Merge branch 'main' into Jackson

This commit is contained in:
Alex
2024-09-05 23:43:17 +01:00
committed by GitHub
66 changed files with 3760 additions and 5225 deletions

View File

@@ -4,14 +4,11 @@ FROM ubuntu:24.04 as builder
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update && \
apt-get install -y software-properties-common
RUN add-apt-repository ppa:deadsnakes/ppa
apt-get install -y software-properties-common && \
add-apt-repository ppa:deadsnakes/ppa && \
# Install necessary packages and Python
RUN apt-get update && \
apt-get install -y --no-install-recommends gcc curl wget unzip libc6-dev python3.11 python3.11-distutils python3.11-venv && \
apt-get clean && \
apt-get update && \
apt-get install -y --no-install-recommends gcc wget unzip libc6-dev python3.11 python3.11-distutils python3.11-venv && \
rm -rf /var/lib/apt/lists/*
# Verify Python installation and setup symlink
@@ -27,7 +24,7 @@ RUN wget https://d3dg1063dc54p9.cloudfront.net/models/embeddings/mpnet-base-v2.z
rm mpnet-base-v2.zip
# Install Rust
RUN curl https://sh.rustup.rs -sSf | sh -s -- -y
RUN wget -q -O - https://sh.rustup.rs | sh -s -- -y
# Clean up to reduce container size
RUN apt-get remove --purge -y wget unzip && apt-get autoremove -y && rm -rf /var/lib/apt/lists/*
@@ -50,12 +47,10 @@ RUN pip install --no-cache-dir --upgrade pip && \
FROM ubuntu:24.04 as final
RUN apt-get update && \
apt-get install -y software-properties-common
RUN add-apt-repository ppa:deadsnakes/ppa
apt-get install -y software-properties-common && \
add-apt-repository ppa:deadsnakes/ppa && \
# Install Python
RUN apt-get update && apt-get install -y --no-install-recommends python3.11 && \
apt-get update && apt-get install -y --no-install-recommends python3.11 && \
ln -s /usr/bin/python3.11 /usr/bin/python && \
rm -rf /var/lib/apt/lists/*

