feat: context compression

This commit is contained in:
Alex
2025-11-23 18:35:51 +00:00
parent 9e58eb02b3
commit 3737beb2ba
28 changed files with 5393 additions and 93 deletions

View File

@@ -91,7 +91,7 @@ def test_clean_messages_google_basic():
{"function_call": {"name": "fn", "args": {"a": 1}}},
]},
]
cleaned = llm._clean_messages_google(msgs)
cleaned, system_instruction = llm._clean_messages_google(msgs)
assert all(hasattr(c, "role") and hasattr(c, "parts") for c in cleaned)
assert any(c.role == "model" for c in cleaned)

View File

@@ -0,0 +1,325 @@
import pytest
from unittest.mock import Mock, MagicMock, patch
from application.agents.base import BaseAgent
from application.llm.handlers.base import LLMHandler, ToolCall
class MockAgent(BaseAgent):
"""Mock agent for testing"""
def _gen_inner(self, query, log_context=None):
yield {"answer": "test"}
@pytest.fixture
def mock_agent():
"""Create a mock agent for testing"""
agent = MockAgent(
endpoint="test",
llm_name="openai",
model_id="gpt-4o",
api_key="test-key",
)
agent.llm = Mock()
return agent
@pytest.fixture
def mock_llm_handler():
"""Create a mock LLM handler"""
handler = Mock(spec=LLMHandler)
handler.tool_calls = []
return handler
class TestAgentTokenTracking:
"""Test suite for agent token tracking during execution"""
def test_calculate_current_context_tokens(self, mock_agent):
"""Test token calculation for current context"""
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello, how are you?"},
{"role": "assistant", "content": "I'm doing well, thank you!"},
]
tokens = mock_agent._calculate_current_context_tokens(messages)
# Should count tokens from all messages
assert tokens > 0
# Rough estimate: ~20-40 tokens for this conversation
assert 15 < tokens < 60
def test_calculate_tokens_with_tool_calls(self, mock_agent):
"""Test token calculation includes tool call content"""
messages = [
{"role": "system", "content": "Test"},
{
"role": "assistant",
"content": [
{
"function_call": {
"name": "search_tool",
"args": {"query": "test"},
"call_id": "123",
}
}
],
},
{
"role": "tool",
"content": [
{
"function_response": {
"name": "search_tool",
"response": {"result": "Found 10 results"},
"call_id": "123",
}
}
],
},
]
tokens = mock_agent._calculate_current_context_tokens(messages)
# Should include tool call tokens
assert tokens > 0
@patch("application.core.model_utils.get_token_limit")
@patch("application.core.settings.settings")
def test_check_context_limit_below_threshold(
self, mock_settings, mock_get_token_limit, mock_agent
):
"""Test context limit check when below threshold"""
mock_get_token_limit.return_value = 128000
mock_settings.COMPRESSION_THRESHOLD_PERCENTAGE = 0.8
messages = [
{"role": "system", "content": "Short message"},
{"role": "user", "content": "Hello"},
]
# Should return False for small conversation
result = mock_agent._check_context_limit(messages)
assert result is False
# Should track current token count
assert mock_agent.current_token_count > 0
assert mock_agent.current_token_count < 128000 * 0.8
@patch("application.core.model_utils.get_token_limit")
@patch("application.core.settings.settings")
def test_check_context_limit_above_threshold(
self, mock_settings, mock_get_token_limit, mock_agent
):
"""Test context limit check when above threshold"""
mock_get_token_limit.return_value = 100 # Very small limit for testing
mock_settings.COMPRESSION_THRESHOLD_PERCENTAGE = 0.8
# Create messages that will exceed 80 tokens (80% of 100)
messages = [
{"role": "system", "content": "a " * 50}, # ~50 tokens
{"role": "user", "content": "b " * 50}, # ~50 tokens
]
# Should return True when exceeding threshold
result = mock_agent._check_context_limit(messages)
assert result is True
@patch("application.agents.base.logger")
def test_check_context_limit_error_handling(self, mock_logger, mock_agent):
"""Test error handling in context limit check"""
# Force an error by making get_token_limit fail
with patch(
"application.core.model_utils.get_token_limit", side_effect=Exception("Test error")
):
messages = [{"role": "user", "content": "test"}]
result = mock_agent._check_context_limit(messages)
# Should return False on error (safe default)
assert result is False
# Should log the error
assert mock_logger.error.called
def test_context_limit_flag_initialization(self, mock_agent):
"""Test that context limit flag is initialized"""
assert hasattr(mock_agent, "context_limit_reached")
assert mock_agent.context_limit_reached is False
assert hasattr(mock_agent, "current_token_count")
assert mock_agent.current_token_count == 0
class TestLLMHandlerTokenTracking:
"""Test suite for LLM handler token tracking"""
