mirror of
https://github.com/arc53/DocsGPT.git
synced 2025-11-29 08:33:20 +00:00
refactor: enhance LLM fallback handling and streamline method execution
This commit is contained in:
@@ -256,12 +256,21 @@ class BaseAgent(ABC):
|
|||||||
return retrieved_data
|
return retrieved_data
|
||||||
|
|
||||||
def _llm_gen(self, messages: List[Dict], log_context: Optional[LogContext] = None):
|
def _llm_gen(self, messages: List[Dict], log_context: Optional[LogContext] = None):
|
||||||
resp = self.llm.gen_stream(
|
gen_kwargs = {"model": self.gpt_model, "messages": messages}
|
||||||
model=self.gpt_model, messages=messages, tools=self.tools
|
|
||||||
)
|
if (
|
||||||
|
hasattr(self.llm, "_supports_tools")
|
||||||
|
and self.llm._supports_tools
|
||||||
|
and self.tools
|
||||||
|
):
|
||||||
|
gen_kwargs["tools"] = self.tools
|
||||||
|
|
||||||
|
resp = self.llm.gen_stream(**gen_kwargs)
|
||||||
|
|
||||||
if log_context:
|
if log_context:
|
||||||
data = build_stack_data(self.llm, exclude_attributes=["client"])
|
data = build_stack_data(self.llm, exclude_attributes=["client"])
|
||||||
log_context.stacks.append({"component": "llm", "data": data})
|
log_context.stacks.append({"component": "llm", "data": data})
|
||||||
|
|
||||||
return resp
|
return resp
|
||||||
|
|
||||||
def _llm_handler(
|
def _llm_handler(
|
||||||
|
|||||||
@@ -1,53 +1,118 @@
|
|||||||
|
import logging
|
||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
|
|
||||||
from application.cache import gen_cache, stream_cache
|
from application.cache import gen_cache, stream_cache
|
||||||
|
|
||||||
|
from application.core.settings import settings
|
||||||
from application.usage import gen_token_usage, stream_token_usage
|
from application.usage import gen_token_usage, stream_token_usage
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class BaseLLM(ABC):
|
class BaseLLM(ABC):
|
||||||
def __init__(self, decoded_token=None):
|
def __init__(
|
||||||
|
self,
|
||||||
|
decoded_token=None,
|
||||||
|
):
|
||||||
self.decoded_token = decoded_token
|
self.decoded_token = decoded_token
|
||||||
self.token_usage = {"prompt_tokens": 0, "generated_tokens": 0}
|
self.token_usage = {"prompt_tokens": 0, "generated_tokens": 0}
|
||||||
|
self.fallback_provider = settings.FALLBACK_LLM_PROVIDER
|
||||||
|
self.fallback_model_name = settings.FALLBACK_LLM_NAME
|
||||||
|
self.fallback_llm_api_key = settings.FALLBACK_LLM_API_KEY
|
||||||
|
self._fallback_llm = None
|
||||||
|
|
||||||
def _apply_decorator(self, method, decorators, *args, **kwargs):
|
@property
|
||||||
|
def fallback_llm(self):
|
||||||
|
"""Lazy-loaded fallback LLM instance."""
