mirror of
https://github.com/arc53/DocsGPT.git
synced 2025-11-29 08:33:20 +00:00
Merge pull request #728 from ka1bi4/update/docs-improve-and-fixes
Update/docs improve and fixes
This commit is contained in:
@@ -4,16 +4,15 @@
|
||||
|
||||
### 1. Clone the DocsGPT repository:
|
||||
|
||||
```
|
||||
```bash
|
||||
git clone https://github.com/arc53/DocsGPT.git
|
||||
|
||||
```
|
||||
### 2. Navigate to the docs folder:
|
||||
|
||||
```
|
||||
```bash
|
||||
cd DocsGPT/docs
|
||||
|
||||
```
|
||||
|
||||
The docs folder contains the markdown files that make up the documentation. The majority of the files are in the pages directory. Some notable files in this folder include:
|
||||
|
||||
`index.mdx`: The main documentation file.
|
||||
@@ -22,30 +21,29 @@ The docs folder contains the markdown files that make up the documentation. The
|
||||
|
||||
### 3. Verify that you have Node.js and npm installed in your system. You can check by running:
|
||||
|
||||
```
|
||||
```bash
|
||||
node --version
|
||||
npm --version
|
||||
|
||||
```
|
||||
|
||||
### 4. If not installed, download Node.js and npm from the respective official websites.
|
||||
|
||||
### 5. Once you have Node.js and npm running, proceed to install yarn - another package manager that helps to manage project dependencies:
|
||||
|
||||
```
|
||||
```bash
|
||||
npm install --global yarn
|
||||
|
||||
```
|
||||
|
||||
### 6. Install the project dependencies using yarn:
|
||||
|
||||
```
|
||||
```bash
|
||||
yarn install
|
||||
|
||||
```
|
||||
|
||||
### 7. After the successful installation of the project dependencies, start the local server:
|
||||
|
||||
```
|
||||
```bash
|
||||
yarn dev
|
||||
|
||||
```
|
||||
|
||||
- Now, you should be able to view the docs on your local environment by visiting `http://localhost:5000`. You can explore the different markdown files and make changes as you see fit.
|
||||
|
||||
@@ -2,22 +2,28 @@
|
||||
**Note**: Make sure you have Docker installed
|
||||
|
||||
**On macOS or Linux:**
|
||||
Just run the following command::
|
||||
Just run the following command:
|
||||
|
||||
`./setup.sh`
|
||||
```bash
|
||||
./setup.sh
|
||||
```
|
||||
|
||||
This command will install all the necessary dependencies and provide you with an option to download the local model or use OpenAI.
|
||||
|
||||
If you prefer to follow manual steps, refer to this guide:
|
||||
|
||||
1. Open and download this repository with
|
||||
`git clone https://github.com/arc53/DocsGPT.git`.
|
||||
```bash
|
||||
git clone https://github.com/arc53/DocsGPT.git
|
||||
```
|
||||
2. Create a `.env` file in your root directory and set your `API_KEY` with your [OpenAI API key](https://platform.openai.com/account/api-keys).
|
||||
3. Run the following commands:
|
||||
`docker-compose build && docker-compose up`.
|
||||
4. Navigate to `http://localhost:5173/`.
|
||||
```bash
|
||||
docker-compose build && docker-compose up
|
||||
```
|
||||
4. Navigate to http://localhost:5173/.
|
||||
|
||||
To stop, simply press Ctrl + C.
|
||||
To stop, simply press **Ctrl + C**.
|
||||
|
||||
**For WINDOWS:**
|
||||
|
||||
@@ -28,32 +34,36 @@ To run the setup on Windows, you have two options: using the Windows Subsystem f
|
||||
1. Install WSL if you haven't already. You can follow the official Microsoft documentation for installation: (https://learn.microsoft.com/en-us/windows/wsl/install).
