Compare commits

..

104 Commits
0.8.0 ... 0.9.0

Author SHA1 Message Date
Alex
8873428b4b Merge pull request #926 from siiddhantt/feature
Feature: Logging token usage info to MongoDB
2024-04-22 12:10:00 +01:00
Alex
ab43c20b8f delete test output 2024-04-22 12:08:11 +01:00
Siddhant Rai
af5e73c8cb fix: user_api_key capturing 2024-04-16 15:31:11 +05:30
Siddhant Rai
333b6e60e1 fix: anthropic llm positional arguments 2024-04-16 10:02:04 +05:30
Siddhant Rai
1b61337b75 fix: skip logging to db during tests 2024-04-16 01:08:39 +05:30
Siddhant Rai
77991896b4 fix: api_key capturing + pytest errors 2024-04-15 22:32:24 +05:30
Siddhant Rai
60a670ce29 fix: changes to llm classes according to base 2024-04-15 19:47:24 +05:30
Siddhant Rai
c1c69ed22b fix: pytest issues 2024-04-15 19:35:59 +05:30
Siddhant Rai
d71c74c6fb Merge branch 'feature' of https://github.com/siiddhantt/DocsGPT into feature 2024-04-15 18:57:46 +05:30
Siddhant Rai
590aa8b43f update: apply decorator to abstract classes 2024-04-15 18:57:28 +05:30
Siddhant Rai
607e0166f6 Merge branch 'arc53:main' into feature 2024-04-15 18:55:09 +05:30
Alex
130c83ee92 Merge pull request #911 from arc53/dependabot/pip/application/pymongo-4.6.3
Bump pymongo from 4.6.1 to 4.6.3 in /application
2024-04-15 12:57:22 +01:00
Alex
fd5e418abf Merge pull request #919 from arc53/dependabot/npm_and_yarn/docs/multi-4407677fd1
build(deps): bump tar and npm in /docs
2024-04-15 12:29:26 +01:00
Siddhant Rai
262d160314 Merge with branch main 2024-04-15 15:18:48 +05:30
Siddhant Rai
9146827590 fix: removed unused import 2024-04-15 15:14:17 +05:30
Siddhant Rai
062b108259 Merge branch 'arc53:main' into feature 2024-04-15 15:04:10 +05:30
Siddhant Rai
ba796b6be1 feat: logging token usage to database 2024-04-15 15:03:00 +05:30
Alex
3d763235e1 Merge pull request #925 from ManishMadan2882/main
Untraced types in react widget
2024-04-14 11:43:03 +01:00
Manish Madan
c30c6d9f10 Merge branch 'arc53:main' into main 2024-04-13 16:20:56 +05:30
ManishMadan2882
311716ed18 refactored fs, fix: untracked dir 2024-04-13 16:01:46 +05:30
Alex
19bb1b4aa4 Create SECURITY.md 2024-04-12 09:39:33 +01:00
Alex
b8749e36b9 Merge pull request #921 from siiddhantt/bugfix
fix for missing fields in API Keys section
2024-04-10 10:25:26 +01:00
Siddhant Rai
00b6639155 fix: minor ui changes 2024-04-10 12:37:29 +05:30
Siddhant Rai
71d7daaef3 fix: minor ui changes 2024-04-10 12:23:37 +05:30
Siddhant Rai
8654c5d471 Merge branch 'bugfix' of https://github.com/siiddhantt/DocsGPT into bugfix 2024-04-10 12:11:51 +05:30
Siddhant Rai
02124b3d38 fix: missing fields from API Keys section 2024-04-10 12:11:34 +05:30
dependabot[bot]
340dcfb70d build(deps): bump tar and npm in /docs
Removes [tar](https://github.com/isaacs/node-tar). It's no longer used after updating ancestor dependency [npm](https://github.com/npm/cli). These dependencies need to be updated together.


Removes `tar`

Updates `npm` from 10.5.0 to 10.5.1
- [Release notes](https://github.com/npm/cli/releases)
- [Changelog](https://github.com/npm/cli/blob/latest/CHANGELOG.md)
- [Commits](https://github.com/npm/cli/compare/v10.5.0...v10.5.1)

---
updated-dependencies:
- dependency-name: tar
  dependency-type: indirect
- dependency-name: npm
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-04-09 21:09:48 +00:00
Alex
a37b92223a Merge pull request #915 from arc53/feat/retrievers-class
Update application files and fix LLM models, create new retriever class
2024-04-09 22:09:11 +01:00
Alex
7d2b8cb4fc Merge pull request #917 from arc53/multiple-uploads
Multiple file upload
2024-04-09 18:13:52 +01:00
Alex
8d7a134cb4 lint: ruff 2024-04-09 17:25:08 +01:00
Alex
4b849d7201 Fix SagemakerAPILLM test 2024-04-09 17:20:26 +01:00
Alex
e03e185d30 Add Brave Search retriever and update application files 2024-04-09 17:11:09 +01:00
Pavel
7a02df5588 Multiple uploads 2024-04-09 19:56:07 +04:00
Alex
19494685ba Update application files, fix LLM models, and create new retriever class 2024-04-09 16:38:42 +01:00
Alex
1e26943c3e Update application files, fix LLM models, and create new retriever class 2024-04-09 15:45:24 +01:00
dependabot[bot]
83fa850142 Bump pymongo from 4.6.1 to 4.6.3 in /application
Bumps [pymongo](https://github.com/mongodb/mongo-python-driver) from 4.6.1 to 4.6.3.
- [Release notes](https://github.com/mongodb/mongo-python-driver/releases)
- [Changelog](https://github.com/mongodb/mongo-python-driver/blob/master/doc/changelog.rst)
- [Commits](https://github.com/mongodb/mongo-python-driver/compare/4.6.1...4.6.3)

---
updated-dependencies:
- dependency-name: pymongo
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-04-09 14:22:15 +00:00
Alex
968a116d14 Merge pull request #916 from siiddhantt/bugfix
fix: updated qdrant-client to v1.8.2
2024-04-09 15:20:46 +01:00
Siddhant Rai
fb55b494d7 Merge branch 'arc53:main' into bugfix 2024-04-09 19:09:44 +05:30
Siddhant Rai
59b6a83d7d fix: issue #884 2024-04-09 19:08:59 +05:30
Alex
aabc4f0d7b Merge pull request #907 from siiddhantt/main
refactor: clean up settings file for better structure
2024-04-09 14:17:56 +01:00
Alex
391f686173 Update application files and fix LLM models, create new retriever class 2024-04-09 14:02:33 +01:00
Siddhant Rai
8e6f6d46ec fix: issue during build 2024-04-09 16:34:51 +05:30
Siddhant Rai
2ba7a55439 Merge branch 'arc53:main' into main 2024-04-09 13:54:48 +05:30
Alex
e07df29ab9 Update FLASK_DEBUG_MODE setting to use value from settings module 2024-04-08 13:27:43 +01:00
Alex
abf24fe60f Update FLASK_DEBUG_MODE setting to use value from settings module 2024-04-08 13:15:58 +01:00
Siddhant Rai
fad5f5b81f fix: added requested changes 2024-04-08 17:45:56 +05:30
Siddhant Rai
6961f49a0c Merge branch 'arc53:main' into main 2024-04-08 17:43:21 +05:30
Alex
6911f8652a Fix vectorstore path in check_docs function 2024-04-08 13:06:05 +01:00
Alex
6658cec6a0 Merge pull request #897 from arc53/dependabot/npm_and_yarn/frontend/vite-5.0.13
Bump vite from 5.0.12 to 5.0.13 in /frontend
2024-04-08 13:03:20 +01:00
Alex
14011b9d84 Merge pull request #891 from arc53/dependabot/npm_and_yarn/mock-backend/express-4.19.2
Bump express from 4.18.2 to 4.19.2 in /mock-backend
2024-04-08 13:02:58 +01:00
Alex
bd2d0b6790 Merge pull request from GHSA-p5qc-vj2x-9rjp
advisory-fix
2024-04-08 12:58:36 +01:00
Alex
d36f58230a advisory-fix 2024-04-08 12:56:27 +01:00
Alex
018f950ca3 Merge pull request #908 from arc53/api-keys-documentation-guide
API keys guide
2024-04-08 10:36:35 +01:00
Alex
db8db9fae9 Add prompt_id and chunks fields in create_api_key function 2024-04-08 10:35:15 +01:00
Pavel
79ce8d6563 guide 2024-04-07 20:14:16 +04:00
Alex
13eaa9a35a Merge pull request #904 from arc53/fix/update-docs-widget
Update api key to new data
2024-04-06 11:39:32 +01:00
Siddhant Rai
39f0d76b4b refactor: clean up settings file for better structure 2024-04-05 23:38:59 +05:30
Siddhant Rai
0a5832ec75 refactor: clean up settings file for better structure 2024-04-05 23:33:27 +05:30
Alex
6e147b3ed2 Update api key to new data 2024-04-05 14:49:32 +01:00
Alex
c162f79daa Merge pull request #903 from arc53/feature/api-key-create
Feature/api key create
2024-04-05 13:18:11 +01:00
Alex
87585be687 Merge branch 'main' into feature/api-key-create 2024-04-05 13:01:42 +01:00
Alex
ea08d6413c Merge pull request #902 from ManishMadan2882/feature/api-key-create
Add Prompt, Chunks in Create Key
2024-04-04 12:45:33 +01:00
Alex
879905edf6 Refactor create_api_key function to include prompt_id and chunks in routes.py 2024-04-04 12:38:23 +01:00
Alex
6fd80a5582 Merge pull request #899 from siiddhantt/main
feat: added prompts section under general in settings
2024-04-04 10:25:08 +01:00
Siddhant Rai
0dc7333563 fix: added API Keys in tabs 2024-04-04 14:42:14 +05:30
Siddhant Rai
f61c3168d2 fix: issue with editing new prompts 2024-04-04 14:29:37 +05:30
Siddhant Rai
9cadd74a96 fix: minor ui changes 2024-04-04 13:42:32 +05:30
Siddhant Rai
729fa2352b feat: added prompts section under general in settings 2024-04-04 00:48:49 +05:30
dependabot[bot]
b673aaf9f0 Bump vite from 5.0.12 to 5.0.13 in /frontend
Bumps [vite](https://github.com/vitejs/vite/tree/HEAD/packages/vite) from 5.0.12 to 5.0.13.
- [Release notes](https://github.com/vitejs/vite/releases)
- [Changelog](https://github.com/vitejs/vite/blob/v5.0.13/packages/vite/CHANGELOG.md)
- [Commits](https://github.com/vitejs/vite/commits/v5.0.13/packages/vite)

---
updated-dependencies:
- dependency-name: vite
  dependency-type: direct:development
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-04-03 17:53:09 +00:00
Alex
3132cc6005 Merge pull request #895 from sarfarazsiddiquii/new_branch
added feature #887
2024-04-03 17:09:06 +01:00
ManishMadan2882
ac994d3077 add prompt,chunks in create key 2024-04-03 19:19:53 +05:30
sarfaraz siddiqui
02d4f7f2da functions can accept null 2024-04-03 18:08:46 +05:30
Alex
d99569f005 Merge pull request #896 from arc53/api-update
api update
2024-04-01 18:22:13 +01:00
Pavel
ec5166249a api update
A description of 3 more api methods in documentation.
2024-04-01 21:07:27 +04:00
Alex
dadd12adb3 Update API key in DocsGPTWidget.tsx 2024-04-01 11:25:59 +01:00
Alex
88b4fb8c2a Update API key in DocsGPTWidget.tsx 2024-04-01 11:25:31 +01:00
sarfaraz siddiqui
afecae3786 added feature #887 2024-03-31 03:50:11 +05:30
Alex
d18598bc33 Merge pull request #894 from arc53/feature/api-key-create
Feature/api key create
2024-03-29 20:04:26 +00:00
Alex
794fc05ada Merge branch 'main' into feature/api-key-create 2024-03-29 19:59:45 +00:00
Alex
5daeb7f876 Merge pull request #892 from ManishMadan2882/feature/api-key-create
Feature/api key create
2024-03-29 19:57:25 +00:00
ManishMadan2882
53e71c545e api key modal - enhancements 2024-03-29 19:11:40 +05:30
ManishMadan2882
959a55e36c adding dark mode - api key 2024-03-29 04:13:12 +05:30
ManishMadan2882
64572b0024 feat(settings): api key endpoints 2024-03-29 03:26:45 +05:30
Manish Madan
9a0c1caa43 Merge branch 'arc53:feature/api-key-create' into feature/api-key-create 2024-03-28 19:28:23 +05:30
ManishMadan2882
eed6723147 feat(settings): api keys tab 2024-03-28 19:25:35 +05:30
Alex
97fabf51b8 Refactor conversationSlice.ts and conversationApi.ts 2024-03-28 13:43:10 +00:00
Alex
5e5e2b8aee Merge pull request #877 from siiddhantt/main
Added reddit loader
2024-03-27 16:55:01 +00:00
Siddhant Rai
e01071426f feat: field to pass number of posts as a parameter 2024-03-27 19:20:55 +05:30
Siddhant Rai
eed1bfbe50 feat: fields to handle reddit loader + minor changes 2024-03-26 16:07:44 +05:30
Siddhant Rai
0c3970a266 Merge branch 'arc53:main' into main 2024-03-26 16:07:25 +05:30
dependabot[bot]
267cfb621e Bump express from 4.18.2 to 4.19.2 in /mock-backend
Bumps [express](https://github.com/expressjs/express) from 4.18.2 to 4.19.2.
- [Release notes](https://github.com/expressjs/express/releases)
- [Changelog](https://github.com/expressjs/express/blob/master/History.md)
- [Commits](https://github.com/expressjs/express/compare/4.18.2...4.19.2)

---
updated-dependencies:
- dependency-name: express
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-03-26 10:25:02 +00:00
Alex
0e90febab2 Merge pull request #890 from arc53/dependabot/npm_and_yarn/docs/katex-0.16.10
Bump katex from 0.16.9 to 0.16.10 in /docs
2024-03-26 10:24:19 +00:00
dependabot[bot]
31d947837f Bump katex from 0.16.9 to 0.16.10 in /docs
Bumps [katex](https://github.com/KaTeX/KaTeX) from 0.16.9 to 0.16.10.
- [Release notes](https://github.com/KaTeX/KaTeX/releases)
- [Changelog](https://github.com/KaTeX/KaTeX/blob/main/CHANGELOG.md)
- [Commits](https://github.com/KaTeX/KaTeX/compare/v0.16.9...v0.16.10)

---
updated-dependencies:
- dependency-name: katex
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-03-25 20:31:43 +00:00
Alex
017b11fbba Merge pull request #888 from arc53/fix/parsing-chunks-issue
Fix parsing issue with chunks in store.ts
2024-03-23 11:47:11 +00:00
Alex
3c492062a9 Fix parsing issue with chunks in store.ts 2024-03-23 11:42:50 +00:00
Alex
b26b49d0ca Merge pull request #883 from arc53/feat/chunks
Add support for setting the number of chunks processed per query
2024-03-22 15:34:09 +00:00
Alex
ed08123550 Add support for setting the number of chunks processed per query 2024-03-22 14:50:56 +00:00
Alex
add2db5b7a Merge pull request #881 from arc53/fix_model_selection_for_openai
Fix model selection at least for openAI LLM_NAME
2024-03-21 16:47:52 +00:00
Siddhant Rai
f272d7121a Merge branch 'arc53:main' into main 2024-03-21 19:38:44 +05:30
Anton Larin
577556678c Fix model selection at least for openAI LLM_NAME 2024-03-21 10:14:48 +01:00
Alex
e146922367 Merge pull request #880 from ManishMadan2882/main
Customised Scrollbar, fixed: Hero wasn't completely scrollable in Mobile
2024-03-20 10:08:22 +00:00
ManishMadan2882
6f1548b7f8 customised scrollbar 2024-03-19 21:40:00 +05:30
ManishMadan2882
9e6fe47b44 fix(hero): not fully scrollable in mobile 2024-03-19 21:39:16 +05:30
Siddhant Rai
60cfea1126 feat: added reddit loader 2024-03-16 20:22:05 +05:30
64 changed files with 2986 additions and 1560 deletions

1
.gitignore vendored
View File

@@ -75,6 +75,7 @@ target/
# Jupyter Notebook
.ipynb_checkpoints
**/*.ipynb
# IPython
profile_default/

14
SECURITY.md Normal file
View File

@@ -0,0 +1,14 @@
# Security Policy
## Supported Versions
Supported Versions:
Currently, we support security patches by committing changes and bumping the version published on Github.
## Reporting a Vulnerability
Found a vulnerability? Please email us:
security@arc53.com

View File

@@ -8,17 +8,14 @@ import traceback
from pymongo import MongoClient
from bson.objectid import ObjectId
from transformers import GPT2TokenizerFast
from application.core.settings import settings
from application.vectorstore.vector_creator import VectorCreator
from application.llm.llm_creator import LLMCreator
from application.retriever.retriever_creator import RetrieverCreator
from application.error import bad_request
logger = logging.getLogger(__name__)
mongo = MongoClient(settings.MONGO_URI)
@@ -26,17 +23,23 @@ db = mongo["docsgpt"]
conversations_collection = db["conversations"]
vectors_collection = db["vectors"]
prompts_collection = db["prompts"]
answer = Blueprint('answer', __name__)
api_key_collection = db["api_keys"]
answer = Blueprint("answer", __name__)
if settings.LLM_NAME == "gpt4":
gpt_model = 'gpt-4'
gpt_model = ""
# to have some kind of default behaviour
if settings.LLM_NAME == "openai":
gpt_model = "gpt-3.5-turbo"
elif settings.LLM_NAME == "anthropic":
gpt_model = 'claude-2'
else:
gpt_model = 'gpt-3.5-turbo'
gpt_model = "claude-2"
if settings.MODEL_NAME: # in case there is particular model name configured
gpt_model = settings.MODEL_NAME
# load the prompts
current_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
current_dir = os.path.dirname(
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
)
with open(os.path.join(current_dir, "prompts", "chat_combine_default.txt"), "r") as f:
chat_combine_template = f.read()
@@ -47,7 +50,7 @@ with open(os.path.join(current_dir, "prompts", "chat_combine_creative.txt"), "r"
chat_combine_creative = f.read()
with open(os.path.join(current_dir, "prompts", "chat_combine_strict.txt"), "r") as f:
chat_combine_strict = f.read()
chat_combine_strict = f.read()
api_key_set = settings.API_KEY is not None
embeddings_key_set = settings.EMBEDDINGS_KEY is not None
@@ -58,11 +61,6 @@ async def async_generate(chain, question, chat_history):
return result
def count_tokens(string):
tokenizer = GPT2TokenizerFast.from_pretrained('gpt2')
return len(tokenizer(string)['input_ids'])
def run_async_chain(chain, question, chat_history):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
@@ -75,10 +73,17 @@ def run_async_chain(chain, question, chat_history):
return result
def get_data_from_api_key(api_key):
data = api_key_collection.find_one({"key": api_key})
if data is None:
return bad_request(401, "Invalid API key")
return data
def get_vectorstore(data):
if "active_docs" in data:
if data["active_docs"].split("/")[0] == "default":
vectorstore = ""
vectorstore = ""
elif data["active_docs"].split("/")[0] == "local":
vectorstore = "indexes/" + data["active_docs"]
else:
@@ -92,83 +97,99 @@ def get_vectorstore(data):
def is_azure_configured():
return settings.OPENAI_API_BASE and settings.OPENAI_API_VERSION and settings.AZURE_DEPLOYMENT_NAME
return (
settings.OPENAI_API_BASE
and settings.OPENAI_API_VERSION
and settings.AZURE_DEPLOYMENT_NAME
)
def complete_stream(question, docsearch, chat_history, api_key, prompt_id, conversation_id):
llm = LLMCreator.create_llm(settings.LLM_NAME, api_key=api_key)
if prompt_id == 'default':
prompt = chat_combine_template
elif prompt_id == 'creative':
prompt = chat_combine_creative
elif prompt_id == 'strict':
prompt = chat_combine_strict
else:
prompt = prompts_collection.find_one({"_id": ObjectId(prompt_id)})["content"]
docs = docsearch.search(question, k=2)
if settings.LLM_NAME == "llama.cpp":
docs = [docs[0]]
# join all page_content together with a newline
docs_together = "\n".join([doc.page_content for doc in docs])
p_chat_combine = prompt.replace("{summaries}", docs_together)
messages_combine = [{"role": "system", "content": p_chat_combine}]
source_log_docs = []
for doc in docs:
if doc.metadata:
source_log_docs.append({"title": doc.metadata['title'].split('/')[-1], "text": doc.page_content})
else:
source_log_docs.append({"title": doc.page_content, "text": doc.page_content})
if len(chat_history) > 1:
tokens_current_history = 0
# count tokens in history
chat_history.reverse()
for i in chat_history:
if "prompt" in i and "response" in i:
tokens_batch = count_tokens(i["prompt"]) + count_tokens(i["response"])
if tokens_current_history + tokens_batch < settings.TOKENS_MAX_HISTORY:
tokens_current_history += tokens_batch
messages_combine.append({"role": "user", "content": i["prompt"]})
messages_combine.append({"role": "system", "content": i["response"]})
messages_combine.append({"role": "user", "content": question})
response_full = ""
completion = llm.gen_stream(model=gpt_model, engine=settings.AZURE_DEPLOYMENT_NAME,
messages=messages_combine)
for line in completion:
data = json.dumps({"answer": str(line)})
response_full += str(line)
yield f"data: {data}\n\n"
# save conversation to database
if conversation_id is not None:
def save_conversation(conversation_id, question, response, source_log_docs, llm):
if conversation_id is not None and conversation_id != "None":
conversations_collection.update_one(
{"_id": ObjectId(conversation_id)},
{"$push": {"queries": {"prompt": question, "response": response_full, "sources": source_log_docs}}},
{
"$push": {
"queries": {
"prompt": question,
"response": response,
"sources": source_log_docs,
}
}
},
)
else:
# create new conversation
# generate summary
messages_summary = [{"role": "assistant", "content": "Summarise following conversation in no more than 3 "
"words, respond ONLY with the summary, use the same "
"language as the system \n\nUser: " + question + "\n\n" +
"AI: " +
response_full},
{"role": "user", "content": "Summarise following conversation in no more than 3 words, "
"respond ONLY with the summary, use the same language as the "
"system"}]
messages_summary = [
{
"role": "assistant",
"content": "Summarise following conversation in no more than 3 "
"words, respond ONLY with the summary, use the same "
"language as the system \n\nUser: "
+ question
+ "\n\n"
+ "AI: "
+ response,
},
{
"role": "user",
"content": "Summarise following conversation in no more than 3 words, "
"respond ONLY with the summary, use the same language as the "
"system",
},
]
completion = llm.gen(model=gpt_model, engine=settings.AZURE_DEPLOYMENT_NAME,
messages=messages_summary, max_tokens=30)
completion = llm.gen(model=gpt_model, messages=messages_summary, max_tokens=30)
conversation_id = conversations_collection.insert_one(
{"user": "local",
"date": datetime.datetime.utcnow(),
"name": completion,
"queries": [{"prompt": question, "response": response_full, "sources": source_log_docs}]}
{
"user": "local",
"date": datetime.datetime.utcnow(),
"name": completion,
"queries": [
{
"prompt": question,
"response": response,
"sources": source_log_docs,
}
],
}
).inserted_id
return conversation_id
def get_prompt(prompt_id):
if prompt_id == "default":
prompt = chat_combine_template
elif prompt_id == "creative":
prompt = chat_combine_creative
elif prompt_id == "strict":
prompt = chat_combine_strict
else:
prompt = prompts_collection.find_one({"_id": ObjectId(prompt_id)})["content"]
return prompt
def complete_stream(question, retriever, conversation_id, user_api_key):
response_full = ""
source_log_docs = []
answer = retriever.gen()
for line in answer:
if "answer" in line:
response_full += str(line["answer"])
data = json.dumps(line)
yield f"data: {data}\n\n"
elif "source" in line:
source_log_docs.append(line["source"])
llm = LLMCreator.create_llm(
settings.LLM_NAME, api_key=settings.API_KEY, user_api_key=user_api_key
)
conversation_id = save_conversation(
conversation_id, question, response_full, source_log_docs, llm
)
# send data.type = "end" to indicate that the stream has ended as json
data = json.dumps({"type": "id", "id": str(conversation_id)})
@@ -182,36 +203,68 @@ def stream():
data = request.get_json()
# get parameter from url question
question = data["question"]
history = data["history"]
# history to json object from string
history = json.loads(history)
conversation_id = data["conversation_id"]
if 'prompt_id' in data:
if "history" not in data:
history = []
else:
history = data["history"]
history = json.loads(history)
if "conversation_id" not in data:
conversation_id = None
else:
conversation_id = data["conversation_id"]
if "prompt_id" in data:
prompt_id = data["prompt_id"]
else:
prompt_id = 'default'
prompt_id = "default"
if "selectedDocs" in data and data["selectedDocs"] is None:
chunks = 0
elif "chunks" in data:
chunks = int(data["chunks"])
else:
chunks = 2
prompt = get_prompt(prompt_id)
# check if active_docs is set
if not api_key_set:
api_key = data["api_key"]
if "api_key" in data:
data_key = get_data_from_api_key(data["api_key"])
source = {"active_docs": data_key["source"]}
user_api_key = data["api_key"]
elif "active_docs" in data:
source = {"active_docs": data["active_docs"]}
user_api_key = None
else:
api_key = settings.API_KEY
if not embeddings_key_set:
embeddings_key = data["embeddings_key"]
source = {}
user_api_key = None
if (
source["active_docs"].split("/")[0] == "default"
or source["active_docs"].split("/")[0] == "local"
):
retriever_name = "classic"
else:
embeddings_key = settings.EMBEDDINGS_KEY
if "active_docs" in data:
vectorstore = get_vectorstore({"active_docs": data["active_docs"]})
else:
vectorstore = ""
docsearch = VectorCreator.create_vectorstore(settings.VECTOR_STORE, vectorstore, embeddings_key)
retriever_name = source["active_docs"]
retriever = RetrieverCreator.create_retriever(
retriever_name,
question=question,
source=source,
chat_history=history,
prompt=prompt,
chunks=chunks,
gpt_model=gpt_model,
user_api_key=user_api_key,
)
return Response(
complete_stream(question, docsearch,
chat_history=history, api_key=api_key,
prompt_id=prompt_id,
conversation_id=conversation_id), mimetype="text/event-stream"
complete_stream(
question=question,
retriever=retriever,
conversation_id=conversation_id,
user_api_key=user_api_key,
),
mimetype="text/event-stream",
)
@@ -219,121 +272,72 @@ def stream():
def api_answer():
data = request.get_json()
question = data["question"]
history = data["history"]
if "history" not in data:
history = []
else:
history = data["history"]
if "conversation_id" not in data:
conversation_id = None
else:
conversation_id = data["conversation_id"]
print("-" * 5)
if not api_key_set:
api_key = data["api_key"]
else:
api_key = settings.API_KEY
if not embeddings_key_set:
embeddings_key = data["embeddings_key"]
else:
embeddings_key = settings.EMBEDDINGS_KEY
if 'prompt_id' in data:
if "prompt_id" in data:
prompt_id = data["prompt_id"]
else:
prompt_id = 'default'
if prompt_id == 'default':
prompt = chat_combine_template
elif prompt_id == 'creative':
prompt = chat_combine_creative
elif prompt_id == 'strict':
prompt = chat_combine_strict
prompt_id = "default"
if "chunks" in data:
chunks = int(data["chunks"])
else:
prompt = prompts_collection.find_one({"_id": ObjectId(prompt_id)})["content"]
chunks = 2
prompt = get_prompt(prompt_id)
# use try and except to check for exception
try:
# check if the vectorstore is set
vectorstore = get_vectorstore(data)
# loading the index and the store and the prompt template
# Note if you have used other embeddings than OpenAI, you need to change the embeddings
docsearch = VectorCreator.create_vectorstore(settings.VECTOR_STORE, vectorstore, embeddings_key)
llm = LLMCreator.create_llm(settings.LLM_NAME, api_key=api_key)
docs = docsearch.search(question, k=2)
# join all page_content together with a newline
docs_together = "\n".join([doc.page_content for doc in docs])
p_chat_combine = prompt.replace("{summaries}", docs_together)
messages_combine = [{"role": "system", "content": p_chat_combine}]
source_log_docs = []
for doc in docs:
if doc.metadata:
source_log_docs.append({"title": doc.metadata['title'].split('/')[-1], "text": doc.page_content})
else:
source_log_docs.append({"title": doc.page_content, "text": doc.page_content})
# join all page_content together with a newline
if len(history) > 1:
tokens_current_history = 0
# count tokens in history
history.reverse()
for i in history:
if "prompt" in i and "response" in i:
tokens_batch = count_tokens(i["prompt"]) + count_tokens(i["response"])
if tokens_current_history + tokens_batch < settings.TOKENS_MAX_HISTORY:
tokens_current_history += tokens_batch
messages_combine.append({"role": "user", "content": i["prompt"]})
messages_combine.append({"role": "system", "content": i["response"]})
messages_combine.append({"role": "user", "content": question})
completion = llm.gen(model=gpt_model, engine=settings.AZURE_DEPLOYMENT_NAME,
messages=messages_combine)
result = {"answer": completion, "sources": source_log_docs}
logger.debug(result)
# generate conversationId
if conversation_id is not None:
conversations_collection.update_one(
{"_id": ObjectId(conversation_id)},
{"$push": {"queries": {"prompt": question,
"response": result["answer"], "sources": result['sources']}}},
)
if "api_key" in data:
data_key = get_data_from_api_key(data["api_key"])
source = {"active_docs": data_key["source"]}
user_api_key = data["api_key"]
else:
# create new conversation
# generate summary
messages_summary = [
{"role": "assistant", "content": "Summarise following conversation in no more than 3 words, "
"respond ONLY with the summary, use the same language as the system \n\n"
"User: " + question + "\n\n" + "AI: " + result["answer"]},
{"role": "user", "content": "Summarise following conversation in no more than 3 words, "
"respond ONLY with the summary, use the same language as the system"}
]
source = {data}
user_api_key = None
completion = llm.gen(
model=gpt_model,
engine=settings.AZURE_DEPLOYMENT_NAME,
messages=messages_summary,
max_tokens=30
)
conversation_id = conversations_collection.insert_one(
{"user": "local",
"date": datetime.datetime.utcnow(),
"name": completion,
"queries": [{"prompt": question, "response": result["answer"], "sources": source_log_docs}]}
).inserted_id
if (
source["active_docs"].split("/")[0] == "default"
or source["active_docs"].split("/")[0] == "local"
):
retriever_name = "classic"
else:
retriever_name = source["active_docs"]
result["conversation_id"] = str(conversation_id)
retriever = RetrieverCreator.create_retriever(
retriever_name,
question=question,
source=source,
chat_history=history,
prompt=prompt,
chunks=chunks,
gpt_model=gpt_model,
user_api_key=user_api_key,
)
source_log_docs = []
response_full = ""
for line in retriever.gen():
if "source" in line:
source_log_docs.append(line["source"])
elif "answer" in line:
response_full += line["answer"]
llm = LLMCreator.create_llm(
settings.LLM_NAME, api_key=settings.API_KEY, user_api_key=user_api_key
)
result = {"answer": response_full, "sources": source_log_docs}
result["conversation_id"] = save_conversation(
conversation_id, question, response_full, source_log_docs, llm
)
# mock result
# result = {
# "answer": "The answer is 42",
# "sources": ["https://en.wikipedia.org/wiki/42_(number)", "https://en.wikipedia.org/wiki/42_(number)"]
# }
return result
except Exception as e:
# print whole traceback
@@ -348,27 +352,38 @@ def api_search():
# get parameter from url question
question = data["question"]
if not embeddings_key_set:
if "embeddings_key" in data:
embeddings_key = data["embeddings_key"]
else:
embeddings_key = settings.EMBEDDINGS_KEY
if "api_key" in data:
data_key = get_data_from_api_key(data["api_key"])
source = {"active_docs": data_key["source"]}
user_api_key = data["api_key"]
elif "active_docs" in data:
source = {"active_docs": data["active_docs"]}
user_api_key = None
else:
embeddings_key = settings.EMBEDDINGS_KEY
if "active_docs" in data:
vectorstore = get_vectorstore({"active_docs": data["active_docs"]})
source = {}
user_api_key = None
if "chunks" in data:
chunks = int(data["chunks"])
else:
vectorstore = ""
docsearch = VectorCreator.create_vectorstore(settings.VECTOR_STORE, vectorstore, embeddings_key)
chunks = 2
docs = docsearch.search(question, k=2)
source_log_docs = []
for doc in docs:
if doc.metadata:
source_log_docs.append({"title": doc.metadata['title'].split('/')[-1], "text": doc.page_content})
else:
source_log_docs.append({"title": doc.page_content, "text": doc.page_content})
#yield f"data:{data}\n\n"
return source_log_docs
if (
source["active_docs"].split("/")[0] == "default"
or source["active_docs"].split("/")[0] == "local"
):
retriever_name = "classic"
else:
retriever_name = source["active_docs"]
retriever = RetrieverCreator.create_retriever(
retriever_name,
question=question,
source=source,
chat_history=[],
prompt="default",
chunks=chunks,
gpt_model=gpt_model,
user_api_key=user_api_key,
)
docs = retriever.search()
return docs

