From 763aa73ea4df153cec0b12ae7aedb71e448c503a Mon Sep 17 00:00:00 2001 From: ManishMadan2882 Date: Tue, 30 Sep 2025 16:03:02 +0530 Subject: [PATCH] (tests:llm) llms, handlers --- tests/llm/handlers/test_base.py | 232 ++++++++++++++++++ tests/llm/handlers/test_google.py | 271 +++++++++++++++++++++ tests/llm/handlers/test_handler_creator.py | 126 ++++++++++ tests/llm/handlers/test_openai.py | 210 ++++++++++++++++ tests/llm/test_anthropic.py | 68 ------ tests/llm/test_anthropic_llm.py | 65 +++++ tests/llm/test_google_llm.py | 152 ++++++++++++ tests/llm/test_openai.py | 11 - tests/llm/test_openai_llm.py | 158 ++++++++++++ 9 files changed, 1214 insertions(+), 79 deletions(-) create mode 100644 tests/llm/handlers/test_base.py create mode 100644 tests/llm/handlers/test_google.py create mode 100644 tests/llm/handlers/test_handler_creator.py create mode 100644 tests/llm/handlers/test_openai.py delete mode 100644 tests/llm/test_anthropic.py create mode 100644 tests/llm/test_anthropic_llm.py create mode 100644 tests/llm/test_google_llm.py delete mode 100644 tests/llm/test_openai.py create mode 100644 tests/llm/test_openai_llm.py diff --git a/tests/llm/handlers/test_base.py b/tests/llm/handlers/test_base.py new file mode 100644 index 00000000..30d987f9 --- /dev/null +++ b/tests/llm/handlers/test_base.py @@ -0,0 +1,232 @@ +import pytest +from unittest.mock import Mock, patch +from typing import Any, Dict, Generator + +from application.llm.handlers.base import LLMHandler, LLMResponse, ToolCall + + +class TestToolCall: + """Test ToolCall dataclass.""" + + def test_tool_call_creation(self): + """Test basic ToolCall creation.""" + tool_call = ToolCall( + id="test_id", + name="test_function", + arguments={"arg1": "value1"}, + index=0 + ) + assert tool_call.id == "test_id" + assert tool_call.name == "test_function" + assert tool_call.arguments == {"arg1": "value1"} + assert tool_call.index == 0 + + def test_tool_call_from_dict(self): + """Test ToolCall creation from dictionary.""" + data = { + "id": "call_123", + "name": "get_weather", + "arguments": {"location": "New York"}, + "index": 1 + } + tool_call = ToolCall.from_dict(data) + assert tool_call.id == "call_123" + assert tool_call.name == "get_weather" + assert tool_call.arguments == {"location": "New York"} + assert tool_call.index == 1 + + def test_tool_call_from_dict_missing_fields(self): + """Test ToolCall creation with missing fields.""" + data = {"name": "test_func"} + tool_call = ToolCall.from_dict(data) + assert tool_call.id == "" + assert tool_call.name == "test_func" + assert tool_call.arguments == {} + assert tool_call.index is None + + +class TestLLMResponse: + """Test LLMResponse dataclass.""" + + def test_llm_response_creation(self): + """Test basic LLMResponse creation.""" + tool_calls = [ToolCall(id="1", name="func", arguments={})] + response = LLMResponse( + content="Hello", + tool_calls=tool_calls, + finish_reason="tool_calls", + raw_response={"test": "data"} + ) + assert response.content == "Hello" + assert len(response.tool_calls) == 1 + assert response.finish_reason == "tool_calls" + assert response.raw_response == {"test": "data"} + + def test_requires_tool_call_true(self): + """Test requires_tool_call property when tool calls are needed.""" + tool_calls = [ToolCall(id="1", name="func", arguments={})] + response = LLMResponse( + content="", + tool_calls=tool_calls, + finish_reason="tool_calls", + raw_response={} + ) + assert response.requires_tool_call is True + + def test_requires_tool_call_false_no_tools(self): + """Test requires_tool_call property when no tool calls.""" + response = LLMResponse( + content="Hello", + tool_calls=[], + finish_reason="stop", + raw_response={} + ) + assert response.requires_tool_call is False + + def test_requires_tool_call_false_wrong_finish_reason(self): + """Test requires_tool_call property with tools but wrong finish reason.""" + tool_calls = [ToolCall(id="1", name="func", arguments={})] + response = LLMResponse( + content="Hello", + tool_calls=tool_calls, + finish_reason="stop", + raw_response={} + ) + assert response.requires_tool_call is False + + +class ConcreteHandler(LLMHandler): + """Concrete implementation for testing abstract base class.""" + + def parse_response(self, response: Any) -> LLMResponse: + return LLMResponse( + content=str(response), + tool_calls=[], + finish_reason="stop", + raw_response=response + ) + + def create_tool_message(self, tool_call: ToolCall, result: Any) -> Dict: + return { + "role": "tool", + "content": str(result), + "tool_call_id": tool_call.id + } + + def _iterate_stream(self, response: Any) -> Generator: + for chunk in response: + yield chunk + + +class TestLLMHandler: + """Test LLMHandler base class.""" + + def test_handler_initialization(self): + """Test handler initialization.""" + handler = ConcreteHandler() + assert handler.llm_calls == [] + assert handler.tool_calls == [] + + def test_prepare_messages_no_attachments(self): + """Test prepare_messages with no attachments.""" + handler = ConcreteHandler() + messages = [{"role": "user", "content": "Hello"}] + + mock_agent = Mock() + result = handler.prepare_messages(mock_agent, messages, None) + assert result == messages + + def test_prepare_messages_with_supported_attachments(self): + """Test prepare_messages with supported attachments.""" + handler = ConcreteHandler() + messages = [{"role": "user", "content": "Hello"}] + attachments = [{"mime_type": "image/png", "path": "/test.png"}] + + mock_agent = Mock() + mock_agent.llm.get_supported_attachment_types.return_value = ["image/png"] + mock_agent.llm.prepare_messages_with_attachments.return_value = messages + + result = handler.prepare_messages(mock_agent, messages, attachments) + mock_agent.llm.prepare_messages_with_attachments.assert_called_once_with( + messages, attachments + ) + assert result == messages + + @patch('application.llm.handlers.base.logger') + def test_prepare_messages_with_unsupported_attachments(self, mock_logger): + """Test prepare_messages with unsupported attachments.""" + handler = ConcreteHandler() + messages = [{"role": "user", "content": "Hello"}] + attachments = [{"mime_type": "text/plain", "path": "/test.txt"}] + + mock_agent = Mock() + mock_agent.llm.get_supported_attachment_types.return_value = ["image/png"] + + with patch.object(handler, '_append_unsupported_attachments', return_value=messages) as mock_append: + result = handler.prepare_messages(mock_agent, messages, attachments) + mock_append.assert_called_once_with(messages, attachments) + assert result == messages + + def test_prepare_messages_mixed_attachments(self): + """Test prepare_messages with both supported and unsupported attachments.""" + handler = ConcreteHandler() + messages = [{"role": "user", "content": "Hello"}] + attachments = [ + {"mime_type": "image/png", "path": "/test.png"}, + {"mime_type": "text/plain", "path": "/test.txt"} + ] + + mock_agent = Mock() + mock_agent.llm.get_supported_attachment_types.return_value = ["image/png"] + mock_agent.llm.prepare_messages_with_attachments.return_value = messages + + with patch.object(handler, '_append_unsupported_attachments', return_value=messages) as mock_append: + result = handler.prepare_messages(mock_agent, messages, attachments) + + # Should call both methods + mock_agent.llm.prepare_messages_with_attachments.assert_called_once() + mock_append.assert_called_once() + assert result == messages + + def test_process_message_flow_non_streaming(self): + """Test process_message_flow for non-streaming.""" + handler = ConcreteHandler() + mock_agent = Mock() + initial_response = "test response" + tools_dict = {} + messages = [{"role": "user", "content": "Hello"}] + + with patch.object(handler, 'prepare_messages', return_value=messages) as mock_prepare: + with patch.object(handler, 'handle_non_streaming', return_value="final") as mock_handle: + result = handler.process_message_flow( + mock_agent, initial_response, tools_dict, messages, stream=False + ) + + mock_prepare.assert_called_once_with(mock_agent, messages, None) + mock_handle.assert_called_once_with(mock_agent, initial_response, tools_dict, messages) + assert result == "final" + + def test_process_message_flow_streaming(self): + """Test process_message_flow for streaming.""" + handler = ConcreteHandler() + mock_agent = Mock() + initial_response = "test response" + tools_dict = {} + messages = [{"role": "user", "content": "Hello"}] + + def mock_generator(): + yield "chunk1" + yield "chunk2" + + with patch.object(handler, 'prepare_messages', return_value=messages) as mock_prepare: + with patch.object(handler, 'handle_streaming', return_value=mock_generator()) as mock_handle: + result = handler.process_message_flow( + mock_agent, initial_response, tools_dict, messages, stream=True + ) + + mock_prepare.assert_called_once_with(mock_agent, messages, None) + mock_handle.assert_called_once_with(mock_agent, initial_response, tools_dict, messages) + + # Verify it's a generator + chunks = list(result) + assert chunks == ["chunk1", "chunk2"] diff --git a/tests/llm/handlers/test_google.py b/tests/llm/handlers/test_google.py new file mode 100644 index 00000000..78e5d940 --- /dev/null +++ b/tests/llm/handlers/test_google.py @@ -0,0 +1,271 @@ +import pytest +from unittest.mock import Mock, patch +from types import SimpleNamespace +import uuid + +from application.llm.handlers.google import GoogleLLMHandler +from application.llm.handlers.base import ToolCall, LLMResponse + + +class TestGoogleLLMHandler: + """Test GoogleLLMHandler class.""" + + def test_handler_initialization(self): + """Test handler initialization.""" + handler = GoogleLLMHandler() + assert handler.llm_calls == [] + assert handler.tool_calls == [] + + def test_parse_response_string_input(self): + """Test parsing string response.""" + handler = GoogleLLMHandler() + response = "Hello from Google!" + + result = handler.parse_response(response) + + assert isinstance(result, LLMResponse) + assert result.content == "Hello from Google!" + assert result.tool_calls == [] + assert result.finish_reason == "stop" + assert result.raw_response == "Hello from Google!" + + def test_parse_response_with_candidates_text_only(self): + """Test parsing response with candidates containing only text.""" + handler = GoogleLLMHandler() + + mock_part = SimpleNamespace(text="Google response text") + mock_content = SimpleNamespace(parts=[mock_part]) + mock_candidate = SimpleNamespace(content=mock_content) + mock_response = SimpleNamespace(candidates=[mock_candidate]) + + result = handler.parse_response(mock_response) + + assert result.content == "Google response text" + assert result.tool_calls == [] + assert result.finish_reason == "stop" + assert result.raw_response == mock_response + + def test_parse_response_with_multiple_text_parts(self): + """Test parsing response with multiple text parts.""" + handler = GoogleLLMHandler() + + mock_part1 = SimpleNamespace(text="First part") + mock_part2 = SimpleNamespace(text="Second part") + mock_content = SimpleNamespace(parts=[mock_part1, mock_part2]) + mock_candidate = SimpleNamespace(content=mock_content) + mock_response = SimpleNamespace(candidates=[mock_candidate]) + + result = handler.parse_response(mock_response) + + assert result.content == "First part Second part" + assert result.tool_calls == [] + assert result.finish_reason == "stop" + + @patch('uuid.uuid4') + def test_parse_response_with_function_call(self, mock_uuid): + """Test parsing response with function call.""" + mock_uuid.return_value = Mock(spec=uuid.UUID) + mock_uuid.return_value.