Files
freqtrade/freqtrade/strategy/hyper.py
2025-11-08 19:24:11 +01:00

191 lines
7.2 KiB
Python

"""
IHyperStrategy interface, hyperoptable Parameter class.
This module defines a base class for auto-hyperoptable strategies.
"""
import logging
from collections import defaultdict
from collections.abc import Iterator
from pathlib import Path
from freqtrade.constants import Config
from freqtrade.exceptions import OperationalException
from freqtrade.misc import deep_merge_dicts
from freqtrade.optimize.hyperopt_tools import HyperoptTools
from freqtrade.strategy.parameters import BaseParameter
logger = logging.getLogger(__name__)
# Type aliases
SpaceParams = dict[str, BaseParameter]
AllSpaceParams = dict[str, SpaceParams]
class HyperStrategyMixin:
"""
A helper base class which allows HyperOptAuto class to reuse implementations of buy/sell
strategy logic.
"""
def __init__(self, config: Config, *args, **kwargs):
"""
Initialize hyperoptable strategy mixin.
"""
self.config = config
self._ft_hyper_params: AllSpaceParams = {}
params = self.load_params_from_file()
params = params.get("params", {})
self._ft_params_from_file = params
# Init/loading of parameters is done as part of ft_bot_start().
def enumerate_parameters(self, space: str | None = None) -> Iterator[tuple[str, BaseParameter]]:
"""
Find all optimizable parameters and return (name, attr) iterator.
:param space: parameter space to filter for, or None for all spaces.
:return:
"""
for space in [c for c in self._ft_hyper_params if space is None or c == space]:
for par in self._ft_hyper_params[space].values():
yield par.name, par
def ft_load_params_from_file(self) -> None:
"""
Load Parameters from parameter file
Should/must run before config values are loaded in strategy_resolver.
"""
if self._ft_params_from_file:
# Set parameters from Hyperopt results file
params = self._ft_params_from_file
self.minimal_roi = params.get("roi", getattr(self, "minimal_roi", {}))
self.stoploss = params.get("stoploss", {}).get(
"stoploss", getattr(self, "stoploss", -0.1)
)
self.max_open_trades = params.get("max_open_trades", {}).get(
"max_open_trades", getattr(self, "max_open_trades", -1)
)
trailing = params.get("trailing", {})
self.trailing_stop = trailing.get(
"trailing_stop", getattr(self, "trailing_stop", False)
)
self.trailing_stop_positive = trailing.get(
"trailing_stop_positive", getattr(self, "trailing_stop_positive", None)
)
self.trailing_stop_positive_offset = trailing.get(
"trailing_stop_positive_offset", getattr(self, "trailing_stop_positive_offset", 0)
)
self.trailing_only_offset_is_reached = trailing.get(
"trailing_only_offset_is_reached",
getattr(self, "trailing_only_offset_is_reached", 0.0),
)
def ft_load_hyper_params(self, hyperopt: bool = False) -> None:
"""
Load Hyperoptable parameters
Prevalence:
* Parameters from parameter file
* Parameters defined in parameters objects (buy_params, sell_params, ...)
* Parameter defaults
"""
self._ft_hyper_params = detect_all_parameters(self)
for space in self._ft_hyper_params.keys():
params_values = deep_merge_dicts(
self._ft_params_from_file.get(space, {}), getattr(self, f"{space}_params", {})
)
self._ft_load_params(self._ft_hyper_params[space], params_values, space, hyperopt)
def load_params_from_file(self) -> dict:
filename_str = getattr(self, "__file__", "")
if not filename_str:
return {}
filename = Path(filename_str).with_suffix(".json")
if filename.is_file():
logger.info(f"Loading parameters from file {filename}")
try:
params = HyperoptTools.load_params(filename)
if params.get("strategy_name") != self.__class__.__name__:
raise OperationalException("Invalid parameter file provided.")
return params
except ValueError:
logger.warning("Invalid parameter file format.")
return {}
logger.info("Found no parameter file.")
return {}
def _ft_load_params(
self, params: SpaceParams, param_values: dict, space: str, hyperopt: bool = False
) -> None:
"""
Set optimizable parameter values.
:param params: Dictionary with new parameter values.
"""
if not param_values:
logger.info(f"No params for {space} found, using default values.")
for param_name, param in params.items():
param.in_space = hyperopt and HyperoptTools.has_space(self.config, space)
if not param.space:
param.space = space
if param_values and param_name in param_values:
if param.load:
param.value = param_values[param_name]
logger.info(f"Strategy Parameter: {param_name} = {param.value}")
else:
logger.warning(
f'Parameter "{param_name}" exists, but is disabled. '
f'Default value "{param.value}" used.'
)
else:
logger.info(f"Strategy Parameter(default): {param_name} = {param.value}")
def get_no_optimize_params(self) -> dict[str, dict]:
"""
Returns list of Parameters that are not part of the current optimize job
"""
params: dict[str, dict] = defaultdict(dict)
for name, p in self.enumerate_parameters():
if p.space and (not p.optimize or not p.in_space):
params[p.space][name] = p.value
return params
def detect_all_parameters(
obj: HyperStrategyMixin | type[HyperStrategyMixin],
) -> AllSpaceParams:
"""
Detect all hyperoptable parameters for this object.
:param obj: Strategy object or class
:return: Dictionary of detected parameters by space
"""
auto_categories = ["buy", "sell", "enter", "exit", "protection"]
result: AllSpaceParams = defaultdict(dict)
for attr_name in dir(obj):
if attr_name.startswith("__"): # Ignore internals
continue
attr = getattr(obj, attr_name)
if not issubclass(attr.__class__, BaseParameter):
continue
if not attr.space:
# space auto detection
for space in auto_categories:
if attr_name.startswith(space + "_"):
attr.space = space
break
if attr.space is None:
raise OperationalException(f"Cannot determine parameter space for {attr_name}.")
if attr.space in ("all", "default") or attr.space.isidentifier() is False:
raise OperationalException(
f"'{attr.space}' is not a valid space. Parameter: {attr_name}."
)
attr.name = attr_name
result[attr.space][attr_name] = attr
return result