View File

@@ -1,5 +1,8 @@
import os
import uuid
import shutil
from flask import Blueprint, request, jsonify
from urllib.parse import urlparse
import requests
from pymongo import MongoClient
from bson.objectid import ObjectId
@@ -16,6 +19,7 @@ conversations_collection = db["conversations"]
vectors_collection = db["vectors"]
prompts_collection = db["prompts"]
feedback_collection = db["feedback"]
api_key_collection = db["api_keys"]
user = Blueprint('user', __name__)
current_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
@@ -133,30 +137,43 @@ def upload_file():
return {"status": "no name"}
job_name = secure_filename(request.form["name"])
# check if the post request has the file part
if "file" not in request.files:
print("No file part")
return {"status": "no file"}
file = request.files["file"]
if file.filename == "":
files = request.files.getlist("file")
if not files or all(file.filename == '' for file in files):
return {"status": "no file name"}
if file:
filename = secure_filename(file.filename)
# save dir
save_dir = os.path.join(current_dir, settings.UPLOAD_FOLDER, user, job_name)
# create dir if not exists
if not os.path.exists(save_dir):
os.makedirs(save_dir)
file.save(os.path.join(save_dir, filename))
task = ingest.delay(settings.UPLOAD_FOLDER, [".rst", ".md", ".pdf", ".txt", ".docx",
".csv", ".epub", ".html", ".mdx"],
job_name, filename, user)
# task id
task_id = task.id
return {"status": "ok", "task_id": task_id}
# Directory where files will be saved
save_dir = os.path.join(current_dir, settings.UPLOAD_FOLDER, user, job_name)
os.makedirs(save_dir, exist_ok=True)
if len(files) > 1:
# Multiple files; prepare them for zip
temp_dir = os.path.join(save_dir, "temp")
os.makedirs(temp_dir, exist_ok=True)
for file in files:
filename = secure_filename(file.filename)
file.save(os.path.join(temp_dir, filename))
# Use shutil.make_archive to zip the temp directory
zip_path = shutil.make_archive(base_name=os.path.join(save_dir, job_name), format='zip', root_dir=temp_dir)
final_filename = os.path.basename(zip_path)
# Clean up the temporary directory after zipping
shutil.rmtree(temp_dir)
else:
return {"status": "error"}
# Single file
file = files[0]
final_filename = secure_filename(file.filename)
file_path = os.path.join(save_dir, final_filename)
file.save(file_path)
# Call ingest with the single file or zipped file
task = ingest.delay(settings.UPLOAD_FOLDER, [".rst", ".md", ".pdf", ".txt", ".docx",
".csv", ".epub", ".html", ".mdx"],
job_name, final_filename, user)
return {"status": "ok", "task_id": task.id}
@user.route("/api/remote", methods=["POST"])
def upload_remote():
@@ -234,6 +251,34 @@ def combined_json():
for index in data_remote:
index["location"] = "remote"
data.append(index)
if 'duckduck_search' in settings.RETRIEVERS_ENABLED:
data.append(
{
"name": "DuckDuckGo Search",
"language": "en",
"version": "",
"description": "duckduck_search",
"fullName": "DuckDuckGo Search",
"date": "duckduck_search",
"docLink": "duckduck_search",
"model": settings.EMBEDDINGS_NAME,
"location": "custom",
}
)
if 'brave_search' in settings.RETRIEVERS_ENABLED:
data.append(
{
"name": "Brave Search",
"language": "en",
"version": "",
"description": "brave_search",
"fullName": "Brave Search",
"date": "brave_search",
"docLink": "brave_search",
"model": settings.EMBEDDINGS_NAME,
"location": "custom",
}
)
return jsonify(data)
@@ -245,25 +290,32 @@ def check_docs():
# split docs on / and take first part
if data["docs"].split("/")[0] == "local":
return {"status": "exists"}
vectorstore = "vectors/" + data["docs"]
vectorstore = "vectors/" + secure_filename(data["docs"])
base_path = "https://raw.githubusercontent.com/arc53/DocsHUB/main/"
if os.path.exists(vectorstore) or data["docs"] == "default":
return {"status": "exists"}
else:
r = requests.get(base_path + vectorstore + "index.faiss")
file_url = urlparse(base_path + vectorstore + "index.faiss")
if (
file_url.scheme in ['https'] and
file_url.netloc == 'raw.githubusercontent.com' and
file_url.path.startswith('/arc53/DocsHUB/main/')
):
r = requests.get(file_url.geturl())
if r.status_code != 200:
return {"status": "null"}
else:
if not os.path.exists(vectorstore):
os.makedirs(vectorstore)
with open(vectorstore + "index.faiss", "wb") as f:
f.write(r.content)
if r.status_code != 200:
return {"status": "null"}
r = requests.get(base_path + vectorstore + "index.pkl")
with open(vectorstore + "index.pkl", "wb") as f:
f.write(r.content)
else:
if not os.path.exists(vectorstore):
os.makedirs(vectorstore)
with open(vectorstore + "index.faiss", "wb") as f:
f.write(r.content)
# download the store
r = requests.get(base_path + vectorstore + "index.pkl")
with open(vectorstore + "index.pkl", "wb") as f:
f.write(r.content)
return {"status": "null"}
return {"status": "loaded"}
@@ -343,5 +395,52 @@ def update_prompt_name():
@user.route("/api/get_api_keys", methods=["GET"])
def get_api_keys():
user = "local"
keys = api_key_collection.find({"user": user})
list_keys = []
for key in keys:
list_keys.append({
"id": str(key["_id"]),
"name": key["name"],
"key": key["key"][:4] + "..." + key["key"][-4:],
"source": key["source"],
"prompt_id": key["prompt_id"],
"chunks": key["chunks"]
})
return jsonify(list_keys)
@user.route("/api/create_api_key", methods=["POST"])
def create_api_key():
data = request.get_json()
name = data["name"]
source = data["source"]
prompt_id = data["prompt_id"]
chunks = data["chunks"]
key = str(uuid.uuid4())
user = "local"
resp = api_key_collection.insert_one(
{
"name": name,
"key": key,
"source": source,
"user": user,
"prompt_id": prompt_id,
"chunks": chunks
}
)
new_id = str(resp.inserted_id)
return {"id": new_id, "key": key}
@user.route("/api/delete_api_key", methods=["POST"])
def delete_api_key():
data = request.get_json()
id = data["id"]
api_key_collection.delete_one(
{
"_id": ObjectId(id),
}
)
return {"status": "ok"}

View File

@@ -40,5 +40,5 @@ def after_request(response):
return response
if __name__ == "__main__":
app.run(debug=True, port=7091)
app.run(debug=settings.FLASK_DEBUG_MODE, port=7091)

View File

@@ -9,6 +9,7 @@ current_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__
class Settings(BaseSettings):
LLM_NAME: str = "docsgpt"
MODEL_NAME: Optional[str] = None # if LLM_NAME is openai, MODEL_NAME can be gpt-4 or gpt-3.5-turbo
EMBEDDINGS_NAME: str = "huggingface_sentence-transformers/all-mpnet-base-v2"
CELERY_BROKER_URL: str = "redis://localhost:6379/0"
CELERY_RESULT_BACKEND: str = "redis://localhost:6379/1"
@@ -17,6 +18,7 @@ class Settings(BaseSettings):
TOKENS_MAX_HISTORY: int = 150
UPLOAD_FOLDER: str = "inputs"
VECTOR_STORE: str = "faiss" # "faiss" or "elasticsearch" or "qdrant"
RETRIEVERS_ENABLED: list = ["classic_rag", "duckduck_search"] # also brave_search
API_URL: str = "http://localhost:7091" # backend url for celery worker
@@ -58,6 +60,10 @@ class Settings(BaseSettings):
QDRANT_PATH: Optional[str] = None
QDRANT_DISTANCE_FUNC: str = "Cosine"
BRAVE_SEARCH_API_KEY: Optional[str] = None
FLASK_DEBUG_MODE: bool = False
path = Path(__file__).parent.parent.absolute()
settings = Settings(_env_file=path.joinpath(".env"), _env_file_encoding="utf-8")

View File

@@ -1,21 +1,29 @@
from application.llm.base import BaseLLM
from application.core.settings import settings
class AnthropicLLM(BaseLLM):
def __init__(self, api_key=None):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
self.api_key = api_key or settings.ANTHROPIC_API_KEY # If not provided, use a default from settings
super().__init__(*args, **kwargs)
self.api_key = (
api_key or settings.ANTHROPIC_API_KEY
) # If not provided, use a default from settings
self.user_api_key = user_api_key
self.anthropic = Anthropic(api_key=self.api_key)
self.HUMAN_PROMPT = HUMAN_PROMPT
self.AI_PROMPT = AI_PROMPT
def gen(self, model, messages, engine=None, max_tokens=300, stream=False, **kwargs):
context = messages[0]['content']
user_question = messages[-1]['content']
def _raw_gen(
self, baseself, model, messages, stream=False, max_tokens=300, **kwargs
):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Context \n {context} \n ### Question \n {user_question}"
if stream:
return self.gen_stream(model, prompt, max_tokens, **kwargs)
return self.gen_stream(model, prompt, stream, max_tokens, **kwargs)
completion = self.anthropic.completions.create(
model=model,
@@ -25,9 +33,11 @@ class AnthropicLLM(BaseLLM):
)
return completion.completion
def gen_stream(self, model, messages, engine=None, max_tokens=300, **kwargs):
context = messages[0]['content']
user_question = messages[-1]['content']
def _raw_gen_stream(
self, baseself, model, messages, stream=True, max_tokens=300, **kwargs
):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Context \n {context} \n ### Question \n {user_question}"
stream_response = self.anthropic.completions.create(
model=model,
@@ -37,4 +47,4 @@ class AnthropicLLM(BaseLLM):
)
for completion in stream_response:
yield completion.completion
yield completion.completion

View File

@@ -1,14 +1,28 @@
from abc import ABC, abstractmethod
from application.usage import gen_token_usage, stream_token_usage
class BaseLLM(ABC):
def __init__(self):
pass
self.token_usage = {"prompt_tokens": 0, "generated_tokens": 0}
def _apply_decorator(self, method, decorator, *args, **kwargs):
return decorator(method, *args, **kwargs)
@abstractmethod
def gen(self, *args, **kwargs):
def _raw_gen(self, model, messages, stream, *args, **kwargs):
pass
def gen(self, model, messages, stream=False, *args, **kwargs):
return self._apply_decorator(self._raw_gen, gen_token_usage)(
self, model=model, messages=messages, stream=stream, *args, **kwargs
)
@abstractmethod
def gen_stream(self, *args, **kwargs):
def _raw_gen_stream(self, model, messages, stream, *args, **kwargs):
pass
def gen_stream(self, model, messages, stream=True, *args, **kwargs):
return self._apply_decorator(self._raw_gen_stream, stream_token_usage)(
self, model=model, messages=messages, stream=stream, *args, **kwargs
)

View File

@@ -2,48 +2,43 @@ from application.llm.base import BaseLLM
import json
import requests
class DocsGPTAPILLM(BaseLLM):
def __init__(self, *args, **kwargs):
self.endpoint = "https://llm.docsgpt.co.uk"
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
super().__init__(*args, **kwargs)
self.api_key = api_key
self.user_api_key = user_api_key
self.endpoint = "https://llm.docsgpt.co.uk"
def gen(self, model, engine, messages, stream=False, **kwargs):
context = messages[0]['content']
user_question = messages[-1]['content']
def _raw_gen(self, baseself, model, messages, stream=False, *args, **kwargs):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
response = requests.post(
f"{self.endpoint}/answer",
json={
"prompt": prompt,
"max_new_tokens": 30
}
f"{self.endpoint}/answer", json={"prompt": prompt, "max_new_tokens": 30}
)
response_clean = response.json()['a'].replace("###", "")
response_clean = response.json()["a"].replace("###", "")
return response_clean
def gen_stream(self, model, engine, messages, stream=True, **kwargs):
context = messages[0]['content']
user_question = messages[-1]['content']
def _raw_gen_stream(self, baseself, model, messages, stream=True, *args, **kwargs):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
# send prompt to endpoint /stream
response = requests.post(
f"{self.endpoint}/stream",
json={
"prompt": prompt,
"max_new_tokens": 256
},
stream=True
json={"prompt": prompt, "max_new_tokens": 256},
stream=True,
)
for line in response.iter_lines():
if line:
#data = json.loads(line)
data_str = line.decode('utf-8')
# data = json.loads(line)
data_str = line.decode("utf-8")
if data_str.startswith("data: "):
data = json.loads(data_str[6:])
yield data['a']
yield data["a"]

View File

@@ -1,44 +1,68 @@
from application.llm.base import BaseLLM
class HuggingFaceLLM(BaseLLM):
def __init__(self, api_key, llm_name='Arc53/DocsGPT-7B',q=False):
def __init__(
self,
api_key=None,
user_api_key=None,
llm_name="Arc53/DocsGPT-7B",
q=False,
*args,
**kwargs,
):
global hf
from langchain.llms import HuggingFacePipeline
if q:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
pipeline,
BitsAndBytesConfig,
)
tokenizer = AutoTokenizer.from_pretrained(llm_name)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(llm_name,quantization_config=bnb_config)
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(
llm_name, quantization_config=bnb_config
)
else:
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained(llm_name)
model = AutoModelForCausalLM.from_pretrained(llm_name)
super().__init__(*args, **kwargs)
self.api_key = api_key
self.user_api_key = user_api_key
pipe = pipeline(
"text-generation", model=model,
tokenizer=tokenizer, max_new_tokens=2000,
device_map="auto", eos_token_id=tokenizer.eos_token_id
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=2000,
device_map="auto",
eos_token_id=tokenizer.eos_token_id,
)
hf = HuggingFacePipeline(pipeline=pipe)
def gen(self, model, engine, messages, stream=False, **kwargs):
context = messages[0]['content']
user_question = messages[-1]['content']
def _raw_gen(self, baseself, model, messages, stream=False, **kwargs):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
result = hf(prompt)
return result.content
def gen_stream(self, model, engine, messages, stream=True, **kwargs):
def _raw_gen_stream(self, baseself, model, messages, stream=True, **kwargs):
raise NotImplementedError("HuggingFaceLLM Streaming is not implemented yet.")

View File

@@ -1,32 +1,45 @@
from application.llm.base import BaseLLM
from application.core.settings import settings
class LlamaCpp(BaseLLM):
def __init__(self, api_key, llm_name=settings.MODEL_PATH, **kwargs):
def __init__(
self,
api_key=None,
user_api_key=None,
llm_name=settings.MODEL_PATH,
*args,
**kwargs,
):
global llama
try:
from llama_cpp import Llama
except ImportError:
raise ImportError("Please install llama_cpp using pip install llama-cpp-python")
raise ImportError(
"Please install llama_cpp using pip install llama-cpp-python"
)
super().__init__(*args, **kwargs)
self.api_key = api_key
self.user_api_key = user_api_key
llama = Llama(model_path=llm_name, n_ctx=2048)
def gen(self, model, engine, messages, stream=False, **kwargs):
context = messages[0]['content']
user_question = messages[-1]['content']
def _raw_gen(self, baseself, model, messages, stream=False, **kwargs):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
result = llama(prompt, max_tokens=150, echo=False)
# import sys
# print(result['choices'][0]['text'].split('### Answer \n')[-1], file=sys.stderr)
return result['choices'][0]['text'].split('### Answer \n')[-1]
def gen_stream(self, model, engine, messages, stream=True, **kwargs):
context = messages[0]['content']
user_question = messages[-1]['content']
return result["choices"][0]["text"].split("### Answer \n")[-1]
def _raw_gen_stream(self, baseself, model, messages, stream=True, **kwargs):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
result = llama(prompt, max_tokens=150, echo=False, stream=stream)
@@ -35,5 +48,5 @@ class LlamaCpp(BaseLLM):
# print(list(result), file=sys.stderr)
for item in result:
for choice in item['choices']:
yield choice['text']
for choice in item["choices"]:
yield choice["text"]

View File

@@ -7,22 +7,21 @@ from application.llm.docsgpt_provider import DocsGPTAPILLM
from application.llm.premai import PremAILLM
class LLMCreator:
llms = {
'openai': OpenAILLM,
'azure_openai': AzureOpenAILLM,
'sagemaker': SagemakerAPILLM,
'huggingface': HuggingFaceLLM,
'llama.cpp': LlamaCpp,
'anthropic': AnthropicLLM,
'docsgpt': DocsGPTAPILLM,
'premai': PremAILLM,
"openai": OpenAILLM,
"azure_openai": AzureOpenAILLM,
"sagemaker": SagemakerAPILLM,
"huggingface": HuggingFaceLLM,
"llama.cpp": LlamaCpp,
"anthropic": AnthropicLLM,
"docsgpt": DocsGPTAPILLM,
"premai": PremAILLM,
}
@classmethod
def create_llm(cls, type, *args, **kwargs):
def create_llm(cls, type, api_key, user_api_key, *args, **kwargs):
llm_class = cls.llms.get(type.lower())
if not llm_class:
raise ValueError(f"No LLM class found for type {type}")
return llm_class(*args, **kwargs)
return llm_class(api_key, user_api_key, *args, **kwargs)

View File

@@ -1,36 +1,53 @@
from application.llm.base import BaseLLM
from application.core.settings import settings
class OpenAILLM(BaseLLM):
def __init__(self, api_key):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
global openai
from openai import OpenAI
super().__init__(*args, **kwargs)
self.client = OpenAI(
api_key=api_key,
)
api_key=api_key,
)
self.api_key = api_key
self.user_api_key = user_api_key
def _get_openai(self):
# Import openai when needed
import openai
return openai
def gen(self, model, engine, messages, stream=False, **kwargs):
response = self.client.chat.completions.create(model=model,
messages=messages,
stream=stream,
**kwargs)
def _raw_gen(
self,
baseself,
model,
messages,
stream=False,
engine=settings.AZURE_DEPLOYMENT_NAME,
**kwargs
):
response = self.client.chat.completions.create(
model=model, messages=messages, stream=stream, **kwargs
)
return response.choices[0].message.content
def gen_stream(self, model, engine, messages, stream=True, **kwargs):
response = self.client.chat.completions.create(model=model,
messages=messages,
stream=stream,
**kwargs)
def _raw_gen_stream(
self,
baseself,
model,
messages,
stream=True,
engine=settings.AZURE_DEPLOYMENT_NAME,
**kwargs
):
response = self.client.chat.completions.create(
model=model, messages=messages, stream=stream, **kwargs
)
for line in response:
# import sys
@@ -41,14 +58,17 @@ class OpenAILLM(BaseLLM):
class AzureOpenAILLM(OpenAILLM):
def __init__(self, openai_api_key, openai_api_base, openai_api_version, deployment_name):
def __init__(
self, openai_api_key, openai_api_base, openai_api_version, deployment_name
):
super().__init__(openai_api_key)
self.api_base = settings.OPENAI_API_BASE,
self.api_version = settings.OPENAI_API_VERSION,
self.deployment_name = settings.AZURE_DEPLOYMENT_NAME,
self.api_base = (settings.OPENAI_API_BASE,)
self.api_version = (settings.OPENAI_API_VERSION,)
self.deployment_name = (settings.AZURE_DEPLOYMENT_NAME,)
from openai import AzureOpenAI
self.client = AzureOpenAI(
api_key=openai_api_key,
api_key=openai_api_key,
api_version=settings.OPENAI_API_VERSION,
api_base=settings.OPENAI_API_BASE,
deployment_name=settings.AZURE_DEPLOYMENT_NAME,

