports py, js and java. E.g. --formats py [default: py] |

View File

@@ -0,0 +1,44 @@
import { Callout } from 'nextra/components'
import Image from 'next/image'
import { Steps } from 'nextra/components'
## How to train on other documentation
Training on other documentation sources can greatly enhance the versatility and depth of DocsGPT's knowledge. By incorporating diverse materials, you can broaden the AI's understanding and improve its ability to generate insightful responses across a range of topics. Here's a step-by-step guide on how to effectively train DocsGPT on additional documentation sources:
**Get your document ready**:
Make sure you have the document on which you want to train on ready with you on the device which you are using .You can also use links to the documentation to train on.
<Callout type="warning" emoji="⚠️">
Note: The document should be either of the given file formats .pdf, .txt, .rst, .docx, .md, .zip and limited to 25mb.You can also train using the link of the documentation.
</Callout>
### Video Demo
<Image src="/docs.gif" alt="prompts" width={800} height={500} />
<Steps>
### Step1
Navigate to the sidebar where you will find `Source Docs` option,here you will find 3 options built in which are default,Web Search and None.
### Step 2
Click on the `Upload icon` just beside the source docs options,now borwse and upload the document which you want to train on or select the `remote` option if you have to insert the link of the documentation.
### Step 3
Now you will be able to see the name of the file uploaded under the Uploaded Files ,now click on `Train`,once you click on train it might take some time to train on the document. You will be able to see the `Training progress` and once the training is completed you can click the `finish` button and there you go your docuemnt is uploaded.
### Step 4
Go to `New chat` and from the side bar select the document you uploaded under the `Source Docs` and go ahead with your chat, now you can ask qestions regarding the document you uploaded and you will get the effective answer based on it.
</Steps>

View File

@@ -1,48 +0,0 @@
# Setting Up Local Language Models for Your App
Your app relies on two essential models: Embeddings and Text Generation. While OpenAI's default models work seamlessly, you have the flexibility to switch providers or even run the models locally.
## Step 1: Configure Environment Variables
Navigate to the `.env` file or set the following environment variables:
```env
LLM_NAME=<your Text Generation model>
API_KEY=<API key for Text Generation>
EMBEDDINGS_NAME=<LLM for Embeddings>
EMBEDDINGS_KEY=<API key for Embeddings>
VITE_API_STREAMING=<true or false>
```
You can omit the keys if users provide their own. Ensure you set `LLM_NAME` and `EMBEDDINGS_NAME`.
## Step 2: Choose Your Models
**Options for `LLM_NAME`:**
- openai ([More details](https://platform.openai.com/docs/models))
- anthropic ([More details](https://docs.anthropic.com/claude/reference/selecting-a-model))
- manifest ([More details](https://python.langchain.com/docs/integrations/llms/manifest))
- cohere ([More details](https://docs.cohere.com/docs/llmu))
- llama.cpp ([More details](https://python.langchain.com/docs/integrations/llms/llamacpp))
- huggingface (Arc53/DocsGPT-7B by default)
- sagemaker ([Mode details](https://aws.amazon.com/sagemaker/))
Note: for huggingface you can choose any model inside application/llm/huggingface.py or pass llm_name on init, loads
**Options for `EMBEDDINGS_NAME`:**
- openai_text-embedding-ada-002
- huggingface_sentence-transformers/all-mpnet-base-v2
- huggingface_hkunlp/instructor-large
- cohere_medium
If you want to be completely local, set `EMBEDDINGS_NAME` to `huggingface_sentence-transformers/all-mpnet-base-v2`.
For llama.cpp Download the required model and place it in the `models/` folder.
Alternatively, for local Llama setup, run `setup.sh` and choose option 1. The script handles the DocsGPT model addition.
## Step 3: Local Hosting for Privacy
If working with sensitive data, host everything locally by setting `LLM_NAME`, llama.cpp or huggingface, use any model available on Hugging Face, for llama.cpp you need to convert it into gguf format.
That's it! Your app is now configured for local and private hosting, ensuring optimal security for critical data.

View File

@@ -0,0 +1,41 @@
import { Callout } from 'nextra/components'
import Image from 'next/image'
import { Steps } from 'nextra/components'
# Setting Up Local Language Models for Your App
Setting up local language models for your app can significantly enhance its capabilities, enabling it to understand and generate text in multiple languages without relying on external APIs. By integrating local language models, you can improve privacy, reduce latency, and ensure continuous functionality even in offline environments. Here's a comprehensive guide on how to set up local language models for your application:
## Steps:
### For cloud version LLM change:
<Steps >
### Step 1
Visit the chat screen and you will be to see the default LLM selected.
### Step 2
Click on it and you will get a drop down of various LLM's available to choose.
### Step 3
Choose the LLM of your choice.
</Steps>
### Video Demo
<Image src="/llms.gif" alt="prompts" width={800} height={500} />
### For Open source llm change:
<Steps >
### Step 1
For open source you have to edit .env file with LLM_NAME with their desired LLM name.
### Step 2
All the supported LLM providers are here application/llm and you can check what env variable are needed for each
List of latest supported LLMs are https://github.com/arc53/DocsGPT/blob/main/application/llm/llm_creator.py
### Step 3
Visit application/llm and select the file of your selected llm and there you will find the speicifc requirements needed to be filled in order to use it,i.e API key of that llm.
</Steps>

View File

@@ -1,6 +1,6 @@
{
"Customising-prompts": {
"title": "🏗️ Customising Prompts",
"title": "💻 Customising Prompts",
"href": "/Guides/Customising-prompts"
},
"How-to-train-on-other-documentation": {
@@ -8,7 +8,7 @@
"href": "/Guides/How-to-train-on-other-documentation"
},
"How-to-use-different-LLM": {
"title": "⚙️ How to use different LLM's",
"title": "🤖 How to use different LLM's",
"href": "/Guides/How-to-use-different-LLM"
},
"My-AI-answers-questions-using-external-knowledge": {

View File

@@ -2,14 +2,16 @@
title: 'Home'
---
import { Cards, Card } from 'nextra/components'
import Image from 'next/image'
import deployingGuides from './Deploying/_meta.json';
import developingGuides from './Developing/_meta.json';
import developingGuides from './API/_meta.json';
import extensionGuides from './Extensions/_meta.json';
import mainGuides from './Guides/_meta.json';
export const allGuides = {
...deployingGuides,
...developingGuides,
@@ -21,9 +23,12 @@ export const allGuides = {
DocsGPT 🦖 is an innovative open-source tool designed to simplify the retrieval of information from project documentation using advanced GPT models 🤖. Eliminate lengthy manual searches 🔍 and enhance your documentation experience with DocsGPT, and consider contributing to its AI-powered future 🚀.
![video-example-of-docs-gpt](https://d3dg1063dc54p9.cloudfront.net/videos/demov3.gif)
Try it yourself: [https://docsgpt.arc53.com/](https://docsgpt.arc53.com/)
<Image src="/homevideo.gif" alt="homedemo" width={800} height={500}/>
Try it yourself: [https://www.docsgpt.cloud/](https://www.docsgpt.cloud/)
<Cards
num={3}

BIN
docs/public/docs.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 839 KiB

BIN
docs/public/homevideo.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 MiB

BIN
docs/public/llms.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 500 KiB

BIN
docs/public/prompts.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 974 KiB

View File

@@ -1,6 +1,5 @@
# DocsGPT react widget
This widget will allow you to embed a DocsGPT assistant in your React app.
## Installation
@@ -11,6 +10,8 @@ npm install docsgpt
## Usage
### React
```javascript
import { DocsGPTWidget } from "docsgpt";
@@ -25,9 +26,9 @@ To link the widget to your api and your documents you can pass parameters to the
import { DocsGPTWidget } from "docsgpt";
const App = () => {
return <DocsGPTWidget
return <DocsGPTWidget
apiHost = 'http://localhost:7001',
selectDocs = 'default',
selectDocs = 'default',
apiKey = '',
avatar = 'https://d3dg1063dc54p9.cloudfront.net/cute-docsgpt.png',
title = 'Get AI assistance',
@@ -38,10 +39,65 @@ To link the widget to your api and your documents you can pass parameters to the
};
```
### Html
```html
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>DocsGPT Widget</title>
</head>
<body>
<div id="app"></div>
<!-- Include the widget script from dist/modern or dist/legacy -->
<script src="https://unpkg.com/docsgpt/dist/modern/main.js" type="module"></script>
<script type="module">
window.onload = function() {
renderDocsGPTWidget('app');
}
</script>
</body>
</html>
```
To link the widget to your api and your documents you can pass parameters to the **renderDocsGPTWidget('div id', { parameters })**.
```html
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>DocsGPT Widget</title>
</head>
<body>
<div id="app"></div>
<!-- Include the widget script from dist/modern or dist/legacy -->
<script src="https://unpkg.com/docsgpt/dist/modern/main.js" type="module"></script>
<script type="module">
window.onload = function() {
renderDocsGPTWidget('app', , {
apiHost: 'http://localhost:7001',
selectDocs: 'default',
apiKey: '',
avatar: 'https://d3dg1063dc54p9.cloudfront.net/cute-docsgpt.png',
title: 'Get AI assistance',
description: "DocsGPT's AI Chatbot is here to help",
heroTitle: 'Welcome to DocsGPT !',
heroDescription: 'This chatbot is built with DocsGPT and utilises GenAI, please review important information using sources.'
});
}
</script>
</body>
</html>
```
## Our github
[DocsGPT](https://github.com/arc53/DocsGPT)
You can find the source code in the extensions/react-widget folder.

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,6 @@
{
"name": "docsgpt",
"version": "0.3.7",
"version": "0.3.9",
"private": false,
"description": "DocsGPT 🦖 is an innovative open-source tool designed to simplify the retrieval of information from project documentation using advanced GPT models 🤖.",
"source": "./src/index.html",
@@ -11,6 +11,18 @@
"dist",
"package.json"
],
"targets": {
"modern": {
"engines": {
"browsers": "Chrome 80"
}
},
"legacy": {
"engines": {
"browsers": "> 0.5%, last 2 versions, not dead"
}
}
},
"@parcel/resolver-default": {
"packageExports": true
},
@@ -18,8 +30,8 @@
"styled-components": "^5"
},
"scripts": {
"build": "parcel build src/index.ts",
"dev": "parcel",
"build": "parcel build src/main.tsx --public-url ./",
"dev": "parcel src/index.html -p 3000",
"test": "jest",
"lint": "eslint",
"check": "tsc --noEmit",
@@ -33,16 +45,13 @@
"@parcel/transformer-typescript-tsc": "^2.12.0",
"@parcel/validator-typescript": "^2.12.0",
"@radix-ui/react-icons": "^1.3.0",
"@types/react": "^18.2.61",
"@types/react-dom": "^18.2.19",
"class-variance-authority": "^0.7.0",
"clsx": "^2.1.0",
"dompurify": "^3.0.9",
"dompurify": "^3.1.5",
"flow-bin": "^0.229.2",
"i": "^0.3.7",
"install": "^0.13.0",
"npm": "^10.5.0",
"parcel": "^2.12.0",
"react": "^18.2.0",
"react-dom": "^18.2.0",
"styled-components": "^6.1.8"
@@ -54,7 +63,10 @@
"@parcel/packager-ts": "^2.12.0",
"@parcel/transformer-typescript-types": "^2.12.0",
"@types/dompurify": "^3.0.5",
"@types/react": "^18.3.3",
"@types/react-dom": "^18.3.0",
"babel-loader": "^8.0.4",
"parcel": "^2.12.0",
"process": "^0.11.10",
"typescript": "^5.3.3"
},

View File

@@ -1,13 +1,13 @@
"use client";
import { Fragment, useEffect, useRef, useState } from 'react'
import { PaperPlaneIcon, RocketIcon, ExclamationTriangleIcon, Cross2Icon } from '@radix-ui/react-icons';
import { MESSAGE_TYPE } from '../models/types';
import { Query, Status } from '../models/types';
import MessageIcon from '../assets/message.svg'
import { fetchAnswerStreaming } from '../requests/streamingApi';
import styled, { keyframes, createGlobalStyle } from 'styled-components';
import React from 'react'
import DOMPurify from 'dompurify';
import snarkdown from '@bpmn-io/snarkdown';
import { sanitize } from 'dompurify';
import styled, { keyframes, createGlobalStyle } from 'styled-components';
import { PaperPlaneIcon, RocketIcon, ExclamationTriangleIcon, Cross2Icon } from '@radix-ui/react-icons';
import MessageIcon from '../assets/message.svg';
import { MESSAGE_TYPE, Query, Status } from '../types/index';
import { fetchAnswerStreaming } from '../requests/streamingApi';
const GlobalStyles = createGlobalStyle`
.response pre {
padding: 8px;
@@ -293,13 +293,13 @@ export const DocsGPTWidget = ({
heroDescription = 'This chatbot is built with DocsGPT and utilises GenAI, please review important information using sources.'
}) => {
const [prompt, setPrompt] = useState('');
const [status, setStatus] = useState<Status>('idle');
const [queries, setQueries] = useState<Query[]>([])
const [conversationId, setConversationId] = useState<string | null>(null)
const [open, setOpen] = useState<boolean>(false)
const [eventInterrupt, setEventInterrupt] = useState<boolean>(false); //click or scroll by user while autoScrolling
const endMessageRef = useRef<HTMLDivElement | null>(null);
const [prompt, setPrompt] = React.useState('');
const [status, setStatus] = React.useState<Status>('idle');
const [queries, setQueries] = React.useState<Query[]>([])
const [conversationId, setConversationId] = React.useState<string | null>(null)
const [open, setOpen] = React.useState<boolean>(false)
const [eventInterrupt, setEventInterrupt] = React.useState<boolean>(false); //click or scroll by user while autoScrolling
const endMessageRef = React.useRef<HTMLDivElement | null>(null);
const handleUserInterrupt = () => {
(status === 'loading') && setEventInterrupt(true);
}
@@ -317,7 +317,7 @@ export const DocsGPTWidget = ({
lastChild && scrollToBottom(lastChild)
};
useEffect(() => {
React.useEffect(() => {
!eventInterrupt && scrollToBottom(endMessageRef.current);
}, [queries.length, queries[queries.length - 1]?.response]);
@@ -397,7 +397,7 @@ export const DocsGPTWidget = ({
{
queries.length > 0 ? queries?.map((query, index) => {
return (
<Fragment key={index}>
<React.Fragment key={index}>
{
query.prompt && <MessageBubble type='QUESTION'>
<Message
@@ -413,7 +413,7 @@ export const DocsGPTWidget = ({
type='ANSWER'
ref={(index === queries.length - 1) ? endMessageRef : null}
>
<div className="response" dangerouslySetInnerHTML={{ __html: sanitize(snarkdown(query.response)) }} />
<div className="response" dangerouslySetInnerHTML={{ __html: DOMPurify.sanitize(snarkdown(query.response)) }} />
</Message>
</MessageBubble>
: <div>
@@ -437,7 +437,7 @@ export const DocsGPTWidget = ({
}
</div>
}
</Fragment>)
</React.Fragment>)
})
: <Hero title={heroTitle} description={heroDescription} />
}

View File

@@ -9,5 +9,11 @@
<body>
<div id="app"></div>
<script type="module" src="main.tsx"></script>
<script type="module" src="../dist/main.js"></script>
<script type="module">
window.onload = function() {
renderDocsGPTWidget('app');
}
</script>
</body>
</html>

