mirror of
https://github.com/freqtrade/freqtrade.git
synced 2025-11-29 08:33:07 +00:00
184 lines
5.9 KiB
Python
184 lines
5.9 KiB
Python
# pragma pylint: disable=missing-docstring, C0103
|
|
|
|
from datetime import UTC
|
|
|
|
import pandas as pd
|
|
from numpy import nan
|
|
from pandas import DataFrame, Timestamp
|
|
|
|
from freqtrade.data.btanalysis.historic_precision import get_tick_size_over_time
|
|
|
|
|
|
def test_get_tick_size_over_time():
|
|
"""
|
|
Test the get_tick_size_over_time function with predefined data
|
|
"""
|
|
# Create test dataframe with different levels of precision
|
|
data = {
|
|
"date": [
|
|
Timestamp("2020-01-01 00:00:00", tz=UTC),
|
|
Timestamp("2020-01-02 00:00:00", tz=UTC),
|
|
Timestamp("2020-01-03 00:00:00", tz=UTC),
|
|
Timestamp("2020-01-15 00:00:00", tz=UTC),
|
|
Timestamp("2020-01-16 00:00:00", tz=UTC),
|
|
Timestamp("2020-01-31 00:00:00", tz=UTC),
|
|
Timestamp("2020-02-01 00:00:00", tz=UTC),
|
|
Timestamp("2020-02-15 00:00:00", tz=UTC),
|
|
Timestamp("2020-03-15 00:00:00", tz=UTC),
|
|
],
|
|
"open": [1.23456, 1.234, 1.23, 1.2, 1.23456, 1.234, 2.3456, 2.34, 2.34],
|
|
"high": [1.23457, 1.235, 1.24, 1.3, 1.23456, 1.235, 2.3457, 2.34, 2.34],
|
|
"low": [1.23455, 1.233, 1.22, 1.1, 1.23456, 1.233, 2.3455, 2.34, 2.34],
|
|
"close": [1.23456, 1.234, 1.23, 1.2, 1.23456, 1.234, 2.3456, 2.34, 2.34],
|
|
"volume": [100, 200, 300, 400, 500, 600, 700, 800, 900],
|
|
}
|
|
|
|
candles = DataFrame(data)
|
|
|
|
# Calculate significant digits
|
|
result = get_tick_size_over_time(candles)
|
|
|
|
# Check that the result is a pandas Series
|
|
assert isinstance(result, pd.Series)
|
|
|
|
# Check that we have three months of data (Jan, Feb and March 2020 )
|
|
assert len(result) == 3
|
|
|
|
# Before
|
|
assert result.asof("2019-01-01 00:00:00+00:00") is nan
|
|
# January should have 5 significant digits (based on 1.23456789 being the most precise value)
|
|
# which should be converted to 0.00001
|
|
|
|
assert result.asof("2020-01-01 00:00:00+00:00") == 0.00001
|
|
assert result.asof("2020-01-01 00:00:00+00:00") == 0.00001
|
|
assert result.asof("2020-02-25 00:00:00+00:00") == 0.0001
|
|
assert result.asof("2020-03-25 00:00:00+00:00") == 0.01
|
|
assert result.asof("2020-04-01 00:00:00+00:00") == 0.01
|
|
# Value far past the last date should be the last value
|
|
assert result.asof("2025-04-01 00:00:00+00:00") == 0.01
|
|
|
|
assert result.iloc[0] == 0.00001
|
|
|
|
|
|
def test_get_tick_size_over_time_real_data(testdatadir):
|
|
"""
|
|
Test the get_tick_size_over_time function with real data from the testdatadir
|
|
"""
|
|
from freqtrade.data.history import load_pair_history
|
|
|
|
# Load some test data from the testdata directory
|
|
pair = "UNITTEST/BTC"
|
|
timeframe = "1m"
|
|
|
|
candles = load_pair_history(
|
|
datadir=testdatadir,
|
|
pair=pair,
|
|
timeframe=timeframe,
|
|
)
|
|
|
|
# Make sure we have test data
|
|
