mirror of
https://github.com/arc53/DocsGPT.git
synced 2025-11-29 16:43:16 +00:00
token ingeest
This commit is contained in:
@@ -29,7 +29,6 @@ class RstParser(BaseParser):
|
||||
remove_whitespaces_excess: bool = True,
|
||||
#Be carefull with remove_characters_excess, might cause data loss
|
||||
remove_characters_excess: bool = True,
|
||||
# max_tokens: int = 2048,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""Init params."""
|
||||
@@ -41,18 +40,6 @@ class RstParser(BaseParser):
|
||||
self._remove_directives = remove_directives
|
||||
self._remove_whitespaces_excess = remove_whitespaces_excess
|
||||
self._remove_characters_excess = remove_characters_excess
|
||||
# self._max_tokens = max_tokens
|
||||
|
||||
# def tups_chunk_append(self, tups: List[Tuple[Optional[str], str]], current_header: Optional[str], current_text: str):
|
||||
# """Append to tups chunk."""
|
||||
# num_tokens = len(tiktoken.get_encoding("cl100k_base").encode(current_text))
|
||||
# if num_tokens > self._max_tokens:
|
||||
# chunks = [current_text[i:i + self._max_tokens] for i in range(0, len(current_text), self._max_tokens)]
|
||||
# for chunk in chunks:
|
||||
# tups.append((current_header, chunk))
|
||||
# else:
|
||||
# tups.append((current_header, current_text))
|
||||
# return tups
|
||||
|
||||
|
||||
def rst_to_tups(self, rst_text: str) -> List[Tuple[Optional[str], str]]:
|
||||
|
||||
70
scripts/parser/token_func.py
Normal file
70
scripts/parser/token_func.py
Normal file
@@ -0,0 +1,70 @@
|
||||
import re
|
||||
import tiktoken
|
||||
|
||||
from typing import List
|
||||
from parser.schema.base import Document
|
||||
from math import ceil
|
||||
|
||||
|
||||
def separate_header_and_body(text):
|
||||
header_pattern = r"^(.*?\n){3}"
|
||||
match = re.match(header_pattern, text)
|
||||
header = match.group(0)
|
||||
body = text[len(header):]
|
||||
return header, body
|
||||
|
||||
def group_documents(documents: List[Document], min_tokens: int = 200, max_tokens: int = 2000) -> List[Document]:
|
||||
docs = []
|
||||
current_group = None
|
||||
|
||||
for doc in documents:
|
||||
doc_len = len(tiktoken.get_encoding("cl100k_base").encode(doc.text))
|
||||
|
||||
if current_group is None:
|
||||
current_group = Document(text=doc.text, doc_id=doc.doc_id, embedding=doc.embedding,
|
||||
extra_info=doc.extra_info)
|
||||
elif len(tiktoken.get_encoding("cl100k_base").encode(current_group.text)) + doc_len < max_tokens and doc_len >= min_tokens:
|
||||
current_group.text += " " + doc.text
|
||||
else:
|
||||
docs.append(current_group)
|
||||
current_group = Document(text=doc.text, doc_id=doc.doc_id, embedding=doc.embedding,
|
||||
extra_info=doc.extra_info)
|
||||
|
||||
if current_group is not None:
|
||||
docs.append(current_group)
|
||||
|
||||
return docs
|
||||
|
||||
def split_documents(documents: List[Document], max_tokens: int = 2000) -> List[Document]:
|
||||
docs = []
|
||||
for doc in documents:
|
||||
token_length = len(tiktoken.get_encoding("cl100k_base").encode(doc.text))
|
||||
if token_length <= max_tokens:
|
||||
docs.append(doc)
|
||||
else:
|
||||
header, body = separate_header_and_body(doc.text)
|
||||
num_body_parts = ceil(token_length / max_tokens)
|
||||
part_length = ceil(len(body) / num_body_parts)
|
||||
body_parts = [body[i:i + part_length] for i in range(0, len(body), part_length)]
|
||||
for i, body_part in enumerate(body_parts):
|
||||
new_doc = Document(text=header + body_part.strip(),
|
||||
doc_id=f"{doc.doc_id}-{i}",
|
||||
embedding=doc.embedding,
|
||||
extra_info=doc.extra_info)
|
||||
docs.append(new_doc)
|
||||
return docs
|
||||
|
||||
def group_split(documents: List[Document], max_tokens: int = 1500, min_tokens: int = 500, token_check: bool = True):
|
||||
if token_check == False:
|
||||
return documents
|
||||
print("Grouping small documents")
|
||||
try:
|
||||
documents = group_documents(documents=documents, min_tokens=min_tokens, max_tokens=max_tokens)
|
||||
except:
|
||||
print("Grouping failed, try running without token_check")
|
||||
print("Separating large documents")
|
||||
try:
|
||||
documents = split_documents(documents=documents, max_tokens=max_tokens)
|
||||
except:
|
||||
print("Grouping failed, try running without token_check")
|
||||
return documents
|
||||
Reference in New Issue
Block a user