Need vectorstores testing for all except faiss
This commit is contained in:
Pavel
2025-06-08 22:08:23 +02:00
parent c0f693d35d
commit 01ea90f39a
12 changed files with 1971 additions and 1474 deletions

View File

@@ -446,7 +446,8 @@ class Stream(Resource):
attachment_ids = data.get("attachments", [])
index = data.get("index", None)
chunks = int(data.get("chunks", 2))
chunks_from_request = data.get("chunks", 2)
chunks = chunks_from_request if str(chunks_from_request) == 'Auto' else int(chunks_from_request)
token_limit = data.get("token_limit", settings.DEFAULT_MAX_HISTORY)
retriever_name = data.get("retriever", "classic")
agent_id = data.get("agent_id", None)
@@ -620,7 +621,8 @@ class Answer(Resource):
)
conversation_id = data.get("conversation_id")
prompt_id = data.get("prompt_id", "default")
chunks = int(data.get("chunks", 2))
chunks_from_request = data.get("chunks", 2)
chunks = chunks_from_request if str(chunks_from_request) == 'Auto' else int(chunks_from_request)
token_limit = data.get("token_limit", settings.DEFAULT_MAX_HISTORY)
retriever_name = data.get("retriever", "classic")
agent_type = settings.AGENT_NAME
@@ -814,7 +816,8 @@ class Search(Resource):
try:
question = data["question"]
chunks = int(data.get("chunks", 2))
chunks_from_request = data.get("chunks", 2)
chunks = chunks_from_request if str(chunks_from_request) == 'Auto' else int(chunks_from_request)
token_limit = data.get("token_limit", settings.DEFAULT_MAX_HISTORY)
retriever_name = data.get("retriever", "classic")

View File

@@ -2,11 +2,16 @@ import logging
from application.core.settings import settings
from application.llm.llm_creator import LLMCreator
from application.retriever.base import BaseRetriever
from application.vectorstore.vector_creator import VectorCreator
logger = logging.getLogger(__name__)
class ClassicRAG(BaseRetriever):
# Settings for Auto-Chunking
AUTO_CHUNK_MIN: int = 0
AUTO_CHUNK_MAX: int = 10
SIMILARITY_SCORE_THRESHOLD: float = 0.5
def __init__(
self,
source,
@@ -47,6 +52,7 @@ class ClassicRAG(BaseRetriever):
self.question = self._rephrase_query()
self.vectorstore = source["active_docs"] if "active_docs" in source else None
self.decoded_token = decoded_token
self.actual_chunks_retrieved = 0
def _rephrase_query(self):
if (
@@ -77,8 +83,66 @@ class ClassicRAG(BaseRetriever):
return self.original_question
def _get_data(self):
if self.chunks == 'Auto':
return self._get_data_auto()
else:
return self._get_data_classic()
def _get_data_auto(self):
if not self.vectorstore:
self.actual_chunks_retrieved = 0
return []
docsearch = VectorCreator.create_vectorstore(
settings.VECTOR_STORE, self.vectorstore, settings.EMBEDDINGS_KEY
)
try:
docs_with_scores = docsearch.search_with_scores(self.question, k=self.AUTO_CHUNK_MAX)
except Exception as e:
logger.error(f"Error during search_with_scores: {e}", exc_info=True)
self.actual_chunks_retrieved = 0
return []
if not docs_with_scores:
self.actual_chunks_retrieved = 0
return []
candidate_docs = []
for doc, score in docs_with_scores:
if score >= self.SIMILARITY_SCORE_THRESHOLD:
candidate_docs.append(doc)
if len(candidate_docs) < self.AUTO_CHUNK_MIN and self.AUTO_CHUNK_MIN > 0:
final_docs_to_format = [doc for doc, score in docs_with_scores[:self.AUTO_CHUNK_MIN]]
else:
final_docs_to_format = candidate_docs
self.actual_chunks_retrieved = len(final_docs_to_format)
if not final_docs_to_format:
return []
formatted_docs = [
{
"title": i.metadata.get(
"title", i.metadata.get("post_title", i.page_content)
).split("/")[-1],
"text": i.page_content,
"source": (
i.metadata.get("source")
if i.metadata.get("source")
else "local"
),
}
for i in final_docs_to_format
]
logger.info(f"AutoRAG: Retrieved {self.actual_chunks_retrieved} chunks for query '{self.original_question}'.")
return formatted_docs
def _get_data_classic(self):
if self.chunks == 0:
docs = []
return []
else:
docsearch = VectorCreator.create_vectorstore(
settings.VECTOR_STORE, self.vectorstore, settings.EMBEDDINGS_KEY
@@ -98,8 +162,7 @@ class ClassicRAG(BaseRetriever):
}
for i in docs_temp
]
return docs
return docs
def gen():
pass
@@ -111,12 +174,24 @@ class ClassicRAG(BaseRetriever):
return self._get_data()
def get_params(self):
return {
params = {
"question": self.original_question,
"rephrased_question": self.question,
"source": self.vectorstore,
"chunks": self.chunks,
"token_limit": self.token_limit,
"gpt_model": self.gpt_model,
"user_api_key": self.user_api_key,
}
if self.chunks == 'Auto':
params.update({
"chunks_mode": "Auto",
"chunks_retrieved_auto": self.actual_chunks_retrieved,
"auto_chunk_min_setting": self.AUTO_CHUNK_MIN,
"auto_chunk_max_setting": self.AUTO_CHUNK_MAX,
"similarity_threshold_setting": self.SIMILARITY_SCORE_THRESHOLD,
})
else:
params["chunks_mode"] = "Classic"
params["chunks"] = self.chunks
return params

