feat: edit deploymen files locations

This commit is contained in:
Alex
2025-02-05 18:04:41 +00:00
parent d754a43fba
commit 0913c43219
48 changed files with 21 additions and 1927 deletions

View File

View File

@@ -1,95 +0,0 @@
import ast
import json
from pathlib import Path
import dotenv
from langchain_community.llms import OpenAI
from langchain.prompts import PromptTemplate
dotenv.load_dotenv()
ps = list(Path("inputs").glob("**/*.py"))
data = []
sources = []
for p in ps:
with open(p) as f:
data.append(f.read())
sources.append(p)
def get_functions_in_class(node):
functions = []
functions_code = []
for child in node.body:
if isinstance(child, ast.FunctionDef):
functions.append(child.name)
functions_code.append(ast.unparse(child))
return functions, functions_code
def get_classes_and_functions(source_code):
tree = ast.parse(source_code)
classes = {}
for node in tree.body:
if isinstance(node, ast.ClassDef):
class_name = node.name
function_name, function = get_functions_in_class(node)
# join function name and function code
functions = dict(zip(function_name, function))
classes[class_name] = functions
return classes
structure_dict = {}
c1 = 0
for code in data:
classes = get_classes_and_functions(ast.parse(code))
source = str(sources[c1])
structure_dict[source] = classes
c1 += 1
# save the structure dict as json
with open('structure_dict.json', 'w') as f:
json.dump(structure_dict, f)
if not Path("outputs").exists():
Path("outputs").mkdir()
c1 = len(structure_dict)
c2 = 0
for source, classes in structure_dict.items():
c2 += 1
print(f"Processing file {c2}/{c1}")
f1 = len(classes)
f2 = 0
for class_name, functions in classes.items():
f2 += 1
print(f"Processing class {f2}/{f1}")
source_w = source.replace("inputs/", "")
source_w = source_w.replace(".py", ".txt")
if not Path(f"outputs/{source_w}").exists():
with open(f"outputs/{source_w}", "w") as f:
f.write(f"Class: {class_name}")
else:
with open(f"outputs/{source_w}", "a") as f:
f.write(f"\n\nClass: {class_name}")
# append class name to the front
for function in functions:
b1 = len(functions)
b2 = 0
print(f"Processing function {b2}/{b1}")
b2 += 1
prompt = PromptTemplate(
input_variables=["code"],
template="Code: \n{code}, \nDocumentation: ",
)
llm = OpenAI(temperature=0)
response = llm(prompt.format(code=functions[function]))
if not Path(f"outputs/{source_w}").exists():
with open(f"outputs/{source_w}", "w") as f:
f.write(f"Function: {functions[function]}, \nDocumentation: {response}")
else:
with open(f"outputs/{source_w}", "a") as f:
f.write(f"\n\nFunction: {functions[function]}, \nDocumentation: {response}")

View File

@@ -1,128 +0,0 @@
import os
import sys
from collections import defaultdict
from typing import List, Optional
import dotenv
import nltk
import typer
from parser.file.bulk import SimpleDirectoryReader
from parser.java2doc import extract_functions_and_classes as extract_java
from parser.js2doc import extract_functions_and_classes as extract_js
from parser.open_ai_func import call_openai_api, get_user_permission
from parser.py2doc import extract_functions_and_classes as extract_py
from parser.py2doc import transform_to_docs
from parser.schema.base import Document
from parser.token_func import group_split
dotenv.load_dotenv()
app = typer.Typer(add_completion=False)
nltk.download('punkt', quiet=True)
nltk.download('averaged_perceptron_tagger', quiet=True)
def metadata_from_filename(title):
return {'title': title}
# Splits all files in specified folder to documents
@app.command()
def ingest(yes: bool = typer.Option(False, "-y", "--yes", prompt=False,
help="Whether to skip price confirmation"),
dir: Optional[List[str]] = typer.Option(["inputs"],
help="""List of paths to directory for index creation.
E.g. --dir inputs --dir inputs2"""),
file: Optional[List[str]] = typer.Option(None,
help="""File paths to use (Optional; overrides dir).
E.g. --file inputs/1.md --file inputs/2.md"""),
recursive: Optional[bool] = typer.Option(True, help="Whether to recursively search in subdirectories."),
limit: Optional[int] = typer.Option(None, help="Maximum number of files to read."),
formats: Optional[List[str]] = typer.Option([".rst", ".md"],
help="""List of required extensions (list with .)
Currently supported:
.rst, .md, .pdf, .docx, .csv, .epub, .html, .mdx"""),
exclude: Optional[bool] = typer.Option(True, help="Whether to exclude hidden files (dotfiles)."),
sample: Optional[bool] = typer.Option(False,
help="Whether to output sample of the first 5 split documents."),
token_check: Optional[bool] = typer.Option(True, help="Whether to group small documents and split large."),
min_tokens: Optional[int] = typer.Option(150, help="Minimum number of tokens to not group."),
max_tokens: Optional[int] = typer.Option(2000, help="Maximum number of tokens to not split."),
):
"""
Creates index from specified location or files.
By default /inputs folder is used, .rst and .md are parsed.
"""
def process_one_docs(directory, folder_name):
raw_docs = SimpleDirectoryReader(input_dir=directory, input_files=file, recursive=recursive,
required_exts=formats, num_files_limit=limit,
exclude_hidden=exclude, file_metadata=metadata_from_filename).load_data()
# Here we split the documents, as needed, into smaller chunks.
# We do this due to the context limits of the LLMs.
raw_docs = group_split(documents=raw_docs, min_tokens=min_tokens, max_tokens=max_tokens,
token_check=token_check)
# Old method
# text_splitter = RecursiveCharacterTextSplitter()
# docs = text_splitter.split_documents(raw_docs)
# Sample feature
if sample:
for i in range(min(5, len(raw_docs))):
print(raw_docs[i].text)
docs = [Document.to_langchain_format(raw_doc) for raw_doc in raw_docs]
# Here we check for command line arguments for bot calls.
# If no argument exists or the yes is not True, then the
# user permission is requested to call the API.
if len(sys.argv) > 1 and yes:
call_openai_api(docs, folder_name)
else:
get_user_permission(docs, folder_name)
folder_counts = defaultdict(int)
folder_names = []
for dir_path in dir:
folder_name = os.path.basename(os.path.normpath(dir_path))
folder_counts[folder_name] += 1
if folder_counts[folder_name] > 1:
folder_name = f"{folder_name}_{folder_counts[folder_name]}"
folder_names.append(folder_name)
for directory, folder_name in zip(dir, folder_names):
process_one_docs(directory, folder_name)
@app.command()
def convert(dir: Optional[str] = typer.Option("inputs",
help="""Path to directory to make documentation for.
E.g. --dir inputs """),
formats: Optional[str] = typer.Option("py",
help="""Required language.
py, js, java supported for now""")):
"""
Creates documentation linked to original functions from specified location.
By default /inputs folder is used, .py is parsed.
"""
# Using a dictionary to map between the formats and their respective extraction functions
# makes the code more scalable. When adding more formats in the future,
# you only need to update the extraction_functions dictionary.
extraction_functions = {
'py': extract_py,
'js': extract_js,
'java': extract_java
}
if formats in extraction_functions:
functions_dict, classes_dict = extraction_functions[formats](dir)
else:
raise Exception("Sorry, language not supported yet")
transform_to_docs(functions_dict, classes_dict, formats, dir)
if __name__ == "__main__":
app()

