Files
freqtrade/tests/data/test_historic_precision.py
2025-08-02 11:22:14 +02:00

184 lines
5.9 KiB
Python

# pragma pylint: disable=missing-docstring, C0103
from datetime import UTC
import pandas as pd
from numpy import nan
from pandas import DataFrame, Timestamp
from freqtrade.data.btanalysis.historic_precision import get_tick_size_over_time
def test_get_tick_size_over_time():
"""
Test the get_tick_size_over_time function with predefined data
"""
# Create test dataframe with different levels of precision
data = {
"date": [
Timestamp("2020-01-01 00:00:00", tz=UTC),
Timestamp("2020-01-02 00:00:00", tz=UTC),
Timestamp("2020-01-03 00:00:00", tz=UTC),
Timestamp("2020-01-15 00:00:00", tz=UTC),
Timestamp("2020-01-16 00:00:00", tz=UTC),
Timestamp("2020-01-31 00:00:00", tz=UTC),
Timestamp("2020-02-01 00:00:00", tz=UTC),
Timestamp("2020-02-15 00:00:00", tz=UTC),
Timestamp("2020-03-15 00:00:00", tz=UTC),
],
"open": [1.23456, 1.234, 1.23, 1.2, 1.23456, 1.234, 2.3456, 2.34, 2.34],
"high": [1.23457, 1.235, 1.24, 1.3, 1.23456, 1.235, 2.3457, 2.34, 2.34],
"low": [1.23455, 1.233, 1.22, 1.1, 1.23456, 1.233, 2.3455, 2.34, 2.34],
"close": [1.23456, 1.234, 1.23, 1.2, 1.23456, 1.234, 2.3456, 2.34, 2.34],
"volume": [100, 200, 300, 400, 500, 600, 700, 800, 900],
}
candles = DataFrame(data)
# Calculate significant digits
result = get_tick_size_over_time(candles)
# Check that the result is a pandas Series
assert isinstance(result, pd.Series)
# Check that we have three months of data (Jan, Feb and March 2020 )
assert len(result) == 3
# Before
assert result.asof("2019-01-01 00:00:00+00:00") is nan
# January should have 5 significant digits (based on 1.23456789 being the most precise value)
# which should be converted to 0.00001
assert result.asof("2020-01-01 00:00:00+00:00") == 0.00001
assert result.asof("2020-01-01 00:00:00+00:00") == 0.00001
assert result.asof("2020-02-25 00:00:00+00:00") == 0.0001
assert result.asof("2020-03-25 00:00:00+00:00") == 0.01
assert result.asof("2020-04-01 00:00:00+00:00") == 0.01
# Value far past the last date should be the last value
assert result.asof("2025-04-01 00:00:00+00:00") == 0.01
assert result.iloc[0] == 0.00001
def test_get_tick_size_over_time_real_data(testdatadir):
"""
Test the get_tick_size_over_time function with real data from the testdatadir
"""
from freqtrade.data.history import load_pair_history
# Load some test data from the testdata directory
pair = "UNITTEST/BTC"
timeframe = "1m"
candles = load_pair_history(
datadir=testdatadir,
pair=pair,
timeframe=timeframe,
)
# Make sure we have test data
assert not candles.empty, "No test data found, cannot run test"
# Calculate significant digits
result = get_tick_size_over_time(candles)
assert isinstance(result, pd.Series)
# Verify that all values are between 0 and 1 (valid precision values)
assert all(result > 0)
assert all(result < 1)
assert all(result <= 0.0001)
assert all(result >= 0.00000001)
def test_get_tick_size_over_time_small_numbers():
"""
Test the get_tick_size_over_time function with predefined data
"""
# Create test dataframe with different levels of precision
data = {
"date": [
Timestamp("2020-01-01 00:00:00", tz=UTC),
Timestamp("2020-01-02 00:00:00", tz=UTC),
Timestamp("2020-01-03 00:00:00", tz=UTC),
Timestamp("2020-01-15 00:00:00", tz=UTC),
Timestamp("2020-01-16 00:00:00", tz=UTC),
Timestamp("2020-01-31 00:00:00", tz=UTC),
Timestamp("2020-02-01 00:00:00", tz=UTC),
Timestamp("2020-02-15 00:00:00", tz=UTC),
Timestamp("2020-03-15 00:00:00", tz=UTC),
],
"open": [
0.000000123456,
0.0000001234,
0.000000123,
0.00000012,
0.000000123456,
0.0000001234,
0.00000023456,
0.000000234,
0.000000234,
],
"high": [
0.000000123457,
0.0000001235,
0.000000124,
0.00000013,
0.000000123456,
0.0000001235,
0.00000023457,
0.000000234,
0.000000234,
],
"low": [
0.000000123455,
0.0000001233,
0.000000122,
0.00000011,
0.000000123456,
0.0000001233,
0.00000023455,
0.000000234,
0.000000234,
],
"close": [
0.000000123456,
0.0000001234,
0.000000123,
0.00000012,
0.000000123456,
0.0000001234,
0.00000023456,
0.000000234,
0.000000234,
],
"volume": [100, 200, 300, 400, 500, 600, 700, 800, 900],
}
candles = DataFrame(data)
# Calculate significant digits
result = get_tick_size_over_time(candles)
# Check that the result is a pandas Series
assert isinstance(result, pd.Series)
# Check that we have three months of data (Jan, Feb and March 2020 )
assert len(result) == 3
# Before
assert result.asof("2019-01-01 00:00:00+00:00") is nan
# January should have 5 significant digits (based on 1.23456789 being the most precise value)
# which should be converted to 0.00001
assert result.asof("2020-01-01 00:00:00+00:00") == 0.000000000001
assert result.asof("2020-01-01 00:00:00+00:00") == 0.000000000001
assert result.asof("2020-02-25 00:00:00+00:00") == 0.00000000001
assert result.asof("2020-03-25 00:00:00+00:00") == 0.000000001
assert result.asof("2020-04-01 00:00:00+00:00") == 0.000000001
# Value far past the last date should be the last value
assert result.asof("2025-04-01 00:00:00+00:00") == 0.000000001
assert result.iloc[0] == 0.000000000001