mirror of
https://github.com/arc53/DocsGPT.git
synced 2025-11-29 08:33:20 +00:00
Added cli commands
This commit is contained in:
@@ -5,12 +5,8 @@ import dotenv
|
||||
import typer
|
||||
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import List, Optional
|
||||
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
|
||||
|
||||
from parser.file.bulk import SimpleDirectoryReader
|
||||
from parser.schema.base import Document
|
||||
from parser.open_ai_func import call_openai_api, get_user_permission
|
||||
@@ -39,14 +35,17 @@ def ingest(yes: bool = typer.Option(False, "-y", "--yes", prompt=False,
|
||||
file: Optional[List[str]] = typer.Option(None,
|
||||
help="""File paths to use (Optional; overrides dir).
|
||||
E.g. --file inputs/1.md --file inputs/2.md"""),
|
||||
recursive: Optional[bool] = typer.Option(True,
|
||||
help="Whether to recursively search in subdirectories."),
|
||||
limit: Optional[int] = typer.Option(None,
|
||||
help="Maximum number of files to read."),
|
||||
recursive: Optional[bool] = typer.Option(True, help="Whether to recursively search in subdirectories."),
|
||||
limit: Optional[int] = typer.Option(None, help="Maximum number of files to read."),
|
||||
formats: Optional[List[str]] = typer.Option([".rst", ".md"],
|
||||
help="""List of required extensions (list with .)
|
||||
Currently supported: .rst, .md, .pdf, .docx, .csv, .epub, .html, .mdx"""),
|
||||
exclude: Optional[bool] = typer.Option(True, help="Whether to exclude hidden files (dotfiles).")):
|
||||
exclude: Optional[bool] = typer.Option(True, help="Whether to exclude hidden files (dotfiles)."),
|
||||
sample: Optional[bool] = typer.Option(False, help="Whether to output sample of the first 5 split documents."),
|
||||
token_check: Optional[bool] = typer.Option(True, help="Whether to group small documents and split large."),
|
||||
min_tokens: Optional[int] = typer.Option(150, help="Minimum number of tokens to not group."),
|
||||
max_tokens: Optional[int] = typer.Option(2000, help="Maximum number of tokens to not split."),
|
||||
):
|
||||
|
||||
"""
|
||||
Creates index from specified location or files.
|
||||
@@ -57,16 +56,22 @@ def ingest(yes: bool = typer.Option(False, "-y", "--yes", prompt=False,
|
||||
raw_docs = SimpleDirectoryReader(input_dir=directory, input_files=file, recursive=recursive,
|
||||
required_exts=formats, num_files_limit=limit,
|
||||
exclude_hidden=exclude).load_data()
|
||||
#Checking min_tokens and max_tokens
|
||||
raw_docs = group_split(documents=raw_docs)
|
||||
|
||||
docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
|
||||
# Here we split the documents, as needed, into smaller chunks.
|
||||
# We do this due to the context limits of the LLMs.
|
||||
|
||||
raw_docs = group_split(documents=raw_docs, min_tokens=min_tokens, max_tokens=max_tokens, token_check=token_check)
|
||||
#Old method
|
||||
# text_splitter = RecursiveCharacterTextSplitter()
|
||||
# docs = text_splitter.split_documents(raw_docs)
|
||||
|
||||
#Sample feature
|
||||
if sample == True:
|
||||
for i in range(min(5, len(raw_docs))):
|
||||
print(raw_docs[i].text)
|
||||
|
||||
docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
|
||||
|
||||
|
||||
# Here we check for command line arguments for bot calls.
|
||||
# If no argument exists or the yes is not True, then the
|
||||
# user permission is requested to call the API.
|
||||
|
||||
@@ -13,7 +13,7 @@ def separate_header_and_body(text):
|
||||
body = text[len(header):]
|
||||
return header, body
|
||||
|
||||
def group_documents(documents: List[Document], min_tokens: int = 200, max_tokens: int = 2000) -> List[Document]:
|
||||
def group_documents(documents: List[Document], min_tokens: int, max_tokens: int) -> List[Document]:
|
||||
docs = []
|
||||
current_group = None
|
||||
|
||||
@@ -35,7 +35,7 @@ def group_documents(documents: List[Document], min_tokens: int = 200, max_tokens
|
||||
|
||||
return docs
|
||||
|
||||
def split_documents(documents: List[Document], max_tokens: int = 2000) -> List[Document]:
|
||||
def split_documents(documents: List[Document], max_tokens: int) -> List[Document]:
|
||||
docs = []
|
||||
for doc in documents:
|
||||
token_length = len(tiktoken.get_encoding("cl100k_base").encode(doc.text))
|
||||
@@ -54,7 +54,8 @@ def split_documents(documents: List[Document], max_tokens: int = 2000) -> List[D
|
||||
docs.append(new_doc)
|
||||
return docs
|
||||
|
||||
def group_split(documents: List[Document], max_tokens: int = 1500, min_tokens: int = 500, token_check: bool = True):
|
||||
def group_split(documents: List[Document], max_tokens: int = 2000, min_tokens: int = 150, token_check: bool = True):
|
||||
print(max_tokens, min_tokens, token_check)
|
||||
if token_check == False:
|
||||
return documents
|
||||
print("Grouping small documents")
|
||||
|
||||
@@ -1,19 +0,0 @@
|
||||
import os
|
||||
|
||||
import dotenv
|
||||
import tiktoken
|
||||
from langchain import FAISS
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
|
||||
dotenv.load_dotenv()
|
||||
embeddings_key = os.getenv("API_KEY")
|
||||
docsearch = FAISS.load_local('outputs', OpenAIEmbeddings(openai_api_key=embeddings_key))
|
||||
|
||||
d1 = docsearch.similarity_search("Whats new in 1.5.3?")
|
||||
print(d1)
|
||||
print("=====================================")
|
||||
print("=====================================")
|
||||
for i in d1:
|
||||
print("docs length (tokens)")
|
||||
doc_len = len(tiktoken.get_encoding("cl100k_base").encode(i.page_content))
|
||||
print(doc_len)
|
||||
Reference in New Issue
Block a user