View File

@@ -1,90 +0,0 @@
import pickle
import sys
from argparse import ArgumentParser
from pathlib import Path
import dotenv
import faiss
import tiktoken
from langchain_openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
def num_tokens_from_string(string: str, encoding_name: str) -> int:
# Function to convert string to tokens and estimate user cost.
encoding = tiktoken.get_encoding(encoding_name)
num_tokens = len(encoding.encode(string))
total_price = ((num_tokens / 1000) * 0.0004)
return num_tokens, total_price
def call_openai_api():
# Function to create a vector store from the documents and save it to disk.
store = FAISS.from_texts(docs, OpenAIEmbeddings(), metadatas=metadatas)
faiss.write_index(store.index, "docs.index")
store.index = None
with open("faiss_store.pkl", "wb") as f:
pickle.dump(store, f)
def get_user_permission():
# Function to ask user permission to call the OpenAI api and spend their OpenAI funds.
# Here we convert the docs list to a string and calculate the number of OpenAI tokens the string represents.
docs_content = (" ".join(docs))
tokens, total_price = num_tokens_from_string(string=docs_content, encoding_name="cl100k_base")
# Here we print the number of tokens and the approx user cost with some visually appealing formatting.
print(f"Number of Tokens = {format(tokens, ',d')}")
print(f"Approx Cost = ${format(total_price, ',.2f')}")
# Here we check for user permission before calling the API.
user_input = input("Price Okay? (Y/N) \n").lower()
if user_input == "y":
call_openai_api()
elif user_input == "":
call_openai_api()
else:
print("The API was not called. No money was spent.")
# Load .env file
dotenv.load_dotenv()
ap = ArgumentParser("Script for training DocsGPT on .rst documentation files.")
ap.add_argument("-i", "--inputs",
type=str,
default="inputs",
help="Directory containing documentation files")
args = ap.parse_args()
# Here we load in the data in the format that Notion exports it in.
ps = list(Path(args.inputs).glob("**/*.rst"))
# parse all child directories
data = []
sources = []
for p in ps:
with open(p) as f:
data.append(f.read())
sources.append(p)
# Here we split the documents, as needed, into smaller chunks.
# We do this due to the context limits of the LLMs.
text_splitter = CharacterTextSplitter(chunk_size=1500, separator="\n")
docs = []
metadatas = []
for i, d in enumerate(data):
splits = text_splitter.split_text(d)
docs.extend(splits)
metadatas.extend([{"source": sources[i]}] * len(splits))
# Here we check for command line arguments for bot calls.
# If no argument exists or the permission_bypass_flag argument is not '-y',
# user permission is requested to call the API.
if len(sys.argv) > 1:
permission_bypass_flag = sys.argv[1]
if permission_bypass_flag == '-y':
call_openai_api()
else:
get_user_permission()
else:
get_user_permission()

View File

@@ -1,133 +0,0 @@
import os
import pickle
import shutil
import sys
from argparse import ArgumentParser
from pathlib import Path
import dotenv
import faiss
import tiktoken
from langchain_openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from sphinx.cmd.build import main as sphinx_main
def convert_rst_to_txt(src_dir, dst_dir):
# Check if the source directory exists
if not os.path.exists(src_dir):
raise Exception("Source directory does not exist")
# Walk through the source directory
for root, dirs, files in os.walk(src_dir):
for file in files:
# Check if the file has .rst extension
if file.endswith(".rst"):
# Construct the full path of the file
src_file = os.path.join(root, file.replace(".rst", ""))
# Convert the .rst file to .txt file using sphinx-build
args = f". -b text -D extensions=sphinx.ext.autodoc " \
f"-D master_doc={src_file} " \
f"-D source_suffix=.rst " \
f"-C {dst_dir} "
sphinx_main(args.split())
elif file.endswith(".md"):
# Rename the .md file to .rst file
src_file = os.path.join(root, file)
dst_file = os.path.join(root, file.replace(".md", ".rst"))
os.rename(src_file, dst_file)
# Convert the .rst file to .txt file using sphinx-build
args = f". -b text -D extensions=sphinx.ext.autodoc " \
f"-D master_doc={dst_file} " \
f"-D source_suffix=.rst " \
f"-C {dst_dir} "
sphinx_main(args.split())
def num_tokens_from_string(string: str, encoding_name: str) -> int:
# Function to convert string to tokens and estimate user cost.
encoding = tiktoken.get_encoding(encoding_name)
num_tokens = len(encoding.encode(string))
total_price = ((num_tokens / 1000) * 0.0004)
return num_tokens, total_price
def call_openai_api():
# Function to create a vector store from the documents and save it to disk.
store = FAISS.from_texts(docs, OpenAIEmbeddings(), metadatas=metadatas)
faiss.write_index(store.index, "docs.index")
store.index = None
with open("faiss_store.pkl", "wb") as f:
pickle.dump(store, f)
def get_user_permission():
# Function to ask user permission to call the OpenAI api and spend their OpenAI funds.
# Here we convert the docs list to a string and calculate the number of OpenAI tokens the string represents.
docs_content = (" ".join(docs))
tokens, total_price = num_tokens_from_string(string=docs_content, encoding_name="cl100k_base")
# Here we print the number of tokens and the approx user cost with some visually appealing formatting.
print(f"Number of Tokens = {format(tokens, ',d')}")
print(f"Approx Cost = ${format(total_price, ',.2f')}")
# Here we check for user permission before calling the API.
user_input = input("Price Okay? (Y/N) \n").lower()
if user_input == "y":
call_openai_api()
elif user_input == "":
call_openai_api()
else:
print("The API was not called. No money was spent.")
ap = ArgumentParser("Script for training DocsGPT on Sphinx documentation")
ap.add_argument("-i", "--inputs",
type=str,
default="inputs",
help="Directory containing documentation files")
args = ap.parse_args()
# Load .env file
dotenv.load_dotenv()
# Directory to vector
src_dir = args.inputs
dst_dir = "tmp"
convert_rst_to_txt(src_dir, dst_dir)
# Here we load in the data in the format that Notion exports it in.
ps = list(Path("tmp/" + src_dir).glob("**/*.txt"))
# parse all child directories
data = []
sources = []
for p in ps:
with open(p) as f:
data.append(f.read())
sources.append(p)
# Here we split the documents, as needed, into smaller chunks.
# We do this due to the context limits of the LLMs.
text_splitter = CharacterTextSplitter(chunk_size=1500, separator="\n")
docs = []
metadatas = []
for i, d in enumerate(data):
splits = text_splitter.split_text(d)
docs.extend(splits)
metadatas.extend([{"source": sources[i]}] * len(splits))
# Here we check for command line arguments for bot calls.
# If no argument exists or the permission_bypass_flag argument is not '-y',
# user permission is requested to call the API.
if len(sys.argv) > 1:
permission_bypass_flag = sys.argv[1]
if permission_bypass_flag == '-y':
call_openai_api()
else:
get_user_permission()
else:
get_user_permission()
# Delete tmp folder
# Commented out for now
shutil.rmtree(dst_dir)

