mirror of
https://github.com/arc53/DocsGPT.git
synced 2025-11-29 08:33:20 +00:00
fix: google parser, llm handler and other errors
This commit is contained in:
@@ -1,60 +1,77 @@
|
||||
from application.llm.base import BaseLLM
|
||||
import google.generativeai as genai
|
||||
|
||||
from application.core.settings import settings
|
||||
import logging
|
||||
from application.llm.base import BaseLLM
|
||||
|
||||
|
||||
class GoogleLLM(BaseLLM):
|
||||
|
||||
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
|
||||
|
||||
super().__init__(*args, **kwargs)
|
||||
self.api_key = settings.API_KEY
|
||||
self.user_api_key = user_api_key
|
||||
genai.configure(api_key=self.api_key)
|
||||
|
||||
def _clean_messages_google(self, messages):
|
||||
return [
|
||||
cleaned_messages = []
|
||||
for message in messages[1:]:
|
||||
cleaned_messages.append(
|
||||
{
|
||||
"role": "model" if message["role"] == "system" else message["role"],
|
||||
"parts": [message["content"]],
|
||||
}
|
||||
for message in messages[1:]
|
||||
]
|
||||
)
|
||||
return cleaned_messages
|
||||
|
||||
def _clean_tools_format(self, tools_data):
|
||||
"""
|
||||
Cleans the tools data format, converting string type representations
|
||||
to the expected dictionary structure for google-generativeai.
|
||||
"""
|
||||
if isinstance(tools_data, list):
|
||||
return [self._clean_tools_format(item) for item in tools_data]
|
||||
elif isinstance(tools_data, dict):
|
||||
if 'function' in tools_data and 'type' in tools_data and tools_data['type'] == 'function':
|
||||
if (
|
||||
"function" in tools_data
|
||||
and "type" in tools_data
|
||||
and tools_data["type"] == "function"
|
||||
):
|
||||
# Handle the case where tools are nested under 'function'
|
||||
cleaned_function = self._clean_tools_format(tools_data['function'])
|
||||
return {'function_declarations': [cleaned_function]}
|
||||
elif 'function' in tools_data and 'type_' in tools_data and tools_data['type_'] == 'function':
|
||||
cleaned_function = self._clean_tools_format(tools_data["function"])
|
||||
return {"function_declarations": [cleaned_function]}
|
||||
elif (
|
||||
"function" in tools_data
|
||||
and "type_" in tools_data
|
||||
and tools_data["type_"] == "function"
|
||||
):
|
||||
# Handle the case where tools are nested under 'function' and type is already 'type_'
|
||||
cleaned_function = self._clean_tools_format(tools_data['function'])
|
||||
return {'function_declarations': [cleaned_function]}
|
||||
cleaned_function = self._clean_tools_format(tools_data["function"])
|
||||
return {"function_declarations": [cleaned_function]}
|
||||
else:
|
||||
new_tools_data = {}
|
||||
for key, value in tools_data.items():
|
||||
if key == 'type':
|
||||
if value == 'string':
|
||||
new_tools_data['type_'] = 'STRING' # Keep as string for now
|
||||
elif value == 'object':
|
||||
new_tools_data['type_'] = 'OBJECT' # Keep as string for now
|
||||
elif key == 'additionalProperties':
|
||||
if key == "type":
|
||||
if value == "string":
|
||||
new_tools_data["type_"] = "STRING"
|
||||
elif value == "object":
|
||||
new_tools_data["type_"] = "OBJECT"
|
||||
elif key == "additionalProperties":
|
||||
continue
|
||||
elif key == 'properties':
|
||||
elif key == "properties":
|
||||
if isinstance(value, dict):
|
||||
new_properties = {}
|
||||
for prop_name, prop_value in value.items():
|
||||
if isinstance(prop_value, dict) and 'type' in prop_value:
|
||||
if prop_value['type'] == 'string':
|
||||