View File

@@ -2,7 +2,6 @@ from application.retriever.classic_rag import ClassicRAG
from application.retriever.duckduck_search import DuckDuckSearch
from application.retriever.brave_search import BraveRetSearch
class RetrieverCreator:
retrievers = {
"classic": ClassicRAG,

View File

@@ -58,6 +58,10 @@ class BaseVectorStore(ABC):
def search(self, *args, **kwargs):
pass
@abstractmethod
def search_with_scores(self, query: str, k: int, *args, **kwargs):
pass
def is_azure_configured(self):
return settings.OPENAI_API_BASE and settings.OPENAI_API_VERSION and settings.AZURE_DEPLOYMENT_NAME

View File

@@ -109,6 +109,46 @@ class ElasticsearchStore(BaseVectorStore):
doc_list.append(Document(page_content = hit['_source']['text'], metadata = hit['_source']['metadata']))
return doc_list
def search_with_scores(self, query: str, k: int, *args, **kwargs):
embeddings = self._get_embeddings(settings.EMBEDDINGS_NAME, self.embeddings_key)
vector = embeddings.embed_query(query)
knn = {
"filter": [{"match": {"metadata.source_id.keyword": self.source_id}}],
"field": "vector",
"k": k,
"num_candidates": 100,
"query_vector": vector,
}
full_query = {
"knn": knn,
"query": {
"bool": {
"must": [
{
"match": {
"text": {
"query": question,
}
}
}
],
"filter": [{"match": {"metadata.source_id.keyword": self.source_id}}],
}
},
"rank": {"rrf": {}},
}
resp = self.docsearch.search(index=self.index_name, query=full_query['query'], size=k, knn=full_query['knn'])
docs_with_scores = []
for hit in resp['hits']['hits']:
score = hit['_score']
# Normalize the score. Elasticsearch returns a score of 1.0 + cosine similarity.
similarity = max(0, score - 1.0)
doc = Document(page_content=hit['_source']['text'], metadata=hit['_source']['metadata'])
docs_with_scores.append((doc, similarity))
return docs_with_scores
def _create_index_if_not_exists(
self, index_name, dims_length
):

View File

@@ -63,6 +63,18 @@ class FaissStore(BaseVectorStore):
def search(self, *args, **kwargs):
return self.docsearch.similarity_search(*args, **kwargs)
def search_with_scores(self, query: str, k: int, *args, **kwargs):
docs_and_distances = self.docsearch.similarity_search_with_score(query, k, *args, **kwargs)
# Convert L2 distance to a normalized similarity score (0-1, higher is better)
docs_and_similarities = []
for doc, distance in docs_and_distances:
if distance < 0: distance = 0
similarity = 1 / (1 + distance)
docs_and_similarities.append((doc, similarity))
return docs_and_similarities
def add_texts(self, *args, **kwargs):
return self.docsearch.add_texts(*args, **kwargs)