__str__ = Mock(return_value="test-uuid-123") + + handler = GoogleLLMHandler() + + mock_function_call = SimpleNamespace( + name="get_weather", + args={"location": "San Francisco"} + ) + mock_part = SimpleNamespace(function_call=mock_function_call) + mock_content = SimpleNamespace(parts=[mock_part]) + mock_candidate = SimpleNamespace(content=mock_content) + mock_response = SimpleNamespace(candidates=[mock_candidate]) + + result = handler.parse_response(mock_response) + + assert result.content == "" + assert len(result.tool_calls) == 1 + assert result.tool_calls[0].id == "test-uuid-123" + assert result.tool_calls[0].name == "get_weather" + assert result.tool_calls[0].arguments == {"location": "San Francisco"} + assert result.finish_reason == "tool_calls" + + @patch('uuid.uuid4') + def test_parse_response_with_mixed_parts(self, mock_uuid): + """Test parsing response with both text and function call parts.""" + mock_uuid.return_value = Mock(spec=uuid.UUID) + mock_uuid.return_value.__str__ = Mock(return_value="test-uuid-456") + + handler = GoogleLLMHandler() + + mock_text_part = SimpleNamespace(text="I'll check the weather for you.") + mock_function_call = SimpleNamespace( + name="get_weather", + args={"location": "NYC"} + ) + mock_function_part = SimpleNamespace(function_call=mock_function_call) + + mock_content = SimpleNamespace(parts=[mock_text_part, mock_function_part]) + mock_candidate = SimpleNamespace(content=mock_content) + mock_response = SimpleNamespace(candidates=[mock_candidate]) + + result = handler.parse_response(mock_response) + + assert result.content == "I'll check the weather for you." + assert len(result.tool_calls) == 1 + assert result.tool_calls[0].name == "get_weather" + assert result.finish_reason == "tool_calls" + + def test_parse_response_empty_candidates(self): + """Test parsing response with empty candidates.""" + handler = GoogleLLMHandler() + + mock_response = SimpleNamespace(candidates=[]) + + result = handler.parse_response(mock_response) + + assert result.content == "" + assert result.tool_calls == [] + assert result.finish_reason == "stop" + + def test_parse_response_parts_with_none_text(self): + """Test parsing response with parts that have None text.""" + handler = GoogleLLMHandler() + + mock_part1 = SimpleNamespace(text=None) + mock_part2 = SimpleNamespace(text="Valid text") + mock_content = SimpleNamespace(parts=[mock_part1, mock_part2]) + mock_candidate = SimpleNamespace(content=mock_content) + mock_response = SimpleNamespace(candidates=[mock_candidate]) + + result = handler.parse_response(mock_response) + + assert result.content == "Valid text" + + def test_parse_response_parts_without_text_attribute(self): + """Test parsing response with parts missing text attribute.""" + handler = GoogleLLMHandler() + + mock_part1 = SimpleNamespace() + mock_part2 = SimpleNamespace(text="Valid text") + mock_content = SimpleNamespace(parts=[mock_part1, mock_part2]) + mock_candidate = SimpleNamespace(content=mock_content) + mock_response = SimpleNamespace(candidates=[mock_candidate]) + + result = handler.parse_response(mock_response) + + assert result.content == "Valid text" + + @patch('uuid.uuid4') + def test_parse_response_direct_function_call(self, mock_uuid): + """Test parsing response with direct function call (not in candidates).""" + mock_uuid.return_value = Mock(spec=uuid.UUID) + mock_uuid.return_value.__str__ = Mock(return_value="direct-uuid-789") + + handler = GoogleLLMHandler() + + mock_function_call = SimpleNamespace( + name="calculate", + args={"expression": "2+2"} + ) + mock_response = SimpleNamespace( + function_call=mock_function_call, + text="The calculation result is:" + ) + + result = handler.parse_response(mock_response) + + assert result.content == "The calculation result is:" + assert len(result.tool_calls) == 1 + assert result.tool_calls[0].id == "direct-uuid-789" + assert result.tool_calls[0].name == "calculate" + assert result.tool_calls[0].arguments == {"expression": "2+2"} + assert result.finish_reason == "tool_calls" + + def test_parse_response_direct_function_call_no_text(self): + """Test parsing response with direct function call and no text.""" + handler = GoogleLLMHandler() + + mock_function_call = SimpleNamespace( + name="get_data", + args={"id": 123} + ) + mock_response = SimpleNamespace(function_call=mock_function_call) + + result = handler.parse_response(mock_response) + + assert result.content == "" + assert len(result.tool_calls) == 1 + assert result.tool_calls[0].name == "get_data" + assert result.finish_reason == "tool_calls" + + def test_create_tool_message(self): + """Test creating tool message.""" + handler = GoogleLLMHandler() + + tool_call = ToolCall( + id="call_123", + name="get_weather", + arguments={"location": "Tokyo"}, + index=0 + ) + result = {"temperature": "25C", "condition": "cloudy"} + + message = handler.create_tool_message(tool_call, result) + + expected = { + "role": "model", + "content": [ + { + "function_response": { + "name": "get_weather", + "response": {"result": result}, + } + } + ], + } + + assert message == expected + + def test_create_tool_message_string_result(self): + """Test creating tool message with string result.""" + handler = GoogleLLMHandler() + + tool_call = ToolCall(id="call_456", name="get_time", arguments={}) + result = "2023-12-01 15:30:00 JST" + + message = handler.create_tool_message(tool_call, result) + + assert message["role"] == "model" + assert message["content"][0]["function_response"]["response"]["result"] == result + assert message["content"][0]["function_response"]["name"] == "get_time" + + def test_iterate_stream(self): + """Test stream iteration.""" + handler = GoogleLLMHandler() + + mock_chunks = ["chunk1", "chunk2", "chunk3"] + + result = list(handler._iterate_stream(mock_chunks)) + + assert result == mock_chunks + + def test_iterate_stream_empty(self): + """Test stream iteration with empty response.""" + handler = GoogleLLMHandler() + + result = list(handler._iterate_stream([])) + + assert result == [] + + def test_parse_response_parts_without_function_call_attribute(self): + """Test parsing response with parts missing function_call attribute.""" + handler = GoogleLLMHandler() + + mock_part = SimpleNamespace(text="Normal text") + mock_content = SimpleNamespace(parts=[mock_part]) + mock_candidate = SimpleNamespace(content=mock_content) + mock_response = SimpleNamespace(candidates=[mock_candidate]) + + result = handler.parse_response(mock_response) + + assert result.content == "Normal text" + assert result.tool_calls == [] + assert result.finish_reason == "stop" diff --git a/tests/llm/handlers/test_handler_creator.py b/tests/llm/handlers/test_handler_creator.py new file mode 100644 index 00000000..a2e50667 --- /dev/null +++ b/tests/llm/handlers/test_handler_creator.py @@ -0,0 +1,126 @@ +import pytest + +from application.llm.handlers.handler_creator import LLMHandlerCreator +from application.llm.handlers.base import LLMHandler +from application.llm.handlers.openai import OpenAILLMHandler +from application.llm.handlers.google import GoogleLLMHandler + + +class TestLLMHandlerCreator: + """Test LLMHandlerCreator class.""" + + def test_create_openai_handler(self): + """Test creating OpenAI handler.""" + handler = LLMHandlerCreator.create_handler("openai") + + assert isinstance(handler, OpenAILLMHandler) + assert isinstance(handler, LLMHandler) + + def test_create_openai_handler_case_insensitive(self): + """Test creating OpenAI handler with different cases.""" + handler_upper = LLMHandlerCreator.create_handler("OPENAI") + handler_mixed = LLMHandlerCreator.create_handler("OpenAI") + + assert isinstance(handler_upper, OpenAILLMHandler) + assert isinstance(handler_mixed, OpenAILLMHandler) + + def test_create_google_handler(self): + """Test creating Google handler.""" + handler = LLMHandlerCreator.create_handler("google") + + assert isinstance(handler, GoogleLLMHandler) + assert isinstance(handler, LLMHandler) + + def test_create_google_handler_case_insensitive(self): + """Test creating Google handler with different cases.""" + handler_upper = LLMHandlerCreator.create_handler("GOOGLE") + handler_mixed = LLMHandlerCreator.create_handler("Google") + + assert isinstance(handler_upper, GoogleLLMHandler) + assert isinstance(handler_mixed, GoogleLLMHandler) + + + + def test_create_default_handler(self): + """Test creating default handler.""" + handler = LLMHandlerCreator.create_handler("default") + + assert isinstance(handler, OpenAILLMHandler) + + def test_create_unknown_handler_fallback(self): + """Test creating handler for unknown type falls back to OpenAI.""" + handler = LLMHandlerCreator.create_handler("unknown_provider") + + assert isinstance(handler, OpenAILLMHandler) + + def test_create_anthropic_handler_fallback(self): + """Test creating Anthropic handler falls back to OpenAI (not supported in handlers).""" + handler = LLMHandlerCreator.create_handler("anthropic") + + assert isinstance(handler, OpenAILLMHandler) + + def test_create_empty_string_handler_fallback(self): + """Test creating handler with empty string falls back to OpenAI.""" + handler = LLMHandlerCreator.create_handler("") + + assert isinstance(handler, OpenAILLMHandler) + + + + def test_handlers_registry(self): + """Test the handlers registry contains expected mappings.""" + expected_handlers = { + "openai": OpenAILLMHandler, + "google": GoogleLLMHandler, + "default": OpenAILLMHandler, + } + + assert LLMHandlerCreator.handlers == expected_handlers + + def test_create_handler_with_args(self): + """Test creating handler with additional arguments.""" + handler = LLMHandlerCreator.create_handler("openai") + + assert isinstance(handler, OpenAILLMHandler) + assert handler.llm_calls == [] + assert handler.tool_calls == [] + + def test_create_handler_with_kwargs(self): + """Test creating handler with keyword arguments.""" + handler = LLMHandlerCreator.create_handler("google") + + assert isinstance(handler, GoogleLLMHandler) + assert handler.llm_calls == [] + assert handler.tool_calls == [] + + def test_all_registered_handlers_are_valid(self): + """Test that all registered handlers can be instantiated.""" + for handler_type in LLMHandlerCreator.handlers.keys(): + handler = LLMHandlerCreator.create_handler(handler_type) + assert isinstance(handler, LLMHandler) + assert hasattr(handler, 'parse_response') + assert hasattr(handler, 'create_tool_message') + assert hasattr(handler, '_iterate_stream') + + def test_handler_inheritance(self): + """Test that all created handlers inherit from LLMHandler.""" + test_types = ["openai", "google", "default", "unknown"] + + for handler_type in test_types: + handler = LLMHandlerCreator.create_handler(handler_type) + assert isinstance(handler, LLMHandler) + + assert callable(getattr(handler, 'parse_response')) + assert callable(getattr(handler, 