View File

@@ -1,6 +1,11 @@
import { createRoot } from 'react-dom/client';
import App from './App.tsx';
import React from 'react';
const root = createRoot(document.getElementById('app') as HTMLElement);
import { createRoot } from 'react-dom/client';
import { DocsGPTWidget } from './components/DocsGPTWidget';
root.render(<App />);
const renderWidget = (elementId: string, props = {}) => {
const root = createRoot(document.getElementById(elementId) as HTMLElement);
root.render(<DocsGPTWidget {...props} />);
};
(window as any).renderDocsGPTWidget = renderWidget;
export { DocsGPTWidget };

View File

@@ -0,0 +1,13 @@
export type MESSAGE_TYPE = 'QUESTION' | 'ANSWER' | 'ERROR';
export type Status = 'idle' | 'loading' | 'failed';
export type FEEDBACK = 'LIKE' | 'DISLIKE';
export interface Query {
prompt: string;
response?: string;
feedback?: FEEDBACK;
error?: string;
sources?: { title: string; text: string }[];
conversationId?: string | null;
title?: string | null;
}

View File

@@ -152,12 +152,12 @@
}
},
"node_modules/braces": {
"version": "3.0.2",
"resolved": "https://registry.npmjs.org/braces/-/braces-3.0.2.tgz",
"integrity": "sha512-b8um+L1RzM3WDSzvhm6gIz1yfTbBt6YTlcEKAvsmqCZZFw46z626lVj9j1yEPW33H5H+lBQpZMP1k8l+78Ha0A==",
"version": "3.0.3",
"resolved": "https://registry.npmjs.org/braces/-/braces-3.0.3.tgz",
"integrity": "sha512-yQbXgO/OSZVD2IsiLlro+7Hf6Q18EJrKSEsdoMzKePKXct3gvD8oLcOQdIzGupr5Fj+EDe8gO/lxc1BzfMpxvA==",
"dev": true,
"dependencies": {
"fill-range": "^7.0.1"
"fill-range": "^7.1.1"
},
"engines": {
"node": ">=8"
@@ -294,9 +294,9 @@
}
},
"node_modules/fill-range": {
"version": "7.0.1",
"resolved": "https://registry.npmjs.org/fill-range/-/fill-range-7.0.1.tgz",
"integrity": "sha512-qOo9F+dMUmC2Lcb4BbVvnKJxTPjCm+RRpe4gDuGrzkL7mEVl/djYSu2OdQ2Pa302N4oqkSg9ir6jaLWJ2USVpQ==",
"version": "7.1.1",
"resolved": "https://registry.npmjs.org/fill-range/-/fill-range-7.1.1.tgz",
"integrity": "sha512-YsGpe3WHLK8ZYi4tWDg2Jy3ebRz2rXowDxnld4bkQB00cc/1Zw9AWnC0i9ztDJitivtQvaI9KaLyKrc+hBW0yg==",
"dev": true,
"dependencies": {
"to-regex-range": "^5.0.1"

View File

@@ -1,13 +1,17 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>DocsGPT 🦖</title>
<link rel="shortcut icon" type="image/x-icon" href="/favicon.ico" />
</head>
<body>
<div id="root" class="h-screen"></div>
<script type="module" src="/src/main.tsx"></script>
</body>
</html>
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0,viewport-fit=cover" />
<meta name="apple-mobile-web-app-capable" content="yes">
<title>DocsGPT 🦖</title>
<link rel="shortcut icon" type="image/x-icon" href="/favicon.ico" />
</head>
<body>
<div id="root" class="h-screen"></div>
<script type="module" src="/src/main.tsx"></script>
</body>
</html>

View File

@@ -10,10 +10,14 @@
"dependencies": {
"@reduxjs/toolkit": "^1.9.2",
"@vercel/analytics": "^0.1.10",
"i18next": "^23.11.5",
"i18next-browser-languagedetector": "^8.0.0",
"prop-types": "^15.8.1",
"react": "^18.2.0",
"react-copy-to-clipboard": "^5.1.0",
"react-dom": "^18.2.0",
"react-dropzone": "^14.2.3",
"react-i18next": "^14.1.2",
"react-markdown": "^8.0.7",
"react-redux": "^8.0.5",
"react-router-dom": "^6.8.1",
@@ -354,11 +358,12 @@
}
},
"node_modules/@babel/runtime": {
"version": "7.20.13",
"resolved": "https://registry.npmjs.org/@babel/runtime/-/runtime-7.20.13.tgz",
"integrity": "sha512-gt3PKXs0DBoL9xCvOIIZ2NEqAGZqHjAnmVbfQtB620V0uReIQutpel14KcneZuer7UioY8ALKZ7iocavvzTNFA==",
"version": "7.24.6",
"resolved": "https://registry.npmjs.org/@babel/runtime/-/runtime-7.24.6.tgz",
"integrity": "sha512-Ja18XcETdEl5mzzACGd+DKgaGJzPTCow7EglgwTmHdwokzDFYh/MHua6lU6DV/hjF2IaOJ4oX2nqnjG7RElKOw==",
"license": "MIT",
"dependencies": {
"regenerator-runtime": "^0.13.11"
"regenerator-runtime": "^0.14.0"
},
"engines": {
"node": ">=6.9.0"
@@ -1485,7 +1490,7 @@
"version": "18.0.10",
"resolved": "https://registry.npmjs.org/@types/react-dom/-/react-dom-18.0.10.tgz",
"integrity": "sha512-E42GW/JA4Qv15wQdqJq8DL4JhNpB3prJgjgapN3qJT9K2zO5IIAQh4VXvCEDupoqAwnz0cY4RlXeC/ajX5SFHg==",
"devOptional": true,
"dev": true,
"dependencies": {
"@types/react": "*"
}
@@ -2151,12 +2156,12 @@
}
},
"node_modules/braces": {
"version": "3.0.2",
"resolved": "https://registry.npmjs.org/braces/-/braces-3.0.2.tgz",
"integrity": "sha512-b8um+L1RzM3WDSzvhm6gIz1yfTbBt6YTlcEKAvsmqCZZFw46z626lVj9j1yEPW33H5H+lBQpZMP1k8l+78Ha0A==",
"version": "3.0.3",
"resolved": "https://registry.npmjs.org/braces/-/braces-3.0.3.tgz",
"integrity": "sha512-yQbXgO/OSZVD2IsiLlro+7Hf6Q18EJrKSEsdoMzKePKXct3gvD8oLcOQdIzGupr5Fj+EDe8gO/lxc1BzfMpxvA==",
"dev": true,
"dependencies": {
"fill-range": "^7.0.1"
"fill-range": "^7.1.1"
},
"engines": {
"node": ">=8"
@@ -3699,9 +3704,9 @@
"integrity": "sha512-336iVw3rtn2BUK7ORdIAHTyxHGRIHVReokCR3XjbckJMK7ms8FysBfhLR8IXnAgy7T0PTPNBWKiH514FOW/WSg=="
},
"node_modules/fill-range": {
"version": "7.0.1",
"resolved": "https://registry.npmjs.org/fill-range/-/fill-range-7.0.1.tgz",
"integrity": "sha512-qOo9F+dMUmC2Lcb4BbVvnKJxTPjCm+RRpe4gDuGrzkL7mEVl/djYSu2OdQ2Pa302N4oqkSg9ir6jaLWJ2USVpQ==",
"version": "7.1.1",
"resolved": "https://registry.npmjs.org/fill-range/-/fill-range-7.1.1.tgz",
"integrity": "sha512-YsGpe3WHLK8ZYi4tWDg2Jy3ebRz2rXowDxnld4bkQB00cc/1Zw9AWnC0i9ztDJitivtQvaI9KaLyKrc+hBW0yg==",
"dev": true,
"dependencies": {
"to-regex-range": "^5.0.1"
@@ -4134,6 +4139,15 @@
"react-is": "^16.7.0"
}
},
"node_modules/html-parse-stringify": {
"version": "3.0.1",
"resolved": "https://registry.npmjs.org/html-parse-stringify/-/html-parse-stringify-3.0.1.tgz",
"integrity": "sha512-KknJ50kTInJ7qIScF3jeaFRpMpE8/lfiTdzf/twXyPBLAGrLRTmkz3AdTnKeh40X8k9L2fdYwEp/42WGXIRGcg==",
"license": "MIT",
"dependencies": {
"void-elements": "3.1.0"
}
},
"node_modules/human-signals": {
"version": "3.0.1",
"resolved": "https://registry.npmjs.org/human-signals/-/human-signals-3.0.1.tgz",
@@ -4158,6 +4172,38 @@
"url": "https://github.com/sponsors/typicode"
}
},
"node_modules/i18next": {
"version": "23.11.5",
"resolved": "https://registry.npmjs.org/i18next/-/i18next-23.11.5.tgz",
"integrity": "sha512-41pvpVbW9rhZPk5xjCX2TPJi2861LEig/YRhUkY+1FQ2IQPS0bKUDYnEqY8XPPbB48h1uIwLnP9iiEfuSl20CA==",
"funding": [
{
"type": "individual",
"url": "https://locize.com"
},
{
"type": "individual",
"url": "https://locize.com/i18next.html"
},
{
"type": "individual",
"url": "https://www.i18next.com/how-to/faq#i18next-is-awesome.-how-can-i-support-the-project"
}
],
"license": "MIT",
"dependencies": {
"@babel/runtime": "^7.23.2"
}
},
"node_modules/i18next-browser-languagedetector": {
"version": "8.0.0",
"resolved": "https://registry.npmjs.org/i18next-browser-languagedetector/-/i18next-browser-languagedetector-8.0.0.tgz",
"integrity": "sha512-zhXdJXTTCoG39QsrOCiOabnWj2jecouOqbchu3EfhtSHxIB5Uugnm9JaizenOy39h7ne3+fLikIjeW88+rgszw==",
"license": "MIT",
"dependencies": {
"@babel/runtime": "^7.23.2"
}
},
"node_modules/ignore": {
"version": "5.2.4",
"resolved": "https://registry.npmjs.org/ignore/-/ignore-5.2.4.tgz",
@@ -6571,6 +6617,7 @@
"version": "15.8.1",
"resolved": "https://registry.npmjs.org/prop-types/-/prop-types-15.8.1.tgz",
"integrity": "sha512-oj87CgZICdulUohogVAR7AjlC0327U4el4L6eAvOqCeudMDVU0NThNaV+b9Df4dXgSP1gXMTnPdhfe/2qDH5cg==",
"license": "MIT",
"dependencies": {
"loose-envify": "^1.4.0",
"object-assign": "^4.1.1",
@@ -6678,6 +6725,28 @@
"react": ">= 16.8 || 18.0.0"
}
},
"node_modules/react-i18next": {
"version": "14.1.2",
"resolved": "https://registry.npmjs.org/react-i18next/-/react-i18next-14.1.2.tgz",
"integrity": "sha512-FSIcJy6oauJbGEXfhUgVeLzvWBhIBIS+/9c6Lj4niwKZyGaGb4V4vUbATXSlsHJDXXB+ociNxqFNiFuV1gmoqg==",
"license": "MIT",
"dependencies": {
"@babel/runtime": "^7.23.9",
"html-parse-stringify": "^3.0.1"
},
"peerDependencies": {
"i18next": ">= 23.2.3",
"react": ">= 16.8.0"
},
"peerDependenciesMeta": {
"react-dom": {
"optional": true
},
"react-native": {
"optional": true
}
}
},
"node_modules/react-is": {
"version": "16.13.1",
"resolved": "https://registry.npmjs.org/react-is/-/react-is-16.13.1.tgz",
@@ -6875,9 +6944,10 @@
}
},
"node_modules/regenerator-runtime": {
"version": "0.13.11",
"resolved": "https://registry.npmjs.org/regenerator-runtime/-/regenerator-runtime-0.13.11.tgz",
"integrity": "sha512-kY1AZVr2Ra+t+piVaJ4gxaFaReZVH40AKNo7UCX6W+dEwBo/2oZJzqfuN1qLq1oL45o56cPaTXELwrTh8Fpggg=="
"version": "0.14.1",
"resolved": "https://registry.npmjs.org/regenerator-runtime/-/regenerator-runtime-0.14.1.tgz",
"integrity": "sha512-dYnhHh0nJoMfnkZs6GmmhFknAGRrLznOu5nc9ML+EJxGvrx6H7teuevqVqCuPcPK//3eDrrjQhehXVx9cnkGdw==",
"license": "MIT"
},
"node_modules/regexp.prototype.flags": {
"version": "1.4.3",
@@ -7923,6 +7993,15 @@
"vite": "^2.6.0 || 3 || 4 || 5"
}
},
"node_modules/void-elements": {
"version": "3.1.0",
"resolved": "https://registry.npmjs.org/void-elements/-/void-elements-3.1.0.tgz",
"integrity": "sha512-Dhxzh5HZuiHQhbvTW9AMetFfBHDMYpo23Uo9btPXgdYP+3T5S+p+jgNy7spra+veYhBP2dCSgxR/i2Y02h5/6w==",
"license": "MIT",
"engines": {
"node": ">=0.10.0"
}
},
"node_modules/which": {
"version": "2.0.2",
"resolved": "https://registry.npmjs.org/which/-/which-2.0.2.tgz",

View File

@@ -21,10 +21,14 @@
"dependencies": {
"@reduxjs/toolkit": "^1.9.2",
"@vercel/analytics": "^0.1.10",
"i18next": "^23.11.5",
"i18next-browser-languagedetector": "^8.0.0",
"prop-types": "^15.8.1",
"react": "^18.2.0",
"react-copy-to-clipboard": "^5.1.0",
"react-dom": "^18.2.0",
"react-dropzone": "^14.2.3",
"react-i18next": "^14.1.2",
"react-markdown": "^8.0.7",
"react-redux": "^8.0.5",
"react-router-dom": "^6.8.1",

Binary file not shown.