View File

@@ -1,7 +1,7 @@
import asyncio
import os
import sys
from flask import Blueprint, request, Response
from flask import Blueprint, request, Response, current_app
import json
import datetime
import logging
@@ -74,7 +74,7 @@ def run_async_chain(chain, question, chat_history):
def get_data_from_api_key(api_key):
data = api_key_collection.find_one({"key": api_key})
# # Raise custom exception if the API key is not found
if data is None:
raise Exception("Invalid API Key, please generate new key", 401)
@@ -129,10 +129,10 @@ def save_conversation(conversation_id, question, response, source_log_docs, llm)
"content": "Summarise following conversation in no more than 3 "
"words, respond ONLY with the summary, use the same "
"language as the system \n\nUser: "
+question
+"\n\n"
+"AI: "
+response,
+ question
+ "\n\n"
+ "AI: "
+ response,
},
{
"role": "user",
@@ -172,7 +172,9 @@ def get_prompt(prompt_id):
return prompt
def complete_stream(question, retriever, conversation_id, user_api_key):
def complete_stream(
question, retriever, conversation_id, user_api_key, isNoneDoc=False
):
try:
response_full = ""
@@ -186,126 +188,142 @@ def complete_stream(question, retriever, conversation_id, user_api_key):
elif "source" in line:
source_log_docs.append(line["source"])
if isNoneDoc:
for doc in source_log_docs:
doc["source"] = "None"
llm = LLMCreator.create_llm(
settings.LLM_NAME, api_key=settings.API_KEY, user_api_key=user_api_key
)
if(user_api_key is None):
)
if user_api_key is None:
conversation_id = save_conversation(
conversation_id, question, response_full, source_log_docs, llm
)
# send data.type = "end" to indicate that the stream has ended as json
data = json.dumps({"type": "id", "id": str(conversation_id)})
yield f"data: {data}\n\n"
data = json.dumps({"type": "end"})
yield f"data: {data}\n\n"
except Exception as e:
print("\033[91merr", str(e), file=sys.stderr)
data = json.dumps({"type": "error","error":"Please try again later. We apologize for any inconvenience.",
"error_exception": str(e)})
data = json.dumps(
{
"type": "error",
"error": "Please try again later. We apologize for any inconvenience.",
"error_exception": str(e),
}
)
yield f"data: {data}\n\n"
return
return
@answer.route("/stream", methods=["POST"])
def stream():
try:
data = request.get_json()
# get parameter from url question
question = data["question"]
if "history" not in data:
history = []
else:
history = data["history"]
history = json.loads(history)
if "conversation_id" not in data:
conversation_id = None
else:
conversation_id = data["conversation_id"]
if "prompt_id" in data:
prompt_id = data["prompt_id"]
else:
prompt_id = "default"
if "selectedDocs" in data and data["selectedDocs"] is None:
chunks = 0
elif "chunks" in data:
chunks = int(data["chunks"])
else:
chunks = 2
if "token_limit" in data:
token_limit = data["token_limit"]
else:
token_limit = settings.DEFAULT_MAX_HISTORY
try:
data = request.get_json()
question = data["question"]
if "history" not in data:
history = []
else:
history = data["history"]
history = json.loads(history)
if "conversation_id" not in data:
conversation_id = None
else:
conversation_id = data["conversation_id"]
if "prompt_id" in data:
prompt_id = data["prompt_id"]
else:
prompt_id = "default"
if "selectedDocs" in data and data["selectedDocs"] is None:
chunks = 0
elif "chunks" in data:
chunks = int(data["chunks"])
else:
chunks = 2
if "token_limit" in data:
token_limit = data["token_limit"]
else:
token_limit = settings.DEFAULT_MAX_HISTORY
# check if active_docs or api_key is set
# check if active_docs or api_key is set
if "api_key" in data:
data_key = get_data_from_api_key(data["api_key"])
chunks = int(data_key["chunks"])
prompt_id = data_key["prompt_id"]
source = {"active_docs": data_key["source"]}
user_api_key = data["api_key"]
elif "active_docs" in data:
source = {"active_docs": data["active_docs"]}
user_api_key = None
else:
source = {}
user_api_key = None
if "api_key" in data:
data_key = get_data_from_api_key(data["api_key"])
chunks = int(data_key["chunks"])
prompt_id = data_key["prompt_id"]
source = {"active_docs": data_key["source"]}
user_api_key = data["api_key"]
elif "active_docs" in data:
source = {"active_docs": data["active_docs"]}
user_api_key = None
else:
source = {}
user_api_key = None
if (
source["active_docs"].split("/")[0] == "default"
or source["active_docs"].split("/")[0] == "local"
):
retriever_name = "classic"
else:
retriever_name = source["active_docs"]
if source["active_docs"].split("/")[0] in ["default", "local"]:
retriever_name = "classic"
else:
retriever_name = source["active_docs"]
prompt = get_prompt(prompt_id)
current_app.logger.info(f"/stream - request_data: {data}, source: {source}",
extra={"data": json.dumps({"request_data": data, "source": source})}
)
retriever = RetrieverCreator.create_retriever(
retriever_name,
question=question,
source=source,
chat_history=history,
prompt=prompt,
chunks=chunks,
token_limit=token_limit,
gpt_model=gpt_model,
user_api_key=user_api_key,
)
prompt = get_prompt(prompt_id)
return Response(
complete_stream(
retriever = RetrieverCreator.create_retriever(
retriever_name,
question=question,
retriever=retriever,
conversation_id=conversation_id,
source=source,
chat_history=history,
prompt=prompt,
chunks=chunks,
token_limit=token_limit,
gpt_model=gpt_model,
user_api_key=user_api_key,
),
mimetype="text/event-stream",
)
except ValueError:
message = "Malformed request body"
print("\033[91merr", str(message), file=sys.stderr)
return Response(
error_stream_generate(message),
status=400,
mimetype="text/event-stream",
)
except Exception as e:
print("\033[91merr", str(e), file=sys.stderr)
)
return Response(
complete_stream(
question=question,
retriever=retriever,
conversation_id=conversation_id,
user_api_key=user_api_key,
isNoneDoc=data.get("isNoneDoc"),
),
mimetype="text/event-stream",
)
except ValueError:
message = "Malformed request body"
print("\033[91merr", str(message), file=sys.stderr)
return Response(
error_stream_generate(message),
status=400,
mimetype="text/event-stream",
)
except Exception as e:
current_app.logger.error(f"/stream - error: {str(e)} - traceback: {traceback.format_exc()}",
extra={"error": str(e), "traceback": traceback.format_exc()}
)
message = e.args[0]
status_code = 400
# # Custom exceptions with two arguments, index 1 as status code
if(len(e.args) >= 2):
if len(e.args) >= 2:
status_code = e.args[1]
return Response(
error_stream_generate(message),
status=status_code,
mimetype="text/event-stream",
)
error_stream_generate(message),
status=status_code,
mimetype="text/event-stream",
)
def error_stream_generate(err_response):
data = json.dumps({"type": "error", "error":err_response})
yield f"data: {data}\n\n"
data = json.dumps({"type": "error", "error": err_response})
yield f"data: {data}\n\n"
@answer.route("/api/answer", methods=["POST"])
def api_answer():
@@ -333,7 +351,6 @@ def api_answer():
else:
token_limit = settings.DEFAULT_MAX_HISTORY
# use try and except to check for exception
try:
# check if the vectorstore is set
if "api_key" in data:
@@ -346,16 +363,17 @@ def api_answer():
source = data
user_api_key = None
if (
source["active_docs"].split("/")[0] == "default"
or source["active_docs"].split("/")[0] == "local"
):
if source["active_docs"].split("/")[0] in ["default", "local"]:
retriever_name = "classic"
else:
retriever_name = source["active_docs"]
prompt = get_prompt(prompt_id)
current_app.logger.info(f"/api/answer - request_data: {data}, source: {source}",
extra={"data": json.dumps({"request_data": data, "source": source})}
)
retriever = RetrieverCreator.create_retriever(
retriever_name,
question=question,
@@ -375,6 +393,10 @@ def api_answer():
elif "answer" in line:
response_full += line["answer"]
if data.get("isNoneDoc"):
for doc in source_log_docs:
doc["source"] = "None"
llm = LLMCreator.create_llm(
settings.LLM_NAME, api_key=settings.API_KEY, user_api_key=user_api_key
)
@@ -386,16 +408,15 @@ def api_answer():
return result
except Exception as e:
# print whole traceback
traceback.print_exc()
print(str(e))
current_app.logger.error(f"/api/answer - error: {str(e)} - traceback: {traceback.format_exc()}",
extra={"error": str(e), "traceback": traceback.format_exc()}
)
return bad_request(500, str(e))
@answer.route("/api/search", methods=["POST"])
def api_search():
data = request.get_json()
# get parameter from url question
question = data["question"]
if "chunks" in data:
chunks = int(data["chunks"])
@@ -413,10 +434,7 @@ def api_search():
source = {}
user_api_key = None
if (
source["active_docs"].split("/")[0] == "default"
or source["active_docs"].split("/")[0] == "local"
):
if source["active_docs"].split("/")[0] in ["default", "local"]:
retriever_name = "classic"
else:
retriever_name = source["active_docs"]
@@ -424,6 +442,10 @@ def api_search():
token_limit = data["token_limit"]
else:
token_limit = settings.DEFAULT_MAX_HISTORY
current_app.logger.info(f"/api/answer - request_data: {data}, source: {source}",
extra={"data": json.dumps({"request_data": data, "source": source})}
)
retriever = RetrieverCreator.create_retriever(
retriever_name,
@@ -437,4 +459,9 @@ def api_search():
user_api_key=user_api_key,
)
docs = retriever.search()
if data.get("isNoneDoc"):
for doc in docs:
doc["source"] = "None"
return docs

