Merge branch 'main' into feature/remote-loads

This commit is contained in:
Alex
2024-03-01 14:38:27 +00:00
committed by GitHub
17 changed files with 181 additions and 52 deletions

View File

@@ -2,15 +2,17 @@ FROM python:3.11-slim-bullseye as builder
# Tiktoken requires Rust toolchain, so build it in a separate stage
RUN apt-get update && apt-get install -y gcc curl
RUN apt-get install -y wget unzip
RUN wget https://d3dg1063dc54p9.cloudfront.net/models/embeddings/mpnet-base-v2.zip
RUN unzip mpnet-base-v2.zip -d model
RUN rm mpnet-base-v2.zip
RUN curl https://sh.rustup.rs -sSf | sh -s -- -y && apt-get install --reinstall libc6-dev -y
ENV PATH="/root/.cargo/bin:${PATH}"
RUN pip install --upgrade pip && pip install tiktoken==0.5.2
COPY requirements.txt .
RUN pip install -r requirements.txt
RUN apt-get install -y wget unzip
RUN wget https://d3dg1063dc54p9.cloudfront.net/models/embeddings/mpnet-base-v2.zip
RUN unzip mpnet-base-v2.zip -d model
RUN rm mpnet-base-v2.zip
FROM python:3.11-slim-bullseye

View File

@@ -39,6 +39,9 @@ class Settings(BaseSettings):
SAGEMAKER_ACCESS_KEY: Optional[str] = None # SageMaker access key
SAGEMAKER_SECRET_KEY: Optional[str] = None # SageMaker secret key
# prem ai project id
PREMAI_PROJECT_ID: Optional[str] = None
path = Path(__file__).parent.parent.absolute()
settings = Settings(_env_file=path.joinpath(".env"), _env_file_encoding="utf-8")

View File

@@ -20,7 +20,7 @@ class DocsGPTAPILLM(BaseLLM):
"max_new_tokens": 30
}
)
response_clean = response.json()['a'].split("###")[0]
response_clean = response.json()['a'].replace("###", "")
return response_clean

View File

@@ -4,6 +4,7 @@ from application.llm.huggingface import HuggingFaceLLM
from application.llm.llama_cpp import LlamaCpp
from application.llm.anthropic import AnthropicLLM
from application.llm.docsgpt_provider import DocsGPTAPILLM
from application.llm.premai import PremAILLM
@@ -15,7 +16,8 @@ class LLMCreator:
'huggingface': HuggingFaceLLM,
'llama.cpp': LlamaCpp,
'anthropic': AnthropicLLM,
'docsgpt': DocsGPTAPILLM
'docsgpt': DocsGPTAPILLM,
'premai': PremAILLM,
}
@classmethod

33
application/llm/premai.py Normal file
View File

@@ -0,0 +1,33 @@
from application.llm.base import BaseLLM
from application.core.settings import settings
class PremAILLM(BaseLLM):
def __init__(self, api_key):
from premai import Prem
self.client = Prem(
api_key=api_key
)
self.api_key = api_key
self.project_id = settings.PREMAI_PROJECT_ID
def gen(self, model, engine, messages, stream=False, **kwargs):
response = self.client.chat.completions.create(model=model,
project_id=self.project_id,
messages=messages,
stream=stream,
**kwargs)
return response.choices[0].message["content"]
def gen_stream(self, model, engine, messages, stream=True, **kwargs):
response = self.client.chat.completions.create(model=model,
project_id=self.project_id,
messages=messages,
stream=stream,
**kwargs)
for line in response:
if line.choices[0].delta["content"] is not None:
yield line.choices[0].delta["content"]

View File

@@ -147,12 +147,24 @@ class SimpleDirectoryReader(BaseReader):
# do standard read
with open(input_file, "r", errors=self.errors) as f:
data = f.read()
if isinstance(data, List):
data_list.extend(data)
else:
data_list.append(str(data))
# Prepare metadata for this file
if self.file_metadata is not None:
metadata_list.append(self.file_metadata(str(input_file)))
file_metadata = self.file_metadata(str(input_file))
else:
# Provide a default empty metadata
file_metadata = {'title': '', 'store': ''}
# TODO: Find a case with no metadata and check if breaks anything
if isinstance(data, List):
# Extend data_list with each item in the data list
data_list.extend([str(d) for d in data])
# For each item in the data list, add the file's metadata to metadata_list
metadata_list.extend([file_metadata for _ in data])
else:
# Add the single piece of data to data_list
data_list.append(str(data))
# Add the file's metadata to metadata_list
metadata_list.append(file_metadata)
if concatenate:
return [Document("\n".join(data_list))]

View File

@@ -21,16 +21,15 @@ def group_documents(documents: List[Document], min_tokens: int, max_tokens: int)
for doc in documents:
doc_len = len(tiktoken.get_encoding("cl100k_base").encode(doc.text))
if current_group is None:
current_group = Document(text=doc.text, doc_id=doc.doc_id, embedding=doc.embedding,
extra_info=doc.extra_info)
elif len(tiktoken.get_encoding("cl100k_base").encode(
current_group.text)) + doc_len < max_tokens and doc_len < min_tokens:
current_group.text += " " + doc.text
# Check if current group is empty or if the document can be added based on token count and matching metadata
if current_group is None or (len(tiktoken.get_encoding("cl100k_base").encode(current_group.text)) + doc_len < max_tokens and doc_len < min_tokens and current_group.extra_info == doc.extra_info):
if current_group is None:
current_group = doc # Use the document directly to retain its metadata
else:
current_group.text += " " + doc.text # Append text to the current group
else:
docs.append(current_group)
current_group = Document(text=doc.text, doc_id=doc.doc_id, embedding=doc.embedding,
extra_info=doc.extra_info)
current_group = doc # Start a new group with the current document
if current_group is not None:
docs.append(current_group)