new_properties[prop_name] = {'type_': 'STRING', 'description': prop_value.get('description')}
|
||||
if (
|
||||
isinstance(prop_value, dict)
|
||||
and "type" in prop_value
|
||||
):
|
||||
if prop_value["type"] == "string":
|
||||
new_properties[prop_name] = {
|
||||
"type_": "STRING",
|
||||
"description": prop_value.get(
|
||||
"description"
|
||||
),
|
||||
}
|
||||
# Add more type mappings as needed
|
||||
else:
|
||||
new_properties[prop_name] = self._clean_tools_format(prop_value)
|
||||
new_properties[prop_name] = (
|
||||
self._clean_tools_format(prop_value)
|
||||
)
|
||||
new_tools_data[key] = new_properties
|
||||
else:
|
||||
new_tools_data[key] = self._clean_tools_format(value)
|
||||
@@ -75,64 +92,63 @@ class GoogleLLM(BaseLLM):
|
||||
formatting="openai",
|
||||
**kwargs
|
||||
):
|
||||
from google import genai
|
||||
from google.genai import types
|
||||
client = genai.Client(api_key=self.api_key)
|
||||
|
||||
|
||||
config = {
|
||||
}
|
||||
model = 'gemini-2.0-flash-exp'
|
||||
if formatting=="raw":
|
||||
response = client.models.generate_content(
|
||||
model=model,
|
||||
contents=messages
|
||||
)
|
||||
config = {}
|
||||
model_name = "gemini-2.0-flash-exp"
|
||||
|
||||
if formatting == "raw":
|
||||
client = genai.GenerativeModel(model_name=model_name)
|
||||
response = client.generate_content(contents=messages)
|
||||
return response.text
|
||||
else:
|
||||
model = genai.GenerativeModel(
|
||||
model_name=model,
|
||||
if tools:
|
||||
client = genai.GenerativeModel(
|
||||
model_name=model_name,
|
||||
generation_config=config,
|
||||
system_instruction=messages[0]["content"],
|
||||
tools=self._clean_tools_format(tools)
|
||||
tools=self._clean_tools_format(tools),
|
||||
)
|
||||
chat_session = model.start_chat(
|
||||
chat_session = gen_model.start_chat(
|
||||
history=self._clean_messages_google(messages)[:-1]
|
||||
)
|
||||
response = chat_session.send_message(
|
||||
self._clean_messages_google(messages)[-1]
|
||||
)
|
||||
logging.info(response)
|
||||
return response.text
|
||||
|
||||
def _raw_gen_stream(
|
||||
self,
|
||||
baseself,
|
||||
model,
|
||||
messages,
|
||||
stream=True,
|
||||
tools=None,
|
||||
**kwargs
|
||||
):
|
||||
import google.generativeai as genai
|
||||
genai.configure(api_key=self.api_key)
|
||||
config = {
|
||||
}
|
||||
model = genai.GenerativeModel(
|
||||
model_name=model,
|
||||
return response
|
||||
else:
|
||||
gen_model = genai.GenerativeModel(
|
||||
model_name=model_name,
|
||||
generation_config=config,
|
||||
system_instruction=messages[0]["content"]
|
||||
system_instruction=messages[0]["content"],
|
||||
)
|
||||
chat_session = model.start_chat(
|
||||
history=self._clean_messages_google(messages)[:-1],
|
||||
chat_session = gen_model.start_chat(
|
||||
history=self._clean_messages_google(messages)[:-1]
|
||||
)
|
||||
response = chat_session.send_message(
|
||||
self._clean_messages_google(messages)[-1]
|
||||
, stream=stream
|
||||
)
|
||||
for line in response:
|
||||
if line.text is not None:
|
||||
yield line.text
|
||||
return response.text
|
||||
|
||||
def _raw_gen_stream(
|
||||
self, baseself, model, messages, stream=True, tools=None, **kwargs
|
||||
):
|
||||
config = {}
|
||||
model_name = "gemini-2.0-flash-exp"
|
||||
|
||||
gen_model = genai.GenerativeModel(
|
||||
model_name=model_name,
|
||||
generation_config=config,
|
||||
system_instruction=messages[0]["content"],
|
||||
tools=self._clean_tools_format(tools),
|
||||
)
|
||||
chat_session = gen_model.start_chat(
|
||||
history=self._clean_messages_google(messages)[:-1],