View File

@@ -44,7 +44,7 @@ def delete_conversation():
return {"status": "ok"}
@user.route("/api/delete_all_conversations", methods=["POST"])
@user.route("/api/delete_all_conversations", methods=["GET"])
def delete_all_conversations():
user_id = "local"
conversations_collection.delete_many({"user": user_id})
@@ -256,7 +256,7 @@ def combined_json():
"docLink": "default",
"model": settings.EMBEDDINGS_NAME,
"location": "remote",
"tokens":""
"tokens": "",
}
]
# structure: name, language, version, description, fullName, date, docLink
@@ -273,7 +273,7 @@ def combined_json():
"docLink": index["location"],
"model": settings.EMBEDDINGS_NAME,
"location": "local",
"tokens" : index["tokens"] if ("tokens" in index.keys()) else ""
"tokens": index["tokens"] if ("tokens" in index.keys()) else "",
}
)
if settings.VECTOR_STORE == "faiss":
@@ -295,7 +295,7 @@ def combined_json():
"docLink": "duckduck_search",
"model": settings.EMBEDDINGS_NAME,
"location": "custom",
"tokens":""
"tokens": "",
}
)
if "brave_search" in settings.RETRIEVERS_ENABLED:
@@ -310,7 +310,7 @@ def combined_json():
"docLink": "brave_search",
"model": settings.EMBEDDINGS_NAME,
"location": "custom",
"tokens":""
"tokens": "",
}
)
@@ -496,138 +496,204 @@ def delete_api_key():
return {"status": "ok"}
#route to share conversation
# route to share conversation
##isPromptable should be passed through queries
@user.route("/api/share",methods=["POST"])
@user.route("/api/share", methods=["POST"])
def share_conversation():
try:
data = request.get_json()
user = "local" if "user" not in data else data["user"]
conversation_id = data["conversation_id"]
isPromptable = request.args.get("isPromptable").lower() == "true"
conversation = conversations_collection.find_one({"_id": ObjectId(conversation_id)})
conversation = conversations_collection.find_one(
{"_id": ObjectId(conversation_id)}
)
current_n_queries = len(conversation["queries"])
##generate binary representation of uuid
##generate binary representation of uuid
explicit_binary = Binary.from_uuid(uuid.uuid4(), UuidRepresentation.STANDARD)
if(isPromptable):
if isPromptable:
source = "default" if "source" not in data else data["source"]
prompt_id = "default" if "prompt_id" not in data else data["prompt_id"]
chunks = "2" if "chunks" not in data else data["chunks"]
name = conversation["name"]+"(shared)"
pre_existing_api_document = api_key_collection.find_one({
"prompt_id":prompt_id,
"chunks":chunks,
"source":source,
"user":user
})
name = conversation["name"] + "(shared)"
pre_existing_api_document = api_key_collection.find_one(
{
"prompt_id": prompt_id,
"chunks": chunks,
"source": source,
"user": user,
}
)
api_uuid = str(uuid.uuid4())
if(pre_existing_api_document):
api_uuid = pre_existing_api_document["key"]
pre_existing = shared_conversations_collections.find_one({
"conversation_id":DBRef("conversations",ObjectId(conversation_id)),
"isPromptable":isPromptable,
"first_n_queries":current_n_queries,
"user":user,
"api_key":api_uuid
})
if(pre_existing is not None):
return jsonify({"success":True, "identifier":str(pre_existing["uuid"].as_uuid())}),200
else:
shared_conversations_collections.insert_one({
"uuid":explicit_binary,
"conversation_id": {
"$ref":"conversations",
"$id":ObjectId(conversation_id)
} ,
"isPromptable":isPromptable,
"first_n_queries":current_n_queries,
"user":user,
"api_key":api_uuid
})
return jsonify({"success":True,"identifier":str(explicit_binary.as_uuid())})
if pre_existing_api_document:
api_uuid = pre_existing_api_document["key"]
pre_existing = shared_conversations_collections.find_one(
{
"conversation_id": DBRef(
"conversations", ObjectId(conversation_id)
),
"isPromptable": isPromptable,
"first_n_queries": current_n_queries,
"user": user,
"api_key": api_uuid,
}
)
if pre_existing is not None:
return (
jsonify(
{
"success": True,
"identifier": str(pre_existing["uuid"].as_uuid()),
}
),
200,
)
else:
shared_conversations_collections.insert_one(
{
"uuid": explicit_binary,
"conversation_id": {
"$ref": "conversations",
"$id": ObjectId(conversation_id),
},
"isPromptable": isPromptable,
"first_n_queries": current_n_queries,
"user": user,
"api_key": api_uuid,
}
)
return jsonify(
{"success": True, "identifier": str(explicit_binary.as_uuid())}
)
else:
api_key_collection.insert_one(
{
"name": name,
"key": api_uuid,
"source": source,
"user": user,
"prompt_id": prompt_id,
"chunks": chunks,
}
)
shared_conversations_collections.insert_one({
"uuid":explicit_binary,
"conversation_id": {
"$ref":"conversations",
"$id":ObjectId(conversation_id)
} ,
"isPromptable":isPromptable,
"first_n_queries":current_n_queries,
"user":user,
"api_key":api_uuid
})
{
"name": name,
"key": api_uuid,
"source": source,
"user": user,
"prompt_id": prompt_id,
