mirror of
https://github.com/arc53/DocsGPT.git
synced 2025-11-29 16:43:16 +00:00
Merge branch 'main' into faiss_delete_index
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
from application.vectorstore.base import BaseVectorStore
|
||||
from langchain.vectorstores import FAISS
|
||||
from application.vectorstore.base import BaseVectorStore
|
||||
from application.core.settings import settings
|
||||
|
||||
class FaissStore(BaseVectorStore):
|
||||
@@ -7,23 +7,40 @@ class FaissStore(BaseVectorStore):
|
||||
def __init__(self, path, embeddings_key, docs_init=None):
|
||||
super().__init__()
|
||||
self.path = path
|
||||
embeddings = self._get_embeddings(settings.EMBEDDINGS_NAME, embeddings_key)
|
||||
if docs_init:
|
||||
self.docsearch = FAISS.from_documents(
|
||||
docs_init, self._get_embeddings(settings.EMBEDDINGS_NAME, embeddings_key)
|
||||
docs_init, embeddings
|
||||
)
|
||||
else:
|
||||
self.docsearch = FAISS.load_local(
|
||||
self.path, self._get_embeddings(settings.EMBEDDINGS_NAME, settings.EMBEDDINGS_KEY)
|
||||
self.path, embeddings
|
||||
)
|
||||
self.assert_embedding_dimensions(embeddings)
|
||||
|
||||
def search(self, *args, **kwargs):
|
||||
return self.docsearch.similarity_search(*args, **kwargs)
|
||||
|
||||
def add_texts(self, *args, **kwargs):
|
||||
return self.docsearch.add_texts(*args, **kwargs)
|
||||
|
||||
|
||||
def save_local(self, *args, **kwargs):
|
||||
return self.docsearch.save_local(*args, **kwargs)
|
||||
|
||||
def delete_index(self, *args, **kwargs):
|
||||
return self.docsearch.delete(*args, **kwargs)
|
||||
|
||||
def assert_embedding_dimensions(self, embeddings):
|
||||
"""
|
||||
Check that the word embedding dimension of the docsearch index matches
|
||||
the dimension of the word embeddings used
|
||||
"""
|
||||
if settings.EMBEDDINGS_NAME == "huggingface_sentence-transformers/all-mpnet-base-v2":
|
||||
try:
|
||||
word_embedding_dimension = embeddings.client[1].word_embedding_dimension
|
||||
except AttributeError as e:
|
||||
raise AttributeError("word_embedding_dimension not found in embeddings.client[1]") from e
|
||||
docsearch_index_dimension = self.docsearch.index.d
|
||||
if word_embedding_dimension != docsearch_index_dimension:
|
||||
raise ValueError(f"word_embedding_dimension ({word_embedding_dimension}) " +
|
||||
f"!= docsearch_index_word_embedding_dimension ({docsearch_index_dimension})")
|
||||
Reference in New Issue
Block a user