fixes to make it work

This commit is contained in:
Alex
2023-09-26 13:00:17 +01:00
parent e85a583f0a
commit 025549ebf8
3 changed files with 335 additions and 339 deletions

View File

@@ -1,20 +1,44 @@
import asyncio
import os
from flask import Blueprint, request, jsonify, Response
import requests
import json
import datetime
import logging
import traceback
from celery.result import AsyncResult
from langchain.chat_models import AzureChatOpenAI
from pymongo import MongoClient
from bson.objectid import ObjectId
from werkzeug.utils import secure_filename
import http.client
from transformers import GPT2TokenizerFast
from langchain import FAISS
from langchain import VectorDBQA, Cohere, OpenAI
from langchain.chains import LLMChain, ConversationalRetrievalChain
from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT
from langchain.chains.question_answering import load_qa_chain
from langchain.chat_models import ChatOpenAI, AzureChatOpenAI
from langchain.embeddings import (
OpenAIEmbeddings,
HuggingFaceHubEmbeddings,
CohereEmbeddings,
HuggingFaceInstructEmbeddings,
)
from langchain.prompts import PromptTemplate
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
AIMessagePromptTemplate,
)
from langchain.schema import HumanMessage, AIMessage
from application.app import (logger, count_tokens, chat_combine_template, gpt_model,
api_key_set, embeddings_key_set, get_docsearch, get_vectorstore)
from application.core.settings import settings
from application.llm.openai import OpenAILLM
from application.core.settings import settings
from application.error import bad_request
logger = logging.getLogger(__name__)
mongo = MongoClient(settings.MONGO_URI)
db = mongo["docsgpt"]
@@ -22,28 +46,118 @@ conversations_collection = db["conversations"]
vectors_collection = db["vectors"]
answer = Blueprint('answer', __name__)
if settings.LLM_NAME == "gpt4":
gpt_model = 'gpt-4'
else:
gpt_model = 'gpt-3.5-turbo'
if settings.SELF_HOSTED_MODEL:
from langchain.llms import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = settings.LLM_NAME # hf model id (Arc53/docsgpt-7b-falcon, Arc53/docsgpt-14b)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline(
"text-generation", model=model,
tokenizer=tokenizer, max_new_tokens=2000,
device_map="auto", eos_token_id=tokenizer.eos_token_id
)
hf = HuggingFacePipeline(pipeline=pipe)
# load the prompts
current_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
with open(os.path.join(current_dir, "prompts", "combine_prompt.txt"), "r") as f:
template = f.read()
with open(os.path.join(current_dir, "prompts", "combine_prompt_hist.txt"), "r") as f:
template_hist = f.read()
with open(os.path.join(current_dir, "prompts", "question_prompt.txt"), "r") as f:
template_quest = f.read()
with open(os.path.join(current_dir, "prompts", "chat_combine_prompt.txt"), "r") as f:
chat_combine_template = f.read()
with open(os.path.join(current_dir, "prompts", "chat_reduce_prompt.txt"), "r") as f:
chat_reduce_template = f.read()
api_key_set = settings.API_KEY is not None
embeddings_key_set = settings.EMBEDDINGS_KEY is not None
async def async_generate(chain, question, chat_history):
result = await chain.arun({"question": question, "chat_history": chat_history})
return result
def count_tokens(string):
tokenizer = GPT2TokenizerFast.from_pretrained('gpt2')
return len(tokenizer(string)['input_ids'])
def run_async_chain(chain, question, chat_history):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result = {}
try:
answer = loop.run_until_complete(async_generate(chain, question, chat_history))
finally:
loop.close()
result["answer"] = answer
return result