'create_tool_message')) + assert callable(getattr(handler, '_iterate_stream')) + + def test_create_handler_preserves_handler_state(self): + """Test that each created handler has independent state.""" + handler1 = LLMHandlerCreator.create_handler("openai") + handler2 = LLMHandlerCreator.create_handler("openai") + + handler1.llm_calls.append("test_call") + + assert len(handler1.llm_calls) == 1 + assert len(handler2.llm_calls) == 0 + assert handler1 is not handler2 diff --git a/tests/llm/handlers/test_openai.py b/tests/llm/handlers/test_openai.py new file mode 100644 index 00000000..5b9c4a11 --- /dev/null +++ b/tests/llm/handlers/test_openai.py @@ -0,0 +1,210 @@ +import pytest +from unittest.mock import Mock +from types import SimpleNamespace + +from application.llm.handlers.openai import OpenAILLMHandler +from application.llm.handlers.base import ToolCall, LLMResponse + + +class TestOpenAILLMHandler: + """Test OpenAILLMHandler class.""" + + def test_handler_initialization(self): + """Test handler initialization.""" + handler = OpenAILLMHandler() + assert handler.llm_calls == [] + assert handler.tool_calls == [] + + def test_parse_response_string_input(self): + """Test parsing string response.""" + handler = OpenAILLMHandler() + response = "Hello, world!" + + result = handler.parse_response(response) + + assert isinstance(result, LLMResponse) + assert result.content == "Hello, world!" + assert result.tool_calls == [] + assert result.finish_reason == "stop" + assert result.raw_response == "Hello, world!" + + def test_parse_response_with_message_content(self): + """Test parsing response with message content.""" + handler = OpenAILLMHandler() + + # Mock OpenAI response structure + mock_message = SimpleNamespace(content="Test content", tool_calls=None) + mock_response = SimpleNamespace(message=mock_message, finish_reason="stop") + + result = handler.parse_response(mock_response) + + assert result.content == "Test content" + assert result.tool_calls == [] + assert result.finish_reason == "stop" + assert result.raw_response == mock_response + + def test_parse_response_with_delta_content(self): + """Test parsing response with delta content (streaming).""" + handler = OpenAILLMHandler() + + # Mock streaming response structure + mock_delta = SimpleNamespace(content="Stream chunk", tool_calls=None) + mock_response = SimpleNamespace(delta=mock_delta, finish_reason="") + + result = handler.parse_response(mock_response) + + assert result.content == "Stream chunk" + assert result.tool_calls == [] + assert result.finish_reason == "" + assert result.raw_response == mock_response + + def test_parse_response_with_tool_calls(self): + """Test parsing response with tool calls.""" + handler = OpenAILLMHandler() + + # Mock tool call structure + mock_function = SimpleNamespace(name="get_weather", arguments='{"location": "NYC"}') + mock_tool_call = SimpleNamespace( + id="call_123", + function=mock_function, + index=0 + ) + mock_message = SimpleNamespace(content="", tool_calls=[mock_tool_call]) + mock_response = SimpleNamespace(message=mock_message, finish_reason="tool_calls") + + result = handler.parse_response(mock_response) + + assert result.content == "" + assert len(result.tool_calls) == 1 + assert result.tool_calls[0].id == "call_123" + assert result.tool_calls[0].name == "get_weather" + assert result.tool_calls[0].arguments == '{"location": "NYC"}' + assert result.tool_calls[0].index == 0 + assert result.finish_reason == "tool_calls" + + def test_parse_response_with_multiple_tool_calls(self): + """Test parsing response with multiple tool calls.""" + handler = OpenAILLMHandler() + + # Mock multiple tool calls + mock_function1 = SimpleNamespace(name="get_weather", arguments='{"location": "NYC"}') + mock_function2 = SimpleNamespace(name="get_time", arguments='{"timezone": "UTC"}') + + mock_tool_call1 = SimpleNamespace(id="call_1", function=mock_function1, index=0) + mock_tool_call2 = SimpleNamespace(id="call_2", function=mock_function2, index=1) + + mock_message = SimpleNamespace(content="", tool_calls=[mock_tool_call1, mock_tool_call2]) + mock_response = SimpleNamespace(message=mock_message, finish_reason="tool_calls") + + result = handler.parse_response(mock_response) + + assert len(result.tool_calls) == 2 + assert result.tool_calls[0].name == "get_weather" + assert result.tool_calls[1].name == "get_time" + + def test_parse_response_empty_tool_calls(self): + """Test parsing response with empty tool_calls.""" + handler = OpenAILLMHandler() + + mock_message = SimpleNamespace(content="No tools needed", tool_calls=None) + mock_response = SimpleNamespace(message=mock_message, finish_reason="stop") + + result = handler.parse_response(mock_response) + + assert result.content == "No tools needed" + assert result.tool_calls == [] + assert result.finish_reason == "stop" + + def test_parse_response_missing_attributes(self): + """Test parsing response with missing attributes.""" + handler = OpenAILLMHandler() + + # Mock response with missing attributes + mock_message = SimpleNamespace() # No content or tool_calls + mock_response = SimpleNamespace(message=mock_message) # No finish_reason + + result = handler.parse_response(mock_response) + + assert result.content == "" + assert result.tool_calls == [] + assert result.finish_reason == "" + + def test_create_tool_message(self): + """Test creating tool message.""" + handler = OpenAILLMHandler() + + tool_call = ToolCall( + id="call_123", + name="get_weather", + arguments={"location": "NYC"}, + index=0 + ) + result = {"temperature": "72F", "condition": "sunny"} + + message = handler.create_tool_message(tool_call, result) + + expected = { + "role": "tool", + "content": [ + { + "function_response": { + "name": "get_weather", + "response": {"result": result}, + "call_id": "call_123", + } + } + ], + } + + assert message == expected + + def test_create_tool_message_string_result(self): + """Test creating tool message with string result.""" + handler = OpenAILLMHandler() + + tool_call = ToolCall(id="call_456", name="get_time", arguments={}) + result = "2023-12-01 10:30:00" + + message = handler.create_tool_message(tool_call, result) + + assert message["role"] == "tool" + assert message["content"][0]["function_response"]["response"]["result"] == result + assert message["content"][0]["function_response"]["call_id"] == "call_456" + + def test_iterate_stream(self): + """Test stream iteration.""" + handler = OpenAILLMHandler() + + # Mock streaming response + mock_chunks = ["chunk1", "chunk2", "chunk3"] + + result = list(handler._iterate_stream(mock_chunks)) + + assert result == mock_chunks + + def test_iterate_stream_empty(self): + """Test stream iteration with empty response.""" + handler = OpenAILLMHandler() + + result = list(handler._iterate_stream([])) + + assert result == [] + + def test_parse_response_tool_call_missing_attributes(self): + """Test parsing tool calls with missing attributes.""" + handler = OpenAILLMHandler() + + # Mock tool call with missing attributes + mock_function = SimpleNamespace() # No name or arguments + mock_tool_call = SimpleNamespace(function=mock_function) # No id or index + + mock_message = SimpleNamespace(content="", tool_calls=[mock_tool_call]) + mock_response = SimpleNamespace(message=mock_message, finish_reason="tool_calls") + + result = handler.parse_response(mock_response) + + assert len(result.tool_calls) == 1 + assert result.tool_calls[0].id == "" + assert result.tool_calls[0].name == "" + assert result.tool_calls[0].arguments == "" + assert result.tool_calls[0].index is None diff --git a/tests/llm/test_anthropic.py b/tests/llm/test_anthropic.py deleted file mode 100644 index 867b6923..00000000 --- a/tests/llm/test_anthropic.py +++ /dev/null @@ -1,68 +0,0 @@ -import unittest -from unittest.mock import patch, Mock -from application.llm.anthropic import AnthropicLLM - -class TestAnthropicLLM(unittest.TestCase): - - def setUp(self): - self.api_key = "TEST_API_KEY" - self.llm = AnthropicLLM(api_key=self.api_key) - - @patch("application.llm.anthropic.settings") - def test_init_default_api_key(self, mock_settings): - mock_settings.ANTHROPIC_API_KEY = "DEFAULT_API_KEY" - llm = AnthropicLLM() - self.assertEqual(llm.api_key, "DEFAULT_API_KEY") - - def test_gen(self): - messages = [ - {"content": "context"}, - {"content": "question"} - ] - mock_response = Mock() - mock_response.completion = "test completion" - - with patch("application.cache.get_redis_instance") as mock_make_redis: - mock_redis_instance = mock_make_redis.return_value - mock_redis_instance.get.return_value = None - mock_redis_instance.set = Mock() - - with patch.object(self.llm.anthropic.completions, "create", return_value=mock_response) as mock_create: - response = self.llm.gen("test_model", messages) - self.assertEqual(response, "test completion") - - prompt_expected = "### Context \n context \n ### Question \n question" - mock_create.assert_called_with( - model="test_model", - max_tokens_to_sample=300, - stream=False, - prompt=f"{self.llm.HUMAN_PROMPT} {prompt_expected}{self.llm.AI_PROMPT}" - ) - mock_redis_instance.set.assert_called_once() - - def test_gen_stream(self): - messages = [ - {"content": "context"}, - {"content": "question"} - ] - mock_responses = [Mock(completion="response_1"), Mock(completion="response_2")] - mock_tools = Mock() - - with patch("application.cache.get_redis_instance") as mock_make_redis: - mock_redis_instance = mock_make_redis.return_value - mock_redis_instance.get.return_value = None - mock_redis_instance.set = Mock() - - with patch.object(self.llm.anthropic.completions, "create", return_value=iter(mock_responses)) as mock_create: - responses = list(self.llm.gen_stream("test_model", messages, tools=mock_tools)) - self.assertListEqual(responses, ["response_1", "response_2"]) - - prompt_expected = "### Context \n context \n ### Question \n question" - mock_create.assert_called_with( - model="test_model", - prompt=f"{self.llm.HUMAN_PROMPT} {prompt_expected}{self.llm.AI_PROMPT}", - max_tokens_to_sample=300, - stream=True - ) -if __name__ == "__main__": - unittest.main() diff --git a/tests/llm/test_anthropic_llm.py b/tests/llm/test_anthropic_llm.py new file mode 100644 index 00000000..b9935899 --- /dev/null +++ b/tests/llm/test_anthropic_llm.py @@ -0,0 +1,65 @@ +import sys +import types +import pytest + +class _FakeCompletion: + def __init__(self, text): + self.completion = text + +class _FakeCompletions: + def __init__(self): + self.last_kwargs = None + self._stream = [_FakeCompletion("s1"), _FakeCompletion("s2")] + + def create(self, **kwargs): + self.last_kwargs = kwargs + if kwargs.get("stream"): + return self._stream + return _FakeCompletion("final") + +class _FakeAnthropic: + def __init__(self, api_key=None): + self.api_key = api_key + self.completions = _FakeCompletions() + + +@pytest.fixture(autouse=True) +def patch_anthropic(monkeypatch): + fake = types.ModuleType("anthropic") + fake.Anthropic = _FakeAnthropic + fake.HUMAN_PROMPT = "" + fake.AI_PROMPT = "" + sys.modules["anthropic"] = fake + yield + sys.modules.pop("anthropic", None) + + +def test_anthropic_raw_gen_builds_prompt_and_returns_completion(): + from application.llm.anthropic import AnthropicLLM + + llm = AnthropicLLM(api_key="k") + msgs = [ + {"content": "ctx"}, + {"content": "q"}, + ] + out = llm._raw_gen(llm, model="claude-2", messages=msgs, stream=False, max_tokens=55) + assert out == "final" + last = llm.anthropic.completions.last_kwargs + assert last["model"] == "claude-2" + assert last["max_tokens_to_sample"] == 55 + assert last["prompt"].startswith("") and last["prompt"].endswith("") + assert "### Context" in last["prompt"] and "### Question" in last["prompt"] + + +def test_anthropic_raw_gen_stream_yields_chunks(): + from application.llm.anthropic import AnthropicLLM + + llm = AnthropicLLM(api_key="k") + msgs = [ + {"content": "ctx"}, + {"content": "q"}, + ] + gen = llm._raw_gen_stream(llm, model="claude", messages=msgs, stream=True, max_tokens=10) + chunks = list(gen) + assert chunks == ["s1", "s2"] + diff --git a/tests/llm/test_google_llm.py b/tests/llm/test_google_llm.py new file mode 100644 index 00000000..7cb0ce6f --- /dev/null +++ b/tests/llm/test_google_llm.py @@ -0,0 +1,152 @@ +import sys +import types +import pytest + +from application.llm.google_ai import GoogleLLM + +class _FakePart: + def __init__(self, text=None, function_call=None, file_data=None): + self.text = text + self.function_call = function_call + self.file_data = file_data + + @staticmethod + def from_text(text): + return _FakePart(text=text) + + @staticmethod + def from_function_call(name, args): + return _FakePart(function_call=types.SimpleNamespace(name=name, args=args)) + + @staticmethod + def from_function_response(name, response): + # not used in assertions but present for completeness + return _FakePart(function_call=None, text=str(response)) + + @staticmethod + def from_uri(file_uri, mime_type): + # mimic presence of file data for streaming detection + return _FakePart(file_data=types.SimpleNamespace(file_uri=file_uri, mime_type=mime_type)) + + +class _FakeContent: + def __init__(self, role, parts): + self.role = role + self.parts = parts + + +class FakeTypesModule: + Part = _FakePart + Content = _FakeContent + + class GenerateContentConfig: + def __init__(self): + self.system_instruction = None + self.tools = None + self.response_schema = None + self.response_mime_type = None + + +class FakeModels: + def __init__(self): + self.last_args = None + self.last_kwargs = None + + class _Resp: + def __init__(self, text=None, candidates=None): + self.text = text + self.candidates = candidates or [] + + def generate_content(self, *args, **kwargs): + self.last_args, self.last_kwargs = args, kwargs + return FakeModels._Resp(text="ok") + + def generate_content_stream(self, *args, **kwargs): + self.last_args, self.last_kwargs = args, kwargs + # Simulate stream of text parts + part1 = types.SimpleNamespace(text="a", candidates=None) + part2 = types.SimpleNamespace(text="b", candidates=None) + return [part1, part2] + + +class FakeClient: + def __init__(self, *_, **__): + self.models = FakeModels() + + +@pytest.fixture(autouse=True) +def patch_google_modules(monkeypatch): + # Patch the types module used by GoogleLLM + import application.llm.google_ai as gmod + monkeypatch.setattr(gmod, "types", FakeTypesModule) + monkeypatch.setattr(gmod.genai, "Client", FakeClient) + + +def test_clean_messages_google_basic(): + llm = GoogleLLM(api_key="key") + msgs = [ + {"role": "assistant", "content": "hi"}, + {"role": "user", "content": [ + {"text": "hello"}, + {"files": [{"file_uri": "gs://x", "mime_type": "image/png"}]}, + {"function_call": {"name": "fn", "args": {"a": 1}}}, + ]}, + ] + cleaned = llm._clean_messages_google(msgs) + + assert all(hasattr(c, "role") and hasattr(c, "parts") for c in cleaned) + assert any(c.role == "model" for c in cleaned) + assert any(hasattr(p, "text") for c in cleaned for p in c.parts) + + +def test_raw_gen_calls_google_client_and_returns_text(): + llm = GoogleLLM(api_key="key") + msgs = [{"role": "user", "content": "hello"}] + out = llm._raw_gen(llm, model="gemini-2.0", messages=msgs, stream=False) + assert out == "ok" + + +def test_raw_gen_stream_yields_chunks(): + llm = GoogleLLM(api_key="key") + msgs = [{"role": "user", "content": "hello"}] + gen = llm._raw_gen_stream(llm, model="gemini", messages=msgs, stream=True) + assert list(gen) == ["a", "b"] + + +def test_prepare_structured_output_format_type_mapping(): + llm = GoogleLLM(api_key="key") + schema = { + "type": "object", + "properties": { + "a": {"type": "string"}, + "b": {"type": "array", "items": {"type": "integer"}}, + }, + "required": ["a"], + } + out = llm.prepare_structured_output_format(schema) + assert out["type"] == "OBJECT" + assert out["properties"]["a"]["type"] == "STRING" + assert out["properties"]["b"]["type"] == "ARRAY" + + +def test_prepare_messages_with_attachments_appends_files(monkeypatch): + llm = GoogleLLM(api_key="key") + llm.storage = types.SimpleNamespace( + file_exists=lambda path: True, + process_file=lambda path, processor_func, **kwargs: "gs://file_uri" + ) + monkeypatch.setattr(llm, "_upload_file_to_google", lambda att: "gs://file_uri") + + messages = [{"role": "user", "content": "Hi"}] + attachments = [ + {"path": "/tmp/img.png", "mime_type": "image/png"}, + {"path": "/tmp/doc.pdf", "mime_type": "application/pdf"}, + ] + + out = llm.prepare_messages_with_attachments(messages, attachments) + user_msg = next(m for m in out if m["role"] == "user") + assert isinstance(user_msg["content"], list) + files_entry = next((p for p in user_msg["content"] if isinstance(p, dict) and "files" in p), None) + assert files_entry is not None + assert isinstance(files_entry["files"], list) and len(files_entry["files"]) == 2 + diff --git