View File

@@ -1,4 +1,5 @@
import { Routes, Route } from 'react-router-dom';
import { useEffect } from 'react';
import Navigation from './Navigation';
import Conversation from './conversation/Conversation';
import About from './About';
@@ -6,30 +7,55 @@ import PageNotFound from './PageNotFound';
import { inject } from '@vercel/analytics';
import { useMediaQuery } from './hooks';
import { useState } from 'react';
import Setting from './Setting';
import Setting from './settings';
import './locale/i18n';
import { Outlet } from 'react-router-dom';
import SharedConversation from './conversation/SharedConversation';
import { useDarkTheme } from './hooks';
inject();
export default function App() {
function MainLayout() {
const { isMobile } = useMediaQuery();
const [navOpen, setNavOpen] = useState(!isMobile);
return (
<div className="min-h-full min-w-full dark:bg-raisin-black">
<div className="dark:bg-raisin-black">
<Navigation navOpen={navOpen} setNavOpen={setNavOpen} />
<div
className={`transition-all duration-200 ${
className={`min-h-screen ${
!isMobile
? `ml-0 ${!navOpen ? '-mt-5 md:mx-auto lg:mx-auto' : 'md:ml-72'}`
? `ml-0 ${!navOpen ? 'md:mx-auto lg:mx-auto' : 'md:ml-72'}`
: 'ml-0 md:ml-16'
}`}
>
<Routes>
<Route path="/" element={<Conversation />} />
<Route path="/about" element={<About />} />
<Route path="*" element={<PageNotFound />} />
<Route path="/settings" element={<Setting />} />
</Routes>
<Outlet />
</div>
</div>
);
}
export default function App() {
const [isDarkTheme] = useDarkTheme();
useEffect(() => {
localStorage.setItem('selectedTheme', isDarkTheme ? 'Dark' : 'Light');
if (isDarkTheme) {
document
.getElementById('root')
?.classList.add('dark', 'dark:bg-raisin-black');
} else {
document.getElementById('root')?.classList.remove('dark');
}
}, [isDarkTheme]);
return (
<>
<Routes>
<Route element={<MainLayout />}>
<Route index element={<Conversation />} />
<Route path="/about" element={<About />} />
<Route path="/settings" element={<Setting />} />
</Route>
<Route path="/share/:identifier" element={<SharedConversation />} />
<Route path="/*" element={<PageNotFound />} />
</Routes>
</>
);
}

View File

@@ -1,191 +1,52 @@
import { useDarkTheme, useMediaQuery } from './hooks';
import { Fragment } from 'react';
import DocsGPT3 from './assets/cute_docsgpt3.svg';
export default function Hero({ className = '' }: { className?: string }) {
// const isMobile = window.innerWidth <= 768;
const { isMobile } = useMediaQuery();
const [isDarkTheme] = useDarkTheme();
import { useTranslation } from 'react-i18next';
export default function Hero({
handleQuestion,
}: {
handleQuestion: ({
question,
isRetry,
}: {
question: string;
isRetry?: boolean;
}) => void;
}) {
const { t } = useTranslation();
const demos = t('demo', { returnObjects: true }) as Array<{
header: string;
query: string;
}>;
return (
<div
className={`mt-14 mb-32 flex flex-col text-black-1000 dark:text-bright-gray lg:mt-6`}
className={`mt-16 mb-4 flex w-full flex-col justify-end text-black-1000 dark:text-bright-gray sm:w-full lg:mt-6`}
>
<div className=" mb-2 flex items-center justify-center sm:mb-10">
<p className="mr-2 text-4xl font-semibold">DocsGPT</p>
<img className="mb-2 h-14" src={DocsGPT3} alt="DocsGPT" />
<div className="flex h-full w-full flex-col items-center justify-center">
<div className="flex items-center">
<span className="p-0 text-4xl font-semibold">DocsGPT</span>
<img className="mb-1 inline w-14 p-0" src={DocsGPT3} alt="docsgpt" />
</div>
<div className="mb-4 flex flex-col items-center justify-center dark:text-white"></div>
</div>
{isMobile ? (
<p className="mb-3 text-center leading-6">
Welcome to <span className="font-bold">DocsGPT</span>, your technical
documentation assistant! Start by entering your query in the input
field below, and we&apos;ll provide you with the most relevant
answers.
</p>
) : (
<>
<p className="mb-3 text-center leading-6">
Welcome to DocsGPT, your technical documentation assistant!
</p>
<p className="mb-3 text-center leading-6">
Enter a query related to the information in the documentation you
selected to receive
<br /> and we will provide you with the most relevant answers.
</p>
<p className="mb-3 text-center leading-6">
Start by entering your query in the input field below and we will do
the rest!
</p>
</>
)}
<div
className={`mt-0 flex flex-wrap items-center justify-center gap-2 sm:mt-1 sm:gap-4 md:gap-4 lg:gap-0`}
>
{/* first */}
<div className="h-auto rounded-[50px] bg-gradient-to-l from-[#6EE7B7]/70 via-[#3B82F6] to-[#9333EA]/50 p-1 dark:from-[#D16FF8] dark:via-[#48E6E0] dark:to-[#C85EF6] lg:h-60 lg:rounded-tr-none lg:rounded-br-none">
<div
className={`h-full rounded-[45px] bg-white dark:bg-dark-charcoal p-${
isMobile ? '3.5' : '6 py-8'
} lg:rounded-tr-none lg:rounded-br-none`}
>
{/* Add Mobile check here */}
{isMobile ? (
<div className="flex justify-center">
<img
src={
isDarkTheme ? '/message-text-dark.svg' : '/message-text.svg'
}
alt="lock"
className="h-[24px] w-[24px] "
/>
<h2 className="mb-0 pl-1 text-lg font-bold">
Chat with Your Data
</h2>
</div>
) : (
<>
<img
src={
isDarkTheme ? '/message-text-dark.svg' : '/message-text.svg'
}
alt="lock"
className="h-[24px] w-[24px]"
/>
<h2 className="mt-2 mb-3 text-lg font-bold">
Chat with Your Data
</h2>
</>
)}
<p
className={
isMobile
? `w-[250px] text-center text-xs text-gray-500 dark:text-bright-gray`
: `w-[250px] text-xs text-gray-500 dark:text-bright-gray`
}
>
DocsGPT will use your data to answer questions. Whether its
documentation, source code, or Microsoft files, DocsGPT allows you
to have interactive conversations and find answers based on the
provided data.
</p>
</div>
</div>
{/* second */}
<div className="h-auto rounded-[50px] bg-gradient-to-r from-[#6EE7B7]/70 via-[#3B82F6] to-[#9333EA]/50 p-1 dark:from-[#D16FF8] dark:via-[#48E6E0] dark:to-[#C85EF6] lg:h-60 lg:rounded-none lg:py-1 lg:px-0">
<div
className={`h-full rounded-[45px] bg-white dark:bg-dark-charcoal p-${
isMobile ? '3.5' : '6 py-6'
} lg:rounded-none`}
>
{/* Add Mobile check here */}
{isMobile ? (
<div className="flex justify-center ">
<img
src={isDarkTheme ? '/lock-dark.svg' : '/lock.svg'}
alt="lock"
className="h-[24px] w-[24px]"
/>
<h2 className="mb-0 pl-1 text-lg font-bold">
Secure Data Storage
</h2>
</div>
) : (
<>
<img
src={isDarkTheme ? '/lock-dark.svg' : '/lock.svg'}
alt="lock"
className="h-[24px] w-[24px]"
/>
<h2 className="mt-2 mb-3 text-lg font-bold">
Secure Data Storage
</h2>
</>
)}
<p
className={
isMobile
? `w-[250px] text-center text-xs text-gray-500 dark:text-bright-gray`
: `w-[250px] text-xs text-gray-500 dark:text-bright-gray`
}
>
The security of your data is our top priority. DocsGPT ensures the
utmost protection for your sensitive information. With secure data
storage and privacy measures in place, you can trust that your
data is kept safe and confidential.
</p>
</div>
</div>
{/* third */}
<div className="h-auto rounded-[50px] bg-gradient-to-l from-[#6EE7B7]/70 via-[#3B82F6] to-[#9333EA]/50 p-1 dark:from-[#D16FF8] dark:via-[#48E6E0] dark:to-[#C85EF6] lg:h-60 lg:rounded-tl-none lg:rounded-bl-none ">
<div
className={`firefox h-full rounded-[45px] bg-white dark:bg-dark-charcoal p-${
isMobile ? '3.5' : '6 px-6 '
} lg:rounded-tl-none lg:rounded-bl-none`}
>
{/* Add Mobile check here */}
{isMobile ? (
<div className="flex justify-center">
<img
src={
isDarkTheme
? 'message-programming-dark.svg'
: '/message-programming.svg'
}
alt="lock"
className="h-[24px] w-[24px]"
/>
<h2 className="mb-0 pl-1 text-lg font-bold">
Open Source Code
</h2>
</div>
) : (
<>
<img
src={
isDarkTheme
? '/message-programming-dark.svg'
: '/message-programming.svg'
}
alt="lock"
className="h-[24px] w-[24px]"
/>
<h2 className="mt-2 mb-3 text-lg font-bold">
Open Source Code
</h2>
</>
)}
<p
className={
isMobile
? `w-[250px] text-center text-xs text-gray-500 dark:text-bright-gray`
: `w-[250px] text-xs text-gray-500 dark:text-bright-gray`
}
>
DocsGPT is built on open source principles, promoting transparency
and collaboration. The source code is freely available, enabling
developers to contribute, enhance, and customize the app to meet
their specific needs.
</p>
</div>
</div>
<div className="mb-16 grid w-full grid-cols-1 items-center gap-4 self-center text-xs sm:w-auto sm:gap-6 md:mb-0 md:text-sm lg:grid-cols-2">
{demos?.map(
(demo: { header: string; query: string }, key: number) =>
demo.header &&
demo.query && (
<Fragment key={key}>
<button
onClick={() => handleQuestion({ question: demo.query })}
className="w-full rounded-full border-2 border-silver px-6 py-4 text-left hover:border-gray-4000 dark:hover:border-gray-3000 xl:min-w-[24vw]"
>
<p className="mb-1 font-semibold text-black dark:text-silver">
{demo.header}
</p>
<span className="text-gray-400">{demo.query}</span>
</button>
</Fragment>
),
)}
</div>
</div>
);

View File

@@ -1,25 +1,21 @@
import { useEffect, useRef, useState } from 'react';
import { useDispatch, useSelector } from 'react-redux';
import { NavLink, useNavigate } from 'react-router-dom';
import PropTypes from 'prop-types';
import DocsGPT3 from './assets/cute_docsgpt3.svg';
import Documentation from './assets/documentation.svg';
import DocumentationDark from './assets/documentation-dark.svg';
import Discord from './assets/discord.svg';
import DiscordDark from './assets/discord-dark.svg';
import Expand from './assets/expand.svg';
import Github from './assets/github.svg';
import GithubDark from './assets/github-dark.svg';
import Hamburger from './assets/hamburger.svg';
import HamburgerDark from './assets/hamburger-dark.svg';
import Info from './assets/info.svg';
import InfoDark from './assets/info-dark.svg';
import SettingGear from './assets/settingGear.svg';
import SettingGearDark from './assets/settingGear-dark.svg';
import Twitter from './assets/TwitterX.svg';
import Add from './assets/add.svg';
import UploadIcon from './assets/upload.svg';
import { ActiveState } from './models/misc';
import APIKeyModal from './preferences/APIKeyModal';
import DeleteConvModal from './modals/DeleteConvModal';
import {
selectApiKeyStatus,
selectSelectedDocs,
@@ -29,6 +25,9 @@ import {
selectConversations,
setConversations,
selectConversationId,
selectModalStateDeleteConv,
setModalStateDeleteConv,
setSourceDocs,
} from './preferences/preferenceSlice';
import {
setConversation,
@@ -36,40 +35,43 @@ import {
} from './conversation/conversationSlice';
import { useMediaQuery, useOutsideAlerter } from './hooks';
import Upload from './upload/Upload';
import { Doc, getConversations } from './preferences/preferenceApi';
import { Doc, getConversations, getDocs } from './preferences/preferenceApi';
import SelectDocsModal from './preferences/SelectDocsModal';
import ConversationTile from './conversation/ConversationTile';
import { useDarkTheme } from './hooks';
import SourceDropdown from './components/SourceDropdown';
import { useTranslation } from 'react-i18next';
interface NavigationProps {
navOpen: boolean;
setNavOpen: React.Dispatch<React.SetStateAction<boolean>>;
}
const NavImage: React.FC<{
/* const NavImage: React.FC<{
Light: string | undefined;
Dark: string | undefined;
}> = ({ Light, Dark }) => {
return (
<>
<img src={Dark} alt="icon" className="ml-2 hidden w-5 dark:block " />
<img src={Light} alt="icon" className="ml-2 w-5 dark:hidden " />
<img src={Light} alt="icon" className="ml-2 w-5 dark:hidden filter dark:invert" />
</>
);
};
NavImage.propTypes = {
Light: PropTypes.string,
Dark: PropTypes.string,
};
}; */
export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
const dispatch = useDispatch();
const docs = useSelector(selectSourceDocs);
const selectedDocs = useSelector(selectSelectedDocs);
const conversations = useSelector(selectConversations);
const modalStateDeleteConv = useSelector(selectModalStateDeleteConv);
const conversationId = useSelector(selectConversationId);
const { isMobile } = useMediaQuery();
const [isDarkTheme] = useDarkTheme();
const [isDocsListOpen, setIsDocsListOpen] = useState(false);
const { t } = useTranslation();
const isApiKeySet = useSelector(selectApiKeyStatus);
const [apiKeyModalState, setApiKeyModalState] =
@@ -92,6 +94,7 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
fetchConversations();
}
}, [conversations, dispatch]);
async function fetchConversations() {
return await getConversations()
.then((fetchedConversations) => {
@@ -102,6 +105,16 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
});
}
const handleDeleteAllConversations = () => {
fetch(`${apiHost}/api/delete_all_conversations`, {
method: 'POST',
})
.then(() => {
fetchConversations();
})
.catch((error) => console.error(error));
};
const handleDeleteConversation = (id: string) => {
fetch(`${apiHost}/api/delete_conversation?id=${id}`, {
method: 'POST',
@@ -112,19 +125,29 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
.catch((error) => console.error(error));
};
const handleDeleteClick = (index: number, doc: Doc) => {
const docPath = 'indexes/' + 'local' + '/' + doc.name;
const handleDeleteClick = (doc: Doc) => {
const docPath = `indexes/local/${doc.name}`;
fetch(`${apiHost}/api/delete_old?path=${docPath}`, {
method: 'GET',
})
.then(() => {
// remove the image element from the DOM
const imageElement = document.querySelector(
`#img-${index}`,
) as HTMLElement;
const parentElement = imageElement.parentNode as HTMLElement;
parentElement.parentNode?.removeChild(parentElement);
// const imageElement = document.querySelector(
// `#img-${index}`,
// ) as HTMLElement;
// const parentElement = imageElement.parentNode as HTMLElement;
// parentElement.parentNode?.removeChild(parentElement);
return getDocs();
})
.then((updatedDocs) => {
dispatch(setSourceDocs(updatedDocs));
dispatch(
setSelectedDocs(
updatedDocs?.find((doc) => doc.name.toLowerCase() === 'default'),
),
);
})
.catch((error) => console.error(error));
};
@@ -254,13 +277,15 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
className="opacity-80 group-hover:opacity-100"
/>
<p className=" text-sm text-dove-gray group-hover:text-neutral-600 dark:text-chinese-silver dark:group-hover:text-bright-gray">
New Chat
{t('newChat')}
</p>
</NavLink>
<div className="mb-auto h-[56vh] overflow-y-auto overflow-x-hidden dark:text-white">
{conversations && (
<div className="mb-auto h-[78vh] overflow-y-auto overflow-x-hidden dark:text-white">
{conversations && conversations.length > 0 ? (
<div>
<p className="ml-6 mt-3 text-sm font-semibold">Chats</p>
<div className=" my-auto mx-4 mt-2 flex h-6 items-center justify-between gap-4 rounded-3xl">
<p className="mt-1 ml-4 text-sm font-semibold">{t('chats')}</p>
</div>
<div className="conversations-container">
{conversations?.map((conversation) => (
<ConversationTile
@@ -275,12 +300,14 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
))}
</div>
</div>
) : (
<></>
)}
</div>
<div className="flex h-auto flex-col justify-end text-eerie-black dark:text-white">
<div className="flex flex-col-reverse border-b-[1px] dark:border-b-purple-taupe">
<div className="relative my-4 flex gap-2 px-2">
<div className="relative my-4 mx-4 flex gap-2">
<SourceDropdown
options={docs}
selectedDocs={selectedDocs}
@@ -295,66 +322,84 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
onClick={() => setUploadModalState('ACTIVE')}
></img>
</div>
<p className="ml-6 mt-3 text-sm font-semibold">Source Docs</p>
<p className="ml-5 mt-3 text-sm font-semibold">{t('sourceDocs')}</p>
</div>
<div className="flex flex-col gap-2 border-b-[1px] py-2 dark:border-b-purple-taupe">
<NavLink
to="/settings"
className={({ isActive }) =>
`my-auto mx-4 flex h-9 cursor-pointer gap-4 rounded-3xl hover:bg-gray-100 dark:hover:bg-purple-taupe ${
`my-auto mx-4 flex h-9 cursor-pointer gap-4 rounded-3xl hover:bg-gray-100 dark:hover:bg-[#28292E] ${
isActive ? 'bg-gray-3000 dark:bg-transparent' : ''
}`
}
>
<NavImage Light={SettingGear} Dark={SettingGearDark} />
<img
src={SettingGear}
alt="icon"
className="ml-2 w-5 filter dark:invert"
/>
<p className="my-auto text-sm text-eerie-black dark:text-white">
Settings
{t('settings.label')}
</p>
</NavLink>
</div>
<div className="flex flex-col gap-2 border-b-[1.5px] py-2 dark:border-b-purple-taupe">
<div className="flex justify-between gap-2 border-b-[1.5px] py-2 dark:border-b-purple-taupe">
<NavLink
to="/about"
className={({ isActive }) =>
`my-auto mx-4 flex h-9 cursor-pointer gap-4 rounded-3xl hover:bg-gray-100 dark:hover:bg-purple-taupe ${
isActive ? 'bg-gray-3000 dark:bg-purple-taupe' : ''
`my-auto mx-4 flex h-9 cursor-pointer gap-4 rounded-3xl hover:bg-gray-100 dark:hover:bg-[#28292E] ${
isActive ? 'bg-gray-3000 dark:bg-[#28292E]' : ''
}`
}
>
<NavImage Light={Info} Dark={InfoDark} />
<p className="my-auto text-sm">About</p>
<img
src={Info}
alt="icon"
className="ml-2 w-5 filter dark:invert"
/>
<p className="my-auto pr-1 text-sm">{t('about')}</p>
</NavLink>
<a
href="https://docs.docsgpt.co.uk/"
target="_blank"
rel="noreferrer"
className="my-auto mx-4 flex h-9 cursor-pointer gap-4 rounded-3xl hover:bg-gray-100 dark:hover:bg-purple-taupe"
>
<NavImage Light={Documentation} Dark={DocumentationDark} />
<p className="my-auto text-sm ">Documentation</p>
</a>
<a
href="https://discord.gg/WHJdfbQDR4"
target="_blank"
rel="noreferrer"
className="my-auto mx-4 flex h-9 cursor-pointer gap-4 rounded-3xl hover:bg-gray-100 dark:hover:bg-purple-taupe"
>
<NavImage Light={Discord} Dark={DiscordDark} />
{/* <img src={isDarkTheme ? DiscordDark : Discord} alt="discord-link" className="ml-2 w-5" /> */}
<p className="my-auto text-sm">Visit our Discord</p>
</a>
<a
href="https://github.com/arc53/DocsGPT"
target="_blank"
rel="noreferrer"
className="mx-4 mt-auto flex h-9 cursor-pointer gap-4 rounded-3xl hover:bg-gray-100 dark:hover:bg-purple-taupe"
>
<NavImage Light={Github} Dark={GithubDark} />
<p className="my-auto text-sm">Visit our Github</p>
</a>
<div className="flex items-center justify-evenly gap-1 px-1">
<NavLink
target="_blank"
to={'https://discord.gg/WHJdfbQDR4'}
className={
'rounded-full hover:bg-gray-100 dark:hover:bg-[#28292E]'
}
>
<img
src={Discord}
alt="discord"
className="m-2 w-6 self-center filter dark:invert"
/>
</NavLink>
<NavLink
target="_blank"
to={'https://twitter.com/docsgptai'}
className={
'rounded-full hover:bg-gray-100 dark:hover:bg-[#28292E]'
}
>
<img
src={Twitter}
alt="x"
className="m-2 w-5 self-center filter dark:invert"
/>
</NavLink>
<NavLink
target="_blank"
to={'https://github.com/arc53/docsgpt'}
className={
'rounded-full hover:bg-gray-100 dark:hover:bg-[#28292E]'
}
>
<img
src={Github}
alt="github"
className="m-2 w-6 self-center filter dark:invert"
/>
</NavLink>
</div>
</div>
</div>
</div>
@@ -370,6 +415,7 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
/>
</button>
</div>
<SelectDocsModal
modalState={selectedDocsModalState}
setModalState={setSelectedDocsModalState}
@@ -380,6 +426,11 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
setModalState={setApiKeyModalState}
isCancellable={isApiKeySet}
/>
<DeleteConvModal
modalState={modalStateDeleteConv}
setModalState={setModalStateDeleteConv}
handleDeleteAllConv={handleDeleteAllConversations}
/>
<Upload
modalState={uploadModalState}
setModalState={setUploadModalState}