View File

@@ -1,32 +1,37 @@
from application.llm.base import BaseLLM
from application.core.settings import settings
class PremAILLM(BaseLLM):
def __init__(self, api_key):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
from premai import Prem
self.client = Prem(
api_key=api_key
)
super().__init__(*args, **kwargs)
self.client = Prem(api_key=api_key)
self.api_key = api_key
self.user_api_key = user_api_key
self.project_id = settings.PREMAI_PROJECT_ID
def gen(self, model, engine, messages, stream=False, **kwargs):
response = self.client.chat.completions.create(model=model,
def _raw_gen(self, baseself, model, messages, stream=False, **kwargs):
response = self.client.chat.completions.create(
model=model,
project_id=self.project_id,
messages=messages,
stream=stream,
**kwargs)
**kwargs
)
return response.choices[0].message["content"]
def gen_stream(self, model, engine, messages, stream=True, **kwargs):
response = self.client.chat.completions.create(model=model,
def _raw_gen_stream(self, baseself, model, messages, stream=True, **kwargs):
response = self.client.chat.completions.create(
model=model,
project_id=self.project_id,
messages=messages,
stream=stream,
**kwargs)
**kwargs
)
for line in response:
if line.choices[0].delta["content"] is not None:

View File

@@ -4,11 +4,10 @@ import json
import io
class LineIterator:
"""
A helper class for parsing the byte stream input.
A helper class for parsing the byte stream input.
The output of the model will be in the following format:
```
b'{"outputs": [" a"]}\n'
@@ -16,21 +15,21 @@ class LineIterator:
b'{"outputs": [" problem"]}\n'
...
```
While usually each PayloadPart event from the event stream will contain a byte array
While usually each PayloadPart event from the event stream will contain a byte array
with a full json, this is not guaranteed and some of the json objects may be split across
PayloadPart events. For example:
```
{'PayloadPart': {'Bytes': b'{"outputs": '}}
{'PayloadPart': {'Bytes': b'[" problem"]}\n'}}
```
This class accounts for this by concatenating bytes written via the 'write' function
and then exposing a method which will return lines (ending with a '\n' character) within
the buffer via the 'scan_lines' function. It maintains the position of the last read
position to ensure that previous bytes are not exposed again.
the buffer via the 'scan_lines' function. It maintains the position of the last read
position to ensure that previous bytes are not exposed again.
"""
def __init__(self, stream):
self.byte_iterator = iter(stream)
self.buffer = io.BytesIO()
@@ -43,7 +42,7 @@ class LineIterator:
while True:
self.buffer.seek(self.read_pos)
line = self.buffer.readline()
if line and line[-1] == ord('\n'):
if line and line[-1] == ord("\n"):
self.read_pos += len(line)
return line[:-1]
try:
@@ -52,33 +51,35 @@ class LineIterator:
if self.read_pos < self.buffer.getbuffer().nbytes:
continue
raise
if 'PayloadPart' not in chunk:
print('Unknown event type:' + chunk)
if "PayloadPart" not in chunk:
print("Unknown event type:" + chunk)
continue
self.buffer.seek(0, io.SEEK_END)
self.buffer.write(chunk['PayloadPart']['Bytes'])
self.buffer.write(chunk["PayloadPart"]["Bytes"])
class SagemakerAPILLM(BaseLLM):
def __init__(self, *args, **kwargs):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
import boto3
runtime = boto3.client(
'runtime.sagemaker',
aws_access_key_id='xxx',
aws_secret_access_key='xxx',
region_name='us-west-2'
"runtime.sagemaker",
aws_access_key_id="xxx",
aws_secret_access_key="xxx",
region_name="us-west-2",
)
self.endpoint = settings.SAGEMAKER_ENDPOINT
super().__init__(*args, **kwargs)
self.api_key = api_key
self.user_api_key = user_api_key
self.endpoint = settings.SAGEMAKER_ENDPOINT
self.runtime = runtime
def gen(self, model, engine, messages, stream=False, **kwargs):
context = messages[0]['content']
user_question = messages[-1]['content']
def _raw_gen(self, baseself, model, messages, stream=False, **kwargs):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
# Construct payload for endpoint
payload = {
@@ -89,25 +90,25 @@ class SagemakerAPILLM(BaseLLM):
"temperature": 0.1,
"max_new_tokens": 30,
"repetition_penalty": 1.03,
"stop": ["</s>", "###"]
}
"stop": ["</s>", "###"],
},
}
body_bytes = json.dumps(payload).encode('utf-8')
body_bytes = json.dumps(payload).encode("utf-8")
# Invoke the endpoint
response = self.runtime.invoke_endpoint(EndpointName=self.endpoint,
ContentType='application/json',
Body=body_bytes)
result = json.loads(response['Body'].read().decode())
response = self.runtime.invoke_endpoint(
EndpointName=self.endpoint, ContentType="application/json", Body=body_bytes
)
result = json.loads(response["Body"].read().decode())
import sys
print(result[0]['generated_text'], file=sys.stderr)
return result[0]['generated_text'][len(prompt):]
def gen_stream(self, model, engine, messages, stream=True, **kwargs):
context = messages[0]['content']
user_question = messages[-1]['content']
print(result[0]["generated_text"], file=sys.stderr)
return result[0]["generated_text"][len(prompt) :]
def _raw_gen_stream(self, baseself, model, messages, stream=True, **kwargs):
context = messages[0]["content"]
user_question = messages[-1]["content"]
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
# Construct payload for endpoint
payload = {
@@ -118,22 +119,22 @@ class SagemakerAPILLM(BaseLLM):
"temperature": 0.1,
"max_new_tokens": 512,
"repetition_penalty": 1.03,
"stop": ["</s>", "###"]
}
"stop": ["</s>", "###"],
},
}
body_bytes = json.dumps(payload).encode('utf-8')
body_bytes = json.dumps(payload).encode("utf-8")
# Invoke the endpoint
response = self.runtime.invoke_endpoint_with_response_stream(EndpointName=self.endpoint,
ContentType='application/json',
Body=body_bytes)
#result = json.loads(response['Body'].read().decode())
event_stream = response['Body']
start_json = b'{'
response = self.runtime.invoke_endpoint_with_response_stream(
EndpointName=self.endpoint, ContentType="application/json", Body=body_bytes
)
# result = json.loads(response['Body'].read().decode())
event_stream = response["Body"]
start_json = b"{"
for line in LineIterator(event_stream):
if line != b'' and start_json in line:
#print(line)
data = json.loads(line[line.find(start_json):].decode('utf-8'))
if data['token']['text'] not in ["</s>", "###"]:
print(data['token']['text'],end='')
yield data['token']['text']
if line != b"" and start_json in line:
# print(line)
data = json.loads(line[line.find(start_json) :].decode("utf-8"))
if data["token"]["text"] not in ["</s>", "###"]:
print(data["token"]["text"], end="")
yield data["token"]["text"]

View File

@@ -0,0 +1,26 @@
from application.parser.remote.base import BaseRemote
from langchain_community.document_loaders import RedditPostsLoader
class RedditPostsLoaderRemote(BaseRemote):
def load_data(self, inputs):
data = eval(inputs)
client_id = data.get("client_id")
client_secret = data.get("client_secret")
user_agent = data.get("user_agent")
categories = data.get("categories", ["new", "hot"])
mode = data.get("mode", "subreddit")
search_queries = data.get("search_queries")
number_posts = data.get("number_posts", 10)
self.loader = RedditPostsLoader(
client_id=client_id,
client_secret=client_secret,
user_agent=user_agent,
categories=categories,
mode=mode,
search_queries=search_queries,
number_posts=number_posts,
)
documents = self.loader.load()
print(f"Loaded {len(documents)} documents from Reddit")
return documents

View File

@@ -1,13 +1,15 @@
from application.parser.remote.sitemap_loader import SitemapLoader
from application.parser.remote.crawler_loader import CrawlerLoader
from application.parser.remote.web_loader import WebLoader
from application.parser.remote.reddit_loader import RedditPostsLoaderRemote
class RemoteCreator:
loaders = {
'url': WebLoader,
'sitemap': SitemapLoader,
'crawler': CrawlerLoader
"url": WebLoader,
"sitemap": SitemapLoader,
"crawler": CrawlerLoader,
"reddit": RedditPostsLoaderRemote,
}
@classmethod
@@ -15,4 +17,4 @@ class RemoteCreator:
loader_class = cls.loaders.get(type.lower())
if not loader_class:
raise ValueError(f"No LLM class found for type {type}")
return loader_class(*args, **kwargs)
return loader_class(*args, **kwargs)

View File

@@ -22,7 +22,10 @@ def group_documents(documents: List[Document], min_tokens: int, max_tokens: int)
doc_len = len(tiktoken.get_encoding("cl100k_base").encode(doc.text))
# Check if current group is empty or if the document can be added based on token count and matching metadata
if current_group is None or (len(tiktoken.get_encoding("cl100k_base").encode(current_group.text)) + doc_len < max_tokens and doc_len < min_tokens and current_group.extra_info == doc.extra_info):
if (current_group is None or
(len(tiktoken.get_encoding("cl100k_base").encode(current_group.text)) + doc_len < max_tokens and
doc_len < min_tokens and
current_group.extra_info == doc.extra_info)):
if current_group is None:
current_group = doc # Use the document directly to retain its metadata
else:

View File

@@ -3,6 +3,7 @@ boto3==1.34.6
celery==5.3.6
dataclasses_json==0.6.3
docx2txt==0.8
duckduckgo-search==5.3.0
EbookLib==0.18
elasticsearch==8.12.0
escodegen==1.0.11
@@ -18,10 +19,10 @@ nltk==3.8.1
openapi3_parser==1.1.16
pandas==2.2.0
pydantic_settings==2.1.0
pymongo==4.6.1
pymongo==4.6.3
PyPDF2==3.0.1
python-dotenv==1.0.1
qdrant-client==1.7.3
qdrant-client==1.8.2
redis==5.0.1
Requests==2.31.0
retry==0.9.2

View File

View File

@@ -0,0 +1,14 @@
from abc import ABC, abstractmethod
class BaseRetriever(ABC):
def __init__(self):
pass
@abstractmethod
def gen(self, *args, **kwargs):
pass
@abstractmethod
def search(self, *args, **kwargs):
pass

View File

@@ -0,0 +1,95 @@
import json
from application.retriever.base import BaseRetriever
from application.core.settings import settings
from application.llm.llm_creator import LLMCreator
from application.utils import count_tokens
from langchain_community.tools import BraveSearch
class BraveRetSearch(BaseRetriever):
def __init__(
self,
question,
source,
chat_history,
prompt,
chunks=2,
gpt_model="docsgpt",
user_api_key=None,
):
self.question = question
self.source = source
self.chat_history = chat_history
self.prompt = prompt
self.chunks = chunks
self.gpt_model = gpt_model
self.user_api_key = user_api_key
def _get_data(self):
if self.chunks == 0:
docs = []
else:
search = BraveSearch.from_api_key(
api_key=settings.BRAVE_SEARCH_API_KEY,
search_kwargs={"count": int(self.chunks)},
)
results = search.run(self.question)
results = json.loads(results)
docs = []
for i in results:
try:
title = i["title"]
link = i["link"]
snippet = i["snippet"]
docs.append({"text": snippet, "title": title, "link": link})
except IndexError:
pass
if settings.LLM_NAME == "llama.cpp":
docs = [docs[0]]
return docs
def gen(self):
docs = self._get_data()
# join all page_content together with a newline
docs_together = "\n".join([doc["text"] for doc in docs])
p_chat_combine = self.prompt.replace("{summaries}", docs_together)
messages_combine = [{"role": "system", "content": p_chat_combine}]
for doc in docs:
yield {"source": doc}
if len(self.chat_history) > 1:
tokens_current_history = 0
# count tokens in history
self.chat_history.reverse()
for i in self.chat_history:
if "prompt" in i and "response" in i:
tokens_batch = count_tokens(i["prompt"]) + count_tokens(
i["response"]
)
if (
tokens_current_history + tokens_batch
< settings.TOKENS_MAX_HISTORY
):
tokens_current_history += tokens_batch
messages_combine.append(
{"role": "user", "content": i["prompt"]}
)
messages_combine.append(
{"role": "system", "content": i["response"]}
)
messages_combine.append({"role": "user", "content": self.question})
llm = LLMCreator.create_llm(
settings.LLM_NAME, api_key=settings.API_KEY, user_api_key=self.user_api_key
)
completion = llm.gen_stream(model=self.gpt_model, messages=messages_combine)
for line in completion:
yield {"answer": str(line)}
def search(self):
return self._get_data()

View File

@@ -0,0 +1,110 @@
import os
from application.retriever.base import BaseRetriever
from application.core.settings import settings
from application.vectorstore.vector_creator import VectorCreator
from application.llm.llm_creator import LLMCreator
from application.utils import count_tokens
class ClassicRAG(BaseRetriever):
def __init__(
self,
question,
source,
chat_history,
prompt,
chunks=2,
gpt_model="docsgpt",
user_api_key=None,
):
self.question = question
self.vectorstore = self._get_vectorstore(source=source)
self.chat_history = chat_history
self.prompt = prompt
self.chunks = chunks
self.gpt_model = gpt_model
self.user_api_key = user_api_key
def _get_vectorstore(self, source):
if "active_docs" in source:
if source["active_docs"].split("/")[0] == "default":
vectorstore = ""
elif source["active_docs"].split("/")[0] == "local":
vectorstore = "indexes/" + source["active_docs"]
else:
vectorstore = "vectors/" + source["active_docs"]
if source["active_docs"] == "default":
vectorstore = ""
else:
vectorstore = ""
vectorstore = os.path.join("application", vectorstore)
return vectorstore
def _get_data(self):
if self.chunks == 0:
docs = []
else:
docsearch = VectorCreator.create_vectorstore(
settings.VECTOR_STORE, self.vectorstore, settings.EMBEDDINGS_KEY
)
docs_temp = docsearch.search(self.question, k=self.chunks)
docs = [
{
"title": (
i.metadata["title"].split("/")[-1]
if i.metadata
else i.page_content
),
"text": i.page_content,
}
for i in docs_temp
]
if settings.LLM_NAME == "llama.cpp":
docs = [docs[0]]
return docs
def gen(self):
docs = self._get_data()
# join all page_content together with a newline
docs_together = "\n".join([doc["text"] for doc in docs])
p_chat_combine = self.prompt.replace("{summaries}", docs_together)
messages_combine = [{"role": "system", "content": p_chat_combine}]
for doc in docs:
yield {"source": doc}
if len(self.chat_history) > 1:
tokens_current_history = 0
# count tokens in history
self.chat_history.reverse()
for i in self.chat_history:
if "prompt" in i and "response" in i:
tokens_batch = count_tokens(i["prompt"]) + count_tokens(
i["response"]
)
if (
tokens_current_history + tokens_batch
< settings.TOKENS_MAX_HISTORY
):
tokens_current_history += tokens_batch
messages_combine.append(
{"role": "user", "content": i["prompt"]}
)
messages_combine.append(
{"role": "system", "content": i["response"]}
)
messages_combine.append({"role": "user", "content": self.question})
llm = LLMCreator.create_llm(
settings.LLM_NAME, api_key=settings.API_KEY, user_api_key=self.user_api_key
)
completion = llm.gen_stream(model=self.gpt_model, messages=messages_combine)
for line in completion:
yield {"answer": str(line)}
def search(self):
return self._get_data()

View File

@@ -0,0 +1,112 @@
from application.retriever.base import BaseRetriever
from application.core.settings import settings
from application.llm.llm_creator import LLMCreator
from application.utils import count_tokens
from langchain_community.tools import DuckDuckGoSearchResults
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper
class DuckDuckSearch(BaseRetriever):
def __init__(
self,
question,
source,
chat_history,
prompt,
chunks=2,
gpt_model="docsgpt",
user_api_key=None,
):
self.question = question
self.source = source
self.chat_history = chat_history
self.prompt = prompt
self.chunks = chunks
self.gpt_model = gpt_model
self.user_api_key = user_api_key
def _parse_lang_string(self, input_string):
result = []
current_item = ""
inside_brackets = False
for char in input_string:
if char == "[":
inside_brackets = True
elif char == "]":
inside_brackets = False
result.append(current_item)
current_item = ""
elif inside_brackets:
current_item += char
if inside_brackets:
result.append(current_item)
return result
def _get_data(self):
if self.chunks == 0:
docs = []
else:
wrapper = DuckDuckGoSearchAPIWrapper(max_results=self.chunks)
search = DuckDuckGoSearchResults(api_wrapper=wrapper)
results = search.run(self.question)
results = self._parse_lang_string(results)
docs = []
for i in results:
try:
text = i.split("title:")[0]
title = i.split("title:")[1].split("link:")[0]
link = i.split("link:")[1]
docs.append({"text": text, "title": title, "link": link})
except IndexError:
pass
if settings.LLM_NAME == "llama.cpp":
docs = [docs[0]]
return docs
def gen(self):
docs = self._get_data()
# join all page_content together with a newline
docs_together = "\n".join([doc["text"] for doc in docs])
p_chat_combine = self.prompt.replace("{summaries}", docs_together)
messages_combine = [{"role": "system", "content": p_chat_combine}]
for doc in docs:
yield {"source": doc}
if len(self.chat_history) > 1:
tokens_current_history = 0
# count tokens in history
self.chat_history.reverse()
for i in self.chat_history:
if "prompt" in i and "response" in i:
tokens_batch = count_tokens(i["prompt"]) + count_tokens(
i["response"]
)
if (
tokens_current_history + tokens_batch
< settings.TOKENS_MAX_HISTORY
):
tokens_current_history += tokens_batch
messages_combine.append(
{"role": "user", "content": i["prompt"]}
)
messages_combine.append(
{"role": "system", "content": i["response"]}
)
messages_combine.append({"role": "user", "content": self.question})
llm = LLMCreator.create_llm(
settings.LLM_NAME, api_key=settings.API_KEY, user_api_key=self.user_api_key
)
completion = llm.gen_stream(model=self.gpt_model, messages=messages_combine)
for line in completion:
yield {"answer": str(line)}
def search(self):
return self._get_data()

View File

@@ -0,0 +1,19 @@
from application.retriever.classic_rag import ClassicRAG
from application.retriever.duckduck_search import DuckDuckSearch
from application.retriever.brave_search import BraveRetSearch
class RetrieverCreator:
retievers = {
'classic': ClassicRAG,
'duckduck_search': DuckDuckSearch,
'brave_search': BraveRetSearch
}
@classmethod
def create_retriever(cls, type, *args, **kwargs):
retiever_class = cls.retievers.get(type.lower())
if not retiever_class:
raise ValueError(f"No retievers class found for type {type}")
return retiever_class(*args, **kwargs)

49
application/usage.py Normal file
View File

@@ -0,0 +1,49 @@
import sys
from pymongo import MongoClient
from datetime import datetime
from application.core.settings import settings
from application.utils import count_tokens
mongo = MongoClient(settings.MONGO_URI)
db = mongo["docsgpt"]
usage_collection = db["token_usage"]
def update_token_usage(user_api_key, token_usage):
if "pytest" in sys.modules:
return
usage_data = {
"api_key": user_api_key,
"prompt_tokens": token_usage["prompt_tokens"],
"generated_tokens": token_usage["generated_tokens"],
"timestamp": datetime.now(),
}
usage_collection.insert_one(usage_data)
def gen_token_usage(func):
def wrapper(self, model, messages, stream, **kwargs):
for message in messages:
self.token_usage["prompt_tokens"] += count_tokens(message["content"])
result = func(self, model, messages, stream, **kwargs)
self.token_usage["generated_tokens"] += count_tokens(result)
update_token_usage(self.user_api_key, self.token_usage)
return result
return wrapper
def stream_token_usage(func):
def wrapper(self, model, messages, stream, **kwargs):
for message in messages:
self.token_usage["prompt_tokens"] += count_tokens(message["content"])
batch = []
result = func(self, model, messages, stream, **kwargs)
for r in result:
batch.append(r)
yield r
for line in batch:
self.token_usage["generated_tokens"] += count_tokens(line)
update_token_usage(self.user_api_key, self.token_usage)
return wrapper

6
application/utils.py Normal file
View File

@@ -0,0 +1,6 @@
from transformers import GPT2TokenizerFast
def count_tokens(string):
tokenizer = GPT2TokenizerFast.from_pretrained('gpt2')
return len(tokenizer(string)['input_ids'])

View File

@@ -15,23 +15,53 @@ from application.parser.schema.base import Document
from application.parser.token_func import group_split
try:
nltk.download('punkt', quiet=True)
nltk.download('averaged_perceptron_tagger', quiet=True)
nltk.download("punkt", quiet=True)
nltk.download("averaged_perceptron_tagger", quiet=True)
except FileExistsError:
pass
# Define a function to extract metadata from a given filename.
def metadata_from_filename(title):
store = '/'.join(title.split('/')[1:3])
return {'title': title, 'store': store}
store = "/".join(title.split("/")[1:3])
return {"title": title, "store": store}
# Define a function to generate a random string of a given length.
def generate_random_string(length):
return ''.join([string.ascii_letters[i % 52] for i in range(length)])
return "".join([string.ascii_letters[i % 52] for i in range(length)])
current_dir = os.path.dirname(
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
)
def extract_zip_recursive(zip_path, extract_to, current_depth=0, max_depth=5):
"""
Recursively extract zip files with a limit on recursion depth.
Args:
zip_path (str): Path to the zip file to be extracted.
extract_to (str): Destination path for extracted files.
current_depth (int): Current depth of recursion.
max_depth (int): Maximum allowed depth of recursion to prevent infinite loops.
"""
if current_depth > max_depth:
print(f"Reached maximum recursion depth of {max_depth}")
return
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(extract_to)
os.remove(zip_path) # Remove the zip file after extracting
# Check for nested zip files and extract them
for root, dirs, files in os.walk(extract_to):
for file in files:
if file.endswith(".zip"):
# If a nested zip file is found, extract it recursively
file_path = os.path.join(root, file)
extract_zip_recursive(file_path, root, current_depth + 1, max_depth)
current_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
# Define the main function for ingesting and processing documents.
def ingest_worker(self, directory, formats, name_job, filename, user):
@@ -62,38 +92,52 @@ def ingest_worker(self, directory, formats, name_job, filename, user):
token_check = True
min_tokens = 150
max_tokens = 1250
full_path = directory + '/' + user + '/' + name_job
recursion_depth = 2
full_path = os.path.join(directory, user, name_job)
import sys
print(full_path, file=sys.stderr)
# check if API_URL env variable is set
file_data = {'name': name_job, 'file': filename, 'user': user}
response = requests.get(urljoin(settings.API_URL, "/api/download"), params=file_data)
file_data = {"name": name_job, "file": filename, "user": user}
response = requests.get(
urljoin(settings.API_URL, "/api/download"), params=file_data
)
# check if file is in the response
print(response, file=sys.stderr)
file = response.content
if not os.path.exists(full_path):
os.makedirs(full_path)
with open(full_path + '/' + filename, 'wb') as f:
with open(os.path.join(full_path, filename), "wb") as f:
f.write(file)
# check if file is .zip and extract it
if filename.endswith('.zip'):
with zipfile.ZipFile(full_path + '/' + filename, 'r') as zip_ref:
zip_ref.extractall(full_path)
os.remove(full_path + '/' + filename)
if filename.endswith(".zip"):
extract_zip_recursive(os.path.join(full_path, filename), full_path, 0, recursion_depth)
self.update_state(state='PROGRESS', meta={'current': 1})
self.update_state(state="PROGRESS", meta={"current": 1})
raw_docs = SimpleDirectoryReader(input_dir=full_path, input_files=input_files, recursive=recursive,
required_exts=formats, num_files_limit=limit,
exclude_hidden=exclude, file_metadata=metadata_from_filename).load_data()
raw_docs = group_split(documents=raw_docs, min_tokens=min_tokens, max_tokens=max_tokens, token_check=token_check)
raw_docs = SimpleDirectoryReader(
input_dir=full_path,
input_files=input_files,
recursive=recursive,
required_exts=formats,
num_files_limit=limit,
exclude_hidden=exclude,
file_metadata=metadata_from_filename,
).load_data()
raw_docs = group_split(
documents=raw_docs,
min_tokens=min_tokens,
max_tokens=max_tokens,
token_check=token_check,
)
docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
call_openai_api(docs, full_path, self)
self.update_state(state='PROGRESS', meta={'current': 100})
self.update_state(state="PROGRESS", meta={"current": 100})
if sample:
for i in range(min(5, len(raw_docs))):
@@ -101,70 +145,80 @@ def ingest_worker(self, directory, formats, name_job, filename, user):
# get files from outputs/inputs/index.faiss and outputs/inputs/index.pkl
# and send them to the server (provide user and name in form)
file_data = {'name': name_job, 'user': user}
file_data = {"name": name_job, "user": user}
if settings.VECTOR_STORE == "faiss":
files = {'file_faiss': open(full_path + '/index.faiss', 'rb'),
'file_pkl': open(full_path + '/index.pkl', 'rb')}
response = requests.post(urljoin(settings.API_URL, "/api/upload_index"), files=files, data=file_data)
response = requests.get(urljoin(settings.API_URL, "/api/delete_old?path=" + full_path))
files = {
"file_faiss": open(full_path + "/index.faiss", "rb"),
"file_pkl": open(full_path + "/index.pkl", "rb"),
}
response = requests.post(
urljoin(settings.API_URL, "/api/upload_index"), files=files, data=file_data
)
response = requests.get(
urljoin(settings.API_URL, "/api/delete_old?path=" + full_path)
)
else:
response = requests.post(urljoin(settings.API_URL, "/api/upload_index"), data=file_data)
response = requests.post(
urljoin(settings.API_URL, "/api/upload_index"), data=file_data
)
# delete local
shutil.rmtree(full_path)
return {
'directory': directory,
'formats': formats,
'name_job': name_job,
'filename': filename,
'user': user,
'limited': False
"directory": directory,
"formats": formats,
"name_job": name_job,
"filename": filename,
"user": user,
"limited": False,
}
def remote_worker(self, source_data, name_job, user, directory = 'temp', loader = 'url'):
def remote_worker(self, source_data, name_job, user, loader, directory="temp"):
# sample = False
token_check = True
min_tokens = 150
max_tokens = 1250
full_path = directory + '/' + user + '/' + name_job
full_path = directory + "/" + user + "/" + name_job
if not os.path.exists(full_path):
os.makedirs(full_path)
self.update_state(state='PROGRESS', meta={'current': 1})
self.update_state(state="PROGRESS", meta={"current": 1})
# source_data {"data": [url]} for url type task just urls
# Use RemoteCreator to load data from URL
remote_loader = RemoteCreator.create_loader(loader)
raw_docs = remote_loader.load_data(source_data)
docs = group_split(documents=raw_docs, min_tokens=min_tokens, max_tokens=max_tokens, token_check=token_check)
docs = group_split(
documents=raw_docs,
min_tokens=min_tokens,
max_tokens=max_tokens,
token_check=token_check,
)
#docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
# docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
call_openai_api(docs, full_path, self)
self.update_state(state='PROGRESS', meta={'current': 100})
self.update_state(state="PROGRESS", meta={"current": 100})
# Proceed with uploading and cleaning as in the original function
file_data = {'name': name_job, 'user': user}
file_data = {"name": name_job, "user": user}
if settings.VECTOR_STORE == "faiss":
files = {'file_faiss': open(full_path + '/index.faiss', 'rb'),
'file_pkl': open(full_path + '/index.pkl', 'rb')}
requests.post(urljoin(settings.API_URL, "/api/upload_index"), files=files, data=file_data)
files = {
"file_faiss": open(full_path + "/index.faiss", "rb"),
"file_pkl": open(full_path + "/index.pkl", "rb"),
}
requests.post(
urljoin(settings.API_URL, "/api/upload_index"), files=files, data=file_data
)
requests.get(urljoin(settings.API_URL, "/api/delete_old?path=" + full_path))
else:
requests.post(urljoin(settings.API_URL, "/api/upload_index"), data=file_data)
shutil.rmtree(full_path)
return {
'urls': source_data,
'name_job': name_job,
'user': user,
'limited': False
}
return {"urls": source_data, "name_job": name_job, "user": user, "limited": False}