def get_vectorstore(data):
if "active_docs" in data:
if data["active_docs"].split("/")[0] == "local":
if data["active_docs"].split("/")[1] == "default":
vectorstore = ""
else:
vectorstore = "indexes/" + data["active_docs"]
else:
vectorstore = "vectors/" + data["active_docs"]
if data["active_docs"] == "default":
vectorstore = ""
else:
vectorstore = ""
vectorstore = os.path.join("application", vectorstore)
return vectorstore
def get_docsearch(vectorstore, embeddings_key):
if settings.EMBEDDINGS_NAME == "openai_text-embedding-ada-002":
if is_azure_configured():
os.environ["OPENAI_API_TYPE"] = "azure"
openai_embeddings = OpenAIEmbeddings(model=settings.AZURE_EMBEDDINGS_DEPLOYMENT_NAME)
else:
openai_embeddings = OpenAIEmbeddings(openai_api_key=embeddings_key)
docsearch = FAISS.load_local(vectorstore, openai_embeddings)
elif settings.EMBEDDINGS_NAME == "huggingface_sentence-transformers/all-mpnet-base-v2":
docsearch = FAISS.load_local(vectorstore, HuggingFaceHubEmbeddings())
elif settings.EMBEDDINGS_NAME == "huggingface_hkunlp/instructor-large":
docsearch = FAISS.load_local(vectorstore, HuggingFaceInstructEmbeddings())
elif settings.EMBEDDINGS_NAME == "cohere_medium":
docsearch = FAISS.load_local(vectorstore, CohereEmbeddings(cohere_api_key=embeddings_key))
return docsearch
def is_azure_configured():
return settings.OPENAI_API_BASE and settings.OPENAI_API_VERSION and settings.AZURE_DEPLOYMENT_NAME
def complete_stream(question, docsearch, chat_history, api_key, conversation_id):
# openai.api_key = api_key
if is_azure_configured():
# logger.debug("in Azure")
# openai.api_type = "azure"
# openai.api_version = settings.OPENAI_API_VERSION
# openai.api_base = settings.OPENAI_API_BASE
# llm = AzureChatOpenAI(
# openai_api_key=api_key,
# openai_api_base=settings.OPENAI_API_BASE,
# openai_api_version=settings.OPENAI_API_VERSION,
# deployment_name=settings.AZURE_DEPLOYMENT_NAME,
# )
llm = OpenAILLM(api_key=api_key)
llm = AzureChatOpenAI(
openai_api_key=api_key,
openai_api_base=settings.OPENAI_API_BASE,
openai_api_version=settings.OPENAI_API_VERSION,
deployment_name=settings.AZURE_DEPLOYMENT_NAME,
)
else:
logger.debug("plain OpenAI")
llm = OpenAILLM(api_key=api_key)
# llm = ChatOpenAI(openai_api_key=api_key)
docs = docsearch.similarity_search(question, k=2)
# join all page_content together with a newline
docs_together = "\n".join([doc.page_content for doc in docs])
@@ -71,33 +185,20 @@ def complete_stream(question, docsearch, chat_history, api_key, conversation_id)
messages_combine.append({"role": "user", "content": i["prompt"]})
messages_combine.append({"role": "system", "content": i["response"]})
messages_combine.append({"role": "user", "content": question})
# completion = openai.ChatCompletion.create(model=gpt_model, engine=settings.AZURE_DEPLOYMENT_NAME,
# messages=messages_combine, stream=True, max_tokens=500, temperature=0)
import sys
print(api_key)
reponse_full = ""
# for line in completion:
# if "content" in line["choices"][0]["delta"]:
# # check if the delta contains content
# data = json.dumps({"answer": str(line["choices"][0]["delta"]["content"])})
# reponse_full += str(line["choices"][0]["delta"]["content"])
# yield f"data: {data}\n\n"
# reponse_full = ""
print(llm)
response_full = ""
completion = llm.gen_stream(model=gpt_model, engine=settings.AZURE_DEPLOYMENT_NAME,
messages=messages_combine)
messages=messages_combine)
for line in completion:
data = json.dumps({"answer": str(line)})
reponse_full += str(line)
response_full += str(line)
yield f"data: {data}\n\n"
# save conversation to database
if conversation_id is not None:
conversations_collection.update_one(