@patch("application.llm.handlers.base.logger")
def test_handle_tool_calls_stops_at_limit(self, mock_logger):
"""Test that tool execution stops when context limit is reached"""
from application.llm.handlers.base import LLMHandler
# Create a concrete handler for testing
class TestHandler(LLMHandler):
def parse_response(self, response):
pass
def create_tool_message(self, tool_call, result):
return {"role": "tool", "content": str(result)}
def _iterate_stream(self, response):
yield ""
handler = TestHandler()
# Create mock agent that hits limit on second tool
mock_agent = Mock()
mock_agent.context_limit_reached = False
call_count = [0]
def check_limit_side_effect(messages):
call_count[0] += 1
# Return True on second call (second tool)
return call_count[0] >= 2
mock_agent._check_context_limit = Mock(side_effect=check_limit_side_effect)
mock_agent._execute_tool_action = Mock(
return_value=iter([{"type": "tool_call", "data": {}}])
)
# Create multiple tool calls
tool_calls = [
ToolCall(id="1", name="tool1", arguments={}),
ToolCall(id="2", name="tool2", arguments={}),
ToolCall(id="3", name="tool3", arguments={}),
]
messages = []
tools_dict = {}
# Execute tool calls
results = list(handler.handle_tool_calls(mock_agent, tool_calls, tools_dict, messages))
# First tool should execute
assert mock_agent._execute_tool_action.call_count == 1
# Should have yielded skip messages for tools 2 and 3
skip_messages = [r for r in results if r.get("type") == "tool_call" and r.get("data", {}).get("status") == "skipped"]
assert len(skip_messages) == 2
# Should have set the flag
assert mock_agent.context_limit_reached is True
# Should have logged warning
assert mock_logger.warning.called
def test_handle_tool_calls_all_execute_when_no_limit(self):
"""Test that all tools execute when under limit"""
from application.llm.handlers.base import LLMHandler
class TestHandler(LLMHandler):
def parse_response(self, response):
pass
def create_tool_message(self, tool_call, result):
return {"role": "tool", "content": str(result)}
def _iterate_stream(self, response):
yield ""
handler = TestHandler()
# Create mock agent that never hits limit
mock_agent = Mock()
mock_agent.context_limit_reached = False
mock_agent._check_context_limit = Mock(return_value=False)
mock_agent._execute_tool_action = Mock(
return_value=iter([{"type": "tool_call", "data": {}}])
)
tool_calls = [
ToolCall(id="1", name="tool1", arguments={}),
ToolCall(id="2", name="tool2", arguments={}),
ToolCall(id="3", name="tool3", arguments={}),
]
messages = []
tools_dict = {}
# Execute tool calls
list(handler.handle_tool_calls(mock_agent, tool_calls, tools_dict, messages))
# All 3 tools should execute
assert mock_agent._execute_tool_action.call_count == 3
# Should not have set the flag
assert mock_agent.context_limit_reached is False
@patch("application.llm.handlers.base.logger")
def test_handle_streaming_adds_warning_message(self, mock_logger):
"""Test that streaming handler adds warning when limit reached"""
from application.llm.handlers.base import LLMHandler, LLMResponse, ToolCall
class TestHandler(LLMHandler):
def parse_response(self, response):
if isinstance(response, dict) and response.get("type") == "tool_call":
return LLMResponse(
content="",
tool_calls=[ToolCall(id="1", name="test", arguments={}, index=0)],
finish_reason="tool_calls",
raw_response=None,
)
else:
return LLMResponse(
content="Done",
tool_calls=[],
finish_reason="stop",
raw_response=None,
)
def create_tool_message(self, tool_call, result):
return {"role": "tool", "content": str(result)}
def _iterate_stream(self, response):
if response == "first":
yield {"type": "tool_call"} # Object to be parsed, not string
else:
yield {"type": "stop"} # Object to be parsed, not string
handler = TestHandler()
# Create mock agent with limit reached
mock_agent = Mock()
mock_agent.context_limit_reached = True
mock_agent.model_id = "gpt-4o"
mock_agent.tools = []
mock_agent.llm = Mock()
mock_agent.llm.gen_stream = Mock(return_value="second")
def tool_handler_gen(*args):
yield {"type": "tool", "data": {}}
return []
# Mock handle_tool_calls to return messages and set flag
with patch.object(
handler, "handle_tool_calls", return_value=tool_handler_gen()
):
messages = []
tools_dict = {}
# Execute streaming
results = list(handler.handle_streaming(mock_agent, "first", tools_dict, messages))
# Should have called gen_stream with tools=None (disabled)
mock_agent.llm.gen_stream.assert_called()
call_kwargs = mock_agent.llm.gen_stream.call_args.kwargs
assert call_kwargs.get("tools") is None
# Should have logged the warning
assert mock_logger.info.called
if __name__ == "__main__":
pytest.main([__file__, "-v"])

