(feat:vectors): calc, add token in db

This commit is contained in:
ManishMadan2882
2024-05-24 21:10:50 +05:30
parent 9f1d3b0269
commit 9000838aab
6 changed files with 39 additions and 34 deletions

31
application/worker.py Normal file → Executable file
View File

@@ -2,6 +2,7 @@ import os
import shutil
import string
import zipfile
import tiktoken
from urllib.parse import urljoin
import requests
@@ -131,6 +132,7 @@ def ingest_worker(self, directory, formats, name_job, filename, user):
docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
call_openai_api(docs, full_path, self)
tokens = count_tokens_docs(docs)
self.update_state(state="PROGRESS", meta={"current": 100})
if sample:
@@ -139,7 +141,7 @@ def ingest_worker(self, directory, formats, name_job, filename, user):
# get files from outputs/inputs/index.faiss and outputs/inputs/index.pkl
# and send them to the server (provide user and name in form)
file_data = {"name": name_job, "user": user}
file_data = {"name": name_job, "user": user, "tokens":tokens}
if settings.VECTOR_STORE == "faiss":
files = {
"file_faiss": open(full_path + "/index.faiss", "rb"),
@@ -188,18 +190,19 @@ def remote_worker(self, source_data, name_job, user, loader, directory="temp"):
max_tokens=max_tokens,
token_check=token_check,
)
# docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
call_openai_api(docs, full_path, self)
tokens = count_tokens_docs(docs)
self.update_state(state="PROGRESS", meta={"current": 100})
# Proceed with uploading and cleaning as in the original function
file_data = {"name": name_job, "user": user}
file_data = {"name": name_job, "user": user, "tokens":tokens}
if settings.VECTOR_STORE == "faiss":
files = {
"file_faiss": open(full_path + "/index.faiss", "rb"),
"file_pkl": open(full_path + "/index.pkl", "rb"),
}
requests.post(
urljoin(settings.API_URL, "/api/upload_index"), files=files, data=file_data
)
@@ -210,3 +213,25 @@ def remote_worker(self, source_data, name_job, user, loader, directory="temp"):
shutil.rmtree(full_path)
return {"urls": source_data, "name_job": name_job, "user": user, "limited": False}
def count_tokens_docs(docs):
# Here we convert the docs list to a string and calculate the number of tokens the string represents.
# docs_content = (" ".join(docs))
docs_content = ""
for doc in docs:
docs_content += doc.page_content
tokens, total_price = num_tokens_from_string(
string=docs_content, encoding_name="cl100k_base"
)
# Here we print the number of tokens and the approx user cost with some visually appealing formatting.
return tokens
def num_tokens_from_string(string: str, encoding_name: str) -> int:
# Function to convert string to tokens and estimate user cost.
encoding = tiktoken.get_encoding(encoding_name)
num_tokens = len(encoding.encode(string))
total_price = (num_tokens / 1000) * 0.0004
return num_tokens, total_price