mirror of
https://github.com/arc53/DocsGPT.git
synced 2025-11-29 08:33:20 +00:00
feat: edit deploymen files locations
This commit is contained in:
@@ -1,95 +0,0 @@
|
||||
import ast
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
import dotenv
|
||||
from langchain_community.llms import OpenAI
|
||||
from langchain.prompts import PromptTemplate
|
||||
|
||||
dotenv.load_dotenv()
|
||||
|
||||
ps = list(Path("inputs").glob("**/*.py"))
|
||||
data = []
|
||||
sources = []
|
||||
for p in ps:
|
||||
with open(p) as f:
|
||||
data.append(f.read())
|
||||
sources.append(p)
|
||||
|
||||
|
||||
def get_functions_in_class(node):
|
||||
functions = []
|
||||
functions_code = []
|
||||
for child in node.body:
|
||||
if isinstance(child, ast.FunctionDef):
|
||||
functions.append(child.name)
|
||||
functions_code.append(ast.unparse(child))
|
||||
|
||||
return functions, functions_code
|
||||
|
||||
|
||||
def get_classes_and_functions(source_code):
|
||||
tree = ast.parse(source_code)
|
||||
classes = {}
|
||||
for node in tree.body:
|
||||
if isinstance(node, ast.ClassDef):
|
||||
class_name = node.name
|
||||
function_name, function = get_functions_in_class(node)
|
||||
# join function name and function code
|
||||
functions = dict(zip(function_name, function))
|
||||
classes[class_name] = functions
|
||||
return classes
|
||||
|
||||
|
||||
structure_dict = {}
|
||||
c1 = 0
|
||||
for code in data:
|
||||
classes = get_classes_and_functions(ast.parse(code))
|
||||
source = str(sources[c1])
|
||||
structure_dict[source] = classes
|
||||
c1 += 1
|
||||
|
||||
# save the structure dict as json
|
||||
with open('structure_dict.json', 'w') as f:
|
||||
json.dump(structure_dict, f)
|
||||
|
||||
if not Path("outputs").exists():
|
||||
Path("outputs").mkdir()
|
||||
|
||||
c1 = len(structure_dict)
|
||||
c2 = 0
|
||||
for source, classes in structure_dict.items():
|
||||
c2 += 1
|
||||
print(f"Processing file {c2}/{c1}")
|
||||
f1 = len(classes)
|
||||
f2 = 0
|
||||
for class_name, functions in classes.items():
|
||||
f2 += 1
|
||||
print(f"Processing class {f2}/{f1}")
|
||||
source_w = source.replace("inputs/", "")
|
||||
source_w = source_w.replace(".py", ".txt")
|
||||
if not Path(f"outputs/{source_w}").exists():
|
||||
with open(f"outputs/{source_w}", "w") as f:
|
||||
f.write(f"Class: {class_name}")
|
||||
else:
|
||||
with open(f"outputs/{source_w}", "a") as f:
|
||||
f.write(f"\n\nClass: {class_name}")
|
||||
# append class name to the front
|
||||
for function in functions:
|
||||
b1 = len(functions)
|
||||
b2 = 0
|
||||
print(f"Processing function {b2}/{b1}")
|
||||
b2 += 1
|
||||
prompt = PromptTemplate(
|
||||
input_variables=["code"],
|
||||
template="Code: \n{code}, \nDocumentation: ",
|
||||
)
|
||||
llm = OpenAI(temperature=0)
|
||||
response = llm(prompt.format(code=functions[function]))
|
||||
|
||||
if not Path(f"outputs/{source_w}").exists():
|
||||
with open(f"outputs/{source_w}", "w") as f:
|
||||
f.write(f"Function: {functions[function]}, \nDocumentation: {response}")
|
||||
else:
|
||||
with open(f"outputs/{source_w}", "a") as f:
|
||||
f.write(f"\n\nFunction: {functions[function]}, \nDocumentation: {response}")
|
||||
@@ -1,128 +0,0 @@
|
||||
import os
|
||||
import sys
|
||||
from collections import defaultdict
|
||||
from typing import List, Optional
|
||||
|
||||
import dotenv
|
||||
import nltk
|
||||
import typer
|
||||
|
||||
from parser.file.bulk import SimpleDirectoryReader
|
||||
from parser.java2doc import extract_functions_and_classes as extract_java
|
||||
from parser.js2doc import extract_functions_and_classes as extract_js
|
||||
from parser.open_ai_func import call_openai_api, get_user_permission
|
||||
from parser.py2doc import extract_functions_and_classes as extract_py
|
||||
from parser.py2doc import transform_to_docs
|
||||
from parser.schema.base import Document
|
||||
from parser.token_func import group_split
|
||||
|
||||
dotenv.load_dotenv()
|
||||
|
||||
app = typer.Typer(add_completion=False)
|
||||
|
||||
nltk.download('punkt', quiet=True)
|
||||
nltk.download('averaged_perceptron_tagger', quiet=True)
|
||||
|
||||
|
||||
def metadata_from_filename(title):
|
||||
return {'title': title}
|
||||
|
||||
# Splits all files in specified folder to documents
|
||||
@app.command()
|
||||
def ingest(yes: bool = typer.Option(False, "-y", "--yes", prompt=False,
|
||||
help="Whether to skip price confirmation"),
|
||||
dir: Optional[List[str]] = typer.Option(["inputs"],
|
||||
help="""List of paths to directory for index creation.
|
||||
E.g. --dir inputs --dir inputs2"""),
|
||||
file: Optional[List[str]] = typer.Option(None,
|
||||
help="""File paths to use (Optional; overrides dir).
|
||||
E.g. --file inputs/1.md --file inputs/2.md"""),
|
||||
recursive: Optional[bool] = typer.Option(True, help="Whether to recursively search in subdirectories."),
|
||||
limit: Optional[int] = typer.Option(None, help="Maximum number of files to read."),
|
||||
formats: Optional[List[str]] = typer.Option([".rst", ".md"],
|
||||
help="""List of required extensions (list with .)
|
||||
Currently supported:
|
||||
.rst, .md, .pdf, .docx, .csv, .epub, .html, .mdx"""),
|
||||
exclude: Optional[bool] = typer.Option(True, help="Whether to exclude hidden files (dotfiles)."),
|
||||
sample: Optional[bool] = typer.Option(False,
|
||||
help="Whether to output sample of the first 5 split documents."),
|
||||
token_check: Optional[bool] = typer.Option(True, help="Whether to group small documents and split large."),
|
||||
min_tokens: Optional[int] = typer.Option(150, help="Minimum number of tokens to not group."),
|
||||
max_tokens: Optional[int] = typer.Option(2000, help="Maximum number of tokens to not split."),
|
||||
):
|
||||
"""
|
||||
Creates index from specified location or files.
|
||||
By default /inputs folder is used, .rst and .md are parsed.
|
||||
"""
|
||||
|
||||
def process_one_docs(directory, folder_name):
|
||||
raw_docs = SimpleDirectoryReader(input_dir=directory, input_files=file, recursive=recursive,
|
||||
required_exts=formats, num_files_limit=limit,
|
||||
exclude_hidden=exclude, file_metadata=metadata_from_filename).load_data()
|
||||
|
||||
# Here we split the documents, as needed, into smaller chunks.
|
||||
# We do this due to the context limits of the LLMs.
|
||||
raw_docs = group_split(documents=raw_docs, min_tokens=min_tokens, max_tokens=max_tokens,
|
||||
token_check=token_check)
|
||||
# Old method
|
||||
# text_splitter = RecursiveCharacterTextSplitter()
|
||||
# docs = text_splitter.split_documents(raw_docs)
|
||||
|
||||
# Sample feature
|
||||
if sample:
|
||||
for i in range(min(5, len(raw_docs))):
|
||||
print(raw_docs[i].text)
|
||||
|
||||
docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
|
||||
|
||||
# Here we check for command line arguments for bot calls.
|
||||
# If no argument exists or the yes is not True, then the
|
||||
# user permission is requested to call the API.
|
||||
if len(sys.argv) > 1 and yes:
|
||||
call_openai_api(docs, folder_name)
|
||||
else:
|
||||
get_user_permission(docs, folder_name)
|
||||
|
||||
|
||||
folder_counts = defaultdict(int)
|
||||
folder_names = []
|
||||
for dir_path in dir:
|
||||
folder_name = os.path.basename(os.path.normpath(dir_path))
|
||||
folder_counts[folder_name] += 1
|
||||
if folder_counts[folder_name] > 1:
|
||||
folder_name = f"{folder_name}_{folder_counts[folder_name]}"
|
||||
folder_names.append(folder_name)
|
||||
|
||||
for directory, folder_name in zip(dir, folder_names):
|
||||
process_one_docs(directory, folder_name)
|
||||
|
||||
|
||||
@app.command()
|
||||
def convert(dir: Optional[str] = typer.Option("inputs",
|
||||
help="""Path to directory to make documentation for.
|
||||
E.g. --dir inputs """),
|
||||
formats: Optional[str] = typer.Option("py",
|
||||
help="""Required language.
|
||||
py, js, java supported for now""")):
|
||||
"""
|
||||
Creates documentation linked to original functions from specified location.
|
||||
By default /inputs folder is used, .py is parsed.