View File

@@ -2,6 +2,8 @@ from typing import List, Optional
import importlib
from application.vectorstore.base import BaseVectorStore
from application.core.settings import settings
from application.vectorstore.document_class import Document
class LanceDBVectorStore(BaseVectorStore):
"""Class for LanceDB Vector Store integration."""
@@ -87,6 +89,23 @@ class LanceDBVectorStore(BaseVectorStore):
results = self.docsearch.search(query_embedding).limit(k).to_list()
return [(result["_distance"], result["text"], result["metadata"]) for result in results]
def search_with_scores(self, query: str, k: int, *args, **kwargs):
"""Perform a similarity search with scores."""
self.ensure_table_exists()
query_embedding = self._get_embeddings(settings.EMBEDDINGS_NAME, self.embeddings_key).embed_query(query)
results = self.docsearch.search(query_embedding).limit(k).to_list()
docs_with_scores = []
for result in results:
distance = result.get('_distance', float('inf'))
if distance < 0: distance = 0
# Convert L2 distance to a normalized similarity score
similarity = 1 / (1 + distance)
doc = Document(page_content=result['text'], metadata=result["metadata"])
docs_with_scores.append((doc, similarity))
return docs_with_scores
def delete_index(self):
"""Delete the entire LanceDB index (table)."""
if self.table:

View File

@@ -26,6 +26,16 @@ class MilvusStore(BaseVectorStore):
expr = f"source_id == '{self._source_id}'"
return self._docsearch.similarity_search(query=question, k=k, expr=expr, *args, **kwargs)
def search_with_scores(self, query: str, k: int, *args, **kwargs):
expr = f"source_id == '{self._source_id}'"
docs_and_distances = self._docsearch.similarity_search_with_score(query, k, expr=expr, *args, **kwargs)
docs_with_scores = []
for doc, distance in docs_and_distances:
similarity = 1.0 - distance
docs_with_scores.append((doc, max(0, similarity)))
return docs_with_scores
def add_texts(self, texts: List[str], metadatas: Optional[List[dict]], *args, **kwargs):
ids = [str(uuid4()) for _ in range(len(texts))]

View File

@@ -63,6 +63,40 @@ class MongoDBVectorStore(BaseVectorStore):
results.append(Document(text, metadata))
return results
def search_with_scores(self, query: str, k: int, *args, **kwargs):
query_vector = self._embedding.embed_query(query)
pipeline = [
{
"$vectorSearch": {
"queryVector": query_vector,
"path": self._embedding_key,
"limit": k,
"numCandidates": k * 10,
"index": self._index_name,
"filter": {"source_id": {"$eq": self._source_id}},
}
},
{
"$addFields": {
"score": {"$meta": "vectorSearchScore"}
}
}
]
cursor = self._collection.aggregate(pipeline)
results = []
for doc in cursor:
score = doc.pop("score", 0.0)
text = doc.pop(self._text_key)
doc.pop("_id")
doc.pop(self._embedding_key, None)
metadata = doc
doc = Document(page_content=text, metadata=metadata)
results.append((doc, score))
return results
def _insert_texts(self, texts, metadatas):
if not texts:
return []

View File

@@ -36,6 +36,9 @@ class QdrantStore(BaseVectorStore):
def search(self, *args, **kwargs):
return self._docsearch.similarity_search(filter=self._filter, *args, **kwargs)
def search_with_scores(self, query: str, k: int, *args, **kwargs):
return self._docsearch.similarity_search_with_score(query=query, k=k, filter=self._filter, *args, **kwargs)
def add_texts(self, *args, **kwargs):
return self._docsearch.add_texts(*args, **kwargs)

File diff suppressed because it is too large Load Diff

View File

@@ -36,7 +36,7 @@ export default function General() {
{ label: '繁體中文(臺灣)', value: 'zhTW' },
{ label: 'Русский', value: 'ru' },
];
const chunks = ['0', '2', '4', '6', '8', '10'];
const chunks = ['Auto', '0', '2', '4', '6', '8', '10'];
const token_limits = new Map([
[0, t('settings.general.none')],
[100, t('settings.general.low')],