mirror of
https://github.com/arc53/DocsGPT.git
synced 2026-02-02 20:30:38 +00:00
feat: template-based prompt rendering with dynamic namespace injection (#2091)
* feat: template-based prompt rendering with dynamic namespace injection * refactor: improve template engine initialization with clearer formatting * refactor: streamline ReActAgent methods and improve content extraction logic feat: enhance error handling in NamespaceManager and TemplateEngine fix: update NewAgent component to ensure consistent form data submission test: modify tests for ReActAgent and prompt renderer to reflect method changes and improve coverage * feat: tools namespace + three-tier token budget * refactor: remove unused variable assignment in message building tests * Enhance prompt customization and tool pre-fetching functionality * ruff lint fix * refactor: cleaner error handling and reduce code clutter --------- Co-authored-by: Alex <a@tushynski.me>
This commit is contained in:
@@ -12,7 +12,6 @@ from application.core.settings import settings
|
||||
from application.llm.handlers.handler_creator import LLMHandlerCreator
|
||||
from application.llm.llm_creator import LLMCreator
|
||||
from application.logging import build_stack_data, log_activity, LogContext
|
||||
from application.retriever.base import BaseRetriever
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -27,6 +26,7 @@ class BaseAgent(ABC):
|
||||
user_api_key: Optional[str] = None,
|
||||
prompt: str = "",
|
||||
chat_history: Optional[List[Dict]] = None,
|
||||
retrieved_docs: Optional[List[Dict]] = None,
|
||||
decoded_token: Optional[Dict] = None,
|
||||
attachments: Optional[List[Dict]] = None,
|
||||
json_schema: Optional[Dict] = None,
|
||||
@@ -53,6 +53,7 @@ class BaseAgent(ABC):
|
||||
user_api_key=user_api_key,
|
||||
decoded_token=decoded_token,
|
||||
)
|
||||
self.retrieved_docs = retrieved_docs or []
|
||||
self.llm_handler = LLMHandlerCreator.create_handler(
|
||||
llm_name if llm_name else "default"
|
||||
)
|
||||
@@ -65,13 +66,13 @@ class BaseAgent(ABC):
|
||||
|
||||
@log_activity()
|
||||
def gen(
|
||||
self, query: str, retriever: BaseRetriever, log_context: LogContext = None
|
||||
self, query: str, log_context: LogContext = None
|
||||
) -> Generator[Dict, None, None]:
|
||||
yield from self._gen_inner(query, retriever, log_context)
|
||||
yield from self._gen_inner(query, log_context)
|
||||
|
||||
@abstractmethod
|
||||
def _gen_inner(
|
||||
self, query: str, retriever: BaseRetriever, log_context: LogContext
|
||||
self, query: str, log_context: LogContext
|
||||
) -> Generator[Dict, None, None]:
|
||||
pass
|
||||
|
||||
@@ -150,6 +151,7 @@ class BaseAgent(ABC):
|
||||
call_id = getattr(call, "id", None) or str(uuid.uuid4())
|
||||
|
||||
# Check if parsing failed
|
||||
|
||||
if tool_id is None or action_name is None:
|
||||
error_message = f"Error: Failed to parse LLM tool call. Tool name: {getattr(call, 'name', 'unknown')}"
|
||||
logger.error(error_message)
|
||||
@@ -164,13 +166,14 @@ class BaseAgent(ABC):
|
||||
yield {"type": "tool_call", "data": {**tool_call_data, "status": "error"}}
|
||||
self.tool_calls.append(tool_call_data)
|
||||
return "Failed to parse tool call.", call_id
|
||||
|
||||
# Check if tool_id exists in available tools
|
||||
|
||||
if tool_id not in tools_dict:
|
||||
error_message = f"Error: Tool ID '{tool_id}' extracted from LLM call not found in available tools_dict. Available IDs: {list(tools_dict.keys())}"
|
||||
logger.error(error_message)
|
||||
|
||||
# Return error result
|
||||
|
||||
tool_call_data = {
|
||||
"tool_name": "unknown",
|
||||
"call_id": call_id,
|
||||
@@ -181,7 +184,6 @@ class BaseAgent(ABC):
|
||||
yield {"type": "tool_call", "data": {**tool_call_data, "status": "error"}}
|
||||
self.tool_calls.append(tool_call_data)
|
||||
return f"Tool with ID {tool_id} not found.", call_id
|
||||
|
||||
tool_call_data = {
