refactor: enhance LLM fallback handling and streamline method execution

This commit is contained in:
Siddhant Rai
2025-06-06 16:55:57 +05:30
parent e9530d5ec5
commit 5f5c31cd5b
2 changed files with 110 additions and 36 deletions

View File

@@ -256,12 +256,21 @@ class BaseAgent(ABC):
return retrieved_data
def _llm_gen(self, messages: List[Dict], log_context: Optional[LogContext] = None):
resp = self.llm.gen_stream(
model=self.gpt_model, messages=messages, tools=self.tools
)
gen_kwargs = {"model": self.gpt_model, "messages": messages}
if (
hasattr(self.llm, "_supports_tools")
and self.llm._supports_tools
and self.tools
):
gen_kwargs["tools"] = self.tools
resp = self.llm.gen_stream(**gen_kwargs)
if log_context:
data = build_stack_data(self.llm, exclude_attributes=["client"])
log_context.stacks.append({"component": "llm", "data": data})
return resp
def _llm_handler(

View File

@@ -1,53 +1,118 @@
import logging
from abc import ABC, abstractmethod
from application.cache import gen_cache, stream_cache
from application.core.settings import settings
from application.usage import gen_token_usage, stream_token_usage
logger = logging.getLogger(__name__)
class BaseLLM(ABC):
def __init__(self, decoded_token=None):
def __init__(
self,
decoded_token=None,
):
self.decoded_token = decoded_token
self.token_usage = {"prompt_tokens": 0, "generated_tokens": 0}
self.fallback_provider = settings.FALLBACK_LLM_PROVIDER
self.fallback_model_name = settings.FALLBACK_LLM_NAME
self.fallback_llm_api_key = settings.FALLBACK_LLM_API_KEY
self._fallback_llm = None
def _apply_decorator(self, method, decorators, *args, **kwargs):
@property
def fallback_llm(self):
"""Lazy-loaded fallback LLM instance."""
if (
self._fallback_llm is None
and self.fallback_provider
and self.fallback_model_name
):
try:
from llm.llm_creator import LLMCreator
self._fallback_llm = LLMCreator(
self.fallback_provider,
self.fallback_llm_api_key,
None,
self.decoded_token,
)
except Exception as e:
logger.error(
f"Failed to initialize fallback LLM: {str(e)}", exc_info=True
)
return self._fallback_llm
def _execute_with_fallback(
self, method_name: str, decorators: list, *args, **kwargs
):
"""
Unified method execution with fallback support.
Args:
method_name: Name of the raw method ('_raw_gen' or '_raw_gen_stream')
decorators: List of decorators to apply
*args: Positional arguments
**kwargs: Keyword arguments
"""
def decorated_method():
method = getattr(self, method_name)
for decorator in decorators:
method = decorator(method)
return method(self, *args, **kwargs)
try:
return decorated_method()
except Exception as e:
if not self.fallback_llm:
logger.error(f"Primary LLM failed and no fallback available: {str(e)}")
raise
logger.warning(
f"Falling back to {self.fallback_provider}/{self.fallback_model_name}. Error: {str(e)}"
)
# Retry with fallback (without decorators for accurate token tracking)
fallback_method = getattr(
self.fallback_llm, method_name.replace("_raw_", "")
)
return fallback_method(*args, **kwargs)
def gen(self, model, messages, stream=False, tools=None, *args, **kwargs):
decorators = [gen_token_usage, gen_cache]
return self._execute_with_fallback(
"_raw_gen",
decorators,
model=model,
messages=messages,
stream=stream,
tools=tools,
*args,
**kwargs,
)
def gen_stream(self, model, messages, stream=True, tools=None, *args, **kwargs):
decorators = [stream_cache, stream_token_usage]
return self._execute_with_fallback(
"_raw_gen_stream",
decorators,
model=model,
messages=messages,
stream=stream,
tools=tools,
*args,
**kwargs,
)
@abstractmethod
def _raw_gen(self, model, messages, stream, tools, *args, **kwargs):
pass
def gen(self, model, messages, stream=False, tools=None, *args, **kwargs):
decorators = [gen_token_usage, gen_cache]
return self._apply_decorator(
self._raw_gen,
decorators=decorators,
model=model,
messages=messages,
stream=stream,
tools=tools,
*args,
**kwargs
)
@abstractmethod
def _raw_gen_stream(self, model, messages, stream, *args, **kwargs):
pass
def gen_stream(self, model, messages, stream=True, tools=None, *args, **kwargs):
decorators = [stream_cache, stream_token_usage]
return self._apply_decorator(
self._raw_gen_stream,
decorators=decorators,
model=model,
messages=messages,
stream=stream,
tools=tools,
*args,
**kwargs
)
def supports_tools(self):
return hasattr(self, "_supports_tools") and callable(
getattr(self, "_supports_tools")