View File

@@ -1 +0,0 @@

View File

@@ -1,19 +0,0 @@
"""Base reader class."""
from abc import abstractmethod
from typing import Any, List
from langchain.docstore.document import Document as LCDocument
from parser.schema.base import Document
class BaseReader:
"""Utilities for loading data from a directory."""
@abstractmethod
def load_data(self, *args: Any, **load_kwargs: Any) -> List[Document]:
"""Load data from the input directory."""
def load_langchain_documents(self, **load_kwargs: Any) -> List[LCDocument]:
"""Load data in LangChain document format."""
docs = self.load_data(**load_kwargs)
return [d.to_langchain_format() for d in docs]

View File

@@ -1,38 +0,0 @@
"""Base parser and config class."""
from abc import abstractmethod
from pathlib import Path
from typing import Dict, List, Optional, Union
class BaseParser:
"""Base class for all parsers."""
def __init__(self, parser_config: Optional[Dict] = None):
"""Init params."""
self._parser_config = parser_config
def init_parser(self) -> None:
"""Init parser and store it."""
parser_config = self._init_parser()
self._parser_config = parser_config
@property
def parser_config_set(self) -> bool:
"""Check if parser config is set."""
return self._parser_config is not None
@property
def parser_config(self) -> Dict:
"""Check if parser config is set."""
if self._parser_config is None:
raise ValueError("Parser config not set.")
return self._parser_config
@abstractmethod
def _init_parser(self) -> Dict:
"""Initialize the parser with the config."""
@abstractmethod
def parse_file(self, file: Path, errors: str = "ignore") -> Union[str, List[str]]:
"""Parse file."""

View File

@@ -1,167 +0,0 @@
"""Simple reader that reads files of different formats from a directory."""
import logging
from parser.file.base import BaseReader
from parser.file.base_parser import BaseParser
from parser.file.docs_parser import DocxParser, PDFParser
from parser.file.epub_parser import EpubParser
from parser.file.html_parser import HTMLParser
from parser.file.markdown_parser import MarkdownParser
from parser.file.rst_parser import RstParser
from parser.file.tabular_parser import PandasCSVParser
from parser.schema.base import Document
from pathlib import Path
from typing import Callable, Dict, List, Optional, Union
DEFAULT_FILE_EXTRACTOR: Dict[str, BaseParser] = {
".pdf": PDFParser(),
".docx": DocxParser(),
".csv": PandasCSVParser(),
".epub": EpubParser(),
".md": MarkdownParser(),
".rst": RstParser(),
".html": HTMLParser(),
".mdx": MarkdownParser(),
}
class SimpleDirectoryReader(BaseReader):
"""Simple directory reader.
Can read files into separate documents, or concatenates
files into one document text.
Args:
input_dir (str): Path to the directory.
input_files (List): List of file paths to read (Optional; overrides input_dir)
exclude_hidden (bool): Whether to exclude hidden files (dotfiles).
errors (str): how encoding and decoding errors are to be handled,
see https://docs.python.org/3/library/functions.html#open
recursive (bool): Whether to recursively search in subdirectories.
False by default.
required_exts (Optional[List[str]]): List of required extensions.
Default is None.
file_extractor (Optional[Dict[str, BaseParser]]): A mapping of file
extension to a BaseParser class that specifies how to convert that file
to text. See DEFAULT_FILE_EXTRACTOR.
num_files_limit (Optional[int]): Maximum number of files to read.
Default is None.
file_metadata (Optional[Callable[str, Dict]]): A function that takes
in a filename and returns a Dict of metadata for the Document.
Default is None.
"""
def __init__(
self,
input_dir: Optional[str] = None,
input_files: Optional[List] = None,
exclude_hidden: bool = True,
errors: str = "ignore",
recursive: bool = True,
required_exts: Optional[List[str]] = None,
file_extractor: Optional[Dict[str, BaseParser]] = None,
num_files_limit: Optional[int] = None,
file_metadata: Optional[Callable[[str], Dict]] = None,
) -> None:
"""Initialize with parameters."""
super().__init__()
if not input_dir and not input_files:
raise ValueError("Must provide either `input_dir` or `input_files`.")
self.errors = errors
self.recursive = recursive
self.exclude_hidden = exclude_hidden
self.required_exts = required_exts
self.num_files_limit = num_files_limit
print("input_files")
print(input_files)
if input_files:
self.input_files = []
for path in input_files:
input_file = Path(path)
self.input_files.append(input_file)
elif input_dir:
self.input_dir = Path(input_dir)
self.input_files = self._add_files(self.input_dir)
self.file_extractor = file_extractor or DEFAULT_FILE_EXTRACTOR
self.file_metadata = file_metadata
def _add_files(self, input_dir: Path) -> List[Path]:
"""Add files."""
input_files = sorted(input_dir.iterdir())
new_input_files = []
dirs_to_explore = []
for input_file in input_files:
if input_file.is_dir():
if self.recursive:
dirs_to_explore.append(input_file)
elif self.exclude_hidden and input_file.name.startswith("."):
continue
elif (
self.required_exts is not None
and input_file.suffix not in self.required_exts
):
continue
else:
new_input_files.append(input_file)
for dir_to_explore in dirs_to_explore:
sub_input_files = self._add_files(dir_to_explore)
new_input_files.extend(sub_input_files)
if self.num_files_limit is not None and self.num_files_limit > 0:
new_input_files = new_input_files[0: self.num_files_limit]
# print total number of files added
logging.debug(
f"> [SimpleDirectoryReader] Total files added: {len(new_input_files)}"
)
return new_input_files
def load_data(self, concatenate: bool = False) -> List[Document]:
"""Load data from the input directory.
Args:
concatenate (bool): whether to concatenate all files into one document.
If set to True, file metadata is ignored.
False by default.
Returns:
List[Document]: A list of documents.
"""
data: Union[str, List[str]] = ""
data_list: List[str] = []
metadata_list = []
for input_file in self.input_files:
if input_file.suffix in self.file_extractor:
parser = self.file_extractor[input_file.suffix]
if not parser.parser_config_set:
parser.init_parser()
data = parser.parse_file(input_file, errors=self.errors)
else:
# do standard read
with open(input_file, "r", errors=self.errors) as f:
data = f.read()
if isinstance(data, List):
data_list.extend(data)
if self.file_metadata is not None:
for _ in range(len(data)):
metadata_list.append(self.file_metadata(str(input_file)))
else:
data_list.append(str(data))
if self.file_metadata is not None:
metadata_list.append(self.file_metadata(str(input_file)))
if concatenate:
return [Document("\n".join(data_list))]
elif self.file_metadata is not None:
return [Document(d, extra_info=m) for d, m in zip(data_list, metadata_list)]
else:
return [Document(d) for d in data_list]

