mirror of
https://github.com/arc53/DocsGPT.git
synced 2025-11-29 08:33:20 +00:00
init2
This commit is contained in:
40
scripts/ingest_rst.py
Normal file
40
scripts/ingest_rst.py
Normal file
@@ -0,0 +1,40 @@
|
||||
from pathlib import Path
|
||||
from langchain.text_splitter import CharacterTextSplitter
|
||||
import faiss
|
||||
from langchain.vectorstores import FAISS
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
import pickle
|
||||
import dotenv
|
||||
import os
|
||||
|
||||
dotenv.load_dotenv()
|
||||
|
||||
|
||||
# Here we load in the data in the format that Notion exports it in.
|
||||
ps = list(Path("pandasdocs/").glob("**/*.rst"))
|
||||
# parse all child directories
|
||||
|
||||
data = []
|
||||
sources = []
|
||||
for p in ps:
|
||||
with open(p) as f:
|
||||
data.append(f.read())
|
||||
sources.append(p)
|
||||
|
||||
# Here we split the documents, as needed, into smaller chunks.
|
||||
# We do this due to the context limits of the LLMs.
|
||||
text_splitter = CharacterTextSplitter(chunk_size=1500, separator="\n")
|
||||
docs = []
|
||||
metadatas = []
|
||||
for i, d in enumerate(data):
|
||||
splits = text_splitter.split_text(d)
|
||||
docs.extend(splits)
|
||||
metadatas.extend([{"source": sources[i]}] * len(splits))
|
||||
|
||||
|
||||
# Here we create a vector store from the documents and save it to disk.
|
||||
store = FAISS.from_texts(docs, OpenAIEmbeddings(), metadatas=metadatas)
|
||||
faiss.write_index(store.index, "docs.index")
|
||||
store.index = None
|
||||
with open("faiss_store.pkl", "wb") as f:
|
||||
pickle.dump(store, f)
|
||||
Reference in New Issue
Block a user