"chunks": chunks,
}
)
shared_conversations_collections.insert_one(
{
"uuid": explicit_binary,
"conversation_id": {
"$ref": "conversations",
"$id": ObjectId(conversation_id),
},
"isPromptable": isPromptable,
"first_n_queries": current_n_queries,
"user": user,
"api_key": api_uuid,
}
)
## Identifier as route parameter in frontend
return jsonify({"success":True, "identifier":str(explicit_binary.as_uuid())}),201
##isPromptable = False
pre_existing = shared_conversations_collections.find_one({
"conversation_id":DBRef("conversations",ObjectId(conversation_id)),
"isPromptable":isPromptable,
"first_n_queries":current_n_queries,
"user":user
})
if(pre_existing is not None):
return jsonify({"success":True, "identifier":str(pre_existing["uuid"].as_uuid())}),200
else:
shared_conversations_collections.insert_one({
"uuid":explicit_binary,
"conversation_id": {
"$ref":"conversations",
"$id":ObjectId(conversation_id)
} ,
"isPromptable":isPromptable,
"first_n_queries":current_n_queries,
"user":user
})
## Identifier as route parameter in frontend
return jsonify({"success":True, "identifier":str(explicit_binary.as_uuid())}),201
except Exception as err:
print (err)
return jsonify({"success":False,"error":str(err)}),400
return (
jsonify(
{"success": True, "identifier": str(explicit_binary.as_uuid())}
),
201,
)
#route to get publicly shared conversations
@user.route("/api/shared_conversation/<string:identifier>",methods=["GET"])
def get_publicly_shared_conversations(identifier : str):
try:
query_uuid = Binary.from_uuid(uuid.UUID(identifier), UuidRepresentation.STANDARD)
shared = shared_conversations_collections.find_one({"uuid":query_uuid})
conversation_queries=[]
if shared and 'conversation_id' in shared and isinstance(shared['conversation_id'], DBRef):
# Resolve the DBRef
conversation_ref = shared['conversation_id']
conversation = db.dereference(conversation_ref)
if(conversation is None):
return jsonify({"sucess":False,"error":"might have broken url or the conversation does not exist"}),404
conversation_queries = conversation['queries'][:(shared["first_n_queries"])]
for query in conversation_queries:
query.pop("sources") ## avoid exposing sources
##isPromptable = False
pre_existing = shared_conversations_collections.find_one(
{
"conversation_id": DBRef("conversations", ObjectId(conversation_id)),
"isPromptable": isPromptable,
"first_n_queries": current_n_queries,
"user": user,
}
)
if pre_existing is not None:
return (
jsonify(
{"success": True, "identifier": str(pre_existing["uuid"].as_uuid())}
),
200,
)
else:
return jsonify({"sucess":False,"error":"might have broken url or the conversation does not exist"}),404
shared_conversations_collections.insert_one(
{
"uuid": explicit_binary,
"conversation_id": {
"$ref": "conversations",
"$id": ObjectId(conversation_id),
},
"isPromptable": isPromptable,
"first_n_queries": current_n_queries,
"user": user,
}
)
## Identifier as route parameter in frontend
return (
jsonify(
{"success": True, "identifier": str(explicit_binary.as_uuid())}
),
201,
)
except Exception as err:
print(err)
return jsonify({"success": False, "error": str(err)}), 400
# route to get publicly shared conversations
@user.route("/api/shared_conversation/<string:identifier>", methods=["GET"])
def get_publicly_shared_conversations(identifier: str):
try:
query_uuid = Binary.from_uuid(
uuid.UUID(identifier), UuidRepresentation.STANDARD
)
shared = shared_conversations_collections.find_one({"uuid": query_uuid})
conversation_queries = []
if (
shared
and "conversation_id" in shared
and isinstance(shared["conversation_id"], DBRef)
):
# Resolve the DBRef
conversation_ref = shared["conversation_id"]
conversation = db.dereference(conversation_ref)
if conversation is None:
return (
jsonify(
{
"sucess": False,
"error": "might have broken url or the conversation does not exist",
}
),
404,
)
conversation_queries = conversation["queries"][
: (shared["first_n_queries"])
]
for query in conversation_queries:
query.pop("sources") ## avoid exposing sources
else:
return (
jsonify(
{
"sucess": False,
"error": "might have broken url or the conversation does not exist",
}
),
404,
)
date = conversation["_id"].generation_time.isoformat()
res = {
"success":True,
"queries":conversation_queries,
"title":conversation["name"],
"timestamp":date
}
if(shared["isPromptable"] and "api_key" in shared):
"success": True,
"queries": conversation_queries,
"title": conversation["name"],
"timestamp": date,
}
if shared["isPromptable"] and "api_key" in shared:
res["api_key"] = shared["api_key"]
return jsonify(res), 200
except Exception as err:
print (err)
return jsonify({"success":False,"error":str(err)}),400
print(err)
return jsonify({"success": False, "error": str(err)}), 400