View File

@@ -2,11 +2,11 @@ import { Link } from 'react-router-dom';
export default function PageNotFound() {
return (
<div className="mx-5 grid min-h-screen md:mx-36">
<p className="mx-auto my-auto mt-20 flex w-full max-w-6xl flex-col place-items-center gap-6 rounded-3xl bg-gray-100 p-6 text-jet lg:p-10 xl:p-16">
<div className="grid min-h-screen dark:bg-raisin-black">
<p className="mx-auto my-auto mt-20 flex w-full max-w-6xl flex-col place-items-center gap-6 rounded-3xl bg-gray-100 p-6 text-jet dark:bg-outer-space dark:text-gray-100 lg:p-10 xl:p-16">
<h1>404</h1>
<p>The page you are looking for does not exist.</p>
<button className="pointer-cursor mr-4 flex cursor-pointer items-center justify-center rounded-full bg-blue-1000 py-2 px-4 text-white hover:bg-blue-3000">
<button className="pointer-cursor mr-4 flex cursor-pointer items-center justify-center rounded-full bg-blue-1000 py-2 px-4 text-white transition-colors duration-100 hover:bg-blue-3000">
<Link to="/">Go Back Home</Link>
</button>
</p>

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,3 @@
<svg width="18" height="18" viewBox="0 0 18 18" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M14.175 0.843262H16.9354L10.9054 7.75269L18 17.1564H12.4457L8.09229 11.4543L3.11657 17.1564H0.353571L6.80271 9.76355L0 0.844547H5.69571L9.62486 6.05555L14.175 0.843262ZM13.2043 15.5004H14.7343L4.86 2.41312H3.21943L13.2043 15.5004Z" fill="#747474"/>
</svg>

After

Width:  |  Height:  |  Size: 361 B

View File

@@ -0,0 +1,3 @@
<svg width="24" height="25" viewBox="0 0 24 25" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M6.66427 17.7747C6.66427 18.2167 6.84488 18.6406 7.16637 18.9532C7.48787 19.2658 7.9239 19.4413 8.37856 19.4413H15.2357C15.6904 19.4413 16.1264 19.2658 16.4479 18.9532C16.7694 18.6406 16.95 18.2167 16.95 17.7747V7.77468H6.66427V17.7747ZM8.37856 9.44135H15.2357V17.7747H8.37856V9.44135ZM14.8071 5.27468L13.95 4.44135H9.66427L8.80713 5.27468H5.80713V6.94135H17.8071V5.27468H14.8071Z" fill="#D30000"/>
</svg>

After

Width:  |  Height:  |  Size: 511 B

View File

@@ -0,0 +1,3 @@
<svg width="14" height="17" viewBox="0 0 14 17" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M2.04167 7.2997C1.96431 7.2997 1.89013 7.32976 1.83543 7.38326C1.78073 7.43677 1.75 7.50934 1.75 7.585V15.0029C1.75 15.1604 1.88067 15.2882 2.04167 15.2882H11.9583C12.0357 15.2882 12.1099 15.2581 12.1646 15.2046C12.2193 15.1511 12.25 15.0785 12.25 15.0029V7.585C12.25 7.50934 12.2193 7.43677 12.1646 7.38326C12.1099 7.32976 12.0357 7.2997 11.9583 7.2997H10.7917C10.5596 7.2997 10.337 7.20952 10.1729 7.04901C10.0089 6.8885 9.91667 6.67079 9.91667 6.44379C9.91667 6.21679 10.0089 5.99909 10.1729 5.83857C10.337 5.67806 10.5596 5.58788 10.7917 5.58788H11.9583C13.0853 5.58788 14 6.48259 14 7.585V15.0029C14 15.5325 13.7849 16.0405 13.402 16.4151C13.0191 16.7896 12.4998 17 11.9583 17H2.04167C1.50018 17 0.980877 16.7896 0.59799 16.4151C0.215104 16.0405 0 15.5325 0 15.0029V7.585C0 6.48259 0.914667 5.58788 2.04167 5.58788H3.20833C3.4404 5.58788 3.66296 5.67806 3.82705 5.83857C3.99115 5.99909 4.08333 6.21679 4.08333 6.44379C4.08333 6.67079 3.99115 6.8885 3.82705 7.04901C3.66296 7.20952 3.4404 7.2997 3.20833 7.2997H2.04167ZM6.7935 0.0838185C6.82059 0.0572492 6.85278 0.0361694 6.88821 0.0217864C6.92365 0.0074035 6.96164 0 7 0C7.03836 0 7.07635 0.0074035 7.11179 0.0217864C7.14722 0.0361694 7.17941 0.0572492 7.2065 0.0838185L10.5852 3.38877C10.6261 3.42867 10.6539 3.47955 10.6652 3.53496C10.6765 3.59037 10.6707 3.64782 10.6486 3.70001C10.6265 3.75221 10.589 3.7968 10.541 3.82815C10.4929 3.85949 10.4364 3.87617 10.3787 3.87607H7.875V10.438C7.875 10.665 7.78281 10.8827 7.61872 11.0433C7.45462 11.2038 7.23206 11.2939 7 11.2939C6.76794 11.2939 6.54538 11.2038 6.38128 11.0433C6.21719 10.8827 6.125 10.665 6.125 10.438V3.87607H3.62133C3.56357 3.87617 3.50708 3.85949 3.45902 3.82815C3.41096 3.7968 3.37349 3.75221 3.35138 3.70001C3.32926 3.64782 3.32348 3.59037 3.33478 3.53496C3.34607 3.47955 3.37394 3.42867 3.41483 3.38877L6.7935 0.0838185Z" fill="#747474"/>
</svg>

After

Width:  |  Height:  |  Size: 1.9 KiB

View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" width="1em" height="1em" viewBox="0 0 24 24"><path fill="white" d="M10.72,19.9a8,8,0,0,1-6.5-9.79A7.77,7.77,0,0,1,10.4,4.16a8,8,0,0,1,9.49,6.52A1.54,1.54,0,0,0,21.38,12h.13a1.37,1.37,0,0,0,1.38-1.54,11,11,0,1,0-12.7,12.39A1.54,1.54,0,0,0,12,21.34h0A1.47,1.47,0,0,0,10.72,19.9Z"><animateTransform attributeName="transform" dur="0.75s" repeatCount="indefinite" type="rotate" values="0 12 12;360 12 12"/></path></svg>

After

Width:  |  Height:  |  Size: 454 B

View File

@@ -1,9 +1 @@
<svg width="30" height="33" viewBox="0 0 30 33" fill="none" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<rect width="30" height="33" fill="none"/>
<defs>
<pattern id="pattern0" patternContentUnits="objectBoundingBox" width="1" height="1">
<use xlink:href="#image0_1_917" transform="scale(0.0166667 0.0151515)"/>
</pattern>
<image id="image0_1_917" width="60" height="66" xlink:href=""/>
</defs>
</svg>
<svg xmlns="http://www.w3.org/2000/svg" width="1em" height="1em" viewBox="0 0 24 24"><path fill="black" d="M10.72,19.9a8,8,0,0,1-6.5-9.79A7.77,7.77,0,0,1,10.4,4.16a8,8,0,0,1,9.49,6.52A1.54,1.54,0,0,0,21.38,12h.13a1.37,1.37,0,0,0,1.38-1.54,11,11,0,1,0-12.7,12.39A1.54,1.54,0,0,0,12,21.34h0A1.47,1.47,0,0,0,10.72,19.9Z"><animateTransform attributeName="transform" dur="0.75s" repeatCount="indefinite" type="rotate" values="0 12 12;360 12 12"/></path></svg>

Before

Width:  |  Height:  |  Size: 2.8 KiB

After

Width:  |  Height:  |  Size: 454 B

View File

@@ -0,0 +1,3 @@
<svg width="10" height="25" viewBox="0 0 10 25" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M5 3.5C3.9 3.5 3 4.4 3 5.5C3 6.6 3.9 7.5 5 7.5C6.1 7.5 7 6.6 7 5.5C7 4.4 6.1 3.5 5 3.5ZM5 17.5C3.9 17.5 3 18.4 3 19.5C3 20.6 3.9 21.5 5 21.5C6.1 21.5 7 20.6 7 19.5C7 18.4 6.1 17.5 5 17.5ZM5 10.5C3.9 10.5 3 11.4 3 12.5C3 13.6 3.9 14.5 5 14.5C6.1 14.5 7 13.6 7 12.5C7 11.4 6.1 10.5 5 10.5Z" fill="#747474"/>
</svg>

After

Width:  |  Height:  |  Size: 418 B

View File

@@ -0,0 +1,45 @@
import { useState } from 'react';
import Copy from './../assets/copy.svg?react';
import CheckMark from './../assets/checkmark.svg?react';
import copy from 'copy-to-clipboard';
export default function CoppyButton({ text }: { text: string }) {
const [copied, setCopied] = useState(false);
const [isCopyHovered, setIsCopyHovered] = useState(false);
const handleCopyClick = (text: string) => {
copy(text);
setCopied(true);
// Reset copied to false after a few seconds
setTimeout(() => {
setCopied(false);
}, 3000);
};
return (
<div
className={`flex items-center justify-center rounded-full p-2 ${
isCopyHovered
? 'bg-[#EEEEEE] dark:bg-purple-taupe'
: 'bg-[#ffffff] dark:bg-transparent'
}`}
>
{copied ? (
<CheckMark
className="cursor-pointer stroke-green-2000"
onMouseEnter={() => setIsCopyHovered(true)}
onMouseLeave={() => setIsCopyHovered(false)}
/>
) : (
<Copy
className="cursor-pointer fill-none"
onClick={() => {
handleCopyClick(text);
}}
onMouseEnter={() => setIsCopyHovered(true)}
onMouseLeave={() => setIsCopyHovered(false)}
/>
)}
</div>
);
}