File diff suppressed because it is too large Load Diff

1287
tests/test_integration.py Executable file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,106 @@
"""
Tests for model validation and base_url functionality
"""
import pytest
from application.core.model_settings import (
AvailableModel,
ModelCapabilities,
ModelProvider,
ModelRegistry,
)
from application.core.model_utils import (
get_base_url_for_model,
validate_model_id,
)
@pytest.mark.unit
def test_model_with_base_url():
"""Test that AvailableModel can store and retrieve base_url"""
model = AvailableModel(
id="test-model",
provider=ModelProvider.OPENAI,
display_name="Test Model",
description="Test model with custom base URL",
base_url="https://custom-endpoint.com/v1",
capabilities=ModelCapabilities(
supports_tools=True,
context_window=8192,
),
)
assert model.base_url == "https://custom-endpoint.com/v1"
assert model.id == "test-model"
assert model.provider == ModelProvider.OPENAI
# Test to_dict includes base_url
model_dict = model.to_dict()
assert "base_url" in model_dict
assert model_dict["base_url"] == "https://custom-endpoint.com/v1"
@pytest.mark.unit
def test_model_without_base_url():
"""Test that models without base_url still work"""
model = AvailableModel(
id="test-model-no-url",
provider=ModelProvider.OPENAI,
display_name="Test Model",
description="Test model without base URL",
capabilities=ModelCapabilities(
supports_tools=True,
context_window=8192,
),
)
assert model.base_url is None
# Test to_dict doesn't include base_url when None
model_dict = model.to_dict()
assert "base_url" not in model_dict
@pytest.mark.unit
def test_validate_model_id():
"""Test model_id validation"""
# Get the registry instance to check what models are available
registry = ModelRegistry.get_instance()
# Test with a model that should exist (docsgpt-local is always added)
assert validate_model_id("docsgpt-local") is True
# Test with invalid model_id
assert validate_model_id("invalid-model-xyz-123") is False
# Test with None
assert validate_model_id(None) is False
@pytest.mark.unit
def test_get_base_url_for_model():
"""Test retrieving base_url for a model"""
# Test with a model that doesn't have base_url
result = get_base_url_for_model("docsgpt-local")
assert result is None # docsgpt-local doesn't have custom base_url
# Test with invalid model
result = get_base_url_for_model("invalid-model")
assert result is None
@pytest.mark.unit
def test_model_validation_error_message():
"""Test that validation provides helpful error messages"""
from application.api.answer.services.stream_processor import StreamProcessor
# Create processor with invalid model_id
data = {"model_id": "invalid-model-xyz"}
processor = StreamProcessor(data, None)
# Should raise ValueError with helpful message
with pytest.raises(ValueError) as exc_info:
processor._validate_and_set_model()
error_msg = str(exc_info.value)
assert "Invalid model_id 'invalid-model-xyz'" in error_msg
assert "Available models:" in error_msg

