Merge branch 'main' into custom-llm

This commit is contained in:
Alex
2023-02-15 14:42:57 +00:00
11 changed files with 219 additions and 32 deletions

View File

@@ -24,6 +24,8 @@ class RstParser(BaseParser):
remove_hyperlinks: bool = True,
remove_images: bool = True,
remove_table_excess: bool = True,
remove_interpreters: bool = True,
remove_directives: bool = True,
remove_whitespaces_excess: bool = True,
#Be carefull with remove_characters_excess, might cause data loss
remove_characters_excess: bool = True,
@@ -34,6 +36,8 @@ class RstParser(BaseParser):
self._remove_hyperlinks = remove_hyperlinks
self._remove_images = remove_images
self._remove_table_excess = remove_table_excess
self._remove_interpreters = remove_interpreters
self._remove_directives = remove_directives
self._remove_whitespaces_excess = remove_whitespaces_excess
self._remove_characters_excess = remove_characters_excess
@@ -95,6 +99,18 @@ class RstParser(BaseParser):
content = re.sub(pattern, r"\1", content)
return content
def remove_directives(self, content: str) -> str:
"""Removes reStructuredText Directives"""
pattern = r"`\.\.([^:]+)::"
content = re.sub(pattern, "", content)
return content
def remove_interpreters(self, content: str) -> str:
"""Removes reStructuredText Interpreted Text Roles"""
pattern = r":(\w+):"
content = re.sub(pattern, "", content)
return content
def remove_table_excess(self, content: str) -> str:
"""Pattern to remove grid table separators"""
pattern = r"^\+[-]+\+[-]+\+$"
@@ -129,6 +145,10 @@ class RstParser(BaseParser):
content = self.remove_images(content)
if self._remove_table_excess:
content = self.remove_table_excess(content)
if self._remove_directives:
content = self.remove_directives(content)
if self._remove_interpreters:
content = self.remove_interpreters(content)
rst_tups = self.rst_to_tups(content)
if self._remove_whitespaces_excess:
rst_tups = self.remove_whitespaces_excess(rst_tups)

View File

@@ -1,10 +1,15 @@
import os
import faiss
import pickle
import tiktoken
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
#from langchain.embeddings import HuggingFaceEmbeddings
from retry import retry
def num_tokens_from_string(string: str, encoding_name: str) -> int:
# Function to convert string to tokens and estimate user cost.
@@ -13,8 +18,17 @@ def num_tokens_from_string(string: str, encoding_name: str) -> int:
total_price = ((num_tokens/1000) * 0.0004)
return num_tokens, total_price
def call_openai_api(docs):
@retry(tries=10, delay=60)
def store_add_texts_with_retry(store, i):
store.add_texts([i.page_content], metadatas=[i.metadata])
def call_openai_api(docs, folder_name):
# Function to create a vector store from the documents and save it to disk.
# create output folder if it doesn't exist
if not os.path.exists(f"outputs/{folder_name}"):
os.makedirs(f"outputs/{folder_name}")
from tqdm import tqdm
docs_test = [docs[0]]
# remove the first element from docs
@@ -31,21 +45,29 @@ def call_openai_api(docs):
for i in tqdm(docs, desc="Embedding 🦖", unit="docs", total=len(docs), bar_format='{l_bar}{bar}| Time Left: {remaining}'):
try:
import time
store.add_texts([i.page_content], metadatas=[i.metadata])
store_add_texts_with_retry(store, i)
except Exception as e:
print(e)
print("Error on ", i)
print("Saving progress")
print(f"stopped at {c1} out of {len(docs)}")
store.save_local("outputs")
print("Sleeping for 10 seconds and trying again")
time.sleep(10)
faiss.write_index(store.index, f"outputs/{folder_name}/docs.index")
store_index_bak = store.index
store.index = None
with open(f"outputs/{folder_name}/faiss_store.pkl", "wb") as f:
pickle.dump(store, f)
print("Sleeping for 60 seconds and trying again")
time.sleep(60)
store.index = store_index_bak
store.add_texts([i.page_content], metadatas=[i.metadata])
c1 += 1
store.save_local("outputs")
faiss.write_index(store.index, f"outputs/{folder_name}/docs.index")
store.index = None
with open(f"outputs/{folder_name}/faiss_store.pkl", "wb") as f:
pickle.dump(store, f)
def get_user_permission(docs):
def get_user_permission(docs, folder_name):
# Function to ask user permission to call the OpenAI api and spend their OpenAI funds.
# Here we convert the docs list to a string and calculate the number of OpenAI tokens the string represents.
#docs_content = (" ".join(docs))
@@ -61,8 +83,8 @@ def get_user_permission(docs):
#Here we check for user permission before calling the API.
user_input = input("Price Okay? (Y/N) \n").lower()
if user_input == "y":
call_openai_api(docs)
call_openai_api(docs, folder_name)
elif user_input == "":
call_openai_api(docs)
call_openai_api(docs, folder_name)
else:
print("The API was not called. No money was spent.")
print("The API was not called. No money was spent.")