Refactor agent creation and update logic to improve error handling and default values; enhance logging for better traceability

This commit is contained in:
Siddhant Rai
2025-10-01 13:56:31 +05:30
parent 82beafc086
commit ba49eea23d
5 changed files with 373 additions and 181 deletions

View File

@@ -1,3 +1,4 @@
import logging
import os
from abc import ABC, abstractmethod
@@ -9,13 +10,27 @@ from application.core.settings import settings
class EmbeddingsWrapper:
def __init__(self, model_name, *args, **kwargs):
self.model = SentenceTransformer(
model_name,
config_kwargs={"allow_dangerous_deserialization": True},
*args,
**kwargs
)
self.dimension = self.model.get_sentence_embedding_dimension()
logging.info(f"Initializing EmbeddingsWrapper with model: {model_name}")
try:
kwargs.setdefault("trust_remote_code", True)
self.model = SentenceTransformer(
model_name,
config_kwargs={"allow_dangerous_deserialization": True},
*args,
**kwargs,
)
if self.model is None or self.model._first_module() is None:
raise ValueError(
f"SentenceTransformer model failed to load properly for: {model_name}"
)
self.dimension = self.model.get_sentence_embedding_dimension()
logging.info(f"Successfully loaded model with dimension: {self.dimension}")
except Exception as e:
logging.error(
f"Failed to initialize SentenceTransformer with model {model_name}: {str(e)}",
exc_info=True,
)
raise
def embed_query(self, query: str):
return self.model.encode(query).tolist()
@@ -117,15 +132,29 @@ class BaseVectorStore(ABC):
embeddings_name, openai_api_key=embeddings_key
)
elif embeddings_name == "huggingface_sentence-transformers/all-mpnet-base-v2":
if os.path.exists("./models/all-mpnet-base-v2"):
possible_paths = [
"/app/models/all-mpnet-base-v2", # Docker absolute path
"./models/all-mpnet-base-v2", # Relative path
]
local_model_path = None
for path in possible_paths:
if os.path.exists(path):
local_model_path = path
logging.info(f"Found local model at path: {path}")
break
else:
logging.info(f"Path does not exist: {path}")
if local_model_path:
embedding_instance = EmbeddingsSingleton.get_instance(
embeddings_name="./models/all-mpnet-base-v2",
local_model_path,
)
else:
logging.warning(
f"Local model not found in any of the paths: {possible_paths}. Falling back to HuggingFace download."
)
embedding_instance = EmbeddingsSingleton.get_instance(
embeddings_name,
)
else:
embedding_instance = EmbeddingsSingleton.get_instance(embeddings_name)
return embedding_instance