View File

@@ -1,59 +0,0 @@
"""Docs parser.
Contains parsers for docx, pdf files.
"""
from pathlib import Path
from typing import Dict
from parser.file.base_parser import BaseParser
class PDFParser(BaseParser):
"""PDF parser."""
def _init_parser(self) -> Dict:
"""Init parser."""
return {}
def parse_file(self, file: Path, errors: str = "ignore") -> str:
"""Parse file."""
try:
import PyPDF2
except ImportError:
raise ValueError("PyPDF2 is required to read PDF files.")
text_list = []
with open(file, "rb") as fp:
# Create a PDF object
pdf = PyPDF2.PdfReader(fp)
# Get the number of pages in the PDF document
num_pages = len(pdf.pages)
# Iterate over every page
for page in range(num_pages):
# Extract the text from the page
page_text = pdf.pages[page].extract_text()
text_list.append(page_text)
text = "\n".join(text_list)
return text
class DocxParser(BaseParser):
"""Docx parser."""
def _init_parser(self) -> Dict:
"""Init parser."""
return {}
def parse_file(self, file: Path, errors: str = "ignore") -> str:
"""Parse file."""
try:
import docx2txt
except ImportError:
raise ValueError("docx2txt is required to read Microsoft Word files.")
text = docx2txt.process(file)
return text

View File

@@ -1,43 +0,0 @@
"""Epub parser.
Contains parsers for epub files.
"""
from pathlib import Path
from typing import Dict
from parser.file.base_parser import BaseParser
class EpubParser(BaseParser):
"""Epub Parser."""
def _init_parser(self) -> Dict:
"""Init parser."""
return {}
def parse_file(self, file: Path, errors: str = "ignore") -> str:
"""Parse file."""
try:
import ebooklib
from ebooklib import epub
except ImportError:
raise ValueError("`EbookLib` is required to read Epub files.")
try:
import html2text
except ImportError:
raise ValueError("`html2text` is required to parse Epub files.")
text_list = []
book = epub.read_epub(file, options={"ignore_ncx": True})
# Iterate through all chapters.
for item in book.get_items():
# Chapters are typically located in epub documents items.
if item.get_type() == ebooklib.ITEM_DOCUMENT:
text_list.append(
html2text.html2text(item.get_content().decode("utf-8"))
)
text = "\n".join(text_list)
return text

View File

@@ -1,83 +0,0 @@
"""HTML parser.
Contains parser for html files.
"""
import re
from pathlib import Path
from typing import Dict, Union
from parser.file.base_parser import BaseParser
class HTMLParser(BaseParser):
"""HTML parser."""
def _init_parser(self) -> Dict:
"""Init parser."""
return {}
def parse_file(self, file: Path, errors: str = "ignore") -> Union[str, list[str]]:
"""Parse file.
Returns:
Union[str, List[str]]: a string or a List of strings.
"""
try:
from unstructured.partition.html import partition_html
from unstructured.staging.base import convert_to_isd
from unstructured.cleaners.core import clean
except ImportError:
raise ValueError("unstructured package is required to parse HTML files.")
# Using the unstructured library to convert the html to isd format
# isd sample : isd = [
# {"text": "My Title", "type": "Title"},
# {"text": "My Narrative", "type": "NarrativeText"}
# ]
with open(file, "r", encoding="utf-8") as fp:
elements = partition_html(file=fp)
isd = convert_to_isd(elements)
# Removing non ascii charactwers from isd_el['text']
for isd_el in isd:
isd_el['text'] = isd_el['text'].encode("ascii", "ignore").decode()
# Removing all the \n characters from isd_el['text'] using regex and replace with single space
# Removing all the extra spaces from isd_el['text'] using regex and replace with single space
for isd_el in isd:
isd_el['text'] = re.sub(r'\n', ' ', isd_el['text'], flags=re.MULTILINE | re.DOTALL)
isd_el['text'] = re.sub(r"\s{2,}", " ", isd_el['text'], flags=re.MULTILINE | re.DOTALL)
# more cleaning: extra_whitespaces, dashes, bullets, trailing_punctuation
for isd_el in isd:
clean(isd_el['text'], extra_whitespace=True, dashes=True, bullets=True, trailing_punctuation=True)
# Creating a list of all the indexes of isd_el['type'] = 'Title'
title_indexes = [i for i, isd_el in enumerate(isd) if isd_el['type'] == 'Title']
# Creating 'Chunks' - List of lists of strings
# each list starting with isd_el['type'] = 'Title' and all the data till the next 'Title'
# Each Chunk can be thought of as an individual set of data, which can be sent to the model
# Where Each Title is grouped together with the data under it
Chunks = [[]]
final_chunks = list(list())
for i, isd_el in enumerate(isd):
if i in title_indexes:
Chunks.append([])
Chunks[-1].append(isd_el['text'])
# Removing all the chunks with sum of length of all the strings in the chunk < 25
# TODO: This value can be a user defined variable
for chunk in Chunks:
# sum of length of all the strings in the chunk
sum = 0
sum += len(str(chunk))
if sum < 25:
Chunks.remove(chunk)
else:
# appending all the approved chunks to final_chunks as a single string
final_chunks.append(" ".join([str(item) for item in chunk]))
return final_chunks