|
||||
)
|
||||
response = chat_session.send_message(
|
||||
self._clean_messages_google(messages)[-1], stream=stream
|
||||
)
|
||||
for chunk in response:
|
||||
if chunk.text is not None:
|
||||
yield chunk.text
|
||||
|
||||
def _supports_tools(self):
|
||||
return True
|
||||
@@ -89,7 +89,7 @@ class Agent:
|
||||
if isinstance(resp, str):
|
||||
yield resp
|
||||
return
|
||||
if resp.message.content:
|
||||
if hasattr(resp, "message") and hasattr(resp.message, "content"):
|
||||
yield resp.message.content
|
||||
return
|
||||
|
||||
@@ -98,7 +98,7 @@ class Agent:
|
||||
# If no tool calls are needed, generate the final response
|
||||
if isinstance(resp, str):
|
||||
yield resp
|
||||
elif resp.message.content:
|
||||
elif hasattr(resp, "message") and hasattr(resp.message, "content"):
|
||||
yield resp.message.content
|
||||
else:
|
||||
completion = self.llm.gen_stream(
|
||||
|
||||
@@ -47,23 +47,43 @@ class OpenAILLMHandler(LLMHandler):
|
||||
|
||||
class GoogleLLMHandler(LLMHandler):
|
||||
def handle_response(self, agent, resp, tools_dict, messages):
|
||||
from google.genai import types
|
||||
import google.generativeai as genai
|
||||
|
||||
while resp.content.parts[0].function_call:
|
||||
function_call_part = resp.candidates[0].content.parts[0]
|
||||
while (
|
||||
hasattr(resp.candidates[0].content.parts[0], "function_call")
|
||||
and resp.candidates[0].content.parts[0].function_call
|
||||
):
|
||||
responses = {}
|
||||
for part in resp.candidates[0].content.parts:
|
||||
if hasattr(part, "function_call") and part.function_call:
|
||||
function_call_part = part
|
||||
messages.append(
|
||||
genai.protos.Part(
|
||||
function_call=genai.protos.FunctionCall(
|
||||
name=function_call_part.function_call.name,
|
||||
args=function_call_part.function_call.args,
|
||||
)
|
||||
)
|
||||
)
|
||||
tool_response, call_id = agent._execute_tool_action(
|
||||
tools_dict, function_call_part.function_call
|
||||
)
|
||||
function_response_part = types.Part.from_function_response(
|
||||
name=function_call_part.function_call.name, response=tool_response
|
||||
responses[function_call_part.function_call.name] = tool_response
|
||||
response_parts = [
|
||||
genai.protos.Part(
|
||||
function_response=genai.protos.FunctionResponse(
|
||||
name=tool_name, response={"result": response}
|
||||
)
|
||||
|
||||
messages.append(function_call_part, function_response_part)
|
||||
)
|
||||
for tool_name, response in responses.items()
|
||||
]
|
||||
if response_parts:
|
||||
messages.append(response_parts)
|
||||
resp = agent.llm.gen(
|
||||
model=agent.gpt_model, messages=messages, tools=agent.tools
|
||||
)
|
||||
|
||||
return resp
|
||||
return resp.text
|
||||
|
||||
|
||||
def get_llm_handler(llm_type):
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
import json
|
||||
|
||||
from google.protobuf.json_format import MessageToDict
|
||||
|
||||
|
||||
class ToolActionParser:
|
||||
def __init__(self, llm_type):
|
||||
@@ -20,7 +22,8 @@ class ToolActionParser:
|
||||
return tool_id, action_name, call_args
|
||||
|
||||
def _parse_google_llm(self, call):
|
||||
call_args = json.loads(call.args)
|
||||
tool_id = call.name.split("_")[-1]
|
||||
action_name = call.name.rsplit("_", 1)[0]
|
||||
call = MessageToDict(call._pb)
|
||||
call_args = call["args"]
|
||||
tool_id = call["name"].split("_")[-1]
|
||||
action_name = call["name"].rsplit("_", 1)[0]
|
||||
return tool_id, action_name, call_args
|
||||
|
||||
Reference in New Issue
Block a user