View File

@@ -1,4 +1,4 @@
import { useState } from 'react';
import React from 'react';
import Arrow2 from '../assets/dropdown-arrow.svg';
import Edit from '../assets/edit.svg';
import Trash from '../assets/trash.svg';
@@ -9,34 +9,59 @@ function Dropdown({
onSelect,
size = 'w-32',
rounded = 'xl',
border = 'border-2',
borderColor = 'silver',
showEdit,
onEdit,
showDelete,
onDelete,
placeholder,
fullWidth,
alignMidddle,
}: {
options:
| string[]
| { name: string; id: string; type: string }[]
| { label: string; value: string }[];
selectedValue: string | { label: string; value: string } | null;
| { label: string; value: string }[]
| { value: number; description: string }[];
selectedValue:
| string
| { label: string; value: string }
| { value: number; description: string }
| null;
onSelect:
| ((value: string) => void)
| ((value: { name: string; id: string; type: string }) => void)
| ((value: { label: string; value: string }) => void);
| ((value: { label: string; value: string }) => void)
| ((value: { value: number; description: string }) => void);
size?: string;
rounded?: 'xl' | '3xl';
border?: 'border' | 'border-2';
borderColor?: string;
showEdit?: boolean;
onEdit?: (value: { name: string; id: string; type: string }) => void;
showDelete?: boolean;
onDelete?: (value: string) => void;
placeholder?: string;
fullWidth?: boolean;
alignMidddle?: boolean;
}) {
const [isOpen, setIsOpen] = useState(false);
const dropdownRef = React.useRef<HTMLDivElement>(null);
const [isOpen, setIsOpen] = React.useState(false);
const borderRadius = rounded === 'xl' ? 'rounded-xl' : 'rounded-3xl';
const borderTopRadius = rounded === 'xl' ? 'rounded-t-xl' : 'rounded-t-3xl';
const handleClickOutside = (event: MouseEvent) => {
if (
dropdownRef.current &&
!dropdownRef.current.contains(event.target as Node)
) {
setIsOpen(false);
}
};
React.useEffect(() => {
document.addEventListener('mousedown', handleClickOutside);
return () => {
document.removeEventListener('mousedown', handleClickOutside);
};
}, []);
return (
<div
className={[
@@ -45,11 +70,12 @@ function Dropdown({
: 'relative align-middle',
size,
].join(' ')}
ref={dropdownRef}
>
<button
onClick={() => setIsOpen(!isOpen)}
className={`flex w-full cursor-pointer items-center justify-between border-2 border-silver bg-white px-5 py-3 dark:border-chinese-silver dark:bg-transparent ${
isOpen ? `rounded-t-${rounded}` : `rounded-${rounded}`
className={`flex w-full cursor-pointer items-center justify-between ${border} border-${borderColor} bg-white px-5 py-3 dark:border-${borderColor}/40 dark:bg-transparent ${
isOpen ? `${borderTopRadius}` : `${borderRadius}`
}`}
>
{typeof selectedValue === 'string' ? (
@@ -58,14 +84,18 @@ function Dropdown({
</span>
) : (
<span
className={`${
alignMidddle && 'flex-1'
} overflow-hidden text-ellipsis dark:text-bright-gray ${
className={`overflow-hidden text-ellipsis dark:text-bright-gray ${
!selectedValue && 'text-silver dark:text-gray-400'
}`}
>
{selectedValue
{selectedValue && 'label' in selectedValue
? selectedValue.label
: selectedValue && 'description' in selectedValue
? `${
selectedValue.value < 1e9
? selectedValue.value + ` (${selectedValue.description})`
: selectedValue.description
}`
: placeholder
? placeholder
: 'From URL'}
@@ -80,7 +110,9 @@ function Dropdown({
/>
</button>
{isOpen && (
<div className="absolute left-0 right-0 z-20 -mt-1 max-h-40 overflow-y-auto rounded-b-xl border-2 bg-white shadow-lg dark:border-chinese-silver dark:bg-dark-charcoal">
<div
className={`absolute left-0 right-0 z-20 -mt-1 max-h-40 overflow-y-auto rounded-b-xl ${border} border-${borderColor} bg-white shadow-lg dark:border-${borderColor}/40 dark:bg-dark-charcoal`}
>
{options.map((option: any, index) => (
<div
key={index}
@@ -91,13 +123,19 @@ function Dropdown({
onSelect(option);
setIsOpen(false);
}}
className="ml-2 flex-1 overflow-hidden overflow-ellipsis whitespace-nowrap py-3 dark:text-light-gray"
className="ml-5 flex-1 overflow-hidden overflow-ellipsis whitespace-nowrap py-3 dark:text-light-gray"
>
{typeof option === 'string'
? option
: option.name
? option.name
: option.label}
: option.label
? option.label
: `${
option.value < 1e9
? option.value + ` (${option.description})`
: option.description
}`}
</span>
{showEdit && onEdit && (
<img

View File

@@ -0,0 +1,43 @@
import { InputProps } from './types';
const Input = ({
id,
name,
type,
value,
isAutoFocused = false,
placeholder,
maxLength,
className,
colorVariant = 'silver',
children,
onChange,
onPaste,
onKeyDown,
}: InputProps) => {
const colorStyles = {
silver: 'border-silver dark:border-silver/40',
jet: 'border-jet',
gray: 'border-gray-5000 dark:text-silver',
};
return (
<input
className={`h-[42px] w-full rounded-full border-2 px-3 outline-none dark:bg-transparent dark:text-white ${className} ${colorStyles[colorVariant]}`}
type={type}
id={id}
name={name}
autoFocus={isAutoFocused}
placeholder={placeholder}
maxLength={maxLength}
value={value}
onChange={onChange}
onPaste={onPaste}
onKeyDown={onKeyDown}
>
{children}
</input>
);
};
export default Input;

View File

@@ -0,0 +1,17 @@
import * as React from 'react';
import { SVGProps } from 'react';
const RetryIcon = (props: SVGProps<SVGSVGElement>) => (
<svg
xmlns="http://www.w3.org/2000/svg"
xmlSpace="preserve"
width={16}
height={16}
fill={props.fill}
stroke={props.stroke}
viewBox="0 0 383.748 383.748"
{...props}
>
<path d="M62.772 95.042C90.904 54.899 137.496 30 187.343 30c83.743 0 151.874 68.13 151.874 151.874h30C369.217 81.588 287.629 0 187.343 0c-35.038 0-69.061 9.989-98.391 28.888a182.423 182.423 0 0 0-47.731 44.705L2.081 34.641v113.365h113.91L62.772 95.042zM381.667 235.742h-113.91l53.219 52.965c-28.132 40.142-74.724 65.042-124.571 65.042-83.744 0-151.874-68.13-151.874-151.874h-30c0 100.286 81.588 181.874 181.874 181.874 35.038 0 69.062-9.989 98.391-28.888a182.443 182.443 0 0 0 47.731-44.706l39.139 38.952V235.742z" />
</svg>
);
export default RetryIcon;

View File

@@ -1,8 +1,9 @@
import React from 'react';
import Trash from '../assets/trash.svg';
import Arrow2 from '../assets/dropdown-arrow.svg';
import { Doc } from '../preferences/preferenceApi';
import { useDispatch } from 'react-redux';
import { useTranslation } from 'react-i18next';
type Props = {
options: Doc[] | null;
selectedDocs: Doc | null;
@@ -21,6 +22,8 @@ function SourceDropdown({
handleDeleteClick,
}: Props) {
const dispatch = useDispatch();
const { t } = useTranslation();
const dropdownRef = React.useRef<HTMLDivElement>(null);
const embeddingsName =
import.meta.env.VITE_EMBEDDINGS_NAME ||
'huggingface_sentence-transformers/all-mpnet-base-v2';
@@ -30,18 +33,35 @@ function SourceDropdown({
setIsDocsListOpen(false);
};
const handleClickOutside = (event: MouseEvent) => {
if (
dropdownRef.current &&
!dropdownRef.current.contains(event.target as Node)
) {
setIsDocsListOpen(false);
}
};
React.useEffect(() => {
document.addEventListener('mousedown', handleClickOutside);
return () => {
document.removeEventListener('mousedown', handleClickOutside);
};
}, []);
return (
<div className="relative w-5/6 rounded-3xl">
<div className="relative w-5/6 rounded-3xl" ref={dropdownRef}>
<button
onClick={() => setIsDocsListOpen(!isDocsListOpen)}
className={`flex w-full cursor-pointer items-center border-2 bg-white p-3 dark:border-chinese-silver dark:bg-transparent ${
isDocsListOpen ? 'rounded-t-3xl' : 'rounded-3xl'
className={`flex w-full cursor-pointer items-center border border-silver bg-white p-[14px] dark:bg-transparent ${
isDocsListOpen
? 'rounded-t-3xl dark:border-silver/40'
: 'rounded-3xl dark:border-purple-taupe'
}`}
>
<span className="ml-1 mr-2 flex-1 overflow-hidden text-ellipsis text-left dark:text-bright-gray">
<div className="flex flex-row gap-2">
<p className="max-w-3/4 truncate whitespace-nowrap">
{selectedDocs?.name || ''}
{selectedDocs?.name || 'None'}
</p>
<p className="flex flex-col items-center justify-center">
{selectedDocs?.version}
@@ -57,7 +77,7 @@ function SourceDropdown({
/>
</button>
{isDocsListOpen && (
<div className="absolute left-0 right-0 z-50 -mt-1 max-h-40 overflow-y-auto rounded-b-xl border-2 bg-white shadow-lg dark:border-chinese-silver dark:bg-dark-charcoal">
<div className="absolute left-0 right-0 z-50 -mt-1 max-h-40 overflow-y-auto rounded-b-xl border border-silver bg-white shadow-lg dark:border-silver/40 dark:bg-dark-charcoal">
{options ? (
options.map((option: any, index: number) => {
if (option.model === embeddingsName) {
@@ -86,7 +106,7 @@ function SourceDropdown({
id={`img-${index}`}
onClick={(event) => {
event.stopPropagation();
handleDeleteClick(index, option);
handleDeleteClick(option);
}}
/>
)}
@@ -95,16 +115,14 @@ function SourceDropdown({
}
})
) : (
<div className="h-10 w-full cursor-pointer border-b-[1px] hover:bg-gray-100 dark:border-b-purple-taupe dark:hover:bg-purple-taupe">
<p className="ml-5 py-3">No default documentation.</p>
</div>
<></>
)}
<div
className="flex cursor-pointer items-center justify-between hover:bg-gray-100 dark:text-bright-gray dark:hover:bg-purple-taupe"
onClick={handleEmptyDocumentSelect}
>
<span className="ml-4 flex-1 overflow-hidden overflow-ellipsis whitespace-nowrap py-3">
Empty
{t('none')}
</span>
</div>
</div>

View File

@@ -0,0 +1,21 @@
export type InputProps = {
type: 'text' | 'number';
value: string | string[] | number;
colorVariant?: 'silver' | 'jet' | 'gray';
isAutoFocused?: boolean;
id?: string;
maxLength?: number;
name?: string;
placeholder?: string;
className?: string;
children?: React.ReactElement;
onChange: (
e: React.ChangeEvent<HTMLTextAreaElement | HTMLInputElement>,
) => void;
onPaste?: (
e: React.ClipboardEvent<HTMLTextAreaElement | HTMLInputElement>,
) => void;
onKeyDown?: (
e: React.KeyboardEvent<HTMLTextAreaElement | HTMLInputElement>,
) => void;
};

View File

@@ -11,15 +11,23 @@ import {
selectStatus,
updateQuery,
} from './conversationSlice';
import { selectConversationId } from '../preferences/preferenceSlice';
import Send from './../assets/send.svg';
import SendDark from './../assets/send_dark.svg';
import Spinner from './../assets/spinner.svg';
import SpinnerDark from './../assets/spinner-dark.svg';
import { FEEDBACK, Query } from './conversationModels';
import { sendFeedback } from './conversationApi';
import { useTranslation } from 'react-i18next';
import ArrowDown from './../assets/arrow-down.svg';
import RetryIcon from '../components/RetryIcon';
import ShareIcon from '../assets/share.svg';
import { ShareConversationModal } from '../modals/ShareConversationModal';
export default function Conversation() {
const queries = useSelector(selectQueries);
const status = useSelector(selectStatus);
const conversationId = useSelector(selectConversationId);
const dispatch = useDispatch<AppDispatch>();
const endMessageRef = useRef<HTMLDivElement>(null);
const inputRef = useRef<HTMLDivElement>(null);
@@ -27,6 +35,9 @@ export default function Conversation() {
const [hasScrolledToLast, setHasScrolledToLast] = useState(true);
const fetchStream = useRef<any>(null);
const [eventInterrupt, setEventInterrupt] = useState(false);
const [lastQueryReturnedErr, setLastQueryReturnedErr] = useState(false);
const [isShareModalOpen, setShareModalState] = useState<boolean>(false);
const { t } = useTranslation();
const handleUserInterruption = () => {
if (!eventInterrupt && status === 'loading') setEventInterrupt(true);
@@ -70,6 +81,13 @@ export default function Conversation() {
};
}, [endMessageRef.current]);
useEffect(() => {
if (queries.length) {
queries[queries.length - 1].error && setLastQueryReturnedErr(true);
queries[queries.length - 1].response && setLastQueryReturnedErr(false); //considering a query that initially returned error can later include a response property on retry
}
}, [queries[queries.length - 1]]);
const scrollIntoView = () => {
endMessageRef?.current?.scrollIntoView({
behavior: 'smooth',
@@ -77,13 +95,20 @@ export default function Conversation() {
});
};
const handleQuestion = (question: string) => {
const handleQuestion = ({
question,
isRetry = false,
}: {
question: string;
isRetry?: boolean;
}) => {
question = question.trim();
if (question === '') return;
setEventInterrupt(false);
dispatch(addQuery({ prompt: question }));
!isRetry && dispatch(addQuery({ prompt: question })); //dispatch only new queries
fetchStream.current = dispatch(fetchAnswer({ question }));
};
const handleFeedback = (query: Query, feedback: FEEDBACK, index: number) => {
const prevFeedback = query.feedback;
dispatch(updateQuery({ index, query: { feedback } }));
@@ -92,19 +117,32 @@ export default function Conversation() {
);
};
const handleQuestionSubmission = () => {
if (inputRef.current?.textContent && status !== 'loading') {
if (lastQueryReturnedErr) {
// update last failed query with new prompt
dispatch(
updateQuery({
index: queries.length - 1,
query: {
prompt: inputRef.current.textContent,
},
}),
);
handleQuestion({
question: queries[queries.length - 1].prompt,
isRetry: true,
});
} else {
handleQuestion({ question: inputRef.current.textContent });
}
inputRef.current.textContent = '';
}
};
const prepResponseView = (query: Query, index: number) => {
let responseView;
if (query.error) {
responseView = (
<ConversationBubble
ref={endMessageRef}
className={`${index === queries.length - 1 ? 'mb-32' : 'mb-7'}`}
key={`${index}ERROR`}
message={query.error}
type="ERROR"
></ConversationBubble>
);
} else if (query.response) {
if (query.response) {
responseView = (
<ConversationBubble
ref={endMessageRef}
@@ -119,6 +157,35 @@ export default function Conversation() {
}
></ConversationBubble>
);
} else if (query.error) {
const retryBtn = (
<button
className="flex items-center justify-center gap-3 self-center rounded-full border border-silver py-3 px-5 text-lg text-gray-500 transition-colors delay-100 hover:border-gray-500 disabled:cursor-not-allowed dark:text-bright-gray"
disabled={status === 'loading'}
onClick={() => {
handleQuestion({
question: queries[queries.length - 1].prompt,
isRetry: true,
});
}}
>
<RetryIcon
fill={isDarkTheme ? 'rgb(236 236 241)' : 'rgb(107 114 120)'}
stroke={isDarkTheme ? 'rgb(236 236 241)' : 'rgb(107 114 120)'}
/>
Retry
</button>
);
responseView = (
<ConversationBubble
ref={endMessageRef}
className={`${index === queries.length - 1 ? 'mb-32' : 'mb-7'} `}
key={`${index}ERROR`}
message={query.error}
type="ERROR"
retryBtn={retryBtn}
></ConversationBubble>
);
}
return responseView;
};
@@ -130,86 +197,109 @@ export default function Conversation() {
};
return (
<div
onWheel={handleUserInterruption}
onTouchMove={handleUserInterruption}
className="flex w-full flex-col justify-center p-4 md:flex-row"
>
{queries.length > 0 && !hasScrolledToLast && (
<button
onClick={scrollIntoView}
aria-label="scroll to bottom"
className="fixed bottom-32 right-14 z-10 flex h-7 w-7 items-center justify-center rounded-full border-[0.5px] border-gray-alpha bg-gray-100 bg-opacity-50 dark:bg-purple-taupe md:h-9 md:w-9 md:bg-opacity-100 "
>
<img
src={ArrowDown}
alt="arrow down"
className="h4- w-4 opacity-50 md:h-5 md:w-5"
/>
</button>
<div className="flex h-screen flex-col gap-7 pb-2">
{conversationId && (
<>
<button
title="Share"
onClick={() => {
setShareModalState(true);
}}
className="fixed top-4 right-20 z-30 rounded-full hover:bg-bright-gray dark:hover:bg-[#28292E]"
>
<img
className="m-2 h-5 w-5 filter dark:invert"
alt="share"
src={ShareIcon}
/>
</button>
{isShareModalOpen && (
<ShareConversationModal
close={() => {
setShareModalState(false);
}}
conversationId={conversationId}
/>
)}
</>
)}
<div
onWheel={handleUserInterruption}
onTouchMove={handleUserInterruption}
className="flex h-[90%] w-full flex-1 justify-center overflow-y-auto p-4 md:h-[83vh]"
>
{queries.length > 0 && !hasScrolledToLast && (
<button
onClick={scrollIntoView}
aria-label="scroll to bottom"
className="fixed bottom-40 right-14 z-10 flex h-7 w-7 items-center justify-center rounded-full border-[0.5px] border-gray-alpha bg-gray-100 bg-opacity-50 dark:bg-purple-taupe md:h-9 md:w-9 md:bg-opacity-100 "
>
<img
src={ArrowDown}
alt="arrow down"
className="h-4 w-4 opacity-50 md:h-5 md:w-5"
/>
</button>
)}
{queries.length > 0 && (
<div className="mt-20 mb-9 flex flex-col transition-all md:w-3/4">
{queries.map((query, index) => {
return (
<Fragment key={index}>
<ConversationBubble
className={'mb-7 last:mb-28'}
key={`${index}QUESTION`}
message={query.prompt}
type="QUESTION"
sources={query.sources}
></ConversationBubble>
{prepResponseView(query, index)}
</Fragment>
);
})}
</div>
)}
{queries.length === 0 && <Hero className="mt-24 md:mt-52"></Hero>}
<div className="absolute bottom-0 flex w-11/12 flex-col items-end self-center bg-white pt-4 dark:bg-raisin-black md:fixed md:w-[65%]">
<div className="flex h-full w-full">
{queries.length > 0 && (
<div className="mt-16 w-full md:w-8/12">
{queries.map((query, index) => {
return (
<Fragment key={index}>
<ConversationBubble
className={'mb-1 last:mb-28 md:mb-7'}
key={`${index}QUESTION`}
message={query.prompt}
type="QUESTION"
sources={query.sources}
></ConversationBubble>
{prepResponseView(query, index)}
</Fragment>
);
})}
</div>
)}
{queries.length === 0 && <Hero handleQuestion={handleQuestion} />}
</div>
<div className="flex w-11/12 flex-col items-end self-center rounded-2xl bg-opacity-0 pb-1 sm:w-6/12">
<div className="flex h-full w-full items-center rounded-[40px] border border-silver bg-white py-1 dark:bg-raisin-black">
<div
id="inputbox"
ref={inputRef}
tabIndex={1}
placeholder="Type your message here..."
placeholder={t('inputPlaceholder')}
contentEditable
onPaste={handlePaste}
className={`border-000000 max-h-24 min-h-[2.6rem] w-full overflow-y-auto overflow-x-hidden whitespace-pre-wrap rounded-3xl border bg-white py-2 pl-4 pr-9 text-base leading-7 opacity-100 focus:outline-none dark:bg-raisin-black dark:text-bright-gray`}
className={`inputbox-style max-h-24 w-full overflow-y-auto overflow-x-hidden whitespace-pre-wrap rounded-full bg-white pt-5 pb-[22px] text-base leading-tight opacity-100 focus:outline-none dark:bg-raisin-black dark:text-bright-gray`}
onKeyDown={(e) => {
if (e.key === 'Enter' && !e.shiftKey) {
e.preventDefault();
if (inputRef.current?.textContent && status !== 'loading') {
handleQuestion(inputRef.current.textContent);
inputRef.current.textContent = '';
}
handleQuestionSubmission();
}
}}
></div>
{status === 'loading' ? (
<img
src={Spinner}
className="relative right-[38px] bottom-[7px] -mr-[30px] animate-spin cursor-pointer self-end bg-transparent"
src={isDarkTheme ? SpinnerDark : Spinner}
className="relative right-[38px] bottom-[24px] -mr-[30px] animate-spin cursor-pointer self-end bg-transparent"
></img>
) : (
<div className="relative right-[43px] bottom-[7px] -mr-[35px] h-[35px] w-[35px] cursor-pointer self-end rounded-full hover:bg-gray-3000">
<div className="mx-1 cursor-pointer rounded-full p-3 text-center hover:bg-gray-3000">
<img
className="ml-[9px] mt-[9px] text-white"
onClick={() => {
if (inputRef.current?.textContent) {
handleQuestion(inputRef.current.textContent);
inputRef.current.textContent = '';
}
}}
className="ml-[4px] h-6 w-6 text-white "
onClick={handleQuestionSubmission}
src={isDarkTheme ? SendDark : Send}
></img>
</div>
)}
</div>
<p className="text-gray-595959 w-[100vw] self-center bg-white bg-transparent p-5 text-center text-xs dark:bg-raisin-black dark:text-bright-gray md:w-full">
DocsGPT uses GenAI, please review critial information using sources.
<p className="text-gray-595959 hidden w-[100vw] self-center bg-white bg-transparent py-2 text-center text-xs dark:bg-raisin-black dark:text-bright-gray md:inline md:w-full">
{t('tagline')}
</p>
</div>
</div>