a/tests/llm/test_openai.py b/tests/llm/test_openai.py deleted file mode 100644 index 8c713178..00000000 --- a/tests/llm/test_openai.py +++ /dev/null @@ -1,11 +0,0 @@ -import unittest -from application.llm.openai import OpenAILLM - -class TestOpenAILLM(unittest.TestCase): - - def setUp(self): - self.api_key = "test_api_key" - self.llm = OpenAILLM(self.api_key) - - def test_init(self): - self.assertEqual(self.llm.api_key, self.api_key) diff --git a/tests/llm/test_openai_llm.py b/tests/llm/test_openai_llm.py new file mode 100644 index 00000000..0b049f0a --- /dev/null +++ b/tests/llm/test_openai_llm.py @@ -0,0 +1,158 @@ +import json +import types +import pytest + +from application.llm.openai import OpenAILLM + + +class FakeChatCompletions: + def __init__(self): + self.last_kwargs = None + + class _Msg: + def __init__(self, content=None, tool_calls=None): + self.content = content + self.tool_calls = tool_calls + + class _Delta: + def __init__(self, content=None): + self.content = content + + class _Choice: + def __init__(self, content=None, delta=None, finish_reason="stop"): + self.message = FakeChatCompletions._Msg(content=content) + self.delta = FakeChatCompletions._Delta(content=delta) + self.finish_reason = finish_reason + + class _StreamLine: + def __init__(self, deltas): + self.choices = [FakeChatCompletions._Choice(delta=d) for d in deltas] + + class _Response: + def __init__(self, choices=None, lines=None): + self._choices = choices or [] + self._lines = lines or [] + + @property + def choices(self): + return self._choices + + def __iter__(self): + for line in self._lines: + yield line + + def create(self, **kwargs): + self.last_kwargs = kwargs + # default non-streaming: return content + if not kwargs.get("stream"): + return FakeChatCompletions._Response(choices=[ + FakeChatCompletions._Choice(content="hello world") + ]) + # streaming: yield line objects each with choices[0].delta.content + return FakeChatCompletions._Response(lines=[ + FakeChatCompletions._StreamLine(["part1"]), + FakeChatCompletions._StreamLine(["part2"]), + ]) + + +class FakeClient: + def __init__(self): + self.chat = types.SimpleNamespace(completions=FakeChatCompletions()) + + +@pytest.fixture +def openai_llm(monkeypatch): + llm = OpenAILLM(api_key="sk-test", user_api_key=None) + llm.storage = types.SimpleNamespace( + get_file=lambda path: types.SimpleNamespace(read=lambda: b"img"), + file_exists=lambda path: True, + process_file=lambda path, processor_func, **kwargs: "file_id_123", + ) + llm.client = FakeClient() + return llm + + +def test_clean_messages_openai_variants(openai_llm): + messages = [ + {"role": "system", "content": "sys"}, + {"role": "model", "content": "asst"}, + {"role": "user", "content": [ + {"text": "hello"}, + {"function_call": {"call_id": "c1", "name": "fn", "args": {"a": 1}}}, + {"function_response": {"call_id": "c1", "name": "fn", "response": {"result": 42}}}, + {"type": "image_url", "image_url": {"url": ""}}, + ]}, + ] + + cleaned = openai_llm._clean_messages_openai(messages) + + roles = [m["role"] for m in cleaned] + assert roles.count("assistant") >= 1 + assert any(m["role"] == "tool" for m in cleaned) + + assert any(isinstance(m["content"], list) and any( + part.get("type") == "image_url" for part in m["content"] if isinstance(part, dict) + ) for m in cleaned if m["role"] == "user") + + +def test_raw_gen_calls_openai_client_and_returns_content(openai_llm): + msgs = [ + {"role": "system", "content": "sys"}, + {"role": "user", "content": "hello"}, + ] + content = openai_llm._raw_gen(openai_llm, model="gpt-4o", messages=msgs, stream=False) + assert content == "hello world" + + passed = openai_llm.client.chat.completions.last_kwargs + assert passed["model"] == "gpt-4o" + assert isinstance(passed["messages"], list) + assert passed["stream"] is False + + +def test_raw_gen_stream_yields_chunks(openai_llm): + msgs = [ + {"role": "user", "content": "hi"}, + ] + gen = openai_llm._raw_gen_stream(openai_llm, model="gpt", messages=msgs, stream=True) + chunks = list(gen) + assert "part1" in "".join(chunks) + assert "part2" in "".join(chunks) + + +def test_prepare_structured_output_format_enforces_required_and_strict(openai_llm): + schema = { + "type": "object", + "properties": { + "a": {"type": "string"}, + "b": {"type": "number"}, + }, + } + result = openai_llm.prepare_structured_output_format(schema) + assert result["type"] == "json_schema" + js = result["json_schema"] + assert js["strict"] is True + assert set(js["schema"]["required"]) == {"a", "b"} + assert js["schema"]["additionalProperties"] is False + + +def test_prepare_messages_with_attachments_image_and_pdf(openai_llm, monkeypatch): + + monkeypatch.setattr(openai_llm, "_get_base64_image", lambda att: "AAA=") + monkeypatch.setattr(openai_llm, "_upload_file_to_openai", lambda att: "file_xyz") + + messages = [{"role": "user", "content": "Hi"}] + attachments = [ + {"path": "/tmp/img.png", "mime_type": "image/png"}, + {"path": "/tmp/doc.pdf", "mime_type": "application/pdf"}, + ] + out = openai_llm.prepare_messages_with_attachments(messages, attachments) + + # last user message should have list content with text and two attachments + user_msg = next(m for m in out if m["role"] == "user") + assert isinstance(user_msg["content"], list) + types_in_content = [p.get("type") for p in user_msg["content"] if isinstance(p, dict)] + assert "image_url" in types_in_content or any( + isinstance(p, dict) and p.get("image_url") for p in user_msg["content"] + ) + assert any(isinstance(p, dict) and p.get("file", {}).get("file_id") == "file_xyz" for p in user_msg["content"]) +