View File

@@ -0,0 +1,313 @@
"""
Tests for token management and compression features.
NOTE: These tests are for future planned features that are not yet implemented.
They are skipped until the following modules are created:
- application.compression (DocumentCompressor, HistoryCompressor, etc.)
- application.core.token_budget (TokenBudgetManager)
"""
import pytest
pytest.skip(
"Token management features not yet implemented - planned for future release",
allow_module_level=True,
)
class TestTokenBudgetManager:
"""Test TokenBudgetManager functionality"""
def test_calculate_budget(self):
"""Test budget calculation"""
manager = TokenBudgetManager(model_id="gpt-4o")
budget = manager.calculate_budget()
assert budget.total_budget > 0
assert budget.system_prompt > 0
assert budget.chat_history > 0
assert budget.retrieved_docs > 0
def test_measure_usage(self):
"""Test token usage measurement"""
manager = TokenBudgetManager(model_id="gpt-4o")
usage = manager.measure_usage(
system_prompt="You are a helpful assistant.",
current_query="What is Python?",
chat_history=[
{"prompt": "Hello", "response": "Hi there!"},
{"prompt": "How are you?", "response": "I'm doing well, thanks!"},
],
)
assert usage.total > 0
assert usage.system_prompt > 0
assert usage.current_query > 0
assert usage.chat_history > 0
def test_compression_recommendation(self):
"""Test compression recommendation generation"""
manager = TokenBudgetManager(model_id="gpt-4o")
# Create scenario with excessive history
large_history = [
{"prompt": f"Question {i}" * 100, "response": f"Answer {i}" * 100}
for i in range(100)
]
budget, usage, recommendation = manager.check_and_recommend(
system_prompt="You are a helpful assistant.",
current_query="What is Python?",
chat_history=large_history,
)
# Should recommend compression
assert recommendation.needs_compression()
assert recommendation.compress_history
class TestHistoryCompressor:
"""Test HistoryCompressor functionality"""
def test_sliding_window_compression(self):
"""Test sliding window compression strategy"""
compressor = HistoryCompressor()
history = [
{"prompt": f"Question {i}", "response": f"Answer {i}"} for i in range(20)
]
compressed, metadata = compressor.compress(
history, target_tokens=500, strategy="sliding_window"
)
assert len(compressed) < len(history)
assert metadata["original_messages"] == 20
assert metadata["compressed_messages"] < 20
assert metadata["strategy"] == "sliding_window"
def test_preserve_tool_calls(self):
"""Test that tool calls are preserved during compression"""
compressor = HistoryCompressor()
history = [
{"prompt": "Question 1", "response": "Answer 1"},
{
"prompt": "Use a tool",
"response": "Tool used",
"tool_calls": [{"tool_name": "search", "result": "Found something"}],
},
{"prompt": "Question 3", "response": "Answer 3"},
]
compressed, metadata = compressor.compress(
history, target_tokens=200, strategy="sliding_window", preserve_tool_calls=True
)
# Tool call message should be preserved
has_tool_calls = any("tool_calls" in msg for msg in compressed)
assert has_tool_calls
class TestDocumentCompressor:
"""Test DocumentCompressor functionality"""
def test_rerank_compression(self):
"""Test re-ranking compression strategy"""
compressor = DocumentCompressor()
docs = [
{"text": f"Document {i} with some content here" * 20, "title": f"Doc {i}"}
for i in range(10)
]
compressed, metadata = compressor.compress(
docs, target_tokens=500, query="Document 5", strategy="rerank"
)
assert len(compressed) < len(docs)
assert metadata["original_docs"] == 10
assert metadata["strategy"] == "rerank"
def test_excerpt_extraction(self):
"""Test excerpt extraction strategy"""
compressor = DocumentCompressor()
docs = [
{
"text": "This is a long document. " * 100
+ "Python is great. "
+ "More text here. " * 100,
"title": "Python Guide",
}
]
compressed, metadata = compressor.compress(
docs, target_tokens=300, query="Python", strategy="excerpt"