View File

@@ -1,15 +1,14 @@
import { forwardRef, useState } from 'react';
import Avatar from '../components/Avatar';
import CopyButton from '../components/CopyButton';
import remarkGfm from 'remark-gfm';
import { FEEDBACK, MESSAGE_TYPE } from './conversationModels';
import classes from './ConversationBubble.module.css';
import Alert from './../assets/alert.svg';
import Like from './../assets/like.svg?react';
import Dislike from './../assets/dislike.svg?react';
import Copy from './../assets/copy.svg?react';
import CheckMark from './../assets/checkmark.svg?react';
import ReactMarkdown from 'react-markdown';
import copy from 'copy-to-clipboard';
import { Prism as SyntaxHighlighter } from 'react-syntax-highlighter';
import { vscDarkPlus } from 'react-syntax-highlighter/dist/cjs/styles/prism';
import DocsGPT3 from '../assets/cute_docsgpt3.svg';
@@ -23,24 +22,15 @@ const ConversationBubble = forwardRef<
className?: string;
feedback?: FEEDBACK;
handleFeedback?: (feedback: FEEDBACK) => void;
sources?: { title: string; text: string }[];
sources?: { title: string; text: string; source: string }[];
retryBtn?: React.ReactElement;
}
>(function ConversationBubble(
{ message, type, className, feedback, handleFeedback, sources },
{ message, type, className, feedback, handleFeedback, sources, retryBtn },
ref,
) {
const [openSource, setOpenSource] = useState<number | null>(null);
const [copied, setCopied] = useState(false);
const handleCopyClick = (text: string) => {
copy(text);
setCopied(true);
// Reset copied to false after a few seconds
setTimeout(() => {
setCopied(false);
}, 3000);
};
const [isCopyHovered, setIsCopyHovered] = useState(false);
const [isLikeHovered, setIsLikeHovered] = useState(false);
const [isDislikeHovered, setIsDislikeHovered] = useState(false);
const [isLikeClicked, setIsLikeClicked] = useState(false);
@@ -52,8 +42,8 @@ const ConversationBubble = forwardRef<
bubble = (
<div ref={ref} className={`flex flex-row-reverse self-end ${className}`}>
<Avatar className="mt-2 text-2xl" avatar="🧑‍💻"></Avatar>
<div className="mr-2 ml-10 flex items-center rounded-3xl bg-purple-30 p-3.5 text-white">
<ReactMarkdown className="whitespace-pre-wrap break-all">
<div className="ml-10 mr-2 flex items-center rounded-[28px] bg-purple-30 py-[14px] px-[19px] text-white">
<ReactMarkdown className="whitespace-pre-wrap break-normal leading-normal">
{message}
</ReactMarkdown>
</div>
@@ -63,7 +53,7 @@ const ConversationBubble = forwardRef<
bubble = (
<div
ref={ref}
className={`flex flex-wrap self-start ${className} group flex-col pr-20 dark:text-bright-gray`}
className={`flex flex-wrap self-start ${className} group flex-col dark:text-bright-gray`}
>
<div className="flex flex-wrap self-start lg:flex-nowrap">
<Avatar
@@ -78,31 +68,46 @@ const ConversationBubble = forwardRef<
/>
<div
className={`ml-2 mr-5 flex max-w-[90vw] rounded-3xl bg-gray-1000 p-3.5 dark:bg-gun-metal md:max-w-[70vw] lg:max-w-[50vw] ${
className={`ml-2 mr-5 flex max-w-[90vw] rounded-[28px] bg-gray-1000 py-[14px] px-7 dark:bg-gun-metal md:max-w-[70vw] lg:max-w-[50vw] ${
type === 'ERROR'
? 'flex-row items-center rounded-full border border-transparent bg-[#FFE7E7] p-2 py-5 text-sm font-normal text-red-3000 dark:border-red-2000 dark:text-white'
? 'relative flex-row items-center rounded-full border border-transparent bg-[#FFE7E7] p-2 py-5 text-sm font-normal text-red-3000 dark:border-red-2000 dark:text-white'
: 'flex-col rounded-3xl'
}`}
>
{type === 'ERROR' && (
<img src={Alert} alt="alert" className="mr-2 inline" />
<>
<img src={Alert} alt="alert" className="mr-2 inline" />
<div className="absolute -right-32 top-1/2 -translate-y-1/2">
{retryBtn}
</div>
</>
)}
<ReactMarkdown
className="whitespace-pre-wrap break-words"
className="whitespace-pre-wrap break-normal leading-normal"
remarkPlugins={[remarkGfm]}
components={{
code({ node, inline, className, children, ...props }) {
const match = /language-(\w+)/.exec(className || '');
return !inline && match ? (
<SyntaxHighlighter
PreTag="div"
language={match[1]}
{...props}
style={vscDarkPlus}
>
{String(children).replace(/\n$/, '')}
</SyntaxHighlighter>
<div className="group relative">
<SyntaxHighlighter
PreTag="div"
language={match[1]}
{...props}
style={vscDarkPlus}
>
{String(children).replace(/\n$/, '')}
</SyntaxHighlighter>
<div
className={`absolute right-3 top-3 lg:invisible
${type !== 'ERROR' ? 'group-hover:lg:visible' : ''} `}
>
<CopyButton
text={String(children).replace(/\n$/, '')}
/>
</div>
</div>
) : (
<code className={className ? className : ''} {...props}>
{children}
@@ -172,13 +177,19 @@ const ConversationBubble = forwardRef<
{sources?.map((source, index) => (
<div
key={index}
className={`max-w-fit cursor-pointer rounded-[28px] py-1 px-4 ${
className={`max-w-xs cursor-pointer rounded-[28px] px-4 py-1 sm:max-w-sm md:max-w-md ${
openSource === index
? 'bg-[#007DFF]'
: 'bg-[#D7EBFD] hover:bg-[#BFE1FF]'
}`}
onClick={() =>
setOpenSource(openSource === index ? null : index)
source.source !== 'local'
? window.open(
source.source,
'_blank',
'noopener, noreferrer',
)
: setOpenSource(openSource === index ? null : index)
}
>
<p
@@ -197,109 +208,89 @@ const ConversationBubble = forwardRef<
</>
)}
</div>
<div className="flex justify-center">
<div
className={`relative mr-5 block items-center justify-center lg:invisible
</div>
<div className="my-2 flex justify-start lg:ml-12">
<div
className={`relative mr-5 block items-center justify-center lg:invisible
${type !== 'ERROR' ? 'group-hover:lg:visible' : ''}`}
>
<div className="absolute left-2 top-4">
<div
className={`flex items-center justify-center rounded-full p-2
${
isCopyHovered
? 'bg-[#EEEEEE] dark:bg-purple-taupe'
: 'bg-[#ffffff] dark:bg-transparent'
}`}
>
{copied ? (
<CheckMark
className="cursor-pointer stroke-green-2000"
onMouseEnter={() => setIsCopyHovered(true)}
onMouseLeave={() => setIsCopyHovered(false)}
/>
) : (
<Copy
className={`cursor-pointer fill-none`}
onClick={() => {
handleCopyClick(message);
}}
onMouseEnter={() => setIsCopyHovered(true)}
onMouseLeave={() => setIsCopyHovered(false)}
></Copy>
)}
</div>
</div>
>
<div>
<CopyButton text={message} />
</div>
<div
className={`relative mr-5 flex items-center justify-center ${
!isLikeClicked ? 'lg:invisible' : ''
} ${
feedback === 'LIKE' || type !== 'ERROR'
? 'group-hover:lg:visible'
: ''
}`}
>
<div className="absolute left-6 top-4">
<div
className={`flex items-center justify-center rounded-full p-2 dark:bg-transparent ${
isLikeHovered
? 'bg-[#EEEEEE] dark:bg-purple-taupe'
: 'bg-[#ffffff] dark:bg-transparent'
}`}
>
<Like
className={`cursor-pointer
</div>
{handleFeedback && (
<>
<div
className={`relative mr-5 flex items-center justify-center ${
!isLikeClicked ? 'lg:invisible' : ''
} ${
feedback === 'LIKE' || type !== 'ERROR'
? 'group-hover:lg:visible'
: ''
}`}
>
<div>
<div
className={`flex items-center justify-center rounded-full p-2 dark:bg-transparent ${
isLikeHovered
? 'bg-[#EEEEEE] dark:bg-purple-taupe'
: 'bg-[#ffffff] dark:bg-transparent'
}`}
>
<Like
className={`cursor-pointer
${
isLikeClicked || feedback === 'LIKE'
? 'fill-white-3000 stroke-purple-30 dark:fill-transparent'
: 'fill-none stroke-gray-4000'
}`}
onClick={() => {
handleFeedback?.('LIKE');
setIsLikeClicked(true);
setIsDislikeClicked(false);
}}
onMouseEnter={() => setIsLikeHovered(true)}
onMouseLeave={() => setIsLikeHovered(false)}
></Like>
onClick={() => {
handleFeedback?.('LIKE');
setIsLikeClicked(true);
setIsDislikeClicked(false);
}}
onMouseEnter={() => setIsLikeHovered(true)}
onMouseLeave={() => setIsLikeHovered(false)}
></Like>
</div>
</div>
</div>
</div>
<div
className={`mr-13 relative flex items-center justify-center ${
!isDislikeClicked ? 'lg:invisible' : ''
} ${
feedback === 'DISLIKE' || type !== 'ERROR'
? 'group-hover:lg:visible'
: ''
}`}
>
<div className="absolute left-10 top-4">
<div
className={`flex items-center justify-center rounded-full p-2 ${
isDislikeHovered
? 'bg-[#EEEEEE] dark:bg-purple-taupe'
: 'bg-[#ffffff] dark:bg-transparent'
}`}
>
<Dislike
className={`cursor-pointer ${
isDislikeClicked || feedback === 'DISLIKE'
? 'fill-white-3000 stroke-red-2000 dark:fill-transparent'
: 'fill-none stroke-gray-4000'
<div
className={`mr-13 relative flex items-center justify-center ${
!isDislikeClicked ? 'lg:invisible' : ''
} ${
feedback === 'DISLIKE' || type !== 'ERROR'
? 'group-hover:lg:visible'
: ''
}`}
>
<div>
<div
className={`flex items-center justify-center rounded-full p-2 ${
isDislikeHovered
? 'bg-[#EEEEEE] dark:bg-purple-taupe'
: 'bg-[#ffffff] dark:bg-transparent'
}`}
onClick={() => {
handleFeedback?.('DISLIKE');
setIsDislikeClicked(true);
setIsLikeClicked(false);
}}
onMouseEnter={() => setIsDislikeHovered(true)}
onMouseLeave={() => setIsDislikeHovered(false)}
></Dislike>
>
<Dislike
className={`cursor-pointer ${
isDislikeClicked || feedback === 'DISLIKE'
? 'fill-white-3000 stroke-red-2000 dark:fill-transparent'
: 'fill-none stroke-gray-4000'
}`}
onClick={() => {
handleFeedback?.('DISLIKE');
setIsDislikeClicked(true);
setIsLikeClicked(false);
}}
onMouseEnter={() => setIsDislikeHovered(true)}
onMouseLeave={() => setIsDislikeHovered(false)}
></Dislike>
</div>
</div>
</div>
</div>
</div>
</>
)}
</div>
{sources && openSource !== null && sources[openSource] && (