|
||||
2. After setting up WSL, open the WSL terminal.
|
||||
3. Clone the repository and create the `.env` file:
|
||||
```
|
||||
```bash
|
||||
git clone https://github.com/arc53/DocsGPT.git
|
||||
cd DocsGPT
|
||||
echo "API_KEY=Yourkey" > .env
|
||||
echo "VITE_API_STREAMING=true" >> .env
|
||||
```
|
||||
4. Run the following command to start the setup with Docker Compose:
|
||||
`./run-with-docker-compose.sh`
|
||||
5. Open your web browser and navigate to (http://localhost:5173/).
|
||||
6. To stop the setup, just press `Ctrl + C` in the WSL terminal
|
||||
```bash
|
||||
./run-with-docker-compose.sh
|
||||
```
|
||||
6. Open your web browser and navigate to http://localhost:5173/.
|
||||
7. To stop the setup, just press **Ctrl + C** in the WSL terminal
|
||||
|
||||
**Option 2: Using Git Bash or Command Prompt (CMD):**
|
||||
|
||||
1. Install Git for Windows if you haven't already. Download it from the official website: (https://gitforwindows.org/).
|
||||
2. Open Git Bash or Command Prompt.
|
||||
3. Clone the repository and create the `.env` file:
|
||||
```
|
||||
```bash
|
||||
git clone https://github.com/arc53/DocsGPT.git
|
||||
cd DocsGPT
|
||||
echo "API_KEY=Yourkey" > .env
|
||||
echo "VITE_API_STREAMING=true" >> .env
|
||||
```
|
||||
4.Run the following command to start the setup with Docker Compose:
|
||||
`./run-with-docker-compose.sh`
|
||||
5.Open your web browser and navigate to (http://localhost:5173/).
|
||||
6.To stop the setup, just press Ctrl + C in the Git Bash or Command Prompt terminal.
|
||||
4. Run the following command to start the setup with Docker Compose:
|
||||
```bash
|
||||
./run-with-docker-compose.sh
|
||||
```
|
||||
5. Open your web browser and navigate to http://localhost:5173/.
|
||||
6. To stop the setup, just press **Ctrl + C** in the Git Bash or Command Prompt terminal.
|
||||
|
||||
These steps should help you set up and run the project on Windows using either WSL or Git Bash/Command Prompt.
|
||||
**Important:** Ensure that Docker is installed and properly configured on your Windows system for these steps to work.
|
||||
@@ -68,32 +78,36 @@ Option 1: Using Windows Subsystem for Linux (WSL):
|
||||
1. Install WSL if you haven't already. You can follow the official Microsoft documentation for installation: (https://learn.microsoft.com/en-us/windows/wsl/install).
|
||||
2. After setting up WSL, open the WSL terminal.
|
||||
3. Clone the repository and create the `.env` file:
|
||||
```
|
||||
```bash
|
||||
git clone https://github.com/arc53/DocsGPT.git
|
||||
cd DocsGPT
|
||||
echo "API_KEY=Yourkey" > .env
|
||||
echo "VITE_API_STREAMING=true" >> .env
|
||||
```
|
||||
4. Run the following command to start the setup with Docker Compose:
|
||||
`./run-with-docker-compose.sh`
|
||||
5. Open your web browser and navigate to (http://localhost:5173/).
|
||||
6. To stop the setup, just press `Ctrl + C` in the WSL terminal
|
||||
```bash
|
||||
./run-with-docker-compose.sh
|
||||
```
|
||||
5. Open your web browser and navigate to http://localhost:5173/.
|
||||
6. To stop the setup, just press **Ctrl + C** in the WSL terminal.
|
||||
|
||||
Option 2: Using Git Bash or Command Prompt (CMD):
|
||||
|
||||
1. Install Git for Windows if you haven't already. You can download it from the official website: (https://gitforwindows.org/).
|
||||
2. Open Git Bash or Command Prompt.
|
||||
3. Clone the repository and create the `.env` file:
|
||||
```
|
||||
```bash
|
||||
git clone https://github.com/arc53/DocsGPT.git
|
||||
cd DocsGPT
|
||||
echo "API_KEY=Yourkey" > .env
|
||||
echo "VITE_API_STREAMING=true" >> .env
|
||||
```
|
||||
4.Run the following command to start the setup with Docker Compose:
|
||||
`./run-with-docker-compose.sh`
|
||||
5.Open your web browser and navigate to (http://localhost:5173/).
|
||||
6.To stop the setup, just press Ctrl + C in the Git Bash or Command Prompt terminal.
|
||||
4. Run the following command to start the setup with Docker Compose:
|
||||
```bash
|
||||
./run-with-docker-compose.sh
|
||||
```
|
||||
5. Open your web browser and navigate to http://localhost:5173/.
|
||||
6. To stop the setup, just press **Ctrl + C** in the Git Bash or Command Prompt terminal.
|
||||
|
||||
These steps should help you set up and run the project on Windows using either WSL or Git Bash/Command Prompt. Make sure you have Docker installed and properly configured on your Windows system for this to work.