|
||||
"""
|
||||
# Using a dictionary to map between the formats and their respective extraction functions
|
||||
# makes the code more scalable. When adding more formats in the future,
|
||||
# you only need to update the extraction_functions dictionary.
|
||||
extraction_functions = {
|
||||
'py': extract_py,
|
||||
'js': extract_js,
|
||||
'java': extract_java
|
||||
}
|
||||
|
||||
if formats in extraction_functions:
|
||||
functions_dict, classes_dict = extraction_functions[formats](dir)
|
||||
else:
|
||||
raise Exception("Sorry, language not supported yet")
|
||||
transform_to_docs(functions_dict, classes_dict, formats, dir)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
app()
|
||||
@@ -1,90 +0,0 @@
|
||||
import pickle
|
||||
import sys
|
||||
from argparse import ArgumentParser
|
||||
from pathlib import Path
|
||||
|
||||
import dotenv
|
||||
import faiss
|
||||
import tiktoken
|
||||
from langchain_openai import OpenAIEmbeddings
|
||||
from langchain.text_splitter import CharacterTextSplitter
|
||||
from langchain.vectorstores import FAISS
|
||||
|
||||
|
||||
def num_tokens_from_string(string: str, encoding_name: str) -> int:
|
||||
# Function to convert string to tokens and estimate user cost.
|
||||
encoding = tiktoken.get_encoding(encoding_name)
|
||||
num_tokens = len(encoding.encode(string))
|
||||
total_price = ((num_tokens / 1000) * 0.0004)
|
||||
return num_tokens, total_price
|
||||
|
||||
|
||||
def call_openai_api():
|
||||
# Function to create a vector store from the documents and save it to disk.
|
||||
store = FAISS.from_texts(docs, OpenAIEmbeddings(), metadatas=metadatas)
|
||||
faiss.write_index(store.index, "docs.index")
|
||||
store.index = None
|
||||
with open("faiss_store.pkl", "wb") as f:
|
||||
pickle.dump(store, f)
|
||||
|
||||
|
||||
def get_user_permission():
|
||||
# Function to ask user permission to call the OpenAI api and spend their OpenAI funds.
|
||||
# Here we convert the docs list to a string and calculate the number of OpenAI tokens the string represents.
|
||||
docs_content = (" ".join(docs))
|
||||
tokens, total_price = num_tokens_from_string(string=docs_content, encoding_name="cl100k_base")
|
||||
# Here we print the number of tokens and the approx user cost with some visually appealing formatting.
|
||||
print(f"Number of Tokens = {format(tokens, ',d')}")
|
||||
print(f"Approx Cost = ${format(total_price, ',.2f')}")
|
||||
# Here we check for user permission before calling the API.
|
||||
user_input = input("Price Okay? (Y/N) \n").lower()
|
||||
if user_input == "y":
|
||||
call_openai_api()
|
||||
elif user_input == "":
|
||||
call_openai_api()
|
||||
else:
|
||||
print("The API was not called. No money was spent.")
|
||||
|
||||
|
||||
# Load .env file
|
||||
dotenv.load_dotenv()
|
||||
|
||||
ap = ArgumentParser("Script for training DocsGPT on .rst documentation files.")
|
||||
ap.add_argument("-i", "--inputs",
|
||||
type=str,
|
||||
default="inputs",
|
||||
help="Directory containing documentation files")
|
||||
args = ap.parse_args()
|
||||
|
||||
# Here we load in the data in the format that Notion exports it in.
|
||||
ps = list(Path(args.inputs).glob("**/*.rst"))
|
||||
|
||||
# parse all child directories
|
||||
data = []
|
||||
sources = []
|
||||
for p in ps:
|
||||
with open(p) as f:
|
||||
data.append(f.read())
|
||||
sources.append(p)
|
||||
|
||||
# Here we split the documents, as needed, into smaller chunks.
|
||||
# We do this due to the context limits of the LLMs.
|
||||
text_splitter = CharacterTextSplitter(chunk_size=1500, separator="\n")
|
||||
docs = []
|
||||
metadatas = []
|
||||
for i, d in enumerate(data):
|
||||
splits = text_splitter.split_text(d)
|
||||
docs.extend(splits)
|
||||
metadatas.extend([{"source": sources[i]}] * len(splits))
|
||||
|
||||
# Here we check for command line arguments for bot calls.
|
||||
# If no argument exists or the permission_bypass_flag argument is not '-y',
|
||||
# user permission is requested to call the API.
|
||||
if len(sys.argv) > 1:
|
||||
permission_bypass_flag = sys.argv[1]
|
||||
if permission_bypass_flag == '-y':
|
||||
call_openai_api()
|
||||
else:
|
||||
get_user_permission()
|
||||
else:
|
||||
get_user_permission()
|
||||
@@ -1,133 +0,0 @@
|
||||
import os
|
||||
import pickle
|
||||
import shutil
|
||||
import sys
|
||||
from argparse import ArgumentParser
|
||||
from pathlib import Path
|
||||
|
||||
import dotenv
|
||||
import faiss
|
||||
import tiktoken
|
||||
from langchain_openai import OpenAIEmbeddings
|
||||
from langchain.text_splitter import CharacterTextSplitter
|
||||
from langchain.vectorstores import FAISS
|
||||
from sphinx.cmd.build import main as sphinx_main
|
||||
|
||||
|
||||
def convert_rst_to_txt(src_dir, dst_dir):
|
||||
# Check if the source directory exists
|
||||
if not os.path.exists(src_dir):
|
||||
raise Exception("Source directory does not exist")
|
||||
# Walk through the source directory
|
||||
for root, dirs, files in os.walk(src_dir):
|
||||
for file in files:
|
||||
# Check if the file has .rst extension
|
||||
if file.endswith(".rst"):
|
||||
# Construct the full path of the file
|
||||
src_file = os.path.join(root, file.replace(".rst", ""))
|
||||
# Convert the .rst file to .txt file using sphinx-build
|
||||
args = f". -b text -D extensions=sphinx.ext.autodoc " \
|
||||
f"-D master_doc={src_file} " \
|
||||
f"-D source_suffix=.rst " \
|
||||
f"-C {dst_dir} "
|
||||
sphinx_main(args.split())
|
||||
elif file.endswith(".md"):
|
||||
# Rename the .md file to .rst file
|
||||
src_file = os.path.join(root, file)
|
||||
dst_file = os.path.join(root, file.replace(".md", ".rst"))
|
||||
os.rename(src_file, dst_file)
|
||||
# Convert the .rst file to .txt file using sphinx-build
|
||||
args = f". -b text -D extensions=sphinx.ext.autodoc " \
|
||||
f"-D master_doc={dst_file} " \
|
||||
f"-D source_suffix=.rst " \
|
||||
f"-C {dst_dir} "
|
||||
sphinx_main(args.split())
|
||||
|
||||
|
||||
def num_tokens_from_string(string: str, encoding_name: str) -> int:
|
||||
# Function to convert string to tokens and estimate user cost.
|
||||
encoding = tiktoken.get_encoding(encoding_name)
|
||||
num_tokens = len(encoding.encode(string))
|
||||
total_price = ((num_tokens / 1000) * 0.0004)
|
||||
return num_tokens, total_price
|
||||
|
||||
|
||||
def call_openai_api():
|
||||
# Function to create a vector store from the documents and save it to disk.
|
||||
store = FAISS.from_texts(docs, OpenAIEmbeddings(), metadatas=metadatas)
|
||||
faiss.write_index(store.index, "docs.index")
|
||||
store.index = None
|
||||
with open("faiss_store.pkl", "wb") as f:
|
||||
pickle.dump(store, f)
|
||||
|
||||
|
||||
def get_user_permission():
|
||||
# Function to ask user permission to call the OpenAI api and spend their OpenAI funds.
|
||||
# Here we convert the docs list to a string and calculate the number of OpenAI tokens the string represents.
|
||||
docs_content = (" ".join(docs))
|
||||
tokens, total_price = num_tokens_from_string(string=docs_content, encoding_name="cl100k_base")
|
||||
# Here we print the number of tokens and the approx user cost with some visually appealing formatting.
|
||||
print(f"Number of Tokens = {format(tokens, ',d')}")
|
||||
print(f"Approx Cost = ${format(total_price, ',.2f')}")
|
||||
# Here we check for user permission before calling the API.
|
||||
user_input = input("Price Okay? (Y/N) \n").lower()
|
||||
if user_input == "y":
|
||||
call_openai_api()
|
||||
elif user_input == "":
|
||||
call_openai_api()
|
||||
else:
|
||||
print("The API was not called. No money was spent.")
|
||||
|
||||
|
||||
ap = ArgumentParser("Script for training DocsGPT on Sphinx documentation")
|
||||
ap.add_argument("-i", "--inputs",
|
||||
type=str,
|
||||
default="inputs",
|
||||
help="Directory containing documentation files")
|
||||
args = ap.parse_args()
|
||||
|
||||
# Load .env file
|
||||
dotenv.load_dotenv()
|
||||
|
||||
# Directory to vector
|
||||
src_dir = args.inputs
|
||||
dst_dir = "tmp"
|
||||
|
||||
convert_rst_to_txt(src_dir, dst_dir)
|
||||
|
||||
# Here we load in the data in the format that Notion exports it in.
|
||||
ps = list(Path("tmp/" + src_dir).glob("**/*.txt"))
|
||||
|
||||
# parse all child directories
|
||||
data = []
|
||||
sources = []
|
||||
for p in ps:
|
||||
with open(p) as f:
|
||||
data.append(f.read())
|
||||
sources.append(p)
|
||||
|
||||
# Here we split the documents, as needed, into smaller chunks.
|
||||
# We do this due to the context limits of the LLMs.
|
||||
text_splitter = CharacterTextSplitter(chunk_size=1500, separator="\n")
|
||||
docs = []
|
||||
metadatas = []
|
||||
for i, d in enumerate(data):
|
||||
splits = text_splitter.split_text(d)
|
||||
docs.extend(splits)
|
||||
metadatas.extend([{"source": sources[i]}] * len(splits))
|
||||
|
||||
# Here we check for command line arguments for bot calls.
|
||||
# If no argument exists or the permission_bypass_flag argument is not '-y',
|
||||
# user permission is requested to call the API.
|
||||
if len(sys.argv) > 1:
|
||||
permission_bypass_flag = sys.argv[1]
|
||||
if permission_bypass_flag == '-y':
|
||||
call_openai_api()
|
||||
else:
|
||||
get_user_permission()
|
||||
else:
|
||||
get_user_permission()
|
||||
|
||||
# Delete tmp folder
|
||||
# Commented out for now
|
||||
shutil.rmtree(dst_dir)
|
||||
@@ -1 +0,0 @@
|
||||
|
||||
@@ -1,19 +0,0 @@
|
||||
"""Base reader class."""