View File

@@ -1,4 +1,5 @@
from application.app import app
from application.core.settings import settings
if __name__ == "__main__":
app.run(debug=True, port=7091)
app.run(debug=settings.FLASK_DEBUG_MODE, port=7091)

241
docs/package-lock.json generated
View File

@@ -7,7 +7,7 @@
"license": "MIT",
"dependencies": {
"@vercel/analytics": "^1.1.1",
"docsgpt": "^0.3.0",
"docsgpt": "^0.3.7",
"next": "^14.0.4",
"nextra": "^2.13.2",
"nextra-theme-docs": "^2.13.2",
@@ -422,6 +422,11 @@
"node": ">=6.9.0"
}
},
"node_modules/@bpmn-io/snarkdown": {
"version": "2.2.0",
"resolved": "https://registry.npmjs.org/@bpmn-io/snarkdown/-/snarkdown-2.2.0.tgz",
"integrity": "sha512-bVD7FIoaBDZeCJkMRgnBPDeptPlto87wt2qaCjf5t8iLaevDmTPaREd6FpBEGsHlUdHFFZWRk4qAoEC5So2M0Q=="
},
"node_modules/@braintree/sanitize-url": {
"version": "6.0.4",
"resolved": "https://registry.npmjs.org/@braintree/sanitize-url/-/sanitize-url-6.0.4.tgz",
@@ -4958,11 +4963,12 @@
}
},
"node_modules/docsgpt": {
"version": "0.3.0",
"resolved": "https://registry.npmjs.org/docsgpt/-/docsgpt-0.3.0.tgz",
"integrity": "sha512-0yT2m+HAlJ+289p278c3Zi07bu2wr6zULOT/bYXtJ/nb59V2Vpfdj2xFB49+lYLSeVe8H+Ij5fFSNZ6RkVRfMQ==",
"version": "0.3.7",
"resolved": "https://registry.npmjs.org/docsgpt/-/docsgpt-0.3.7.tgz",
"integrity": "sha512-VHrXXOEFtjNTcpA8Blf3IzpLlJxOMhm/S5CM4FDjQEkdK9WWhI8yXd/0Rs/FS8oz7YbFrNxO758mlP7OtQtBBw==",
"dependencies": {
"@babel/plugin-transform-flow-strip-types": "^7.23.3",
"@bpmn-io/snarkdown": "^2.2.0",
"@parcel/resolver-glob": "^2.12.0",
"@parcel/transformer-svg-react": "^2.12.0",
"@parcel/transformer-typescript-tsc": "^2.12.0",
@@ -4972,6 +4978,7 @@
"@types/react-dom": "^18.2.19",
"class-variance-authority": "^0.7.0",
"clsx": "^2.1.0",
"dompurify": "^3.0.9",
"flow-bin": "^0.229.2",
"i": "^0.3.7",
"install": "^0.13.0",
@@ -5029,9 +5036,9 @@
}
},
"node_modules/dompurify": {
"version": "3.0.7",
"resolved": "https://registry.npmjs.org/dompurify/-/dompurify-3.0.7.tgz",
"integrity": "sha512-BViYTZoqP3ak/ULKOc101y+CtHDUvBsVgSxIF1ku0HmK6BRf+C03MC+tArMvOPtVtZp83DDh5puywKDu4sbVjQ=="
"version": "3.0.11",
"resolved": "https://registry.npmjs.org/dompurify/-/dompurify-3.0.11.tgz",
"integrity": "sha512-Fan4uMuyB26gFV3ovPoEoQbxRRPfTu3CvImyZnhGq5fsIEO+gEFLp45ISFt+kQBWsK5ulDdT0oV28jS1UrwQLg=="
},
"node_modules/domutils": {
"version": "2.8.0",
@@ -6206,9 +6213,9 @@
"integrity": "sha512-gfFQZrcTc8CnKXp6Y4/CBT3fTc0OVuDofpre4aEeEpSBPV5X5v4+Vmx+8snU7RLPrNHPKSgLxGo9YuQzz20o+w=="
},
"node_modules/katex": {
"version": "0.16.9",
"resolved": "https://registry.npmjs.org/katex/-/katex-0.16.9.tgz",
"integrity": "sha512-fsSYjWS0EEOwvy81j3vRA8TEAhQhKiqO+FQaKWp0m39qwOzHVBgAUBIXWj1pB+O2W3fIpNa6Y9KSKCVbfPhyAQ==",
"version": "0.16.10",
"resolved": "https://registry.npmjs.org/katex/-/katex-0.16.10.tgz",
"integrity": "sha512-ZiqaC04tp2O5utMsl2TEZTXxa6WSC4yo0fv5ML++D3QZv/vx2Mct0mTlRx3O+uUkjfuAgOkzsCmq5MiUEsDDdA==",
"funding": [
"https://opencollective.com/katex",
"https://github.com/sponsors/katex"
@@ -8136,9 +8143,9 @@
"integrity": "sha512-gkXMxRzUH+PB0ax9dUN0yYF0S25BqeAYqhgMaLUFmpXLEk7Fcu8f4emJuOAY0V8kjDICxROIKsTAKsV/v355xw=="
},
"node_modules/npm": {
"version": "10.5.0",
"resolved": "https://registry.npmjs.org/npm/-/npm-10.5.0.tgz",
"integrity": "sha512-Ejxwvfh9YnWVU2yA5FzoYLTW52vxHCz+MHrOFg9Cc8IFgF/6f5AGPAvb5WTay5DIUP1NIfN3VBZ0cLlGO0Ys+A==",
"version": "10.5.1",
"resolved": "https://registry.npmjs.org/npm/-/npm-10.5.1.tgz",
"integrity": "sha512-RozZuGuWbbhDM2sRhOSLIRb3DLyof6TREi0TW5b3xUEBropDhDqEHv0iAjA1zsIwXKgfIkR8GvQMd4oeKKg9eQ==",
"bundleDependencies": [
"@isaacs/string-locale-compare",
"@npmcli/arborist",
@@ -8147,6 +8154,7 @@
"@npmcli/map-workspaces",
"@npmcli/package-json",
"@npmcli/promise-spawn",
"@npmcli/redact",
"@npmcli/run-script",
"@sigstore/tuf",
"abbrev",
@@ -8219,23 +8227,24 @@
"@npmcli/map-workspaces": "^3.0.4",
"@npmcli/package-json": "^5.0.0",
"@npmcli/promise-spawn": "^7.0.1",
"@npmcli/redact": "^1.1.0",
"@npmcli/run-script": "^7.0.4",
"@sigstore/tuf": "^2.3.1",
"@sigstore/tuf": "^2.3.2",
"abbrev": "^2.0.0",
"archy": "~1.0.0",
"cacache": "^18.0.2",
"chalk": "^5.3.0",
"ci-info": "^4.0.0",
"cli-columns": "^4.0.0",
"cli-table3": "^0.6.3",
"cli-table3": "^0.6.4",
"columnify": "^1.6.0",
"fastest-levenshtein": "^1.0.16",
"fs-minipass": "^3.0.3",
"glob": "^10.3.10",
"glob": "^10.3.12",
"graceful-fs": "^4.2.11",
"hosted-git-info": "^7.0.1",
"ini": "^4.1.1",
"init-package-json": "^6.0.0",
"ini": "^4.1.2",
"init-package-json": "^6.0.2",
"is-cidr": "^5.0.3",
"json-parse-even-better-errors": "^3.0.1",
"libnpmaccess": "^8.0.1",
@@ -8250,11 +8259,11 @@
"libnpmteam": "^6.0.0",
"libnpmversion": "^5.0.1",
"make-fetch-happen": "^13.0.0",
"minimatch": "^9.0.3",
"minimatch": "^9.0.4",
"minipass": "^7.0.4",
"minipass-pipeline": "^1.2.4",
"ms": "^2.1.2",
"node-gyp": "^10.0.1",
"node-gyp": "^10.1.0",
"nopt": "^7.2.0",
"normalize-package-data": "^6.0.0",
"npm-audit-report": "^5.0.0",
@@ -8262,7 +8271,7 @@
"npm-package-arg": "^11.0.1",
"npm-pick-manifest": "^9.0.0",
"npm-profile": "^9.0.0",
"npm-registry-fetch": "^16.1.0",
"npm-registry-fetch": "^16.2.0",
"npm-user-validate": "^2.0.0",
"npmlog": "^7.0.1",
"p-map": "^4.0.0",
@@ -8270,12 +8279,12 @@
"parse-conflict-json": "^3.0.1",
"proc-log": "^3.0.0",
"qrcode-terminal": "^0.12.0",
"read": "^2.1.0",
"read": "^3.0.1",
"semver": "^7.6.0",
"spdx-expression-parse": "^3.0.1",
"ssri": "^10.0.5",
"supports-color": "^9.4.0",
"tar": "^6.2.0",
"tar": "^6.2.1",
"text-table": "~0.2.0",
"tiny-relative-date": "^1.3.0",
"treeverse": "^3.0.0",
@@ -8332,8 +8341,6 @@
},
"node_modules/npm/node_modules/@isaacs/cliui": {
"version": "8.0.2",
"resolved": "https://registry.npmjs.org/@isaacs/cliui/-/cliui-8.0.2.tgz",
"integrity": "sha512-O8jcjabXaleOG9DQ0+ARXWZBTfnP4WNAqzuiJK7ll44AmxGKv/J2M4TPjxjY3znBCfvBXFzucm1twdyFybFqEA==",
"inBundle": true,
"license": "ISC",
"dependencies": {
@@ -8350,8 +8357,6 @@
},
"node_modules/npm/node_modules/@isaacs/cliui/node_modules/ansi-regex": {
"version": "6.0.1",
"resolved": "https://registry.npmjs.org/ansi-regex/-/ansi-regex-6.0.1.tgz",
"integrity": "sha512-n5M855fKb2SsfMIiFFoVrABHJC8QtHwVx+mHWP3QcEqBHYienj5dHSgjbxtC0WEZXYt4wcD6zrQElDPhFuZgfA==",
"inBundle": true,
"license": "MIT",
"engines": {
@@ -8363,8 +8368,6 @@
},
"node_modules/npm/node_modules/@isaacs/cliui/node_modules/emoji-regex": {
"version": "9.2.2",
"resolved": "https://registry.npmjs.org/emoji-regex/-/emoji-regex-9.2.2.tgz",
"integrity": "sha512-L18DaJsXSUk2+42pv8mLs5jJT2hqFkFE4j21wOmgbUqsZ2hL72NsUU785g9RXgo3s0ZNgVl42TiHp3ZtOv/Vyg==",
"inBundle": true,
"license": "MIT"
},
@@ -8386,8 +8389,6 @@
},
"node_modules/npm/node_modules/@isaacs/cliui/node_modules/strip-ansi": {
"version": "7.1.0",
"resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-7.1.0.tgz",
"integrity": "sha512-iq6eVVI64nQQTRYq2KtEg2d2uU7LElhTJwsH4YzIHZshxlgZms/wIc4VoDQTlG/IvVIrBKG06CrZnp0qv7hkcQ==",
"inBundle": true,
"license": "MIT",
"dependencies": {
@@ -8421,7 +8422,7 @@
}
},
"node_modules/npm/node_modules/@npmcli/arborist": {
"version": "7.4.0",
"version": "7.4.1",
"inBundle": true,
"license": "ISC",
"dependencies": {
@@ -8441,12 +8442,12 @@
"hosted-git-info": "^7.0.1",
"json-parse-even-better-errors": "^3.0.0",
"json-stringify-nice": "^1.1.4",
"minimatch": "^9.0.0",
"minimatch": "^9.0.4",
"nopt": "^7.0.0",
"npm-install-checks": "^6.2.0",
"npm-package-arg": "^11.0.1",
"npm-pick-manifest": "^9.0.0",
"npm-registry-fetch": "^16.0.0",
"npm-registry-fetch": "^16.2.0",
"npmlog": "^7.0.1",
"pacote": "^17.0.4",
"parse-conflict-json": "^3.0.0",
@@ -8467,13 +8468,13 @@
}
},
"node_modules/npm/node_modules/@npmcli/config": {
"version": "8.2.0",
"version": "8.2.1",
"inBundle": true,
"license": "ISC",
"dependencies": {
"@npmcli/map-workspaces": "^3.0.2",
"ci-info": "^4.0.0",
"ini": "^4.1.0",
"ini": "^4.1.2",
"nopt": "^7.0.0",
"proc-log": "^3.0.0",
"read-package-json-fast": "^3.0.2",
@@ -8636,6 +8637,14 @@
"node": "^14.17.0 || ^16.13.0 || >=18.0.0"
}
},
"node_modules/npm/node_modules/@npmcli/redact": {
"version": "1.1.0",
"inBundle": true,
"license": "ISC",
"engines": {
"node": "^16.14.0 || >=18.0.0"
}
},
"node_modules/npm/node_modules/@npmcli/run-script": {
"version": "7.0.4",
"inBundle": true,
@@ -8653,8 +8662,6 @@
},
"node_modules/npm/node_modules/@pkgjs/parseargs": {
"version": "0.11.0",
"resolved": "https://registry.npmjs.org/@pkgjs/parseargs/-/parseargs-0.11.0.tgz",
"integrity": "sha512-+1VkjdD0QBLPodGrJUeqarH8VAIvQODIbwh9XpP5Syisf7YoQgsJKPNFoqqLQlu+VQ/tVSshMR6loPMn8U+dPg==",
"inBundle": true,
"license": "MIT",
"optional": true,
@@ -8704,7 +8711,7 @@
}
},
"node_modules/npm/node_modules/@sigstore/tuf": {
"version": "2.3.1",
"version": "2.3.2",
"inBundle": true,
"license": "Apache-2.0",
"dependencies": {
@@ -8757,7 +8764,7 @@
}
},
"node_modules/npm/node_modules/agent-base": {
"version": "7.1.0",
"version": "7.1.1",
"inBundle": true,
"license": "MIT",
"dependencies": {
@@ -8781,8 +8788,6 @@
},
"node_modules/npm/node_modules/ansi-regex": {
"version": "5.0.1",
"resolved": "https://registry.npmjs.org/ansi-regex/-/ansi-regex-5.0.1.tgz",
"integrity": "sha512-quJQXlTSUGL2LH9SUXo8VwsY4soanhgo6LNSm84E1LBcE8s3O0wpdiRzyR9z/ZZJMlMWv37qOOb9pdJlMUEKFQ==",
"inBundle": true,
"license": "MIT",
"engines": {
@@ -8791,8 +8796,6 @@
},
"node_modules/npm/node_modules/ansi-styles": {
"version": "6.2.1",
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-6.2.1.tgz",
"integrity": "sha512-bN798gFfQX+viw3R7yrGWRqnrN2oRkEkUjjl4JNn4E8GxxbjtG3FbrEIIY3l8/hrwUwIeCZvi4QuOTP4MErVug==",
"inBundle": true,
"license": "MIT",
"engines": {
@@ -8822,8 +8825,6 @@
},
"node_modules/npm/node_modules/balanced-match": {
"version": "1.0.2",
"resolved": "https://registry.npmjs.org/balanced-match/-/balanced-match-1.0.2.tgz",
"integrity": "sha512-3oSeUO0TMV67hN1AmbXsK4yaqU7tjiHlbxRDZOpH0KW9+CeX4bRAaX0Anxt0tx2MrpRpWwQaPwIlISEJhYU5Pw==",
"inBundle": true,
"license": "MIT"
},
@@ -8842,17 +8843,18 @@
}
},
"node_modules/npm/node_modules/binary-extensions": {
"version": "2.2.0",
"version": "2.3.0",
"inBundle": true,
"license": "MIT",
"engines": {
"node": ">=8"
},
"funding": {
"url": "https://github.com/sponsors/sindresorhus"
}
},
"node_modules/npm/node_modules/brace-expansion": {
"version": "2.0.1",
"resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-2.0.1.tgz",
"integrity": "sha512-XnAIvQ8eM+kC6aULx6wuQiwVsnzsi9d3WxzV3FpWTGA19F621kwdbsAcFKXgKUHZWsy+mY6iL1sHTxWEFCytDA==",
"inBundle": true,
"license": "MIT",
"dependencies": {
@@ -8954,7 +8956,7 @@
}
},
"node_modules/npm/node_modules/cli-table3": {
"version": "0.6.3",
"version": "0.6.4",
"inBundle": true,
"license": "MIT",
"dependencies": {
@@ -8985,8 +8987,6 @@
},
"node_modules/npm/node_modules/color-convert": {
"version": "2.0.1",
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz",
"integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==",
"inBundle": true,
"license": "MIT",
"dependencies": {
@@ -8998,8 +8998,6 @@
},
"node_modules/npm/node_modules/color-name": {
"version": "1.1.4",
"resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz",
"integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==",
"inBundle": true,
"license": "MIT"
},
@@ -9035,8 +9033,6 @@
},
"node_modules/npm/node_modules/cross-spawn": {
"version": "7.0.3",
"resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.3.tgz",
"integrity": "sha512-iRDPJKUPVEND7dHPO8rkbOnPpyDygcDFtWjpeWNCgy8WP2rXcxXL8TskReQl6OrB2G7+UJrags1q15Fudc7G6w==",
"inBundle": true,
"license": "MIT",
"dependencies": {
@@ -9064,8 +9060,6 @@
},
"node_modules/npm/node_modules/cssesc": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/cssesc/-/cssesc-3.0.0.tgz",
"integrity": "sha512-/Tb/JcjK111nNScGob5MNtsntNM1aCNUDipB/TkwZFhyDrrE47SOx/18wF2bbjgc3ZzCSKW1T5nt5EbFoAz/Vg==",
"inBundle": true,
"license": "MIT",
"bin": {
@@ -9117,15 +9111,11 @@
},
"node_modules/npm/node_modules/eastasianwidth": {
"version": "0.2.0",
"resolved": "https://registry.npmjs.org/eastasianwidth/-/eastasianwidth-0.2.0.tgz",
"integrity": "sha512-I88TYZWc9XiYHRQ4/3c5rjjfgkjhLyW2luGIheGERbNQ6OY7yTybanSpDXZa8y7VUP9YmDcYa+eyq4ca7iLqWA==",
"inBundle": true,
"license": "MIT"
},
"node_modules/npm/node_modules/emoji-regex": {
"version": "8.0.0",
"resolved": "https://registry.npmjs.org/emoji-regex/-/emoji-regex-8.0.0.tgz",
"integrity": "sha512-MSjYzcWNOA0ewAHpz0MxpYFvwg6yjy1NG3xteoqz644VCo/RPgnr1/GGt+ic3iJTzQ8Eu3TdM14SawnVUmGE6A==",
"inBundle": true,
"license": "MIT"
},
@@ -9166,8 +9156,6 @@
},
"node_modules/npm/node_modules/foreground-child": {
"version": "3.1.1",
"resolved": "https://registry.npmjs.org/foreground-child/-/foreground-child-3.1.1.tgz",
"integrity": "sha512-TMKDUnIte6bfb5nWv7V/caI169OHgvwjb7V4WkeUvbQQdjr5rWKqHFiKWb/fcOwB+CzBT+qbWjvj+DVwRskpIg==",
"inBundle": true,
"license": "ISC",
"dependencies": {
@@ -9194,8 +9182,6 @@
},
"node_modules/npm/node_modules/function-bind": {
"version": "1.1.2",
"resolved": "https://registry.npmjs.org/function-bind/-/function-bind-1.1.2.tgz",
"integrity": "sha512-7XHNxH7qX9xG5mIwxkhumTox/MIRNcOgDrxWsMt2pAr23WHp6MrRlN7FBSFpCpr+oVO0F744iUgR82nJMfG2SA==",
"inBundle": true,
"license": "MIT",
"funding": {
@@ -9221,17 +9207,15 @@
}
},
"node_modules/npm/node_modules/glob": {
"version": "10.3.10",
"resolved": "https://registry.npmjs.org/glob/-/glob-10.3.10.tgz",
"integrity": "sha512-fa46+tv1Ak0UPK1TOy/pZrIybNNt4HCv7SDzwyfiOZkvZLEbjsZkJBPtDHVshZjbecAoAGSC20MjLDG/qr679g==",
"version": "10.3.12",
"inBundle": true,
"license": "ISC",
"dependencies": {
"foreground-child": "^3.1.0",
"jackspeak": "^2.3.5",
"jackspeak": "^2.3.6",
"minimatch": "^9.0.1",
"minipass": "^5.0.0 || ^6.0.2 || ^7.0.0",
"path-scurry": "^1.10.1"
"minipass": "^7.0.4",
"path-scurry": "^1.10.2"
},
"bin": {
"glob": "dist/esm/bin.mjs"
@@ -9245,8 +9229,6 @@
},
"node_modules/npm/node_modules/graceful-fs": {
"version": "4.2.11",
"resolved": "https://registry.npmjs.org/graceful-fs/-/graceful-fs-4.2.11.tgz",
"integrity": "sha512-RbJ5/jmFcNNCcDV5o9eTnBLJ/HszWV0P73bc+Ff4nS/rJj+YaS6IGyiOL0VoBYX+l1Wrl3k63h/KrH+nhJ0XvQ==",
"inBundle": true,
"license": "ISC"
},
@@ -9346,7 +9328,7 @@
}
},
"node_modules/npm/node_modules/ini": {
"version": "4.1.1",
"version": "4.1.2",
"inBundle": true,
"license": "ISC",
"engines": {
@@ -9354,14 +9336,14 @@
}
},
"node_modules/npm/node_modules/init-package-json": {
"version": "6.0.0",
"version": "6.0.2",
"inBundle": true,
"license": "ISC",
"dependencies": {
"@npmcli/package-json": "^5.0.0",
"npm-package-arg": "^11.0.0",
"promzard": "^1.0.0",
"read": "^2.0.0",
"read-package-json": "^7.0.0",
"read": "^3.0.1",
"semver": "^7.3.5",
"validate-npm-package-license": "^3.0.4",
"validate-npm-package-name": "^5.0.0"
@@ -9422,8 +9404,6 @@
},
"node_modules/npm/node_modules/is-fullwidth-code-point": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/is-fullwidth-code-point/-/is-fullwidth-code-point-3.0.0.tgz",
"integrity": "sha512-zymm5+u+sCsSWyD9qNaejV3DFvhCKclKdizYaJUuHA83RLjb7nSuGnddCHGv0hk+KY7BMAlsWeK4Ueg6EV6XQg==",
"inBundle": true,
"license": "MIT",
"engines": {
@@ -9437,15 +9417,11 @@
},
"node_modules/npm/node_modules/isexe": {
"version": "2.0.0",
"resolved": "https://registry.npmjs.org/isexe/-/isexe-2.0.0.tgz",
"integrity": "sha512-RHxMLp9lnKHGHRng9QFhRCMbYAcVpn69smSGcq3f36xjgVVWThj4qqLbTLlq7Ssj8B+fIQ1EuCEGI2lKsyQeIw==",
"inBundle": true,
"license": "ISC"
},
"node_modules/npm/node_modules/jackspeak": {
"version": "2.3.6",
"resolved": "https://registry.npmjs.org/jackspeak/-/jackspeak-2.3.6.tgz",
"integrity": "sha512-N3yCS/NegsOBokc8GAdM8UcmfsKiSS8cipheD/nivzr700H+nsMOxJjQnvwOcRYVuFkdH0wGUvW2WbXGmrZGbQ==",
"inBundle": true,
"license": "BlueOak-1.0.0",
"dependencies": {
@@ -9501,38 +9477,38 @@
"license": "MIT"
},
"node_modules/npm/node_modules/libnpmaccess": {
"version": "8.0.2",
"version": "8.0.3",
"inBundle": true,
"license": "ISC",
"dependencies": {
"npm-package-arg": "^11.0.1",
"npm-registry-fetch": "^16.0.0"
"npm-registry-fetch": "^16.2.0"
},
"engines": {
"node": "^16.14.0 || >=18.0.0"
}
},
"node_modules/npm/node_modules/libnpmdiff": {
"version": "6.0.7",
"version": "6.0.8",
"inBundle": true,
"license": "ISC",
"dependencies": {
"@npmcli/arborist": "^7.2.1",
"@npmcli/disparity-colors": "^3.0.0",
"@npmcli/installed-package-contents": "^2.0.2",
"binary-extensions": "^2.2.0",
"binary-extensions": "^2.3.0",
"diff": "^5.1.0",
"minimatch": "^9.0.0",
"minimatch": "^9.0.4",
"npm-package-arg": "^11.0.1",
"pacote": "^17.0.4",
"tar": "^6.2.0"
"tar": "^6.2.1"
},
"engines": {
"node": "^16.14.0 || >=18.0.0"
}
},
"node_modules/npm/node_modules/libnpmexec": {
"version": "7.0.8",
"version": "7.0.9",
"inBundle": true,
"license": "ISC",
"dependencies": {
@@ -9543,7 +9519,7 @@
"npmlog": "^7.0.1",
"pacote": "^17.0.4",
"proc-log": "^3.0.0",
"read": "^2.0.0",
"read": "^3.0.1",
"read-package-json-fast": "^3.0.2",
"semver": "^7.3.7",
"walk-up-path": "^3.0.1"
@@ -9553,7 +9529,7 @@
}
},
"node_modules/npm/node_modules/libnpmfund": {
"version": "5.0.5",
"version": "5.0.6",
"inBundle": true,
"license": "ISC",
"dependencies": {
@@ -9564,31 +9540,31 @@
}
},
"node_modules/npm/node_modules/libnpmhook": {
"version": "10.0.1",
"version": "10.0.2",
"inBundle": true,
"license": "ISC",
"dependencies": {
"aproba": "^2.0.0",
"npm-registry-fetch": "^16.0.0"
"npm-registry-fetch": "^16.2.0"
},
"engines": {
"node": "^16.14.0 || >=18.0.0"
}
},
"node_modules/npm/node_modules/libnpmorg": {
"version": "6.0.2",
"version": "6.0.3",
"inBundle": true,
"license": "ISC",
"dependencies": {
"aproba": "^2.0.0",
"npm-registry-fetch": "^16.0.0"
"npm-registry-fetch": "^16.2.0"
},
"engines": {
"node": "^16.14.0 || >=18.0.0"
}
},
"node_modules/npm/node_modules/libnpmpack": {
"version": "6.0.7",
"version": "6.0.8",
"inBundle": true,
"license": "ISC",
"dependencies": {
@@ -9602,14 +9578,14 @@
}
},
"node_modules/npm/node_modules/libnpmpublish": {
"version": "9.0.4",
"version": "9.0.5",
"inBundle": true,
"license": "ISC",
"dependencies": {
"ci-info": "^4.0.0",
"normalize-package-data": "^6.0.0",
"npm-package-arg": "^11.0.1",
"npm-registry-fetch": "^16.0.0",
"npm-registry-fetch": "^16.2.0",
"proc-log": "^3.0.0",
"semver": "^7.3.7",
"sigstore": "^2.2.0",
@@ -9620,23 +9596,23 @@
}
},
"node_modules/npm/node_modules/libnpmsearch": {
"version": "7.0.1",
"version": "7.0.2",
"inBundle": true,
"license": "ISC",
"dependencies": {
"npm-registry-fetch": "^16.0.0"
"npm-registry-fetch": "^16.2.0"
},
"engines": {
"node": "^16.14.0 || >=18.0.0"
}
},
"node_modules/npm/node_modules/libnpmteam": {
"version": "6.0.1",
"version": "6.0.2",
"inBundle": true,
"license": "ISC",
"dependencies": {
"aproba": "^2.0.0",
"npm-registry-fetch": "^16.0.0"
"npm-registry-fetch": "^16.2.0"
},
"engines": {
"node": "^16.14.0 || >=18.0.0"
@@ -9687,9 +9663,7 @@
}
},
"node_modules/npm/node_modules/minimatch": {
"version": "9.0.3",
"resolved": "https://registry.npmjs.org/minimatch/-/minimatch-9.0.3.tgz",
"integrity": "sha512-RHiac9mvaRw0x3AYRgDC1CxAP7HTcNrrECeA8YYJeWnpo+2Q5CegtZjaotWTWxDG3UeGA1coE05iH1mPjT/2mg==",
"version": "9.0.4",
"inBundle": true,
"license": "ISC",
"dependencies": {
@@ -9704,8 +9678,6 @@
},
"node_modules/npm/node_modules/minipass": {
"version": "7.0.4",
"resolved": "https://registry.npmjs.org/minipass/-/minipass-7.0.4.tgz",
"integrity": "sha512-jYofLM5Dam9279rdkWzqHozUo4ybjdZmCsDHePy5V/PbBcVMiSZR97gmAy45aqi8CK1lG2ECd356FU86avfwUQ==",
"inBundle": true,
"license": "ISC",
"engines": {
@@ -9881,7 +9853,7 @@
}
},
"node_modules/npm/node_modules/node-gyp": {
"version": "10.0.1",
"version": "10.1.0",
"inBundle": true,
"license": "MIT",
"dependencies": {
@@ -10021,10 +9993,11 @@
}
},
"node_modules/npm/node_modules/npm-registry-fetch": {
"version": "16.1.0",
"version": "16.2.0",
"inBundle": true,
"license": "ISC",
"dependencies": {
"@npmcli/redact": "^1.1.0",
"make-fetch-happen": "^13.0.0",
"minipass": "^7.0.2",
"minipass-fetch": "^3.0.0",
@@ -10119,8 +10092,6 @@
},
"node_modules/npm/node_modules/path-key": {
"version": "3.1.1",
"resolved": "https://registry.npmjs.org/path-key/-/path-key-3.1.1.tgz",
"integrity": "sha512-ojmeN0qd+y0jszEtoY48r0Peq5dwMEkIlCOu6Q5f41lfkswXuKtYrhgoTpLnyIcHm24Uhqx+5Tqm2InSwLhE6Q==",
"inBundle": true,
"license": "MIT",
"engines": {
@@ -10128,13 +10099,11 @@
}
},
"node_modules/npm/node_modules/path-scurry": {
"version": "1.10.1",
"resolved": "https://registry.npmjs.org/path-scurry/-/path-scurry-1.10.1.tgz",
"integrity": "sha512-MkhCqzzBEpPvxxQ71Md0b1Kk51W01lrYvlMzSUaIzNsODdd7mqhiimSZlr+VegAz5Z6Vzt9Xg2ttE//XBhH3EQ==",
"version": "1.10.2",
"inBundle": true,
"license": "BlueOak-1.0.0",
"dependencies": {
"lru-cache": "^9.1.1 || ^10.0.0",
"lru-cache": "^10.2.0",
"minipass": "^5.0.0 || ^6.0.2 || ^7.0.0"
},
"engines": {
@@ -10198,11 +10167,11 @@
}
},
"node_modules/npm/node_modules/promzard": {
"version": "1.0.0",
"version": "1.0.1",
"inBundle": true,
"license": "ISC",
"dependencies": {
"read": "^2.0.0"
"read": "^3.0.1"
},
"engines": {
"node": "^14.17.0 || ^16.13.0 || >=18.0.0"
@@ -10216,11 +10185,11 @@
}
},
"node_modules/npm/node_modules/read": {
"version": "2.1.0",
"version": "3.0.1",
"inBundle": true,
"license": "ISC",
"dependencies": {
"mute-stream": "~1.0.0"
"mute-stream": "^1.0.0"
},
"engines": {
"node": "^14.17.0 || ^16.13.0 || >=18.0.0"
@@ -10270,8 +10239,6 @@
},
"node_modules/npm/node_modules/safer-buffer": {
"version": "2.1.2",
"resolved": "https://registry.npmjs.org/safer-buffer/-/safer-buffer-2.1.2.tgz",
"integrity": "sha512-YZo3K82SD7Riyi0E1EQPojLz7kpepnSQI9IyPbHHg1XXXevb5dJI7tpyN2ADxGcQbHG7vcyRHk0cbwqcQriUtg==",
"inBundle": true,
"license": "MIT",
"optional": true
@@ -10308,8 +10275,6 @@
},
"node_modules/npm/node_modules/shebang-command": {
"version": "2.0.0",
"resolved": "https://registry.npmjs.org/shebang-command/-/shebang-command-2.0.0.tgz",
"integrity": "sha512-kHxr2zZpYtdmrN1qDjrrX/Z1rR1kG8Dx+gkpK1G4eXmvXswmcE1hTWBWYUzlraYw1/yZp6YuDY77YtvbN0dmDA==",
"inBundle": true,
"license": "MIT",
"dependencies": {
@@ -10321,8 +10286,6 @@
},
"node_modules/npm/node_modules/shebang-regex": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/shebang-regex/-/shebang-regex-3.0.0.tgz",
"integrity": "sha512-7++dFhtcx3353uBaq8DDR4NuxBetBzC7ZQOhmTQInHEd6bSrXdiEyzCvG07Z44UYdLShWUyXt5M/yhz8ekcb1A==",
"inBundle": true,
"license": "MIT",
"engines": {
@@ -10331,8 +10294,6 @@
},
"node_modules/npm/node_modules/signal-exit": {
"version": "4.1.0",
"resolved": "https://registry.npmjs.org/signal-exit/-/signal-exit-4.1.0.tgz",
"integrity": "sha512-bzyZ1e88w9O1iNJbKnOlvYTrWPDl46O1bG0D3XInv+9tkPrxrN8jUUTiFlDkkmKWgn1M6CfIA13SuGqOa9Korw==",
"inBundle": true,
"license": "ISC",
"engines": {
@@ -10434,8 +10395,6 @@
},
"node_modules/npm/node_modules/string-width": {
"version": "4.2.3",
"resolved": "https://registry.npmjs.org/string-width/-/string-width-4.2.3.tgz",
"integrity": "sha512-wKyQRQpjJ0sIp62ErSZdGsjMJWsap5oRNihHhu6G7JVO/9jIB6UyevL+tXuOqrng8j/cxKTWyWUwvSTriiZz/g==",
"inBundle": true,
"license": "MIT",
"dependencies": {
@@ -10450,8 +10409,6 @@
"node_modules/npm/node_modules/string-width-cjs": {
"name": "string-width",
"version": "4.2.3",
"resolved": "https://registry.npmjs.org/string-width/-/string-width-4.2.3.tgz",
"integrity": "sha512-wKyQRQpjJ0sIp62ErSZdGsjMJWsap5oRNihHhu6G7JVO/9jIB6UyevL+tXuOqrng8j/cxKTWyWUwvSTriiZz/g==",
"inBundle": true,
"license": "MIT",
"dependencies": {
@@ -10465,8 +10422,6 @@
},
"node_modules/npm/node_modules/strip-ansi": {
"version": "6.0.1",
"resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-6.0.1.tgz",
"integrity": "sha512-Y38VPSHcqkFrCpFnQ9vuSXmquuv5oXOKpGeT6aGrr3o3Gc9AlVa6JBfUSOCnbxGGZF+/0ooI7KrPuUSztUdU5A==",
"inBundle": true,
"license": "MIT",
"dependencies": {
@@ -10479,8 +10434,6 @@
"node_modules/npm/node_modules/strip-ansi-cjs": {
"name": "strip-ansi",
"version": "6.0.1",
"resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-6.0.1.tgz",
"integrity": "sha512-Y38VPSHcqkFrCpFnQ9vuSXmquuv5oXOKpGeT6aGrr3o3Gc9AlVa6JBfUSOCnbxGGZF+/0ooI7KrPuUSztUdU5A==",
"inBundle": true,
"license": "MIT",
"dependencies": {
@@ -10502,7 +10455,7 @@
}
},
"node_modules/npm/node_modules/tar": {
"version": "6.2.0",
"version": "6.2.1",
"inBundle": true,
"license": "ISC",
"dependencies": {
@@ -10602,8 +10555,6 @@
},
"node_modules/npm/node_modules/util-deprecate": {
"version": "1.0.2",
"resolved": "https://registry.npmjs.org/util-deprecate/-/util-deprecate-1.0.2.tgz",
"integrity": "sha512-EPD5q1uXyFxJpCrLnCc1nHnq3gOa6DZBocAIiI2TaSCA7VCJ1UJDMagCzIkXNsUYfD1daK//LTEQ8xiIbrHtcw==",
"inBundle": true,
"license": "MIT"
},
@@ -10672,8 +10623,6 @@
},
"node_modules/npm/node_modules/wrap-ansi": {
"version": "8.1.0",
"resolved": "https://registry.npmjs.org/wrap-ansi/-/wrap-ansi-8.1.0.tgz",
"integrity": "sha512-si7QWI6zUMq56bESFvagtmzMdGOtoxfR+Sez11Mobfc7tm+VkUckk9bW2UeffTGVUbOksxmSw0AA2gs8g71NCQ==",
"inBundle": true,
"license": "MIT",
"dependencies": {
@@ -10691,8 +10640,6 @@
"node_modules/npm/node_modules/wrap-ansi-cjs": {
"name": "wrap-ansi",
"version": "7.0.0",
"resolved": "https://registry.npmjs.org/wrap-ansi/-/wrap-ansi-7.0.0.tgz",
"integrity": "sha512-YVGIj2kamLSTxw6NsZjoBxfSwsn0ycdesmc4p+Q21c5zPuZ1pl+NfxVdxPtdHvmNVOQ6XSYG4AUtyt/Fi7D16Q==",
"inBundle": true,
"license": "MIT",
"dependencies": {
@@ -10723,8 +10670,6 @@
},
"node_modules/npm/node_modules/wrap-ansi/node_modules/ansi-regex": {
"version": "6.0.1",
"resolved": "https://registry.npmjs.org/ansi-regex/-/ansi-regex-6.0.1.tgz",
"integrity": "sha512-n5M855fKb2SsfMIiFFoVrABHJC8QtHwVx+mHWP3QcEqBHYienj5dHSgjbxtC0WEZXYt4wcD6zrQElDPhFuZgfA==",
"inBundle": true,
"license": "MIT",
"engines": {
@@ -10736,8 +10681,6 @@
},
"node_modules/npm/node_modules/wrap-ansi/node_modules/emoji-regex": {
"version": "9.2.2",
"resolved": "https://registry.npmjs.org/emoji-regex/-/emoji-regex-9.2.2.tgz",
"integrity": "sha512-L18DaJsXSUk2+42pv8mLs5jJT2hqFkFE4j21wOmgbUqsZ2hL72NsUU785g9RXgo3s0ZNgVl42TiHp3ZtOv/Vyg==",
"inBundle": true,
"license": "MIT"
},
@@ -10759,8 +10702,6 @@
},
"node_modules/npm/node_modules/wrap-ansi/node_modules/strip-ansi": {
"version": "7.1.0",
"resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-7.1.0.tgz",
"integrity": "sha512-iq6eVVI64nQQTRYq2KtEg2d2uU7LElhTJwsH4YzIHZshxlgZms/wIc4VoDQTlG/IvVIrBKG06CrZnp0qv7hkcQ==",
"inBundle": true,
"license": "MIT",
"dependencies": {