View File

@@ -1,149 +0,0 @@
"""Markdown parser.
Contains parser for md files.
"""
import re
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union, cast
import tiktoken
from parser.file.base_parser import BaseParser
class MarkdownParser(BaseParser):
"""Markdown parser.
Extract text from markdown files.
Returns dictionary with keys as headers and values as the text between headers.
"""
def __init__(
self,
*args: Any,
remove_hyperlinks: bool = True,
remove_images: bool = True,
max_tokens: int = 2048,
# remove_tables: bool = True,
**kwargs: Any,
) -> None:
"""Init params."""
super().__init__(*args, **kwargs)
self._remove_hyperlinks = remove_hyperlinks
self._remove_images = remove_images
self._max_tokens = max_tokens
# self._remove_tables = remove_tables
def tups_chunk_append(self, tups: List[Tuple[Optional[str], str]], current_header: Optional[str],
current_text: str):
"""Append to tups chunk."""
num_tokens = len(tiktoken.get_encoding("cl100k_base").encode(current_text))
if num_tokens > self._max_tokens:
chunks = [current_text[i:i + self._max_tokens] for i in range(0, len(current_text), self._max_tokens)]
for chunk in chunks:
tups.append((current_header, chunk))
else:
tups.append((current_header, current_text))
return tups
def markdown_to_tups(self, markdown_text: str) -> List[Tuple[Optional[str], str]]:
"""Convert a markdown file to a dictionary.
The keys are the headers and the values are the text under each header.
"""
markdown_tups: List[Tuple[Optional[str], str]] = []
lines = markdown_text.split("\n")
current_header = None
current_text = ""
for line in lines:
header_match = re.match(r"^#+\s", line)
if header_match:
if current_header is not None:
if current_text == "" or None:
continue
markdown_tups = self.tups_chunk_append(markdown_tups, current_header, current_text)
current_header = line
current_text = ""
else:
current_text += line + "\n"
markdown_tups = self.tups_chunk_append(markdown_tups, current_header, current_text)
if current_header is not None:
# pass linting, assert keys are defined
markdown_tups = [
(re.sub(r"#", "", cast(str, key)).strip(), re.sub(r"<.*?>", "", value))
for key, value in markdown_tups
]
else:
markdown_tups = [
(key, re.sub("\n", "", value)) for key, value in markdown_tups
]
return markdown_tups
def remove_images(self, content: str) -> str:
"""Get a dictionary of a markdown file from its path."""
pattern = r"!{1}\[\[(.*)\]\]"
content = re.sub(pattern, "", content)
return content
# def remove_tables(self, content: str) -> List[List[str]]:
# """Convert markdown tables to nested lists."""
# table_rows_pattern = r"((\r?\n){2}|^)([^\r\n]*\|[^\r\n]*(\r?\n)?)+(?=(\r?\n){2}|$)"
# table_cells_pattern = r"([^\|\r\n]*)\|"
#
# table_rows = re.findall(table_rows_pattern, content, re.MULTILINE)
# table_lists = []
# for row in table_rows:
# cells = re.findall(table_cells_pattern, row[2])
# cells = [cell.strip() for cell in cells if cell.strip()]
# table_lists.append(cells)
# return str(table_lists)
def remove_hyperlinks(self, content: str) -> str:
"""Get a dictionary of a markdown file from its path."""
pattern = r"\[(.*?)\]\((.*?)\)"
content = re.sub(pattern, r"\1", content)
return content
def _init_parser(self) -> Dict:
"""Initialize the parser with the config."""
return {}
def parse_tups(
self, filepath: Path, errors: str = "ignore"
) -> List[Tuple[Optional[str], str]]:
"""Parse file into tuples."""
with open(filepath, "r", encoding='utf8') as f:
try:
content = f.read()
except (Exception,) as e:
print(f'Error a file: "{filepath}"')
raise e
if self._remove_hyperlinks:
content = self.remove_hyperlinks(content)
if self._remove_images:
content = self.remove_images(content)
# if self._remove_tables:
# content = self.remove_tables(content)
markdown_tups = self.markdown_to_tups(content)
return markdown_tups
def parse_file(
self, filepath: Path, errors: str = "ignore"
) -> Union[str, List[str]]:
"""Parse file into string."""
tups = self.parse_tups(filepath, errors=errors)
results = []
# TODO: don't include headers right now
for header, value in tups:
if header is None:
results.append(value)
else:
results.append(f"\n\n{header}\n{value}")
return results

View File

@@ -1,51 +0,0 @@
from urllib.parse import urlparse
from openapi_parser import parse
try:
from scripts.parser.file.base_parser import BaseParser
except ModuleNotFoundError:
from base_parser import BaseParser
class OpenAPI3Parser(BaseParser):
def init_parser(self) -> None:
return super().init_parser()
def get_base_urls(self, urls):
base_urls = []
for i in urls:
parsed_url = urlparse(i)
base_url = parsed_url.scheme + "://" + parsed_url.netloc
if base_url not in base_urls:
base_urls.append(base_url)
return base_urls
def get_info_from_paths(self, path):
info = ""
if path.operations:
for operation in path.operations:
info += (
f"\n{operation.method.value}="
f"{operation.responses[0].description}"
)
return info
def parse_file(self, file_path):
data = parse(file_path)
results = ""
base_urls = self.get_base_urls(link.url for link in data.servers)
base_urls = ",".join([base_url for base_url in base_urls])
results += f"Base URL:{base_urls}\n"
i = 1
for path in data.paths:
info = self.get_info_from_paths(path)
results += (
f"Path{i}: {path.url}\n"
f"description: {path.description}\n"
f"parameters: {path.parameters}\nmethods: {info}\n"
)
i += 1
with open("results.txt", "w") as f:
f.write(results)
return results

View File

@@ -1,173 +0,0 @@
"""reStructuredText parser.
Contains parser for md files.
"""
import re
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union
from parser.file.base_parser import BaseParser
class RstParser(BaseParser):
"""reStructuredText parser.
Extract text from .rst files.
Returns dictionary with keys as headers and values as the text between headers.
"""
def __init__(
self,
*args: Any,
remove_hyperlinks: bool = True,
remove_images: bool = True,
remove_table_excess: bool = True,
remove_interpreters: bool = True,
remove_directives: bool = True,
remove_whitespaces_excess: bool = True,
# Be careful with remove_characters_excess, might cause data loss
remove_characters_excess: bool = True,
**kwargs: Any,
) -> None:
"""Init params."""
super().__init__(*args, **kwargs)
self._remove_hyperlinks = remove_hyperlinks
self._remove_images = remove_images
self._remove_table_excess = remove_table_excess
self._remove_interpreters = remove_interpreters
self._remove_directives = remove_directives
self._remove_whitespaces_excess = remove_whitespaces_excess
self._remove_characters_excess = remove_characters_excess
def rst_to_tups(self, rst_text: str) -> List[Tuple[Optional[str], str]]:
"""Convert a reStructuredText file to a dictionary.
The keys are the headers and the values are the text under each header.
"""
rst_tups: List[Tuple[Optional[str], str]] = []
lines = rst_text.split("\n")
current_header = None
current_text = ""
for i, line in enumerate(lines):
header_match = re.match(r"^[^\S\n]*[-=]+[^\S\n]*$", line)
if header_match and i > 0 and (
len(lines[i - 1].strip()) == len(header_match.group().strip()) or lines[i - 2] == lines[i - 2]):
if current_header is not None:
if current_text == "" or None:
continue
# removes the next heading from current Document
if current_text.endswith(lines[i - 1] + "\n"):
current_text = current_text[:len(current_text) - len(lines[i - 1] + "\n")]
rst_tups.append((current_header, current_text))
current_header = lines[i - 1]
current_text = ""
else:
current_text += line + "\n"
rst_tups.append((current_header, current_text))
# TODO: Format for rst
#
# if current_header is not None:
# # pass linting, assert keys are defined
# rst_tups = [
# (re.sub(r"#", "", cast(str, key)).strip(), re.sub(r"<.*?>", "", value))
# for key, value in rst_tups
# ]
# else:
# rst_tups = [
# (key, re.sub("\n", "", value)) for key, value in rst_tups
# ]
if current_header is None:
rst_tups = [
(key, re.sub("\n", "", value)) for key, value in rst_tups
]
return rst_tups
def remove_images(self, content: str) -> str:
pattern = r"\.\. image:: (.*)"
content = re.sub(pattern, "", content)
return content
def remove_hyperlinks(self, content: str) -> str:
pattern = r"`(.*?) <(.*?)>`_"
content = re.sub(pattern, r"\1", content)
return content
def remove_directives(self, content: str) -> str:
"""Removes reStructuredText Directives"""
pattern = r"`\.\.([^:]+)::"
content = re.sub(pattern, "", content)
return content
def remove_interpreters(self, content: str) -> str:
"""Removes reStructuredText Interpreted Text Roles"""
pattern = r":(\w+):"
content = re.sub(pattern, "", content)
return content
def remove_table_excess(self, content: str) -> str:
"""Pattern to remove grid table separators"""
pattern = r"^\+[-]+\+[-]+\+$"
content = re.sub(pattern, "", content, flags=re.MULTILINE)
return content
def remove_whitespaces_excess(self, content: List[Tuple[str, Any]]) -> List[Tuple[str, Any]]:
"""Pattern to match 2 or more consecutive whitespaces"""
pattern = r"\s{2,}"
content = [(key, re.sub(pattern, " ", value)) for key, value in content]
return content
def remove_characters_excess(self, content: List[Tuple[str, Any]]) -> List[Tuple[str, Any]]:
"""Pattern to match 2 or more consecutive characters"""
pattern = r"(\S)\1{2,}"
content = [(key, re.sub(pattern, r"\1\1\1", value, flags=re.MULTILINE)) for key, value in content]
return content
def _init_parser(self) -> Dict:
"""Initialize the parser with the config."""
return {}
def parse_tups(
self, filepath: Path, errors: str = "ignore"
) -> List[Tuple[Optional[str], str]]:
"""Parse file into tuples."""
with open(filepath, "r") as f:
content = f.read()
if self._remove_hyperlinks:
content = self.remove_hyperlinks(content)
if self._remove_images:
content = self.remove_images(content)
if self._remove_table_excess:
content = self.remove_table_excess(content)
if self._remove_directives:
content = self.remove_directives(content)
if self._remove_interpreters:
content = self.remove_interpreters(content)
rst_tups = self.rst_to_tups(content)
if self._remove_whitespaces_excess:
rst_tups = self.remove_whitespaces_excess(rst_tups)
if self._remove_characters_excess:
rst_tups = self.remove_characters_excess(rst_tups)
return rst_tups
def parse_file(
self, filepath: Path, errors: str = "ignore"
) -> Union[str, List[str]]:
"""Parse file into string."""
tups = self.parse_tups(filepath, errors=errors)
results = []
# TODO: don't include headers right now
for header, value in tups:
if header is None:
results.append(value)
else:
results.append(f"\n\n{header}\n{value}")
return results