View File

@@ -5,11 +5,15 @@ import Exit from '../assets/exit.svg';
import Message from '../assets/message.svg';
import MessageDark from '../assets/message-dark.svg';
import { useDarkTheme } from '../hooks';
import ConfirmationModal from '../modals/ConfirmationModal';
import CheckMark2 from '../assets/checkMark2.svg';
import Trash from '../assets/trash.svg';
import Trash from '../assets/red-trash.svg';
import Share from '../assets/share.svg';
import threeDots from '../assets/three-dots.svg';
import { selectConversationId } from '../preferences/preferenceSlice';
import { ActiveState } from '../models/misc';
import { ShareConversationModal } from '../modals/ShareConversationModal';
import { useTranslation } from 'react-i18next';
interface ConversationProps {
name: string;
id: string;
@@ -32,22 +36,19 @@ export default function ConversationTile({
const [isDarkTheme] = useDarkTheme();
const [isEdit, setIsEdit] = useState(false);
const [conversationName, setConversationsName] = useState('');
// useOutsideAlerter(
// tileRef,
// () =>
// handleSaveConversation({
// id: conversationId || conversation.id,
// name: conversationName,
// }),
// [conversationName],
// );
const [isOpen, setOpen] = useState<boolean>(false);
const [isShareModalOpen, setShareModalState] = useState<boolean>(false);
const [deleteModalState, setDeleteModalState] =
useState<ActiveState>('INACTIVE');
const menuRef = useRef<HTMLDivElement>(null);
const { t } = useTranslation();
useEffect(() => {
setConversationsName(conversation.name);
}, [conversation.name]);
function handleEditConversation() {
setIsEdit(true);
setOpen(false);
}
function handleSaveConversation(changedConversation: ConversationProps) {
@@ -59,6 +60,18 @@ export default function ConversationTile({
}
}
const handleClickOutside = (event: MouseEvent) => {
if (menuRef.current && !menuRef.current.contains(event.target as Node)) {
setOpen(false);
}
};
useEffect(() => {
document.addEventListener('mousedown', handleClickOutside);
return () => {
document.removeEventListener('mousedown', handleClickOutside);
};
}, []);
function onClear() {
setConversationsName(conversation.name);
setIsEdit(false);
@@ -69,9 +82,9 @@ export default function ConversationTile({
onClick={() => {
selectConversation(conversation.id);
}}
className={`my-auto mx-4 mt-4 flex h-9 cursor-pointer items-center justify-between gap-4 rounded-3xl hover:bg-gray-100 dark:hover:bg-purple-taupe ${
className={`my-auto mx-4 mt-4 flex h-9 cursor-pointer items-center justify-between gap-4 rounded-3xl hover:bg-gray-100 dark:hover:bg-[#28292E] ${
conversationId === conversation.id
? 'bg-gray-100 dark:bg-purple-taupe'
? 'bg-gray-100 dark:bg-[#28292E]'
: ''
}`}
>
@@ -88,7 +101,7 @@ export default function ConversationTile({
<input
autoFocus
type="text"
className="h-6 w-full px-1 text-sm font-normal leading-6 outline-[#0075FF] focus:outline-1"
className="h-6 w-full bg-transparent px-1 text-sm font-normal leading-6 focus:outline-[#0075FF]"
value={conversationName}
onChange={(e) => setConversationsName(e.target.value)}
/>
@@ -99,36 +112,108 @@ export default function ConversationTile({
)}
</div>
{conversationId === conversation.id && (
<div className="flex text-white dark:text-[#949494]">
<img
src={isEdit ? CheckMark2 : Edit}
alt="Edit"
className="mr-2 h-4 w-4 cursor-pointer text-white hover:opacity-50"
id={`img-${conversation.id}`}
onClick={(event) => {
event.stopPropagation();
isEdit
? handleSaveConversation({
<div className="flex text-white dark:text-[#949494]" ref={menuRef}>
{isEdit ? (
<div className="flex gap-1">
<img
src={CheckMark2}
alt="Edit"
className="mr-2 h-4 w-4 cursor-pointer text-white hover:opacity-50"
id={`img-${conversation.id}`}
onClick={(event) => {
event.stopPropagation();
handleSaveConversation({
id: conversationId,
name: conversationName,
})
: handleEditConversation();
}}
/>
<img
src={isEdit ? Exit : Trash}
alt="Exit"
className={`mr-4 ${
isEdit ? 'h-3 w-3' : 'h-4 w-4'
}mt-px cursor-pointer hover:opacity-50`}
id={`img-${conversation.id}`}
onClick={(event) => {
event.stopPropagation();
isEdit ? onClear() : onDeleteConversation(conversation.id);
}}
/>
});
}}
/>
<img
src={isEdit ? Exit : Trash}
alt="Exit"
className={`mr-4 mt-px h-3 w-3 cursor-pointer hover:opacity-50`}
id={`img-${conversation.id}`}
onClick={(event) => {
event.stopPropagation();
onClear();
}}
/>
</div>
) : (
<button onClick={() => setOpen(!isOpen)}>
<img src={threeDots} className="mr-4 w-2" />
</button>
)}
{isOpen && (
<div className="flex-start absolute flex w-32 translate-x-1 translate-y-5 flex-col rounded-xl bg-stone-100 text-sm text-black shadow-xl dark:bg-chinese-black dark:text-chinese-silver md:w-36">
<button
onClick={() => {
setShareModalState(true);
setOpen(false);
}}
className="flex-start flex items-center gap-4 rounded-t-xl p-3 hover:bg-bright-gray dark:hover:bg-dark-charcoal"
>
<img
src={Share}
alt="Share"
width={14}
height={14}
className="cursor-pointer hover:opacity-50"
id={`img-${conversation.id}`}
/>
<span>{t('convTile.share')}</span>
</button>
<button
onClick={(event) => {
handleEditConversation();
}}
className="flex-start flex items-center gap-4 p-3 hover:bg-bright-gray dark:hover:bg-dark-charcoal"
>
<img
src={Edit}
alt="Edit"
width={16}
height={16}
className="cursor-pointer hover:opacity-50"
id={`img-${conversation.id}`}
/>
<span>{t('convTile.rename')}</span>
</button>
<button
onClick={(event) => {
setDeleteModalState('ACTIVE');
setOpen(false);
}}
className="flex-start flex items-center gap-3 rounded-b-xl p-2 text-red-700 hover:bg-bright-gray dark:hover:bg-dark-charcoal"
>
<img
src={Trash}
alt="Edit"
width={24}
height={24}
className="cursor-pointer hover:opacity-50"
/>
<span>{t('convTile.delete')}</span>
</button>
</div>
)}
</div>
)}
<ConfirmationModal
message={t('convTile.deleteWarning')}
modalState={deleteModalState}
setModalState={setDeleteModalState}
handleSubmit={() => onDeleteConversation(conversation.id)}
submitLabel={t('convTile.delete')}
/>
{isShareModalOpen && conversationId && (
<ShareConversationModal
close={() => {
setShareModalState(false);
}}
conversationId={conversationId}
/>
)}
</div>
);
}

View File

@@ -0,0 +1,144 @@
import { useState, useEffect } from 'react';
import { useParams } from 'react-router-dom';
import { useNavigate } from 'react-router-dom';
import { Query } from './conversationModels';
import { useTranslation } from 'react-i18next';
import ConversationBubble from './ConversationBubble';
import { Fragment } from 'react';
const apiHost = import.meta.env.VITE_API_HOST || 'https://docsapi.arc53.com';
const SharedConversation = () => {
const params = useParams();
const navigate = useNavigate();
const { identifier } = params; //identifier is a uuid, not conversationId
const [queries, setQueries] = useState<Query[]>([]);
const [title, setTitle] = useState('');
const [date, setDate] = useState('');
const { t } = useTranslation();
function formatISODate(isoDateStr: string) {
const date = new Date(isoDateStr);
const monthNames = [
'Jan',
'Feb',
'Mar',
'Apr',
'May',
'June',
'July',
'Aug',
'Sept',
'Oct',
'Nov',
'Dec',
];
const month = monthNames[date.getMonth()];
const day = date.getDate();
const year = date.getFullYear();
let hours = date.getHours();
const minutes = date.getMinutes();
const ampm = hours >= 12 ? 'PM' : 'AM';
hours = hours % 12;
hours = hours ? hours : 12;
const minutesStr = minutes < 10 ? '0' + minutes : minutes;
const formattedDate = `Published ${month} ${day}, ${year} at ${hours}:${minutesStr} ${ampm}`;
return formattedDate;
}
const fetchQueris = () => {
fetch(`${apiHost}/api/shared_conversation/${identifier}`)
.then((res) => {
if (res.status === 404 || res.status === 400) navigate('/pagenotfound');
return res.json();
})
.then((data) => {
if (data.success) {
setQueries(data.queries);
setTitle(data.title);
setDate(formatISODate(data.timestamp));
}
});
};
const prepResponseView = (query: Query, index: number) => {
let responseView;
if (query.response) {
responseView = (
<ConversationBubble
className={`${index === queries.length - 1 ? 'mb-32' : 'mb-7'}`}
key={`${index}ANSWER`}
message={query.response}
type={'ANSWER'}
></ConversationBubble>
);
} else if (query.error) {
responseView = (
<ConversationBubble
className={`${index === queries.length - 1 ? 'mb-32' : 'mb-7'} `}
key={`${index}ERROR`}
message={query.error}
type="ERROR"
></ConversationBubble>
);
}
return responseView;
};
useEffect(() => {
fetchQueris();
}, []);
return (
<div className="flex h-full flex-col items-center justify-between gap-2 overflow-y-hidden dark:bg-raisin-black">
<div className="flex w-full justify-center overflow-auto">
<div className="mt-0 w-11/12 md:w-10/12 lg:w-6/12">
<div className="mb-2 w-full border-b pb-2">
<h1 className="font-semi-bold text-4xl text-chinese-black dark:text-chinese-silver">
{title}
</h1>
<h2 className="font-semi-bold text-base text-chinese-black dark:text-chinese-silver">
{t('sharedConv.subtitle')}{' '}
<a href="/" className="text-[#007DFF]">
DocsGPT
</a>
</h2>
<h2 className="font-semi-bold text-base text-chinese-black dark:text-chinese-silver">
{date}
</h2>
</div>
<div className="">
{queries?.map((query, index) => {
return (
<Fragment key={index}>
<ConversationBubble
className={'mb-1 last:mb-28 md:mb-7'}
key={`${index}QUESTION`}
message={query.prompt}
type="QUESTION"
sources={query.sources}
></ConversationBubble>
{prepResponseView(query, index)}
</Fragment>
);
})}
</div>
</div>
</div>
<div className=" flex flex-col items-center gap-4 pb-2">
<button
onClick={() => navigate('/')}
className="w-fit rounded-full bg-purple-30 p-4 text-white shadow-xl transition-colors duration-200 hover:bg-purple-taupe"
>
{t('sharedConv.button')}
</button>
<span className="hidden text-xs text-dark-charcoal dark:text-silver sm:inline">
{t('sharedConv.meta')}
</span>
</div>
</div>
);
};
export default SharedConversation;

View File

@@ -3,31 +3,7 @@ import { Doc } from '../preferences/preferenceApi';
const apiHost = import.meta.env.VITE_API_HOST || 'https://docsapi.arc53.com';
export function fetchAnswerApi(
question: string,
signal: AbortSignal,
selectedDocs: Doc | null,
history: Array<any> = [],
conversationId: string | null,
promptId: string | null,
chunks: string,
): Promise<
| {
result: any;
answer: any;
sources: any;
conversationId: any;
query: string;
}
| {
result: any;
answer: any;
sources: any;
query: string;
conversationId: any;
title: any;
}
> {
function getDocPath(selectedDocs: Doc | null): string {
let docPath = 'default';
if (selectedDocs) {
@@ -47,8 +23,40 @@ export function fetchAnswerApi(
'/' +
selectedDocs.model +
'/';
} else if (selectedDocs.location === 'custom') {
docPath = selectedDocs.docLink;
}
}
return docPath;
}
export function fetchAnswerApi(
question: string,
signal: AbortSignal,
selectedDocs: Doc | null,
history: Array<any> = [],
conversationId: string | null,
promptId: string | null,
chunks: string,
token_limit: number,
): Promise<
| {
result: any;
answer: any;
sources: any;
conversationId: any;
query: string;
}
| {
result: any;
answer: any;
sources: any;
query: string;
conversationId: any;
title: any;
}
> {
const docPath = getDocPath(selectedDocs);
//in history array remove all keys except prompt and response
history = history.map((item) => {
return { prompt: item.prompt, response: item.response };
@@ -66,6 +74,7 @@ export function fetchAnswerApi(
conversation_id: conversationId,
prompt_id: promptId,
chunks: chunks,
token_limit: token_limit,
}),
signal,
})
@@ -96,29 +105,10 @@ export function fetchAnswerSteaming(
conversationId: string | null,
promptId: string | null,
chunks: string,
token_limit: number,
onEvent: (event: MessageEvent) => void,
): Promise<Answer> {
let docPath = 'default';
if (selectedDocs) {
let namePath = selectedDocs.name;
if (selectedDocs.language === namePath) {
namePath = '.project';
}
if (selectedDocs.location === 'local') {
docPath = 'local' + '/' + selectedDocs.name + '/';
} else if (selectedDocs.location === 'remote') {
docPath =
selectedDocs.language +
'/' +
namePath +
'/' +
selectedDocs.version +
'/' +
selectedDocs.model +
'/';
}
}
const docPath = getDocPath(selectedDocs);
history = history.map((item) => {
return { prompt: item.prompt, response: item.response };
@@ -132,6 +122,7 @@ export function fetchAnswerSteaming(
conversation_id: conversationId,
prompt_id: promptId,
chunks: chunks,
token_limit: token_limit,
};
fetch(apiHost + '/stream', {
method: 'POST',
@@ -194,32 +185,9 @@ export function searchEndpoint(
conversation_id: string | null,
history: Array<any> = [],
chunks: string,
token_limit: number,
) {
/*
"active_docs": "default",
"question": "Summarise",
"conversation_id": null,
"history": "[]" */
let docPath = 'default';
if (selectedDocs) {
let namePath = selectedDocs.name;
if (selectedDocs.language === namePath) {
namePath = '.project';
}
if (selectedDocs.location === 'local') {
docPath = 'local' + '/' + selectedDocs.name + '/';
} else if (selectedDocs.location === 'remote') {
docPath =
selectedDocs.language +
'/' +
namePath +
'/' +
selectedDocs.version +
'/' +
selectedDocs.model +
'/';
}
}
const docPath = getDocPath(selectedDocs);
const body = {
question: question,
@@ -227,6 +195,7 @@ export function searchEndpoint(
conversation_id,
history,
chunks: chunks,
token_limit: token_limit,
};
return fetch(`${apiHost}/api/search`, {
method: 'POST',

View File

@@ -17,7 +17,7 @@ export interface Answer {
answer: string;
query: string;
result: string;
sources: { title: string; text: string }[];
sources: { title: string; text: string; source: string }[];
conversationId: string | null;
title: string | null;
}
@@ -27,7 +27,7 @@ export interface Query {
response?: string;
feedback?: FEEDBACK;
error?: string;
sources?: { title: string; text: string }[];
sources?: { title: string; text: string; source: string }[];
conversationId?: string | null;
title?: string | null;
}