View File

@@ -6,12 +6,14 @@ from application.core.settings import settings
from application.api.user.routes import user
from application.api.answer.routes import answer
from application.api.internal.routes import internal
from application.core.logging_config import setup_logging
if platform.system() == "Windows":
import pathlib
pathlib.PosixPath = pathlib.WindowsPath
dotenv.load_dotenv()
setup_logging()
app = Flask(__name__)
app.register_blueprint(user)

View File

@@ -1,9 +1,15 @@
from celery import Celery
from application.core.settings import settings
from celery.signals import setup_logging
def make_celery(app_name=__name__):
celery = Celery(app_name, broker=settings.CELERY_BROKER_URL, backend=settings.CELERY_RESULT_BACKEND)
celery.conf.update(settings)
return celery
@setup_logging.connect
def config_loggers(*args, **kwargs):
from application.core.logging_config import setup_logging
setup_logging()
celery = make_celery()

View File

@@ -0,0 +1,22 @@
from logging.config import dictConfig
def setup_logging():
dictConfig({
'version': 1,
'formatters': {
'default': {
'format': '[%(asctime)s] %(levelname)s in %(module)s: %(message)s',
}
},
"handlers": {
"console": {
"class": "logging.StreamHandler",
"stream": "ext://sys.stdout",
"formatter": "default",
}
},
'root': {
'level': 'INFO',
'handlers': ['console'],
},
})

View File

@@ -29,6 +29,7 @@ class Settings(BaseSettings):
OPENAI_API_VERSION: Optional[str] = None # azure openai api version
AZURE_DEPLOYMENT_NAME: Optional[str] = None # azure deployment name for answering
AZURE_EMBEDDINGS_DEPLOYMENT_NAME: Optional[str] = None # azure deployment name for embeddings
OPENAI_BASE_URL: Optional[str] = None # openai base url for open ai compatable models
# elasticsearch
ELASTIC_CLOUD_ID: Optional[str] = None # cloud id for elasticsearch