|
||||
from abc import abstractmethod
|
||||
from typing import Any, List
|
||||
|
||||
from langchain.docstore.document import Document as LCDocument
|
||||
from parser.schema.base import Document
|
||||
|
||||
|
||||
class BaseReader:
|
||||
"""Utilities for loading data from a directory."""
|
||||
|
||||
@abstractmethod
|
||||
def load_data(self, *args: Any, **load_kwargs: Any) -> List[Document]:
|
||||
"""Load data from the input directory."""
|
||||
|
||||
def load_langchain_documents(self, **load_kwargs: Any) -> List[LCDocument]:
|
||||
"""Load data in LangChain document format."""
|
||||
docs = self.load_data(**load_kwargs)
|
||||
return [d.to_langchain_format() for d in docs]
|
||||
@@ -1,38 +0,0 @@
|
||||
"""Base parser and config class."""
|
||||
|
||||
from abc import abstractmethod
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
|
||||
class BaseParser:
|
||||
"""Base class for all parsers."""
|
||||
|
||||
def __init__(self, parser_config: Optional[Dict] = None):
|
||||
"""Init params."""
|
||||
self._parser_config = parser_config
|
||||
|
||||
def init_parser(self) -> None:
|
||||
"""Init parser and store it."""
|
||||
parser_config = self._init_parser()
|
||||
self._parser_config = parser_config
|
||||
|
||||
@property
|
||||
def parser_config_set(self) -> bool:
|
||||
"""Check if parser config is set."""
|
||||
return self._parser_config is not None
|
||||
|
||||
@property
|
||||
def parser_config(self) -> Dict:
|
||||
"""Check if parser config is set."""
|
||||
if self._parser_config is None:
|
||||
raise ValueError("Parser config not set.")
|
||||
return self._parser_config
|
||||
|
||||
@abstractmethod
|
||||
def _init_parser(self) -> Dict:
|
||||
"""Initialize the parser with the config."""
|
||||
|
||||
@abstractmethod
|
||||
def parse_file(self, file: Path, errors: str = "ignore") -> Union[str, List[str]]:
|
||||
"""Parse file."""
|
||||
@@ -1,167 +0,0 @@
|
||||
"""Simple reader that reads files of different formats from a directory."""
|
||||
import logging
|
||||
from parser.file.base import BaseReader
|
||||
from parser.file.base_parser import BaseParser
|
||||
from parser.file.docs_parser import DocxParser, PDFParser
|
||||
from parser.file.epub_parser import EpubParser
|
||||
from parser.file.html_parser import HTMLParser
|
||||
from parser.file.markdown_parser import MarkdownParser
|
||||
from parser.file.rst_parser import RstParser
|
||||
from parser.file.tabular_parser import PandasCSVParser
|
||||
from parser.schema.base import Document
|
||||
from pathlib import Path
|
||||
from typing import Callable, Dict, List, Optional, Union
|
||||
|
||||
DEFAULT_FILE_EXTRACTOR: Dict[str, BaseParser] = {
|
||||
".pdf": PDFParser(),
|
||||
".docx": DocxParser(),
|
||||
".csv": PandasCSVParser(),
|
||||
".epub": EpubParser(),
|
||||
".md": MarkdownParser(),
|
||||
".rst": RstParser(),
|
||||
".html": HTMLParser(),
|
||||
".mdx": MarkdownParser(),
|
||||
}
|
||||
|
||||
|
||||
class SimpleDirectoryReader(BaseReader):
|
||||
"""Simple directory reader.
|
||||
|
||||
Can read files into separate documents, or concatenates
|
||||
files into one document text.
|
||||
|
||||
Args:
|
||||
input_dir (str): Path to the directory.
|
||||
input_files (List): List of file paths to read (Optional; overrides input_dir)
|
||||
exclude_hidden (bool): Whether to exclude hidden files (dotfiles).
|
||||
errors (str): how encoding and decoding errors are to be handled,
|
||||
see https://docs.python.org/3/library/functions.html#open
|
||||
recursive (bool): Whether to recursively search in subdirectories.
|
||||
False by default.
|
||||
required_exts (Optional[List[str]]): List of required extensions.
|
||||
Default is None.
|
||||
file_extractor (Optional[Dict[str, BaseParser]]): A mapping of file
|
||||
extension to a BaseParser class that specifies how to convert that file
|
||||
to text. See DEFAULT_FILE_EXTRACTOR.
|
||||
num_files_limit (Optional[int]): Maximum number of files to read.
|
||||
Default is None.
|
||||
file_metadata (Optional[Callable[str, Dict]]): A function that takes
|
||||
in a filename and returns a Dict of metadata for the Document.
|
||||
Default is None.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_dir: Optional[str] = None,
|
||||
input_files: Optional[List] = None,
|
||||
exclude_hidden: bool = True,
|
||||
errors: str = "ignore",
|
||||
recursive: bool = True,
|
||||
required_exts: Optional[List[str]] = None,
|
||||
file_extractor: Optional[Dict[str, BaseParser]] = None,
|
||||
num_files_limit: Optional[int] = None,
|
||||
file_metadata: Optional[Callable[[str], Dict]] = None,
|
||||
) -> None:
|
||||
"""Initialize with parameters."""
|
||||
super().__init__()
|
||||
|
||||
if not input_dir and not input_files:
|
||||
raise ValueError("Must provide either `input_dir` or `input_files`.")
|
||||
|
||||
self.errors = errors
|
||||
|
||||
self.recursive = recursive
|
||||
self.exclude_hidden = exclude_hidden
|
||||
self.required_exts = required_exts
|
||||
self.num_files_limit = num_files_limit
|
||||
print("input_files")
|
||||
print(input_files)
|
||||
|
||||
if input_files:
|
||||
self.input_files = []
|
||||
for path in input_files:
|
||||
input_file = Path(path)
|
||||
self.input_files.append(input_file)
|
||||
elif input_dir:
|
||||
self.input_dir = Path(input_dir)
|
||||
self.input_files = self._add_files(self.input_dir)
|
||||
|
||||
self.file_extractor = file_extractor or DEFAULT_FILE_EXTRACTOR
|
||||
self.file_metadata = file_metadata
|
||||
|
||||
def _add_files(self, input_dir: Path) -> List[Path]:
|
||||
"""Add files."""
|
||||
input_files = sorted(input_dir.iterdir())
|
||||
new_input_files = []
|
||||
dirs_to_explore = []
|
||||
for input_file in input_files:
|
||||
if input_file.is_dir():
|
||||
if self.recursive:
|
||||
dirs_to_explore.append(input_file)
|
||||
elif self.exclude_hidden and input_file.name.startswith("."):
|
||||
continue
|
||||
elif (
|
||||
self.required_exts is not None
|
||||
and input_file.suffix not in self.required_exts
|
||||
):
|
||||
continue
|
||||
else:
|
||||
new_input_files.append(input_file)
|
||||
|
||||
for dir_to_explore in dirs_to_explore:
|
||||
sub_input_files = self._add_files(dir_to_explore)
|
||||
new_input_files.extend(sub_input_files)
|
||||
|
||||
if self.num_files_limit is not None and self.num_files_limit > 0:
|
||||
new_input_files = new_input_files[0: self.num_files_limit]
|
||||
|
||||
# print total number of files added
|
||||
logging.debug(
|
||||
f"> [SimpleDirectoryReader] Total files added: {len(new_input_files)}"
|
||||
)
|
||||
|
||||
return new_input_files
|
||||
|
||||
def load_data(self, concatenate: bool = False) -> List[Document]:
|
||||
"""Load data from the input directory.
|
||||
|
||||
Args:
|
||||
concatenate (bool): whether to concatenate all files into one document.
|
||||
If set to True, file metadata is ignored.
|
||||
False by default.
|
||||
|
||||
Returns:
|
||||
List[Document]: A list of documents.
|
||||
|
||||
"""
|
||||
data: Union[str, List[str]] = ""
|
||||
data_list: List[str] = []
|
||||
metadata_list = []
|
||||
for input_file in self.input_files:
|
||||
if input_file.suffix in self.file_extractor:
|
||||
parser = self.file_extractor[input_file.suffix]
|
||||
if not parser.parser_config_set:
|
||||
parser.init_parser()
|
||||
data = parser.parse_file(input_file, errors=self.errors)
|
||||
else:
|
||||
# do standard read
|
||||
with open(input_file, "r", errors=self.errors) as f:
|
||||
data = f.read()
|
||||
if isinstance(data, List):
|
||||
data_list.extend(data)
|
||||
if self.file_metadata is not None:
|
||||
for _ in range(len(data)):
|
||||
metadata_list.append(self.file_metadata(str(input_file)))
|
||||
else:
|
||||
data_list.append(str(data))
|
||||
if self.file_metadata is not None:
|
||||
metadata_list.append(self.file_metadata(str(input_file)))
|
||||
|
||||
|
||||
|
||||
if concatenate:
|
||||
return [Document("\n".join(data_list))]
|
||||
elif self.file_metadata is not None:
|
||||
return [Document(d, extra_info=m) for d, m in zip(data_list, metadata_list)]
|
||||
else:
|
||||
return [Document(d) for d in data_list]
|
||||
@@ -1,59 +0,0 @@
|
||||
"""Docs parser.
|
||||
|
||||
Contains parsers for docx, pdf files.
