mirror of
https://github.com/arc53/DocsGPT.git
synced 2025-11-30 00:53:14 +00:00
fix: pytest issues
This commit is contained in:
@@ -1,44 +1,57 @@
|
||||
from application.llm.base import BaseLLM
|
||||
|
||||
|
||||
class HuggingFaceLLM(BaseLLM):
|
||||
|
||||
def __init__(self, api_key, llm_name='Arc53/DocsGPT-7B',q=False):
|
||||
def __init__(self, api_key, llm_name="Arc53/DocsGPT-7B", q=False):
|
||||
global hf
|
||||
|
||||
|
||||
from langchain.llms import HuggingFacePipeline
|
||||
|
||||
if q:
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig
|
||||
from transformers import (
|
||||
AutoModelForCausalLM,
|
||||
AutoTokenizer,
|
||||
pipeline,
|
||||
BitsAndBytesConfig,
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(llm_name)
|
||||
bnb_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_use_double_quant=True,
|
||||
bnb_4bit_quant_type="nf4",
|
||||
bnb_4bit_compute_dtype=torch.bfloat16
|
||||
)
|
||||
model = AutoModelForCausalLM.from_pretrained(llm_name,quantization_config=bnb_config)
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_use_double_quant=True,
|
||||
bnb_4bit_quant_type="nf4",
|
||||
bnb_4bit_compute_dtype=torch.bfloat16,
|
||||
)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
llm_name, quantization_config=bnb_config
|
||||
)
|
||||
else:
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(llm_name)
|
||||
model = AutoModelForCausalLM.from_pretrained(llm_name)
|
||||
|
||||
|
||||
pipe = pipeline(
|
||||
"text-generation", model=model,
|
||||
tokenizer=tokenizer, max_new_tokens=2000,
|
||||
device_map="auto", eos_token_id=tokenizer.eos_token_id
|
||||
"text-generation",
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
max_new_tokens=2000,
|
||||
device_map="auto",
|
||||
eos_token_id=tokenizer.eos_token_id,
|
||||
)
|
||||
hf = HuggingFacePipeline(pipeline=pipe)
|
||||
|
||||
def gen(self, model, messages, stream=False, **kwargs):
|
||||
context = messages[0]['content']
|
||||
user_question = messages[-1]['content']
|
||||
def _raw_gen(self, model, messages, stream=False, **kwargs):
|
||||
context = messages[0]["content"]
|
||||
user_question = messages[-1]["content"]
|
||||
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n"
|
||||
|
||||
result = hf(prompt)
|
||||
|
||||
return result.content
|
||||
|
||||
def gen_stream(self, model, messages, stream=True, **kwargs):
|
||||
def _raw_gen_stream(self, model, messages, stream=True, **kwargs):
|
||||
|
||||
raise NotImplementedError("HuggingFaceLLM Streaming is not implemented yet.")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user