View File

@@ -2,25 +2,23 @@ from application.llm.base import BaseLLM
from application.core.settings import settings
class OpenAILLM(BaseLLM):
def __init__(self, api_key=None, user_api_key=None, *args, **kwargs):
global openai
from openai import OpenAI
super().__init__(*args, **kwargs)
self.client = OpenAI(
api_key=api_key,
)
if settings.OPENAI_BASE_URL:
self.client = OpenAI(
api_key=api_key,
base_url=settings.OPENAI_BASE_URL
)
else:
self.client = OpenAI(api_key=api_key)
self.api_key = api_key
self.user_api_key = user_api_key
def _get_openai(self):
# Import openai when needed
import openai
return openai
def _raw_gen(
self,
baseself,
@@ -29,7 +27,7 @@ class OpenAILLM(BaseLLM):
stream=False,
engine=settings.AZURE_DEPLOYMENT_NAME,
**kwargs
):
):
response = self.client.chat.completions.create(
model=model, messages=messages, stream=stream, **kwargs
)
@@ -44,7 +42,7 @@ class OpenAILLM(BaseLLM):
stream=True,
engine=settings.AZURE_DEPLOYMENT_NAME,
**kwargs
):
):
response = self.client.chat.completions.create(
model=model, messages=messages, stream=stream, **kwargs
)
@@ -73,8 +71,3 @@ class AzureOpenAILLM(OpenAILLM):
api_base=settings.OPENAI_API_BASE,
deployment_name=settings.AZURE_DEPLOYMENT_NAME,
)
def _get_openai(self):
openai = super()._get_openai()
return openai

View File

@@ -3,7 +3,6 @@
Contains parser for html files.
"""
import re
from pathlib import Path
from typing import Dict, Union
@@ -18,66 +17,8 @@ class HTMLParser(BaseParser):
return {}
def parse_file(self, file: Path, errors: str = "ignore") -> Union[str, list[str]]:
"""Parse file.
from langchain_community.document_loaders import BSHTMLLoader
Returns:
Union[str, List[str]]: a string or a List of strings.
"""
try:
from unstructured.partition.html import partition_html
from unstructured.staging.base import convert_to_isd
from unstructured.cleaners.core import clean
except ImportError:
raise ValueError("unstructured package is required to parse HTML files.")
# Using the unstructured library to convert the html to isd format
# isd sample : isd = [
# {"text": "My Title", "type": "Title"},
# {"text": "My Narrative", "type": "NarrativeText"}
# ]
with open(file, "r", encoding="utf-8") as fp:
elements = partition_html(file=fp)
isd = convert_to_isd(elements)
# Removing non ascii charactwers from isd_el['text']
for isd_el in isd:
isd_el['text'] = isd_el['text'].encode("ascii", "ignore").decode()
# Removing all the \n characters from isd_el['text'] using regex and replace with single space
# Removing all the extra spaces from isd_el['text'] using regex and replace with single space
for isd_el in isd:
isd_el['text'] = re.sub(r'\n', ' ', isd_el['text'], flags=re.MULTILINE | re.DOTALL)
isd_el['text'] = re.sub(r"\s{2,}", " ", isd_el['text'], flags=re.MULTILINE | re.DOTALL)
# more cleaning: extra_whitespaces, dashes, bullets, trailing_punctuation
for isd_el in isd:
clean(isd_el['text'], extra_whitespace=True, dashes=True, bullets=True, trailing_punctuation=True)
# Creating a list of all the indexes of isd_el['type'] = 'Title'
title_indexes = [i for i, isd_el in enumerate(isd) if isd_el['type'] == 'Title']
# Creating 'Chunks' - List of lists of strings
# each list starting with isd_el['type'] = 'Title' and all the data till the next 'Title'
# Each Chunk can be thought of as an individual set of data, which can be sent to the model
# Where Each Title is grouped together with the data under it
Chunks = [[]]
final_chunks = list(list())
for i, isd_el in enumerate(isd):
if i in title_indexes:
Chunks.append([])
Chunks[-1].append(isd_el['text'])
# Removing all the chunks with sum of length of all the strings in the chunk < 25
# TODO: This value can be an user defined variable
for chunk in Chunks:
# sum of length of all the strings in the chunk
sum = 0
sum += len(str(chunk))
if sum < 25:
Chunks.remove(chunk)
else:
# appending all the approved chunks to final_chunks as a single string
final_chunks.append(" ".join([str(item) for item in chunk]))
return final_chunks
loader = BSHTMLLoader(file)
data = loader.load()
return data

View File

@@ -5,7 +5,7 @@ from application.parser.remote.base import BaseRemote
class CrawlerLoader(BaseRemote):
def __init__(self, limit=10):
from langchain.document_loaders import WebBaseLoader
from langchain_community.document_loaders import WebBaseLoader
self.loader = WebBaseLoader # Initialize the document loader
self.limit = limit # Set the limit for the number of pages to scrape