|
||||
|
||||
"""
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
|
||||
from parser.file.base_parser import BaseParser
|
||||
|
||||
|
||||
class PDFParser(BaseParser):
|
||||
"""PDF parser."""
|
||||
|
||||
def _init_parser(self) -> Dict:
|
||||
"""Init parser."""
|
||||
return {}
|
||||
|
||||
def parse_file(self, file: Path, errors: str = "ignore") -> str:
|
||||
"""Parse file."""
|
||||
try:
|
||||
import PyPDF2
|
||||
except ImportError:
|
||||
raise ValueError("PyPDF2 is required to read PDF files.")
|
||||
text_list = []
|
||||
with open(file, "rb") as fp:
|
||||
# Create a PDF object
|
||||
pdf = PyPDF2.PdfReader(fp)
|
||||
|
||||
# Get the number of pages in the PDF document
|
||||
num_pages = len(pdf.pages)
|
||||
|
||||
# Iterate over every page
|
||||
for page in range(num_pages):
|
||||
# Extract the text from the page
|
||||
page_text = pdf.pages[page].extract_text()
|
||||
text_list.append(page_text)
|
||||
text = "\n".join(text_list)
|
||||
|
||||
return text
|
||||
|
||||
|
||||
class DocxParser(BaseParser):
|
||||
"""Docx parser."""
|
||||
|
||||
def _init_parser(self) -> Dict:
|
||||
"""Init parser."""
|
||||
return {}
|
||||
|
||||
def parse_file(self, file: Path, errors: str = "ignore") -> str:
|
||||
"""Parse file."""
|
||||
try:
|
||||
import docx2txt
|
||||
except ImportError:
|
||||
raise ValueError("docx2txt is required to read Microsoft Word files.")
|
||||
|
||||
text = docx2txt.process(file)
|
||||
|
||||
return text
|
||||
@@ -1,43 +0,0 @@
|
||||
"""Epub parser.
|
||||
|
||||
Contains parsers for epub files.
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
|
||||
from parser.file.base_parser import BaseParser
|
||||
|
||||
|
||||
class EpubParser(BaseParser):
|
||||
"""Epub Parser."""
|
||||
|
||||
def _init_parser(self) -> Dict:
|
||||
"""Init parser."""
|
||||
return {}
|
||||
|
||||
def parse_file(self, file: Path, errors: str = "ignore") -> str:
|
||||
"""Parse file."""
|
||||
try:
|
||||
import ebooklib
|
||||
from ebooklib import epub
|
||||
except ImportError:
|
||||
raise ValueError("`EbookLib` is required to read Epub files.")
|
||||
try:
|
||||
import html2text
|
||||
except ImportError:
|
||||
raise ValueError("`html2text` is required to parse Epub files.")
|
||||
|
||||
text_list = []
|
||||
book = epub.read_epub(file, options={"ignore_ncx": True})
|
||||
|
||||
# Iterate through all chapters.
|
||||
for item in book.get_items():
|
||||
# Chapters are typically located in epub documents items.
|
||||
if item.get_type() == ebooklib.ITEM_DOCUMENT:
|
||||
text_list.append(
|
||||
html2text.html2text(item.get_content().decode("utf-8"))
|
||||
)
|
||||
|
||||
text = "\n".join(text_list)
|
||||
return text
|
||||
@@ -1,83 +0,0 @@
|
||||
"""HTML parser.
|
||||
|
||||
Contains parser for html files.
|
||||
|
||||
"""
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import Dict, Union
|
||||
|
||||
from parser.file.base_parser import BaseParser
|
||||
|
||||
|
||||
class HTMLParser(BaseParser):
|
||||
"""HTML parser."""
|
||||
|
||||
def _init_parser(self) -> Dict:
|
||||
"""Init parser."""
|
||||
return {}
|
||||
|
||||
def parse_file(self, file: Path, errors: str = "ignore") -> Union[str, list[str]]:
|
||||
"""Parse file.
|
||||
|
||||
Returns:
|
||||
Union[str, List[str]]: a string or a List of strings.
|
||||
"""
|
||||
try:
|
||||
from unstructured.partition.html import partition_html
|
||||
from unstructured.staging.base import convert_to_isd
|
||||
from unstructured.cleaners.core import clean
|
||||
except ImportError:
|
||||
raise ValueError("unstructured package is required to parse HTML files.")
|
||||
|
||||
# Using the unstructured library to convert the html to isd format
|
||||
# isd sample : isd = [
|
||||
# {"text": "My Title", "type": "Title"},
|
||||
# {"text": "My Narrative", "type": "NarrativeText"}
|
||||
# ]
|
||||
with open(file, "r", encoding="utf-8") as fp:
|
||||
elements = partition_html(file=fp)
|
||||
isd = convert_to_isd(elements)
|
||||
|
||||
# Removing non ascii charactwers from isd_el['text']
|
||||
for isd_el in isd:
|
||||
isd_el['text'] = isd_el['text'].encode("ascii", "ignore").decode()
|
||||
|
||||
# Removing all the \n characters from isd_el['text'] using regex and replace with single space
|
||||
# Removing all the extra spaces from isd_el['text'] using regex and replace with single space
|
||||
for isd_el in isd:
|
||||
isd_el['text'] = re.sub(r'\n', ' ', isd_el['text'], flags=re.MULTILINE | re.DOTALL)
|
||||
isd_el['text'] = re.sub(r"\s{2,}", " ", isd_el['text'], flags=re.MULTILINE | re.DOTALL)
|
||||
|
||||
# more cleaning: extra_whitespaces, dashes, bullets, trailing_punctuation
|
||||
for isd_el in isd:
|
||||
clean(isd_el['text'], extra_whitespace=True, dashes=True, bullets=True, trailing_punctuation=True)
|
||||
|
||||
# Creating a list of all the indexes of isd_el['type'] = 'Title'
|
||||
title_indexes = [i for i, isd_el in enumerate(isd) if isd_el['type'] == 'Title']
|
||||
|
||||
# Creating 'Chunks' - List of lists of strings
|
||||
# each list starting with isd_el['type'] = 'Title' and all the data till the next 'Title'
|
||||
# Each Chunk can be thought of as an individual set of data, which can be sent to the model
|
||||
# Where Each Title is grouped together with the data under it
|
||||
|
||||
Chunks = [[]]
|
||||
final_chunks = list(list())
|
||||
|
||||
for i, isd_el in enumerate(isd):
|
||||
if i in title_indexes:
|
||||
Chunks.append([])
|
||||
Chunks[-1].append(isd_el['text'])
|
||||
|
||||
# Removing all the chunks with sum of length of all the strings in the chunk < 25
|
||||
# TODO: This value can be a user defined variable
|
||||
for chunk in Chunks:
|
||||
# sum of length of all the strings in the chunk
|
||||
sum = 0
|
||||
sum += len(str(chunk))
|
||||
if sum < 25:
|
||||
Chunks.remove(chunk)
|
||||
else:
|
||||
# appending all the approved chunks to final_chunks as a single string
|
||||
final_chunks.append(" ".join([str(item) for item in chunk]))
|
||||
return final_chunks
|
||||
@@ -1,149 +0,0 @@
|
||||
"""Markdown parser.
|
||||
|
||||
Contains parser for md files.
|
||||
|
||||
"""
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union, cast
|
||||
|
||||
import tiktoken
|
||||
from parser.file.base_parser import BaseParser
|
||||
|
||||
|
||||
class MarkdownParser(BaseParser):
|
||||
"""Markdown parser.
|
||||
|
||||
Extract text from markdown files.
|
||||
Returns dictionary with keys as headers and values as the text between headers.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*args: Any,
|
||||
remove_hyperlinks: bool = True,
|
||||
remove_images: bool = True,
|
||||
max_tokens: int = 2048,
|
||||
# remove_tables: bool = True,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""Init params."""
|
||||
super().__init__(*args, **kwargs)
|
||||
self._remove_hyperlinks = remove_hyperlinks
|
||||
self._remove_images = remove_images
|
||||
self._max_tokens = max_tokens
|
||||
# self._remove_tables = remove_tables
|
||||
|
||||
def tups_chunk_append(self, tups: List[Tuple[Optional[str], str]], current_header: Optional[str],
|
||||
current_text: str):
|
||||
"""Append to tups chunk."""
|
||||
num_tokens = len(tiktoken.get_encoding("cl100k_base").encode(current_text))
|
||||
if num_tokens > self._max_tokens:
|
||||
chunks = [current_text[i:i + self._max_tokens] for i in range(0, len(current_text), self._max_tokens)]
|
||||
for chunk in chunks:
|
||||
tups.append((current_header, chunk))
|
||||
else:
|
||||
tups.append((current_header, current_text))
|
||||
return tups
|
||||
|
||||
def markdown_to_tups(self, markdown_text: str) -> List[Tuple[Optional[str], str]]:
|
||||
"""Convert a markdown file to a dictionary.
|
||||
|
||||
The keys are the headers and the values are the text under each header.
|
||||
|
||||
"""
|
||||
markdown_tups: List[Tuple[Optional[str], str]] = []
|
||||
lines = markdown_text.split("\n")
|
||||
|
||||
current_header = None
|
||||
current_text = ""
|
||||
|
||||
for line in lines:
|
||||
header_match = re.match(r"^#+\s", line)
|
||||
if header_match:
|
||||
if current_header is not None:
|
||||
if current_text == "" or None:
|
||||
continue
|
||||
markdown_tups = self.tups_chunk_append(markdown_tups, current_header, current_text)
|
||||
|
||||
current_header = line
|
||||
current_text = ""
|
||||
else:
|
||||
current_text += line + "\n"
|
||||
markdown_tups = self.tups_chunk_append(markdown_tups, current_header, current_text)
|
||||
|
||||
if current_header is not None:
|
||||
# pass linting, assert keys are defined
|
||||
markdown_tups = [
|
||||
(re.sub(r"#", "", cast(str, key)).strip(), re.sub(r"<.*?>", "", value))
|
||||
for key, value in markdown_tups
|
||||
]
|
||||
else:
|
||||
markdown_tups = [
|
||||
(key, re.sub("\n", "", value)) for key, value in markdown_tups
|
||||
]
|
||||
|
||||
return markdown_tups
|
||||
|
||||
def remove_images(self, content: str) -> str:
|
||||
"""Get a dictionary of a markdown file from its path."""
