test version

This commit is contained in:
Pavel
2024-12-20 18:41:47 +03:00
parent 2aea24afdd
commit c4f3dc4434
5 changed files with 221 additions and 167 deletions

View File

@@ -0,0 +1,118 @@
import re
from typing import List, Tuple, Union
import logging
from application.parser.schema.base import Document
from application.utils import get_encoding
logger = logging.getLogger(__name__)
class Chunker:
def __init__(
self,
chunking_strategy: str = "classic_chunk",
max_tokens: int = 2000,
min_tokens: int = 150,
duplicate_headers: bool = False,
):
if chunking_strategy not in ["classic_chunk"]:
raise ValueError(f"Unsupported chunking strategy: {chunking_strategy}")
self.chunking_strategy = chunking_strategy
self.max_tokens = max_tokens
self.min_tokens = min_tokens
self.duplicate_headers = duplicate_headers
self.encoding = get_encoding()
def separate_header_and_body(self, text: str) -> Tuple[str, str]:
header_pattern = r"^(.*?\n){3}"
match = re.match(header_pattern, text)
if match:
header = match.group(0)
body = text[len(header):]
else:
header, body = "", text # No header, treat entire text as body
return header, body
def combine_documents(self, doc: Document, next_doc: Document) -> Document:
combined_text = doc.text + " " + next_doc.text
combined_token_count = len(self.encoding.encode(combined_text))
new_doc = Document(
text=combined_text,
doc_id=doc.doc_id,
embedding=doc.embedding,
extra_info={**(doc.extra_info or {}), "token_count": combined_token_count}
)
return new_doc
def split_document(self, doc: Document) -> List[Document]:
split_docs = []
header, body = self.separate_header_and_body(doc.text)
header_tokens = self.encoding.encode(header) if header else []
body_tokens = self.encoding.encode(body)
current_position = 0
part_index = 0
while current_position < len(body_tokens):
end_position = current_position + self.max_tokens - len(header_tokens)
chunk_tokens = (header_tokens + body_tokens[current_position:end_position]
if self.duplicate_headers or part_index == 0 else body_tokens[current_position:end_position])
chunk_text = self.encoding.decode(chunk_tokens)
new_doc = Document(
text=chunk_text,
doc_id=f"{doc.doc_id}-{part_index}",
embedding=doc.embedding,
extra_info={**(doc.extra_info or {}), "token_count": len(chunk_tokens)}
)
split_docs.append(new_doc)
current_position = end_position
part_index += 1
header_tokens = []
return split_docs
def classic_chunk(self, documents: List[Document]) -> List[Document]:
processed_docs = []
i = 0
while i < len(documents):
doc = documents[i]
tokens = self.encoding.encode(doc.text)
token_count = len(tokens)
if self.min_tokens <= token_count <= self.max_tokens:
doc.extra_info = doc.extra_info or {}
doc.extra_info["token_count"] = token_count
processed_docs.append(doc)
i += 1
elif token_count < self.min_tokens:
if i + 1 < len(documents):
next_doc = documents[i + 1]
next_tokens = self.encoding.encode(next_doc.text)
if token_count + len(next_tokens) <= self.max_tokens:
# Combine small documents
combined_doc = self.combine_documents(doc, next_doc)
processed_docs.append(combined_doc)
i += 2
else:
# Keep the small document as is if adding next_doc would exceed max_tokens
doc.extra_info = doc.extra_info or {}
doc.extra_info["token_count"] = token_count
processed_docs.append(doc)
i += 1
else:
# No next document to combine with; add the small document as is
doc.extra_info = doc.extra_info or {}
doc.extra_info["token_count"] = token_count
processed_docs.append(doc)
i += 1
else:
# Split large documents
processed_docs.extend(self.split_document(doc))
i += 1
return processed_docs
def chunk(
self,
documents: List[Document]
) -> List[Document]:
if self.chunking_strategy == "classic_chunk":
return self.classic_chunk(documents)
else:
raise ValueError("Unsupported chunking strategy")