{"_id": ObjectId(conversation_id)},
{"$push": {"queries": {"prompt": question, "response": reponse_full, "sources": source_log_docs}}},
{"$push": {"queries": {"prompt": question, "response": response_full, "sources": source_log_docs}}},
)
else:
@@ -107,19 +208,18 @@ def complete_stream(question, docsearch, chat_history, api_key, conversation_id)
"words, respond ONLY with the summary, use the same "
"language as the system \n\nUser: " + question + "\n\n" +
"AI: " +
reponse_full},
response_full},
{"role": "user", "content": "Summarise following conversation in no more than 3 words, "
"respond ONLY with the summary, use the same language as the "
"system"}]
# completion = openai.ChatCompletion.create(model='gpt-3.5-turbo', engine=settings.AZURE_DEPLOYMENT_NAME,
# messages=messages_summary, max_tokens=30, temperature=0)
completion = llm.gen(model=gpt_model, engine=settings.AZURE_DEPLOYMENT_NAME,
messages=messages_combine, max_tokens=30)
messages=messages_summary, max_tokens=30)
conversation_id = conversations_collection.insert_one(
{"user": "local",
"date": datetime.datetime.utcnow(),
"name": completion["choices"][0]["message"]["content"],
"queries": [{"prompt": question, "response": reponse_full, "sources": source_log_docs}]}
"name": completion,
"queries": [{"prompt": question, "response": response_full, "sources": source_log_docs}]}
).inserted_id
# send data.type = "end" to indicate that the stream has ended as json
@@ -160,4 +260,165 @@ def stream():
complete_stream(question, docsearch,
chat_history=history, api_key=api_key,
conversation_id=conversation_id), mimetype="text/event-stream"
)
)
@answer.route("/api/answer", methods=["POST"])
def api_answer():
data = request.get_json()
question = data["question"]
history = data["history"]
if "conversation_id" not in data:
conversation_id = None
else:
conversation_id = data["conversation_id"]
print("-" * 5)
if not api_key_set:
api_key = data["api_key"]
else:
api_key = settings.API_KEY
if not embeddings_key_set:
embeddings_key = data["embeddings_key"]
else:
embeddings_key = settings.EMBEDDINGS_KEY
# use try and except to check for exception
try:
# check if the vectorstore is set
vectorstore = get_vectorstore(data)
# loading the index and the store and the prompt template
# Note if you have used other embeddings than OpenAI, you need to change the embeddings
docsearch = get_docsearch(vectorstore, embeddings_key)
q_prompt = PromptTemplate(
input_variables=["context", "question"], template=template_quest, template_format="jinja2"
)
if settings.LLM_NAME == "openai_chat":
if is_azure_configured():
logger.debug("in Azure")
llm = AzureChatOpenAI(
openai_api_key=api_key,
openai_api_base=settings.OPENAI_API_BASE,
openai_api_version=settings.OPENAI_API_VERSION,
deployment_name=settings.AZURE_DEPLOYMENT_NAME,
)
else:
logger.debug("plain OpenAI")
llm = ChatOpenAI(openai_api_key=api_key, model_name=gpt_model) # optional parameter: model_name="gpt-4"
messages_combine = [SystemMessagePromptTemplate.from_template(chat_combine_template)]
if history:
tokens_current_history = 0
# count tokens in history
history.reverse()
for i in history:
if "prompt" in i and "response" in i:
tokens_batch = count_tokens(i["prompt"]) + count_tokens(i["response"])
if tokens_current_history + tokens_batch < settings.TOKENS_MAX_HISTORY:
tokens_current_history += tokens_batch
messages_combine.append(HumanMessagePromptTemplate.from_template(i["prompt"]))
messages_combine.append(AIMessagePromptTemplate.from_template(i["response"]))
messages_combine.append(HumanMessagePromptTemplate.from_template("{question}"))
p_chat_combine = ChatPromptTemplate.from_messages(messages_combine)