View File

@@ -5,7 +5,7 @@ from application.parser.remote.base import BaseRemote
class SitemapLoader(BaseRemote):
def __init__(self, limit=20):
from langchain.document_loaders import WebBaseLoader
from langchain_community.document_loaders import WebBaseLoader
self.loader = WebBaseLoader
self.limit = limit # Adding limit to control the number of URLs to process

View File

@@ -1,16 +1,17 @@
anthropic==0.12.0
boto3==1.34.6
anthropic==0.34.0
boto3==1.34.153
beautifulsoup4==4.12.3
celery==5.3.6
dataclasses_json==0.6.3
dataclasses_json==0.6.7
docx2txt==0.8
duckduckgo-search==5.3.0
duckduckgo-search==6.2.6
EbookLib==0.18
elasticsearch==8.12.0
elasticsearch==8.14.0
escodegen==1.0.11
esprima==4.0.1
faiss-cpu==1.8.0.post1
Flask==3.0.1
gunicorn==22.0.0
faiss-cpu==1.8.0.post1
gunicorn==23.0.0
html2text==2020.1.16
javalang==0.13.0
langchain==0.2.16
@@ -18,12 +19,12 @@ langchain-community==0.2.16
langchain-core==0.2.38
langchain-openai==0.1.23
openapi3_parser==1.1.16
pandas==2.2.0
pydantic_settings==2.1.0
pymongo==4.6.3
pandas==2.2.2
pydantic_settings==2.4.0
pymongo==4.8.0
PyPDF2==3.0.1
python-dotenv==1.0.1
qdrant-client==1.9.0
qdrant-client==1.11.0
redis==5.0.1
Requests==2.32.0
retry==0.9.2
@@ -31,6 +32,5 @@ sentence-transformers
tiktoken==0.7.0
torch
tqdm==4.66.3
transformers==4.36.2
unstructured==0.12.2
transformers==4.44.0
Werkzeug==3.0.3

View File

@@ -2,7 +2,7 @@ import json
from application.retriever.base import BaseRetriever
from application.core.settings import settings
from application.llm.llm_creator import LLMCreator
from application.utils import count_tokens
from application.utils import num_tokens_from_string
from langchain_community.tools import BraveSearch
@@ -78,7 +78,7 @@ class BraveRetSearch(BaseRetriever):
self.chat_history.reverse()
for i in self.chat_history:
if "prompt" in i and "response" in i:
tokens_batch = count_tokens(i["prompt"]) + count_tokens(
tokens_batch = num_tokens_from_string(i["prompt"]) + num_tokens_from_string(
i["response"]
)
if tokens_current_history + tokens_batch < self.token_limit:

View File

@@ -4,7 +4,7 @@ from application.core.settings import settings
from application.vectorstore.vector_creator import VectorCreator
from application.llm.llm_creator import LLMCreator
from application.utils import count_tokens
from application.utils import num_tokens_from_string
class ClassicRAG(BaseRetriever):
@@ -98,7 +98,7 @@ class ClassicRAG(BaseRetriever):
self.chat_history.reverse()
for i in self.chat_history:
if "prompt" in i and "response" in i:
tokens_batch = count_tokens(i["prompt"]) + count_tokens(
tokens_batch = num_tokens_from_string(i["prompt"]) + num_tokens_from_string(
i["response"]
)
if tokens_current_history + tokens_batch < self.token_limit:

View File

@@ -1,7 +1,7 @@
from application.retriever.base import BaseRetriever
from application.core.settings import settings
from application.llm.llm_creator import LLMCreator
from application.utils import count_tokens
from application.utils import num_tokens_from_string
from langchain_community.tools import DuckDuckGoSearchResults
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper
@@ -95,7 +95,7 @@ class DuckDuckSearch(BaseRetriever):
self.chat_history.reverse()
for i in self.chat_history:
if "prompt" in i and "response" in i:
tokens_batch = count_tokens(i["prompt"]) + count_tokens(
tokens_batch = num_tokens_from_string(i["prompt"]) + num_tokens_from_string(
i["response"]
)
if tokens_current_history + tokens_batch < self.token_limit:

View File

@@ -2,7 +2,7 @@ import sys
from pymongo import MongoClient
from datetime import datetime
from application.core.settings import settings
from application.utils import count_tokens
from application.utils import num_tokens_from_string
mongo = MongoClient(settings.MONGO_URI)
db = mongo["docsgpt"]
@@ -24,9 +24,9 @@ def update_token_usage(user_api_key, token_usage):
def gen_token_usage(func):
def wrapper(self, model, messages, stream, **kwargs):
for message in messages:
self.token_usage["prompt_tokens"] += count_tokens(message["content"])
self.token_usage["prompt_tokens"] += num_tokens_from_string(message["content"])
result = func(self, model, messages, stream, **kwargs)
self.token_usage["generated_tokens"] += count_tokens(result)
self.token_usage["generated_tokens"] += num_tokens_from_string(result)
update_token_usage(self.user_api_key, self.token_usage)
return result
@@ -36,14 +36,14 @@ def gen_token_usage(func):
def stream_token_usage(func):
def wrapper(self, model, messages, stream, **kwargs):
for message in messages:
self.token_usage["prompt_tokens"] += count_tokens(message["content"])
self.token_usage["prompt_tokens"] += num_tokens_from_string(message["content"])
batch = []
result = func(self, model, messages, stream, **kwargs)
for r in result:
batch.append(r)
yield r
for line in batch:
self.token_usage["generated_tokens"] += count_tokens(line)
self.token_usage["generated_tokens"] += num_tokens_from_string(line)
update_token_usage(self.user_api_key, self.token_usage)
return wrapper

