mirror of
https://github.com/arc53/DocsGPT.git
synced 2026-02-22 12:21:39 +00:00
feat: agent workflow builder (#2264)
* feat: implement WorkflowAgent and GraphExecutor for workflow management and execution * refactor: workflow schemas and introduce WorkflowEngine - Updated schemas in `schemas.py` to include new agent types and configurations. - Created `WorkflowEngine` class in `workflow_engine.py` to manage workflow execution. - Enhanced `StreamProcessor` to handle workflow-related data. - Added new routes and utilities for managing workflows in the user API. - Implemented validation and serialization functions for workflows. - Established MongoDB collections and indexes for workflows and related entities. * refactor: improve WorkflowAgent documentation and update type hints in WorkflowEngine * feat: workflow builder and managing in frontend - Added new endpoints for workflows in `endpoints.ts`. - Implemented `getWorkflow`, `createWorkflow`, and `updateWorkflow` methods in `userService.ts`. - Introduced new UI components for alerts, buttons, commands, dialogs, multi-select, popovers, and selects. - Enhanced styling in `index.css` with new theme variables and animations. - Refactored modal components for better layout and styling. - Configured TypeScript paths and Vite aliases for cleaner imports. * feat: add workflow preview component and related state management - Implemented WorkflowPreview component for displaying workflow execution. - Created WorkflowPreviewSlice for managing workflow preview state, including queries and execution steps. - Added WorkflowMiniMap for visual representation of workflow nodes and their statuses. - Integrated conversation handling with the ability to fetch answers and manage query states. - Introduced reusable Sheet component for UI overlays. - Updated Redux store to include workflowPreview reducer. * feat: enhance workflow execution details and state management in WorkflowEngine and WorkflowPreview * feat: enhance workflow components with improved UI and functionality - Updated WorkflowPreview to allow text truncation for better display of long names. - Enhanced BaseNode with connectable handles and improved styling for better visibility. - Added MobileBlocker component to inform users about desktop requirements for the Workflow Builder. - Introduced PromptTextArea component for improved variable insertion and search functionality, including upstream variable extraction and context addition. * feat(workflow): add owner validation and graph version support * fix: ruff lint --------- Co-authored-by: Alex <a@tushynski.me>
This commit is contained in:
276
application/agents/workflows/workflow_engine.py
Normal file
276
application/agents/workflows/workflow_engine.py
Normal file
@@ -0,0 +1,276 @@
|
||||
import logging
|
||||
from datetime import datetime, timezone
|
||||
from typing import Any, Dict, Generator, List, Optional, TYPE_CHECKING
|
||||
|
||||
from application.agents.workflows.node_agent import WorkflowNodeAgentFactory
|
||||
from application.agents.workflows.schemas import (
|
||||
AgentNodeConfig,
|
||||
ExecutionStatus,
|
||||
NodeExecutionLog,
|
||||
NodeType,
|
||||
WorkflowGraph,
|
||||
WorkflowNode,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from application.agents.base import BaseAgent
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
StateValue = Any
|
||||
WorkflowState = Dict[str, StateValue]
|
||||
|
||||
|
||||
class WorkflowEngine:
|
||||
MAX_EXECUTION_STEPS = 50
|
||||
|
||||
def __init__(self, graph: WorkflowGraph, agent: "BaseAgent"):
|
||||
self.graph = graph
|
||||
self.agent = agent
|
||||
self.state: WorkflowState = {}
|
||||
self.execution_log: List[Dict[str, Any]] = []
|
||||
|
||||
def execute(
|
||||
self, initial_inputs: WorkflowState, query: str
|
||||
) -> Generator[Dict[str, str], None, None]:
|
||||
self._initialize_state(initial_inputs, query)
|
||||
|
||||
start_node = self.graph.get_start_node()
|
||||
if not start_node:
|
||||
yield {"type": "error", "error": "No start node found in workflow."}
