mirror of
https://github.com/arc53/DocsGPT.git
synced 2025-11-29 08:33:20 +00:00
Merge branch 'main' of https://github.com/manishmadan2882/docsgpt
This commit is contained in:
@@ -1,88 +1,26 @@
|
||||
import uuid
|
||||
from typing import Dict, Generator
|
||||
|
||||
from application.agents.base import BaseAgent
|
||||
from application.logging import build_stack_data, log_activity, LogContext
|
||||
from application.logging import LogContext
|
||||
|
||||
from application.retriever.base import BaseRetriever
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class ClassicAgent(BaseAgent):
|
||||
def __init__(
|
||||
self,
|
||||
endpoint,
|
||||
llm_name,
|
||||
gpt_model,
|
||||
api_key,
|
||||
user_api_key=None,
|
||||
prompt="",
|
||||
chat_history=None,
|
||||
decoded_token=None,
|
||||
attachments=None,
|
||||
):
|
||||
super().__init__(
|
||||
endpoint, llm_name, gpt_model, api_key, user_api_key, decoded_token, attachments
|
||||
)
|
||||
self.user = decoded_token.get("sub")
|
||||
self.prompt = prompt
|
||||
self.chat_history = chat_history if chat_history is not None else []
|
||||
|
||||
@log_activity()
|
||||
def gen(
|
||||
self, query: str, retriever: BaseRetriever, log_context: LogContext = None
|
||||
) -> Generator[Dict, None, None]:
|
||||
yield from self._gen_inner(query, retriever, log_context)
|
||||
|
||||
def _gen_inner(
|
||||
self, query: str, retriever: BaseRetriever, log_context: LogContext
|
||||
) -> Generator[Dict, None, None]:
|
||||
retrieved_data = self._retriever_search(retriever, query, log_context)
|
||||
|
||||
docs_together = "\n".join([doc["text"] for doc in retrieved_data])
|
||||
p_chat_combine = self.prompt.replace("{summaries}", docs_together)
|
||||
messages_combine = [{"role": "system", "content": p_chat_combine}]
|
||||
|
||||
if len(self.chat_history) > 0:
|
||||
for i in self.chat_history:
|
||||
if "prompt" in i and "response" in i:
|
||||
messages_combine.append({"role": "user", "content": i["prompt"]})
|
||||
messages_combine.append(
|
||||
{"role": "assistant", "content": i["response"]}
|
||||
)
|
||||
if "tool_calls" in i:
|
||||
for tool_call in i["tool_calls"]:
|
||||
call_id = tool_call.get("call_id")
|
||||
if call_id is None or call_id == "None":
|
||||
call_id = str(uuid.uuid4())
|
||||
|
||||
function_call_dict = {
|
||||
"function_call": {
|
||||
"name": tool_call.get("action_name"),
|
||||
"args": tool_call.get("arguments"),
|
||||
"call_id": call_id,
|
||||
}
|
||||
}
|
||||
function_response_dict = {
|
||||
"function_response": {
|
||||
"name": tool_call.get("action_name"),
|
||||
"response": {"result": tool_call.get("result")},
|
||||
"call_id": call_id,
|
||||
}
|
||||
}
|
||||
|
||||
messages_combine.append(
|
||||
{"role": "assistant", "content": [function_call_dict]}
|
||||
)
|
||||
messages_combine.append(
|
||||
{"role": "tool", "content": [function_response_dict]}
|
||||
)
|
||||
messages_combine.append({"role": "user", "content": query})
|
||||
|
||||
tools_dict = self._get_user_tools(self.user)
|
||||
self._prepare_tools(tools_dict)
|
||||
|
||||
resp = self._llm_gen(messages_combine, log_context)
|
||||
messages = self._build_messages(self.prompt, query, retrieved_data)
|
||||
|
||||
resp = self._llm_gen(messages, log_context)
|
||||
|
||||
attachments = self.attachments
|
||||
|
||||
if isinstance(resp, str):
|
||||
yield {"answer": resp}
|
||||
@@ -95,7 +33,7 @@ class ClassicAgent(BaseAgent):
|
||||
yield {"answer": resp.message.content}
|
||||
return
|
||||
|
||||
resp = self._llm_handler(resp, tools_dict, messages_combine, log_context, self.attachments)
|
||||
resp = self._llm_handler(resp, tools_dict, messages, log_context,attachments)
|
||||
|
||||
if isinstance(resp, str):
|
||||
yield {"answer": resp}
|
||||
@@ -107,7 +45,7 @@ class ClassicAgent(BaseAgent):
|
||||
yield {"answer": resp.message.content}
|
||||
else:
|
||||
completion = self.llm.gen_stream(
|
||||
model=self.gpt_model, messages=messages_combine, tools=self.tools
|
||||
model=self.gpt_model, messages=messages, tools=self.tools
|
||||
)
|
||||
for line in completion:
|
||||
if isinstance(line, str):
|
||||
@@ -115,29 +53,3 @@ class ClassicAgent(BaseAgent):
|
||||
|
||||
yield {"sources": retrieved_data}
|
||||
yield {"tool_calls": self.tool_calls.copy()}
|
||||
|
||||
def _retriever_search(self, retriever, query, log_context):
|
||||
retrieved_data = retriever.search(query)
|
||||
if log_context:
|
||||
data = build_stack_data(retriever, exclude_attributes=["llm"])
|
||||
log_context.stacks.append({"component": "retriever", "data": data})
|
||||
return retrieved_data
|
||||
|
||||
def _llm_gen(self, messages_combine, log_context):
|
||||
resp = self.llm.gen_stream(
|
||||
model=self.gpt_model, messages=messages_combine, tools=self.tools
|
||||
)
|
||||
if log_context:
|
||||
data = build_stack_data(self.llm)
|
||||
log_context.stacks.append({"component": "llm", "data": data})
|
||||
return resp
|
||||
|
||||
def _llm_handler(self, resp, tools_dict, messages_combine, log_context, attachments=None):
|
||||
logger.info(f"Handling LLM response with {len(attachments) if attachments else 0} attachments")
|
||||
resp = self.llm_handler.handle_response(
|
||||
self, resp, tools_dict, messages_combine, attachments=attachments
|
||||
)
|
||||
if log_context:
|
||||
data = build_stack_data(self.llm_handler)
|
||||
log_context.stacks.append({"component": "llm_handler", "data": data})
|
||||
return resp
|
||||
|
||||
Reference in New Issue
Block a user