View File

@@ -227,3 +227,124 @@ JSON response indicating the status of the operation:
```json
{ "status": "ok" }
```
### 7. /api/get_api_keys
**Description:**
The endpoint retrieves a list of API keys for the user.
**Request:**
**Method**: `GET`
**Sample JavaScript Fetch Request:**
```js
// get_api_keys (GET http://127.0.0.1:5000/api/get_api_keys)
fetch("http://localhost:5001/api/get_api_keys", {
"method": "GET",
"headers": {
"Content-Type": "application/json; charset=utf-8"
},
})
.then((res) => res.text())
.then(console.log.bind(console))
```
**Response:**
JSON response with a list of created API keys:
```json
[
{
"id": "string",
"name": "string",
"key": "string",
"source": "string"
},
...
]
```
### 8. /api/create_api_key
**Description:**
Create a new API key for the user.
**Request:**
**Method**: `POST`
**Headers**: Content-Type should be set to `application/json; charset=utf-8`
**Request Body**: JSON object with the following fields:
* `name` — A name for the API key.
* `source` — The source documents that will be used.
* `prompt_id` — The prompt ID.
* `chunks` — The number of chunks used to process an answer.
Here is a JavaScript Fetch Request example:
```js
// create_api_key (POST http://127.0.0.1:5000/api/create_api_key)
fetch("http://127.0.0.1:5000/api/create_api_key", {
"method": "POST",
"headers": {
"Content-Type": "application/json; charset=utf-8"
},
"body": JSON.stringify({"name":"Example Key Name",
"source":"Example Source",
"prompt_id":"creative",
"chunks":"2"})
})
.then((res) => res.json())
.then(console.log.bind(console))
```
**Response**
In response, you will get a JSON document containing the `id` and `key`:
```json
{
"id": "string",
"key": "string"
}
```
### 9. /api/delete_api_key
**Description:**
Delete an API key for the user.
**Request:**
**Method**: `POST`
**Headers**: Content-Type should be set to `application/json; charset=utf-8`
**Request Body**: JSON object with the field:
* `id` — The unique identifier of the API key to be deleted.
Here is a JavaScript Fetch Request example:
```js
// delete_api_key (POST http://127.0.0.1:5000/api/delete_api_key)
fetch("http://127.0.0.1:5000/api/delete_api_key", {
"method": "POST",
"headers": {
"Content-Type": "application/json; charset=utf-8"
},
"body": JSON.stringify({"id":"API_KEY_ID"})
})
.then((res) => res.json())
.then(console.log.bind(console))
```
**Response:**
In response, you will get a JSON document indicating the status of the operation:
```json
{
"status": "ok"
}
```

View File

@@ -4,7 +4,11 @@
"href": "/Extensions/Chatwoot-extension"
},
"react-widget": {
"title": "🏗️ Widget setup",
"href": "/Extensions/react-widget"
}
"title": "🏗️ Widget setup",
"href": "/Extensions/react-widget"
},
"api-key-guide": {
"title": "🔐 API Keys guide",
"href": "/Extensions/api-key-guide"
}
}

View File

@@ -0,0 +1,30 @@
## Guide to DocsGPT API Keys
DocsGPT API keys are essential for developers and users who wish to integrate the DocsGPT models into external applications, such as the our widget. This guide will walk you through the steps of obtaining an API key, starting from uploading your document to understanding the key variables associated with API keys.
### Uploading Your Document
Before creating your first API key, you must upload the document that will be linked to this key. You can upload your document through two methods:
- **GUI Web App Upload:** A user-friendly graphical interface that allows for easy upload and management of documents.
- **Using `/api/upload` Method:** For users comfortable with API calls, this method provides a direct way to upload documents.
### Obtaining Your API Key
After uploading your document, you can obtain an API key either through the graphical user interface or via an API call:
- **Graphical User Interface:** Navigate to the Settings section of the DocsGPT web app, find the API Keys option, and press 'Create New' to generate your key.
- **API Call:** Alternatively, you can use the `/api/create_api_key` endpoint to create a new API key. For detailed instructions, visit [DocsGPT API Documentation](https://docs.docsgpt.co.uk/Developing/API-docs#8-apicreate_api_key).
### Understanding Key Variables
Upon creating your API key, you will encounter several key variables. Each serves a specific purpose:
- **Name:** Assign a name to your API key for easy identification.
- **Source:** Indicates the source document(s) linked to your API key, which DocsGPT will use to generate responses.
- **ID:** A unique identifier for your API key. You can view this by making a call to `/api/get_api_keys`.
- **Key:** The API key itself, which will be used in your application to authenticate API requests.
With your API key ready, you can now integrate DocsGPT into your application, such as the DocsGPT Widget or any other software, via `/api/answer` or `/stream` endpoints. The source document is preset with the API key, allowing you to bypass fields like `selectDocs` and `active_docs` during implementation.
Congratulations on taking the first step towards enhancing your applications with DocsGPT! With this guide, you're now equipped to navigate the process of obtaining and understanding DocsGPT API keys.

View File

@@ -4,7 +4,7 @@ export default function MyApp({ Component, pageProps }) {
return (
<>
<Component {...pageProps} />
<DocsGPTWidget selectDocs="local/docsgpt-sep.zip/"/>
<DocsGPTWidget apiKey="d61a020c-ac8f-4f23-bb98-458e4da3c240" />
</>
)
}

View File

@@ -1,12 +1,12 @@
{
"name": "docsgpt",
"version": "0.3.6",
"version": "0.3.7",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "docsgpt",
"version": "0.3.6",
"version": "0.3.7",
"license": "Apache-2.0",
"dependencies": {
"@babel/plugin-transform-flow-strip-types": "^7.23.3",

View File

@@ -19,7 +19,7 @@
},
"scripts": {
"build": "parcel build src/index.ts",
"dev": "parcel",
"dev": "parcel src/index.html -p 3000",
"test": "jest",
"lint": "eslint",
"check": "tsc --noEmit",

View File

@@ -1,8 +1,7 @@
"use client";
import { Fragment, useEffect, useRef, useState } from 'react'
import { PaperPlaneIcon, RocketIcon, ExclamationTriangleIcon, Cross2Icon } from '@radix-ui/react-icons';
import { MESSAGE_TYPE } from '../models/types';
import { Query, Status } from '../models/types';
import { MESSAGE_TYPE, Query, Status } from '../types/index';
import MessageIcon from '../assets/message.svg'
import { fetchAnswerStreaming } from '../requests/streamingApi';
import styled, { keyframes, createGlobalStyle } from 'styled-components';
@@ -285,7 +284,7 @@ const Hero = ({ title, description }: { title: string, description: string }) =>
export const DocsGPTWidget = ({
apiHost = 'https://gptcloud.arc53.com',
selectDocs = 'default',
apiKey = 'docsgpt-public',
apiKey = '82962c9a-aa77-4152-94e5-a4f84fd44c6a',
avatar = 'https://d3dg1063dc54p9.cloudfront.net/cute-docsgpt.png',
title = 'Get AI assistance',
description = 'DocsGPT\'s AI Chatbot is here to help',

View File

@@ -0,0 +1,13 @@
export type MESSAGE_TYPE = 'QUESTION' | 'ANSWER' | 'ERROR';
export type Status = 'idle' | 'loading' | 'failed';
export type FEEDBACK = 'LIKE' | 'DISLIKE';
export interface Query {
prompt: string;
response?: string;
feedback?: FEEDBACK;
error?: string;
sources?: { title: string; text: string }[];
conversationId?: string | null;
title?: string | null;
}

View File

@@ -44,7 +44,7 @@
"prettier-plugin-tailwindcss": "^0.2.2",
"tailwindcss": "^3.2.4",
"typescript": "^4.9.5",
"vite": "^5.0.12",
"vite": "^5.0.13",
"vite-plugin-svgr": "^4.2.0"
}
},
@@ -7855,9 +7855,9 @@
}
},
"node_modules/vite": {
"version": "5.0.12",
"resolved": "https://registry.npmjs.org/vite/-/vite-5.0.12.tgz",
"integrity": "sha512-4hsnEkG3q0N4Tzf1+t6NdN9dg/L3BM+q8SWgbSPnJvrgH2kgdyzfVJwbR1ic69/4uMJJ/3dqDZZE5/WwqW8U1w==",
"version": "5.0.13",
"resolved": "https://registry.npmjs.org/vite/-/vite-5.0.13.tgz",
"integrity": "sha512-/9ovhv2M2dGTuA+dY93B9trfyWMDRQw2jdVBhHNP6wr0oF34wG2i/N55801iZIpgUpnHDm4F/FabGQLyc+eOgg==",
"dev": true,
"dependencies": {
"esbuild": "^0.19.3",

View File

@@ -55,7 +55,7 @@
"prettier-plugin-tailwindcss": "^0.2.2",
"tailwindcss": "^3.2.4",
"typescript": "^4.9.5",
"vite": "^5.0.12",
"vite": "^5.0.13",
"vite-plugin-svgr": "^4.2.0"
}
}

View File

@@ -6,7 +6,7 @@ import PageNotFound from './PageNotFound';
import { inject } from '@vercel/analytics';
import { useMediaQuery } from './hooks';
import { useState } from 'react';
import Setting from './Setting';
import Setting from './settings';
inject();

View File

@@ -7,9 +7,7 @@ export default function Hero({ className = '' }: { className?: string }) {
const [isDarkTheme] = useDarkTheme();
return (
<div
className={`mt-14 ${
isMobile ? 'mb-2' : 'mb-12'
} flex flex-col text-black-1000 dark:text-bright-gray`}
className={`mt-14 mb-32 flex flex-col text-black-1000 dark:text-bright-gray lg:mt-6`}
>
<div className=" mb-2 flex items-center justify-center sm:mb-10">
<p className="mr-2 text-4xl font-semibold">DocsGPT</p>
@@ -39,16 +37,14 @@ export default function Hero({ className = '' }: { className?: string }) {
</>
)}
<div
className={`sections ${
isMobile ? '' : 'mt-1'
} flex flex-wrap items-center justify-center gap-2 sm:gap-1 md:gap-0`}
className={`mt-0 flex flex-wrap items-center justify-center gap-2 sm:mt-1 sm:gap-4 md:gap-4 lg:gap-0`}
>
{/* first */}
<div className="h-auto rounded-[50px] bg-gradient-to-l from-[#6EE7B7]/70 via-[#3B82F6] to-[#9333EA]/50 p-1 dark:from-[#D16FF8] dark:via-[#48E6E0] dark:to-[#C85EF6] md:h-60 md:rounded-tr-none md:rounded-br-none">
<div className="h-auto rounded-[50px] bg-gradient-to-l from-[#6EE7B7]/70 via-[#3B82F6] to-[#9333EA]/50 p-1 dark:from-[#D16FF8] dark:via-[#48E6E0] dark:to-[#C85EF6] lg:h-60 lg:rounded-tr-none lg:rounded-br-none">
<div
className={`h-full rounded-[45px] bg-white dark:bg-dark-charcoal p-${
isMobile ? '3.5' : '6 py-8'
} md:rounded-tr-none md:rounded-br-none`}
} lg:rounded-tr-none lg:rounded-br-none`}
>
{/* Add Mobile check here */}
{isMobile ? (
@@ -93,11 +89,11 @@ export default function Hero({ className = '' }: { className?: string }) {
</div>
</div>
{/* second */}
<div className="h-auto rounded-[50px] bg-gradient-to-r from-[#6EE7B7]/70 via-[#3B82F6] to-[#9333EA]/50 p-1 dark:from-[#D16FF8] dark:via-[#48E6E0] dark:to-[#C85EF6] md:h-60 md:rounded-none md:py-1 md:px-0">
<div className="h-auto rounded-[50px] bg-gradient-to-r from-[#6EE7B7]/70 via-[#3B82F6] to-[#9333EA]/50 p-1 dark:from-[#D16FF8] dark:via-[#48E6E0] dark:to-[#C85EF6] lg:h-60 lg:rounded-none lg:py-1 lg:px-0">
<div
className={`h-full rounded-[45px] bg-white dark:bg-dark-charcoal p-${
isMobile ? '3.5' : '6 py-6'
} md:rounded-none`}
} lg:rounded-none`}
>
{/* Add Mobile check here */}
{isMobile ? (
@@ -138,7 +134,7 @@ export default function Hero({ className = '' }: { className?: string }) {
</div>
</div>
{/* third */}
<div className="h-auto rounded-[50px] bg-gradient-to-l from-[#6EE7B7]/70 via-[#3B82F6] to-[#9333EA]/50 p-1 dark:from-[#D16FF8] dark:via-[#48E6E0] dark:to-[#C85EF6] md:h-60 md:rounded-tl-none md:rounded-bl-none ">
<div className="h-auto rounded-[50px] bg-gradient-to-l from-[#6EE7B7]/70 via-[#3B82F6] to-[#9333EA]/50 p-1 dark:from-[#D16FF8] dark:via-[#48E6E0] dark:to-[#C85EF6] lg:h-60 lg:rounded-tl-none lg:rounded-bl-none ">
<div
className={`firefox h-full rounded-[45px] bg-white dark:bg-dark-charcoal p-${
isMobile ? '3.5' : '6 px-6 '