View File

@@ -1,115 +0,0 @@
"""Tabular parser.
Contains parsers for tabular data files.
"""
from pathlib import Path
from typing import Any, Dict, List, Union
from parser.file.base_parser import BaseParser
class CSVParser(BaseParser):
"""CSV parser.
Args:
concat_rows (bool): whether to concatenate all rows into one document.
If set to False, a Document will be created for each row.
True by default.
"""
def __init__(self, *args: Any, concat_rows: bool = True, **kwargs: Any) -> None:
"""Init params."""
super().__init__(*args, **kwargs)
self._concat_rows = concat_rows
def _init_parser(self) -> Dict:
"""Init parser."""
return {}
def parse_file(self, file: Path, errors: str = "ignore") -> Union[str, List[str]]:
"""Parse file.
Returns:
Union[str, List[str]]: a string or a List of strings.
"""
try:
import csv
except ImportError:
raise ValueError("csv module is required to read CSV files.")
text_list = []
with open(file, "r") as fp:
csv_reader = csv.reader(fp)
for row in csv_reader:
text_list.append(", ".join(row))
if self._concat_rows:
return "\n".join(text_list)
else:
return text_list
class PandasCSVParser(BaseParser):
r"""Pandas-based CSV parser.
Parses CSVs using the separator detection from Pandas `read_csv`function.
If special parameters are required, use the `pandas_config` dict.
Args:
concat_rows (bool): whether to concatenate all rows into one document.
If set to False, a Document will be created for each row.
True by default.
col_joiner (str): Separator to use for joining cols per row.
Set to ", " by default.
row_joiner (str): Separator to use for joining each row.
Only used when `concat_rows=True`.
Set to "\n" by default.
pandas_config (dict): Options for the `pandas.read_csv` function call.
Refer to https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
for more information.
Set to empty dict by default, this means pandas will try to figure
out the separators, table head, etc. on its own.
"""
def __init__(
self,
*args: Any,
concat_rows: bool = True,
col_joiner: str = ", ",
row_joiner: str = "\n",
pandas_config: dict = {},
**kwargs: Any
) -> None:
"""Init params."""
super().__init__(*args, **kwargs)
self._concat_rows = concat_rows
self._col_joiner = col_joiner
self._row_joiner = row_joiner
self._pandas_config = pandas_config
def _init_parser(self) -> Dict:
"""Init parser."""
return {}
def parse_file(self, file: Path, errors: str = "ignore") -> Union[str, List[str]]:
"""Parse file."""
try:
import pandas as pd
except ImportError:
raise ValueError("pandas module is required to read CSV files.")
df = pd.read_csv(file, **self._pandas_config)
text_list = df.apply(
lambda row: (self._col_joiner).join(row.astype(str).tolist()), axis=1
).tolist()
if self._concat_rows:
return (self._row_joiner).join(text_list)
else:
return text_list

View File

@@ -1,66 +0,0 @@
import os
import javalang
def find_files(directory):
files_list = []
for root, dirs, files in os.walk(directory):
for file in files:
if file.endswith('.java'):
files_list.append(os.path.join(root, file))
return files_list
def extract_functions(file_path):
with open(file_path, "r") as file:
java_code = file.read()
methods = {}
tree = javalang.parse.parse(java_code)
for _, node in tree.filter(javalang.tree.MethodDeclaration):
method_name = node.name
start_line = node.position.line - 1
end_line = start_line
brace_count = 0
for line in java_code.splitlines()[start_line:]:
end_line += 1
brace_count += line.count("{") - line.count("}")
if brace_count == 0:
break
method_source_code = "\n".join(java_code.splitlines()[start_line:end_line])
methods[method_name] = method_source_code
return methods
def extract_classes(file_path):
with open(file_path, 'r') as file:
source_code = file.read()
classes = {}
tree = javalang.parse.parse(source_code)
for class_decl in tree.types:
class_name = class_decl.name
declarations = []
methods = []
for field_decl in class_decl.fields:
field_name = field_decl.declarators[0].name
field_type = field_decl.type.name
declarations.append(f"{field_type} {field_name}")
for method_decl in class_decl.methods:
methods.append(method_decl.name)
class_string = "Declarations: " + ", ".join(declarations) + "\n Method name: " + ", ".join(methods)
classes[class_name] = class_string
return classes
def extract_functions_and_classes(directory):
files = find_files(directory)
functions_dict = {}
classes_dict = {}
for file in files:
functions = extract_functions(file)
if functions:
functions_dict[file] = functions
classes = extract_classes(file)
if classes:
classes_dict[file] = classes
return functions_dict, classes_dict

