mirror of
https://github.com/arc53/DocsGPT.git
synced 2025-11-29 16:43:16 +00:00
Calc + structure
This commit is contained in:
155
scripts/parser/py2doc.py
Normal file
155
scripts/parser/py2doc.py
Normal file
@@ -0,0 +1,155 @@
|
||||
from pathlib import Path
|
||||
from langchain.llms import OpenAI
|
||||
from langchain.prompts import PromptTemplate
|
||||
import dotenv
|
||||
import ast
|
||||
import typer
|
||||
import tiktoken
|
||||
|
||||
dotenv.load_dotenv()
|
||||
|
||||
def get_functions(source_code):
|
||||
tree = ast.parse(source_code)
|
||||
functions = {}
|
||||
for node in tree.body:
|
||||
if isinstance(node, ast.FunctionDef):
|
||||
functions[node.name] = ast.unparse(node)
|
||||
|
||||
return functions
|
||||
|
||||
def get_functions_names(node):
|
||||
functions = []
|
||||
for child in node.body:
|
||||
if isinstance(child, ast.FunctionDef):
|
||||
functions.append(child.name)
|
||||
return functions
|
||||
|
||||
|
||||
|
||||
def get_classes(source_code):
|
||||
tree = ast.parse(source_code)
|
||||
classes = {}
|
||||
for node in tree.body:
|
||||
if isinstance(node, ast.ClassDef):
|
||||
classes[node.name] = get_functions_names(node)
|
||||
return classes
|
||||
|
||||
def get_functions_in_class(source_code, class_name):
|
||||
tree = ast.parse(source_code)
|
||||
functions = []
|
||||
for node in tree.body:
|
||||
if isinstance(node, ast.ClassDef):
|
||||
if node.name == class_name:
|
||||
for function in node.body:
|
||||
if isinstance(function, ast.FunctionDef):
|
||||
functions.append(function.name)
|
||||
return functions
|
||||
|
||||
|
||||
def parse_functions(functions_dict):
|
||||
c1 = len(functions_dict)
|
||||
c2 = 0
|
||||
for source, functions in functions_dict.items():
|
||||
c2 += 1
|
||||
print(f"Processing file {c2}/{c1}")
|
||||
f1 = len(functions)
|
||||
f2 = 0
|
||||
source_w = source.replace("inputs/", "")
|
||||
source_w = source_w.replace(".py", ".md")
|
||||
# this is how we check subfolders
|
||||
if "/" in source_w:
|
||||
subfolders = source_w.split("/")
|
||||
subfolders = subfolders[:-1]
|
||||
subfolders = "/".join(subfolders)
|
||||
if not Path(f"outputs/{subfolders}").exists():
|
||||
Path(f"outputs/{subfolders}").mkdir(parents=True)
|
||||
|
||||
for name, function in functions.items():
|
||||
f2 += 1
|
||||
print(f"Processing function {f2}/{f1}")
|
||||
prompt = PromptTemplate(
|
||||
input_variables=["code"],
|
||||
template="Code: \n{code}, \nDocumentation: ",
|
||||
)
|
||||
llm = OpenAI(temperature=0)
|
||||
response = llm(prompt.format(code=function))
|
||||
|
||||
if not Path(f"outputs/{source_w}").exists():
|
||||
with open(f"outputs/{source_w}", "w") as f:
|
||||
f.write(f"# Function name: {name} \n\nFunction: \n```\n{function}\n```, \nDocumentation: \n{response}")
|
||||
else:
|
||||
with open(f"outputs/{source_w}", "a") as f:
|
||||
f.write(f"\n\n# Function name: {name} \n\nFunction: \n```\n{function}\n```, \nDocumentation: \n{response}")
|
||||
|
||||
|
||||
def parse_classes(classes_dict):
|
||||
c1 = len(classes_dict)
|
||||
c2 = 0
|
||||
for source, classes in classes_dict.items():
|
||||
c2 += 1
|
||||
print(f"Processing file {c2}/{c1}")
|
||||
f1 = len(classes)
|
||||
f2 = 0
|
||||
source_w = source.replace("inputs/", "")
|
||||
source_w = source_w.replace(".py", ".md")
|
||||
|
||||
if "/" in source_w:
|
||||
subfolders = source_w.split("/")
|
||||
subfolders = subfolders[:-1]
|
||||
subfolders = "/".join(subfolders)
|
||||
if not Path(f"outputs/{subfolders}").exists():
|
||||
Path(f"outputs/{subfolders}").mkdir(parents=True)
|
||||
|
||||
for name, function_names in classes.items():
|
||||
print(f"Processing Class {f2}/{f1}")
|
||||
f2 += 1
|
||||
prompt = PromptTemplate(
|
||||
input_variables=["class_name", "functions_names"],
|
||||
template="Class name: {class_name} \nFunctions: {functions_names}, \nDocumentation: ",
|
||||
)
|
||||
llm = OpenAI(temperature=0)
|
||||
response = llm(prompt.format(class_name=name, functions_names=function_names))
|
||||
|
||||
if not Path(f"outputs/{source_w}").exists():
|
||||
with open(f"outputs/{source_w}", "w") as f:
|
||||
f.write(f"# Class name: {name} \n\nFunctions: \n{function_names}, \nDocumentation: \n{response}")
|
||||
else:
|
||||
with open(f"outputs/{source_w}", "a") as f:
|
||||
f.write(f"\n\n# Class name: {name} \n\nFunctions: \n{function_names}, \nDocumentation: \n{response}")
|
||||
|
||||
|
||||
#User permission
|
||||
def transform_to_docs(functions_dict, classes_dict):
|
||||
# Function to ask user permission to call the OpenAI api and spend their OpenAI funds.
|
||||
# Here we convert dicts to a string and calculate the number of OpenAI tokens the string represents.
|
||||
docs_content = ""
|
||||
for key, value in functions_dict.items():
|
||||
docs_content += str(key) + str(value)
|
||||
for key, value in classes_dict.items():
|
||||
docs_content += str(key) + str(value)
|
||||
|
||||
encoding = tiktoken.get_encoding("cl100k_base")
|
||||
num_tokens = len(encoding.encode(docs_content))
|
||||
total_price = ((num_tokens / 1000) * 0.02)
|
||||
|
||||
# Here we print the number of tokens and the approx user cost with some visually appealing formatting.
|
||||
print(f"Number of Tokens = {format(num_tokens, ',d')}")
|
||||
print(f"Approx Cost = ${format(total_price, ',.2f')}")
|
||||
#Here we check for user permission before calling the API.
|
||||
user_input = input("Price Okay? (Y/N) \n").lower()
|
||||
if user_input == "y":
|
||||
if not Path("outputs").exists():
|
||||
Path("outputs").mkdir()
|
||||
parse_functions(functions_dict)
|
||||
print("Functions done!")
|
||||
parse_classes(classes_dict)
|
||||
print("All done!")
|
||||
elif user_input == "":
|
||||
if not Path("outputs").exists():
|
||||
Path("outputs").mkdir()
|
||||
parse_functions(functions_dict)
|
||||
print("Functions done!")
|
||||
parse_classes(classes_dict)
|
||||
print("All done!")
|
||||
else:
|
||||
print("The API was not called. No money was spent.")
|
||||
Reference in New Issue
Block a user