scraper with markdownify

This commit is contained in:
Pavel
2025-01-15 01:08:09 +03:00
parent 5cb7a69a46
commit 13fcbe3e74
5 changed files with 211 additions and 57 deletions

View File

@@ -0,0 +1,139 @@
import requests
from urllib.parse import urlparse, urljoin
from bs4 import BeautifulSoup
from application.parser.remote.base import BaseRemote
import re
from markdownify import markdownify
from application.parser.schema.base import Document
import tldextract
class CrawlerLoader(BaseRemote):
def __init__(self, limit=10, allow_subdomains=False):
"""
Given a URL crawl web pages up to `self.limit`,
convert HTML content to Markdown, and returning a list of Document objects.
:param limit: The maximum number of pages to crawl.
:param allow_subdomains: If True, crawl pages on subdomains of the base domain.
"""
self.limit = limit
self.allow_subdomains = allow_subdomains
self.session = requests.Session()
def load_data(self, inputs):
url = inputs
if isinstance(url, list) and url:
url = url[0]
# Ensure the URL has a scheme (if not, default to http)
if not urlparse(url).scheme:
url = "http://" + url
# Keep track of visited URLs to avoid revisiting the same page
visited_urls = set()
# Determine the base domain for link filtering using tldextract
base_domain = self._get_base_domain(url)
urls_to_visit = {url}
documents = []
while urls_to_visit:
current_url = urls_to_visit.pop()
# Skip if already visited
if current_url in visited_urls:
continue
visited_urls.add(current_url)
# Fetch the page content
html_content = self._fetch_page(current_url)
if html_content is None:
continue
# Convert the HTML to Markdown for cleaner text formatting
title, language, processed_markdown = self._process_html_to_markdown(html_content, current_url)
if processed_markdown:
# Create a Document for each visited page
documents.append(
Document(
processed_markdown, # content
None, # doc_id
None, # embedding
{"source": current_url, "title": title, "language": language} # extra_info
)
)
# Extract links and filter them according to domain rules
new_links = self._extract_links(html_content, current_url)
filtered_links = self._filter_links(new_links, base_domain)
# Add any new, not-yet-visited links to the queue
urls_to_visit.update(link for link in filtered_links if link not in visited_urls)
# If we've reached the limit, stop crawling
if self.limit is not None and len(visited_urls) >= self.limit:
break
return documents
def _fetch_page(self, url):
try:
response = self.session.get(url, timeout=10)
response.raise_for_status()
return response.text
except requests.exceptions.RequestException as e:
print(f"Error fetching URL {url}: {e}")
return None
def _process_html_to_markdown(self, html_content, current_url):
soup = BeautifulSoup(html_content, 'html.parser')
title_tag = soup.find('title')
title = title_tag.text.strip() if title_tag else "No Title"
# Extract language
language_tag = soup.find('html')
language = language_tag.get('lang', 'en') if language_tag else "en"
markdownified = markdownify(html_content, heading_style="ATX", newline_style="BACKSLASH")
# Reduce sequences of more than two newlines to exactly three
markdownified = re.sub(r'\n{3,}', '\n\n\n', markdownified)
return title, language, markdownified
def _extract_links(self, html_content, current_url):
soup = BeautifulSoup(html_content, 'html.parser')
links = []
for a in soup.find_all('a', href=True):
full_url = urljoin(current_url, a['href'])
links.append((full_url, a.text.strip()))
return links
def _get_base_domain(self, url):
extracted = tldextract.extract(url)
# Reconstruct the domain as domain.suffix
base_domain = f"{extracted.domain}.{extracted.suffix}"
return base_domain
def _filter_links(self, links, base_domain):
"""
Filter the extracted links to only include those that match the crawling criteria:
- If allow_subdomains is True, allow any link whose domain ends with the base_domain.
- If allow_subdomains is False, only allow exact matches of the base_domain.
"""
filtered = []
for link, _ in links:
parsed_link = urlparse(link)
if not parsed_link.netloc:
continue
extracted = tldextract.extract(parsed_link.netloc)
link_base = f"{extracted.domain}.{extracted.suffix}"
if self.allow_subdomains:
# For subdomains: sub.example.com ends with example.com
if link_base == base_domain or link_base.endswith("." + base_domain):
filtered.append(link)
else:
# Exact domain match
if link_base == base_domain:
filtered.append(link)
return filtered