|
||||
return
|
||||
current_node_id: Optional[str] = start_node.id
|
||||
steps = 0
|
||||
|
||||
while current_node_id and steps < self.MAX_EXECUTION_STEPS:
|
||||
node = self.graph.get_node_by_id(current_node_id)
|
||||
if not node:
|
||||
yield {"type": "error", "error": f"Node {current_node_id} not found."}
|
||||
break
|
||||
log_entry = self._create_log_entry(node)
|
||||
|
||||
yield {
|
||||
"type": "workflow_step",
|
||||
"node_id": node.id,
|
||||
"node_type": node.type.value,
|
||||
"node_title": node.title,
|
||||
"status": "running",
|
||||
}
|
||||
|
||||
try:
|
||||
yield from self._execute_node(node)
|
||||
log_entry["status"] = ExecutionStatus.COMPLETED.value
|
||||
log_entry["completed_at"] = datetime.now(timezone.utc)
|
||||
|
||||
output_key = f"node_{node.id}_output"
|
||||
node_output = self.state.get(output_key)
|
||||
|
||||
yield {
|
||||
"type": "workflow_step",
|
||||
"node_id": node.id,
|
||||
"node_type": node.type.value,
|
||||
"node_title": node.title,
|
||||
"status": "completed",
|
||||
"state_snapshot": dict(self.state),
|
||||
"output": node_output,
|
||||
}
|
||||
except Exception as e:
|
||||
logger.error(f"Error executing node {node.id}: {e}", exc_info=True)
|
||||
log_entry["status"] = ExecutionStatus.FAILED.value
|
||||
log_entry["error"] = str(e)
|
||||
log_entry["completed_at"] = datetime.now(timezone.utc)
|
||||
log_entry["state_snapshot"] = dict(self.state)
|
||||
self.execution_log.append(log_entry)
|
||||
|
||||
yield {
|
||||
"type": "workflow_step",
|
||||
"node_id": node.id,
|
||||
"node_type": node.type.value,
|
||||
"node_title": node.title,
|
||||
"status": "failed",
|
||||
"state_snapshot": dict(self.state),
|
||||
"error": str(e),
|
||||
}
|
||||
yield {"type": "error", "error": str(e)}
|
||||
break
|
||||
log_entry["state_snapshot"] = dict(self.state)
|
||||
self.execution_log.append(log_entry)
|
||||
|
||||
if node.type == NodeType.END:
|
||||
break
|
||||
current_node_id = self._get_next_node_id(current_node_id)
|
||||
steps += 1
|
||||
if steps >= self.MAX_EXECUTION_STEPS:
|
||||
logger.warning(
|
||||
f"Workflow reached max steps limit ({self.MAX_EXECUTION_STEPS})"
|
||||
)
|
||||
|
||||
def _initialize_state(self, initial_inputs: WorkflowState, query: str) -> None:
|
||||
self.state.update(initial_inputs)
|
||||
self.state["query"] = query
|
||||
self.state["chat_history"] = str(self.agent.chat_history)
|
||||
|
||||
def _create_log_entry(self, node: WorkflowNode) -> Dict[str, Any]:
|
||||
return {
|
||||
"node_id": node.id,
|
||||
"node_type": node.type.value,
|
||||
"started_at": datetime.now(timezone.utc),
|
||||
"completed_at": None,
|
||||
"status": ExecutionStatus.RUNNING.value,
|
||||
"error": None,
|
||||
"state_snapshot": {},
|
||||
}
|
||||
|
||||
def _get_next_node_id(self, current_node_id: str) -> Optional[str]:
|
||||
edges = self.graph.get_outgoing_edges(current_node_id)
|
||||
if edges:
|
||||
return edges[0].target_id
|
||||
return None
|
||||
|
||||
def _execute_node(
|
||||
self, node: WorkflowNode
|
||||
) -> Generator[Dict[str, str], None, None]:
|
||||
logger.info(f"Executing node {node.id} ({node.type.value})")
|
||||
|
||||
node_handlers = {
|
||||
NodeType.START: self._execute_start_node,
|
||||
NodeType.NOTE: self._execute_note_node,
|
||||
NodeType.AGENT: self._execute_agent_node,
|
||||
NodeType.STATE: self._execute_state_node,
|
||||
NodeType.END: self._execute_end_node,
|
||||
}
|
||||
|
||||
handler = node_handlers.get(node.type)
|
||||
if handler:
|
||||
yield from handler(node)
|
||||
|
||||
def _execute_start_node(
|
||||
self, node: WorkflowNode
|
||||
) -> Generator[Dict[str, str], None, None]:
|
||||
yield from ()
|
||||
|
||||
def _execute_note_node(
|
||||
self, node: WorkflowNode
|
||||
) -> Generator[Dict[str, str], None, None]:
|
||||
yield from ()
|
||||
|
||||
def _execute_agent_node(
|
||||
self, node: WorkflowNode
|
||||
) -> Generator[Dict[str, str], None, None]:
|
||||
from application.core.model_utils import get_api_key_for_provider
|
||||
|
||||