|
||||
pattern = r"!{1}\[\[(.*)\]\]"
|
||||
content = re.sub(pattern, "", content)
|
||||
return content
|
||||
|
||||
# def remove_tables(self, content: str) -> List[List[str]]:
|
||||
# """Convert markdown tables to nested lists."""
|
||||
# table_rows_pattern = r"((\r?\n){2}|^)([^\r\n]*\|[^\r\n]*(\r?\n)?)+(?=(\r?\n){2}|$)"
|
||||
# table_cells_pattern = r"([^\|\r\n]*)\|"
|
||||
#
|
||||
# table_rows = re.findall(table_rows_pattern, content, re.MULTILINE)
|
||||
# table_lists = []
|
||||
# for row in table_rows:
|
||||
# cells = re.findall(table_cells_pattern, row[2])
|
||||
# cells = [cell.strip() for cell in cells if cell.strip()]
|
||||
# table_lists.append(cells)
|
||||
# return str(table_lists)
|
||||
|
||||
def remove_hyperlinks(self, content: str) -> str:
|
||||
"""Get a dictionary of a markdown file from its path."""
|
||||
pattern = r"\[(.*?)\]\((.*?)\)"
|
||||
content = re.sub(pattern, r"\1", content)
|
||||
return content
|
||||
|
||||
def _init_parser(self) -> Dict:
|
||||
"""Initialize the parser with the config."""
|
||||
return {}
|
||||
|
||||
def parse_tups(
|
||||
self, filepath: Path, errors: str = "ignore"
|
||||
) -> List[Tuple[Optional[str], str]]:
|
||||
"""Parse file into tuples."""
|
||||
with open(filepath, "r", encoding='utf8') as f:
|
||||
try:
|
||||
content = f.read()
|
||||
except (Exception,) as e:
|
||||
print(f'Error a file: "{filepath}"')
|
||||
raise e
|
||||
if self._remove_hyperlinks:
|
||||
content = self.remove_hyperlinks(content)
|
||||
if self._remove_images:
|
||||
content = self.remove_images(content)
|
||||
# if self._remove_tables:
|
||||
# content = self.remove_tables(content)
|
||||
markdown_tups = self.markdown_to_tups(content)
|
||||
return markdown_tups
|
||||
|
||||
def parse_file(
|
||||
self, filepath: Path, errors: str = "ignore"
|
||||
) -> Union[str, List[str]]:
|
||||
"""Parse file into string."""
|
||||
tups = self.parse_tups(filepath, errors=errors)
|
||||
results = []
|
||||
# TODO: don't include headers right now
|
||||
for header, value in tups:
|
||||
if header is None:
|
||||
results.append(value)
|
||||
else:
|
||||
results.append(f"\n\n{header}\n{value}")
|
||||
return results
|
||||
@@ -1,51 +0,0 @@
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from openapi_parser import parse
|
||||
|
||||
try:
|
||||
from scripts.parser.file.base_parser import BaseParser
|
||||
except ModuleNotFoundError:
|
||||
from base_parser import BaseParser
|
||||
|
||||
|
||||
class OpenAPI3Parser(BaseParser):
|
||||
def init_parser(self) -> None:
|
||||
return super().init_parser()
|
||||
|
||||
def get_base_urls(self, urls):
|
||||
base_urls = []
|
||||
for i in urls:
|
||||
parsed_url = urlparse(i)
|
||||
base_url = parsed_url.scheme + "://" + parsed_url.netloc
|
||||
if base_url not in base_urls:
|
||||
base_urls.append(base_url)
|
||||
return base_urls
|
||||
|
||||
def get_info_from_paths(self, path):
|
||||
info = ""
|
||||
if path.operations:
|
||||
for operation in path.operations:
|
||||
info += (
|
||||
f"\n{operation.method.value}="
|
||||
f"{operation.responses[0].description}"
|
||||
)
|
||||
return info
|
||||
|
||||
def parse_file(self, file_path):
|
||||
data = parse(file_path)
|
||||
results = ""
|
||||
base_urls = self.get_base_urls(link.url for link in data.servers)
|
||||
base_urls = ",".join([base_url for base_url in base_urls])
|
||||
results += f"Base URL:{base_urls}\n"
|
||||
i = 1
|
||||
for path in data.paths:
|
||||
info = self.get_info_from_paths(path)
|
||||
results += (
|
||||
f"Path{i}: {path.url}\n"
|
||||
f"description: {path.description}\n"
|
||||
f"parameters: {path.parameters}\nmethods: {info}\n"
|
||||
)
|
||||
i += 1
|
||||
with open("results.txt", "w") as f:
|
||||
f.write(results)
|
||||
return results
|
||||
@@ -1,173 +0,0 @@
|
||||
"""reStructuredText parser.
|
||||
|
||||
Contains parser for md files.
|
||||
|
||||
"""
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
from parser.file.base_parser import BaseParser
|
||||
|
||||
|
||||
class RstParser(BaseParser):
|
||||
"""reStructuredText parser.
|
||||
|
||||
Extract text from .rst files.
|
||||
Returns dictionary with keys as headers and values as the text between headers.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*args: Any,
|
||||
remove_hyperlinks: bool = True,
|
||||
remove_images: bool = True,
|
||||
remove_table_excess: bool = True,
|
||||
remove_interpreters: bool = True,
|
||||
remove_directives: bool = True,
|
||||
remove_whitespaces_excess: bool = True,
|
||||
# Be careful with remove_characters_excess, might cause data loss
|
||||
remove_characters_excess: bool = True,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""Init params."""
|
||||
super().__init__(*args, **kwargs)
|
||||
self._remove_hyperlinks = remove_hyperlinks
|
||||
self._remove_images = remove_images
|
||||
self._remove_table_excess = remove_table_excess
|
||||
self._remove_interpreters = remove_interpreters
|
||||
self._remove_directives = remove_directives
|
||||
self._remove_whitespaces_excess = remove_whitespaces_excess
|
||||
self._remove_characters_excess = remove_characters_excess
|
||||
|
||||
def rst_to_tups(self, rst_text: str) -> List[Tuple[Optional[str], str]]:
|
||||
"""Convert a reStructuredText file to a dictionary.
|
||||
|
||||
The keys are the headers and the values are the text under each header.
|
||||
|
||||
"""
|
||||
rst_tups: List[Tuple[Optional[str], str]] = []
|
||||
lines = rst_text.split("\n")
|
||||
|
||||
current_header = None
|
||||
current_text = ""
|
||||
|
||||
for i, line in enumerate(lines):
|
||||
header_match = re.match(r"^[^\S\n]*[-=]+[^\S\n]*$", line)
|
||||
if header_match and i > 0 and (
|
||||
len(lines[i - 1].strip()) == len(header_match.group().strip()) or lines[i - 2] == lines[i - 2]):
|
||||
if current_header is not None:
|
||||
if current_text == "" or None:
|
||||
continue
|
||||
# removes the next heading from current Document
|
||||
if current_text.endswith(lines[i - 1] + "\n"):
|
||||
current_text = current_text[:len(current_text) - len(lines[i - 1] + "\n")]
|
||||
rst_tups.append((current_header, current_text))
|
||||
|
||||
current_header = lines[i - 1]
|
||||
current_text = ""
|
||||
else:
|
||||
current_text += line + "\n"
|
||||
|
||||
rst_tups.append((current_header, current_text))
|
||||
|
||||
# TODO: Format for rst
|
||||
#
|
||||
# if current_header is not None:
|
||||
# # pass linting, assert keys are defined
|
||||
# rst_tups = [
|
||||
# (re.sub(r"#", "", cast(str, key)).strip(), re.sub(r"<.*?>", "", value))
|
||||
# for key, value in rst_tups
|
||||
# ]
|
||||
# else:
|
||||
# rst_tups = [
|
||||
# (key, re.sub("\n", "", value)) for key, value in rst_tups
|
||||
# ]
|
||||
|
||||
if current_header is None:
|
||||
rst_tups = [
|
||||
(key, re.sub("\n", "", value)) for key, value in rst_tups
|
||||
]
|
||||
return rst_tups
|
||||
|
||||
def remove_images(self, content: str) -> str:
|
||||
pattern = r"\.\. image:: (.*)"
|
||||
content = re.sub(pattern, "", content)
|
||||
return content
|
||||
|
||||
def remove_hyperlinks(self, content: str) -> str:
|
||||
pattern = r"`(.*?) <(.*?)>`_"
|
||||
content = re.sub(pattern, r"\1", content)
|
||||
return content
|
||||
|
||||
def remove_directives(self, content: str) -> str:
|
||||
"""Removes reStructuredText Directives"""
|
||||
pattern = r"`\.\.([^:]+)::"
|
||||
content = re.sub(pattern, "", content)
|
||||
return content
|
||||
|
||||
def remove_interpreters(self, content: str) -> str:
|
||||
"""Removes reStructuredText Interpreted Text Roles"""
|
||||
pattern = r":(\w+):"
|
||||
content = re.sub(pattern, "", content)
|
||||
return content
|
||||
|
||||
def remove_table_excess(self, content: str) -> str:
|
||||
"""Pattern to remove grid table separators"""
|
||||
pattern = r"^\+[-]+\+[-]+\+$"
|
||||
content = re.sub(pattern, "", content, flags=re.MULTILINE)
|
||||
return content
|
||||
|
||||
def remove_whitespaces_excess(self, content: List[Tuple[str, Any]]) -> List[Tuple[str, Any]]:
|
||||
"""Pattern to match 2 or more consecutive whitespaces"""
|
||||
pattern = r"\s{2,}"
|
||||
content = [(key, re.sub(pattern, " ", value)) for key, value in content]
|
||||
return content
|
||||
|
||||
def remove_characters_excess(self, content: List[Tuple[str, Any]]) -> List[Tuple[str, Any]]:
|
||||
"""Pattern to match 2 or more consecutive characters"""
|
||||
pattern = r"(\S)\1{2,}"
|
||||
content = [(key, re.sub(pattern, r"\1\1\1", value, flags=re.MULTILINE)) for key, value in content]
|
||||
return content
|
||||
|
||||
def _init_parser(self) -> Dict:
|
||||
"""Initialize the parser with the config."""