|
||||||
|
if (
|
||||||
|
self._fallback_llm is None
|
||||||
|
and self.fallback_provider
|
||||||
|
and self.fallback_model_name
|
||||||
|
):
|
||||||
|
try:
|
||||||
|
from llm.llm_creator import LLMCreator
|
||||||
|
|
||||||
|
self._fallback_llm = LLMCreator(
|
||||||
|
self.fallback_provider,
|
||||||
|
self.fallback_llm_api_key,
|
||||||
|
None,
|
||||||
|
self.decoded_token,
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(
|
||||||
|
f"Failed to initialize fallback LLM: {str(e)}", exc_info=True
|
||||||
|
)
|
||||||
|
return self._fallback_llm
|
||||||
|
|
||||||
|
def _execute_with_fallback(
|
||||||
|
self, method_name: str, decorators: list, *args, **kwargs
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Unified method execution with fallback support.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
method_name: Name of the raw method ('_raw_gen' or '_raw_gen_stream')
|
||||||
|
decorators: List of decorators to apply
|
||||||
|
*args: Positional arguments
|
||||||
|
**kwargs: Keyword arguments
|
||||||
|
"""
|
||||||
|
|
||||||
|
def decorated_method():
|
||||||
|
method = getattr(self, method_name)
|
||||||
for decorator in decorators:
|
for decorator in decorators:
|
||||||
method = decorator(method)
|
method = decorator(method)
|
||||||
return method(self, *args, **kwargs)
|
return method(self, *args, **kwargs)
|
||||||
|
|
||||||
|
try:
|
||||||
|
return decorated_method()
|
||||||
|
except Exception as e:
|
||||||
|
if not self.fallback_llm:
|
||||||
|
logger.error(f"Primary LLM failed and no fallback available: {str(e)}")
|
||||||
|
raise
|
||||||
|
logger.warning(
|
||||||
|
f"Falling back to {self.fallback_provider}/{self.fallback_model_name}. Error: {str(e)}"
|
||||||
|
)
|
||||||
|
# Retry with fallback (without decorators for accurate token tracking)
|
||||||
|
|
||||||
|
fallback_method = getattr(
|
||||||
|
self.fallback_llm, method_name.replace("_raw_", "")
|
||||||
|
)
|
||||||
|
return fallback_method(*args, **kwargs)
|
||||||
|
|
||||||
|
def gen(self, model, messages, stream=False, tools=None, *args, **kwargs):
|
||||||
|
decorators = [gen_token_usage, gen_cache]
|
||||||
|
return self._execute_with_fallback(
|
||||||
|
"_raw_gen",
|
||||||
|
decorators,
|
||||||
|
model=model,
|
||||||
|
messages=messages,
|
||||||
|
stream=stream,
|
||||||
|
tools=tools,
|
||||||
|
*args,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
|
def gen_stream(self, model, messages, stream=True, tools=None, *args, **kwargs):
|
||||||
|
decorators = [stream_cache, stream_token_usage]
|
||||||
|
return self._execute_with_fallback(
|
||||||
|
"_raw_gen_stream",
|
||||||
|
decorators,
|
||||||
|
model=model,
|
||||||
|
messages=messages,
|
||||||
|
stream=stream,
|
||||||
|
tools=tools,
|
||||||
|
*args,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def _raw_gen(self, model, messages, stream, tools, *args, **kwargs):
|
def _raw_gen(self, model, messages, stream, tools, *args, **kwargs):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def gen(self, model, messages, stream=False, tools=None, *args, **kwargs):
|
|
||||||
decorators = [gen_token_usage, gen_cache]
|
|
||||||
return self._apply_decorator(
|
|
||||||
self._raw_gen,
|
|
||||||
decorators=decorators,
|
|
||||||
model=model,
|
|
||||||
messages=messages,
|
|
||||||
stream=stream,
|
|
||||||
tools=tools,
|
|
||||||
*args,
|
|
||||||
**kwargs
|
|
||||||
)
|
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def _raw_gen_stream(self, model, messages, stream, *args, **kwargs):
|
def _raw_gen_stream(self, model, messages, stream, *args, **kwargs):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def gen_stream(self, model, messages, stream=True, tools=None, *args, **kwargs):
|
|
||||||
decorators = [stream_cache, stream_token_usage]
|
|
||||||
return self._apply_decorator(
|
|
||||||
self._raw_gen_stream,
|
|
||||||
decorators=decorators,
|
|
||||||
model=model,
|
|
||||||
messages=messages,
|
|
||||||
stream=stream,
|
|
||||||
tools=tools,
|
|
||||||
*args,
|
|
||||||
**kwargs
|
|
||||||
)
|
|
||||||
|
|
||||||
def supports_tools(self):
|
def supports_tools(self):
|
||||||
return hasattr(self, "_supports_tools") and callable(
|
return hasattr(self, "_supports_tools") and callable(
|
||||||
getattr(self, "_supports_tools")
|
getattr(self, "_supports_tools")
|
||||||
|
|||||||
Reference in New Issue
Block a user