View File

@@ -1,70 +0,0 @@
import os
import escodegen
import esprima
def find_files(directory):
files_list = []
for root, dirs, files in os.walk(directory):
for file in files:
if file.endswith('.js'):
files_list.append(os.path.join(root, file))
return files_list
def extract_functions(file_path):
with open(file_path, 'r') as file:
source_code = file.read()
functions = {}
tree = esprima.parseScript(source_code)
for node in tree.body:
if node.type == 'FunctionDeclaration':
func_name = node.id.name if node.id else '<anonymous>'
functions[func_name] = escodegen.generate(node)
elif node.type == 'VariableDeclaration':
for declaration in node.declarations:
if declaration.init and declaration.init.type == 'FunctionExpression':
func_name = declaration.id.name if declaration.id else '<anonymous>'
functions[func_name] = escodegen.generate(declaration.init)
elif node.type == 'ClassDeclaration':
for subnode in node.body.body:
if subnode.type == 'MethodDefinition':
func_name = subnode.key.name
functions[func_name] = escodegen.generate(subnode.value)
elif subnode.type == 'VariableDeclaration':
for declaration in subnode.declarations:
if declaration.init and declaration.init.type == 'FunctionExpression':
func_name = declaration.id.name if declaration.id else '<anonymous>'
functions[func_name] = escodegen.generate(declaration.init)
return functions
def extract_classes(file_path):
with open(file_path, 'r') as file:
source_code = file.read()
classes = {}
tree = esprima.parseScript(source_code)
for node in tree.body:
if node.type == 'ClassDeclaration':
class_name = node.id.name
function_names = []
for subnode in node.body.body:
if subnode.type == 'MethodDefinition':
function_names.append(subnode.key.name)
classes[class_name] = ", ".join(function_names)
return classes
def extract_functions_and_classes(directory):
files = find_files(directory)
functions_dict = {}
classes_dict = {}
for file in files:
functions = extract_functions(file)
if functions:
functions_dict[file] = functions
classes = extract_classes(file)
if classes:
classes_dict[file] = classes
return functions_dict, classes_dict

View File

@@ -1,100 +0,0 @@
import os
import tiktoken
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from retry import retry
# from langchain.embeddings import HuggingFaceEmbeddings
# from langchain.embeddings import HuggingFaceInstructEmbeddings
# from langchain.embeddings import CohereEmbeddings
def num_tokens_from_string(string: str, encoding_name: str) -> tuple[int, float]:
# Function to convert string to tokens and estimate user cost.
encoding = tiktoken.get_encoding(encoding_name)
num_tokens = len(encoding.encode(string))
total_price = (num_tokens / 1000) * 0.0004
return num_tokens, total_price
@retry(tries=10, delay=60)
def store_add_texts_with_retry(store, i):
store.add_texts([i.page_content], metadatas=[i.metadata])
# store_pine.add_texts([i.page_content], metadatas=[i.metadata])
def call_openai_api(docs, folder_name):
# Function to create a vector store from the documents and save it to disk.
# create output folder if it doesn't exist
if not os.path.exists(f"outputs/{folder_name}"):
os.makedirs(f"outputs/{folder_name}")
from tqdm import tqdm
docs_test = [docs[0]]
# remove the first element from docs
docs.pop(0)
# cut first n docs if you want to restart
# docs = docs[:n]
c1 = 0
# pinecone.init(
# api_key="", # find at app.pinecone.io
# environment="us-east1-gcp" # next to api key in console
# )
# index_name = "pandas"
if ( # azure
os.environ.get("OPENAI_API_BASE")
and os.environ.get("OPENAI_API_VERSION")
and os.environ.get("AZURE_DEPLOYMENT_NAME")
and os.environ.get("AZURE_EMBEDDINGS_DEPLOYMENT_NAME")
):
os.environ["OPENAI_API_TYPE"] = "azure"
openai_embeddings = OpenAIEmbeddings(model=os.environ.get("AZURE_EMBEDDINGS_DEPLOYMENT_NAME"))
else:
openai_embeddings = OpenAIEmbeddings()
store = FAISS.from_documents(docs_test, openai_embeddings)
# store_pine = Pinecone.from_documents(docs_test, OpenAIEmbeddings(), index_name=index_name)
# Uncomment for MPNet embeddings
# model_name = "sentence-transformers/all-mpnet-base-v2"
# hf = HuggingFaceEmbeddings(model_name=model_name)
# store = FAISS.from_documents(docs_test, hf)
for i in tqdm(
docs, desc="Embedding 🦖", unit="docs", total=len(docs), bar_format="{l_bar}{bar}| Time Left: {remaining}"
):
try:
store_add_texts_with_retry(store, i)
except Exception as e:
print(e)
print("Error on ", i)
print("Saving progress")
print(f"stopped at {c1} out of {len(docs)}")
store.save_local(f"outputs/{folder_name}")
break
c1 += 1
store.save_local(f"outputs/{folder_name}")
def get_user_permission(docs, folder_name):
# Function to ask user permission to call the OpenAI api and spend their OpenAI funds.
# Here we convert the docs list to a string and calculate the number of OpenAI tokens the string represents.
# docs_content = (" ".join(docs))
docs_content = ""
for doc in docs:
docs_content += doc.page_content
tokens, total_price = num_tokens_from_string(string=docs_content, encoding_name="cl100k_base")
# Here we print the number of tokens and the approx user cost with some visually appealing formatting.
print(f"Number of Tokens = {format(tokens, ',d')}")
print(f"Approx Cost = ${format(total_price, ',.2f')}")
# Here we check for user permission before calling the API.
user_input = input("Price Okay? (Y/N) \n").lower()
if user_input == "y":
call_openai_api(docs, folder_name)
elif user_input == "":
call_openai_api(docs, folder_name)
else:
print("The API was not called. No money was spent.")