|
||||
"tool_name": tools_dict[tool_id]["name"],
|
||||
"call_id": call_id,
|
||||
@@ -223,6 +225,7 @@ class BaseAgent(ABC):
|
||||
tm = ToolManager(config={})
|
||||
|
||||
# Prepare tool_config and add tool_id for memory tools
|
||||
|
||||
if tool_data["name"] == "api_tool":
|
||||
tool_config = {
|
||||
"url": tool_data["config"]["actions"][action_name]["url"],
|
||||
@@ -234,8 +237,8 @@ class BaseAgent(ABC):
|
||||
tool_config = tool_data["config"].copy() if tool_data["config"] else {}
|
||||
# Add tool_id from MongoDB _id for tools that need instance isolation (like memory tool)
|
||||
# Use MongoDB _id if available, otherwise fall back to enumerated tool_id
|
||||
tool_config["tool_id"] = str(tool_data.get("_id", tool_id))
|
||||
|
||||
tool_config["tool_id"] = str(tool_data.get("_id", tool_id))
|
||||
tool = tm.load_tool(
|
||||
tool_data["name"],
|
||||
tool_config=tool_config,
|
||||
@@ -276,24 +279,14 @@ class BaseAgent(ABC):
|
||||
self,
|
||||
system_prompt: str,
|
||||
query: str,
|
||||
retrieved_data: List[Dict],
|
||||
) -> List[Dict]:
|
||||
docs_with_filenames = []
|
||||
for doc in retrieved_data:
|
||||
filename = doc.get("filename") or doc.get("title") or doc.get("source")
|
||||
if filename:
|
||||
chunk_header = str(filename)
|
||||
docs_with_filenames.append(f"{chunk_header}\n{doc['text']}")
|
||||
else:
|
||||
docs_with_filenames.append(doc["text"])
|
||||
docs_together = "\n\n".join(docs_with_filenames)
|
||||
p_chat_combine = system_prompt.replace("{summaries}", docs_together)
|
||||
messages_combine = [{"role": "system", "content": p_chat_combine}]
|
||||
"""Build messages using pre-rendered system prompt"""
|
||||
messages = [{"role": "system", "content": system_prompt}]
|
||||
|
||||
for i in self.chat_history:
|
||||
if "prompt" in i and "response" in i:
|
||||
messages_combine.append({"role": "user", "content": i["prompt"]})
|
||||
messages_combine.append({"role": "assistant", "content": i["response"]})
|
||||
messages.append({"role": "user", "content": i["prompt"]})
|
||||
messages.append({"role": "assistant", "content": i["response"]})
|
||||
if "tool_calls" in i:
|
||||
for tool_call in i["tool_calls"]:
|
||||
call_id = tool_call.get("call_id") or str(uuid.uuid4())
|
||||
@@ -313,26 +306,14 @@ class BaseAgent(ABC):
|
||||
}
|
||||
}
|
||||
|
||||
messages_combine.append(
|
||||
messages.append(
|
||||
{"role": "assistant", "content": [function_call_dict]}
|
||||
)
|
||||
messages_combine.append(
|
||||
messages.append(
|
||||
{"role": "tool", "content": [function_response_dict]}
|
||||
)
|
||||
messages_combine.append({"role": "user", "content": query})
|
||||
return messages_combine
|
||||
|
||||
def _retriever_search(
|
||||
self,
|
||||
retriever: BaseRetriever,
|
||||
query: str,
|
||||
log_context: Optional[LogContext] = None,
|
||||
) -> List[Dict]:
|
||||
retrieved_data = retriever.search(query)
|
||||
if log_context:
|
||||
data = build_stack_data(retriever, exclude_attributes=["llm"])
|
||||
log_context.stacks.append({"component": "retriever", "data": data})
|
||||
return retrieved_data
|
||||
messages.append({"role": "user", "content": query})
|
||||
return messages
|
||||
|
||||
def _llm_gen(self, messages: List[Dict], log_context: Optional[LogContext] = None):
|
||||
gen_kwargs = {"model": self.gpt_model, "messages": messages}
|
||||
@@ -343,7 +324,6 @@ class BaseAgent(ABC):
|
||||
and self.tools
|
||||
):
|
||||
gen_kwargs["tools"] = self.tools
|
||||
|
||||
if (
|
||||
self.json_schema
|
||||
and hasattr(self.llm, "_supports_structured_output")
|
||||
@@ -357,7 +337,6 @@ class BaseAgent(ABC):
|
||||
gen_kwargs["response_format"] = structured_format
|
||||
elif self.llm_name == "google":
|
||||
gen_kwargs["response_schema"] = structured_format
|
||||
|
||||
resp = self.llm.gen_stream(**gen_kwargs)
|
||||
|
||||
if log_context:
|
||||
|
||||
Reference in New Issue
Block a user