|
||||
|
||||
@@ -103,12 +117,12 @@ These steps should help you set up and run the project on Windows using either W
|
||||
#### Installing the Chrome extension:
|
||||
To enhance your DocsGPT experience, you can install the DocsGPT Chrome extension. Here's how:
|
||||
|
||||
1. In the DocsGPT GitHub repository, click on the "Code" button and select "Download ZIP".
|
||||
1. In the DocsGPT GitHub repository, click on the **Code** button and select **Download ZIP**.
|
||||
2. Unzip the downloaded file to a location you can easily access.
|
||||
3. Open the Google Chrome browser and click on the three dots menu (upper right corner).
|
||||
4. Select "More Tools" and then "Extensions".
|
||||
5. Turn on the "Developer mode" switch in the top right corner of the Extensions page.
|
||||
6. Click on the "Load unpacked" button.
|
||||
7. Select the "Chrome" folder where the DocsGPT files have been unzipped (docsgpt-main > extensions > chrome).
|
||||
4. Select **More Tools** and then **Extensions**.
|
||||
5. Turn on the **Developer mode** switch in the top right corner of the **Extensions page**.
|
||||
6. Click on the **Load unpacked** button.
|
||||
7. Select the **Chrome** folder where the DocsGPT files have been unzipped (docsgpt-main > extensions > chrome).
|
||||
8. The extension should now be added to Google Chrome and can be managed on the Extensions page.
|
||||
9. To disable or remove the extension, simply turn off the toggle switch on the extension card or click the "Remove" button.
|
||||
9. To disable or remove the extension, simply turn off the toggle switch on the extension card or click the **Remove** button.
|
||||
|
||||
@@ -10,14 +10,16 @@ This endpoint is used to request answers to user-provided questions.
|
||||
|
||||
**Request:**
|
||||
|
||||
Method: POST
|
||||
Headers: Content-Type should be set to "application/json; charset=utf-8"
|
||||
Request Body: JSON object with the following fields:
|
||||
* **question:** The user's question
|
||||
* **history:** (Optional) Previous conversation history
|
||||
* **api_key:** Your API key
|
||||
* **embeddings_key:** Your embeddings key
|
||||
* **active_docs:** The location of active documentation
|
||||
**Method**: `POST`
|
||||
|
||||
**Headers**: Content-Type should be set to `application/json; charset=utf-8`
|
||||
|
||||
**Request Body**: JSON object with the following fields:
|
||||
* `question` — The user's question.
|
||||
* `history` — (Optional) Previous conversation history.
|
||||
* `api_key`— Your API key.
|
||||
* `embeddings_key` — Your embeddings key.
|
||||
* `active_docs` — The location of active documentation.
|
||||
|
||||
Here is a JavaScript Fetch Request example:
|
||||
```js
|
||||
@@ -36,7 +38,7 @@ fetch("http://127.0.0.1:5000/api/answer", {
|
||||
|
||||
**Response**
|
||||
|
||||
In response, you will get a JSON document containing the answer,query and the result:
|
||||
In response, you will get a JSON document containing the `answer`, `query` and `result`:
|
||||
```json
|
||||
{
|
||||
"answer": "Hi there! How can I help you?\n",
|
||||
@@ -53,9 +55,10 @@ This endpoint will make sure documentation is loaded on the server (just run it
|
||||
|
||||
**Request:**
|
||||
|
||||
Headers: Content-Type should be set to "application/json; charset=utf-8"
|
||||
Request Body: JSON object with the field:
|
||||
* **docs:** The location of the documentation
|
||||
**Headers**: Content-Type should be set to `application/json; charset=utf-8`
|
||||
|
||||
**Request Body**: JSON object with the field:
|
||||
* `docs` — The location of the documentation:
|
||||
```js
|
||||
// answer (POST http://127.0.0.1:5000/api/docs_check)
|
||||
fetch("http://127.0.0.1:5000/api/docs_check", {
|
||||
@@ -71,7 +74,7 @@ fetch("http://127.0.0.1:5000/api/docs_check", {
|
||||
|
||||
**Response:**
|
||||
|
||||
In response, you will get a JSON document like this one indicating whether the documentation exists or not.:
|
||||
In response, you will get a JSON document like this one indicating whether the documentation exists or not:
|
||||
```json
|
||||
{
|
||||
"status": "exists"
|
||||
@@ -86,19 +89,25 @@ This endpoint provides information about available vectors and their locations w
|
||||
|
||||
**Request:**
|
||||
|
||||
Method: GET
|
||||
**Method**: `GET`
|
||||
|
||||
**Response:**
|
||||
|
||||
Response will include:
|
||||
`date`, `description`, `docLink`, `fullName`, `language`, `location` (local or docshub), `model`, `name`, `version`.