)
assert metadata["excerpts_created"] > 0
# Excerpt should contain the query term
assert "python" in compressed[0]["text"].lower()
class TestToolResultCompressor:
"""Test ToolResultCompressor functionality"""
def test_truncate_large_results(self):
"""Test truncation of large tool results"""
compressor = ToolResultCompressor()
tool_results = [
{
"tool_name": "search",
"result": "Very long result " * 1000,
"arguments": {},
}
]
compressed, metadata = compressor.compress(
tool_results, target_tokens=100, strategy="truncate"
)
assert metadata["results_truncated"] > 0
# Result should be shorter
compressed_result_len = len(str(compressed[0]["result"]))
original_result_len = len(tool_results[0]["result"])
assert compressed_result_len < original_result_len
def test_extract_json_fields(self):
"""Test extraction of key fields from JSON results"""
compressor = ToolResultCompressor()
tool_results = [
{
"tool_name": "api_call",
"result": {
"data": {"important": "value"},
"metadata": {"verbose": "information" * 100},
"debug": {"lots": "of data" * 100},
},
"arguments": {},
}
]
compressed, metadata = compressor.compress(
tool_results, target_tokens=100, strategy="extract"
)
# Should keep important fields, discard verbose ones
assert "data" in compressed[0]["result"]
class TestPromptOptimizer:
"""Test PromptOptimizer functionality"""
def test_compress_tool_descriptions(self):
"""Test compression of tool descriptions"""
optimizer = PromptOptimizer()
tools = [
{
"type": "function",
"function": {
"name": f"tool_{i}",
"description": "This is a very long description " * 50,
"parameters": {},
},
}
for i in range(10)
]
optimized, metadata = optimizer.optimize_tools(
tools, target_tokens=500, strategy="compress"
)
assert metadata["optimized_tokens"] < metadata["original_tokens"]
assert metadata["descriptions_compressed"] > 0
def test_lazy_load_tools(self):
"""Test lazy loading of tools based on query"""
optimizer = PromptOptimizer()
tools = [
{
"type": "function",
"function": {
"name": "search_tool",
"description": "Search for information",
"parameters": {},
},
},
{
"type": "function",
"function": {
"name": "calculate_tool",
"description": "Perform calculations",
"parameters": {},
},
},
{
"type": "function",
"function": {
"name": "other_tool",
"description": "Do something else",
"parameters": {},
},
},
]
optimized, metadata = optimizer.optimize_tools(
tools, target_tokens=200, query="I want to search for something", strategy="lazy_load"
)
# Should prefer search tool
assert len(optimized) < len(tools)
tool_names = [t["function"]["name"] for t in optimized]
# Search tool should be included due to query relevance
assert any("search" in name for name in tool_names)
def test_integration_compression_workflow():
"""Test complete compression workflow"""
# Simulate a scenario with large inputs
manager = TokenBudgetManager(model_id="gpt-4o")
history_compressor = HistoryCompressor()
doc_compressor = DocumentCompressor()
# Large chat history
history = [
{"prompt": f"Question {i}" * 50, "response": f"Answer {i}" * 50}
for i in range(50)
]
# Large documents
docs = [
{"text": f"Document {i} content" * 100, "title": f"Doc {i}"} for i in range(20)
]
# Check budget
budget, usage, recommendation = manager.check_and_recommend(
system_prompt="You are a helpful assistant.",
current_query="What is Python?",
chat_history=history,
retrieved_docs=docs,
)
# Should need compression
assert recommendation.needs_compression()
# Apply compression
if recommendation.compress_history:
compressed_history, hist_meta = history_compressor.compress(
history, recommendation.target_history_tokens or budget.chat_history
)
assert len(compressed_history) < len(history)
if recommendation.compress_docs:
compressed_docs, doc_meta = doc_compressor.compress(
docs,
recommendation.target_docs_tokens or budget.retrieved_docs,
query="Python",
)
assert len(compressed_docs) < len(docs)