elif settings.LLM_NAME == "openai":
llm = OpenAI(openai_api_key=api_key, temperature=0)
elif settings.SELF_HOSTED_MODEL:
llm = hf
elif settings.LLM_NAME == "cohere":
llm = Cohere(model="command-xlarge-nightly", cohere_api_key=api_key)
else:
raise ValueError("unknown LLM model")
if settings.LLM_NAME == "openai_chat":
question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)
doc_chain = load_qa_chain(llm, chain_type="map_reduce", combine_prompt=p_chat_combine)
chain = ConversationalRetrievalChain(
retriever=docsearch.as_retriever(k=2),
question_generator=question_generator,
combine_docs_chain=doc_chain,
)
chat_history = []
# result = chain({"question": question, "chat_history": chat_history})
# generate async with async generate method
result = run_async_chain(chain, question, chat_history)
elif settings.SELF_HOSTED_MODEL:
question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)
doc_chain = load_qa_chain(llm, chain_type="map_reduce", combine_prompt=p_chat_combine)
chain = ConversationalRetrievalChain(
retriever=docsearch.as_retriever(k=2),
question_generator=question_generator,
combine_docs_chain=doc_chain,
)
chat_history = []
# result = chain({"question": question, "chat_history": chat_history})
# generate async with async generate method
result = run_async_chain(chain, question, chat_history)
else:
qa_chain = load_qa_chain(
llm=llm, chain_type="map_reduce", combine_prompt=chat_combine_template, question_prompt=q_prompt
)
chain = VectorDBQA(combine_documents_chain=qa_chain, vectorstore=docsearch, k=3)
result = chain({"query": question})
print(result)
# some formatting for the frontend
if "result" in result:
result["answer"] = result["result"]
result["answer"] = result["answer"].replace("\\n", "\n")
try:
result["answer"] = result["answer"].split("SOURCES:")[0]
except Exception:
pass
sources = docsearch.similarity_search(question, k=2)
sources_doc = []
for doc in sources:
if doc.metadata:
sources_doc.append({'title': doc.metadata['title'], 'text': doc.page_content})
else:
sources_doc.append({'title': doc.page_content, 'text': doc.page_content})
result['sources'] = sources_doc
# generate conversationId
if conversation_id is not None:
conversations_collection.update_one(
{"_id": ObjectId(conversation_id)},
{"$push": {"queries": {"prompt": question,
"response": result["answer"], "sources": result['sources']}}},
)
else:
# create new conversation
# generate summary
messages_summary = [AIMessage(content="Summarise following conversation in no more than 3 " +
"words, respond ONLY with the summary, use the same " +
"language as the system \n\nUser: " + question + "\n\nAI: " +
result["answer"]),
HumanMessage(content="Summarise following conversation in no more than 3 words, " +
"respond ONLY with the summary, use the same language as the " +
"system")]
# completion = openai.ChatCompletion.create(model='gpt-3.5-turbo', engine=settings.AZURE_DEPLOYMENT_NAME,
# messages=messages_summary, max_tokens=30, temperature=0)
completion = llm.predict_messages(messages_summary)
conversation_id = conversations_collection.insert_one(
{"user": "local",
"date": datetime.datetime.utcnow(),
"name": completion.content,
"queries": [{"prompt": question, "response": result["answer"], "sources": result['sources']}]}
).inserted_id
result["conversation_id"] = str(conversation_id)
# mock result
# result = {
# "answer": "The answer is 42",
# "sources": ["https://en.wikipedia.org/wiki/42_(number)", "https://en.wikipedia.org/wiki/42_(number)"]
# }
return result
except Exception as e:
# print whole traceback
traceback.print_exc()
print(str(e))
return bad_request(500, str(e))