View File

@@ -257,7 +257,7 @@ export default function Navigation({ navOpen, setNavOpen }: NavigationProps) {
New Chat
</p>
</NavLink>
<div className="mb-auto h-[56vh] overflow-x-hidden overflow-y-scroll dark:text-white">
<div className="mb-auto h-[56vh] overflow-y-auto overflow-x-hidden dark:text-white">
{conversations && (
<div>
<p className="ml-6 mt-3 text-sm font-semibold">Chats</p>

View File

@@ -1,725 +0,0 @@
import React, { useState, useEffect } from 'react';
import { useSelector, useDispatch } from 'react-redux';
import ArrowLeft from './assets/arrow-left.svg';
import ArrowRight from './assets/arrow-right.svg';
import Trash from './assets/trash.svg';
import {
selectPrompt,
setPrompt,
selectSourceDocs,
setSourceDocs,
} from './preferences/preferenceSlice';
import { Doc } from './preferences/preferenceApi';
import { useDarkTheme } from './hooks';
import Dropdown from './components/Dropdown';
type PromptProps = {
prompts: { name: string; id: string; type: string }[];
selectedPrompt: { name: string; id: string; type: string };
onSelectPrompt: (name: string, id: string, type: string) => void;
setPrompts: (prompts: { name: string; id: string; type: string }[]) => void;
apiHost: string;
};
const Setting: React.FC = () => {
const tabs = ['General', 'Prompts', 'Documents'];
//const tabs = ['General', 'Prompts', 'Documents', 'Widgets'];
const [activeTab, setActiveTab] = useState('General');
const [prompts, setPrompts] = useState<
{ name: string; id: string; type: string }[]
>([]);
const selectedPrompt = useSelector(selectPrompt);
const [isAddPromptModalOpen, setAddPromptModalOpen] = useState(false);
const documents = useSelector(selectSourceDocs);
const [isAddDocumentModalOpen, setAddDocumentModalOpen] = useState(false);
const dispatch = useDispatch();
const apiHost = import.meta.env.VITE_API_HOST || 'https://docsapi.arc53.com';
const [widgetScreenshot, setWidgetScreenshot] = useState<File | null>(null);
const updateWidgetScreenshot = (screenshot: File | null) => {
setWidgetScreenshot(screenshot);
};
useEffect(() => {
const fetchPrompts = async () => {
try {
const response = await fetch(`${apiHost}/api/get_prompts`);
if (!response.ok) {
throw new Error('Failed to fetch prompts');
}
const promptsData = await response.json();
setPrompts(promptsData);
} catch (error) {
console.error(error);
}
};
fetchPrompts();
}, []);
const onDeletePrompt = (name: string, id: string) => {
setPrompts(prompts.filter((prompt) => prompt.id !== id));
fetch(`${apiHost}/api/delete_prompt`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
// send id in body only
body: JSON.stringify({ id: id }),
})
.then((response) => {
if (!response.ok) {
throw new Error('Failed to delete prompt');
}
})
.catch((error) => {
console.error(error);
});
};
const handleDeleteClick = (index: number, doc: Doc) => {
const docPath = 'indexes/' + 'local' + '/' + doc.name;
fetch(`${apiHost}/api/delete_old?path=${docPath}`, {
method: 'GET',
})
.then((response) => {
if (response.ok && documents) {
const updatedDocuments = [
...documents.slice(0, index),
...documents.slice(index + 1),
];
dispatch(setSourceDocs(updatedDocuments));
}
})
.catch((error) => console.error(error));
};
return (
<div className="wa p-4 pt-20 md:p-12">
<p className="text-2xl font-bold text-eerie-black dark:text-bright-gray">
Settings
</p>
<div className="mt-6 flex flex-row items-center space-x-4 overflow-x-auto md:space-x-8 ">
<div className="md:hidden">
<button
onClick={() => scrollTabs(-1)}
className="flex h-8 w-8 items-center justify-center rounded-full border-2 border-purple-30 transition-all hover:bg-gray-100"
>
<img src={ArrowLeft} alt="left-arrow" className="h-6 w-6" />
</button>
</div>
<div className="flex flex-nowrap space-x-4 overflow-x-auto md:space-x-8">
{tabs.map((tab, index) => (
<button
key={index}
onClick={() => setActiveTab(tab)}
className={`h-9 rounded-3xl px-4 font-bold ${
activeTab === tab
? 'bg-purple-3000 text-purple-30 dark:bg-dark-charcoal'
: 'text-gray-6000'
}`}
>
{tab}
</button>
))}
</div>
<div className="md:hidden">
<button
onClick={() => scrollTabs(1)}
className="flex h-8 w-8 items-center justify-center rounded-full border-2 border-purple-30 hover:bg-gray-100"
>
<img src={ArrowRight} alt="right-arrow" className="h-6 w-6" />
</button>
</div>
</div>
{renderActiveTab()}
{/* {activeTab === 'Widgets' && (
<Widgets
widgetScreenshot={widgetScreenshot}
onWidgetScreenshotChange={updateWidgetScreenshot}
/>
)} */}
</div>
);
function scrollTabs(direction: number) {
const container = document.querySelector('.flex-nowrap');
if (container) {
container.scrollLeft += direction * 100; // Adjust the scroll amount as needed
}
}
function renderActiveTab() {
switch (activeTab) {
case 'General':
return <General />;
case 'Prompts':
return (
<Prompts
prompts={prompts}
selectedPrompt={selectedPrompt}
onSelectPrompt={(name, id, type) =>
dispatch(setPrompt({ name: name, id: id, type: type }))
}
setPrompts={setPrompts}
apiHost={apiHost}
/>
);
case 'Documents':
return (
<Documents
documents={documents}
handleDeleteDocument={handleDeleteClick}
/>
);
case 'Widgets':
return (
<Widgets
widgetScreenshot={widgetScreenshot} // Add this line
onWidgetScreenshotChange={updateWidgetScreenshot} // Add this line
/>
);
default:
return null;
}
}
};
const General: React.FC = () => {
const themes = ['Light', 'Dark'];
const languages = ['English'];
const [isDarkTheme, toggleTheme] = useDarkTheme();
const [selectedTheme, setSelectedTheme] = useState(
isDarkTheme ? 'Dark' : 'Light',
);
const [selectedLanguage, setSelectedLanguage] = useState(languages[0]);
return (
<div className="mt-[59px]">
<div className="mb-4">
<p className="font-bold text-jet dark:text-bright-gray">Select Theme</p>
<Dropdown
options={themes}
selectedValue={selectedTheme}
onSelect={(option: string) => {
setSelectedTheme(option);
option !== selectedTheme && toggleTheme();
}}
/>
</div>
<div>
<p className="font-bold text-jet dark:text-bright-gray">
Select Language
</p>
<Dropdown
options={languages}
selectedValue={selectedLanguage}
onSelect={setSelectedLanguage}
/>
</div>
</div>
);
};
export default Setting;
const Prompts: React.FC<PromptProps> = ({
prompts,
selectedPrompt,
onSelectPrompt,
setPrompts,
apiHost,
}) => {
const handleSelectPrompt = ({
name,
id,
type,
}: {
name: string;
id: string;
type: string;
}) => {
setNewPromptName(name);
onSelectPrompt(name, id, type);
};
const [newPromptName, setNewPromptName] = useState(selectedPrompt.name);
const [newPromptContent, setNewPromptContent] = useState('');
const handleAddPrompt = async () => {
try {
const response = await fetch(`${apiHost}/api/create_prompt`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
name: newPromptName,
content: newPromptContent,
}),
});
if (!response.ok) {
throw new Error('Failed to add prompt');
}
const newPrompt = await response.json();
if (setPrompts) {
setPrompts([
...prompts,
{ name: newPromptName, id: newPrompt.id, type: 'private' },
]);
}
onSelectPrompt(newPromptName, newPrompt.id, newPromptContent);
setNewPromptName(newPromptName);
} catch (error) {
console.error(error);
}
};
const handleDeletePrompt = () => {
setPrompts(prompts.filter((prompt) => prompt.id !== selectedPrompt.id));
console.log('selectedPrompt.id', selectedPrompt.id);
fetch(`${apiHost}/api/delete_prompt`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({ id: selectedPrompt.id }),
})
.then((response) => {
if (!response.ok) {
throw new Error('Failed to delete prompt');
}
// get 1st prompt and set it as selected
if (prompts.length > 0) {
onSelectPrompt(prompts[0].name, prompts[0].id, prompts[0].type);
setNewPromptName(prompts[0].name);
}
})
.catch((error) => {
console.error(error);
});
};
useEffect(() => {
const fetchPromptContent = async () => {
console.log('fetching prompt content');
try {
const response = await fetch(
`${apiHost}/api/get_single_prompt?id=${selectedPrompt.id}`,
{
method: 'GET',
headers: {
'Content-Type': 'application/json',
},
},
);
if (!response.ok) {
throw new Error('Failed to fetch prompt content');
}
const promptContent = await response.json();
setNewPromptContent(promptContent.content);
} catch (error) {
console.error(error);
}
};
fetchPromptContent();
}, [selectedPrompt]);
const handleSaveChanges = () => {
fetch(`${apiHost}/api/update_prompt`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
id: selectedPrompt.id,
name: newPromptName,
content: newPromptContent,
}),
})
.then((response) => {
if (!response.ok) {
throw new Error('Failed to update prompt');
}
onSelectPrompt(newPromptName, selectedPrompt.id, selectedPrompt.type);
setNewPromptName(newPromptName);
})
.catch((error) => {
console.error(error);
});
};
return (
<div className="mt-[59px]">
<div className="mb-4">
<p className="font-semibold dark:text-bright-gray">Active Prompt</p>
<Dropdown
options={prompts}
selectedValue={selectedPrompt.name}
onSelect={handleSelectPrompt}
/>
</div>
<div className="mb-4">
<p className="dark:text-bright-gray">Prompt name </p>{' '}
<p className="mb-2 text-xs italic text-eerie-black dark:text-bright-gray">
start by editing name
</p>
<input
type="text"
value={newPromptName}
placeholder="Active Prompt Name"
className="w-full rounded-lg border-2 p-2 dark:border-chinese-silver dark:bg-transparent dark:text-white"
onChange={(e) => setNewPromptName(e.target.value)}
/>
</div>
<div className="mb-4">
<p className="mb-2 dark:text-bright-gray">Prompt content</p>
<textarea
className="h-32 w-full rounded-lg border-2 p-2 dark:border-chinese-silver dark:bg-transparent dark:text-white"
value={newPromptContent}
onChange={(e) => setNewPromptContent(e.target.value)}
placeholder="Active prompt contents"
/>
</div>
<div className="flex justify-between">
<button
className={`rounded-lg bg-green-500 px-4 py-2 font-bold text-white transition-all hover:bg-green-700 ${
newPromptName === selectedPrompt.name
? 'cursor-not-allowed opacity-50'
: ''
}`}
onClick={handleAddPrompt}
disabled={newPromptName === selectedPrompt.name}
>
Add New Prompt
</button>
<button
className={`rounded-lg bg-red-500 px-4 py-2 font-bold text-white transition-all hover:bg-red-700 ${
selectedPrompt.type === 'public'
? 'cursor-not-allowed opacity-50'
: ''
}`}
onClick={handleDeletePrompt}
disabled={selectedPrompt.type === 'public'}
>
Delete Prompt
</button>
<button
className={`rounded-lg bg-blue-500 px-4 py-2 font-bold text-white transition-all hover:bg-blue-700 ${
selectedPrompt.type === 'public'
? 'cursor-not-allowed opacity-50'
: ''
}`}
onClick={handleSaveChanges}
disabled={selectedPrompt.type === 'public'}
>
Save Changes
</button>
</div>
</div>
);
};
type AddPromptModalProps = {
newPromptName: string;
onNewPromptNameChange: (name: string) => void;
onAddPrompt: () => void;
onClose: () => void;
};
const AddPromptModal: React.FC<AddPromptModalProps> = ({
newPromptName,
onNewPromptNameChange,
onAddPrompt,
onClose,
}) => {
return (
<div className="fixed top-0 left-0 flex h-screen w-screen items-center justify-center bg-gray-900 bg-opacity-50">
<div className="rounded-3xl bg-white p-4">
<p className="mb-2 text-2xl font-bold text-jet">Add New Prompt</p>
<input
type="text"
placeholder="Enter Prompt Name"
value={newPromptName}
onChange={(e) => onNewPromptNameChange(e.target.value)}
className="mb-4 w-full rounded-3xl border-2 p-2 dark:border-chinese-silver"
/>
<button
onClick={onAddPrompt}
className="rounded-3xl bg-purple-300 px-4 py-2 font-bold text-white transition-all hover:bg-purple-600"
>
Save
</button>
<button
onClick={onClose}
className="mt-4 rounded-3xl px-4 py-2 font-bold text-red-500"
>
Cancel
</button>
</div>
</div>
);
};
type DocumentsProps = {
documents: Doc[] | null;
handleDeleteDocument: (index: number, document: Doc) => void;
};
const Documents: React.FC<DocumentsProps> = ({
documents,
handleDeleteDocument,
}) => {
return (
<div className="mt-8">
<div className="flex flex-col">
{/* <h2 className="text-xl font-semibold">Documents</h2> */}
<div className="mt-[27px] w-max overflow-x-auto rounded-xl border dark:border-chinese-silver">
<table className="block w-full table-auto content-center justify-center text-center dark:text-bright-gray">
<thead>
<tr>
<th className="border-r p-4 md:w-[244px]">Document Name</th>
<th className="w-[244px] border-r px-4 py-2">Vector Date</th>
<th className="w-[244px] border-r px-4 py-2">Type</th>
<th className="px-4 py-2"></th>
</tr>
</thead>
<tbody>
{documents &&
documents.map((document, index) => (
<tr key={index}>
<td className="border-r border-t px-4 py-2">
{document.name}
</td>
<td className="border-r border-t px-4 py-2">
{document.date}
</td>
<td className="border-r border-t px-4 py-2">
{document.location === 'remote'
? 'Pre-loaded'
: 'Private'}
</td>
<td className="border-t px-4 py-2">
{document.location !== 'remote' && (
<img
src={Trash}
alt="Delete"
className="h-4 w-4 cursor-pointer hover:opacity-50"
id={`img-${index}`}
onClick={(event) => {
event.stopPropagation();
handleDeleteDocument(index, document);
}}
/>
)}
</td>
</tr>
))}
</tbody>
</table>
</div>
{/* <button
onClick={toggleAddDocumentModal}
className="mt-10 w-32 rounded-lg bg-purple-300 px-4 py-2 font-bold text-white transition-all hover:bg-purple-600"
>
Add New
</button> */}
</div>
{/* {isAddDocumentModalOpen && (
<AddDocumentModal
newDocument={newDocument}
onNewDocumentChange={setNewDocument}
onAddDocument={addDocument}
onClose={toggleAddDocumentModal}
/>
)} */}
</div>
);
};
type Document = {
name: string;
vectorDate: string;
vectorLocation: string;
};
// Modal for adding a new document
type AddDocumentModalProps = {
newDocument: Document;
onNewDocumentChange: (document: Document) => void;
onAddDocument: () => void;
onClose: () => void;
};
const AddDocumentModal: React.FC<AddDocumentModalProps> = ({
newDocument,
onNewDocumentChange,
onAddDocument,
onClose,
}) => {
return (
<div className="fixed top-0 left-0 flex h-screen w-screen items-center justify-center bg-gray-900 bg-opacity-50">
<div className="w-[50%] rounded-lg bg-white p-4">
<p className="mb-2 text-2xl font-bold text-jet">Add New Document</p>
<input
type="text"
placeholder="Document Name"
value={newDocument.name}
onChange={(e) =>
onNewDocumentChange({ ...newDocument, name: e.target.value })
}
className="mb-4 w-full rounded-lg border-2 p-2"
/>
<input
type="text"
placeholder="Vector Date"
value={newDocument.vectorDate}
onChange={(e) =>
onNewDocumentChange({ ...newDocument, vectorDate: e.target.value })
}
className="mb-4 w-full rounded-lg border-2 p-2"
/>
<input
type="text"
placeholder="Vector Location"
value={newDocument.vectorLocation}
onChange={(e) =>
onNewDocumentChange({
...newDocument,
vectorLocation: e.target.value,
})
}
className="mb-4 w-full rounded-lg border-2 p-2"
/>
<button
onClick={onAddDocument}
className="rounded-lg bg-purple-300 px-4 py-2 font-bold text-white transition-all hover:bg-purple-600"
>
Save
</button>
<button
onClick={onClose}
className="mt-4 rounded-lg px-4 py-2 font-bold text-red-500"
>
Cancel
</button>
</div>
</div>
);
};
const Widgets: React.FC<{
widgetScreenshot: File | null;
onWidgetScreenshotChange: (screenshot: File | null) => void;
}> = ({ widgetScreenshot, onWidgetScreenshotChange }) => {
const widgetSources = ['Source 1', 'Source 2', 'Source 3'];
const widgetMethods = ['Method 1', 'Method 2', 'Method 3'];
const widgetTypes = ['Type 1', 'Type 2', 'Type 3'];
const [selectedWidgetSource, setSelectedWidgetSource] = useState(
widgetSources[0],
);
const [selectedWidgetMethod, setSelectedWidgetMethod] = useState(
widgetMethods[0],
);
const [selectedWidgetType, setSelectedWidgetType] = useState(widgetTypes[0]);
// const [widgetScreenshot, setWidgetScreenshot] = useState<File | null>(null);
const [widgetCode, setWidgetCode] = useState<string>(''); // Your widget code state
const handleScreenshotChange = (
event: React.ChangeEvent<HTMLInputElement>,
) => {
const files = event.target.files;
if (files && files.length > 0) {
const selectedScreenshot = files[0];
onWidgetScreenshotChange(selectedScreenshot); // Update the screenshot in the parent component
}
};
const handleCopyToClipboard = () => {
// Create a new textarea element to select the text
const textArea = document.createElement('textarea');
textArea.value = widgetCode;
document.body.appendChild(textArea);
// Select and copy the text
textArea.select();
document.execCommand('copy');
// Clean up the textarea element
document.body.removeChild(textArea);
};
return (
<div>
<div className="mt-[59px]">
<p className="font-bold text-jet">Widget Source</p>
<Dropdown
options={widgetSources}
selectedValue={selectedWidgetSource}
onSelect={setSelectedWidgetSource}
/>
</div>
<div className="mt-5">
<p className="font-bold text-jet">Widget Method</p>
<Dropdown
options={widgetMethods}
selectedValue={selectedWidgetMethod}
onSelect={setSelectedWidgetMethod}
/>
</div>
<div className="mt-5">
<p className="font-bold text-jet">Widget Type</p>
<Dropdown
options={widgetTypes}
selectedValue={selectedWidgetType}
onSelect={setSelectedWidgetType}
/>
</div>
<div className="mt-6">
<p className="font-bold text-jet">Widget Code Snippet</p>
<textarea
rows={4}
value={widgetCode}
onChange={(e) => setWidgetCode(e.target.value)}
className="mt-3 w-full rounded-lg border-2 p-2"
/>
</div>
<div className="mt-1">
<button
onClick={handleCopyToClipboard}
className="rounded-lg bg-blue-400 px-2 py-2 font-bold text-white transition-all hover:bg-blue-600"
>
Copy
</button>
</div>
<div className="mt-4">
<p className="text-lg font-semibold">Widget Screenshot</p>
<input type="file" accept="image/*" onChange={handleScreenshotChange} />
</div>
{widgetScreenshot && (
<div className="mt-4">
<img
src={URL.createObjectURL(widgetScreenshot)}
alt="Widget Screenshot"
className="max-w-full rounded-lg border border-gray-300"
/>
</div>
)}
</div>
);
};

View File

@@ -1,57 +1,68 @@
import { useState } from 'react';
import React from 'react';
import Arrow2 from '../assets/dropdown-arrow.svg';
import Edit from '../assets/edit.svg';
import Trash from '../assets/trash.svg';
function Dropdown({
options,
selectedValue,
onSelect,
size = 'w-32',
rounded = 'xl',
showEdit,
onEdit,
showDelete,
onDelete,
placeholder,
}: {
options:
| string[]
| { name: string; id: string; type: string }[]
| { label: string; value: string }[];
selectedValue: string | { label: string; value: string };
selectedValue: string | { label: string; value: string } | null;
onSelect:
| ((value: string) => void)
| ((value: { name: string; id: string; type: string }) => void)
| ((value: { label: string; value: string }) => void);
size?: string;
rounded?: 'xl' | '3xl';
showEdit?: boolean;
onEdit?: (value: { name: string; id: string; type: string }) => void;
showDelete?: boolean;
onDelete?: (value: string) => void;
placeholder?: string;
}) {
const [isOpen, setIsOpen] = useState(false);
const [isOpen, setIsOpen] = React.useState(false);
return (
<div
className={
className={[
typeof selectedValue === 'string'
? 'relative mt-2 w-32'
: 'relative w-full align-middle'
}
? 'relative mt-2'
: 'relative align-middle',
size,
].join(' ')}
>
<button
onClick={() => setIsOpen(!isOpen)}
className={`flex w-full cursor-pointer items-center justify-between border-2 bg-white p-3 dark:border-chinese-silver dark:bg-transparent ${
isOpen
? typeof selectedValue === 'string'
? 'rounded-t-xl'
: 'rounded-t-2xl'
: typeof selectedValue === 'string'
? 'rounded-xl'
: 'rounded-full'
className={`flex w-full cursor-pointer items-center justify-between border-2 border-silver bg-white px-5 py-3 dark:border-chinese-silver dark:bg-transparent ${
isOpen ? `rounded-t-${rounded}` : `rounded-${rounded}`
}`}
>
{typeof selectedValue === 'string' ? (
<span className="flex-1 overflow-hidden text-ellipsis dark:text-bright-gray">
<span className="overflow-hidden text-ellipsis dark:text-bright-gray">
{selectedValue}
</span>
) : (
<span
className={`overflow-hidden text-ellipsis dark:text-bright-gray ${
!selectedValue && 'text-silver'
!selectedValue && 'text-silver dark:text-gray-400'
}`}
>
{selectedValue ? selectedValue.label : 'From URL'}
{selectedValue
? selectedValue.label
: placeholder
? placeholder
: 'From URL'}
</span>
)}
<img
@@ -63,7 +74,7 @@ function Dropdown({
/>
</button>
{isOpen && (
<div className="absolute left-0 right-0 z-50 -mt-1 overflow-y-auto rounded-b-xl border-2 bg-white shadow-lg dark:border-chinese-silver dark:bg-dark-charcoal">
<div className="absolute left-0 right-0 z-20 -mt-1 max-h-40 overflow-y-auto rounded-b-xl border-2 border-silver bg-white shadow-lg dark:border-chinese-silver dark:bg-dark-charcoal">
{options.map((option: any, index) => (
<div
key={index}
@@ -74,7 +85,7 @@ function Dropdown({
onSelect(option);
setIsOpen(false);
}}
className="ml-2 flex-1 overflow-hidden overflow-ellipsis whitespace-nowrap py-3 dark:text-light-gray"
className="ml-5 flex-1 overflow-hidden overflow-ellipsis whitespace-nowrap py-3 dark:text-light-gray"
>
{typeof option === 'string'
? option
@@ -82,9 +93,35 @@ function Dropdown({
? option.name
: option.label}
</span>
{showEdit && onEdit && (
<img
src={Edit}
alt="Edit"
className="mr-4 h-4 w-4 cursor-pointer hover:opacity-50"
onClick={() => {
onEdit({
id: option.id,
name: option.name,
type: option.type,
});
setIsOpen(false);
}}
/>
)}
{showDelete && onDelete && (
<button onClick={() => onDelete(option)} className="p-2">
Delete
<button
onClick={() => onDelete(option.id)}
disabled={option.type === 'public'}
>
<img
src={Trash}
alt="Delete"
className={`mr-2 h-4 w-4 cursor-pointer hover:opacity-50 ${
option.type === 'public'
? 'cursor-not-allowed opacity-50'
: ''
}`}
/>
</button>
)}
</div>

View File

@@ -24,6 +24,12 @@ function SourceDropdown({
const embeddingsName =
import.meta.env.VITE_EMBEDDINGS_NAME ||
'huggingface_sentence-transformers/all-mpnet-base-v2';
const handleEmptyDocumentSelect = () => {
dispatch(setSelectedDocs(null));
setIsDocsListOpen(false);
};
return (
<div className="relative w-5/6 rounded-3xl">
<button
@@ -35,7 +41,7 @@ function SourceDropdown({
<span className="ml-1 mr-2 flex-1 overflow-hidden text-ellipsis text-left dark:text-bright-gray">
<div className="flex flex-row gap-2">
<p className="max-w-3/4 truncate whitespace-nowrap">
{selectedDocs?.name}
{selectedDocs?.name || ''}
</p>
<p className="flex flex-col items-center justify-center">
{selectedDocs?.version}
@@ -93,6 +99,14 @@ function SourceDropdown({
<p className="ml-5 py-3">No default documentation.</p>
</div>
)}
<div
className="flex cursor-pointer items-center justify-between hover:bg-gray-100 dark:text-bright-gray dark:hover:bg-purple-taupe"
onClick={handleEmptyDocumentSelect}
>
<span className="ml-4 flex-1 overflow-hidden overflow-ellipsis whitespace-nowrap py-3">
Empty
</span>
</div>
</div>
)}
</div>

View File

@@ -160,7 +160,10 @@ const ConversationBubble = forwardRef<
>
{message}
</ReactMarkdown>
{DisableSourceFE || type === 'ERROR' ? null : (
{DisableSourceFE ||
type === 'ERROR' ||
!sources ||
sources.length === 0 ? null : (
<>
<span className="mt-3 h-px w-full bg-[#DEDEDE]"></span>
<div className="mt-3 flex w-full flex-row flex-wrap items-center justify-start gap-2">