node_config = AgentNodeConfig(**node.config)
|
||||
|
||||
if node_config.prompt_template:
|
||||
formatted_prompt = self._format_template(node_config.prompt_template)
|
||||
else:
|
||||
formatted_prompt = self.state.get("query", "")
|
||||
node_llm_name = node_config.llm_name or self.agent.llm_name
|
||||
node_api_key = get_api_key_for_provider(node_llm_name) or self.agent.api_key
|
||||
|
||||
node_agent = WorkflowNodeAgentFactory.create(
|
||||
agent_type=node_config.agent_type,
|
||||
endpoint=self.agent.endpoint,
|
||||
llm_name=node_llm_name,
|
||||
model_id=node_config.model_id or self.agent.model_id,
|
||||
api_key=node_api_key,
|
||||
tool_ids=node_config.tools,
|
||||
prompt=node_config.system_prompt,
|
||||
chat_history=self.agent.chat_history,
|
||||
decoded_token=self.agent.decoded_token,
|
||||
json_schema=node_config.json_schema,
|
||||
)
|
||||
|
||||
full_response = ""
|
||||
first_chunk = True
|
||||
for event in node_agent.gen(formatted_prompt):
|
||||
if "answer" in event:
|
||||
full_response += event["answer"]
|
||||
if node_config.stream_to_user:
|
||||
if first_chunk and hasattr(self, "_has_streamed"):
|
||||
yield {"answer": "\n\n"}
|
||||
first_chunk = False
|
||||
yield event
|
||||
|
||||
if node_config.stream_to_user:
|
||||
self._has_streamed = True
|
||||
|
||||
output_key = node_config.output_variable or f"node_{node.id}_output"
|
||||
self.state[output_key] = full_response
|
||||
|
||||
def _execute_state_node(
|
||||
self, node: WorkflowNode
|
||||
) -> Generator[Dict[str, str], None, None]:
|
||||
config = node.config
|
||||
operations = config.get("operations", [])
|
||||
|
||||
if operations:
|
||||
for op in operations:
|
||||
key = op.get("key")
|
||||
operation = op.get("operation", "set")
|
||||
value = op.get("value")
|
||||
|
||||
if not key:
|
||||
continue
|
||||
if operation == "set":
|
||||
formatted_value = (
|
||||
self._format_template(str(value))
|
||||
if isinstance(value, str)
|
||||
else value
|
||||
)
|
||||
self.state[key] = formatted_value
|
||||
elif operation == "increment":
|
||||
current = self.state.get(key, 0)
|
||||
try:
|
||||
self.state[key] = int(current) + int(value or 1)
|
||||
except (ValueError, TypeError):
|
||||
self.state[key] = 1
|
||||
elif operation == "append":
|
||||
if key not in self.state:
|
||||
self.state[key] = []
|
||||
if isinstance(self.state[key], list):
|
||||
self.state[key].append(value)
|
||||
else:
|
||||
updates = config.get("updates", {})
|
||||
if not updates:
|
||||
var_name = config.get("variable")
|
||||
var_value = config.get("value")
|
||||
if var_name and isinstance(var_name, str):
|
||||
updates = {var_name: var_value or ""}
|
||||
if isinstance(updates, dict):
|
||||
for key, value in updates.items():
|
||||
if isinstance(value, str):
|
||||
self.state[key] = self._format_template(value)
|
||||
else:
|
||||
self.state[key] = value
|
||||
yield from ()
|
||||
|
||||
def _execute_end_node(
|
||||
self, node: WorkflowNode
|
||||
) -> Generator[Dict[str, str], None, None]:
|
||||
config = node.config
|
||||
output_template = str(config.get("output_template", ""))
|
||||
if output_template:
|
||||
formatted_output = self._format_template(output_template)
|
||||
yield {"answer": formatted_output}
|
||||
|
||||
def _format_template(self, template: str) -> str:
|
||||
formatted = template
|
||||
for key, value in self.state.items():
|
||||
placeholder = f"{{{{{key}}}}}"
|
||||
if placeholder in formatted and value is not None:
|
||||
formatted = formatted.replace(placeholder, str(value))
|
||||
return formatted
|
||||
|
||||
def get_execution_summary(self) -> List[NodeExecutionLog]:
|
||||
return [
|
||||
NodeExecutionLog(
|
||||
node_id=log["node_id"],
|
||||
node_type=log["node_type"],
|
||||
status=ExecutionStatus(log["status"]),
|
||||
started_at=log["started_at"],
|
||||
completed_at=log.get("completed_at"),
|
||||
error=log.get("error"),
|
||||
state_snapshot=log.get("state_snapshot", {}),
|
||||
)
|
||||
for log in self.execution_log
|
||||
]
|
||||
Reference in New Issue
Block a user