View File

@@ -1,6 +1,22 @@
from transformers import GPT2TokenizerFast
import tiktoken
tokenizer = GPT2TokenizerFast.from_pretrained('gpt2')
tokenizer.model_max_length = 100000
def count_tokens(string):
return len(tokenizer(string)['input_ids'])
_encoding = None
def get_encoding():
global _encoding
if _encoding is None:
_encoding = tiktoken.get_encoding("cl100k_base")
return _encoding
def num_tokens_from_string(string: str) -> int:
encoding = get_encoding()
num_tokens = len(encoding.encode(string))
return num_tokens
def count_tokens_docs(docs):
docs_content = ""
for doc in docs:
docs_content += doc.page_content
tokens = num_tokens_from_string(docs_content)
return tokens

View File

@@ -2,8 +2,8 @@ import os
import shutil
import string
import zipfile
import tiktoken
from urllib.parse import urljoin
import logging
import requests
@@ -13,6 +13,8 @@ from application.parser.remote.remote_creator import RemoteCreator
from application.parser.open_ai_func import call_openai_api
from application.parser.schema.base import Document
from application.parser.token_func import group_split
from application.utils import count_tokens_docs
# Define a function to extract metadata from a given filename.
def metadata_from_filename(title):
@@ -41,7 +43,7 @@ def extract_zip_recursive(zip_path, extract_to, current_depth=0, max_depth=5):
max_depth (int): Maximum allowed depth of recursion to prevent infinite loops.
"""
if current_depth > max_depth:
print(f"Reached maximum recursion depth of {max_depth}")
logging.warning(f"Reached maximum recursion depth of {max_depth}")
return
with zipfile.ZipFile(zip_path, "r") as zip_ref:
@@ -88,16 +90,13 @@ def ingest_worker(self, directory, formats, name_job, filename, user):
max_tokens = 1250
recursion_depth = 2
full_path = os.path.join(directory, user, name_job)
import sys
print(full_path, file=sys.stderr)
logging.info(f"Ingest file: {full_path}", extra={"user": user, "job": name_job})
# check if API_URL env variable is set
file_data = {"name": name_job, "file": filename, "user": user}
response = requests.get(
urljoin(settings.API_URL, "/api/download"), params=file_data
)
# check if file is in the response
print(response, file=sys.stderr)
file = response.content
if not os.path.exists(full_path):
@@ -137,7 +136,7 @@ def ingest_worker(self, directory, formats, name_job, filename, user):
if sample:
for i in range(min(5, len(raw_docs))):
print(raw_docs[i].text)
logging.info(f"Sample document {i}: {raw_docs[i]}")
# get files from outputs/inputs/index.faiss and outputs/inputs/index.pkl
# and send them to the server (provide user and name in form)
@@ -180,6 +179,7 @@ def remote_worker(self, source_data, name_job, user, loader, directory="temp"):
if not os.path.exists(full_path):
os.makedirs(full_path)
self.update_state(state="PROGRESS", meta={"current": 1})
logging.info(f"Remote job: {full_path}", extra={"user": user, "job": name_job, source_data: source_data})
remote_loader = RemoteCreator.create_loader(loader)
raw_docs = remote_loader.load_data(source_data)
@@ -212,26 +212,4 @@ def remote_worker(self, source_data, name_job, user, loader, directory="temp"):
shutil.rmtree(full_path)
return {"urls": source_data, "name_job": name_job, "user": user, "limited": False}
def count_tokens_docs(docs):
# Here we convert the docs list to a string and calculate the number of tokens the string represents.
# docs_content = (" ".join(docs))
docs_content = ""
for doc in docs:
docs_content += doc.page_content
tokens, total_price = num_tokens_from_string(
string=docs_content, encoding_name="cl100k_base"
)
# Here we print the number of tokens and the approx user cost with some visually appealing formatting.
return tokens
def num_tokens_from_string(string: str, encoding_name: str) -> int:
# Function to convert string to tokens and estimate user cost.
encoding = tiktoken.get_encoding(encoding_name)
num_tokens = len(encoding.encode(string))
total_price = (num_tokens / 1000) * 0.0004
return num_tokens, total_price
return {"urls": source_data, "name_job": name_job, "user": user, "limited": False}