View File

@@ -3,14 +3,41 @@ import { Doc } from '../preferences/preferenceApi';
const apiHost = import.meta.env.VITE_API_HOST || 'https://docsapi.arc53.com';
function getDocPath(selectedDocs: Doc | null): string {
let docPath = 'default';
if (selectedDocs) {
let namePath = selectedDocs.name;
if (selectedDocs.language === namePath) {
namePath = '.project';
}
if (selectedDocs.location === 'local') {
docPath = 'local' + '/' + selectedDocs.name + '/';
} else if (selectedDocs.location === 'remote') {
docPath =
selectedDocs.language +
'/' +
namePath +
'/' +
selectedDocs.version +
'/' +
selectedDocs.model +
'/';
} else if (selectedDocs.location === 'custom') {
docPath = selectedDocs.docLink;
}
}
return docPath;
}
export function fetchAnswerApi(
question: string,
signal: AbortSignal,
apiKey: string,
selectedDocs: Doc,
selectedDocs: Doc | null,
history: Array<any> = [],
conversationId: string | null,
promptId: string | null,
chunks: string,
): Promise<
| {
result: any;
@@ -28,25 +55,7 @@ export function fetchAnswerApi(
title: any;
}
> {
let namePath = selectedDocs.name;
if (selectedDocs.language === namePath) {
namePath = '.project';
}
let docPath = 'default';
if (selectedDocs.location === 'local') {
docPath = 'local' + '/' + selectedDocs.name + '/';
} else if (selectedDocs.location === 'remote') {
docPath =
selectedDocs.language +
'/' +
namePath +
'/' +
selectedDocs.version +
'/' +
selectedDocs.model +
'/';
}
const docPath = getDocPath(selectedDocs);
//in history array remove all keys except prompt and response
history = history.map((item) => {
return { prompt: item.prompt, response: item.response };
@@ -59,12 +68,11 @@ export function fetchAnswerApi(
},
body: JSON.stringify({
question: question,
api_key: apiKey,
embeddings_key: apiKey,
history: history,
active_docs: docPath,
conversation_id: conversationId,
prompt_id: promptId,
chunks: chunks,
}),
signal,
})
@@ -90,32 +98,14 @@ export function fetchAnswerApi(
export function fetchAnswerSteaming(
question: string,
signal: AbortSignal,
apiKey: string,
selectedDocs: Doc,
selectedDocs: Doc | null,
history: Array<any> = [],
conversationId: string | null,
promptId: string | null,
chunks: string,
onEvent: (event: MessageEvent) => void,
): Promise<Answer> {
let namePath = selectedDocs.name;
if (selectedDocs.language === namePath) {
namePath = '.project';
}
let docPath = 'default';
if (selectedDocs.location === 'local') {
docPath = 'local' + '/' + selectedDocs.name + '/';
} else if (selectedDocs.location === 'remote') {
docPath =
selectedDocs.language +
'/' +
namePath +
'/' +
selectedDocs.version +
'/' +
selectedDocs.model +
'/';
}
const docPath = getDocPath(selectedDocs);
history = history.map((item) => {
return { prompt: item.prompt, response: item.response };
@@ -124,12 +114,11 @@ export function fetchAnswerSteaming(
return new Promise<Answer>((resolve, reject) => {
const body = {
question: question,
api_key: apiKey,
embeddings_key: apiKey,
active_docs: docPath,
history: JSON.stringify(history),
conversation_id: conversationId,
prompt_id: promptId,
chunks: chunks,
};
fetch(apiHost + '/stream', {
method: 'POST',
@@ -188,41 +177,19 @@ export function fetchAnswerSteaming(
}
export function searchEndpoint(
question: string,
apiKey: string,
selectedDocs: Doc,
selectedDocs: Doc | null,
conversation_id: string | null,
history: Array<any> = [],
chunks: string,
) {
/*
"active_docs": "default",
"question": "Summarise",
"conversation_id": null,
"history": "[]" */
let namePath = selectedDocs.name;
if (selectedDocs.language === namePath) {
namePath = '.project';
}
let docPath = 'default';
if (selectedDocs.location === 'local') {
docPath = 'local' + '/' + selectedDocs.name + '/';
} else if (selectedDocs.location === 'remote') {
docPath =
selectedDocs.language +
'/' +
namePath +
'/' +
selectedDocs.version +
'/' +
selectedDocs.model +
'/';
}
const docPath = getDocPath(selectedDocs);
const body = {
question: question,
active_docs: docPath,
conversation_id,
history,
chunks: chunks,
};
return fetch(`${apiHost}/api/search`, {
method: 'POST',

View File

@@ -23,11 +23,11 @@ export const fetchAnswer = createAsyncThunk<Answer, { question: string }>(
await fetchAnswerSteaming(
question,
signal,
state.preference.apiKey,
state.preference.selectedDocs!,
state.conversation.queries,
state.conversation.conversationId,
state.preference.prompt.id,
state.preference.chunks,
(event) => {
const data = JSON.parse(event.data);
@@ -47,10 +47,10 @@ export const fetchAnswer = createAsyncThunk<Answer, { question: string }>(
searchEndpoint(
//search for sources post streaming
question,
state.preference.apiKey,
state.preference.selectedDocs!,
state.conversation.conversationId,
state.conversation.queries,
state.preference.chunks,
).then((sources) => {
//dispatch streaming sources
dispatch(
@@ -81,11 +81,11 @@ export const fetchAnswer = createAsyncThunk<Answer, { question: string }>(
const answer = await fetchAnswerApi(
question,
signal,
state.preference.apiKey,
state.preference.selectedDocs!,
state.conversation.queries,
state.conversation.conversationId,
state.preference.prompt.id,
state.preference.chunks,
);
if (answer) {
let sourcesPrepped = [];

View File

@@ -2,6 +2,26 @@
@tailwind components;
@tailwind utilities;
::-webkit-scrollbar {
width: 8px;
}
::-webkit-scrollbar-track {
background: #f1f1f1;
}
.dark ::-webkit-scrollbar-track {
background: #2f3036;
}
::-webkit-scrollbar-thumb {
background: #888;
border-radius: 40px;
}
::-webkit-scrollbar-thumb:hover {
background: #555;
}
.dark ::-webkit-scrollbar-thumb:hover {
background: #b1afaf;
}
/*! normalize.css v8.0.1 | MIT License | github.com/necolas/normalize.css */
/* Document

View File

@@ -3,3 +3,42 @@ export type ActiveState = 'ACTIVE' | 'INACTIVE';
export type User = {
avatar: string;
};
export type Doc = {
location: string;
name: string;
language: string;
version: string;
description: string;
fullName: string;
date: string;
docLink: string;
model: string;
};
export type PromptProps = {
prompts: { name: string; id: string; type: string }[];
selectedPrompt: { name: string; id: string; type: string };
onSelectPrompt: (name: string, id: string, type: string) => void;
setPrompts: (prompts: { name: string; id: string; type: string }[]) => void;
apiHost: string;
};
export type DocumentsProps = {
documents: Doc[] | null;
handleDeleteDocument: (index: number, document: Doc) => void;
};
export type CreateAPIKeyModalProps = {
close: () => void;
createAPIKey: (payload: {
name: string;
source: string;
prompt_id: string;
chunks: string;
}) => void;
};
export type SaveAPIKeyModalProps = {
apiKey: string;
close: () => void;
};

View File

@@ -0,0 +1,222 @@
import { ActiveState } from '../models/misc';
import Exit from '../assets/exit.svg';
function AddPrompt({
setModalState,
handleAddPrompt,
newPromptName,
setNewPromptName,
newPromptContent,
setNewPromptContent,
}: {
setModalState: (state: ActiveState) => void;
handleAddPrompt?: () => void;
newPromptName: string;
setNewPromptName: (name: string) => void;
newPromptContent: string;
setNewPromptContent: (content: string) => void;
}) {
return (
<div className="relative">
<button
className="absolute top-3 right-4 m-2 w-3"
onClick={() => {
setModalState('INACTIVE');
}}
>
<img className="filter dark:invert" src={Exit} />
</button>
<div className="p-8">
<p className="mb-1 text-xl text-jet dark:text-bright-gray">
Add Prompt
</p>
<p className="mb-7 text-xs text-[#747474] dark:text-[#7F7F82]">
Add your custom prompt and save it to DocsGPT
</p>
<div>
<input
placeholder="Prompt Name"
type="text"
className="h-10 w-full rounded-lg border-2 border-silver px-3 outline-none dark:bg-transparent dark:text-silver"
value={newPromptName}
onChange={(e) => setNewPromptName(e.target.value)}
></input>
<div className="relative bottom-12 left-3 mt-[-3.00px]">
<span className="bg-white px-1 text-xs text-silver dark:bg-outer-space dark:text-silver">
Prompt Name
</span>
</div>
<div className="relative top-[7px] left-3">
<span className="bg-white px-1 text-xs text-silver dark:bg-outer-space dark:text-silver">
Prompt Text
</span>
</div>
<textarea
className="h-56 w-full rounded-lg border-2 border-silver px-3 py-2 outline-none dark:bg-transparent dark:text-silver"
value={newPromptContent}
onChange={(e) => setNewPromptContent(e.target.value)}
></textarea>
</div>
<div className="mt-6 flex flex-row-reverse">
<button
onClick={handleAddPrompt}
className="rounded-3xl bg-purple-30 px-5 py-2 text-sm text-white transition-all hover:opacity-90"
>
Save
</button>
</div>
</div>
</div>
);
}
function EditPrompt({
setModalState,
handleEditPrompt,
editPromptName,
setEditPromptName,
editPromptContent,
setEditPromptContent,
currentPromptEdit,
}: {
setModalState: (state: ActiveState) => void;
handleEditPrompt?: (id: string, type: string) => void;
editPromptName: string;
setEditPromptName: (name: string) => void;
editPromptContent: string;
setEditPromptContent: (content: string) => void;
currentPromptEdit: { name: string; id: string; type: string };
}) {
return (
<div className="relative">
<button
className="absolute top-3 right-4 m-2 w-3"
onClick={() => {
setModalState('INACTIVE');
}}
>
<img className="filter dark:invert" src={Exit} />
</button>
<div className="p-8">
<p className="mb-1 text-xl text-jet dark:text-bright-gray">
Edit Prompt
</p>
<p className="mb-7 text-xs text-[#747474] dark:text-[#7F7F82]">
Edit your custom prompt and save it to DocsGPT
</p>
<div>
<input
placeholder="Prompt Name"
type="text"
className="h-10 w-full rounded-lg border-2 border-silver px-3 outline-none dark:bg-transparent dark:text-silver"
value={editPromptName}
onChange={(e) => setEditPromptName(e.target.value)}
></input>
<div className="relative bottom-12 left-3 mt-[-3.00px]">
<span className="bg-white px-1 text-xs text-silver dark:bg-outer-space dark:text-silver">
Prompt Name
</span>
</div>
<div className="relative top-[7px] left-3">
<span className="bg-white px-1 text-xs text-silver dark:bg-outer-space dark:text-silver">
Prompt Text
</span>
</div>
<textarea
className="h-56 w-full rounded-lg border-2 border-silver px-3 py-2 outline-none dark:bg-transparent dark:text-silver"
value={editPromptContent}
onChange={(e) => setEditPromptContent(e.target.value)}
></textarea>
</div>
<div className="mt-6 flex flex-row-reverse gap-4">
<button
className={`rounded-3xl bg-purple-30 px-5 py-2 text-sm text-white transition-all ${
currentPromptEdit.type === 'public'
? 'cursor-not-allowed opacity-50'
: 'hover:opacity-90'
}`}
onClick={() => {
handleEditPrompt &&
handleEditPrompt(currentPromptEdit.id, currentPromptEdit.type);
}}
disabled={currentPromptEdit.type === 'public'}
>
Save
</button>
</div>
</div>
</div>
);
}
export default function PromptsModal({
modalState,
setModalState,
type,
newPromptName,
setNewPromptName,
newPromptContent,
setNewPromptContent,
editPromptName,
setEditPromptName,
editPromptContent,
setEditPromptContent,
currentPromptEdit,
handleAddPrompt,
handleEditPrompt,
}: {
modalState: ActiveState;
setModalState: (state: ActiveState) => void;
type: 'ADD' | 'EDIT';
newPromptName: string;
setNewPromptName: (name: string) => void;
newPromptContent: string;
setNewPromptContent: (content: string) => void;
editPromptName: string;
setEditPromptName: (name: string) => void;
editPromptContent: string;
setEditPromptContent: (content: string) => void;
currentPromptEdit: { name: string; id: string; type: string };
handleAddPrompt?: () => void;
handleEditPrompt?: (id: string, type: string) => void;
}) {
let view;
if (type === 'ADD') {
view = (
<AddPrompt
setModalState={setModalState}
handleAddPrompt={handleAddPrompt}
newPromptName={newPromptName}
setNewPromptName={setNewPromptName}
newPromptContent={newPromptContent}
setNewPromptContent={setNewPromptContent}
/>
);
} else if (type === 'EDIT') {
view = (
<EditPrompt
setModalState={setModalState}
handleEditPrompt={handleEditPrompt}
editPromptName={editPromptName}
setEditPromptName={setEditPromptName}
editPromptContent={editPromptContent}
setEditPromptContent={setEditPromptContent}
currentPromptEdit={currentPromptEdit}
/>
);
} else {
view = <></>;
}
return (
<article
className={`${
modalState === 'ACTIVE' ? 'visible' : 'hidden'
} fixed top-0 left-0 z-30 h-screen w-screen bg-gray-alpha`}
>
<article className="mx-auto mt-24 flex w-[90vw] max-w-lg flex-col gap-4 rounded-2xl bg-white shadow-lg dark:bg-outer-space">
{view}
</article>
</article>
);
}

View File

@@ -10,6 +10,7 @@ interface Preference {
apiKey: string;
prompt: { name: string; id: string; type: string };
selectedDocs: Doc | null;
chunks: string;
sourceDocs: Doc[] | null;
conversations: { name: string; id: string }[] | null;
}
@@ -17,6 +18,7 @@ interface Preference {
const initialState: Preference = {
apiKey: 'xxx',
prompt: { name: 'default', id: 'default', type: 'public' },
chunks: '2',
selectedDocs: {
name: 'default',
language: 'default',
@@ -51,6 +53,9 @@ export const prefSlice = createSlice({
setPrompt: (state, action) => {
state.prompt = action.payload;
},
setChunks: (state, action) => {
state.chunks = action.payload;
},
},
});
@@ -60,6 +65,7 @@ export const {
setSourceDocs,
setConversations,
setPrompt,
setChunks,
} = prefSlice.actions;
export default prefSlice.reducer;
@@ -91,6 +97,16 @@ prefListenerMiddleware.startListening({
},
});
prefListenerMiddleware.startListening({
matcher: isAnyOf(setChunks),
effect: (action, listenerApi) => {
localStorage.setItem(
'DocsGPTChunks',
JSON.stringify((listenerApi.getState() as RootState).preference.chunks),
);
},
});
export const selectApiKey = (state: RootState) => state.preference.apiKey;
export const selectApiKeyStatus = (state: RootState) =>
!!state.preference.apiKey;
@@ -105,3 +121,4 @@ export const selectConversations = (state: RootState) =>
export const selectConversationId = (state: RootState) =>
state.conversation.conversationId;
export const selectPrompt = (state: RootState) => state.preference.prompt;
export const selectChunks = (state: RootState) => state.preference.chunks;

View File

@@ -0,0 +1,336 @@
import React from 'react';
import { useSelector } from 'react-redux';
import Dropdown from '../components/Dropdown';
import {
Doc,
CreateAPIKeyModalProps,
SaveAPIKeyModalProps,
} from '../models/misc';
import { selectSourceDocs } from '../preferences/preferenceSlice';
import Exit from '../assets/exit.svg';
import Trash from '../assets/trash.svg';
const apiHost = import.meta.env.VITE_API_HOST || 'https://docsapi.arc53.com';
const embeddingsName =
import.meta.env.VITE_EMBEDDINGS_NAME ||
'huggingface_sentence-transformers/all-mpnet-base-v2';
const APIKeys: React.FC = () => {
const [isCreateModalOpen, setCreateModal] = React.useState(false);
const [isSaveKeyModalOpen, setSaveKeyModal] = React.useState(false);
const [newKey, setNewKey] = React.useState('');
const [apiKeys, setApiKeys] = React.useState<
{ name: string; key: string; source: string; id: string }[]
>([]);
const handleDeleteKey = (id: string) => {
fetch(`${apiHost}/api/delete_api_key`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({ id }),
})
.then((response) => {
if (!response.ok) {
throw new Error('Failed to delete API Key');
}
return response.json();
})
.then((data) => {
data.status === 'ok' &&
setApiKeys((previous) => previous.filter((elem) => elem.id !== id));
})
.catch((error) => {
console.error(error);
});
};
React.useEffect(() => {
fetchAPIKeys();
}, []);
const fetchAPIKeys = async () => {
try {
const response = await fetch(`${apiHost}/api/get_api_keys`);
if (!response.ok) {
throw new Error('Failed to fetch API Keys');
}
const apiKeys = await response.json();
setApiKeys(apiKeys);
} catch (error) {
console.log(error);
}
};
const createAPIKey = (payload: {
name: string;
source: string;
prompt_id: string;
chunks: string;
}) => {
fetch(`${apiHost}/api/create_api_key`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify(payload),
})
.then((response) => {
if (!response.ok) {
throw new Error('Failed to create API Key');
}
return response.json();
})
.then((data) => {
setApiKeys([...apiKeys, data]);
setCreateModal(false);
setNewKey(data.key);
setSaveKeyModal(true);
fetchAPIKeys();
})
.catch((error) => {
console.error(error);
});
};
return (
<div className="mt-8">
<div className="flex w-full flex-col lg:w-max">
<div className="flex justify-end">
<button
onClick={() => setCreateModal(true)}
className="rounded-full bg-purple-30 px-4 py-3 text-sm text-white hover:opacity-90"
>
Create new
</button>
</div>
{isCreateModalOpen && (
<CreateAPIKeyModal
close={() => setCreateModal(false)}
createAPIKey={createAPIKey}
/>
)}
{isSaveKeyModalOpen && (
<SaveAPIKeyModal
apiKey={newKey}
close={() => setSaveKeyModal(false)}
/>
)}
<div className="mt-[27px] w-full">
<div className="w-full overflow-x-auto">
<table className="block w-max table-auto content-center justify-center rounded-xl border text-center dark:border-chinese-silver dark:text-bright-gray">
<thead>
<tr>
<th className="border-r p-4 md:w-[244px]">Name</th>
<th className="w-[244px] border-r px-4 py-2">
Source document
</th>
<th className="w-[244px] border-r px-4 py-2">API Key</th>
<th className="px-4 py-2"></th>
</tr>
</thead>
<tbody>
{apiKeys?.map((element, index) => (
<tr key={index}>
<td className="border-r border-t p-4">{element.name}</td>
<td className="border-r border-t p-4">{element.source}</td>
<td className="border-r border-t p-4">{element.key}</td>
<td className="border-t p-4">
<img
src={Trash}
alt="Delete"
className="h-4 w-4 cursor-pointer hover:opacity-50"
id={`img-${index}`}
onClick={() => handleDeleteKey(element.id)}
/>
</td>
</tr>
))}
</tbody>
</table>
</div>
</div>
</div>
</div>
);
};
const CreateAPIKeyModal: React.FC<CreateAPIKeyModalProps> = ({
close,
createAPIKey,
}) => {
const [APIKeyName, setAPIKeyName] = React.useState<string>('');
const [sourcePath, setSourcePath] = React.useState<{
label: string;
value: string;
} | null>(null);
const chunkOptions = ['0', '2', '4', '6', '8', '10'];
const [chunk, setChunk] = React.useState<string>('2');
const [activePrompts, setActivePrompts] = React.useState<
{ name: string; id: string; type: string }[]
>([]);
const [prompt, setPrompt] = React.useState<{
name: string;
id: string;
type: string;
} | null>(null);
const docs = useSelector(selectSourceDocs);
React.useEffect(() => {
const fetchPrompts = async () => {
try {
const response = await fetch(`${apiHost}/api/get_prompts`);
if (!response.ok) {
throw new Error('Failed to fetch prompts');
}
const promptsData = await response.json();
setActivePrompts(promptsData);
} catch (error) {
console.error(error);
}
};
fetchPrompts();
}, []);
const extractDocPaths = () =>
docs
? docs
.filter((doc) => doc.model === embeddingsName)
.map((doc: Doc) => {
let namePath = doc.name;
if (doc.language === namePath) {
namePath = '.project';
}
let docPath = 'default';
if (doc.location === 'local') {
docPath = 'local' + '/' + doc.name + '/';
} else if (doc.location === 'remote') {
docPath =
doc.language +
'/' +
namePath +
'/' +
doc.version +
'/' +
doc.model +
'/';
}
return {
label: doc.name,
value: docPath,
};
})
: [];
return (
<div className="fixed top-0 left-0 z-30 flex h-screen w-screen items-center justify-center bg-gray-alpha bg-opacity-50">
<div className="relative w-11/12 rounded-2xl bg-white p-10 dark:bg-outer-space sm:w-[512px]">
<button className="absolute top-3 right-4 m-2 w-3" onClick={close}>
<img className="filter dark:invert" src={Exit} />
</button>
<div className="mb-6">
<span className="text-xl text-jet dark:text-bright-gray">
Create New API Key
</span>
</div>
<div className="relative mt-5 mb-4">
<span className="absolute left-2 -top-2 bg-white px-2 text-xs text-gray-4000 dark:bg-outer-space dark:text-silver">
API Key Name
</span>
<input
type="text"
className="h-10 w-full rounded-md border-2 border-silver px-3 outline-none dark:bg-transparent dark:text-silver"
value={APIKeyName}
onChange={(e) => setAPIKeyName(e.target.value)}
/>
</div>
<div className="my-4">
<Dropdown
placeholder="Source document"
selectedValue={sourcePath}
onSelect={(selection: { label: string; value: string }) =>
setSourcePath(selection)
}
options={extractDocPaths()}
size="w-full"
rounded="xl"
/>
</div>
<div className="my-4">
<Dropdown
options={activePrompts}
selectedValue={prompt ? prompt.name : null}
placeholder="Select active prompt"
onSelect={(value: { name: string; id: string; type: string }) =>
setPrompt(value)
}
size="w-full"
/>
</div>
<div className="my-4">
<p className="mb-2 ml-2 font-bold text-jet dark:text-bright-gray">
Chunks processed per query
</p>
<Dropdown
options={chunkOptions}
selectedValue={chunk}
onSelect={(value: string) => setChunk(value)}
size="w-full"
/>
</div>
<button
disabled={!sourcePath || APIKeyName.length === 0 || !prompt}
onClick={() =>
sourcePath &&
prompt &&
createAPIKey({
name: APIKeyName,
source: sourcePath.value,
prompt_id: prompt.id,
chunks: chunk,
})
}
className="float-right mt-4 rounded-full bg-purple-30 px-4 py-3 text-white disabled:opacity-50"
>
Create
</button>
</div>
</div>
);
};
const SaveAPIKeyModal: React.FC<SaveAPIKeyModalProps> = ({ apiKey, close }) => {
const [isCopied, setIsCopied] = React.useState(false);
const handleCopyKey = () => {
navigator.clipboard.writeText(apiKey);
setIsCopied(true);
};
return (
<div className="fixed top-0 left-0 z-30 flex h-screen w-screen items-center justify-center bg-gray-alpha bg-opacity-50">
<div className="relative w-11/12 rounded-3xl bg-white px-6 py-8 dark:bg-outer-space dark:text-bright-gray sm:w-[512px]">
<button className="absolute top-3 right-4 m-2 w-3" onClick={close}>
<img className="filter dark:invert" src={Exit} />
</button>
<h1 className="my-0 text-xl font-medium">Please save your Key</h1>
<h3 className="text-sm font-normal text-outer-space">
This is the only time your key will be shown.
</h3>
<div className="flex justify-between py-2">
<div>
<h2 className="text-base font-semibold">API Key</h2>
<span className="text-sm font-normal leading-7 ">{apiKey}</span>
</div>
<button
className="my-1 h-10 w-20 rounded-full border border-purple-30 p-2 text-sm text-purple-30 hover:bg-purple-30 hover:text-white dark:border-purple-500 dark:text-purple-500"
onClick={handleCopyKey}
>
{isCopied ? 'Copied' : 'Copy'}
</button>
</div>
<button
onClick={close}
className="rounded-full bg-philippine-yellow px-4 py-3 font-medium text-black hover:bg-[#E6B91A]"
>
I saved the Key
</button>
</div>
</div>
);
};
export default APIKeys;

View File

@@ -0,0 +1,60 @@
import { DocumentsProps } from '../models/misc';
import Trash from '../assets/trash.svg';
const Documents: React.FC<DocumentsProps> = ({
documents,
handleDeleteDocument,
}) => {
return (
<div className="mt-8">
<div className="flex flex-col">
<div className="mt-[27px] w-max overflow-x-auto rounded-xl border dark:border-chinese-silver">
<table className="block w-full table-auto content-center justify-center text-center dark:text-bright-gray">
<thead>
<tr>
<th className="border-r p-4 md:w-[244px]">Document Name</th>
<th className="w-[244px] border-r px-4 py-2">Vector Date</th>
<th className="w-[244px] border-r px-4 py-2">Type</th>
<th className="px-4 py-2"></th>
</tr>
</thead>
<tbody>
{documents &&
documents.map((document, index) => (
<tr key={index}>
<td className="border-r border-t px-4 py-2">
{document.name}
</td>
<td className="border-r border-t px-4 py-2">
{document.date}
</td>
<td className="border-r border-t px-4 py-2">
{document.location === 'remote'
? 'Pre-loaded'
: 'Private'}
</td>
<td className="border-t px-4 py-2">
{document.location !== 'remote' && (
<img
src={Trash}
alt="Delete"
className="h-4 w-4 cursor-pointer hover:opacity-50"
id={`img-${index}`}
onClick={(event) => {
event.stopPropagation();
handleDeleteDocument(index, document);
}}
/>
)}
</td>
</tr>
))}
</tbody>
</table>
</div>
</div>
</div>
);
};
export default Documents;

