Ingest rst with sphinx

Transforms all rst files in provided folder to txt format first (utilising sphinx library). In my tests size of raw sample decreased 2-3 times.
This commit is contained in:
Pavel
2023-02-06 23:43:23 +04:00
parent 5e18a3a7c3
commit 1c734727a1
2 changed files with 73 additions and 3 deletions

View File

@@ -5,13 +5,12 @@ from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings from langchain.embeddings import OpenAIEmbeddings
import pickle import pickle
import dotenv import dotenv
import os
dotenv.load_dotenv() dotenv.load_dotenv()
# Here we load in the data in the format that Notion exports it in. # Here we load in the data in the format that Notion exports it in.
ps = list(Path("pandasdocs/").glob("**/*.rst")) ps = list(Path("scikit-learn").glob("**/*.rst"))
# parse all child directories # parse all child directories
data = [] data = []
@@ -37,4 +36,4 @@ store = FAISS.from_texts(docs, OpenAIEmbeddings(), metadatas=metadatas)
faiss.write_index(store.index, "docs.index") faiss.write_index(store.index, "docs.index")
store.index = None store.index = None
with open("faiss_store.pkl", "wb") as f: with open("faiss_store.pkl", "wb") as f:
pickle.dump(store, f) pickle.dump(store, f)

View File

@@ -0,0 +1,71 @@
import os
import pickle
import dotenv
import faiss
import shutil
from pathlib import Path
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from sphinx.cmd.build import main as sphinx_main
def convert_rst_to_txt(src_dir, dst_dir):
# Check if the source directory exists
if not os.path.exists(src_dir):
raise Exception("Source directory does not exist")
# Walk through the source directory
for root, dirs, files in os.walk(src_dir):
for file in files:
# Check if the file has .rst extension
if file.endswith(".rst"):
# Construct the full path of the file
src_file = os.path.join(root, file.replace(".rst", ""))
# Convert the .rst file to .txt file using sphinx-build
args = f". -b text -D extensions=sphinx.ext.autodoc " \
f"-D master_doc={src_file} " \
f"-D source_suffix=.rst " \
f"-C {dst_dir} "
sphinx_main(args.split())
#Load .env file
dotenv.load_dotenv()
#Directory to vector
src_dir = "scikit-learn"
dst_dir = "tmp"
convert_rst_to_txt(src_dir, dst_dir)
# Here we load in the data in the format that Notion exports it in.
ps = list(Path("tmp/"+ src_dir).glob("**/*.txt"))
# parse all child directories
data = []
sources = []
for p in ps:
with open(p) as f:
data.append(f.read())
sources.append(p)
# Here we split the documents, as needed, into smaller chunks.
# We do this due to the context limits of the LLMs.
text_splitter = CharacterTextSplitter(chunk_size=1500, separator="\n")
docs = []
metadatas = []
for i, d in enumerate(data):
splits = text_splitter.split_text(d)
docs.extend(splits)
metadatas.extend([{"source": sources[i]}] * len(splits))
# Here we create a vector store from the documents and save it to disk.
store = FAISS.from_texts(docs, OpenAIEmbeddings(), metadatas=metadatas)
faiss.write_index(store.index, "docs.index")
store.index = None
with open("faiss_store.pkl", "wb") as f:
pickle.dump(store, f)
# Delete tmp folder
# Commented out for now
#shutil.rmtree(dst_dir)