|
||||
|
||||
* `date`
|
||||
* `description`
|
||||
* `docLink`
|
||||
* `fullName`
|
||||
* `language`
|
||||
* `location` (local or docshub)
|
||||
* `model`
|
||||
* `name`
|
||||
* `version`
|
||||
|
||||
Example of JSON in Docshub and local:
|
||||
|
||||
<img width="295" alt="image" src="https://user-images.githubusercontent.com/15183589/224714085-f09f51a4-7a9a-4efb-bd39-798029bb4273.png">
|
||||
|
||||
|
||||
### 4. /api/upload
|
||||
**Description:**
|
||||
|
||||
@@ -106,8 +115,8 @@ This endpoint is used to upload a file that needs to be trained, response is JSO
|
||||
|
||||
**Request:**
|
||||
|
||||
Method: POST
|
||||
Request Body: A multipart/form-data form with file upload and additional fields, including "user" and "name."
|
||||
**Method**: `POST`
|
||||
**Request Body**: A multipart/form-data form with file upload and additional fields, including `user` and `name`.
|
||||
|
||||
HTML example:
|
||||
|
||||
@@ -134,8 +143,8 @@ JSON response with a status and a task ID that can be used to check the task's p
|
||||
This endpoint is used to get the status of a task (`task_id`) from `/api/upload`
|
||||
|
||||
**Request:**
|
||||
Method: GET
|
||||
Query Parameter: task_id (task ID to check)
|
||||
**Method**: `GE`T
|
||||
**Query Parameter**: `task_id` (task ID to check)
|
||||
|
||||
**Sample JavaScript Fetch Request:**
|
||||
```js
|
||||
@@ -155,33 +164,32 @@ fetch("http://localhost:5001/api/task_status?task_id=YOUR_TASK_ID", {
|
||||
There are two types of responses:
|
||||
|
||||
1. While the task is still running, the 'current' value will show progress from 0 to 100.
|
||||
|
||||
```json
|
||||
{
|
||||
"result": {
|
||||
"current": 1
|
||||
},
|
||||
"status": "PROGRESS"
|
||||
}
|
||||
```
|
||||
```json
|
||||
{
|
||||
"result": {
|
||||
"current": 1
|
||||
},
|
||||
"status": "PROGRESS"
|
||||
}
|
||||
```
|
||||
|
||||
2. When task is completed:
|
||||
```json
|
||||
{
|
||||
"result": {
|
||||
"directory": "temp",
|
||||
"filename": "install.rst",
|
||||
"formats": [
|
||||
".rst",
|
||||
".md",
|
||||
".pdf"
|
||||
],
|
||||
"name_job": "somename",
|
||||
"user": "local"
|
||||
},
|
||||
"status": "SUCCESS"
|
||||
}
|
||||
```
|
||||
```json
|
||||
{
|
||||
"result": {
|
||||
"directory": "temp",
|
||||
"filename": "install.rst",
|
||||
"formats": [
|
||||
".rst",
|
||||
".md",
|
||||
".pdf"
|
||||
],
|
||||
"name_job": "somename",
|
||||
"user": "local"
|
||||
},
|
||||
"status": "SUCCESS"
|
||||
}
|
||||
```
|
||||
|
||||
### 6. /api/delete_old
|
||||
**Description:**
|
||||
@@ -190,7 +198,8 @@ This endpoint is used to delete old Vector Stores.
|
||||
|
||||
**Request:**
|
||||
|
||||
Method: GET
|
||||
**Method**: `GET`
|
||||
|
||||
```js
|
||||
// Task status (GET http://127.0.0.1:5000/api/docs_check)
|
||||
fetch("http://localhost:5001/api/task_status?task_id=b2d2a0f4-387c-44fd-a443-e4fe2e7454d1", {
|
||||
@@ -205,7 +214,8 @@ fetch("http://localhost:5001/api/task_status?task_id=b2d2a0f4-387c-44fd-a443-e4f
|
||||
```
|
||||
**Response:**
|
||||
|
||||
JSON response indicating the status of the operation.
|
||||
JSON response indicating the status of the operation:
|
||||
|
||||
```json
|
||||
{ "status": "ok" }
|
||||
```
|
||||
|
||||
Reference in New Issue
Block a user