View File

@@ -0,0 +1,100 @@
import React from 'react';
import { useSelector, useDispatch } from 'react-redux';
import Prompts from './Prompts';
import { useDarkTheme } from '../hooks';
import Dropdown from '../components/Dropdown';
import {
selectPrompt,
setPrompt,
setChunks,
selectChunks,
} from '../preferences/preferenceSlice';
const apiHost = import.meta.env.VITE_API_HOST || 'https://docsapi.arc53.com';
const General: React.FC = () => {
const themes = ['Light', 'Dark'];
const languages = ['English'];
const chunks = ['0', '2', '4', '6', '8', '10'];
const [prompts, setPrompts] = React.useState<
{ name: string; id: string; type: string }[]
>([]);
const selectedChunks = useSelector(selectChunks);
const [isDarkTheme, toggleTheme] = useDarkTheme();
const [selectedTheme, setSelectedTheme] = React.useState(
isDarkTheme ? 'Dark' : 'Light',
);
const dispatch = useDispatch();
const [selectedLanguage, setSelectedLanguage] = React.useState(languages[0]);
const selectedPrompt = useSelector(selectPrompt);
React.useEffect(() => {
const fetchPrompts = async () => {
try {
const response = await fetch(`${apiHost}/api/get_prompts`);
if (!response.ok) {
throw new Error('Failed to fetch prompts');
}
const promptsData = await response.json();
setPrompts(promptsData);
} catch (error) {
console.error(error);
}
};
fetchPrompts();
}, []);
return (
<div className="mt-[59px]">
<div className="mb-4">
<p className="font-bold text-jet dark:text-bright-gray">Select Theme</p>
<Dropdown
options={themes}
selectedValue={selectedTheme}
onSelect={(option: string) => {
setSelectedTheme(option);
option !== selectedTheme && toggleTheme();
}}
size="w-56"
rounded="3xl"
/>
</div>
<div className="mb-4">
<p className="font-bold text-jet dark:text-bright-gray">
Select Language
</p>
<Dropdown
options={languages}
selectedValue={selectedLanguage}
onSelect={setSelectedLanguage}
size="w-56"
rounded="3xl"
/>
</div>
<div className="mb-4">
<p className="font-bold text-jet dark:text-bright-gray">
Chunks processed per query
</p>
<Dropdown
options={chunks}
selectedValue={selectedChunks}
onSelect={(value: string) => dispatch(setChunks(value))}
size="w-56"
rounded="3xl"
/>
</div>
<div>
<Prompts
prompts={prompts}
selectedPrompt={selectedPrompt}
onSelectPrompt={(name, id, type) =>
dispatch(setPrompt({ name: name, id: id, type: type }))
}
setPrompts={setPrompts}
apiHost={apiHost}
/>
</div>
</div>
);
};
export default General;

View File

@@ -0,0 +1,219 @@
import React from 'react';
import { PromptProps, ActiveState } from '../models/misc';
import Dropdown from '../components/Dropdown';
import PromptsModal from '../preferences/PromptsModal';
const apiHost = import.meta.env.VITE_API_HOST || 'https://docsapi.arc53.com';
const Prompts: React.FC<PromptProps> = ({
prompts,
selectedPrompt,
onSelectPrompt,
setPrompts,
}) => {
const handleSelectPrompt = ({
name,
id,
type,
}: {
name: string;
id: string;
type: string;
}) => {
setEditPromptName(name);
onSelectPrompt(name, id, type);
};
const [newPromptName, setNewPromptName] = React.useState('');
const [newPromptContent, setNewPromptContent] = React.useState('');
const [editPromptName, setEditPromptName] = React.useState('');
const [editPromptContent, setEditPromptContent] = React.useState('');
const [currentPromptEdit, setCurrentPromptEdit] = React.useState({
id: '',
name: '',
type: '',
});
const [modalType, setModalType] = React.useState<'ADD' | 'EDIT'>('ADD');
const [modalState, setModalState] = React.useState<ActiveState>('INACTIVE');
const handleAddPrompt = async () => {
try {
const response = await fetch(`${apiHost}/api/create_prompt`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
name: newPromptName,
content: newPromptContent,
}),
});
if (!response.ok) {
throw new Error('Failed to add prompt');
}
const newPrompt = await response.json();
if (setPrompts) {
setPrompts([
...prompts,
{ name: newPromptName, id: newPrompt.id, type: 'private' },
]);
}
setModalState('INACTIVE');
onSelectPrompt(newPromptName, newPrompt.id, newPromptContent);
setNewPromptName(newPromptName);
} catch (error) {
console.error(error);
}
};
const handleDeletePrompt = (id: string) => {
setPrompts(prompts.filter((prompt) => prompt.id !== id));
fetch(`${apiHost}/api/delete_prompt`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({ id: id }),
})
.then((response) => {
if (!response.ok) {
throw new Error('Failed to delete prompt');
}
// get 1st prompt and set it as selected
if (prompts.length > 0) {
onSelectPrompt(prompts[0].name, prompts[0].id, prompts[0].type);
}
})
.catch((error) => {
console.error(error);
});
};
const fetchPromptContent = async (id: string) => {
console.log('fetching prompt content');
try {
const response = await fetch(
`${apiHost}/api/get_single_prompt?id=${id}`,
{
method: 'GET',
headers: {
'Content-Type': 'application/json',
},
},
);
if (!response.ok) {
throw new Error('Failed to fetch prompt content');
}
const promptContent = await response.json();
setEditPromptContent(promptContent.content);
} catch (error) {
console.error(error);
}
};
const handleSaveChanges = (id: string, type: string) => {
fetch(`${apiHost}/api/update_prompt`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
id: id,
name: editPromptName,
content: editPromptContent,
}),
})
.then((response) => {
if (!response.ok) {
throw new Error('Failed to update prompt');
}
if (setPrompts) {
const existingPromptIndex = prompts.findIndex(
(prompt) => prompt.id === id,
);
if (existingPromptIndex === -1) {
setPrompts([
...prompts,
{ name: editPromptName, id: id, type: type },
]);
} else {
const updatedPrompts = [...prompts];
updatedPrompts[existingPromptIndex] = {
name: editPromptName,
id: id,
type: type,
};
setPrompts(updatedPrompts);
}
}
setModalState('INACTIVE');
onSelectPrompt(editPromptName, id, type);
})
.catch((error) => {
console.error(error);
});
};
return (
<>
<div>
<div className="mb-4 flex flex-row items-center gap-8">
<div>
<p className="font-semibold dark:text-bright-gray">Active Prompt</p>
<Dropdown
options={prompts}
selectedValue={selectedPrompt.name}
onSelect={handleSelectPrompt}
size="w-56"
rounded="3xl"
showEdit
showDelete
onEdit={({
id,
name,
type,
}: {
id: string;
name: string;
type: string;
}) => {
setModalType('EDIT');
setEditPromptName(name);
fetchPromptContent(id);
setCurrentPromptEdit({ id: id, name: name, type: type });
setModalState('ACTIVE');
}}
onDelete={handleDeletePrompt}
/>
</div>
<button
className="mt-[24px] rounded-3xl border-2 border-solid border-purple-30 px-5 py-3 text-purple-30 hover:bg-purple-30 hover:text-white"
onClick={() => {
setModalType('ADD');
setModalState('ACTIVE');
}}
>
Add new
</button>
</div>
</div>
<PromptsModal
type={modalType}
modalState={modalState}
setModalState={setModalState}
newPromptName={newPromptName}
setNewPromptName={setNewPromptName}
newPromptContent={newPromptContent}
setNewPromptContent={setNewPromptContent}
editPromptName={editPromptName}
setEditPromptName={setEditPromptName}
editPromptContent={editPromptContent}
setEditPromptContent={setEditPromptContent}
currentPromptEdit={currentPromptEdit}
handleAddPrompt={handleAddPrompt}
handleEditPrompt={handleSaveChanges}
/>
</>
);
};
export default Prompts;

View File

@@ -0,0 +1,112 @@
import React from 'react';
import Dropdown from '../components/Dropdown';
const Widgets: React.FC<{
widgetScreenshot: File | null;
onWidgetScreenshotChange: (screenshot: File | null) => void;
}> = ({ widgetScreenshot, onWidgetScreenshotChange }) => {
const widgetSources = ['Source 1', 'Source 2', 'Source 3'];
const widgetMethods = ['Method 1', 'Method 2', 'Method 3'];
const widgetTypes = ['Type 1', 'Type 2', 'Type 3'];
const [selectedWidgetSource, setSelectedWidgetSource] = React.useState(
widgetSources[0],
);
const [selectedWidgetMethod, setSelectedWidgetMethod] = React.useState(
widgetMethods[0],
);
const [selectedWidgetType, setSelectedWidgetType] = React.useState(
widgetTypes[0],
);
// const [widgetScreenshot, setWidgetScreenshot] = useState<File | null>(null);
const [widgetCode, setWidgetCode] = React.useState<string>(''); // Your widget code state
const handleScreenshotChange = (
event: React.ChangeEvent<HTMLInputElement>,
) => {
const files = event.target.files;
if (files && files.length > 0) {
const selectedScreenshot = files[0];
onWidgetScreenshotChange(selectedScreenshot); // Update the screenshot in the parent component
}
};
const handleCopyToClipboard = () => {
// Create a new textarea element to select the text
const textArea = document.createElement('textarea');
textArea.value = widgetCode;
document.body.appendChild(textArea);
// Select and copy the text
textArea.select();
document.execCommand('copy');
// Clean up the textarea element
document.body.removeChild(textArea);
};
return (
<div>
<div className="mt-[59px]">
<p className="font-bold text-jet">Widget Source</p>
<Dropdown
options={widgetSources}
selectedValue={selectedWidgetSource}
onSelect={setSelectedWidgetSource}
/>
</div>
<div className="mt-5">
<p className="font-bold text-jet">Widget Method</p>
<Dropdown
options={widgetMethods}
selectedValue={selectedWidgetMethod}
onSelect={setSelectedWidgetMethod}
/>
</div>
<div className="mt-5">
<p className="font-bold text-jet">Widget Type</p>
<Dropdown
options={widgetTypes}
selectedValue={selectedWidgetType}
onSelect={setSelectedWidgetType}
/>
</div>
<div className="mt-6">
<p className="font-bold text-jet">Widget Code Snippet</p>
<textarea
rows={4}
value={widgetCode}
onChange={(e) => setWidgetCode(e.target.value)}
className="mt-3 w-full rounded-lg border-2 p-2"
/>
</div>
<div className="mt-1">
<button
onClick={handleCopyToClipboard}
className="rounded-lg bg-blue-400 px-2 py-2 font-bold text-white transition-all hover:bg-blue-600"
>
Copy
</button>
</div>
<div className="mt-4">
<p className="text-lg font-semibold">Widget Screenshot</p>
<input type="file" accept="image/*" onChange={handleScreenshotChange} />
</div>
{widgetScreenshot && (
<div className="mt-4">
<img
src={URL.createObjectURL(widgetScreenshot)}
alt="Widget Screenshot"
className="max-w-full rounded-lg border border-gray-300"
/>
</div>
)}
</div>
);
};
export default Widgets;

View File

@@ -0,0 +1,127 @@
import React from 'react';
import { useSelector, useDispatch } from 'react-redux';
import General from './General';
import Documents from './Documents';
import APIKeys from './APIKeys';
import Widgets from './Widgets';
import {
selectSourceDocs,
setSourceDocs,
} from '../preferences/preferenceSlice';
import { Doc } from '../preferences/preferenceApi';
import ArrowLeft from '../assets/arrow-left.svg';
import ArrowRight from '../assets/arrow-right.svg';
const apiHost = import.meta.env.VITE_API_HOST || 'https://docsapi.arc53.com';
const Settings: React.FC = () => {
const dispatch = useDispatch();
const tabs = ['General', 'Documents', 'API Keys'];
const [activeTab, setActiveTab] = React.useState('General');
const [widgetScreenshot, setWidgetScreenshot] = React.useState<File | null>(
null,
);
const documents = useSelector(selectSourceDocs);
const updateWidgetScreenshot = (screenshot: File | null) => {
setWidgetScreenshot(screenshot);
};
const handleDeleteClick = (index: number, doc: Doc) => {
const docPath = 'indexes/' + 'local' + '/' + doc.name;
fetch(`${apiHost}/api/delete_old?path=${docPath}`, {
method: 'GET',
})
.then((response) => {
if (response.ok && documents) {
const updatedDocuments = [
...documents.slice(0, index),
...documents.slice(index + 1),
];
dispatch(setSourceDocs(updatedDocuments));
}
})
.catch((error) => console.error(error));
};
return (
<div className="wa p-4 pt-20 md:p-12">
<p className="text-2xl font-bold text-eerie-black dark:text-bright-gray">
Settings
</p>
<div className="mt-6 flex flex-row items-center space-x-4 overflow-x-auto md:space-x-8 ">
<div className="md:hidden">
<button
onClick={() => scrollTabs(-1)}
className="flex h-8 w-8 items-center justify-center rounded-full border-2 border-purple-30 transition-all hover:bg-gray-100"
>
<img src={ArrowLeft} alt="left-arrow" className="h-6 w-6" />
</button>
</div>
<div className="flex flex-nowrap space-x-4 overflow-x-auto md:space-x-8">
{tabs.map((tab, index) => (
<button
key={index}
onClick={() => setActiveTab(tab)}
className={`h-9 rounded-3xl px-4 font-bold ${
activeTab === tab
? 'bg-purple-3000 text-purple-30 dark:bg-dark-charcoal'
: 'text-gray-6000'
}`}
>
{tab}
</button>
))}
</div>
<div className="md:hidden">
<button
onClick={() => scrollTabs(1)}
className="flex h-8 w-8 items-center justify-center rounded-full border-2 border-purple-30 hover:bg-gray-100"
>
<img src={ArrowRight} alt="right-arrow" className="h-6 w-6" />
</button>
</div>
</div>
{renderActiveTab()}
{/* {activeTab === 'Widgets' && (
<Widgets
widgetScreenshot={widgetScreenshot}
onWidgetScreenshotChange={updateWidgetScreenshot}
/>
)} */}
</div>
);
function scrollTabs(direction: number) {
const container = document.querySelector('.flex-nowrap');
if (container) {
container.scrollLeft += direction * 100; // Adjust the scroll amount as needed
}
}
function renderActiveTab() {
switch (activeTab) {
case 'General':
return <General />;
case 'Documents':
return (
<Documents
documents={documents}
handleDeleteDocument={handleDeleteClick}
/>
);
case 'Widgets':
return (
<Widgets
widgetScreenshot={widgetScreenshot} // Add this line
onWidgetScreenshotChange={updateWidgetScreenshot} // Add this line
/>
);
case 'API Keys':
return <APIKeys />;
default:
return null;
}
}
};
export default Settings;

View File

@@ -8,11 +8,13 @@ import {
const key = localStorage.getItem('DocsGPTApiKey');
const prompt = localStorage.getItem('DocsGPTPrompt');
const doc = localStorage.getItem('DocsGPTRecentDocs');
const chunks = localStorage.getItem('DocsGPTChunks');
const store = configureStore({
preloadedState: {
preference: {
apiKey: key ?? '',
chunks: JSON.parse(chunks ?? '2').toString(),
selectedDocs: doc !== null ? JSON.parse(doc) : null,
prompt:
prompt !== null

View File

@@ -17,10 +17,18 @@ export default function Upload({
const [docName, setDocName] = useState('');
const [urlName, setUrlName] = useState('');
const [url, setUrl] = useState('');
const [redditData, setRedditData] = useState({
client_id: '',
client_secret: '',
user_agent: '',
search_queries: [''],
number_posts: 10,
});
const urlOptions: { label: string; value: string }[] = [
{ label: 'Crawler', value: 'crawler' },
// { label: 'Sitemap', value: 'sitemap' },
{ label: 'Link', value: 'url' },
{ label: 'Reddit', value: 'reddit' },
];
const [urlType, setUrlType] = useState<{ label: string; value: string }>({
label: 'Link',
@@ -163,7 +171,6 @@ export default function Upload({
};
const uploadRemote = () => {
console.log('here');
const formData = new FormData();
formData.append('name', urlName);
formData.append('user', 'local');
@@ -171,6 +178,13 @@ export default function Upload({
formData.append('source', urlType?.value);
}
formData.append('data', url);
if (
redditData.client_id.length > 0 &&
redditData.client_secret.length > 0
) {
formData.set('name', 'other');
formData.set('data', JSON.stringify(redditData));
}
const apiHost = import.meta.env.VITE_API_HOST;
const xhr = new XMLHttpRequest();
xhr.upload.addEventListener('progress', (event) => {
@@ -187,7 +201,7 @@ export default function Upload({
const { getRootProps, getInputProps, isDragActive } = useDropzone({
onDrop,
multiple: false,
multiple: true,
onDragEnter: doNothing,
onDragOver: doNothing,
onDragLeave: doNothing,
@@ -202,6 +216,19 @@ export default function Upload({
['.docx'],
},
});
const handleChange = (e: React.ChangeEvent<HTMLInputElement>) => {
const { name, value } = e.target;
if (name === 'search_queries' && value.length > 0) {
setRedditData({
...redditData,
[name]: value.split(',').map((item) => item.trim()),
});
} else
setRedditData({
...redditData,
[name]: value,
});
};
let view;
if (progress?.type === 'UPLOAD') {
view = <UploadProgress></UploadProgress>;
@@ -280,31 +307,105 @@ export default function Upload({
onSelect={(value: { label: string; value: string }) =>
setUrlType(value)
}
size="w-full"
rounded="3xl"
/>
<input
placeholder="Enter name"
type="text"
className="h-10 w-full rounded-full border-2 border-silver px-3 outline-none dark:bg-transparent dark:text-silver"
value={urlName}
onChange={(e) => setUrlName(e.target.value)}
></input>
<div className="relative bottom-12 left-2 mt-[-18.39px]">
<span className="bg-white px-2 text-xs text-silver dark:bg-outer-space dark:text-silver">
Name
</span>
</div>
<input
placeholder="URL Link"
type="text"
className="h-10 w-full rounded-full border-2 border-silver px-3 outline-none dark:bg-transparent dark:text-silver"
value={url}
onChange={(e) => setUrl(e.target.value)}
></input>
<div className="relative bottom-12 left-2 mt-[-18.39px]">
<span className="bg-white px-2 text-xs text-silver dark:bg-outer-space dark:text-silver">
Link
</span>
</div>
{urlType.label !== 'Reddit' ? (
<>
<input
placeholder="Enter name"
type="text"
className="h-10 w-full rounded-full border-2 border-silver px-3 outline-none dark:bg-transparent dark:text-silver"
value={urlName}
onChange={(e) => setUrlName(e.target.value)}
></input>
<div className="relative bottom-12 left-2 mt-[-18.39px]">
<span className="bg-white px-2 text-xs text-silver dark:bg-outer-space dark:text-silver">
Name
</span>
</div>
<input
placeholder="URL Link"
type="text"
className="h-10 w-full rounded-full border-2 border-silver px-3 outline-none dark:bg-transparent dark:text-silver"
value={url}
onChange={(e) => setUrl(e.target.value)}
></input>
<div className="relative bottom-12 left-2 mt-[-18.39px]">
<span className="bg-white px-2 text-xs text-silver dark:bg-outer-space dark:text-silver">
Link
</span>
</div>
</>
) : (
<>
<input
placeholder="Enter client ID"
type="text"
className="h-10 w-full rounded-full border-2 border-silver px-3 outline-none dark:bg-transparent dark:text-silver"
name="client_id"
value={redditData.client_id}
onChange={handleChange}
></input>
<div className="relative bottom-12 left-2 mt-[-18.39px]">
<span className="bg-white px-2 text-xs text-silver dark:bg-outer-space dark:text-silver">
Client ID
</span>
</div>
<input
placeholder="Enter client secret"
type="text"
className="h-10 w-full rounded-full border-2 border-silver px-3 outline-none dark:bg-transparent dark:text-silver"
name="client_secret"
value={redditData.client_secret}
onChange={handleChange}
></input>
<div className="relative bottom-12 left-2 mt-[-18.39px]">
<span className="bg-white px-2 text-xs text-silver dark:bg-outer-space dark:text-silver">
Client secret
</span>
</div>
<input
placeholder="Enter user agent"
type="text"
className="h-10 w-full rounded-full border-2 border-silver px-3 outline-none dark:bg-transparent dark:text-silver"
name="user_agent"
value={redditData.user_agent}
onChange={handleChange}
></input>
<div className="relative bottom-12 left-2 mt-[-18.39px]">
<span className="bg-white px-2 text-xs text-silver dark:bg-outer-space dark:text-silver">
User agent
</span>
</div>
<input
placeholder="Enter search queries"
type="text"
className="h-10 w-full rounded-full border-2 border-silver px-3 outline-none dark:bg-transparent dark:text-silver"
name="search_queries"
value={redditData.search_queries}
onChange={handleChange}
></input>
<div className="relative bottom-12 left-2 mt-[-18.39px]">
<span className="bg-white px-2 text-xs text-silver dark:bg-outer-space dark:text-silver">
Search queries
</span>
</div>
<input
placeholder="Enter number of posts"
type="number"
className="h-10 w-full rounded-full border-2 border-silver px-3 outline-none dark:bg-transparent dark:text-silver"
name="number_posts"
value={redditData.number_posts}
onChange={handleChange}
></input>
<div className="relative bottom-12 left-2 mt-[-18.39px]">
<span className="bg-white px-2 text-xs text-silver dark:bg-outer-space dark:text-silver">
Number of posts
</span>
</div>
</>
)}
</>
)}
<div className="flex flex-row-reverse">
@@ -318,7 +419,7 @@ export default function Upload({
disabled={
(files.length === 0 || docName.trim().length === 0) &&
activeTab === 'file'
} // Disable the button if no file is selected or docName is empty
}
>
Train
</button>
@@ -349,4 +450,3 @@ export default function Upload({
</article>
);
}
// TODO: sanitize all inputs

View File

@@ -46,7 +46,8 @@ module.exports = {
'gun-metal':'#2E303E',
'sonic-silver':'#747474',
'soap':'#D8CCF1',
'independence':'#54546D'
'independence':'#54546D',
'philippine-yellow':'#FFC700',
},
},
},

View File

@@ -357,9 +357,9 @@
}
},
"node_modules/cookie": {
"version": "0.5.0",
"resolved": "https://registry.npmjs.org/cookie/-/cookie-0.5.0.tgz",
"integrity": "sha512-YZ3GUyn/o8gfKJlnlX7g7xq4gyO6OSuhGPKaaGssGB2qgDUS0gPgtTvoyZLTt9Ab6dC4hfc9dV5arkvc/OCmrw==",
"version": "0.6.0",
"resolved": "https://registry.npmjs.org/cookie/-/cookie-0.6.0.tgz",
"integrity": "sha512-U71cyTamuh1CRNCfpGY6to28lxvNwPG4Guz/EVjgf3Jmzv0vlDp1atT9eS5dDjMYHucpHbWns6Lwf3BKz6svdw==",
"engines": {
"node": ">= 0.6"
}
@@ -458,16 +458,16 @@
}
},
"node_modules/express": {
"version": "4.18.2",
"resolved": "https://registry.npmjs.org/express/-/express-4.18.2.tgz",
"integrity": "sha512-5/PsL6iGPdfQ/lKM1UuielYgv3BUoJfz1aUwU9vHZ+J7gyvwdQXFEBIEIaxeGf0GIcreATNyBExtalisDbuMqQ==",
"version": "4.19.2",
"resolved": "https://registry.npmjs.org/express/-/express-4.19.2.tgz",
"integrity": "sha512-5T6nhjsT+EOMzuck8JjBHARTHfMht0POzlA60WV2pMD3gyXw2LZnZ+ueGdNxG+0calOJcWKbpFcuzLZ91YWq9Q==",
"dependencies": {
"accepts": "~1.3.8",
"array-flatten": "1.1.1",
"body-parser": "1.20.1",
"body-parser": "1.20.2",
"content-disposition": "0.5.4",
"content-type": "~1.0.4",
"cookie": "0.5.0",
"cookie": "0.6.0",
"cookie-signature": "1.0.6",
"debug": "2.6.9",
"depd": "2.0.0",
@@ -515,43 +515,6 @@
"isarray": "0.0.1"
}
},
"node_modules/express/node_modules/body-parser": {
"version": "1.20.1",
"resolved": "https://registry.npmjs.org/body-parser/-/body-parser-1.20.1.tgz",
"integrity": "sha512-jWi7abTbYwajOytWCQc37VulmWiRae5RyTpaCyDcS5/lMdtwSz5lOpDE67srw/HYe35f1z3fDQw+3txg7gNtWw==",
"dependencies": {
"bytes": "3.1.2",
"content-type": "~1.0.4",
"debug": "2.6.9",
"depd": "2.0.0",
"destroy": "1.2.0",
"http-errors": "2.0.0",
"iconv-lite": "0.4.24",
"on-finished": "2.4.1",
"qs": "6.11.0",
"raw-body": "2.5.1",
"type-is": "~1.6.18",
"unpipe": "1.0.0"
},
"engines": {
"node": ">= 0.8",
"npm": "1.2.8000 || >= 1.4.16"
}
},
"node_modules/express/node_modules/raw-body": {
"version": "2.5.1",
"resolved": "https://registry.npmjs.org/raw-body/-/raw-body-2.5.1.tgz",
"integrity": "sha512-qqJBtEyVgS0ZmPGdCFPWJ3FreoqvG4MVQln/kCgF7Olq95IbOp0/BWyMwbdtn4VTvkM8Y7khCQ2Xgk/tcrCXig==",
"dependencies": {
"bytes": "3.1.2",
"http-errors": "2.0.0",
"iconv-lite": "0.4.24",
"unpipe": "1.0.0"
},
"engines": {
"node": ">= 0.8"
}
},
"node_modules/express/node_modules/safe-buffer": {
"version": "5.2.1",
"resolved": "https://registry.npmjs.org/safe-buffer/-/safe-buffer-5.2.1.tgz",

View File

@@ -54,7 +54,7 @@ class TestSagemakerAPILLM(unittest.TestCase):
def test_gen(self):
with patch.object(self.sagemaker.runtime, 'invoke_endpoint',
return_value=self.response) as mock_invoke_endpoint:
output = self.sagemaker.gen(None, None, self.messages)
output = self.sagemaker.gen(None, self.messages)
mock_invoke_endpoint.assert_called_once_with(
EndpointName=self.sagemaker.endpoint,
ContentType='application/json',
@@ -66,7 +66,7 @@ class TestSagemakerAPILLM(unittest.TestCase):
def test_gen_stream(self):
with patch.object(self.sagemaker.runtime, 'invoke_endpoint_with_response_stream',
return_value=self.response) as mock_invoke_endpoint:
output = list(self.sagemaker.gen_stream(None, None, self.messages))
output = list(self.sagemaker.gen_stream(None, self.messages))
mock_invoke_endpoint.assert_called_once_with(
EndpointName=self.sagemaker.endpoint,
ContentType='application/json',