View File

@@ -28,6 +28,7 @@ export const fetchAnswer = createAsyncThunk<Answer, { question: string }>(
state.conversation.conversationId,
state.preference.prompt.id,
state.preference.chunks,
state.preference.token_limit,
(event) => {
const data = JSON.parse(event.data);
@@ -51,6 +52,7 @@ export const fetchAnswer = createAsyncThunk<Answer, { question: string }>(
state.conversation.conversationId,
state.conversation.queries,
state.preference.chunks,
state.preference.token_limit,
).then((sources) => {
//dispatch streaming sources
dispatch(
@@ -66,6 +68,15 @@ export const fetchAnswer = createAsyncThunk<Answer, { question: string }>(
query: { conversationId: data.id },
}),
);
} else if (data.type === 'error') {
// set status to 'failed'
dispatch(conversationSlice.actions.setStatus('failed'));
dispatch(
conversationSlice.actions.raiseError({
index: state.conversation.queries.length - 1,
message: data.error,
}),
);
} else {
const result = data.answer;
dispatch(
@@ -86,6 +97,7 @@ export const fetchAnswer = createAsyncThunk<Answer, { question: string }>(
state.conversation.conversationId,
state.preference.prompt.id,
state.preference.chunks,
state.preference.token_limit,
);
if (answer) {
let sourcesPrepped = [];
@@ -148,7 +160,7 @@ export const conversationSlice = createSlice({
action: PayloadAction<{ index: number; query: Partial<Query> }>,
) {
const { index, query } = action.payload;
if (query.response) {
if (query.response != undefined) {
state.queries[index].response =
(state.queries[index].response || '') + query.response;
} else {
@@ -188,6 +200,13 @@ export const conversationSlice = createSlice({
setStatus(state, action: PayloadAction<Status>) {
state.status = action.payload;
},
raiseError(
state,
action: PayloadAction<{ index: number; message: string }>,
) {
const { index, message } = action.payload;
state.queries[index].error = message;
},
},
extraReducers(builder) {
builder
@@ -201,7 +220,7 @@ export const conversationSlice = createSlice({
}
state.status = 'failed';
state.queries[state.queries.length - 1].error =
'Something went wrong. Please try again later.';
'Something went wrong. Please check your internet connection.';
});
},
});

View File

@@ -77,21 +77,23 @@ export function useDarkTheme() {
// Set dark mode based on local storage preference
if (savedMode === 'Dark') {
setIsDarkTheme(true);
document.documentElement.classList.add('dark');
document.documentElement.classList.add('dark:bg-raisin-black');
document
.getElementById('root')
?.classList.add('dark', 'dark:bg-raisin-black');
} else {
// If no preference found, set to default (light mode)
setIsDarkTheme(false);
document.documentElement.classList.remove('dark');
document.getElementById('root')?.classList.remove('dark');
}
}, []);
useEffect(() => {
localStorage.setItem('selectedTheme', isDarkTheme ? 'Dark' : 'Light');
if (isDarkTheme) {
document.documentElement.classList.add('dark');
document.documentElement.classList.add('dark:bg-raisin-black');
document
.getElementById('root')
?.classList.add('dark', 'dark:bg-raisin-black');
} else {
document.documentElement.classList.remove('dark');
document.getElementById('root')?.classList.remove('dark');
}
}, [isDarkTheme]);
//method to toggle theme

View File

@@ -22,6 +22,18 @@
background: #b1afaf;
}
@layer utilities {
/* Chrome, Safari and Opera */
.no-scrollbar::-webkit-scrollbar {
display: none;
}
.no-scrollbar {
-ms-overflow-style: none; /* IE and Edge */
scrollbar-width: none; /* Firefox */
}
}
/*! normalize.css v8.0.1 | MIT License | github.com/necolas/normalize.css */
/* Document
@@ -398,3 +410,18 @@ template {
padding: 16px;
}
}
@font-face {
font-family: 'Inter';
font-weight: 100 200 300 400 500 600 700 800 900;
src: url('/fonts/Inter-Variable.ttf');
}
::-webkit-scrollbar {
width: 0;
}
.inputbox-style[contenteditable] {
padding-left: 36px;
padding-right: 36px;
}

124
frontend/src/locale/en.json Normal file
View File

@@ -0,0 +1,124 @@
{
"language": "English",
"chat": "Chat",
"chats": "Chats",
"newChat": "New Chat",
"myPlan": "My Plan",
"about": "About",
"inputPlaceholder": "Type your message here...",
"tagline": "DocsGPT uses GenAI, please review critical information using sources.",
"sourceDocs": "Source Docs",
"none": "None",
"cancel": "Cancel",
"demo": [
{
"header": "Learn about DocsGPT",
"query": "What is DocsGPT?"
},
{
"header": "Summarize documentation",
"query": "Summarize current context"
},
{
"header": "Write Code",
"query": "Write code for api request to /api/answer"
},
{
"header": "Learning Assistance",
"query": "Write potential questions for context"
}
],
"settings": {
"label": "Settings",
"general": {
"label": "General",
"selectTheme": "Select Theme",
"light": "Light",
"dark": "Dark",
"selectLanguage": "Select Language",
"chunks": "Chunks processed per query",
"prompt": "Active Prompt",
"deleteAllLabel": "Delete all Conversation",
"deleteAllBtn": "Delete all",
"addNew": "Add New",
"convHistory": "Conversational history",
"none": "None",
"low": "Low",
"medium": "Medium",
"high": "High",
"unlimited": "Unlimited",
"default": "default"
},
"documents": {
"label": "Documents",
"name": "Document Name",
"date": "Vector Date",
"type": "Type",
"tokenUsage": "Token Usage"
},
"apiKeys": {
"label": "API Keys",
"name": "Name",
"key": "API Key",
"sourceDoc": "Source Document",
"createNew": "Create New"
}
},
"modals": {
"uploadDoc": {
"label": "Upload New Documentation",
"file": "From File",
"remote": "Remote",
"name": "Name",
"choose": "Choose Files",
"info": "Please upload .pdf, .txt, .rst, .docx, .md, .zip limited to 25mb",
"uploadedFiles": "Uploaded Files",
"cancel": "Cancel",
"train": "Train",
"link": "Link",
"urlLink": "URL Link",
"reddit": {
"id": "Client ID",
"secret": "Client Secret",
"agent": "User agent",
"searchQueries": "Search queries",
"numberOfPosts": "Number of posts"
}
},
"createAPIKey": {
"label": "Create New API Key",
"apiKeyName": "API Key Name",
"chunks": "Chunks processed per query",
"prompt": "Select active prompt",
"sourceDoc": "Source document",
"create": "Create"
},
"saveKey": {
"note": "Please save your Key",
"disclaimer": "This is the only time your key will be shown.",
"copy": "Copy",
"copied": "Copied",
"confirm": "I saved the Key"
},
"deleteConv": {
"confirm": "Are you sure you want to delete all the conversations?",
"delete": "Delete"
},
"shareConv": {
"label": "Create a public page to share",
"note": "Source document, personal information and further conversation will remain private",
"create": "Create"
}
},
"sharedConv": {
"subtitle": "Created with",
"button": "Get Started with DocsGPT",
"meta": "DocsGPT uses GenAI, please review critical information using sources."
},
"convTile": {
"share": "Share",
"delete": "Delete",
"rename": "Rename",
"deleteWarning": "Are you sure you want to delete this conversation?"
}
}

124
frontend/src/locale/es.json Normal file
View File

@@ -0,0 +1,124 @@
{
"language": "Spanish",
"chat": "Chat",
"chats": "Chats",
"newChat": "Nuevo Chat",
"myPlan": "Mi Plan",
"about": "Acerca de",
"inputPlaceholder": "Escribe tu mensaje aquí...",
"tagline": "DocsGPT utiliza GenAI, por favor revisa información crítica utilizando fuentes.",
"sourceDocs": "Documentos Fuente",
"none": "Nada",
"cancel": "Cancelar",
"demo": [
{
"header": "Aprende sobre DocsGPT",
"query": "¿Qué es DocsGPT?"
},
{
"header": "Resumir documentación",
"query": "Resumir contexto actual"
},
{
"header": "Escribir Código",
"query": "Escribir código para solicitud de API a /api/answer"
},
{
"header": "Asistencia de Aprendizaje",
"query": "Escribe posibles preguntas para el contexto"
}
],
"settings": {
"label": "Configuración",
"general": {
"label": "General",
"selectTheme": "Seleccionar Tema",
"light": "de luz",
"dark": "oscura",
"selectLanguage": "Seleccionar Idioma",
"chunks": "Trozos procesados por consulta",
"prompt": "Prompt Activo",
"deleteAllLabel": "Eliminar toda la Conversación",
"deleteAllBtn": "Eliminar todo",
"addNew": "Agregar Nuevo",
"convHistory": "Historia conversacional",
"none": "ninguno",
"low": "Bajo",
"medium": "Medio",
"high": "Alto",
"unlimited": "Ilimitado",
"default": "predeterminada"
},
"documents": {
"label": "Documentos",
"name": "Nombre del Documento",
"date": "Fecha Vector",
"type": "Tipo",
"tokenUsage": "Uso de Tokens"
},
"apiKeys": {
"label": "Claves API",
"name": "Nombre",
"key": "Clave de API",
"sourceDoc": "Documento Fuente",
"createNew": "Crear Nuevo"
}
},
"modals": {
"uploadDoc": {
"label": "Subir Nueva Documentación",
"file": "Desde Archivo",
"remote": "Remota",
"name": "Nombre",
"choose": "Seleccionar Archivos",
"info": "Por favor, suba archivos .pdf, .txt, .rst, .docx, .md, .zip limitados a 25 MB",
"uploadedFiles": "Archivos Subidos",
"cancel": "Cancelar",
"train": "Entrenar",
"link": "Enlace",
"urlLink": "Enlace URL",
"reddit": {
"id": "ID de Cliente",
"secret": "Secreto de Cliente",
"agent": "Agente de Usuario",
"searchQueries": "Consultas de Búsqueda",
"numberOfPosts": "Número de publicaciones"
}
},
"createAPIKey": {
"label": "Crear Nueva Clave de API",
"apiKeyName": "Nombre de la Clave de API",
"chunks": "Fragmentos procesados por consulta",
"prompt": "Seleccione el prompt activo",
"sourceDoc": "Documento Fuente",
"create": "Crear"
},
"saveKey": {
"note": "Por favor, guarde su Clave",
"disclaimer": "Esta es la única vez que se mostrará su clave.",
"copy": "Copiar",
"copied": "Copiado",
"confirm": "He guardado la Clave"
},
"deleteConv": {
"confirm": "¿Está seguro de que desea eliminar todas las conversaciones?",
"delete": "Eliminar"
},
"shareConv": {
"label": "Crear una página pública para compartir",
"note": "El documento original, la información personal y las conversaciones posteriores permanecerán privadas",
"create": "Crear"
}
},
"sharedConv": {
"subtitle": "Creado con",
"button": "Comienza con DocsGPT",
"meta": "DocsGPT utiliza GenAI, por favor revise la información crítica utilizando fuentes."
},
"convTile": {
"share": "Compartir",
"delete": "Eliminar",
"rename": "Renombrar",
"deleteWarning": "¿Está seguro de que desea eliminar esta conversación?"
}
}

View File

@@ -0,0 +1,38 @@
import i18n from 'i18next';
import { initReactI18next } from 'react-i18next';
import LanguageDetector from 'i18next-browser-languagedetector';
import en from './en.json'; //English
import es from './es.json'; //Spanish
import jp from './jp.json'; //Japanese
import zh from './zh.json'; //Mandarin
i18n
.use(LanguageDetector)
.use(initReactI18next)
.init({
resources: {
en: {
translation: en,
},
es: {
translation: es,
},
jp: {
translation: jp,
},
zh: {
translation: zh,
},
},
fallbackLng: 'en',
detection: {
order: ['localStorage', 'navigator'],
caches: ['localStorage'],
lookupLocalStorage: 'docsgpt-locale',
},
});
i18n.changeLanguage(i18n.language);
export default i18n;

124
frontend/src/locale/jp.json Normal file
View File

@@ -0,0 +1,124 @@
{
"language": "日本語",
"chat": "チャット",
"chats": "チャット",
"newChat": "新しいチャット",
"myPlan": "私のプラン",
"about": "について",
"inputPlaceholder": "ここにメッセージを入力してください...",
"tagline": "DocsGPTはGenAIを使用しています。重要な情報はソースで確認してください。",
"sourceDocs": "ソースドキュメント",
"none": "なし",
"cancel": "キャンセル",
"demo": [
{
"header": "DocsGPTについて学ぶ",
"query": "DocsGPTとは何ですか?"
},
{
"header": "ドキュメントを要約する",
"query": "現在のコンテキストを要約してください"
},
{
"header": "コードを書く",
"query": "APIリクエストのコードを/api/answerに書いてください。"
},
{
"header": "学習支援",
"query": "コンテキストに対する潜在的な質問を書いてください"
}
],
"settings": {
"label": "設定",
"general": {
"label": "一般",
"selectTheme": "テーマを選択",
"light": "ライト",
"dark": "ダーク",
"selectLanguage": "言語を選択",
"chunks": "クエリごとに処理されるチャンク",
"prompt": "アクティブプロンプト",
"deleteAllLabel": "すべての会話を削除",
"deleteAllBtn": "すべて削除",
"addNew": "新規追加",
"convHistory": "会話履歴",
"none": "なし",
"low": "低",
"medium": "中",
"high": "高",
"unlimited": "無制限",
"default": "デフォルト"
},
"documents": {
"label": "ドキュメント",
"name": "ドキュメント名",
"date": "ベクトル日付",
"type": "タイプ",
"tokenUsage": "トークン使用量"
},
"apiKeys": {
"label": "APIキー",
"name": "名前",
"key": "APIキー",
"sourceDoc": "ソースドキュメント",
"createNew": "新規作成"
}
},
"modals": {
"uploadDoc": {
"label": "新規書類のアップロード",
"file": "ファイルから",
"remote": "リモート",
"name": "名前",
"choose": "ファイルを選択",
"info": ".pdf, .txt, .rst, .docx, .md, .zipファイルを25MBまでアップロードしてください",
"uploadedFiles": "アップロードされたファイル",
"cancel": "キャンセル",
"train": "トレーニング",
"link": "リンク",
"urlLink": "URLリンク",
"reddit": {
"id": "クライアントID",
"secret": "クライアントシークレット",
"agent": "ユーザーエージェント",
"searchQueries": "検索クエリ",
"numberOfPosts": "投稿数"
}
},
"createAPIKey": {
"label": "新しいAPIキーを作成",
"apiKeyName": "APIキー名",
"chunks": "クエリごとに処理されるチャンク",
"prompt": "アクティブプロンプトを選択",
"sourceDoc": "ソースドキュメント",
"create": "作成"
},
"saveKey": {
"note": "キーを保存してください",
"disclaimer": "キーが表示されるのはこのときだけです。",
"copy": "コピー",
"copied": "コピーしました",
"confirm": "キーを保存しました"
},
"deleteConv": {
"confirm": "すべての会話を削除してもよろしいですか?",
"delete": "削除"
},
"shareConv": {
"label": "共有ページを作成して共有する",
"note": "ソースドキュメント、個人情報、および以降の会話は非公開のままになります",
"create": "作成"
}
},
"sharedConv": {
"subtitle": "作成者",
"button": "DocsGPT を始める",
"meta": "DocsGPT は GenAI を使用しています、情報源を使用して重要情報を確認してください。"
},
"convTile": {
"share": "共有",
"delete": "削除",
"rename": "名前変更",
"deleteWarning": "この会話を削除してもよろしいですか?"
}
}

Some files were not shown because too many files have changed in this diff Show More