assert not candles.empty, "No test data found, cannot run test"
|
|
|
|
# Calculate significant digits
|
|
result = get_tick_size_over_time(candles)
|
|
|
|
assert isinstance(result, pd.Series)
|
|
|
|
# Verify that all values are between 0 and 1 (valid precision values)
|
|
assert all(result > 0)
|
|
assert all(result < 1)
|
|
|
|
assert all(result <= 0.0001)
|
|
assert all(result >= 0.00000001)
|
|
|
|
|
|
def test_get_tick_size_over_time_small_numbers():
|
|
"""
|
|
Test the get_tick_size_over_time function with predefined data
|
|
"""
|
|
# Create test dataframe with different levels of precision
|
|
data = {
|
|
"date": [
|
|
Timestamp("2020-01-01 00:00:00", tz=UTC),
|
|
Timestamp("2020-01-02 00:00:00", tz=UTC),
|
|
Timestamp("2020-01-03 00:00:00", tz=UTC),
|
|
Timestamp("2020-01-15 00:00:00", tz=UTC),
|
|
Timestamp("2020-01-16 00:00:00", tz=UTC),
|
|
Timestamp("2020-01-31 00:00:00", tz=UTC),
|
|
Timestamp("2020-02-01 00:00:00", tz=UTC),
|
|
Timestamp("2020-02-15 00:00:00", tz=UTC),
|
|
Timestamp("2020-03-15 00:00:00", tz=UTC),
|
|
],
|
|
"open": [
|
|
0.000000123456,
|
|
0.0000001234,
|
|
0.000000123,
|
|
0.00000012,
|
|
0.000000123456,
|
|
0.0000001234,
|
|
0.00000023456,
|
|
0.000000234,
|
|
0.000000234,
|
|
],
|
|
"high": [
|
|
0.000000123457,
|
|
0.0000001235,
|
|
0.000000124,
|
|
0.00000013,
|
|
0.000000123456,
|
|
0.0000001235,
|
|
0.00000023457,
|
|
0.000000234,
|
|
0.000000234,
|
|
],
|
|
"low": [
|
|
0.000000123455,
|
|
0.0000001233,
|
|
0.000000122,
|
|
0.00000011,
|
|
0.000000123456,
|
|
0.0000001233,
|
|
0.00000023455,
|
|
0.000000234,
|
|
0.000000234,
|
|
],
|
|
"close": [
|
|
0.000000123456,
|
|
0.0000001234,
|
|
0.000000123,
|
|
0.00000012,
|
|
0.000000123456,
|
|
0.0000001234,
|
|
0.00000023456,
|
|
0.000000234,
|
|
0.000000234,
|
|
],
|
|
"volume": [100, 200, 300, 400, 500, 600, 700, 800, 900],
|
|
}
|
|
|
|
candles = DataFrame(data)
|
|
|
|
# Calculate significant digits
|
|
result = get_tick_size_over_time(candles)
|
|
|
|
# Check that the result is a pandas Series
|
|
assert isinstance(result, pd.Series)
|
|
|
|
# Check that we have three months of data (Jan, Feb and March 2020 )
|
|
assert len(result) == 3
|
|
|
|
# Before
|
|
assert result.asof("2019-01-01 00:00:00+00:00") is nan
|
|
# January should have 5 significant digits (based on 1.23456789 being the most precise value)
|
|
# which should be converted to 0.00001
|
|
|
|
assert result.asof("2020-01-01 00:00:00+00:00") == 0.000000000001
|
|
assert result.asof("2020-01-01 00:00:00+00:00") == 0.000000000001
|
|
assert result.asof("2020-02-25 00:00:00+00:00") == 0.00000000001
|
|
assert result.asof("2020-03-25 00:00:00+00:00") == 0.000000001
|
|
assert result.asof("2020-04-01 00:00:00+00:00") == 0.000000001
|
|
# Value far past the last date should be the last value
|
|
assert result.asof("2025-04-01 00:00:00+00:00") == 0.000000001
|
|
|
|
assert result.iloc[0] == 0.000000000001
|