View File

@@ -1,121 +0,0 @@
import ast
import os
from pathlib import Path
import tiktoken
from langchain_community.llms import OpenAI
from langchain.prompts import PromptTemplate
def find_files(directory):
files_list = []
for root, dirs, files in os.walk(directory):
for file in files:
if file.endswith('.py'):
files_list.append(os.path.join(root, file))
return files_list
def extract_functions(file_path):
with open(file_path, 'r') as file:
source_code = file.read()
functions = {}
tree = ast.parse(source_code)
for node in ast.walk(tree):
if isinstance(node, ast.FunctionDef):
func_name = node.name
func_def = ast.get_source_segment(source_code, node)
functions[func_name] = func_def
return functions
def extract_classes(file_path):
with open(file_path, 'r') as file:
source_code = file.read()
classes = {}
tree = ast.parse(source_code)
for node in ast.walk(tree):
if isinstance(node, ast.ClassDef):
class_name = node.name
function_names = []
for subnode in ast.walk(node):
if isinstance(subnode, ast.FunctionDef):
function_names.append(subnode.name)
classes[class_name] = ", ".join(function_names)
return classes
def extract_functions_and_classes(directory):
files = find_files(directory)
functions_dict = {}
classes_dict = {}
for file in files:
functions = extract_functions(file)
if functions:
functions_dict[file] = functions
classes = extract_classes(file)
if classes:
classes_dict[file] = classes
return functions_dict, classes_dict
def parse_functions(functions_dict, formats, dir):
c1 = len(functions_dict)
for i, (source, functions) in enumerate(functions_dict.items(), start=1):
print(f"Processing file {i}/{c1}")
source_w = source.replace(dir + "/", "").replace("." + formats, ".md")
subfolders = "/".join(source_w.split("/")[:-1])
Path(f"outputs/{subfolders}").mkdir(parents=True, exist_ok=True)
for j, (name, function) in enumerate(functions.items(), start=1):
print(f"Processing function {j}/{len(functions)}")
prompt = PromptTemplate(
input_variables=["code"],
template="Code: \n{code}, \nDocumentation: ",
)
llm = OpenAI(temperature=0)
response = llm(prompt.format(code=function))
mode = "a" if Path(f"outputs/{source_w}").exists() else "w"
with open(f"outputs/{source_w}", mode) as f:
f.write(
f"\n\n# Function name: {name} \n\nFunction: \n```\n{function}\n```, \nDocumentation: \n{response}")
def parse_classes(classes_dict, formats, dir):
c1 = len(classes_dict)
for i, (source, classes) in enumerate(classes_dict.items()):
print(f"Processing file {i + 1}/{c1}")
source_w = source.replace(dir + "/", "").replace("." + formats, ".md")
subfolders = "/".join(source_w.split("/")[:-1])
Path(f"outputs/{subfolders}").mkdir(parents=True, exist_ok=True)
for name, function_names in classes.items():
print(f"Processing Class {i + 1}/{c1}")
prompt = PromptTemplate(
input_variables=["class_name", "functions_names"],
template="Class name: {class_name} \nFunctions: {functions_names}, \nDocumentation: ",
)
llm = OpenAI(temperature=0)
response = llm(prompt.format(class_name=name, functions_names=function_names))
with open(f"outputs/{source_w}", "a" if Path(f"outputs/{source_w}").exists() else "w") as f:
f.write(f"\n\n# Class name: {name} \n\nFunctions: \n{function_names}, \nDocumentation: \n{response}")
def transform_to_docs(functions_dict, classes_dict, formats, dir):
docs_content = ''.join([str(key) + str(value) for key, value in functions_dict.items()])
docs_content += ''.join([str(key) + str(value) for key, value in classes_dict.items()])
num_tokens = len(tiktoken.get_encoding("cl100k_base").encode(docs_content))
total_price = ((num_tokens / 1000) * 0.02)
print(f"Number of Tokens = {num_tokens:,d}")
print(f"Approx Cost = ${total_price:,.2f}")
user_input = input("Price Okay? (Y/N)\n").lower()
if user_input == "y" or user_input == "":
if not Path("outputs").exists():
Path("outputs").mkdir()
parse_functions(functions_dict, formats, dir)
parse_classes(classes_dict, formats, dir)
print("All done!")
else:
print("The API was not called. No money was spent.")

View File

@@ -1,34 +0,0 @@
"""Base schema for readers."""
from dataclasses import dataclass
from langchain.docstore.document import Document as LCDocument
from parser.schema.schema import BaseDocument
@dataclass
class Document(BaseDocument):
"""Generic interface for a data document.
This document connects to data sources.
"""
def __post_init__(self) -> None:
"""Post init."""
if self.text is None:
raise ValueError("text field not set.")
@classmethod
def get_type(cls) -> str:
"""Get Document type."""
return "Document"
def to_langchain_format(self) -> LCDocument:
"""Convert struct to LangChain document format."""
metadata = self.extra_info or {}
return LCDocument(page_content=self.text, metadata=metadata)
@classmethod
def from_langchain_format(cls, doc: LCDocument) -> "Document":
"""Convert struct from LangChain document format."""
return cls(text=doc.page_content, extra_info=doc.metadata)

View File

@@ -1,64 +0,0 @@
"""Base schema for data structures."""
from abc import abstractmethod
from dataclasses import dataclass
from typing import Any, Dict, List, Optional
from dataclasses_json import DataClassJsonMixin
@dataclass
class BaseDocument(DataClassJsonMixin):
"""Base document.
Generic abstract interfaces that captures both index structs
as well as documents.
"""
# TODO: consolidate fields from Document/IndexStruct into base class
text: Optional[str] = None
doc_id: Optional[str] = None
embedding: Optional[List[float]] = None
# extra fields
extra_info: Optional[Dict[str, Any]] = None
@classmethod
@abstractmethod
def get_type(cls) -> str:
"""Get Document type."""
def get_text(self) -> str:
"""Get text."""
if self.text is None:
raise ValueError("text field not set.")
return self.text
def get_doc_id(self) -> str:
"""Get doc_id."""
if self.doc_id is None:
raise ValueError("doc_id not set.")
return self.doc_id
@property
def is_doc_id_none(self) -> bool:
"""Check if doc_id is None."""
return self.doc_id is None
def get_embedding(self) -> List[float]:
"""Get embedding.
Errors if embedding is None.
"""
if self.embedding is None:
raise ValueError("embedding not set.")
return self.embedding
@property
def extra_info_str(self) -> Optional[str]:
"""Extra info string."""
if self.extra_info is None:
return None
return "\n".join([f"{k}: {str(v)}" for k, v in self.extra_info.items()])

View File

@@ -1,76 +0,0 @@
import re
from math import ceil
from typing import List
import tiktoken
from parser.schema.base import Document
def separate_header_and_body(text):
header_pattern = r"^(.*?\n){3}"
match = re.match(header_pattern, text)
header = match.group(0)
body = text[len(header):]
return header, body
def group_documents(documents: List[Document], min_tokens: int, max_tokens: int) -> List[Document]:
docs = []
current_group = None
for doc in documents:
doc_len = len(tiktoken.get_encoding("cl100k_base").encode(doc.text))
if current_group is None:
current_group = Document(text=doc.text, doc_id=doc.doc_id, embedding=doc.embedding,
extra_info=doc.extra_info)
elif len(tiktoken.get_encoding("cl100k_base").encode(
current_group.text)) + doc_len < max_tokens and doc_len < min_tokens:
current_group.text += " " + doc.text
else:
docs.append(current_group)
current_group = Document(text=doc.text, doc_id=doc.doc_id, embedding=doc.embedding,
extra_info=doc.extra_info)
if current_group is not None:
docs.append(current_group)
return docs
def split_documents(documents: List[Document], max_tokens: int) -> List[Document]:
docs = []
for doc in documents:
token_length = len(tiktoken.get_encoding("cl100k_base").encode(doc.text))
if token_length <= max_tokens:
docs.append(doc)
else:
header, body = separate_header_and_body(doc.text)
if len(tiktoken.get_encoding("cl100k_base").encode(header)) > max_tokens:
body = doc.text
header = ""
num_body_parts = ceil(token_length / max_tokens)
part_length = ceil(len(body) / num_body_parts)
body_parts = [body[i:i + part_length] for i in range(0, len(body), part_length)]
for i, body_part in enumerate(body_parts):
new_doc = Document(text=header + body_part.strip(),
doc_id=f"{doc.doc_id}-{i}",
embedding=doc.embedding,
extra_info=doc.extra_info)
docs.append(new_doc)
return docs
def group_split(documents: List[Document], max_tokens: int = 2000, min_tokens: int = 150, token_check: bool = True):
if not token_check:
return documents
print("Grouping small documents")
try:
documents = group_documents(documents=documents, min_tokens=min_tokens, max_tokens=max_tokens)
except Exception:
print("Grouping failed, try running without token_check")
print("Separating large documents")
try:
documents = split_documents(documents=documents, max_tokens=max_tokens)
except Exception:
print("Grouping failed, try running without token_check")
return documents