|
||||
return {}
|
||||
|
||||
def parse_tups(
|
||||
self, filepath: Path, errors: str = "ignore"
|
||||
) -> List[Tuple[Optional[str], str]]:
|
||||
"""Parse file into tuples."""
|
||||
with open(filepath, "r") as f:
|
||||
content = f.read()
|
||||
if self._remove_hyperlinks:
|
||||
content = self.remove_hyperlinks(content)
|
||||
if self._remove_images:
|
||||
content = self.remove_images(content)
|
||||
if self._remove_table_excess:
|
||||
content = self.remove_table_excess(content)
|
||||
if self._remove_directives:
|
||||
content = self.remove_directives(content)
|
||||
if self._remove_interpreters:
|
||||
content = self.remove_interpreters(content)
|
||||
rst_tups = self.rst_to_tups(content)
|
||||
if self._remove_whitespaces_excess:
|
||||
rst_tups = self.remove_whitespaces_excess(rst_tups)
|
||||
if self._remove_characters_excess:
|
||||
rst_tups = self.remove_characters_excess(rst_tups)
|
||||
return rst_tups
|
||||
|
||||
def parse_file(
|
||||
self, filepath: Path, errors: str = "ignore"
|
||||
) -> Union[str, List[str]]:
|
||||
"""Parse file into string."""
|
||||
tups = self.parse_tups(filepath, errors=errors)
|
||||
results = []
|
||||
# TODO: don't include headers right now
|
||||
for header, value in tups:
|
||||
if header is None:
|
||||
results.append(value)
|
||||
else:
|
||||
results.append(f"\n\n{header}\n{value}")
|
||||
return results
|
||||
@@ -1,115 +0,0 @@
|
||||
"""Tabular parser.
|
||||
|
||||
Contains parsers for tabular data files.
|
||||
|
||||
"""
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Union
|
||||
|
||||
from parser.file.base_parser import BaseParser
|
||||
|
||||
|
||||
class CSVParser(BaseParser):
|
||||
"""CSV parser.
|
||||
|
||||
Args:
|
||||
concat_rows (bool): whether to concatenate all rows into one document.
|
||||
If set to False, a Document will be created for each row.
|
||||
True by default.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, *args: Any, concat_rows: bool = True, **kwargs: Any) -> None:
|
||||
"""Init params."""
|
||||
super().__init__(*args, **kwargs)
|
||||
self._concat_rows = concat_rows
|
||||
|
||||
def _init_parser(self) -> Dict:
|
||||
"""Init parser."""
|
||||
return {}
|
||||
|
||||
def parse_file(self, file: Path, errors: str = "ignore") -> Union[str, List[str]]:
|
||||
"""Parse file.
|
||||
|
||||
Returns:
|
||||
Union[str, List[str]]: a string or a List of strings.
|
||||
|
||||
"""
|
||||
try:
|
||||
import csv
|
||||
except ImportError:
|
||||
raise ValueError("csv module is required to read CSV files.")
|
||||
text_list = []
|
||||
with open(file, "r") as fp:
|
||||
csv_reader = csv.reader(fp)
|
||||
for row in csv_reader:
|
||||
text_list.append(", ".join(row))
|
||||
if self._concat_rows:
|
||||
return "\n".join(text_list)
|
||||
else:
|
||||
return text_list
|
||||
|
||||
|
||||
class PandasCSVParser(BaseParser):
|
||||
r"""Pandas-based CSV parser.
|
||||
|
||||
Parses CSVs using the separator detection from Pandas `read_csv`function.
|
||||
If special parameters are required, use the `pandas_config` dict.
|
||||
|
||||
Args:
|
||||
concat_rows (bool): whether to concatenate all rows into one document.
|
||||
If set to False, a Document will be created for each row.
|
||||
True by default.
|
||||
|
||||
col_joiner (str): Separator to use for joining cols per row.
|
||||
Set to ", " by default.
|
||||
|
||||
row_joiner (str): Separator to use for joining each row.
|
||||
Only used when `concat_rows=True`.
|
||||
Set to "\n" by default.
|
||||
|
||||
pandas_config (dict): Options for the `pandas.read_csv` function call.
|
||||
Refer to https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
|
||||
for more information.
|
||||
Set to empty dict by default, this means pandas will try to figure
|
||||
out the separators, table head, etc. on its own.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*args: Any,
|
||||
concat_rows: bool = True,
|
||||
col_joiner: str = ", ",
|
||||
row_joiner: str = "\n",
|
||||
pandas_config: dict = {},
|
||||
**kwargs: Any
|
||||
) -> None:
|
||||
"""Init params."""
|
||||
super().__init__(*args, **kwargs)
|
||||
self._concat_rows = concat_rows
|
||||
self._col_joiner = col_joiner
|
||||
self._row_joiner = row_joiner
|
||||
self._pandas_config = pandas_config
|
||||
|
||||
def _init_parser(self) -> Dict:
|
||||
"""Init parser."""
|
||||
return {}
|
||||
|
||||
def parse_file(self, file: Path, errors: str = "ignore") -> Union[str, List[str]]:
|
||||
"""Parse file."""
|
||||
try:
|
||||
import pandas as pd
|
||||
except ImportError:
|
||||
raise ValueError("pandas module is required to read CSV files.")
|
||||
|
||||
df = pd.read_csv(file, **self._pandas_config)
|
||||
|
||||
text_list = df.apply(
|
||||
lambda row: (self._col_joiner).join(row.astype(str).tolist()), axis=1
|
||||
).tolist()
|
||||
|
||||
if self._concat_rows:
|
||||
return (self._row_joiner).join(text_list)
|
||||
else:
|
||||
return text_list
|
||||
@@ -1,66 +0,0 @@
|
||||
import os
|
||||
|
||||
import javalang
|
||||
|
||||
|
||||
def find_files(directory):
|
||||
files_list = []
|
||||
for root, dirs, files in os.walk(directory):
|
||||
for file in files:
|
||||
if file.endswith('.java'):
|
||||
files_list.append(os.path.join(root, file))
|
||||
return files_list
|
||||
|
||||
|
||||
def extract_functions(file_path):
|
||||
with open(file_path, "r") as file:
|
||||
java_code = file.read()
|
||||
methods = {}
|
||||
tree = javalang.parse.parse(java_code)
|
||||
for _, node in tree.filter(javalang.tree.MethodDeclaration):
|
||||
method_name = node.name
|
||||
start_line = node.position.line - 1
|
||||
end_line = start_line
|
||||
brace_count = 0
|
||||
for line in java_code.splitlines()[start_line:]:
|
||||
end_line += 1
|
||||
brace_count += line.count("{") - line.count("}")
|
||||
if brace_count == 0:
|
||||
break
|
||||
method_source_code = "\n".join(java_code.splitlines()[start_line:end_line])
|
||||
methods[method_name] = method_source_code
|
||||
return methods
|
||||
|
||||
|
||||
def extract_classes(file_path):
|
||||
with open(file_path, 'r') as file:
|
||||
source_code = file.read()
|
||||
classes = {}
|
||||
tree = javalang.parse.parse(source_code)
|
||||
for class_decl in tree.types:
|
||||
class_name = class_decl.name
|
||||
declarations = []
|
||||
methods = []
|
||||
for field_decl in class_decl.fields:
|
||||
field_name = field_decl.declarators[0].name
|
||||
field_type = field_decl.type.name
|
||||
declarations.append(f"{field_type} {field_name}")
|
||||
for method_decl in class_decl.methods:
|
||||
methods.append(method_decl.name)
|
||||
class_string = "Declarations: " + ", ".join(declarations) + "\n Method name: " + ", ".join(methods)
|
||||
classes[class_name] = class_string
|
||||
return classes
|
||||
|
||||
|
||||
def extract_functions_and_classes(directory):
|
||||
files = find_files(directory)
|
||||
functions_dict = {}
|
||||
classes_dict = {}
|
||||
for file in files:
|
||||
functions = extract_functions(file)
|
||||
if functions:
|
||||
functions_dict[file] = functions
|
||||
classes = extract_classes(file)
|
||||
if classes:
|
||||
classes_dict[file] = classes
|
||||
return functions_dict, classes_dict
|
||||
@@ -1,70 +0,0 @@
|
||||
import os
|
||||
|
||||
import escodegen
|
||||
import esprima
|
||||
|
||||
|
||||
def find_files(directory):
|
||||
files_list = []
|
||||
for root, dirs, files in os.walk(directory):
|
||||
for file in files:
|
||||
if file.endswith('.js'):
|
||||
files_list.append(os.path.join(root, file))
|
||||
return files_list
|
||||
|
||||
|
||||
def extract_functions(file_path):
|
||||
with open(file_path, 'r') as file:
|
||||
source_code = file.read()
|
||||
functions = {}
|
||||
tree = esprima.parseScript(source_code)
|
||||
for node in tree.body:
|
||||
if node.type == 'FunctionDeclaration':
|
||||
func_name = node.id.name if node.id else '<anonymous>'
|
||||
functions[func_name] = escodegen.generate(node)
|
||||
elif node.type == 'VariableDeclaration':
|
||||
for declaration in node.declarations:
|
||||
if declaration.init and declaration.init.type == 'FunctionExpression':
|
||||
func_name = declaration.id.name if declaration.id else '<anonymous>'
|
||||
functions[func_name] = escodegen.generate(declaration.init)
|
||||
elif node.type == 'ClassDeclaration':
|
||||
for subnode in node.body.body:
|
||||
if subnode.type == 'MethodDefinition':
|
||||
func_name = subnode.key.name
|
||||
functions[func_name] = escodegen.generate(subnode.value)
|
||||
elif subnode.type == 'VariableDeclaration':
|
||||
for declaration in subnode.declarations:
|
||||
if declaration.init and declaration.init.type == 'FunctionExpression':
|
||||
func_name = declaration.id.name if declaration.id else '<anonymous>'
|
||||
functions[func_name] = escodegen.generate(declaration.init)
|
||||
return functions
|
||||
|
||||
|
||||
def extract_classes(file_path):
|
||||
with open(file_path, 'r') as file:
|
||||
source_code = file.read()
|
||||
classes = {}
|
||||
tree = esprima.parseScript(source_code)
|
||||
for node in tree.body:
|
||||
if node.type == 'ClassDeclaration':
|
||||
class_name = node.id.name
|
||||
function_names = []
|
||||
for subnode in node.body.body:
|
||||
if subnode.type == 'MethodDefinition':
|
||||
function_names.append(subnode.key.name)
|
||||
classes[class_name] = ", ".join(function_names)
|
||||
return classes
|
||||
|
||||
|
||||
def extract_functions_and_classes(directory):
|
||||
files = find_files(directory)
|
||||
functions_dict = {}
|
||||
classes_dict = {}
|
||||
for file in files:
|
||||
functions = extract_functions(file)
|
||||
if functions:
|
||||
functions_dict[file] = functions
|
||||
classes = extract_classes(file)
|
||||
if classes:
|
||||
classes_dict[file] = classes
|
||||
return functions_dict, classes_dict
|
||||
@@ -1,100 +0,0 @@
|
||||
import os
|
||||
|
||||
import tiktoken
|
||||
from langchain_openai import OpenAIEmbeddings
|
||||
from langchain_community.vectorstores import FAISS
|
||||
from retry import retry
|
||||
|
||||
|
||||
# from langchain.embeddings import HuggingFaceEmbeddings
|
||||
# from langchain.embeddings import HuggingFaceInstructEmbeddings
|
||||
# from langchain.embeddings import CohereEmbeddings
|
||||
|
||||
|
||||
def num_tokens_from_string(string: str, encoding_name: str) -> tuple[int, float]:
|
||||
# Function to convert string to tokens and estimate user cost.
|
||||
encoding = tiktoken.get_encoding(encoding_name)
|
||||
num_tokens = len(encoding.encode(string))
|
||||
total_price = (num_tokens / 1000) * 0.0004
|
||||
return num_tokens, total_price
|
||||
|
||||
|
||||
@retry(tries=10, delay=60)
|
||||
def store_add_texts_with_retry(store, i):
|
||||
store.add_texts([i.page_content], metadatas=[i.metadata])
|
||||
# store_pine.add_texts([i.page_content], metadatas=[i.metadata])
|
||||
|
||||
|
||||
def call_openai_api(docs, folder_name):
|
||||
# Function to create a vector store from the documents and save it to disk.
|
||||
|
||||
# create output folder if it doesn't exist
|
||||
if not os.path.exists(f"outputs/{folder_name}"):
|
||||
os.makedirs(f"outputs/{folder_name}")
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
docs_test = [docs[0]]
|
||||
# remove the first element from docs
|
||||
docs.pop(0)
|
||||
# cut first n docs if you want to restart
|
||||
# docs = docs[:n]
|
||||
c1 = 0
|
||||
# pinecone.init(
|
||||
# api_key="", # find at app.pinecone.io
|
||||
# environment="us-east1-gcp" # next to api key in console
|
||||
# )
|
||||
# index_name = "pandas"
|
||||
if ( # azure
|
||||
os.environ.get("OPENAI_API_BASE")
|
||||
and os.environ.get("OPENAI_API_VERSION")
|
||||
and os.environ.get("AZURE_DEPLOYMENT_NAME")
|
||||
and os.environ.get("AZURE_EMBEDDINGS_DEPLOYMENT_NAME")
|
||||
):
|
||||
os.environ["OPENAI_API_TYPE"] = "azure"
|
||||
openai_embeddings = OpenAIEmbeddings(model=os.environ.get("AZURE_EMBEDDINGS_DEPLOYMENT_NAME"))
|
||||
else:
|
||||
openai_embeddings = OpenAIEmbeddings()
|
||||
store = FAISS.from_documents(docs_test, openai_embeddings)
|
||||
# store_pine = Pinecone.from_documents(docs_test, OpenAIEmbeddings(), index_name=index_name)
|
||||
|
||||
# Uncomment for MPNet embeddings
|
||||
# model_name = "sentence-transformers/all-mpnet-base-v2"
|
||||
# hf = HuggingFaceEmbeddings(model_name=model_name)
|
||||
# store = FAISS.from_documents(docs_test, hf)
|
||||
for i in tqdm(
|
||||
docs, desc="Embedding 🦖", unit="docs", total=len(docs), bar_format="{l_bar}{bar}| Time Left: {remaining}"
|
||||
):
|
||||
try:
|
||||
store_add_texts_with_retry(store, i)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
print("Error on ", i)
|
||||
print("Saving progress")
|
||||
print(f"stopped at {c1} out of {len(docs)}")
|
||||
store.save_local(f"outputs/{folder_name}")
|
||||
break
|
||||
c1 += 1
|
||||
store.save_local(f"outputs/{folder_name}")
|
||||
|
||||
|
||||
def get_user_permission(docs, folder_name):
|
||||
# Function to ask user permission to call the OpenAI api and spend their OpenAI funds.
|
||||
# Here we convert the docs list to a string and calculate the number of OpenAI tokens the string represents.
|
||||
# docs_content = (" ".join(docs))
|
||||
docs_content = ""
|
||||
for doc in docs:
|
||||
docs_content += doc.page_content
|
||||
|
||||
tokens, total_price = num_tokens_from_string(string=docs_content, encoding_name="cl100k_base")
|
||||
# Here we print the number of tokens and the approx user cost with some visually appealing formatting.
|
||||
print(f"Number of Tokens = {format(tokens, ',d')}")
|
||||
print(f"Approx Cost = ${format(total_price, ',.2f')}")
|
||||
# Here we check for user permission before calling the API.
|
||||
user_input = input("Price Okay? (Y/N) \n").lower()
|
||||
if user_input == "y":
|
||||
call_openai_api(docs, folder_name)
|
||||
elif user_input == "":
|
||||
call_openai_api(docs, folder_name)
|
||||
else:
|
||||
print("The API was not called. No money was spent.")
|
||||
@@ -1,121 +0,0 @@
|
||||
import ast
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import tiktoken
|
||||
from langchain_community.llms import OpenAI
|
||||
from langchain.prompts import PromptTemplate
|
||||
|
||||
|
||||
def find_files(directory):
|
||||
files_list = []
|
||||
for root, dirs, files in os.walk(directory):
|
||||
for file in files:
|
||||
if file.endswith('.py'):
|
||||
files_list.append(os.path.join(root, file))
|
||||
return files_list
|
||||
|
||||
|
||||
def extract_functions(file_path):
|
||||
with open(file_path, 'r') as file:
|
||||
source_code = file.read()
|
||||
functions = {}
|
||||
tree = ast.parse(source_code)
|
||||
for node in ast.walk(tree):
|
||||
if isinstance(node, ast.FunctionDef):
|
||||
func_name = node.name
|
||||
func_def = ast.get_source_segment(source_code, node)
|
||||
functions[func_name] = func_def
|
||||
return functions
|
||||
|
||||
|
||||
def extract_classes(file_path):
|
||||
with open(file_path, 'r') as file:
|
||||
source_code = file.read()
|
||||
classes = {}
|
||||
tree = ast.parse(source_code)
|
||||
for node in ast.walk(tree):
|
||||
if isinstance(node, ast.ClassDef):
|
||||
class_name = node.name
|
||||
function_names = []
|
||||
for subnode in ast.walk(node):
|
||||
if isinstance(subnode, ast.FunctionDef):
|
||||
function_names.append(subnode.name)
|
||||
classes[class_name] = ", ".join(function_names)
|
||||
return classes
|
||||
|
||||
|
||||
def extract_functions_and_classes(directory):
|
||||
files = find_files(directory)
|
||||
functions_dict = {}
|
||||
classes_dict = {}
|
||||
for file in files:
|
||||
functions = extract_functions(file)
|
||||
if functions:
|
||||
functions_dict[file] = functions
|
||||
classes = extract_classes(file)
|
||||
if classes:
|
||||
classes_dict[file] = classes
|
||||
return functions_dict, classes_dict
|
||||
|
||||
|
||||
def parse_functions(functions_dict, formats, dir):
|
||||
c1 = len(functions_dict)
|
||||
for i, (source, functions) in enumerate(functions_dict.items(), start=1):
|
||||
print(f"Processing file {i}/{c1}")
|
||||
source_w = source.replace(dir + "/", "").replace("." + formats, ".md")
|
||||
subfolders = "/".join(source_w.split("/")[:-1])
|
||||
Path(f"outputs/{subfolders}").mkdir(parents=True, exist_ok=True)
|
||||
for j, (name, function) in enumerate(functions.items(), start=1):
|
||||
print(f"Processing function {j}/{len(functions)}")
|
||||
prompt = PromptTemplate(
|
||||
input_variables=["code"],
|
||||
template="Code: \n{code}, \nDocumentation: ",
|
||||
)
|
||||
llm = OpenAI(temperature=0)
|
||||
response = llm(prompt.format(code=function))
|
||||
mode = "a" if Path(f"outputs/{source_w}").exists() else "w"
|
||||
with open(f"outputs/{source_w}", mode) as f:
|
||||
f.write(
|
||||
f"\n\n# Function name: {name} \n\nFunction: \n```\n{function}\n```, \nDocumentation: \n{response}")
|
||||
|
||||
|
||||
def parse_classes(classes_dict, formats, dir):
|
||||
c1 = len(classes_dict)
|
||||
for i, (source, classes) in enumerate(classes_dict.items()):
|
||||
print(f"Processing file {i + 1}/{c1}")
|
||||
source_w = source.replace(dir + "/", "").replace("." + formats, ".md")
|
||||
subfolders = "/".join(source_w.split("/")[:-1])
|
||||
Path(f"outputs/{subfolders}").mkdir(parents=True, exist_ok=True)
|
||||
for name, function_names in classes.items():
|
||||
print(f"Processing Class {i + 1}/{c1}")
|
||||
prompt = PromptTemplate(
|
||||
input_variables=["class_name", "functions_names"],
|
||||
template="Class name: {class_name} \nFunctions: {functions_names}, \nDocumentation: ",
|
||||
)
|
||||
llm = OpenAI(temperature=0)
|
||||
response = llm(prompt.format(class_name=name, functions_names=function_names))
|
||||
|
||||
with open(f"outputs/{source_w}", "a" if Path(f"outputs/{source_w}").exists() else "w") as f:
|
||||
f.write(f"\n\n# Class name: {name} \n\nFunctions: \n{function_names}, \nDocumentation: \n{response}")
|
||||
|
||||
|
||||
def transform_to_docs(functions_dict, classes_dict, formats, dir):
|
||||
docs_content = ''.join([str(key) + str(value) for key, value in functions_dict.items()])
|
||||
docs_content += ''.join([str(key) + str(value) for key, value in classes_dict.items()])
|
||||
|
||||
num_tokens = len(tiktoken.get_encoding("cl100k_base").encode(docs_content))
|
||||
total_price = ((num_tokens / 1000) * 0.02)
|
||||
|
||||
print(f"Number of Tokens = {num_tokens:,d}")
|
||||
print(f"Approx Cost = ${total_price:,.2f}")
|
||||
|
||||
user_input = input("Price Okay? (Y/N)\n").lower()
|
||||
if user_input == "y" or user_input == "":
|
||||
if not Path("outputs").exists():
|
||||
Path("outputs").mkdir()
|
||||
parse_functions(functions_dict, formats, dir)
|
||||
parse_classes(classes_dict, formats, dir)
|
||||
print("All done!")
|
||||
else:
|
||||
print("The API was not called. No money was spent.")
|
||||
@@ -1,34 +0,0 @@
|
||||
"""Base schema for readers."""
|
||||
from dataclasses import dataclass
|
||||
|
||||
from langchain.docstore.document import Document as LCDocument
|
||||
from parser.schema.schema import BaseDocument
|
||||
|
||||
|
||||
@dataclass
|
||||
class Document(BaseDocument):
|
||||
"""Generic interface for a data document.
|
||||
|
||||
This document connects to data sources.
|
||||
|
||||
"""
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
"""Post init."""
|
||||
if self.text is None:
|
||||
raise ValueError("text field not set.")
|
||||
|
||||
@classmethod
|
||||
def get_type(cls) -> str:
|
||||
"""Get Document type."""
|
||||
return "Document"
|
||||
|
||||
def to_langchain_format(self) -> LCDocument:
|
||||
"""Convert struct to LangChain document format."""
|
||||
metadata = self.extra_info or {}
|
||||
return LCDocument(page_content=self.text, metadata=metadata)
|
||||
|
||||
@classmethod
|
||||
def from_langchain_format(cls, doc: LCDocument) -> "Document":
|
||||
"""Convert struct from LangChain document format."""
|
||||
return cls(text=doc.page_content, extra_info=doc.metadata)
|
||||
@@ -1,64 +0,0 @@
|
||||
"""Base schema for data structures."""
|
||||
from abc import abstractmethod
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from dataclasses_json import DataClassJsonMixin
|
||||
|
||||
|
||||
@dataclass
|
||||
class BaseDocument(DataClassJsonMixin):
|
||||
"""Base document.
|
||||
|
||||
Generic abstract interfaces that captures both index structs
|
||||
as well as documents.
|
||||
|
||||
"""
|
||||
|
||||
# TODO: consolidate fields from Document/IndexStruct into base class
|
||||
text: Optional[str] = None
|
||||
doc_id: Optional[str] = None
|
||||
embedding: Optional[List[float]] = None
|
||||
|
||||
# extra fields
|
||||
extra_info: Optional[Dict[str, Any]] = None
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def get_type(cls) -> str:
|
||||
"""Get Document type."""
|
||||
|
||||
def get_text(self) -> str:
|
||||
"""Get text."""
|
||||
if self.text is None:
|
||||
raise ValueError("text field not set.")
|
||||
return self.text
|
||||
|
||||
def get_doc_id(self) -> str:
|
||||
"""Get doc_id."""
|
||||
if self.doc_id is None:
|
||||
raise ValueError("doc_id not set.")
|
||||
return self.doc_id
|
||||
|
||||
@property
|
||||
def is_doc_id_none(self) -> bool:
|
||||
"""Check if doc_id is None."""
|
||||
return self.doc_id is None
|
||||
|
||||
def get_embedding(self) -> List[float]:
|
||||
"""Get embedding.
|
||||
|
||||
Errors if embedding is None.
|
||||
|
||||
"""
|
||||
if self.embedding is None:
|
||||
raise ValueError("embedding not set.")
|
||||
return self.embedding
|
||||
|
||||
@property
|
||||
def extra_info_str(self) -> Optional[str]:
|
||||
"""Extra info string."""
|
||||
if self.extra_info is None:
|
||||
return None
|
||||
|
||||
return "\n".join([f"{k}: {str(v)}" for k, v in self.extra_info.items()])
|
||||
@@ -1,76 +0,0 @@
|
||||
import re
|
||||
from math import ceil
|
||||
from typing import List
|
||||
|
||||
import tiktoken
|
||||
from parser.schema.base import Document
|
||||
|
||||
def separate_header_and_body(text):
|
||||
header_pattern = r"^(.*?\n){3}"
|
||||
match = re.match(header_pattern, text)
|
||||
header = match.group(0)
|
||||
body = text[len(header):]
|
||||
return header, body
|
||||
|
||||
|
||||
def group_documents(documents: List[Document], min_tokens: int, max_tokens: int) -> List[Document]:
|
||||
docs = []
|
||||
current_group = None
|
||||
|
||||
for doc in documents:
|
||||
doc_len = len(tiktoken.get_encoding("cl100k_base").encode(doc.text))
|
||||
|
||||
if current_group is None:
|
||||
current_group = Document(text=doc.text, doc_id=doc.doc_id, embedding=doc.embedding,
|
||||
extra_info=doc.extra_info)
|
||||
elif len(tiktoken.get_encoding("cl100k_base").encode(
|
||||
current_group.text)) + doc_len < max_tokens and doc_len < min_tokens:
|
||||
current_group.text += " " + doc.text
|
||||
else:
|
||||
docs.append(current_group)
|
||||
current_group = Document(text=doc.text, doc_id=doc.doc_id, embedding=doc.embedding,
|
||||
extra_info=doc.extra_info)
|
||||
|
||||
if current_group is not None:
|
||||
docs.append(current_group)
|
||||
|
||||
return docs
|
||||
|
||||
|
||||
def split_documents(documents: List[Document], max_tokens: int) -> List[Document]:
|
||||
docs = []
|
||||
for doc in documents:
|
||||
token_length = len(tiktoken.get_encoding("cl100k_base").encode(doc.text))
|
||||
if token_length <= max_tokens:
|
||||
docs.append(doc)
|
||||
else:
|
||||
header, body = separate_header_and_body(doc.text)
|
||||
if len(tiktoken.get_encoding("cl100k_base").encode(header)) > max_tokens:
|
||||
body = doc.text
|
||||
header = ""
|
||||
num_body_parts = ceil(token_length / max_tokens)
|
||||
part_length = ceil(len(body) / num_body_parts)
|
||||
body_parts = [body[i:i + part_length] for i in range(0, len(body), part_length)]
|
||||
for i, body_part in enumerate(body_parts):
|
||||
new_doc = Document(text=header + body_part.strip(),
|
||||
doc_id=f"{doc.doc_id}-{i}",
|
||||
embedding=doc.embedding,
|
||||
extra_info=doc.extra_info)
|
||||
docs.append(new_doc)
|
||||
return docs
|
||||
|
||||
|
||||
def group_split(documents: List[Document], max_tokens: int = 2000, min_tokens: int = 150, token_check: bool = True):
|
||||
if not token_check:
|
||||
return documents
|
||||
print("Grouping small documents")
|
||||
try:
|
||||
documents = group_documents(documents=documents, min_tokens=min_tokens, max_tokens=max_tokens)
|
||||
except Exception:
|
||||
print("Grouping failed, try running without token_check")
|
||||
print("Separating large documents")
|
||||
try:
|
||||
documents = split_documents(documents=documents, max_tokens=max_tokens)
|
||||
except Exception:
|
||||
print("Grouping failed, try running without token_check")
|
||||
return documents
|
||||
Reference in New Issue
Block a user