feat: model registry and capabilities for multi-provider support (#2158)

* feat: Implement model registry and capabilities for multi-provider support

- Added ModelRegistry to manage available models and their capabilities.
- Introduced ModelProvider enum for different LLM providers.
- Created ModelCapabilities dataclass to define model features.
- Implemented methods to load models based on API keys and settings.
- Added utility functions for model management in model_utils.py.
- Updated settings.py to include provider-specific API keys.
- Refactored LLM classes (Anthropic, OpenAI, Google, etc.) to utilize new model registry.
- Enhanced utility functions to handle token limits and model validation.
- Improved code structure and logging for better maintainability.

* feat: Add model selection feature with API integration and UI component

* feat: Add model selection and default model functionality in agent management

* test: Update assertions and formatting in stream processing tests

* refactor(llm): Standardize model identifier to model_id

* fix tests

---------

Co-authored-by: Alex <a@tushynski.me>
This commit is contained in:
Siddhant Rai
2025-11-14 16:43:19 +05:30
committed by GitHub
parent fbf7cf874b
commit 3f7de867cc
54 changed files with 1388 additions and 226 deletions

View File

@@ -16,7 +16,7 @@ class ClassicRAG(BaseRetriever):
prompt="",
chunks=2,
doc_token_limit=50000,
gpt_model="docsgpt",
model_id="docsgpt-local",
user_api_key=None,
llm_name=settings.LLM_PROVIDER,
api_key=settings.API_KEY,
@@ -40,7 +40,7 @@ class ClassicRAG(BaseRetriever):
f"ClassicRAG initialized with chunks={self.chunks}, user_api_key={user_identifier}, "
f"sources={'active_docs' in source and source['active_docs'] is not None}"
)
self.gpt_model = gpt_model
self.model_id = model_id
self.doc_token_limit = doc_token_limit
self.user_api_key = user_api_key
self.llm_name = llm_name
@@ -100,7 +100,7 @@ class ClassicRAG(BaseRetriever):
]
try:
rephrased_query = self.llm.gen(model=self.gpt_model, messages=messages)
rephrased_query = self.llm.gen(model=self.model_id, messages=messages)
print(f"Rephrased query: {rephrased_query}")
return rephrased_query if rephrased_query else self.original_question
except Exception as e: