- some work on all pairs, and we don't check protections either so ... just disable them completely
- added info in the docs
Changed pairs-check to if no definition is in the config (but it s maybe in the strategy) it will just force-set it to the proper amount of len(config['pairs']
No default value is specified in the docs for the processing_mode, making it unclear that the default behaviour is to filter out pairs, rather than append.
Fix logical error in the conditional checks for model classes. The `elif` statement that looks for "lightgbm.sklearn" or "xgb" in the model class string is now broken into two separate conditions because the old condition would always evaluate to `True` due to the non-empty string "xgb".
In a combination with a wallet size of 1 billion it should never be able to run out of money avoiding false-positives of some users who just wanted to test a strategy without actually checking how the stake_amount-variable should be used in combination with the strategy-function custom_stake_amount.
reason: some strategies demand a custom_stake_amount of 1$ demanding a very large wallet-size (which already was set previously)
Others start with 100% of a slot size and subdivide the base-orders and safety-orders down to finish at 100% of a slot-size and use unlimited stake_amount.
Edited docs to reflect that change.
In a combination with a wallet size of 1 billion it should never be able to run out of money avoiding false-positives of some users who just wanted to test a strategy without actually checking how the stake_amount-variable should be used in combination with the strategy-function custom_stake_amount
reason: some strategies demand a custom_stake_amount of 1$ demanding a very large wallet-size (which already was set previously)
Others start with 100% of a slot size and subdivide the base-orders and safety-orders down to finish at 100% of a slot-size and use unlimited stake_amount.
Edited docs to reflect that change too
There are some trade- and candle-related fields that are always available to output on the indicator-list so have updated the docs to include the most commonly used ones.
- moved doc from utils.md to lookahead-analysis.md and modified it (unfinished)
- added a check to automatically edit the config['backtest_cache'] to be 'none'
- adjusted test_lookahead_helper_export_to_csv to catch the new catching of errors
- adjusted test_lookahead_helper_text_table_lookahead_analysis_instances to catch the new catching of errors
- changed lookahead_analysis.start result-reporting to show that not enough trades were caught including x of y
moved doc from utils.md to lookahead-analysis.md and modified it (unfinished)
added a check to automatically edit the config['backtest_cache'] to be 'none'
Looking at has_bias should be enough to statisfy the test.
The tests could be extended with thecking the buy/sell signals and the dataframe itself -
but this should be sufficient for now.
There was a seeding error in SB3 after the gymnasium update, the stable baselines team has patched and fixed the issue, but the reset function has to be aligned.
switched from args to config (args still work)
renamed exportfilename to lookahead_analysis_exportfilename so if users decide to put something into it then it won't compete with other configurations
- optimized pairs for entry_varholder and exit_varholder to only check a single pair instead of all pairs.
- bias-check of freqai strategies now possible
- added condition to not crash when compared_df is empty (meaning no differences have been found)
open ended timeranges now work
if a file fails then it will not report as non-bias, but report in the table as error and the csv file will not have it listed.
removed args_common_optimize for strategy-updater
backtest_lookahead_bias_checker:
added args and cli-options for minimum and target trade amounts
fixed code according to best-practice coding requests of matthias (CamelCase etc)
While the actual problem is caused by a ccxt change, the change itself makes sense.
once ccxt starts returning the correct status (open) for create-orders, we can remove the fix.
closes#8079
before calling `git`. otherwise it would display git commit id from the
directory where you are calling `freqtrade` from instead of freqtrade's
current commit id
Changed logic to contain much less if conditions
currently still missing:
Webhook terminology, Telegram notification settings, Strategy/Config settings
Changed logic to contain much less if conditions
currently still missing:
Webhook terminology, Telegram notification settings, Strategy/Config settings
StrategyResolver.search_all_objects(enum_failed) set to False since we got no use in True
shortened update_code call
added modified_code8 test which currently still fails. (and thereby is commented out)
Improve the RL learning process by selecting random start point for the agent, it can help to block the agent to only learn on the selected period of time, while improving the quality of the model.
_update_total_profit() must be executed before "self._position = Positions.Neutral" because _update_total_profit() calls get_unrealized_profit(), which returns 0 if position is neutral and total_profit is not updated
We receive a lot of code that fails the `flake8` checks.
We receive a lot of code that fails the `ruff` checks.
To help with that, we encourage you to install the git pre-commit
To help with that, we encourage you to install the git pre-commit
hook that will warn you when you try to commit code that fails these checks.
hook that will warn you when you try to commit code that fails these checks.
Guide for installing them is [here](http://flake8.pycqa.org/en/latest/user/using-hooks.html).
you can manually run pre-commit with `pre-commit run -a`.
##### Additional styles applied
##### Additional styles applied
@@ -124,7 +125,7 @@ Exceptions:
Contributors may be given commit privileges. Preference will be given to those with:
Contributors may be given commit privileges. Preference will be given to those with:
1. Past contributions to Freqtrade and other related open-source projects. Contributions to Freqtrade include both code (both accepted and pending) and friendly participation in the issue tracker and Pull request reviews. Quantity and quality are considered.
1. Past contributions to Freqtrade and other related open-source projects. Contributions to Freqtrade include both code (both accepted and pending) and friendly participation in the issue tracker and Pull request reviews. Both quantity and quality are considered.
1. A coding style that the other core committers find simple, minimal, and clean.
1. A coding style that the other core committers find simple, minimal, and clean.
1. Access to resources for cross-platform development and testing.
1. Access to resources for cross-platform development and testing.
@@ -27,10 +28,9 @@ hesitate to read the source code and understand the mechanism of this bot.
Please read the [exchange specific notes](docs/exchanges.md) to learn about eventual, special configurations needed for each exchange.
Please read the [exchange specific notes](docs/exchanges.md) to learn about eventual, special configurations needed for each exchange.
- [X] [Binance](https://www.binance.com/)
- [X] [Binance](https://www.binance.com/)
- [X] [Bittrex](https://bittrex.com/)
- [X] [Bitmart](https://bitmart.com/)
- [X] [FTX](https://ftx.com/#a=2258149)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [Huobi](http://huobi.com/)
- [X] [HTX](https://www.htx.com/) (Former Huobi)
- [X] [Kraken](https://kraken.com/)
- [X] [Kraken](https://kraken.com/)
- [X] [OKX](https://okx.com/) (Former OKEX)
- [X] [OKX](https://okx.com/) (Former OKEX)
- [ ] [potentially many others](https://github.com/ccxt/ccxt/). _(We cannot guarantee they will work)_
- [ ] [potentially many others](https://github.com/ccxt/ccxt/). _(We cannot guarantee they will work)_
@@ -39,7 +39,8 @@ Please read the [exchange specific notes](docs/exchanges.md) to learn about even
- [X] [Binance](https://www.binance.com/)
- [X] [Binance](https://www.binance.com/)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [OKX](https://okx.com/).
- [X] [OKX](https://okx.com/)
- [X] [Bybit](https://bybit.com/)
Please make sure to read the [exchange specific notes](docs/exchanges.md), as well as the [trading with leverage](docs/leverage.md) documentation before diving in.
Please make sure to read the [exchange specific notes](docs/exchanges.md), as well as the [trading with leverage](docs/leverage.md) documentation before diving in.
@@ -58,7 +59,7 @@ Please find the complete documentation on the [freqtrade website](https://www.fr
## Features
## Features
- [x]**Based on Python 3.8+**: For botting on any operating system - Windows, macOS and Linux.
- [x]**Based on Python 3.9+**: For botting on any operating system - Windows, macOS and Linux.
- [x]**Persistence**: Persistence is achieved through sqlite.
- [x]**Persistence**: Persistence is achieved through sqlite.
- [x]**Dry-run**: Run the bot without paying money.
- [x]**Dry-run**: Run the bot without paying money.
- [x]**Backtesting**: Run a simulation of your buy/sell strategy.
- [x]**Backtesting**: Run a simulation of your buy/sell strategy.
@@ -164,6 +165,10 @@ first. If it hasn't been reported, please
ensure you follow the template guide so that the team can assist you as
ensure you follow the template guide so that the team can assist you as
quickly as possible.
quickly as possible.
For every [issue](https://github.com/freqtrade/freqtrade/issues/new/choose) created, kindly follow up and mark satisfaction or reminder to close issue when equilibrium ground is reached.
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
@inproceedings{catboost,
author={Prokhorenkova, Liudmila and Gusev, Gleb and Vorobev, Aleksandr and Dorogush, Anna Veronika and Gulin, Andrey},
title={CatBoost: Unbiased Boosting with Categorical Features},
year={2018},
publisher={Curran Associates Inc.},
address={Red Hook, NY, USA},
abstract={This paper presents the key algorithmic techniques behind CatBoost, a new gradient boosting toolkit. Their combination leads to CatBoost outperforming other publicly available boosting implementations in terms of quality on a variety of datasets. Two critical algorithmic advances introduced in CatBoost are the implementation of ordered boosting, a permutation-driven alternative to the classic algorithm, and an innovative algorithm for processing categorical features. Both techniques were created to fight a prediction shift caused by a special kind of target leakage present in all currently existing implementations of gradient boosting algorithms. In this paper, we provide a detailed analysis of this problem and demonstrate that proposed algorithms solve it effectively, leading to excellent empirical results.},
booktitle={Proceedings of the 32nd International Conference on Neural Information Processing Systems},
pages={6639–6649},
numpages={11},
location={Montr\'{e}al, Canada},
series={NIPS'18}
}
@article{lightgbm,
title={Lightgbm: A highly efficient gradient boosting decision tree},
author={Ke, Guolin and Meng, Qi and Finley, Thomas and Wang, Taifeng and Chen, Wei and Ma, Weidong and Ye, Qiwei and Liu, Tie-Yan},
journal={Advances in neural information processing systems},
volume={30},
pages={3146--3154},
year={2017}
}
@inproceedings{xgboost,
author={Chen, Tianqi and Guestrin, Carlos},
title={{XGBoost}: A Scalable Tree Boosting System},
booktitle={Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining},
series={KDD '16},
year={2016},
isbn={978-1-4503-4232-2},
location={San Francisco, California, USA},
pages={785--794},
numpages={10},
url={http://doi.acm.org/10.1145/2939672.2939785},
doi={10.1145/2939672.2939785},
acmid={2939785},
publisher={ACM},
address={New York, NY, USA},
keywords={large-scale machine learning},
}
@article{stable-baselines3,
author={Antonin Raffin and Ashley Hill and Adam Gleave and Anssi Kanervisto and Maximilian Ernestus and Noah Dormann},
author={Greg Brockman and Vicki Cheung and Ludwig Pettersson and Jonas Schneider and John Schulman and Jie Tang and Wojciech Zaremba},
year={2016},
eprint={1606.01540},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{tensorflow,
title={{TensorFlow}: Large-Scale Machine Learning on Heterogeneous Systems},
url={https://www.tensorflow.org/},
note={Software available from tensorflow.org},
author={
Mart\'{i}n~Abadi and
Ashish~Agarwal and
Paul~Barham and
Eugene~Brevdo and
Zhifeng~Chen and
Craig~Citro and
Greg~S.~Corrado and
Andy~Davis and
Jeffrey~Dean and
Matthieu~Devin and
Sanjay~Ghemawat and
Ian~Goodfellow and
Andrew~Harp and
Geoffrey~Irving and
Michael~Isard and
Yangqing Jia and
Rafal~Jozefowicz and
Lukasz~Kaiser and
Manjunath~Kudlur and
Josh~Levenberg and
Dandelion~Man\'{e} and
Rajat~Monga and
Sherry~Moore and
Derek~Murray and
Chris~Olah and
Mike~Schuster and
Jonathon~Shlens and
Benoit~Steiner and
Ilya~Sutskever and
Kunal~Talwar and
Paul~Tucker and
Vincent~Vanhoucke and
Vijay~Vasudevan and
Fernanda~Vi\'{e}gas and
Oriol~Vinyals and
Pete~Warden and
Martin~Wattenberg and
Martin~Wicke and
Yuan~Yu and
Xiaoqiang~Zheng},
year={2015},
}
@incollection{pytorch,
title={PyTorch: An Imperative Style, High-Performance Deep Learning Library},
author={Paszke, Adam and Gross, Sam and Massa, Francisco and Lerer, Adam and Bradbury, James and Chanan, Gregory and Killeen, Trevor and Lin, Zeming and Gimelshein, Natalia and Antiga, Luca and Desmaison, Alban and Kopf, Andreas and Yang, Edward and DeVito, Zachary and Raison, Martin and Tejani, Alykhan and Chilamkurthy, Sasank and Steiner, Benoit and Fang, Lu and Bai, Junjie and Chintala, Soumith},
booktitle={Advances in Neural Information Processing Systems 32},
editor={H. Wallach and H. Larochelle and A. Beygelzimer and F. d\textquotesingle Alch\'{e}-Buc and E. Fox and R. Garnett},
title: '`FreqAI`: generalizing adaptive modeling for chaotic time-series market forecasts'
tags:
- Python
- Machine Learning
- adaptive modeling
- chaotic systems
- time-series forecasting
authors:
- name: Robert A. Caulk
orcid: 0000-0001-5618-8629
affiliation: 1, 2
- name: Elin Törnquist
orcid: 0000-0003-3289-8604
affiliation: 1, 2
- name: Matthias Voppichler
orcid:
affiliation: 2
- name: Andrew R. Lawless
orcid:
affiliation: 2
- name: Ryan McMullan
orcid:
affiliation: 2
- name: Wagner Costa Santos
orcid:
affiliation: 1, 2
- name: Timothy C. Pogue
orcid:
affiliation: 1, 2
- name: Johan van der Vlugt
orcid:
affiliation: 2
- name: Stefan P. Gehring
orcid:
affiliation: 2
- name: Pascal Schmidt
orcid: 0000-0001-9328-4345
affiliation: 2
<!-- affiliation: "1, 2" # (Multiple affiliations must be quoted) -->
affiliations:
- name: Emergent Methods LLC, Arvada Colorado, 80005, USA
index: 1
- name: Freqtrade open source project
index: 2
date: October 2022
bibliography: paper.bib
---
# Statement of need
Forecasting chaotic time-series based systems, such as equity/cryptocurrency markets, requires a broad set of tools geared toward testing a wide range of hypotheses. Fortunately, a recent maturation of robust machine learning libraries (e.g. `scikit-learn`), has opened up a wide range of research possibilities. Scientists from a diverse range of fields can now easily prototype their studies on an abundance of established machine learning algorithms. Similarly, these user-friendly libraries enable "citizen scientists" to use their basic Python skills for data-exploration. However, leveraging these machine learning libraries on historical and live chaotic data sources can be logistically difficult and expensive. Additionally, robust data-collection, storage, and handling presents a disparate challenge. [`FreqAI`](https://www.freqtrade.io/en/latest/freqai/) aims to provide a generalized and extensible open-sourced framework geared toward live deployments of adaptive modeling for market forecasting. The `FreqAI` framework is effectively a sandbox for the rich world of open-source machine learning libraries. Inside the `FreqAI` sandbox, users find they can combine a wide variety of third-party libraries to test creative hypotheses on a free live 24/7 chaotic data source - cryptocurrency exchange data.
# Summary
[`FreqAI`](https://www.freqtrade.io/en/latest/freqai/) evolved from a desire to test and compare a range of adaptive time-series forecasting methods on chaotic data. Cryptocurrency markets provide a unique data source since they are operational 24/7 and the data is freely available via a variety of open-sourced [exchange APIs](https://docs.ccxt.com/en/latest/manual.html#exchange-structure). Luckily, an existing open-source software, [`Freqtrade`](https://www.freqtrade.io/en/stable/), had already matured under a range of talented developers to support robust data collection/storage, as well as robust live environmental interactions for standard algorithmic trading. `Freqtrade` also provides a set of data analysis/visualization tools for the evaluation of historical performance as well as live environmental feedback. `FreqAI` builds on top of `Freqtrade` to include a user-friendly well tested interface for integrating external machine learning libraries for adaptive time-series forecasting. Beyond enabling the integration of existing libraries, `FreqAI` hosts a range of custom algorithms and methodologies aimed at improving computational and predictive performances. Thus, `FreqAI` contains a range of unique features which can be easily tested in combination with all the existing Python-accessible machine learning libraries to generate novel research on live and historical data.
The high-level overview of the software is depicted in Figure 1.

*Abstracted overview of FreqAI algorithm*
## Connecting machine learning libraries
Although the `FreqAI` framework is designed to accommodate any Python library in the "Model training" and "Feature set engineering" portions of the software (Figure 1), it already boasts a wide range of well documented examples based on various combinations of:
These mature projects contain a wide range of peer-reviewed and industry standard methods, including:
* Regression, Classification, Neural Networks, Reinforcement Learning, Support Vector Machines, Principal Component Analysis, point clustering, and much more.
which are all leveraged in `FreqAI` for users to use as templates or extend with their own methods.
## Furnishing novel methods and features
Beyond the industry standard methods available through external libraries - `FreqAI` includes novel methods which are not available anywhere else in the open-source (or scientific) world. For example, `FreqAI` provides :
* a custom algorithm/methodology for adaptive modeling details [here](https://www.freqtrade.io/en/stable/freqai/#general-approach) and [here](https://www.freqtrade.io/en/stable/freqai-developers/#project-architecture)
* rapid and self-monitored feature engineering tools, details [here](https://www.freqtrade.io/en/stable/freqai-feature-engineering/#feature-engineering)
* unique model features/indicators, such as the [inlier metric](https://www.freqtrade.io/en/stable/freqai-feature-engineering/#inlier-metric)
* optimized data collection/storage algorithms, all code shown [here](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/freqai/data_drawer.py)
Of particular interest for researchers, `FreqAI` provides the option of large scale experimentation via an optimized [websocket communications interface](https://www.freqtrade.io/en/stable/producer-consumer/).
## Optimizing the back-end
`FreqAI` aims to make it simple for users to combine all the above tools to run studies based in two distinct modules:
* backtesting studies
* live-deployments
Both of these modules and their respective data management systems are built on top of [`Freqtrade`](https://www.freqtrade.io/en/latest/), a mature and actively developed cryptocurrency trading software. This means that `FreqAI` benefits from a wide range of tangential/disparate feature developments such as:
* FreqUI, a graphical interface for backtesting and live monitoring
* telegram control
* robust database handling
* futures/leverage trading
* dollar cost averaging
* trading strategy handling
* a variety of free data sources via [CCXT](https://docs.ccxt.com/en/latest/manual.html#exchange-structure) (FTX, Binance, Kucoin etc.)
These features derive from a strong external developer community that shares in the benefit and stability of a communal CI (Continuous Integration) system. Beyond the developer community, `FreqAI` benefits strongly from the userbase of `Freqtrade`, where most `FreqAI` beta-testers/developers originated. This symbiotic relationship between `Freqtrade` and `FreqAI` ignited a thoroughly tested [`beta`](https://github.com/freqtrade/freqtrade/pull/6832), which demanded a four month beta and [comprehensive documentation](https://www.freqtrade.io/en/latest/freqai/) containing:
* numerous example scripts
* a full parameter table
* methodological descriptions
* high-resolution diagrams/figures
* detailed parameter setting recommendations
## Providing a reproducible foundation for researchers
`FreqAI` provides an extensible, robust, framework for researchers and citizen data scientists. The `FreqAI` sandbox enables rapid conception and testing of exotic hypotheses. From a research perspective, `FreqAI` handles the multitude of logistics associated with live deployments, historical backtesting, and feature engineering. With `FreqAI`, researchers can focus on their primary interests of feature engineering and hypothesis testing rather than figuring out how to collect and handle data. Further - the well maintained and easily installed open-source framework of `FreqAI` enables reproducible scientific studies. This reproducibility component is essential to general scientific advancement in time-series forecasting for chaotic systems.
# Technical details
Typical users configure `FreqAI` via two files:
1. A `configuration` file (`--config`) which provides access to the full parameter list available [here](https://www.freqtrade.io/en/latest/freqai/):
* control high-level feature engineering
* customize adaptive modeling techniques
* set any model training parameters available in third-party libraries
Advanced users will edit one of the existing `--freqaimodel` files, which are simply an children of the `IFreqaiModel` (details below). Within these files, advanced users can customize training procedures, prediction procedures, outlier detection methods, data preparation, data saving methods, etc. This is all configured in a way where they can customize as little or as much as they want. This flexible customization is owed to the foundational architecture in `FreqAI`, which is comprised of three distinct Python objects:
*`IFreqaiModel`
* A singular long-lived object containing all the necessary logic to collect data, store data, process data, engineer features, run training, and inference models.
*`FreqaiDataKitchen`
* A short-lived object which is uniquely created for each asset/model. Beyond metadata, it also contains a variety of data processing tools.
*`FreqaiDataDrawer`
* Singular long-lived object containing all the historical predictions, models, and save/load methods.
These objects interact with one another with one goal in mind - to provide a clean data set to machine learning experts/enthusiasts at the user endpoint. These power-users interact with an inherited `IFreqaiModel` that allows them to dig as deep or as shallow as they wish into the inheritence tree. Typical power-users focus their efforts on customizing training procedures and testing exotic functionalities available in third-party libraries. Thus, power-users are freed from the algorithmic weight associated with data management, and can instead focus their energy on testing creative hypotheses. Meanwhile, some users choose to override deeper functionalities within `IFreqaiModel` to help them craft unique data structures and training procedures.
The class structure and algorithmic details are depicted in the following diagram:

*Class diagram summarizing object interactions in FreqAI*
# Online documentation
The documentation for [`FreqAI`](https://www.freqtrade.io/en/latest/freqai/) is available online at [https://www.freqtrade.io/en/latest/freqai/](https://www.freqtrade.io/en/latest/freqai/) and covers a wide range of materials:
* Quick-start with a single command and example files - (beginners)
* Introduction to the feature engineering interface and basic configurations - (intermediate users)
* Parameter table with indepth descriptions and default parameter setting recommendations - (intermediate users)
* Data analysis and post-processing - (advanced users)
* Methodological considerations complemented by high resolution figures - (advanced users)
* Instructions for integrating third party machine learning libraries into custom prediction models - (advanced users)
* Software architectural description with class diagram - (developers)
* File structure descriptions - (developers)
The docs direct users to a variety of pre-made examples which integrate `Catboost`, `LightGBM`, `XGBoost`, `Sklearn`, `stable_baselines3`, `torch`, `tensorflow`. Meanwhile, developers will also find thorough docstrings and type hinting throughout the source code to aid in code readability and customization.
`FreqAI` also benefits from a strong support network of users and developers on the [`Freqtrade` discord](https://discord.gg/w6nDM6cM4y) as well as on the [`FreqAI` discord](https://discord.gg/xE4RMg4QYw). Within the `FreqAI` discord, users will find a deep and easily searched knowledge base containing common errors. But more importantly, users in the `FreqAI` discord share anectdotal and quantitative observations which compare performance between various third-party libraries and methods.
# State of the field
There are two other open-source tools which are geared toward helping users build models for time-series forecasts on market based data. However, each of these tools suffer from a non-generalized frameworks that do not permit comparison of methods and libraries. Additionally, they do not permit easy live-deployments or adaptive-modeling methods. For example, two open-sourced projects called [`tensortrade`](https://tensortradex.readthedocs.io/en/latest/) [@tensortrade] and [`FinRL`](https://github.com/AI4Finance-Foundation/FinRL) [@finrl] limit users to the exploration of reinforcement learning on historical data. These softwares also do not provide robust live deployments, they do not furnish novel feature engineering algorithms, and they do not provide custom data analysis tools. `FreqAI` fills the gap.
# On-going research
Emergent Methods, based in Arvada CO, is actively using `FreqAI` to perform large scale experiments aimed at comparing machine learning libraries in live and historical environments. Past projects include backtesting parametric sweeps, while active projects include a 3 week live deployment comparison between `CatboostRegressor`, `LightGBMRegressor`, and `XGBoostRegressor`. Results from these studies are planned for submission to scientific journals as well as more general data science blogs (e.g. Medium).
# Installing and running `FreqAI`
`FreqAI` is automatically installed with `Freqtrade` using the following commands on linux systems:
```
git clone git@github.com:freqtrade/freqtrade.git
cd freqtrade
./setup.sh -i
```
However, `FreqAI` also benefits from `Freqtrade` docker distributions, and can be run with docker by pulling the stable or develop images from `Freqtrade` distributions.
# Funding sources
[`FreqAI`](https://www.freqtrade.io/en/latest/freqai/) has had no official sponsors, and is entirely grass roots. All donations into the project (e.g. the GitHub sponsor system) are kept inside the project to help support development of open-sourced and communally beneficial features.
# Acknowledgements
We would like to acknowledge various beta testers of `FreqAI`:
- Longlong Yu (lolongcovas)
- Richárd Józsa (richardjozsa)
- Juha Nykänen (suikula)
- Emre Suzen (aemr3)
- Salah Lamkadem (ikonx)
As well as various `Freqtrade` [developers](https://github.com/freqtrade/freqtrade/graphs/contributors) maintaining tangential, yet essential, modules.
@@ -75,9 +75,11 @@ This function needs to return a floating point number (`float`). Smaller numbers
## Overriding pre-defined spaces
## Overriding pre-defined spaces
To override a pre-defined space (`roi_space`, `generate_roi_table`, `stoploss_space`, `trailing_space`), define a nested class called Hyperopt and define the required spaces as follows:
To override a pre-defined space (`roi_space`, `generate_roi_table`, `stoploss_space`, `trailing_space`, `max_open_trades_space`), define a nested class called Hyperopt and define the required spaces as follows:
```python
```python
from freqtrade.optimize.space import Categorical, Dimension, Integer, SKDecimal
class MyAwesomeStrategy(IStrategy):
class MyAwesomeStrategy(IStrategy):
class HyperOpt:
class HyperOpt:
# Define a custom stoploss space.
# Define a custom stoploss space.
@@ -94,6 +96,39 @@ class MyAwesomeStrategy(IStrategy):
@@ -101,7 +136,7 @@ class MyAwesomeStrategy(IStrategy):
### Dynamic parameters
### Dynamic parameters
Parameters can also be defined dynamically, but must be available to the instance once the * [`bot_start()` callback](strategy-callbacks.md#bot-start) has been called.
Parameters can also be defined dynamically, but must be available to the instance once the [`bot_start()` callback](strategy-callbacks.md#bot-start) has been called.
This needs the `systemd` python package installed as the dependency, which is not available on Windows. Hence, the whole journald logging functionality is not available for a bot running on Windows.
This needs the `cysystemd` python package installed as dependency (`pip install cysystemd`), which is not available on Windows. Hence, the whole journald logging functionality is not available for a bot running on Windows.
To send Freqtrade log messages to `journald` system service use the `--logfile` command line option with the value in the following format:
To send Freqtrade log messages to `journald` system service use the `--logfile` command line option with the value in the following format:
@@ -300,7 +301,11 @@ A backtesting result will look like that:
| Absolute profit | 0.00762792 BTC |
| Absolute profit | 0.00762792 BTC |
| Total profit % | 76.2% |
| Total profit % | 76.2% |
| CAGR % | 460.87% |
| CAGR % | 460.87% |
| Sortino | 1.88 |
| Sharpe | 2.97 |
| Calmar | 6.29 |
| Profit factor | 1.11 |
| Profit factor | 1.11 |
| Expectancy (Ratio) | -0.15 (-0.05) |
| Avg. stake amount | 0.001 BTC |
| Avg. stake amount | 0.001 BTC |
| Total trade volume | 0.429 BTC |
| Total trade volume | 0.429 BTC |
| | |
| | |
@@ -319,6 +324,7 @@ A backtesting result will look like that:
| Days win/draw/lose | 12 / 82 / 25 |
| Days win/draw/lose | 12 / 82 / 25 |
| Avg. Duration Winners | 4:23:00 |
| Avg. Duration Winners | 4:23:00 |
| Avg. Duration Loser | 6:55:00 |
| Avg. Duration Loser | 6:55:00 |
| Max Consecutive Wins / Loss | 3 / 4 |
| Rejected Entry signals | 3089 |
| Rejected Entry signals | 3089 |
| Entry/Exit Timeouts | 0 / 0 |
| Entry/Exit Timeouts | 0 / 0 |
| Canceled Trade Entries | 34 |
| Canceled Trade Entries | 34 |
@@ -352,7 +358,7 @@ here:
The bot has made `429` trades for an average duration of `4:12:00`, with a performance of `76.20%` (profit), that means it has
The bot has made `429` trades for an average duration of `4:12:00`, with a performance of `76.20%` (profit), that means it has
earned a total of `0.00762792 BTC` starting with a capital of 0.01 BTC.
earned a total of `0.00762792 BTC` starting with a capital of 0.01 BTC.
The column `Avg Profit %` shows the average profit for all trades made while the column `Cum Profit %` sums up all the profits/losses.
The column `Avg Profit %` shows the average profit for all trades made.
The column `Tot Profit %` shows instead the total profit % in relation to the starting balance.
The column `Tot Profit %` shows instead the total profit % in relation to the starting balance.
In the above results, we have a starting balance of 0.01 BTC and an absolute profit of 0.00762792 BTC - so the `Tot Profit %` will be `(0.00762792 / 0.01) * 100 ~= 76.2%`.
In the above results, we have a starting balance of 0.01 BTC and an absolute profit of 0.00762792 BTC - so the `Tot Profit %` will be `(0.00762792 / 0.01) * 100 ~= 76.2%`.
@@ -400,7 +406,11 @@ It contains some useful key metrics about performance of your strategy on backte
| Absolute profit | 0.00762792 BTC |
| Absolute profit | 0.00762792 BTC |
| Total profit % | 76.2% |
| Total profit % | 76.2% |
| CAGR % | 460.87% |
| CAGR % | 460.87% |
| Sortino | 1.88 |
| Sharpe | 2.97 |
| Calmar | 6.29 |
| Profit factor | 1.11 |
| Profit factor | 1.11 |
| Expectancy (Ratio) | -0.15 (-0.05) |
| Avg. stake amount | 0.001 BTC |
| Avg. stake amount | 0.001 BTC |
| Total trade volume | 0.429 BTC |
| Total trade volume | 0.429 BTC |
| | |
| | |
@@ -419,6 +429,7 @@ It contains some useful key metrics about performance of your strategy on backte
| Days win/draw/lose | 12 / 82 / 25 |
| Days win/draw/lose | 12 / 82 / 25 |
| Avg. Duration Winners | 4:23:00 |
| Avg. Duration Winners | 4:23:00 |
| Avg. Duration Loser | 6:55:00 |
| Avg. Duration Loser | 6:55:00 |
| Max Consecutive Wins / Loss | 3 / 4 |
| Rejected Entry signals | 3089 |
| Rejected Entry signals | 3089 |
| Entry/Exit Timeouts | 0 / 0 |
| Entry/Exit Timeouts | 0 / 0 |
| Canceled Trade Entries | 34 |
| Canceled Trade Entries | 34 |
@@ -447,14 +458,18 @@ It contains some useful key metrics about performance of your strategy on backte
-`Absolute profit`: Profit made in stake currency.
-`Absolute profit`: Profit made in stake currency.
-`Total profit %`: Total profit. Aligned to the `TOTAL` row's `Tot Profit %` from the first table. Calculated as `(End capital − Starting capital) / Starting capital`.
-`Total profit %`: Total profit. Aligned to the `TOTAL` row's `Tot Profit %` from the first table. Calculated as `(End capital − Starting capital) / Starting capital`.
-`CAGR %`: Compound annual growth rate.
-`CAGR %`: Compound annual growth rate.
-`Sortino`: Annualized Sortino ratio.
-`Sharpe`: Annualized Sharpe ratio.
-`Calmar`: Annualized Calmar ratio.
-`Profit factor`: profit / loss.
-`Profit factor`: profit / loss.
-`Avg. stake amount`: Average stake amount, either `stake_amount` or the average when using dynamic stake amount.
-`Avg. stake amount`: Average stake amount, either `stake_amount` or the average when using dynamic stake amount.
-`Total trade volume`: Volume generated on the exchange to reach the above profit.
-`Total trade volume`: Volume generated on the exchange to reach the above profit.
-`Best Pair` / `Worst Pair`: Best and worst performing pair, and it's corresponding `Cum Profit %`.
-`Best Pair` / `Worst Pair`: Best and worst performing pair, and it's corresponding `Tot Profit %`.
-`Best Trade` / `Worst Trade`: Biggest single winning trade and biggest single losing trade.
-`Best Trade` / `Worst Trade`: Biggest single winning trade and biggest single losing trade.
-`Best day` / `Worst day`: Best and worst day based on daily profit.
-`Best day` / `Worst day`: Best and worst day based on daily profit.
-`Days win/draw/lose`: Winning / Losing days (draws are usually days without closed trade).
-`Days win/draw/lose`: Winning / Losing days (draws are usually days without closed trade).
-`Avg. Duration Winners` / `Avg. Duration Loser`: Average durations for winning and losing trades.
-`Avg. Duration Winners` / `Avg. Duration Loser`: Average durations for winning and losing trades.
-`Max Consecutive Wins / Loss`: Maximum consecutive wins/losses in a row.
-`Rejected Entry signals`: Trade entry signals that could not be acted upon due to `max_open_trades` being reached.
-`Rejected Entry signals`: Trade entry signals that could not be acted upon due to `max_open_trades` being reached.
-`Entry/Exit Timeouts`: Entry/exit orders which did not fill (only applicable if custom pricing is used).
-`Entry/Exit Timeouts`: Entry/exit orders which did not fill (only applicable if custom pricing is used).
-`Canceled Trade Entries`: Number of trades that have been canceled by user request via `adjust_entry_price`.
-`Canceled Trade Entries`: Number of trades that have been canceled by user request via `adjust_entry_price`.
@@ -522,13 +537,14 @@ Since backtesting lacks some detailed information about what happens within a ca
- ROI
- ROI
- exits are compared to high - but the ROI value is used (e.g. ROI = 2%, high=5% - so the exit will be at 2%)
- exits are compared to high - but the ROI value is used (e.g. ROI = 2%, high=5% - so the exit will be at 2%)
- exits are never "below the candle", so a ROI of 2% may result in a exit at 2.4% if low was at 2.4% profit
- exits are never "below the candle", so a ROI of 2% may result in a exit at 2.4% if low was at 2.4% profit
- Forceexits caused by `<N>=-1` ROI entries use low as exit value, unless N falls on the candle open (e.g. `120: -1` for 1h candles)
- ROI entries which came into effect on the triggering candle (e.g. `120: 0.02` for 1h candles, from `60: 0.05`) will use the candle's open as exit rate
- Force-exits caused by `<N>=-1` ROI entries use low as exit value, unless N falls on the candle open (e.g. `120: -1` for 1h candles)
- Stoploss exits happen exactly at stoploss price, even if low was lower, but the loss will be `2 * fees` higher than the stoploss price
- Stoploss exits happen exactly at stoploss price, even if low was lower, but the loss will be `2 * fees` higher than the stoploss price
- Stoploss is evaluated before ROI within one candle. So you can often see more trades with the `stoploss` exit reason comparing to the results obtained with the same strategy in the Dry Run/Live Trade modes
- Stoploss is evaluated before ROI within one candle. So you can often see more trades with the `stoploss` exit reason comparing to the results obtained with the same strategy in the Dry Run/Live Trade modes
- Low happens before high for stoploss, protecting capital first
- Low happens before high for stoploss, protecting capital first
- Trailing stoploss
- Trailing stoploss
- Trailing Stoploss is only adjusted if it's below the candle's low (otherwise it would be triggered)
- Trailing Stoploss is only adjusted if it's below the candle's low (otherwise it would be triggered)
- On trade entry candles that trigger trailing stoploss, the "minimum offset" (`stop_positive_offset`) is assumed (instead of high) - and the stop is calculated from this point
- On trade entry candles that trigger trailing stoploss, the "minimum offset" (`stop_positive_offset`) is assumed (instead of high) - and the stop is calculated from this point. This rule is NOT applicable to custom-stoploss scenarios, since there's no information about the stoploss logic available.
- High happens first - adjusting stoploss
- High happens first - adjusting stoploss
- Low uses the adjusted stoploss (so exits with large high-low difference are backtested correctly)
- Low uses the adjusted stoploss (so exits with large high-low difference are backtested correctly)
- ROI applies before trailing-stop, ensuring profits are "top-capped" at ROI if both ROI and trailing stop applies
- ROI applies before trailing-stop, ensuring profits are "top-capped" at ROI if both ROI and trailing stop applies
@@ -546,8 +562,8 @@ In addition to the above assumptions, strategy authors should carefully read the
### Trading limits in backtesting
### Trading limits in backtesting
Exchanges have certain trading limits, like minimum base currency, or minimum stake (quote) currency.
Exchanges have certain trading limits, like minimum (and maximum) base currency, or minimum/maximum stake (quote) currency.
These limits are usually listed in the exchange documentation as "trading rules" or similar.
These limits are usually listed in the exchange documentation as "trading rules" or similar and can be quite different between different pairs.
Backtesting (as well as live and dry-run) does honor these limits, and will ensure that a stoploss can be placed below this value - so the value will be slightly higher than what the exchange specifies.
Backtesting (as well as live and dry-run) does honor these limits, and will ensure that a stoploss can be placed below this value - so the value will be slightly higher than what the exchange specifies.
Freqtrade has however no information about historic limits.
Freqtrade has however no information about historic limits.
@@ -583,7 +599,8 @@ To utilize this, you can append `--timeframe-detail 5m` to your regular backtest
This will load 1h data as well as 5m data for the timeframe. The strategy will be analyzed with the 1h timeframe - and for every "open trade candle" (candles where a trade is open) the 5m data will be used to simulate intra-candle movements.
This will load 1h data as well as 5m data for the timeframe. The strategy will be analyzed with the 1h timeframe, and Entry orders will only be placed at the main timeframe, however Order fills and exit signals will be evaluated at the 5m candle, simulating intra-candle movements.
All callback functions (`custom_exit()`, `custom_stoploss()`, ... ) will be running for each 5m candle once the trade is opened (so 12 times in the above example of 1h timeframe, and 5m detailed timeframe).
All callback functions (`custom_exit()`, `custom_stoploss()`, ... ) will be running for each 5m candle once the trade is opened (so 12 times in the above example of 1h timeframe, and 5m detailed timeframe).
`--timeframe-detail` must be smaller than the original timeframe, otherwise backtesting will fail to start.
`--timeframe-detail` must be smaller than the original timeframe, otherwise backtesting will fail to start.
@@ -601,22 +618,22 @@ To compare multiple strategies, a list of Strategies can be provided to backtest
This is limited to 1 timeframe value per run. However, data is only loaded once from disk so if you have multiple
This is limited to 1 timeframe value per run. However, data is only loaded once from disk so if you have multiple
strategies you'd like to compare, this will give a nice runtime boost.
strategies you'd like to compare, this will give a nice runtime boost.
All listed Strategies need to be in the same directory.
All listed Strategies need to be in the same directory, unless also `--recursive-strategy-search` is specified, where sub-directories within the strategy directory are also considered.
This will save the results to `user_data/backtest_results/backtest-result-<strategy>.json`, injecting the strategy-name into the target filename.
This will save the results to `user_data/backtest_results/backtest-result-<datetime>.json`, including results for both `Strategy001` and `Strategy002`.
There will be an additional table comparing win/losses of the different strategies (identical to the "Total" row in the first table).
There will be an additional table comparing win/losses of the different strategies (identical to the "Total" row in the first table).
Detailed output for all strategies one after the other will be available, so make sure to scroll up to see the details per strategy.
Detailed output for all strategies one after the other will be available, so make sure to scroll up to see the details per strategy.
@@ -7,16 +7,32 @@ This page provides you some basic concepts on how Freqtrade works and operates.
* **Strategy**: Your trading strategy, telling the bot what to do.
* **Strategy**: Your trading strategy, telling the bot what to do.
* **Trade**: Open position.
* **Trade**: Open position.
* **Open Order**: Order which is currently placed on the exchange, and is not yet complete.
* **Open Order**: Order which is currently placed on the exchange, and is not yet complete.
* **Pair**: Tradable pair, usually in the format of Base/Quote (e.g. XRP/USDT).
* **Pair**: Tradable pair, usually in the format of Base/Quote (e.g. `XRP/USDT` for spot, `XRP/USDT:USDT` for futures).
* **Timeframe**: Candle length to use (e.g. `"5m"`, `"1h"`, ...).
* **Timeframe**: Candle length to use (e.g. `"5m"`, `"1h"`, ...).
* **Indicators**: Technical indicators (SMA, EMA, RSI, ...).
* **Indicators**: Technical indicators (SMA, EMA, RSI, ...).
* **Limit order**: Limit orders which execute at the defined limit price or better.
* **Limit order**: Limit orders which execute at the defined limit price or better.
* **Market order**: Guaranteed to fill, may move price depending on the order size.
* **Market order**: Guaranteed to fill, may move price depending on the order size.
* **Current Profit**: Currently pending (unrealized) profit for this trade. This is mainly used throughout the bot and UI.
* **Realized Profit**: Already realized profit. Only relevant in combination with [partial exits](strategy-callbacks.md#adjust-trade-position) - which also explains the calculation logic for this.
* **Total Profit**: Combined realized and unrealized profit. The relative number (%) is calculated against the total investment in this trade.
## Fee handling
## Fee handling
All profit calculations of Freqtrade include fees. For Backtesting / Hyperopt / Dry-run modes, the exchange default fee is used (lowest tier on the exchange). For live operations, fees are used as applied by the exchange (this includes BNB rebates etc.).
All profit calculations of Freqtrade include fees. For Backtesting / Hyperopt / Dry-run modes, the exchange default fee is used (lowest tier on the exchange). For live operations, fees are used as applied by the exchange (this includes BNB rebates etc.).
## Pair naming
Freqtrade follows the [ccxt naming convention](https://docs.ccxt.com/#/README?id=consistency-of-base-and-quote-currencies) for currencies.
Using the wrong naming convention in the wrong market will usually result in the bot not recognizing the pair, usually resulting in errors like "this pair is not available".
### Spot pair naming
For spot pairs, naming will be `base/quote` (e.g. `ETH/USDT`).
### Futures pair naming
For futures pairs, naming will be `base/quote:settle` (e.g. `ETH/USDT:USDT`).
## Bot execution logic
## Bot execution logic
Starting freqtrade in dry-run or live mode (using `freqtrade trade`) will start the bot and start the bot iteration loop.
Starting freqtrade in dry-run or live mode (using `freqtrade trade`) will start the bot and start the bot iteration loop.
@@ -33,7 +49,9 @@ By default, the bot loop runs every few seconds (`internals.process_throttle_sec
* Call `populate_indicators()`
* Call `populate_indicators()`
* Call `populate_entry_trend()`
* Call `populate_entry_trend()`
* Call `populate_exit_trend()`
* Call `populate_exit_trend()`
*Check timeouts for open orders.
*Update trades open order state from exchange.
* Call `order_filled()` strategy callback for filled orders.
* Check timeouts for open orders.
* Calls `check_entry_timeout()` strategy callback for open entry orders.
* Calls `check_entry_timeout()` strategy callback for open entry orders.
* Calls `check_exit_timeout()` strategy callback for open exit orders.
* Calls `check_exit_timeout()` strategy callback for open exit orders.
* Calls `adjust_entry_price()` strategy callback for open entry orders.
* Calls `adjust_entry_price()` strategy callback for open entry orders.
@@ -57,10 +75,10 @@ This loop will be repeated again and again until the bot is stopped.
* Load historic data for configured pairlist.
* Load historic data for configured pairlist.
* Calls `bot_start()` once.
* Calls `bot_start()` once.
* Calls `bot_loop_start()` once.
* Calculate indicators (calls `populate_indicators()` once per pair).
* Calculate indicators (calls `populate_indicators()` once per pair).
* Calculate entry / exit signals (calls `populate_entry_trend()` and `populate_exit_trend()` once per pair).
* Calculate entry / exit signals (calls `populate_entry_trend()` and `populate_exit_trend()` once per pair).
* Loops per candle simulating entry and exit points.
* Loops per candle simulating entry and exit points.
* Calls `bot_loop_start()` strategy callback.
* Check for Order timeouts, either via the `unfilledtimeout` configuration, or via `check_entry_timeout()` / `check_exit_timeout()` strategy callbacks.
* Check for Order timeouts, either via the `unfilledtimeout` configuration, or via `check_entry_timeout()` / `check_exit_timeout()` strategy callbacks.
* Calls `adjust_entry_price()` strategy callback for open entry orders.
* Calls `adjust_entry_price()` strategy callback for open entry orders.
* Check for trade entry signals (`enter_long` / `enter_short` columns).
* Check for trade entry signals (`enter_long` / `enter_short` columns).
@@ -69,9 +87,15 @@ This loop will be repeated again and again until the bot is stopped.
* In Margin and Futures mode, `leverage()` strategy callback is called to determine the desired leverage.
* In Margin and Futures mode, `leverage()` strategy callback is called to determine the desired leverage.
* Determine stake size by calling the `custom_stake_amount()` callback.
* Determine stake size by calling the `custom_stake_amount()` callback.
* Check position adjustments for open trades if enabled and call `adjust_trade_position()` to determine if an additional order is requested.
* Check position adjustments for open trades if enabled and call `adjust_trade_position()` to determine if an additional order is requested.
* Call `order_filled()` strategy callback for filled entry orders.
* Call `custom_stoploss()` and `custom_exit()` to find custom exit points.
* Call `custom_stoploss()` and `custom_exit()` to find custom exit points.
* For exits based on exit-signal, custom-exit and partial exits: Call `custom_exit_price()` to determine exit price (Prices are moved to be within the closing candle).
* For exits based on exit-signal, custom-exit and partial exits: Call `custom_exit_price()` to determine exit price (Prices are moved to be within the closing candle).
* Call `order_filled()` strategy callback for filled exit orders.
* Generate backtest report output
* Generate backtest report output
!!! Note
!!! Note
Both Backtesting and Hyperopt include exchange default Fees in the calculation. Custom fees can be passed to backtesting / hyperopt by specifying the `--fee` argument.
Both Backtesting and Hyperopt include exchange default Fees in the calculation. Custom fees can be passed to backtesting / hyperopt by specifying the `--fee` argument.
!!! Warning "Callback call frequency"
Backtesting will call each callback at max. once per candle (`--timeframe-detail` modifies this behavior to once per detailed candle).
Most callbacks will be called once per iteration in live (usually every ~5s) - which can cause backtesting mismatches.
This page explains the different parameters of the bot and how to run it.
This page explains the different parameters of the bot and how to run it.
!!! Note
!!! Note
If you've used `setup.sh`, don't forget to activate your virtual environment (`source .env/bin/activate`) before running freqtrade commands.
If you've used `setup.sh`, don't forget to activate your virtual environment (`source .venv/bin/activate`) before running freqtrade commands.
!!! Warning "Up-to-date clock"
!!! Warning "Up-to-date clock"
The clock on the system running the bot must be accurate, synchronized to a NTP server frequently enough to avoid problems with communication to the exchanges.
The clock on the system running the bot must be accurate, synchronized to a NTP server frequently enough to avoid problems with communication to the exchanges.
@@ -11,10 +11,10 @@ Per default, the bot loads the configuration from the `config.json` file, locate
You can specify a different configuration file used by the bot with the `-c/--config` command-line option.
You can specify a different configuration file used by the bot with the `-c/--config` command-line option.
If you used the [Quick start](installation.md/#quick-start) method for installing
If you used the [Quick start](docker_quickstart.md#docker-quick-start) method for installing
the bot, the installation script should have already created the default configuration file (`config.json`) for you.
the bot, the installation script should have already created the default configuration file (`config.json`) for you.
If the default configuration file is not created we recommend to use `freqtrade new-config --config config.json` to generate a basic configuration file.
If the default configuration file is not created we recommend to use `freqtrade new-config --config user_data/config.json` to generate a basic configuration file.
The Freqtrade configuration file is to be written in JSON format.
The Freqtrade configuration file is to be written in JSON format.
Environment variables detected are logged at startup - so if you can't find why a value is not what you think it should be based on the configuration, make sure it's not loaded from an environment variable.
Environment variables detected are logged at startup - so if you can't find why a value is not what you think it should be based on the configuration, make sure it's not loaded from an environment variable.
!!! Tip "Validate combined result"
You can use the [show-config subcommand](utils.md#show-config) to see the final, combined configuration.
??? Warning "Loading sequence"
Environment variables are loaded after the initial configuration. As such, you cannot provide the path to the configuration through environment variables. Please use `--config path/to/config.json` for that.
This also applies to user_dir to some degree. while the user directory can be set through environment variables - the configuration will **not** be loaded from that location.
### Multiple configuration files
### Multiple configuration files
Multiple configuration files can be specified and used by the bot or the bot can read its configuration parameters from the process standard input stream.
Multiple configuration files can be specified and used by the bot or the bot can read its configuration parameters from the process standard input stream.
@@ -56,6 +63,9 @@ Multiple configuration files can be specified and used by the bot or the bot can
You can specify additional configuration files in `add_config_files`. Files specified in this parameter will be loaded and merged with the initial config file. The files are resolved relative to the initial configuration file.
You can specify additional configuration files in `add_config_files`. Files specified in this parameter will be loaded and merged with the initial config file. The files are resolved relative to the initial configuration file.
This is similar to using multiple `--config` parameters, but simpler in usage as you don't have to specify all files for all commands.
This is similar to using multiple `--config` parameters, but simpler in usage as you don't have to specify all files for all commands.
!!! Tip "Validate combined result"
You can use the [show-config subcommand](utils.md#show-config) to see the final, combined configuration.
!!! Tip "Use multiple configuration files to keep secrets secret"
!!! Tip "Use multiple configuration files to keep secrets secret"
You can use a 2nd configuration file containing your secrets. That way you can share your "primary" configuration file, while still keeping your API keys for yourself.
You can use a 2nd configuration file containing your secrets. That way you can share your "primary" configuration file, while still keeping your API keys for yourself.
The 2nd file should only specify what you intend to override.
The 2nd file should only specify what you intend to override.
@@ -134,11 +144,11 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| Parameter | Description |
| Parameter | Description |
|------------|-------------|
|------------|-------------|
| `max_open_trades` | **Required.** Number of open trades your bot is allowed to have. Only one open trade per pair is possible, so the length of your pairlist is another limitation that can apply. If -1 then it is ignored (i.e. potentially unlimited open trades, limited by the pairlist). [More information below](#configuring-amount-per-trade).<br> **Datatype:** Positive integer or -1.
| `max_open_trades` | **Required.** Number of open trades your bot is allowed to have. Only one open trade per pair is possible, so the length of your pairlist is another limitation that can apply. If -1 then it is ignored (i.e. potentially unlimited open trades, limited by the pairlist). [More information below](#configuring-amount-per-trade). [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Positive integer or -1.
| `stake_currency` | **Required.** Crypto-currency used for trading. <br> **Datatype:** String
| `stake_currency` | **Required.** Crypto-currency used for trading. <br> **Datatype:** String
| `stake_amount` | **Required.** Amount of crypto-currency your bot will use for each trade. Set it to `"unlimited"` to allow the bot to use all available balance. [More information below](#configuring-amount-per-trade). <br> **Datatype:** Positive float or `"unlimited"`.
| `stake_amount` | **Required.** Amount of crypto-currency your bot will use for each trade. Set it to `"unlimited"` to allow the bot to use all available balance. [More information below](#configuring-amount-per-trade). <br> **Datatype:** Positive float or `"unlimited"`.
| `tradable_balance_ratio` | Ratio of the total account balance the bot is allowed to trade. [More information below](#configuring-amount-per-trade). <br>*Defaults to `0.99` 99%).*<br> **Datatype:** Positive float between `0.1` and `1.0`.
| `tradable_balance_ratio` | Ratio of the total account balance the bot is allowed to trade. [More information below](#configuring-amount-per-trade). <br>*Defaults to `0.99` 99%).*<br> **Datatype:** Positive float between `0.1` and `1.0`.
| `available_capital` | Available starting capital for the bot. Useful when running multiple bots on the same exchange account.[More information below](#configuring-amount-per-trade). <br> **Datatype:** Positive float.
| `available_capital` | Available starting capital for the bot. Useful when running multiple bots on the same exchange account.[More information below](#configuring-amount-per-trade). <br> **Datatype:** Positive float.
| `amend_last_stake_amount` | Use reduced last stake amount if necessary. [More information below](#configuring-amount-per-trade). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `amend_last_stake_amount` | Use reduced last stake amount if necessary. [More information below](#configuring-amount-per-trade). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `last_stake_amount_min_ratio` | Defines minimum stake amount that has to be left and executed. Applies only to the last stake amount when it's amended to a reduced value (i.e. if `amend_last_stake_amount` is set to `true`). [More information below](#configuring-amount-per-trade). <br>*Defaults to `0.5`.* <br> **Datatype:** Float (as ratio)
| `last_stake_amount_min_ratio` | Defines minimum stake amount that has to be left and executed. Applies only to the last stake amount when it's amended to a reduced value (i.e. if `amend_last_stake_amount` is set to `true`). [More information below](#configuring-amount-per-trade). <br>*Defaults to `0.5`.* <br> **Datatype:** Float (as ratio)
| `amount_reserve_percent` | Reserve some amount in min pair stake amount. The bot will reserve `amount_reserve_percent` + stoploss value when calculating min pair stake amount in order to avoid possible trade refusals. <br>*Defaults to `0.05` (5%).* <br> **Datatype:** Positive Float as ratio.
| `amount_reserve_percent` | Reserve some amount in min pair stake amount. The bot will reserve `amount_reserve_percent` + stoploss value when calculating min pair stake amount in order to avoid possible trade refusals. <br>*Defaults to `0.05` (5%).* <br> **Datatype:** Positive Float as ratio.
@@ -155,29 +165,29 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `trailing_stop_positive_offset` | Offset on when to apply `trailing_stop_positive`. Percentage value which should be positive. More details in the [stoploss documentation](stoploss.md#trailing-stop-loss-only-once-the-trade-has-reached-a-certain-offset). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0` (no offset).* <br> **Datatype:** Float
| `trailing_stop_positive_offset` | Offset on when to apply `trailing_stop_positive`. Percentage value which should be positive. More details in the [stoploss documentation](stoploss.md#trailing-stop-loss-only-once-the-trade-has-reached-a-certain-offset). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0` (no offset).* <br> **Datatype:** Float
| `trailing_only_offset_is_reached` | Only apply trailing stoploss when the offset is reached. [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `trailing_only_offset_is_reached` | Only apply trailing stoploss when the offset is reached. [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `fee` | Fee used during backtesting / dry-runs. Should normally not be configured, which has freqtrade fall back to the exchange default fee. Set as ratio (e.g. 0.001 = 0.1%). Fee is applied twice for each trade, once when buying, once when selling. <br> **Datatype:** Float (as ratio)
| `fee` | Fee used during backtesting / dry-runs. Should normally not be configured, which has freqtrade fall back to the exchange default fee. Set as ratio (e.g. 0.001 = 0.1%). Fee is applied twice for each trade, once when buying, once when selling. <br> **Datatype:** Float (as ratio)
| `futures_funding_rate` | User-specified funding rate to be used when historical funding rates are not available from the exchange. This does not overwrite real historical rates. It is recommended that this be set to 0 unless you are testing a specific coin and you understand how the funding rate will affect freqtrade's profit calculations. [More information here](leverage.md#unavailable-funding-rates) <br>*Defaults to None.*<br> **Datatype:** Float
| `futures_funding_rate` | User-specified funding rate to be used when historical funding rates are not available from the exchange. This does not overwrite real historical rates. It is recommended that this be set to 0 unless you are testing a specific coin and you understand how the funding rate will affect freqtrade's profit calculations. [More information here](leverage.md#unavailable-funding-rates) <br>*Defaults to `None`.*<br> **Datatype:** Float
| `trading_mode` | Specifies if you want to trade regularly, trade with leverage, or trade contracts whose prices are derived from matching cryptocurrency prices. [leverage documentation](leverage.md). <br>*Defaults to `"spot"`.* <br> **Datatype:** String
| `trading_mode` | Specifies if you want to trade regularly, trade with leverage, or trade contracts whose prices are derived from matching cryptocurrency prices. [leverage documentation](leverage.md). <br>*Defaults to `"spot"`.* <br> **Datatype:** String
| `margin_mode` | When trading with leverage, this determines if the collateral owned by the trader will be shared or isolated to each trading pair [leverage documentation](leverage.md). <br> **Datatype:** String
| `margin_mode` | When trading with leverage, this determines if the collateral owned by the trader will be shared or isolated to each trading pair [leverage documentation](leverage.md). <br> **Datatype:** String
| `liquidation_buffer` | A ratio specifying how large of a safety net to place between the liquidation price and the stoploss to prevent a position from reaching the liquidation price [leverage documentation](leverage.md). <br>*Defaults to `0.05`.* <br> **Datatype:** Float
| `liquidation_buffer` | A ratio specifying how large of a safety net to place between the liquidation price and the stoploss to prevent a position from reaching the liquidation price [leverage documentation](leverage.md). <br>*Defaults to `0.05`.* <br> **Datatype:** Float
| | **Unfilled timeout**
| | **Unfilled timeout**
| `unfilledtimeout.entry` | **Required.** How long (in minutes or seconds) the bot will wait for an unfilled entry order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `unfilledtimeout.entry` | **Required.** How long (in minutes or seconds) the bot will wait for an unfilled entry order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `unfilledtimeout.exit` | **Required.** How long (in minutes or seconds) the bot will wait for an unfilled exit order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `unfilledtimeout.exit` | **Required.** How long (in minutes or seconds) the bot will wait for an unfilled exit order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `unfilledtimeout.unit` | Unit to use in unfilledtimeout setting. Note: If you set unfilledtimeout.unit to "seconds", "internals.process_throttle_secs" must be inferior or equal to timeout [Strategy Override](#parameters-in-the-strategy). <br> *Defaults to `minutes`.* <br> **Datatype:** String
| `unfilledtimeout.unit` | Unit to use in unfilledtimeout setting. Note: If you set unfilledtimeout.unit to "seconds", "internals.process_throttle_secs" must be inferior or equal to timeout [Strategy Override](#parameters-in-the-strategy). <br> *Defaults to `"minutes"`.* <br> **Datatype:** String
| `unfilledtimeout.exit_timeout_count` | How many times can exit orders time out. Once this number of timeouts is reached, an emergency exit is triggered. 0 to disable and allow unlimited order cancels. [Strategy Override](#parameters-in-the-strategy).<br>*Defaults to `0`.* <br> **Datatype:** Integer
| `unfilledtimeout.exit_timeout_count` | How many times can exit orders time out. Once this number of timeouts is reached, an emergency exit is triggered. 0 to disable and allow unlimited order cancels. [Strategy Override](#parameters-in-the-strategy).<br>*Defaults to `0`.* <br> **Datatype:** Integer
| | **Pricing**
| | **Pricing**
| `entry_pricing.price_side` | Select the side of the spread the bot should look at to get the entry rate. [More information below](#buy-price-side).<br> *Defaults to `same`.* <br> **Datatype:** String (either `ask`, `bid`, `same` or `other`).
| `entry_pricing.price_side` | Select the side of the spread the bot should look at to get the entry rate. [More information below](#entry-price).<br> *Defaults to `"same"`.* <br> **Datatype:** String (either `ask`, `bid`, `same` or `other`).
| `entry_pricing.price_last_balance` | **Required.** Interpolate the bidding price. More information [below](#entry-price-without-orderbook-enabled).
| `entry_pricing.price_last_balance` | **Required.** Interpolate the bidding price. More information [below](#entry-price-without-orderbook-enabled).
| `entry_pricing.use_order_book` | Enable entering using the rates in [Order Book Entry](#entry-price-with-orderbook-enabled). <br> *Defaults to `True`.*<br> **Datatype:** Boolean
| `entry_pricing.use_order_book` | Enable entering using the rates in [Order Book Entry](#entry-price-with-orderbook-enabled). <br> *Defaults to `true`.*<br> **Datatype:** Boolean
| `entry_pricing.order_book_top` | Bot will use the top N rate in Order Book "price_side" to enter a trade. I.e. a value of 2 will allow the bot to pick the 2nd entry in [Order Book Entry](#entry-price-with-orderbook-enabled). <br>*Defaults to `1`.* <br> **Datatype:** Positive Integer
| `entry_pricing.order_book_top` | Bot will use the top N rate in Order Book "price_side" to enter a trade. I.e. a value of 2 will allow the bot to pick the 2nd entry in [Order Book Entry](#entry-price-with-orderbook-enabled). <br>*Defaults to `1`.* <br> **Datatype:** Positive Integer
| `entry_pricing. check_depth_of_market.enabled` | Do not enter if the difference of buy orders and sell orders is met in Order Book. [Check market depth](#check-depth-of-market). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `entry_pricing. check_depth_of_market.enabled` | Do not enter if the difference of buy orders and sell orders is met in Order Book. [Check market depth](#check-depth-of-market). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `entry_pricing. check_depth_of_market.bids_to_ask_delta` | The difference ratio of buy orders and sell orders found in Order Book. A value below 1 means sell order size is greater, while value greater than 1 means buy order size is higher. [Check market depth](#check-depth-of-market) <br> *Defaults to `0`.* <br> **Datatype:** Float (as ratio)
| `entry_pricing. check_depth_of_market.bids_to_ask_delta` | The difference ratio of buy orders and sell orders found in Order Book. A value below 1 means sell order size is greater, while value greater than 1 means buy order size is higher. [Check market depth](#check-depth-of-market) <br> *Defaults to `0`.* <br> **Datatype:** Float (as ratio)
| `exit_pricing.price_side` | Select the side of the spread the bot should look at to get the exit rate. [More information below](#exit-price-side).<br> *Defaults to `same`.* <br> **Datatype:** String (either `ask`, `bid`, `same` or `other`).
| `exit_pricing.price_side` | Select the side of the spread the bot should look at to get the exit rate. [More information below](#exit-price-side).<br> *Defaults to `"same"`.* <br> **Datatype:** String (either `ask`, `bid`, `same` or `other`).
| `exit_pricing.price_last_balance` | Interpolate the exiting price. More information [below](#exit-price-without-orderbook-enabled).
| `exit_pricing.price_last_balance` | Interpolate the exiting price. More information [below](#exit-price-without-orderbook-enabled).
| `exit_pricing.use_order_book` | Enable exiting of open trades using [Order Book Exit](#exit-price-with-orderbook-enabled). <br> *Defaults to `True`.*<br> **Datatype:** Boolean
| `exit_pricing.use_order_book` | Enable exiting of open trades using [Order Book Exit](#exit-price-with-orderbook-enabled). <br> *Defaults to `true`.*<br> **Datatype:** Boolean
| `exit_pricing.order_book_top` | Bot will use the top N rate in Order Book "price_side" to exit. I.e. a value of 2 will allow the bot to pick the 2nd ask rate in [Order Book Exit](#exit-price-with-orderbook-enabled)<br>*Defaults to `1`.* <br> **Datatype:** Positive Integer
| `exit_pricing.order_book_top` | Bot will use the top N rate in Order Book "price_side" to exit. I.e. a value of 2 will allow the bot to pick the 2nd ask rate in [Order Book Exit](#exit-price-with-orderbook-enabled)<br>*Defaults to `1`.* <br> **Datatype:** Positive Integer
| `custom_price_max_distance_ratio` | Configure maximum distance ratio between current and custom entry or exit price. <br>*Defaults to `0.02` 2%).*<br> **Datatype:** Positive float
| `custom_price_max_distance_ratio` | Configure maximum distance ratio between current and custom entry or exit price. <br>*Defaults to `0.02` 2%).*<br> **Datatype:** Positive float
| | **TODO**
| | **TODO**
| `use_exit_signal` | Use exit signals produced by the strategy in addition to the `minimal_roi`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| `use_exit_signal` | Use exit signals produced by the strategy in addition to the `minimal_roi`. <br>Setting this to false disables the usage of `"exit_long"` and `"exit_short"` columns. Has no influence on other exit methods (Stoploss, ROI, callbacks). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| `exit_profit_only` | Wait until the bot reaches `exit_profit_offset` before taking an exit decision. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `exit_profit_only` | Wait until the bot reaches `exit_profit_offset` before taking an exit decision. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `exit_profit_offset` | Exit-signal is only active above this value. Only active in combination with `exit_profit_only=True`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0`.* <br> **Datatype:** Float (as ratio)
| `exit_profit_offset` | Exit-signal is only active above this value. Only active in combination with `exit_profit_only=True`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0`.* <br> **Datatype:** Float (as ratio)
| `ignore_roi_if_entry_signal` | Do not exit if the entry signal is still active. This setting takes preference over `minimal_roi` and `use_exit_signal`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `ignore_roi_if_entry_signal` | Do not exit if the entry signal is still active. This setting takes preference over `minimal_roi` and `use_exit_signal`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
@@ -188,7 +198,6 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `max_entry_position_adjustment` | Maximum additional order(s) for each open trade on top of the first entry Order. Set it to `-1` for unlimited additional orders. [More information here](strategy-callbacks.md#adjust-trade-position). <br> [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `-1`.*<br> **Datatype:** Positive Integer or -1
| `max_entry_position_adjustment` | Maximum additional order(s) for each open trade on top of the first entry Order. Set it to `-1` for unlimited additional orders. [More information here](strategy-callbacks.md#adjust-trade-position). <br> [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `-1`.*<br> **Datatype:** Positive Integer or -1
| | **Exchange**
| | **Exchange**
| `exchange.name` | **Required.** Name of the exchange class to use. [List below](#user-content-what-values-for-exchangename). <br> **Datatype:** String
| `exchange.name` | **Required.** Name of the exchange class to use. [List below](#user-content-what-values-for-exchangename). <br> **Datatype:** String
| `exchange.sandbox` | Use the 'sandbox' version of the exchange, where the exchange provides a sandbox for risk-free integration. See [here](sandbox-testing.md) in more details.<br> **Datatype:** Boolean
| `exchange.key` | API key to use for the exchange. Only required when you are in production mode.<br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `exchange.key` | API key to use for the exchange. Only required when you are in production mode.<br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `exchange.secret` | API secret to use for the exchange. Only required when you are in production mode.<br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `exchange.secret` | API secret to use for the exchange. Only required when you are in production mode.<br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `exchange.password` | API password to use for the exchange. Only required when you are in production mode and for exchanges that use password for API requests.<br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `exchange.password` | API password to use for the exchange. Only required when you are in production mode and for exchanges that use password for API requests.<br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
@@ -199,10 +208,10 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `exchange.ccxt_sync_config` | Additional CCXT parameters passed to the regular (sync) ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation) <br> **Datatype:** Dict
| `exchange.ccxt_sync_config` | Additional CCXT parameters passed to the regular (sync) ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation) <br> **Datatype:** Dict
| `exchange.ccxt_async_config` | Additional CCXT parameters passed to the async ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation) <br> **Datatype:** Dict
| `exchange.ccxt_async_config` | Additional CCXT parameters passed to the async ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation) <br> **Datatype:** Dict
| `exchange.markets_refresh_interval` | The interval in minutes in which markets are reloaded. <br>*Defaults to `60` minutes.* <br> **Datatype:** Positive Integer
| `exchange.markets_refresh_interval` | The interval in minutes in which markets are reloaded. <br>*Defaults to `60` minutes.* <br> **Datatype:** Positive Integer
| `exchange.skip_pair_validation` | Skip pairlist validation on startup.<br>*Defaults to `false`<br> **Datatype:** Boolean
| `exchange.skip_pair_validation` | Skip pairlist validation on startup.<br>*Defaults to `false`*<br> **Datatype:** Boolean
| `exchange.skip_open_order_update` | Skips open order updates on startup should the exchange cause problems. Only relevant in live conditions.<br>*Defaults to `false`<br> **Datatype:** Boolean
| `exchange.skip_open_order_update` | Skips open order updates on startup should the exchange cause problems. Only relevant in live conditions.<br>*Defaults to `false`*<br> **Datatype:** Boolean
| `exchange.unknown_fee_rate` | Fallback value to use when calculating trading fees. This can be useful for exchanges which have fees in non-tradable currencies. The value provided here will be multiplied with the "fee cost".<br>*Defaults to `None`<br> **Datatype:** float
| `exchange.unknown_fee_rate` | Fallback value to use when calculating trading fees. This can be useful for exchanges which have fees in non-tradable currencies. The value provided here will be multiplied with the "fee cost".<br>*Defaults to `None`<br> **Datatype:** float
| `exchange.log_responses` | Log relevant exchange responses. For debug mode only - use with care.<br>*Defaults to `false`<br> **Datatype:** Boolean
| `exchange.log_responses` | Log relevant exchange responses. For debug mode only - use with care.<br>*Defaults to `false`*<br> **Datatype:** Boolean
| `experimental.block_bad_exchanges` | Block exchanges known to not work with freqtrade. Leave on default unless you want to test if that exchange works now. <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| `experimental.block_bad_exchanges` | Block exchanges known to not work with freqtrade. Leave on default unless you want to test if that exchange works now. <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| | **Plugins**
| | **Plugins**
| `edge.*` | Please refer to [edge configuration document](edge.md) for detailed explanation of all possible configuration options.
| `edge.*` | Please refer to [edge configuration document](edge.md) for detailed explanation of all possible configuration options.
@@ -213,18 +222,20 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `telegram.token` | Your Telegram bot token. Only required if `telegram.enabled` is `true`. <br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `telegram.token` | Your Telegram bot token. Only required if `telegram.enabled` is `true`. <br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `telegram.chat_id` | Your personal Telegram account id. Only required if `telegram.enabled` is `true`. <br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `telegram.chat_id` | Your personal Telegram account id. Only required if `telegram.enabled` is `true`. <br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `telegram.balance_dust_level` | Dust-level (in stake currency) - currencies with a balance below this will not be shown by `/balance`. <br> **Datatype:** float
| `telegram.balance_dust_level` | Dust-level (in stake currency) - currencies with a balance below this will not be shown by `/balance`. <br> **Datatype:** float
| `telegram.reload` | Allow "reload" buttons on telegram messages. <br>*Defaults to `True`.<br> **Datatype:** boolean
| `telegram.reload` | Allow "reload" buttons on telegram messages. <br>*Defaults to `true`.<br> **Datatype:** boolean
| `telegram.notification_settings.*` | Detailed notification settings. Refer to the [telegram documentation](telegram-usage.md) for details.<br> **Datatype:** dictionary
| `telegram.notification_settings.*` | Detailed notification settings. Refer to the [telegram documentation](telegram-usage.md) for details.<br> **Datatype:** dictionary
| `telegram.allow_custom_messages` | Enable the sending of Telegram messages from strategies via the dataprovider.send_msg() function. <br> **Datatype:** Boolean
| `webhook.url` | URL for the webhook. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.url` | URL for the webhook. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookentry` | Payload to send on entry. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.entry` | Payload to send on entry. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookentrycancel` | Payload to send on entry order cancel. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.entry_cancel` | Payload to send on entry order cancel. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookentryfill` | Payload to send on entry order filled. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.entry_fill` | Payload to send on entry order filled. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookexit` | Payload to send on exit. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.exit` | Payload to send on exit. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookexitcancel` | Payload to send on exit order cancel. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.exit_cancel` | Payload to send on exit order cancel. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookexitfill` | Payload to send on exit order filled. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.exit_fill` | Payload to send on exit order filled. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookstatus` | Payload to send on status calls. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.status` | Payload to send on status calls. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.allow_custom_messages` | Enable the sending of Webhook messages from strategies via the dataprovider.send_msg() function. <br> **Datatype:** Boolean
| | **Rest API / FreqUI / Producer-Consumer**
| | **Rest API / FreqUI / Producer-Consumer**
| `api_server.enabled` | Enable usage of API Server. See the [API Server documentation](rest-api.md) for more details. <br> **Datatype:** Boolean
| `api_server.enabled` | Enable usage of API Server. See the [API Server documentation](rest-api.md) for more details. <br> **Datatype:** Boolean
| `api_server.listen_ip_address` | Bind IP address. See the [API Server documentation](rest-api.md) for more details. <br> **Datatype:** IPv4
| `api_server.listen_ip_address` | Bind IP address. See the [API Server documentation](rest-api.md) for more details. <br> **Datatype:** IPv4
@@ -249,8 +260,9 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `db_url` | Declares database URL to use. NOTE: This defaults to `sqlite:///tradesv3.dryrun.sqlite` if `dry_run` is `true`, and to `sqlite:///tradesv3.sqlite` for production instances. <br> **Datatype:** String, SQLAlchemy connect string
| `db_url` | Declares database URL to use. NOTE: This defaults to `sqlite:///tradesv3.dryrun.sqlite` if `dry_run` is `true`, and to `sqlite:///tradesv3.sqlite` for production instances. <br> **Datatype:** String, SQLAlchemy connect string
| `logfile` | Specifies logfile name. Uses a rolling strategy for log file rotation for 10 files with the 1MB limit per file. <br> **Datatype:** String
| `logfile` | Specifies logfile name. Uses a rolling strategy for log file rotation for 10 files with the 1MB limit per file. <br> **Datatype:** String
| `add_config_files` | Additional config files. These files will be loaded and merged with the current config file. The files are resolved relative to the initial file.<br> *Defaults to `[]`*. <br> **Datatype:** List of strings
| `add_config_files` | Additional config files. These files will be loaded and merged with the current config file. The files are resolved relative to the initial file.<br> *Defaults to `[]`*. <br> **Datatype:** List of strings
| `dataformat_ohlcv` | Data format to use to store historical candle (OHLCV) data. <br> *Defaults to `json`*. <br> **Datatype:** String
| `dataformat_ohlcv` | Data format to use to store historical candle (OHLCV) data. <br> *Defaults to `feather`*. <br> **Datatype:** String
| `dataformat_trades` | Data format to use to store historical trades data. <br> *Defaults to `jsongz`*. <br> **Datatype:** String
| `dataformat_trades` | Data format to use to store historical trades data. <br> *Defaults to `feather`*. <br> **Datatype:** String
| `reduce_df_footprint` | Recast all numeric columns to float32/int32, with the objective of reducing ram/disk usage (and decreasing train/inference timing in FreqAI). (Currently only affects FreqAI use-cases) <br> **Datatype:** Boolean. <br> Default: `False`.
### Parameters in the strategy
### Parameters in the strategy
@@ -260,6 +272,7 @@ Values set in the configuration file always overwrite values set in the strategy
* `minimal_roi`
* `minimal_roi`
* `timeframe`
* `timeframe`
* `stoploss`
* `stoploss`
* `max_open_trades`
* `trailing_stop`
* `trailing_stop`
* `trailing_stop_positive`
* `trailing_stop_positive`
* `trailing_stop_positive_offset`
* `trailing_stop_positive_offset`
@@ -318,11 +331,13 @@ For example, if you have 10 ETH available in your wallet on the exchange and `tr
To fully utilize compounding profits when using multiple bots on the same exchange account, you'll want to limit each bot to a certain starting balance.
To fully utilize compounding profits when using multiple bots on the same exchange account, you'll want to limit each bot to a certain starting balance.
This can be accomplished by setting `available_capital` to the desired starting balance.
This can be accomplished by setting `available_capital` to the desired starting balance.
Assuming your account has 10.000 USDT and you want to run 2 different strategies on this exchange.
Assuming your account has 10000 USDT and you want to run 2 different strategies on this exchange.
You'd set `available_capital=5000` - granting each bot an initial capital of 5000 USDT.
You'd set `available_capital=5000` - granting each bot an initial capital of 5000 USDT.
The bot will then split this starting balance equally into `max_open_trades` buckets.
The bot will then split this starting balance equally into `max_open_trades` buckets.
Profitable trades will result in increased stake-sizes for this bot - without affecting the stake-sizes of the other bot.
Profitable trades will result in increased stake-sizes for this bot - without affecting the stake-sizes of the other bot.
Adjusting `available_capital` requires reloading the configuration to take effect. Adjusting the `available_capital` adds the difference between the previous `available_capital` and the new `available_capital`. Decreasing the available capital when trades are open doesn't exit the trades. The difference is returned to the wallet when the trades conclude. The outcome of this differs depending on the price movement between the adjustment and exiting the trades.
!!! Warning "Incompatible with `tradable_balance_ratio`"
!!! Warning "Incompatible with `tradable_balance_ratio`"
Setting this option will replace any configuration of `tradable_balance_ratio`.
Setting this option will replace any configuration of `tradable_balance_ratio`.
@@ -500,13 +515,13 @@ Configuration:
Please carefully read the section [Market order pricing](#market-order-pricing) section when using market orders.
Please carefully read the section [Market order pricing](#market-order-pricing) section when using market orders.
!!! Note "Stoploss on exchange"
!!! Note "Stoploss on exchange"
`stoploss_on_exchange_interval` is not mandatory. Do not change its value if you are
`order_types.stoploss_on_exchange_interval` is not mandatory. Do not change its value if you are
unsure of what you are doing. For more information about how stoploss works please
unsure of what you are doing. For more information about how stoploss works please
refer to [the stoploss documentation](stoploss.md).
refer to [the stoploss documentation](stoploss.md).
If `stoploss_on_exchange` is enabled and the stoploss is cancelled manually on the exchange, then the bot will create a new stoploss order.
If `order_types.stoploss_on_exchange` is enabled and the stoploss is cancelled manually on the exchange, then the bot will create a new stoploss order.
If stoploss on exchange creation fails for some reason, then an "emergency exit" is initiated. By default, this will exit the trade using a market order. The order-type for the emergency-exit can be changed by setting the `emergency_exit` value in the `order_types` dictionary - however, this is not advised.
If stoploss on exchange creation fails for some reason, then an "emergency exit" is initiated. By default, this will exit the trade using a market order. The order-type for the emergency-exit can be changed by setting the `emergency_exit` value in the `order_types` dictionary - however, this is not advised.
### Understand order_time_in_force
### Understand order_time_in_force
@@ -550,7 +565,7 @@ The possible values are: `GTC` (default), `FOK` or `IOC`.
```
```
!!! Warning
!!! Warning
This is ongoing work. For now, it is supported only for binance, gate, ftx and kucoin.
This is ongoing work. For now, it is supported only for binance, gate and kucoin.
Please don't change the default value unless you know what you are doing and have researched the impact of using different values for your particular exchange.
Please don't change the default value unless you know what you are doing and have researched the impact of using different values for your particular exchange.
### What values can be used for fiat_display_currency?
### What values can be used for fiat_display_currency?
@@ -569,9 +584,11 @@ In addition to fiat currencies, a range of crypto currencies is supported.
The valid values are:
The valid values are:
```json
```json
"BTC", "ETH", "XRP", "LTC", "BCH", "USDT"
"BTC", "ETH", "XRP", "LTC", "BCH", "BNB"
```
```
Removing `fiat_display_currency` completely from the configuration will skip initializing coingecko, and will not show any FIAT currency conversion. This has no importance for the correct functioning of the bot.
## Using Dry-run mode
## Using Dry-run mode
We recommend starting the bot in the Dry-run mode to see how your bot will
We recommend starting the bot in the Dry-run mode to see how your bot will
@@ -591,7 +608,7 @@ creating trades on the exchange.
```json
```json
"exchange": {
"exchange": {
"name": "bittrex",
"name": "binance",
"key": "key",
"key": "key",
"secret": "secret",
"secret": "secret",
...
...
@@ -610,6 +627,7 @@ Once you will be happy with your bot performance running in the Dry-run mode, yo
* Orders are simulated, and will not be posted to the exchange.
* Orders are simulated, and will not be posted to the exchange.
* Market orders fill based on orderbook volume the moment the order is placed.
* Market orders fill based on orderbook volume the moment the order is placed.
* Limit orders fill once the price reaches the defined level - or time out based on `unfilledtimeout` settings.
* Limit orders fill once the price reaches the defined level - or time out based on `unfilledtimeout` settings.
* Limit orders will be converted to market orders if they cross the price by more than 1%.
* In combination with `stoploss_on_exchange`, the stop_loss price is assumed to be filled.
* In combination with `stoploss_on_exchange`, the stop_loss price is assumed to be filled.
* Open orders (not trades, which are stored in the database) are kept open after bot restarts, with the assumption that they were not filled while being offline.
* Open orders (not trades, which are stored in the database) are kept open after bot restarts, with the assumption that they were not filled while being offline.
@@ -640,7 +658,7 @@ API Keys are usually only required for live trading (trading for real money, bot
To use a proxy just for exchange connections (skips/ignores telegram and coingecko) - you can also define the proxies as part of the ccxt configuration.
To use a proxy for exchange connections - you will have to define the proxies as part of the ccxt configuration.
``` json
``` json
"ccxt_config": {
{
"aiohttp_proxy": "http://addr:port",
"exchange": {
"proxies": {
"ccxt_config": {
"http": "http://addr:port",
"httpsProxy": "http://addr:port",
"https": "http://addr:port"
}
},
}
}
}
```
```
For more information on available proxy types, please consult the [ccxt proxy documentation](https://docs.ccxt.com/#/README?id=proxy).
## Next step
## Next step
Now you have configured your config.json, the next step is to [start your bot](bot-usage.md).
Now you have configured your config.json, the next step is to [start your bot](bot-usage.md).
@@ -6,7 +6,7 @@ To download data (candles / OHLCV) needed for backtesting and hyperoptimization
If no additional parameter is specified, freqtrade will download data for `"1m"` and `"5m"` timeframes for the last 30 days.
If no additional parameter is specified, freqtrade will download data for `"1m"` and `"5m"` timeframes for the last 30 days.
Exchange and pairs will come from `config.json` (if specified using `-c/--config`).
Exchange and pairs will come from `config.json` (if specified using `-c/--config`).
Otherwise`--exchange` becomes mandatory.
Without provided configuration,`--exchange` becomes mandatory.
You can use a relative timerange (`--days 20`) or an absolute starting point (`--timerange 20200101-`). For incremental downloads, the relative approach should be used.
You can use a relative timerange (`--days 20`) or an absolute starting point (`--timerange 20200101-`). For incremental downloads, the relative approach should be used.
--prepend Allow data prepending. (Data-appending is disabled)
--prepend Allow data prepending. (Data-appending is disabled)
Common arguments:
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are:
--logfile FILE, --log-file FILE
Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
'syslog', 'journald'. See the documentation for more
details.
details.
-V, --version show program's version number and exit
-V, --version show program's version number and exit
@@ -83,40 +83,47 @@ Common arguments:
```
```
!!! Tip "Downloading all data for one quote currency"
Often, you'll want to download data for all pairs of a specific quote-currency. In such cases, you can use the following shorthand:
`freqtrade download-data --exchange binance --pairs .*/USDT <...>`. The provided "pairs" string will be expanded to contain all active pairs on the exchange.
To also download data for inactive (delisted) pairs, add `--include-inactive-pairs` to the command.
!!! Note "Startup period"
!!! Note "Startup period"
`download-data` is a strategy-independent command. The idea is to download a big chunk of data once, and then iteratively increase the amount of data stored.
`download-data` is a strategy-independent command. The idea is to download a big chunk of data once, and then iteratively increase the amount of data stored.
For that reason, `download-data` does not care about the "startup-period" defined in a strategy. It's up to the user to download additional days if the backtest should start at a specific point in time (while respecting startup period).
For that reason, `download-data` does not care about the "startup-period" defined in a strategy. It's up to the user to download additional days if the backtest should start at a specific point in time (while respecting startup period).
### Pairs file
### Start download
In alternative to the whitelist from `config.json`, a `pairs.json` file can be used.
A very simple command (assuming an available `config.json` file) can look as follows.
If you are using Binance for example:
- create a directory `user_data/data/binance` and copy or create the `pairs.json` file in that directory.
- update the `pairs.json` file to contain the currency pairs you are interested in.
```bash
```bash
mkdir -p user_data/data/binance
freqtrade download-data --exchange binance
touch user_data/data/binance/pairs.json
```
```
The format of the `pairs.json` file is a simple json list.
This will download historical candle (OHLCV) data for all the currency pairs defined in the configuration.
Mixing different stake-currencies is allowed for this file, since it's only used for downloading.
!!! Tip "Downloading all data for one quote currency"
or as regex (in this case, to download all active USDT pairs)
Often, you'll want to download data for all pairs of a specific quote-currency. In such cases, you can use the following shorthand:
`freqtrade download-data --exchange binance --pairs .*/USDT <...>`. The provided "pairs" string will be expanded to contain all active pairs on the exchange.
```bash
To also downloaddata for inactive (delisted) pairs, add `--include-inactive-pairs` to the command.
* To use a different directory than the exchange specific default, use `--datadir user_data/data/some_directory`.
* To change the exchange used to download the historical data from, please use a different configuration file (you'll probably need to adjust rate limits etc.)
* To use `pairs.json` from some other directory, use `--pairs-file some_other_dir/pairs.json`.
* To download historical candle (OHLCV) data for only 10 days, use `--days 10` (defaults to 30 days).
* To download historical candle (OHLCV) data from a fixed starting point, use `--timerange 20200101-` - which will download all data from January 1st, 2020.
* Use `--timeframes` to specify what timeframe download the historical candle (OHLCV) data for. Default is `--timeframes 1m 5m` which will download 1-minute and 5-minute data.
* To use exchange, timeframe and list of pairs as defined in your configuration file, use the `-c/--config` option. With this, the script uses the whitelist defined in the config as the list of currency pairs to download data for and does not require the pairs.json file. You can combine `-c/--config` with most other options.
??? Note "Permission denied errors"
??? Note "Permission denied errors"
If your configuration directory `user_data` was made by docker, you may get the following error:
If your configuration directory `user_data` was made by docker, you may get the following error:
@@ -131,39 +138,7 @@ Mixing different stake-currencies is allowed for this file, since it's only used
sudo chown -R $UID:$GID user_data
sudo chown -R $UID:$GID user_data
```
```
### Start download
### Download additional data before the current timerange
Then run:
```bash
freqtrade download-data --exchange binance
```
This will download historical candle (OHLCV) data for all the currency pairs you defined in `pairs.json`.
- To use a different directory than the exchange specific default, use `--datadir user_data/data/some_directory`.
- To change the exchange used to download the historical data from, please use a different configuration file (you'll probably need to adjust rate limits etc.)
- To use `pairs.json` from some other directory, use `--pairs-file some_other_dir/pairs.json`.
- To download historical candle (OHLCV) data for only 10 days, use `--days 10` (defaults to 30 days).
- To download historical candle (OHLCV) data from a fixed starting point, use `--timerange 20200101-` - which will download all data from January 1st, 2020.
- Use `--timeframes` to specify what timeframe download the historical candle (OHLCV) data for. Default is `--timeframes 1m 5m` which will download 1-minute and 5-minute data.
- To use exchange, timeframe and list of pairs as defined in your configuration file, use the `-c/--config` option. With this, the script uses the whitelist defined in the config as the list of currency pairs to download data for and does not require the pairs.json file. You can combine `-c/--config` with most other options.
#### Download additional data before the current timerange
Assuming you downloaded all data from 2022 (`--timerange 20220101-`) - but you'd now like to also backtest with earlier data.
Assuming you downloaded all data from 2022 (`--timerange 20220101-`) - but you'd now like to also backtest with earlier data.
You can do so by using the `--prepend` flag, combined with `--timerange` - specifying an end-date.
You can do so by using the `--prepend` flag, combined with `--timerange` - specifying an end-date.
Freqtrade currently supports 3 data-formats for both OHLCV and trades data:
Freqtrade currently supports the following data-formats:
* `feather` - a dataformat based on Apache Arrow
* `json` - plain "text" json files
* `json` - plain "text" json files
* `jsongz` - a gzip-zipped version of json files
* `jsongz` - a gzip-zipped version of json files
* `hdf5` - a high performance datastore
* `hdf5` - a high performance datastore
* `feather` - a dataformat based on Apache Arrow
* `parquet` - columnar datastore (OHLCV only)
* `parquet` - columnar datastore
By default, OHLCV data is stored as `json` data, while trades data is stored as `jsongz` data.
By default, both OHLCV data and trades data are stored in the `feather` format.
This can be changed via the `--data-format-ohlcv` and `--data-format-trades` command line arguments respectively.
This can be changed via the `--data-format-ohlcv` and `--data-format-trades` command line arguments respectively.
To persist this change, you should also add the following snippet to your configuration, so you don't have to insert the above arguments each time:
To persist this change, you should also add the following snippet to your configuration, so you don't have to insert the above arguments each time:
@@ -228,17 +203,46 @@ time freqtrade list-data --show-timerange --data-format-ohlcv <dataformat>
| Format | Size | timing |
| Format | Size | timing |
|------------|-------------|-------------|
|------------|-------------|-------------|
| `feather` | 72Mb | 3.5s |
| `json` | 149Mb | 25.6s |
| `json` | 149Mb | 25.6s |
| `jsongz` | 39Mb | 27s |
| `jsongz` | 39Mb | 27s |
| `hdf5` | 145Mb | 3.9s |
| `hdf5` | 145Mb | 3.9s |
| `feather` | 72Mb | 3.5s |
| `parquet` | 83Mb | 3.8s |
| `parquet` | 83Mb | 3.8s |
Size has been taken from the BTC/USDT 1m spot combination for the timerange specified above.
Size has been taken from the BTC/USDT 1m spot combination for the timerange specified above.
To have a best performance/size mix, we recommend the use of either feather or parquet.
To have a best performance/size mix, we recommend using the default feather format, or parquet.
#### Sub-command convert data
### Pairs file
In alternative to the whitelist from `config.json`, a `pairs.json` file can be used.
If you are using Binance for example:
* create a directory `user_data/data/binance` and copy or create the `pairs.json` file in that directory.
* update the `pairs.json` file to contain the currency pairs you are interested in.
```bash
mkdir -p user_data/data/binance
touch user_data/data/binance/pairs.json
```
The format of the `pairs.json` file is a simple json list.
Mixing different stake-currencies is allowed for this file, since it's only used for downloading.
``` json
[
"ETH/BTC",
"ETH/USDT",
"BTC/USDT",
"XRP/ETH"
]
```
!!! Note
The `pairs.json` file is only used when no configuration is loaded (implicitly by naming, or via `--config` flag).
You can force the usage of this file via `--pairs-file pairs.json` - however we recommend to use the pairlist from within the configuration, either via `exchange.pair_whitelist` or `pairs` setting in the configuration.
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are:
--logfile FILE, --log-file FILE
Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
'syslog', 'journald'. See the documentation for more
details.
details.
-V, --version show program's version number and exit
-V, --version show program's version number and exit
@@ -287,10 +292,9 @@ Common arguments:
Path to directory with historical backtesting data.
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
Path to userdata directory.
```
```
##### Example converting data
### Example converting data
The following command will convert all candle (OHLCV) data available in `~/.freqtrade/data/binance` from json to jsongz, saving diskspace in the process.
The following command will convert all candle (OHLCV) data available in `~/.freqtrade/data/binance` from json to jsongz, saving diskspace in the process.
It'll also remove original json data files (`--erase` parameter).
It'll also remove original json data files (`--erase` parameter).
@@ -299,7 +303,7 @@ It'll also remove original json data files (`--erase` parameter).
By default, `download-data` sub-command downloads Candles (OHLCV) data. Some exchanges also provide historic trade-data via their API.
By default, `download-data` sub-command downloads Candles (OHLCV) data. Some exchanges also provide historic trade-data via their API.
This data can be useful if you need many different timeframes, since it is only downloaded once, and then resampled locally to the desired timeframes.
This data can be useful if you need many different timeframes, since it is only downloaded once, and then resampled locally to the desired timeframes.
Since this data is large by default, the files use gzip by default. They are stored in your data-directory with the naming convention of `<pair>-trades.json.gz` (`ETH_BTC-trades.json.gz`). Incremental mode is also supported, as for historic OHLCV data, so downloading the data once per week with `--days 8` will create an incremental data-repository.
Since this data is large by default, the files use the feather fileformat by default. They are stored in your data-directory with the naming convention of `<pair>-trades.feather` (`ETH_BTC-trades.feather`). Incremental mode is also supported, as for historic OHLCV data, so downloading the data once per week with `--days 8` will create an incremental data-repository.
To use this mode, simply add `--dl-trades` to your call. This will swap the download method to download trades, and resamples the data locally.
To use this mode, simply add `--dl-trades` to your call. This will swap the download method to download trades, and resamples the data locally.
version 2023.3 saw the removal of `populate_any_indicators` in favor of split methods for feature engineering and targets. Please read the [migration document](strategy_migration.md#freqai-strategy) for full details.
@@ -24,7 +24,7 @@ This will spin up a local server (usually on port 8000) so you can see if everyt
To configure a development environment, you can either use the provided [DevContainer](#devcontainer-setup), or use the `setup.sh` script and answer "y" when asked "Do you want to install dependencies for dev [y/N]? ".
To configure a development environment, you can either use the provided [DevContainer](#devcontainer-setup), or use the `setup.sh` script and answer "y" when asked "Do you want to install dependencies for dev [y/N]? ".
Alternatively (e.g. if your system is not supported by the setup.sh script), follow the manual installation process and run `pip3 install -e .[all]`.
Alternatively (e.g. if your system is not supported by the setup.sh script), follow the manual installation process and run `pip3 install -e .[all]`.
This will install all required tools for development, including `pytest`, `flake8`, `mypy`, and `coveralls`.
This will install all required tools for development, including `pytest`, `ruff`, `mypy`, and `coveralls`.
Then install the git hook scripts by running `pre-commit install`, so your changes will be verified locally before committing.
Then install the git hook scripts by running `pre-commit install`, so your changes will be verified locally before committing.
This avoids a lot of waiting for CI already, as some basic formatting checks are done locally on your machine.
This avoids a lot of waiting for CI already, as some basic formatting checks are done locally on your machine.
@@ -49,6 +49,13 @@ For more information about the [Remote container extension](https://code.visuals
New code should be covered by basic unittests. Depending on the complexity of the feature, Reviewers may request more in-depth unittests.
New code should be covered by basic unittests. Depending on the complexity of the feature, Reviewers may request more in-depth unittests.
If necessary, the Freqtrade team can assist and give guidance with writing good tests (however please don't expect anyone to write the tests for you).
If necessary, the Freqtrade team can assist and give guidance with writing good tests (however please don't expect anyone to write the tests for you).
#### How to run tests
Use `pytest` in root folder to run all available testcases and confirm your local environment is setup correctly
!!! Note "feature branches"
Tests are expected to pass on the `develop` and `stable` branches. Other branches may be work in progress with tests not working yet.
#### Checking log content in tests
#### Checking log content in tests
Freqtrade uses 2 main methods to check log content in tests, `log_has()` and `log_has_re()` (to check using regex, in case of dynamic log-messages).
Freqtrade uses 2 main methods to check log content in tests, `log_has()` and `log_has_re()` (to check using regex, in case of dynamic log-messages).
To debug freqtrade, we recommend VSCode with the following launch configuration (located in `.vscode/launch.json`).
To debug freqtrade, we recommend VSCode (with the Python extension) with the following launch configuration (located in `.vscode/launch.json`).
Details will obviously vary between setups - but this should work to get you started.
Details will obviously vary between setups - but this should work to get you started.
``` json
``` json
@@ -95,6 +102,19 @@ This method can also be used to debug a strategy, by setting the breakpoints wit
A similar setup can also be taken for Pycharm - using `freqtrade` as module name, and setting the command line arguments as "parameters".
A similar setup can also be taken for Pycharm - using `freqtrade` as module name, and setting the command line arguments as "parameters".
??? Tip "Correct venv usage"
When using a virtual environment (which you should), make sure that your Editor is using the correct virtual environment to avoid problems or "unknown import" errors.
#### Vscode
You can select the correct environment in VSCode with the command "Python: Select Interpreter" - which will show you environments the extension detected.
If your environment has not been detected, you can also pick a path manually.
#### Pycharm
In pycharm, you can select the appropriate Environment in the "Run/Debug Configurations" window.
This assumes that you have the repository checked out, and the editor is started at the repository root level (so setup.py is at the top level of your repository).
This assumes that you have the repository checked out, and the editor is started at the repository root level (so setup.py is at the top level of your repository).
@@ -109,6 +129,8 @@ Below is an outline of exception inheritance hierarchy:
+ FreqtradeException
+ FreqtradeException
|
|
+---+ OperationalException
+---+ OperationalException
| |
| +---+ ConfigurationError
|
|
+---+ DependencyException
+---+ DependencyException
| |
| |
@@ -298,6 +320,7 @@ Additional tests / steps to complete:
* Check if balance shows correctly (*)
* Check if balance shows correctly (*)
* Create market order (*)
* Create market order (*)
* Create limit order (*)
* Create limit order (*)
* Cancel order (*)
* Complete trade (enter + exit) (*)
* Complete trade (enter + exit) (*)
* Compare result calculation between exchange and bot
* Compare result calculation between exchange and bot
* Ensure fees are applied correctly (check the database against the exchange)
* Ensure fees are applied correctly (check the database against the exchange)
@@ -320,18 +343,18 @@ To check how the new exchange behaves, you can use the following snippet:
``` python
``` python
import ccxt
import ccxt
from datetime import datetime
from datetime import datetime, timezone
from freqtrade.data.converter import ohlcv_to_dataframe
from freqtrade.data.converter import ohlcv_to_dataframe
ct = ccxt.binance()
ct = ccxt.binance() # Use the exchange you're testing
timeframe = "1d"
timeframe = "1d"
pair = "XLM/BTC" # Make sure to use a pair that exists on that exchange!
pair = "BTC/USDT" # Make sure to use a pair that exists on that exchange!
@@ -398,6 +421,9 @@ This part of the documentation is aimed at maintainers, and shows how to create
### Create release branch
### Create release branch
!!! Note
Make sure that the `stable` branch is up-to-date!
First, pick a commit that's about one week old (to not include latest additions to releases).
First, pick a commit that's about one week old (to not include latest additions to releases).
``` bash
``` bash
@@ -410,14 +436,11 @@ Determine if crucial bugfixes have been made between this commit and the current
* Merge the release branch (stable) into this branch.
* Merge the release branch (stable) into this branch.
* Edit `freqtrade/__init__.py` and add the version matching the current date (for example `2019.7` for July 2019). Minor versions can be `2019.7.1` should we need to do a second release that month. Version numbers must follow allowed versions from PEP0440 to avoid failures pushing to pypi.
* Edit `freqtrade/__init__.py` and add the version matching the current date (for example `2019.7` for July 2019). Minor versions can be `2019.7.1` should we need to do a second release that month. Version numbers must follow allowed versions from PEP0440 to avoid failures pushing to pypi.
* Commit this part.
* Commit this part.
* push that branch to the remote and create a PR against the stable branch.
* Push that branch to the remote and create a PR against the **stable branch**.
* Update develop version to next version following the pattern `2019.8-dev`.
* Update develop version to next version following the pattern `2019.8-dev`.
### Create changelog from git commits
### Create changelog from git commits
!!! Note
Make sure that the `stable` branch is up-to-date!
``` bash
``` bash
# Needs to be done before merging / pulling that branch.
# Needs to be done before merging / pulling that branch.
To simplify running freqtrade, [`docker-compose`](https://docs.docker.com/compose/install/) should be installed and available to follow the below [docker quick start guide](#docker-quick-start).
!!! Info "Docker compose install"
Freqtrade documentation assumes the use of Docker desktop (or the docker compose plugin).
While the docker-compose standalone installation still works, it will require changing all `docker compose` commands from `docker compose` to `docker-compose` to work (e.g. `docker compose up -d` will become `docker-compose up -d`).
## Freqtrade with docker-compose
??? Warning "Docker on windows"
If you just installed docker on a windows system, make sure to reboot your system, otherwise you might encounter unexplainable Problems related to network connectivity to docker containers.
Freqtrade provides an official Docker image on [Dockerhub](https://hub.docker.com/r/freqtradeorg/freqtrade/), as well as a [docker-compose file](https://github.com/freqtrade/freqtrade/blob/stable/docker-compose.yml) ready for usage.
## Freqtrade with docker
Freqtrade provides an official Docker image on [Dockerhub](https://hub.docker.com/r/freqtradeorg/freqtrade/), as well as a [docker compose file](https://github.com/freqtrade/freqtrade/blob/stable/docker-compose.yml) ready for usage.
!!! Note
!!! Note
- The following section assumes that `docker`and `docker-compose` are installed and available to the logged in user.
- The following section assumes that `docker`is installed and available to the logged in user.
- All below commands use relative directories and will have to be executed from the directory containing the `docker-compose.yml` file.
- All below commands use relative directories and will have to be executed from the directory containing the `docker-compose.yml` file.
docker-compose run --rm freqtrade new-config --config user_data/config.json
dockercompose run --rm freqtrade new-config --config user_data/config.json
```
```
The above snippet creates a new directory called `ft_userdata`, downloads the latest compose file and pulls the freqtrade image.
The above snippet creates a new directory called `ft_userdata`, downloads the latest compose file and pulls the freqtrade image.
@@ -64,7 +69,7 @@ The `SampleStrategy` is run by default.
Once this is done, you're ready to launch the bot in trading mode (Dry-run or Live-trading, depending on your answer to the corresponding question you made above).
Once this is done, you're ready to launch the bot in trading mode (Dry-run or Live-trading, depending on your answer to the corresponding question you made above).
``` bash
``` bash
docker-compose up -d
dockercompose up -d
```
```
!!! Warning "Default configuration"
!!! Warning "Default configuration"
@@ -76,7 +81,7 @@ If you've selected to enable FreqUI in the `new-config` step, you will have freq
You can now access the UI by typing localhost:8080 in your browser.
You can now access the UI by typing localhost:8080 in your browser.
??? Note "UI Access on a remote servers"
??? Note "UI Access on a remote server"
If you're running on a VPS, you should consider using either a ssh tunnel, or setup a VPN (openVPN, wireguard) to connect to your bot.
If you're running on a VPS, you should consider using either a ssh tunnel, or setup a VPN (openVPN, wireguard) to connect to your bot.
This will ensure that freqUI is not directly exposed to the internet, which is not recommended for security reasons (freqUI does not support https out of the box).
This will ensure that freqUI is not directly exposed to the internet, which is not recommended for security reasons (freqUI does not support https out of the box).
Setup of these tools is not part of this tutorial, however many good tutorials can be found on the internet.
Setup of these tools is not part of this tutorial, however many good tutorials can be found on the internet.
@@ -84,27 +89,27 @@ You can now access the UI by typing localhost:8080 in your browser.
#### Monitoring the bot
#### Monitoring the bot
You can check for running instances with `docker-compose ps`.
You can check for running instances with `dockercompose ps`.
This should list the service `freqtrade` as `running`. If that's not the case, best check the logs (see next point).
This should list the service `freqtrade` as `running`. If that's not the case, best check the logs (see next point).
#### Docker-compose logs
#### Dockercompose logs
Logs will be written to: `user_data/logs/freqtrade.log`.
Logs will be written to: `user_data/logs/freqtrade.log`.
You can also check the latest log with the command `docker-compose logs -f`.
You can also check the latest log with the command `dockercompose logs -f`.
#### Database
#### Database
The database will be located at: `user_data/tradesv3.sqlite`
The database will be located at: `user_data/tradesv3.sqlite`
#### Updating freqtrade with docker-compose
#### Updating freqtrade with docker
Updating freqtrade when using `docker-compose` is as simple as running the following 2 commands:
Updating freqtrade when using `docker` is as simple as running the following 2 commands:
``` bash
``` bash
# Download the latest image
# Download the latest image
docker-compose pull
dockercompose pull
# Restart the image
# Restart the image
docker-compose up -d
dockercompose up -d
```
```
This will first pull the latest image, and will then restart the container with the just pulled version.
This will first pull the latest image, and will then restart the container with the just pulled version.
@@ -116,43 +121,43 @@ This will first pull the latest image, and will then restart the container with
Advanced users may edit the docker-compose file further to include all possible options or arguments.
Advanced users may edit the docker-compose file further to include all possible options or arguments.
All freqtrade arguments will be available by running `docker-compose run --rm freqtrade <command><optionalarguments>`.
All freqtrade arguments will be available by running `dockercompose run --rm freqtrade <command><optionalarguments>`.
!!! Warning "`docker-compose` for trade commands"
!!! Warning "`dockercompose` for trade commands"
Trade commands (`freqtrade trade <...>`) should not be ran via `docker-compose run` - but should use `docker-compose up -d` instead.
Trade commands (`freqtrade trade <...>`) should not be ran via `dockercompose run` - but should use `dockercompose up -d` instead.
This makes sure that the container is properly started (including port forwardings) and will make sure that the container will restart after a system reboot.
This makes sure that the container is properly started (including port forwardings) and will make sure that the container will restart after a system reboot.
If you intend to use freqUI, please also ensure to adjust the [configuration accordingly](rest-api.md#configuration-with-docker), otherwise the UI will not be available.
If you intend to use freqUI, please also ensure to adjust the [configuration accordingly](rest-api.md#configuration-with-docker), otherwise the UI will not be available.
!!! Note "`docker-compose run --rm`"
!!! Note "`dockercompose run --rm`"
Including `--rm` will remove the container after completion, and is highly recommended for all modes except trading mode (running with `freqtrade trade` command).
Including `--rm` will remove the container after completion, and is highly recommended for all modes except trading mode (running with `freqtrade trade` command).
??? Note "Using docker without docker-compose"
??? Note "Using docker without dockercompose"
"`docker-compose run --rm`" will require a compose file to be provided.
"`dockercompose run --rm`" will require a compose file to be provided.
Some freqtrade commands that don't require authentication such as `list-pairs` can be run with "`docker run --rm`" instead.
Some freqtrade commands that don't require authentication such as `list-pairs` can be run with "`docker run --rm`" instead.
For example `docker run --rm freqtradeorg/freqtrade:stable list-pairs --exchange binance --quote BTC --print-json`.
For example `docker run --rm freqtradeorg/freqtrade:stable list-pairs --exchange binance --quote BTC --print-json`.
This can be useful for fetching exchange information to add to your `config.json` without affecting your running containers.
This can be useful for fetching exchange information to add to your `config.json` without affecting your running containers.
#### Example: Download data with docker-compose
#### Example: Download data with docker
Download backtesting data for 5 days for the pair ETH/BTC and 1h timeframe from Binance. The data will be stored in the directory `user_data/data/` on the host.
Download backtesting data for 5 days for the pair ETH/BTC and 1h timeframe from Binance. The data will be stored in the directory `user_data/data/` on the host.
Head over to the [Backtesting Documentation](backtesting.md) to learn more.
Head over to the [Backtesting Documentation](backtesting.md) to learn more.
### Additional dependencies with docker-compose
### Additional dependencies with docker
If your strategy requires dependencies not included in the default image - it will be necessary to build the image on your host.
If your strategy requires dependencies not included in the default image - it will be necessary to build the image on your host.
For this, please create a Dockerfile containing installation steps for the additional dependencies (have a look at [docker/Dockerfile.custom](https://github.com/freqtrade/freqtrade/blob/develop/docker/Dockerfile.custom) for an example).
For this, please create a Dockerfile containing installation steps for the additional dependencies (have a look at [docker/Dockerfile.custom](https://github.com/freqtrade/freqtrade/blob/develop/docker/Dockerfile.custom) for an example).
@@ -166,15 +171,15 @@ You'll then also need to modify the `docker-compose.yml` file and uncomment the
dockerfile: "./Dockerfile.<yourextension>"
dockerfile: "./Dockerfile.<yourextension>"
```
```
You can then run `docker-compose build --pull` to build the docker image, and run it using the commands described above.
You can then run `dockercompose build --pull` to build the docker image, and run it using the commands described above.
### Plotting with docker-compose
### Plotting with docker
Commands `freqtrade plot-profit` and `freqtrade plot-dataframe` ([Documentation](plotting.md)) are available by changing the image to `*_plot` in your docker-compose.yml file.
Commands `freqtrade plot-profit` and `freqtrade plot-dataframe` ([Documentation](plotting.md)) are available by changing the image to `*_plot` in your `docker-compose.yml` file.
You can then use these commands as follows:
You can then use these commands as follows:
``` bash
``` bash
docker-compose run --rm freqtrade plot-dataframe --strategy AwesomeStrategy -p BTC/ETH --timerange=20180801-20180805
dockercompose run --rm freqtrade plot-dataframe --strategy AwesomeStrategy -p BTC/ETH --timerange=20180801-20180805
```
```
The output will be stored in the `user_data/plot` directory, and can be opened with any modern browser.
The output will be stored in the `user_data/plot` directory, and can be opened with any modern browser.
@@ -185,7 +190,7 @@ Freqtrade provides a docker-compose file which starts up a jupyter lab server.
You can run this server using the following command:
You can run this server using the following command:
``` bash
``` bash
docker-compose -f docker/docker-compose-jupyter.yml up
dockercompose -f docker/docker-compose-jupyter.yml up
```
```
This will create a docker-container running jupyter lab, which will be accessible using `https://127.0.0.1:8888/lab`.
This will create a docker-container running jupyter lab, which will be accessible using `https://127.0.0.1:8888/lab`.
@@ -194,7 +199,7 @@ Please use the link that's printed in the console after startup for simplified l
Since part of this image is built on your machine, it is recommended to rebuild the image from time to time to keep freqtrade (and dependencies) up-to-date.
Since part of this image is built on your machine, it is recommended to rebuild the image from time to time to keep freqtrade (and dependencies) up-to-date.
If you're on windows and just installed Docker (desktop), make sure to reboot your System. Docker can have problems with network connectivity without a restart.
You should obviously also make sure to have your [settings](#accessing-the-ui) accordingly.
!!! Warning
!!! Warning
Due to the above, we do not recommend the usage of docker on windows for production setups, but only for experimentation, datadownload and backtesting.
Due to the above, we do not recommend the usage of docker on windows for production setups, but only for experimentation, datadownload and backtesting.
Best use a linux-VPS for running freqtrade reliably.
Best use a linux-VPS for running freqtrade reliably.
The `Edge Positioning` module uses probability to calculate your win rate and risk reward ratio. It will use these statistics to control your strategy trade entry points, position size and, stoploss.
The `Edge Positioning` module uses probability to calculate your win rate and risk reward ratio. It will use these statistics to control your strategy trade entry points, position size and, stoploss.
!!! Danger "Deprecated functionality"
`Edge positioning` (or short Edge) is currently in maintenance mode only (we keep existing functionality alive) and should be considered as deprecated.
It will currently not receive new features until either someone stepped forward to take up ownership of that module - or we'll decide to remove edge from freqtrade.
!!! Warning
!!! Warning
When using `Edge positioning` with a dynamic whitelist (VolumePairList), make sure to also use `AgeFilter` and set it to at least `calculate_since_number_of_days` to avoid problems with missing data.
When using `Edge positioning` with a dynamic whitelist (VolumePairList), make sure to also use `AgeFilter` and set it to at least `calculate_since_number_of_days` to avoid problems with missing data.
@@ -54,6 +54,9 @@ This configuration enables kraken, as well as rate-limiting to avoid bans from t
## Binance
## Binance
!!! Warning "Server location and geo-ip restrictions"
Please be aware that Binance restricts API access regarding the server country. The current and non-exhaustive countries blocked are Canada, Malaysia, Netherlands and United States. Please go to [binance terms > b. Eligibility](https://www.binance.com/en/terms) to find up to date list.
For Binance, it is suggested to add `"BNB/<STAKE>"` to your blacklist to avoid issues, unless you are willing to maintain enough extra `BNB` on the account or unless you're willing to disable using `BNB` for fees.
For Binance, it is suggested to add `"BNB/<STAKE>"` to your blacklist to avoid issues, unless you are willing to maintain enough extra `BNB` on the account or unless you're willing to disable using `BNB` for fees.
Binance accounts may use `BNB` for fees, and if a trade happens to be on `BNB`, further trades may consume this position and make the initial BNB trade unsellable as the expected amount is not there anymore.
Binance accounts may use `BNB` for fees, and if a trade happens to be on `BNB`, further trades may consume this position and make the initial BNB trade unsellable as the expected amount is not there anymore.
If not enough `BNB` is available to cover transaction fees, then fees will not be covered by `BNB` and no fee reduction will occur. Freqtrade will never buy BNB to cover for fees. BNB needs to be bought and monitored manually to this end.
### Binance sites
### Binance sites
Binance has been split into 2, and users must use the correct ccxt exchange ID for their exchange, otherwise API keys are not recognized.
Binance has been split into 2, and users must use the correct ccxt exchange ID for their exchange, otherwise API keys are not recognized.
@@ -72,6 +77,25 @@ Binance has been split into 2, and users must use the correct ccxt exchange ID f
* [binance.com](https://www.binance.com/) - International users. Use exchange id: `binance`.
* [binance.com](https://www.binance.com/) - International users. Use exchange id: `binance`.
* [binance.us](https://www.binance.us/) - US based users. Use exchange id: `binanceus`.
* [binance.us](https://www.binance.us/) - US based users. Use exchange id: `binanceus`.
They can however also be configured via configuration file. Since json doesn't support multi-line strings, you'll have to replace all newlines with `\n` to have a valid json file.
Binance has specific (unfortunately complex) [Futures Trading Quantitative Rules](https://www.binance.com/en/support/faq/4f462ebe6ff445d4a170be7d9e897272) which need to be followed, and which prohibit a too low stake-amount (among others) for too many orders.
Binance has specific (unfortunately complex) [Futures Trading Quantitative Rules](https://www.binance.com/en/support/faq/4f462ebe6ff445d4a170be7d9e897272) which need to be followed, and which prohibit a too low stake-amount (among others) for too many orders.
@@ -105,6 +129,8 @@ Freqtrade will not attempt to change these settings.
## Kraken
## Kraken
Kraken supports [time_in_force](configuration.md#understand-order_time_in_force) with settings "GTC" (good till cancelled), "IOC" (immediate-or-cancel) and "PO" (Post only) settings.
!!! Tip "Stoploss on Exchange"
!!! Tip "Stoploss on Exchange"
Kraken supports `stoploss_on_exchange` and can use both stop-loss-market and stop-loss-limit orders. It provides great advantages, so we recommend to benefit from it.
Kraken supports `stoploss_on_exchange` and can use both stop-loss-market and stop-loss-limit orders. It provides great advantages, so we recommend to benefit from it.
You can use either `"limit"` or `"market"` in the `order_types.stoploss` configuration setting to decide which type to use.
You can use either `"limit"` or `"market"` in the `order_types.stoploss` configuration setting to decide which type to use.
@@ -114,13 +140,41 @@ Freqtrade will not attempt to change these settings.
The Kraken API does only provide 720 historic candles, which is sufficient for Freqtrade dry-run and live trade modes, but is a problem for backtesting.
The Kraken API does only provide 720 historic candles, which is sufficient for Freqtrade dry-run and live trade modes, but is a problem for backtesting.
To download data for the Kraken exchange, using `--dl-trades` is mandatory, otherwise the bot will download the same 720 candles over and over, and you'll not have enough backtest data.
To download data for the Kraken exchange, using `--dl-trades` is mandatory, otherwise the bot will download the same 720 candles over and over, and you'll not have enough backtest data.
Due to the heavy rate-limiting applied by Kraken, the following configuration section should be used to download data:
To speed up downloading, you can download the [trades zip files](https://support.kraken.com/hc/en-us/articles/360047543791-Downloadable-historical-market-data-time-and-sales-) kraken provides.
These are usually updated once per quarter. Freqtrade expects these files to be placed in `user_data/data/kraken/trades_csv`.
``` json
A structure as follows can make sense if using incremental files, with the "full" history in one directory, and incremental files in different directories.
"ccxt_async_config": {
The assumption for this mode is that the data is downloaded and unzipped keeping filenames as they are.
"enableRateLimit": true,
Duplicate content will be ignored (based on timestamp) - though the assumption is that there is no gap in the data.
"rateLimit": 3100
},
This means, if your "full" history ends in Q4 2022 - then both incremental updates Q1 2023 and Q2 2023 are available.
Not having this will lead to incomplete data, and therefore invalid results while using the data.
@@ -131,68 +185,6 @@ Due to the heavy rate-limiting applied by Kraken, the following configuration se
Please pay attention that rateLimit configuration entry holds delay in milliseconds between requests, NOT requests\sec rate.
Please pay attention that rateLimit configuration entry holds delay in milliseconds between requests, NOT requests\sec rate.
So, in order to mitigate Kraken API "Rate limit exceeded" exception, this configuration should be increased, NOT decreased.
So, in order to mitigate Kraken API "Rate limit exceeded" exception, this configuration should be increased, NOT decreased.
## Bittrex
### Order types
Bittrex does not support market orders. If you have a message at the bot startup about this, you should change order type values set in your configuration and/or in the strategy from `"market"` to `"limit"`. See some more details on this [here in the FAQ](faq.md#im-getting-the-exchange-bittrex-does-not-support-market-orders-message-and-cannot-run-my-strategy).
Bittrex also does not support `VolumePairlist` due to limited / split API constellation at the moment.
Please use `StaticPairlist`. Other pairlists (other than `VolumePairlist`) should not be affected.
### Volume pairlist
Bittrex does not support the direct usage of VolumePairList. This can however be worked around by using the advanced mode with `lookback_days: 1` (or more), which will emulate 24h volume.
Read more in the [pairlist documentation](plugins.md#volumepairlist-advanced-mode).
### Restricted markets
Bittrex split its exchange into US and International versions.
The International version has more pairs available, however the API always returns all pairs, so there is currently no automated way to detect if you're affected by the restriction.
If you have restricted pairs in your whitelist, you'll get a warning message in the log on Freqtrade startup for each restricted pair.
The warning message will look similar to the following:
If you're an "International" customer on the Bittrex exchange, then this warning will probably not impact you.
If you're a US customer, the bot will fail to create orders for these pairs, and you should remove them from your whitelist.
You can get a list of restricted markets by using the following snippet:
``` python
import ccxt
ct = ccxt.bittrex()
lm = ct.load_markets()
res = [p for p, x in lm.items() if 'US' in x['info']['prohibitedIn']]
print(res)
```
## FTX
!!! Tip "Stoploss on Exchange"
FTX supports `stoploss_on_exchange` and can use both stop-loss-market and stop-loss-limit orders. It provides great advantages, so we recommend to benefit from it.
You can use either `"limit"` or `"market"` in the `order_types.stoploss` configuration setting to decide which type of stoploss shall be used.
### Using subaccounts
To use subaccounts with FTX, you need to edit the configuration and add the following:
``` json
"exchange": {
"ccxt_config": {
"headers": {
"FTX-SUBACCOUNT": "name"
}
},
}
```
## Kucoin
## Kucoin
Kucoin requires a passphrase for each api key, you will therefore need to add this key into the configuration so your exchange section looks as follows:
Kucoin requires a passphrase for each api key, you will therefore need to add this key into the configuration so your exchange section looks as follows:
For Kucoin, it is suggested to add `"KCS/<STAKE>"` to your blacklist to avoid issues, unless you are willing to maintain enough extra `KCS` on the account or unless you're willing to disable using `KCS` for fees.
For Kucoin, it is suggested to add `"KCS/<STAKE>"` to your blacklist to avoid issues, unless you are willing to maintain enough extra `KCS` on the account or unless you're willing to disable using `KCS` for fees.
Kucoin accounts may use `KCS` for fees, and if a trade happens to be on `KCS`, further trades may consume this position and make the initial `KCS` trade unsellable as the expected amount is not there anymore.
Kucoin accounts may use `KCS` for fees, and if a trade happens to be on `KCS`, further trades may consume this position and make the initial `KCS` trade unsellable as the expected amount is not there anymore.
## Huobi
## HTX (formerly Huobi)
!!! Tip "Stoploss on Exchange"
!!! Tip "Stoploss on Exchange"
Huobi supports `stoploss_on_exchange` and uses `stop-limit` orders. It provides great advantages, so we recommend to benefit from it by enabling stoploss on exchange.
HTX supports `stoploss_on_exchange` and uses `stop-limit` orders. It provides great advantages, so we recommend to benefit from it by enabling stoploss on exchange.
## OKX (former OKEX)
## OKX (former OKEX)
@@ -241,8 +233,8 @@ OKX requires a passphrase for each api key, you will therefore need to add this
OKX only provides 100 candles per api call. Therefore, the strategy will only have a pretty low amount of data available in backtesting mode.
OKX only provides 100 candles per api call. Therefore, the strategy will only have a pretty low amount of data available in backtesting mode.
!!! Warning "Futures"
!!! Warning "Futures"
OKX Futures has the concept of "position mode" - which can be Net or long/short (hedge mode).
OKX Futures has the concept of "position mode" - which can be "Buy/Sell" or long/short (hedge mode).
Freqtrade supports both modes (we recommend to use net mode) - but changing the mode mid-trading is not supported and will lead to exceptions and failures to place trades.
Freqtrade supports both modes (we recommend to use Buy/Sell mode) - but changing the mode mid-trading is not supported and will lead to exceptions and failures to place trades.
OKX also only provides MARK candles for the past ~3 months. Backtesting futures prior to that date will therefore lead to slight deviations, as funding-fees cannot be calculated correctly without this data.
OKX also only provides MARK candles for the past ~3 months. Backtesting futures prior to that date will therefore lead to slight deviations, as funding-fees cannot be calculated correctly without this data.
## Gate.io
## Gate.io
@@ -253,6 +245,43 @@ OKX requires a passphrase for each api key, you will therefore need to add this
Gate.io allows the use of `POINT` to pay for fees. As this is not a tradable currency (no regular market available), automatic fee calculations will fail (and default to a fee of 0).
Gate.io allows the use of `POINT` to pay for fees. As this is not a tradable currency (no regular market available), automatic fee calculations will fail (and default to a fee of 0).
The configuration parameter `exchange.unknown_fee_rate` can be used to specify the exchange rate between Point and the stake currency. Obviously, changing the stake-currency will also require changes to this value.
The configuration parameter `exchange.unknown_fee_rate` can be used to specify the exchange rate between Point and the stake currency. Obviously, changing the stake-currency will also require changes to this value.
## Bybit
Futures trading on bybit is currently supported for USDT markets, and will use isolated futures mode.
Users with unified accounts (there's no way back) can create a Sub-account which will start as "non-unified", and can therefore use isolated futures.
On startup, freqtrade will set the position mode to "One-way Mode" for the whole (sub)account. This avoids making this call over and over again (slowing down bot operations), but means that changes to this setting may result in exceptions and errors
As bybit doesn't provide funding rate history, the dry-run calculation is used for live trades as well.
API Keys for live futures trading (Subaccount on non-unified) must have the following permissions:
* Read-write
* Contract - Orders
* Contract - Positions
We do strongly recommend to limit all API keys to the IP you're going to use it from.
!!! Tip "Stoploss on Exchange"
Bybit (futures only) supports `stoploss_on_exchange` and uses `stop-loss-limit` orders. It provides great advantages, so we recommend to benefit from it by enabling stoploss on exchange.
On futures, Bybit supports both `stop-limit` as well as `stop-market` orders. You can use either `"limit"` or `"market"` in the `order_types.stoploss` configuration setting to decide which type to use.
## Bitmart
Bitmart requires the API key Memo (the name you give the API key) to go along with the exchange key and secret.
It's therefore required to pass the UID as well.
```json
"exchange": {
"name": "bitmart",
"uid": "your_bitmart_api_key_memo",
"secret": "your_exchange_secret",
"password": "your_exchange_api_key_password",
// ...
}
```
!!! Warning "Necessary Verification"
Bitmart requires Verification Lvl2 to successfully trade on the spot market through the API - even though trading via UI works just fine with just Lvl1 verification.
## All exchanges
## All exchanges
Should you experience constant errors with Nonce (like `InvalidNonce`), it is best to regenerate the API keys. Resetting Nonce is difficult and it's usually easier to regenerate the API keys.
Should you experience constant errors with Nonce (like `InvalidNonce`), it is best to regenerate the API keys. Resetting Nonce is difficult and it's usually easier to regenerate the API keys.
Freqtrade supports spot trading, as well as (isolated) futures trading for some selected exchanges. Please refer to the [documentation start page](index.md#supported-futures-exchanges-experimental) for an uptodate list of supported exchanges.
### Can my bot open short positions?
### Can my bot open short positions?
@@ -20,7 +20,7 @@ Futures trading is supported for selected exchanges. Please refer to the [docume
* When you work with your strategy & hyperopt file you should use a proper code editor like VSCode or PyCharm. A good code editor will provide syntax highlighting as well as line numbers, making it easy to find syntax errors (most likely pointed out by Freqtrade during startup).
* When you work with your strategy & hyperopt file you should use a proper code editor like VSCode or PyCharm. A good code editor will provide syntax highlighting as well as line numbers, making it easy to find syntax errors (most likely pointed out by Freqtrade during startup).
## Freqtrade common issues
## Freqtrade common questions
### Can freqtrade open multiple positions on the same pair in parallel?
### Can freqtrade open multiple positions on the same pair in parallel?
@@ -36,7 +36,7 @@ Running the bot with `freqtrade trade --config config.json` shows the output `fr
This could be caused by the following reasons:
This could be caused by the following reasons:
* The virtual environment is not active.
* The virtual environment is not active.
* Run `source .env/bin/activate` to activate the virtual environment.
* Run `source .venv/bin/activate` to activate the virtual environment.
* The installation did not complete successfully.
* The installation did not complete successfully.
* Please check the [Installation documentation](installation.md).
* Please check the [Installation documentation](installation.md).
@@ -78,6 +78,14 @@ Where possible (e.g. on binance), the use of the exchange's dedicated fee curren
On binance, it's sufficient to have BNB in your account, and have "Pay fees in BNB" enabled in your profile. Your BNB balance will slowly decline (as it's used to pay fees) - but you'll no longer encounter dust (Freqtrade will include the fees in the profit calculations).
On binance, it's sufficient to have BNB in your account, and have "Pay fees in BNB" enabled in your profile. Your BNB balance will slowly decline (as it's used to pay fees) - but you'll no longer encounter dust (Freqtrade will include the fees in the profit calculations).
Other exchanges don't offer such possibilities, where it's simply something you'll have to accept or move to a different exchange.
Other exchanges don't offer such possibilities, where it's simply something you'll have to accept or move to a different exchange.
### I deposited more funds to the exchange, but my bot doesn't recognize this
Freqtrade will update the exchange balance when necessary (Before placing an order).
RPC calls (Telegram's `/balance`, API calls to `/balance`) can trigger an update at max. once per hour.
If `adjust_trade_position` is enabled (and the bot has open trades eligible for position adjustments) - then the wallets will be refreshed once per hour.
To force an immediate update, you can use `/reload_config` - which will restart the bot.
### I want to use incomplete candles
### I want to use incomplete candles
Freqtrade will not provide incomplete candles to strategies. Using incomplete candles will lead to repainting and consequently to strategies with "ghost" buys, which are impossible to both backtest, and verify after they happened.
Freqtrade will not provide incomplete candles to strategies. Using incomplete candles will lead to repainting and consequently to strategies with "ghost" buys, which are impossible to both backtest, and verify after they happened.
@@ -102,6 +110,12 @@ If this happens for all pairs in the pairlist, this might indicate a recent exch
Irrespectively of the reason, Freqtrade will fill up these candles with "empty" candles, where open, high, low and close are set to the previous candle close - and volume is empty. In a chart, this will look like a `_` - and is aligned with how exchanges usually represent 0 volume candles.
Irrespectively of the reason, Freqtrade will fill up these candles with "empty" candles, where open, high, low and close are set to the previous candle close - and volume is empty. In a chart, this will look like a `_` - and is aligned with how exchanges usually represent 0 volume candles.
### I'm getting "Price jump between 2 candles detected"
This message is a warning that the candles had a price jump of > 30%.
This might be a sign that the pair stopped trading, and some token exchange took place (e.g. COCOS in 2021 - where price jumped from 0.0000154 to 0.01621).
This message is often accompanied by ["Missing data fillup"](#im-getting-missing-data-fillup-messages-in-the-log) - as trading on such pairs is often stopped for some time.
### I'm getting "Outdated history for pair xxx" in the log
### I'm getting "Outdated history for pair xxx" in the log
The bot is trying to tell you that it got an outdated last candle (not the last complete candle).
The bot is trying to tell you that it got an outdated last candle (not the last complete candle).
@@ -114,15 +128,9 @@ This warning can point to one of the below problems:
* Barely traded pair -> Check the pair on the exchange webpage, look at the timeframe your strategy uses. If the pair does not have any volume in some candles (usually visualized with a "volume 0" bar, and a "_" as candle), this pair did not have any trades in this timeframe. These pairs should ideally be avoided, as they can cause problems with order-filling.
* Barely traded pair -> Check the pair on the exchange webpage, look at the timeframe your strategy uses. If the pair does not have any volume in some candles (usually visualized with a "volume 0" bar, and a "_" as candle), this pair did not have any trades in this timeframe. These pairs should ideally be avoided, as they can cause problems with order-filling.
* API problem -> API returns wrong data (this only here for completeness, and should not happen with supported exchanges).
* API problem -> API returns wrong data (this only here for completeness, and should not happen with supported exchanges).
### I'm getting the "RESTRICTED_MARKET" message in the log
Currently known to happen for US Bittrex users.
Read [the Bittrex section about restricted markets](exchanges.md#restricted-markets) for more information.
### I'm getting the "Exchange XXX does not support market orders." message and cannot run my strategy
### I'm getting the "Exchange XXX does not support market orders." message and cannot run my strategy
As the message says, your exchange does not support market orders and you have one of the [order types](configuration.md/#understand-order_types) set to "market". Your strategy was probably written with other exchanges in mind and sets "market" orders for "stoploss" orders, which is correct and preferable for most of the exchanges supporting market orders (but not for Bittrex and Gate.io).
As the message says, your exchange does not support market orders and you have one of the [order types](configuration.md/#understand-order_types) set to "market". Your strategy was probably written with other exchanges in mind and sets "market" orders for "stoploss" orders, which is correct and preferable for most of the exchanges supporting market orders (but not for Gate.io).
To fix this, redefine order types in the strategy to use "limit" instead of "market":
To fix this, redefine order types in the strategy to use "limit" instead of "market":
@@ -136,6 +144,13 @@ To fix this, redefine order types in the strategy to use "limit" instead of "mar
The same fix should be applied in the configuration file, if order types are defined in your custom config rather than in the strategy.
The same fix should be applied in the configuration file, if order types are defined in your custom config rather than in the strategy.
### I'm trying to start the bot live, but get an API permission error
Errors like `Invalid API-key, IP, or permissions for action` mean exactly what they actually say.
Your API key is either invalid (copy/paste error? check for leading/trailing spaces in the config), expired, or the IP you're running the bot from is not enabled in the Exchange's API console.
Usually, the permission "Spot Trading" (or the equivalent in the exchange you use) will be necessary.
Futures will usually have to be enabled specifically.
### How do I search the bot logs for something?
### How do I search the bot logs for something?
By default, the bot writes its log into stderr stream. This is implemented this way so that you can easily separate the bot's diagnostics messages from Backtesting, Edge and Hyperopt results, output from other various Freqtrade utility sub-commands, as well as from the output of your custom `print()`'s you may have inserted into your strategy. So if you need to search the log messages with the grep utility, you need to redirect stderr to stdout and disregard stdout.
By default, the bot writes its log into stderr stream. This is implemented this way so that you can easily separate the bot's diagnostics messages from Backtesting, Edge and Hyperopt results, output from other various Freqtrade utility sub-commands, as well as from the output of your custom `print()`'s you may have inserted into your strategy. So if you need to search the log messages with the grep utility, you need to redirect stderr to stdout and disregard stdout.
@@ -242,8 +257,26 @@ The Edge module is mostly a result of brainstorming of [@mishaker](https://githu
You can find further info on expectancy, win rate, risk management and position size in the following sources:
You can find further info on expectancy, win rate, risk management and position size in the following sources:
Nobody affiliated with the freqtrade project will ask you about your exchange keys or anything else exposing your funds to exploitation.
Should you be asked to expose your exchange keys or send funds to some random wallet, then please don't follow these instructions.
Failing to follow these guidelines will not be responsibility of freqtrade.
## "Freqtrade token"
Freqtrade does not have a Crypto token offering.
Token offerings you find on the internet referring Freqtrade, FreqAI or freqUI must be considered to be a scam, trying to exploit freqtrade's popularity for their own, nefarious gains.
@@ -9,7 +9,7 @@ FreqAI is configured through the typical [Freqtrade config file](configuration.m
```json
```json
"freqai":{
"freqai":{
"enabled":true,
"enabled":true,
"purge_old_models":true,
"purge_old_models":2,
"train_period_days":30,
"train_period_days":30,
"backtest_period_days":7,
"backtest_period_days":7,
"identifier":"unique-id",
"identifier":"unique-id",
@@ -26,15 +26,15 @@ FreqAI is configured through the typical [Freqtrade config file](configuration.m
},
},
"data_split_parameters":{
"data_split_parameters":{
"test_size":0.25
"test_size":0.25
},
}
"model_training_parameters":{
"n_estimators":100
},
}
}
```
```
A full example config is available in `config_examples/config_freqai.example.json`.
A full example config is available in `config_examples/config_freqai.example.json`.
!!! Note
The `identifier` is commonly overlooked by newcomers, however, this value plays an important role in your configuration. This value is a unique ID that you choose to describe one of your runs. Keeping it the same allows you to maintain crash resilience as well as faster backtesting. As soon as you want to try a new run (new features, new model, etc.), you should change this value (or delete the `user_data/models/unique-id` folder. More details available in the [parameter table](freqai-parameter-table.md#feature-parameters).
## Building a FreqAI strategy
## Building a FreqAI strategy
The FreqAI strategy requires including the following lines of code in the standard [Freqtrade strategy](strategy-customization.md):
The FreqAI strategy requires including the following lines of code in the standard [Freqtrade strategy](strategy-customization.md):
@@ -46,119 +46,114 @@ The FreqAI strategy requires including the following lines of code in the standa
Notice how the `populate_any_indicators()` is where [features](freqai-feature-engineering.md#feature-engineering) and labels/targets are added. A full example strategy is available in `templates/FreqaiExampleStrategy.py`.
Notice how the `feature_engineering_*()` is where [features](freqai-feature-engineering.md#feature-engineering) are added. Meanwhile `set_freqai_targets()` adds the labels/targets. A full example strategy is available in `templates/FreqaiExampleStrategy.py`.
Notice also the location of the labels under `if set_generalized_indicators:` at the bottom of the example. This is where single features and labels/targets should be added to the feature set to avoid duplication of them from various configuration parameters that multiply the feature set, such as `include_timeframes`.
!!! Note
!!! Note
The `self.freqai.start()` function cannot be called outside the `populate_indicators()`.
The `self.freqai.start()` function cannot be called outside the `populate_indicators()`.
!!! Note
!!! Note
Features **must** be defined in `populate_any_indicators()`. Defining FreqAI features in `populate_indicators()`
Features **must** be defined in `feature_engineering_*()`. Defining FreqAI features in `populate_indicators()`
will cause the algorithm to fail in live/dry mode. In order to add generalized features that are not associated with a specific pair or timeframe, the following structure inside `populate_any_indicators()` should be used
will cause the algorithm to fail in live/dry mode. In order to add generalized features that are not associated with a specific pair or timeframe, you should use `feature_engineering_standard()`
(as exemplified in `freqtrade/templates/FreqaiExampleStrategy.py`):
(as exemplified in `freqtrade/templates/FreqaiExampleStrategy.py`).
Please see the example script located in `freqtrade/templates/FreqaiExampleStrategy.py` for a full example of `populate_any_indicators()`.
## Important dataframe key patterns
## Important dataframe key patterns
@@ -166,18 +161,19 @@ Below are the values you can expect to include/use inside a typical strategy dat
| DataFrame Key | Description |
| DataFrame Key | Description |
|------------|-------------|
|------------|-------------|
| `df['&*']` | Any dataframe column prepended with `&` in `populate_any_indicators()` is treated as a training target (label) inside FreqAI (typically following the naming convention `&-s*`). For example, to predict the close price 40 candles into the future, you would set `df['&-s_close'] = df['close'].shift(-self.freqai_info["feature_parameters"]["label_period_candles"])` with `"label_period_candles": 40` in the config. FreqAI makes the predictions and gives them back under the same key (`df['&-s_close']`) to be used in `populate_entry/exit_trend()`. <br> **Datatype:** Depends on the output of the model.
| `df['&*']` | Any dataframe column prepended with `&` in `set_freqai_targets()` is treated as a training target (label) inside FreqAI (typically following the naming convention `&-s*`). For example, to predict the close price 40 candles into the future, you would set `df['&-s_close'] = df['close'].shift(-self.freqai_info["feature_parameters"]["label_period_candles"])` with `"label_period_candles": 40` in the config. FreqAI makes the predictions and gives them back under the same key (`df['&-s_close']`) to be used in `populate_entry/exit_trend()`. <br> **Datatype:** Depends on the output of the model.
| `df['&*_std/mean']` | Standard deviation and mean values of the defined labels during training (or live tracking with `fit_live_predictions_candles`). Commonly used to understand the rarity of a prediction (use the z-score as shown in `templates/FreqaiExampleStrategy.py` and explained [here](#creating-a-dynamic-target-threshold) to evaluate how often a particular prediction was observed during training or historically with `fit_live_predictions_candles`). <br>**Datatype:** Float.
| `df['&*_std/mean']` | Standard deviation and mean values of the defined labels during training (or live tracking with `fit_live_predictions_candles`). Commonly used to understand the rarity of a prediction (use the z-score as shown in `templates/FreqaiExampleStrategy.py` and explained [here](#creating-a-dynamic-target-threshold) to evaluate how often a particular prediction was observed during training or historically with `fit_live_predictions_candles`). <br>**Datatype:** Float.
| `df['do_predict']` | Indication of an outlier data point. The return value is integer between -2 and 2, which lets you know if the prediction is trustworthy or not. `do_predict==1` means that the prediction is trustworthy. If the Dissimilarity Index (DI, see details [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di)) of the input data point is above the threshold defined in the config, FreqAI will subtract 1 from `do_predict`, resulting in `do_predict==0`. If `use_SVM_to_remove_outliers()` is active, the Support Vector Machine (SVM, see details [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm)) may also detect outliers in training and prediction data. In this case, the SVM will also subtract 1 from `do_predict`. If the input data point was considered an outlier by the SVM but not by the DI, or vice versa, the result will be `do_predict==0`. If both the DI and the SVM considers the input data point to be an outlier, the result will be `do_predict==-1`. As with the SVM, if `use_DBSCAN_to_remove_outliers` is active, DBSCAN (see details [here](freqai-feature-engineering.md#identifying-outliers-with-dbscan)) may also detect outliers and subtract 1 from `do_predict`. Hence, if both the SVM and DBSCAN are active and identify a datapoint that was above the DI threshold as an outlier, the result will be `do_predict==-2`. A particular case is when `do_predict == 2`, which means that the model has expired due to exceeding `expired_hours`. <br> **Datatype:** Integer between -2 and 2.
| `df['do_predict']` | Indication of an outlier data point. The return value is integer between -2 and 2, which lets you know if the prediction is trustworthy or not. `do_predict==1` means that the prediction is trustworthy. If the Dissimilarity Index (DI, see details [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di)) of the input data point is above the threshold defined in the config, FreqAI will subtract 1 from `do_predict`, resulting in `do_predict==0`. If `use_SVM_to_remove_outliers` is active, the Support Vector Machine (SVM, see details [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm)) may also detect outliers in training and prediction data. In this case, the SVM will also subtract 1 from `do_predict`. If the input data point was considered an outlier by the SVM but not by the DI, or vice versa, the result will be `do_predict==0`. If both the DI and the SVM considers the input data point to be an outlier, the result will be `do_predict==-1`. As with the SVM, if `use_DBSCAN_to_remove_outliers` is active, DBSCAN (see details [here](freqai-feature-engineering.md#identifying-outliers-with-dbscan)) may also detect outliers and subtract 1 from `do_predict`. Hence, if both the SVM and DBSCAN are active and identify a datapoint that was above the DI threshold as an outlier, the result will be `do_predict==-2`. A particular case is when `do_predict == 2`, which means that the model has expired due to exceeding `expired_hours`. <br> **Datatype:** Integer between -2 and 2.
| `df['DI_values']` | Dissimilarity Index (DI) values are proxies for the level of confidence FreqAI has in the prediction. A lower DI means the prediction is close to the training data, i.e., higher prediction confidence. See details about the DI [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di). <br>**Datatype:** Float.
| `df['DI_values']` | Dissimilarity Index (DI) values are proxies for the level of confidence FreqAI has in the prediction. A lower DI means the prediction is close to the training data, i.e., higher prediction confidence. See details about the DI [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di). <br>**Datatype:** Float.
| `df['%*']` | Any dataframe column prepended with `%` in `populate_any_indicators()` is treated as a training feature. For example, you can include the RSI in the training feature set (similar to in `templates/FreqaiExampleStrategy.py`) by setting `df['%-rsi']`. See more details on how this is done [here](freqai-feature-engineering.md). <br> **Note:** Since the number of features prepended with `%` can multiply very quickly (10s of thousands of features are easily engineered using the multiplictative functionality of, e.g., `include_shifted_candles` and `include_timeframes` as described in the [parameter table](freqai-parameter-table.md)), these features are removed from the dataframe that is returned from FreqAI to the strategy. To keep a particular type of feature for plotting purposes, you would prepend it with `%%`. <br> **Datatype:** Depends on the output of the model.
| `df['%*']` | Any dataframe column prepended with `%` in `feature_engineering_*()` is treated as a training feature. For example, you can include the RSI in the training feature set (similar to in `templates/FreqaiExampleStrategy.py`) by setting `df['%-rsi']`. See more details on how this is done [here](freqai-feature-engineering.md). <br> **Note:** Since the number of features prepended with `%` can multiply very quickly (10s of thousands of features are easily engineered using the multiplictative functionality of, e.g., `include_shifted_candles` and `include_timeframes` as described in the [parameter table](freqai-parameter-table.md)), these features are removed from the dataframe that is returned from FreqAI to the strategy. To keep a particular type of feature for plotting purposes, you would prepend it with `%%` (see details below). <br> **Datatype:** Depends on the feature created by the user.
| `df['%%*']` | Any dataframe column prepended with `%%` in `feature_engineering_*()` is treated as a training feature, just the same as the above `%` prepend. However, in this case, the features are returned back to the strategy for FreqUI/plot-dataframe plotting and monitoring in Dry/Live/Backtesting <br>**Datatype:** Depends on the feature created by the user. Please note that features created in `feature_engineering_expand()` will have automatic FreqAI naming schemas depending on the expansions that you configured (i.e. `include_timeframes`, `include_corr_pairlist`, `indicators_periods_candles`, `include_shifted_candles`). So if you want to plot `%%-rsi` from `feature_engineering_expand_all()`, the final naming scheme for your plotting config would be: `%%-rsi-period_10_ETH/USDT:USDT_1h` for the `rsi` feature with `period=10`, `timeframe=1h`, and `pair=ETH/USDT:USDT` (the `:USDT` is added if you are using futures pairs). It is useful to simply add `print(dataframe.columns)` in your `populate_indicators()` after `self.freqai.start()` to see the full list of available features that are returned to the strategy for plotting purposes.
## Setting the `startup_candle_count`
## Setting the `startup_candle_count`
The `startup_candle_count` in the FreqAI strategy needs to be set up in the same way as in the standard Freqtrade strategy (see details [here](strategy-customization.md#strategy-startup-period)). This value is used by Freqtrade to ensure that a sufficient amount of data is provided when calling the `dataprovider`, to avoid any NaNs at the beginning of the first training. You can easily set this value by identifying the longest period (in candle units) which is passed to the indicator creation functions (e.g., Ta-Lib functions). In the presented example, `startup_candle_count` is 20 since this is the maximum value in `indicators_periods_candles`.
The `startup_candle_count` in the FreqAI strategy needs to be set up in the same way as in the standard Freqtrade strategy (see details [here](strategy-customization.md#strategy-startup-period)). This value is used by Freqtrade to ensure that a sufficient amount of data is provided when calling the `dataprovider`, to avoid any NaNs at the beginning of the first training. You can easily set this value by identifying the longest period (in candle units) which is passed to the indicator creation functions (e.g., TA-Lib functions). In the presented example, `startup_candle_count` is 20 since this is the maximum value in `indicators_periods_candles`.
!!! Note
!!! Note
There are instances where the Ta-Lib functions actually require more data than just the passed `period` or else the feature dataset gets populated with NaNs. Anecdotally, multiplying the `startup_candle_count` by 2 always leads to a fully NaN free training dataset. Hence, it is typically safest to multiply the expected `startup_candle_count` by 2. Look out for this log message to confirm that the data is clean:
There are instances where the TA-Lib functions actually require more data than just the passed `period` or else the feature dataset gets populated with NaNs. Anecdotally, multiplying the `startup_candle_count` by 2 always leads to a fully NaN free training dataset. Hence, it is typically safest to multiply the expected `startup_candle_count` by 2. Look out for this log message to confirm that the data is clean:
```
```
2022-08-31 15:14:04 - freqtrade.freqai.data_kitchen - INFO - dropped 0 training points due to NaNs in populated dataset 4319.
2022-08-31 15:14:04 - freqtrade.freqai.data_kitchen - INFO - dropped 0 training points due to NaNs in populated dataset 4319.
To consider the population of *historical predictions* for creating the dynamic target instead of information from the training as discussed above, you would set `fit_live_prediction_candles` in the config to the number of historical prediction candles you wish to use to generate target statistics.
To consider the population of *historical predictions* for creating the dynamic target instead of information from the training as discussed above, you would set `fit_live_predictions_candles` in the config to the number of historical prediction candles you wish to use to generate target statistics.
```json
```json
"freqai": {
"freqai": {
"fit_live_prediction_candles": 300,
"fit_live_predictions_candles": 300,
}
}
```
```
@@ -204,14 +200,222 @@ If this value is set, FreqAI will initially use the predictions from the trainin
## Using different prediction models
## Using different prediction models
FreqAI has multiple example prediction model libraries that are ready to be used as is via the flag `--freqaimodel`. These libraries include `Catboost`, `LightGBM`, and `XGBoost` regression, classification, and multi-target models, and can be found in `freqai/prediction_models/`. However, it is possible to customize and create your own prediction models using the `IFreqaiModel` class. You are encouraged to inherit `fit()`, `train()`, and `predict()` to let these customize various aspects of the training procedures.
FreqAI has multiple example prediction model libraries that are ready to be used as is via the flag `--freqaimodel`. These libraries include `CatBoost`, `LightGBM`, and `XGBoost` regression, classification, and multi-target models, and can be found in `freqai/prediction_models/`.
### Setting classifier targets
Regression and classification models differ in what targets they predict - a regression model will predict a target of continuous values, for example what price BTC will be at tomorrow, whilst a classifier will predict a target of discrete values, for example if the price of BTC will go up tomorrow or not. This means that you have to specify your targets differently depending on which model type you are using (see details [below](#setting-model-targets)).
FreqAI includes a variety of classifiers, such as the `CatboostClassifier` via the flag `--freqaimodel CatboostClassifier`. If you elects to use a classifier, the classes need to be set using strings. For example:
All of the aforementioned model libraries implement gradient boosted decision tree algorithms. They all work on the principle of ensemble learning, where predictions from multiple simple learners are combined to get a final prediction that is more stable and generalized. The simple learners in this case are decision trees. Gradient boosting refers to the method of learning, where each simple learner is built in sequence - the subsequent learner is used to improve on the error from the previous learner. If you want to learn more about the different model libraries you can find the information in their respective docs:
There are also numerous online articles describing and comparing the algorithms. Some relatively lightweight examples would be [CatBoost vs. LightGBM vs. XGBoost — Which is the best algorithm?](https://towardsdatascience.com/catboost-vs-lightgbm-vs-xgboost-c80f40662924#:~:text=In%20CatBoost%2C%20symmetric%20trees%2C%20or,the%20same%20depth%20can%20differ.) and [XGBoost, LightGBM or CatBoost — which boosting algorithm should I use?](https://medium.com/riskified-technology/xgboost-lightgbm-or-catboost-which-boosting-algorithm-should-i-use-e7fda7bb36bc). Keep in mind that the performance of each model is highly dependent on the application and so any reported metrics might not be true for your particular use of the model.
Apart from the models already available in FreqAI, it is also possible to customize and create your own prediction models using the `IFreqaiModel` class. You are encouraged to inherit `fit()`, `train()`, and `predict()` to customize various aspects of the training procedures. You can place custom FreqAI models in `user_data/freqaimodels` - and freqtrade will pick them up from there based on the provided `--freqaimodel` name - which has to correspond to the class name of your custom model.
Make sure to use unique names to avoid overriding built-in models.
### Setting model targets
#### Regressors
If you are using a regressor, you need to specify a target that has continuous values. FreqAI includes a variety of regressors, such as the `CatboostRegressor`via the flag `--freqaimodel CatboostRegressor`. An example of how you could set a regression target for predicting the price 100 candles into the future would be
```python
df['&s-close_price'] = df['close'].shift(-100)
```
If you want to predict multiple targets, you need to define multiple labels using the same syntax as shown above.
#### Classifiers
If you are using a classifier, you need to specify a target that has discrete values. FreqAI includes a variety of classifiers, such as the `CatboostClassifier` via the flag `--freqaimodel CatboostClassifier`. If you elects to use a classifier, the classes need to be set using strings. For example, if you want to predict if the price 100 candles into the future goes up or down you would set
Additionally, the example classifier models do not accommodate multiple labels, but they do allow multi-class classification within a single label column.
If you want to predict multiple targets you must specify all labels in the same label column. You could, for example, add the label `same` to define where the price was unchanged by setting
The PyTorch module requires large packages such as `torch`, which should be explicitly requested during `./setup.sh -i` by answering "y" to the question "Do you also want dependencies for freqai-rl or PyTorch (~700mb additional space required) [y/N]?".
Users who prefer docker should ensure they use the docker image appended with `_freqaitorch`.
We do provide an explicit docker-compose file for this in `docker/docker-compose-freqai.yml` - which can be used via `docker compose -f docker/docker-compose-freqai.yml run ...` - or can be copied to replace the original docker file.
This docker-compose file also contains a (disabled) section to enable GPU resources within docker containers. This obviously assumes the system has GPU resources available.
### Structure
#### Model
You can construct your own Neural Network architecture in PyTorch by simply defining your `nn.Module` class inside your custom [`IFreqaiModel` file](#using-different-prediction-models) and then using that class in your `def train()` function. Here is an example of logistic regression model implementation using PyTorch (should be used with nn.BCELoss criterion) for classification tasks.
The `PyTorchModelTrainer` performs the idiomatic PyTorch train loop:
Define our model, loss function, and optimizer, and then move them to the appropriate device (GPU or CPU). Inside the loop, we iterate through the batches in the dataloader, move the data to the device, compute the prediction and loss, backpropagate, and update the model parameters using the optimizer.
In addition, the trainer is responsible for the following:
- saving and loading the model
- converting the data from `pandas.DataFrame` to `torch.Tensor`.
#### Integration with Freqai module
Like all freqai models, PyTorch models inherit `IFreqaiModel`. `IFreqaiModel` declares three abstract methods: `train`, `fit`, and `predict`. we implement these methods in three levels of hierarchy.
From top to bottom:
1. `BasePyTorchModel` - Implements the `train` method. all `BasePyTorch*` inherit it. responsible for general data preparation (e.g., data normalization) and calling the `fit` method. Sets `device` attribute used by children classes. Sets `model_type` attribute used by the parent class.
2. `BasePyTorch*` - Implements the `predict` method. Here, the `*` represents a group of algorithms, such as classifiers or regressors. responsible for data preprocessing, predicting, and postprocessing if needed.
3. `PyTorch*Classifier` / `PyTorch*Regressor` - implements the `fit` method. responsible for the main train flaw, where we initialize the trainer and model objects.

#### Full example
Building a PyTorch regressor using MLP (multilayer perceptron) model, MSELoss criterion, and AdamW optimizer.
Here we create a `PyTorchMLPRegressor` class that implements the `fit` method. The `fit` method specifies the training building blocks: model, optimizer, criterion, and trainer. We inherit both `BasePyTorchRegressor` and `BasePyTorchModel`, where the former implements the `predict` method that is suitable for our regression task, and the latter implements the train method.
??? Note "Setting Class Names for Classifiers"
When using classifiers, the user must declare the class names (or targets) by overriding the `IFreqaiModel.class_names` attribute. This is achieved by setting `self.freqai.class_names` in the FreqAI strategy inside the `set_freqai_targets` method.
For example, if you are using a binary classifier to predict price movements as up or down, you can set the class names as follows:
To see a full example, you can refer to the [classifier test strategy class](https://github.com/freqtrade/freqtrade/blob/develop/tests/strategy/strats/freqai_test_classifier.py).
#### Improving performance with `torch.compile()`
Torch provides a `torch.compile()` method that can be used to improve performance for specific GPU hardware. More details can be found [here](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html). In brief, you simply wrap your `model` in `torch.compile()`:
```python
model = PyTorchMLPModel(
input_dim=n_features,
output_dim=1,
**self.model_kwargs
)
model.to(self.device)
model = torch.compile(model)
```
Then proceed to use the model as normal. Keep in mind that doing this will remove eager execution, which means errors and tracebacks will not be informative.
Low level feature engineering is performed in the user strategy within a function called `populate_any_indicators()`. That function sets the `base features` such as, `RSI`, `MFI`, `EMA`, `SMA`, time of day, volume, etc. The `base features` can be custom indicators or they can be imported from any technical-analysis library that you can find. One important syntax rule is that all `base features` string names are prepended with `%`, while labels/targets are prepended with `&`.
Low level feature engineering is performed in the user strategy within a set of functions called `feature_engineering_*`. These function set the `base features` such as, `RSI`, `MFI`, `EMA`, `SMA`, time of day, volume, etc. The `base features` can be custom indicators or they can be imported from any technical-analysis library that you can find. FreqAI is equipped with a set of functions to simplify rapid large-scale featureengineering:
| Function | Description |
|---------------|-------------|
| `feature_engineering_expand_all()` | This optional function will automatically expand the defined features on the config defined `indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
| `feature_engineering_expand_basic()` | This optional function will automatically expand the defined features on the config defined `include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`. Note: this function does *not* expand across `indicator_periods_candles`.
| `feature_engineering_standard()` | This optional function will be called once with the dataframe of the base timeframe. This is the final function to be called, which means that the dataframe entering this function will contain all the features and columns from the base asset created by the other `feature_engineering_expand` functions. This function is a good place to do custom exotic feature extractions (e.g. tsfresh). This function is also a good place for any feature that should not be auto-expanded upon (e.g., day of the week).
| `set_freqai_targets()` | Required function to set the targets for the model. All targets must be prepended with `&` to be recognized by the FreqAI internals.
Meanwhile, high level feature engineering is handled within `"feature_parameters":{}` in the FreqAI config. Within this file, it is possible to decide large scale feature expansions on top of the `base_features` such as "including correlated pairs" or "including informative timeframes" or even "including recent candles."
Meanwhile, high level feature engineering is handled within `"feature_parameters":{}` in the FreqAI config. Within this file, it is possible to decide large scale feature expansions on top of the `base_features` such as "including correlated pairs" or "including informative timeframes" or even "including recent candles."
It is advisable to start from the template `populate_any_indicators()` in the source provided example strategy (found in `templates/FreqaiExampleStrategy.py`) to ensure that the feature definitions are following the correct conventions. Here is an example of how to set the indicators and labels in the strategy:
It is advisable to start from the template `feature_engineering_*` functions in the source provided example strategy (found in `templates/FreqaiExampleStrategy.py`) to ensure that the feature definitions are following the correct conventions. Here is an example of how to set the indicators and labels in the strategy:
In the presented example, the user does not wish to pass the `bb_lowerband` as a feature to the model,
In the presented example, the user does not wish to pass the `bb_lowerband` as a feature to the model,
@@ -118,15 +172,30 @@ After having defined the `base features`, the next step is to expand upon them u
}
}
```
```
The `include_timeframes` in the config above are the timeframes (`tf`) of each call to `populate_any_indicators()` in the strategy. In the presented case, the user is asking for the `5m`, `15m`, and `4h` timeframes of the `rsi`, `mfi`, `roc`, and `bb_width` to be included in the feature set.
The `include_timeframes` in the config above are the timeframes (`tf`) of each call to `feature_engineering_expand_*()` in the strategy. In the presented case, the user is asking for the `5m`, `15m`, and `4h` timeframes of the `rsi`, `mfi`, `roc`, and `bb_width` to be included in the feature set.
You can ask for each of the defined features to be included also for informative pairs using the `include_corr_pairlist`. This means that the feature set will include all the features from `populate_any_indicators` on all the `include_timeframes` for each of the correlated pairs defined in the config (`ETH/USD`, `LINK/USD`, and `BNB/USD` in the presented example).
You can ask for each of the defined features to be included also for informative pairs using the `include_corr_pairlist`. This means that the feature set will include all the features from `feature_engineering_expand_*()` on all the `include_timeframes` for each of the correlated pairs defined in the config (`ETH/USD`, `LINK/USD`, and `BNB/USD` in the presented example).
`include_shifted_candles` indicates the number of previous candles to include in the feature set. For example, `include_shifted_candles: 2` tells FreqAI to include the past 2 candles for each of the features in the feature set.
`include_shifted_candles` indicates the number of previous candles to include in the feature set. For example, `include_shifted_candles: 2` tells FreqAI to include the past 2 candles for each of the features in the feature set.
In total, the number of features the user of the presented example strat has created is: length of `include_timeframes`* no. features in `populate_any_indicators()` * length of `include_corr_pairlist` * no. `include_shifted_candles` * length of `indicator_periods_candles`
In total, the number of features the user of the presented example strategy has created is: length of `include_timeframes`* no. features in `feature_engineering_expand_*()` * length of `include_corr_pairlist` * no. `include_shifted_candles` * length of `indicator_periods_candles`
$= 3 * 3 * 3 * 2 * 2 = 108$.
$= 3 * 3 * 3 * 2 * 2 = 108$.
!!! note "Learn more about creative feature engineering"
Check out our [medium article](https://emergentmethods.medium.com/freqai-from-price-to-prediction-6fadac18b665) geared toward helping users learn how to creatively engineer features.
### Gain finer control over `feature_engineering_*` functions with `metadata`
All `feature_engineering_*` and `set_freqai_targets()` functions are passed a `metadata` dictionary which contains information about the `pair`, `tf` (timeframe), and `period` that FreqAI is automating for feature building. As such, a user can use `metadata` inside `feature_engineering_*` functions as criteria for blocking/reserving features for certain timeframes, periods, pairs etc.
This will block `ta.ROC()` from being added to any timeframes other than `"1h"`.
### Returning additional info from training
### Returning additional info from training
Important metrics can be returned to the strategy at the end of each model training by assigning them to `dk.data['extra_returns_per_train']['my_new_value'] = XYZ` inside the custom prediction model class.
Important metrics can be returned to the strategy at the end of each model training by assigning them to `dk.data['extra_returns_per_train']['my_new_value'] = XYZ` inside the custom prediction model class.
@@ -143,41 +212,7 @@ Another example, where the user wants to use live metrics from the trade databas
You need to set the standard dictionary in the config so that FreqAI can return proper dataframe shapes. These values will likely be overridden by the prediction model, but in the case where the model has yet to set them, or needs a default initial value, the pre-set values are what will be returned.
You need to set the standard dictionary in the config so that FreqAI can return proper dataframe shapes. These values will likely be overridden by the prediction model, but in the case where the model has yet to set them, or needs a default initial value, the pre-set values are what will be returned.
## Feature normalization
### Weighting features for temporal importance
FreqAI is strict when it comes to data normalization. The train features, $X^{train}$, are always normalized to [-1, 1] using a shifted min-max normalization:
All other data (test data and unseen prediction data in dry/live/backtest) is always automatically normalized to the training feature space according to industry standards. FreqAI stores all the metadata required to ensure that test and prediction features will be properly normalized and that predictions are properly denormalized. For this reason, it is not recommended to eschew industry standards and modify FreqAI internals - however - advanced users can do so by inheriting `train()` in their custom `IFreqaiModel` and using their own normalization functions.
## Data dimensionality reduction with Principal Component Analysis
You can reduce the dimensionality of your features by activating the `principal_component_analysis` in the config:
```json
"freqai":{
"feature_parameters":{
"principal_component_analysis":true
}
}
```
This will perform PCA on the features and reduce their dimensionality so that the explained variance of the data set is >= 0.999. Reducing data dimensionality makes training the model faster and hence allows for more up-to-date models.
## Inlier metric
The `inlier_metric` is a metric aimed at quantifying how similar a the features of a data point are to the most recent historic data points.
You define the lookback window by setting `inlier_metric_window` and FreqAI computes the distance between the present time point and each of the previous `inlier_metric_window` lookback points. A Weibull function is fit to each of the lookback distributions and its cumulative distribution function (CDF) is used to produce a quantile for each lookback point. The `inlier_metric` is then computed for each time point as the average of the corresponding lookback quantiles. The figure below explains the concept for an `inlier_metric_window` of 5.

FreqAI adds the `inlier_metric` to the training features and hence gives the model access to a novel type of temporal information.
This function does **not** remove outliers from the data set.
## Weighting features for temporal importance
FreqAI allows you to set a `weight_factor` to weight recent data more strongly than past data via an exponential function:
FreqAI allows you to set a `weight_factor` to weight recent data more strongly than past data via an exponential function:
@@ -187,13 +222,103 @@ where $W_i$ is the weight of data point $i$ in a total set of $n$ data points. B


## Building the data pipeline
By default, FreqAI builds a dynamic pipeline based on user congfiguration settings. The default settings are robust and designed to work with a variety of methods. These two steps are a `MinMaxScaler(-1,1)` and a `VarianceThreshold` which removes any column that has 0 variance. Users can activate other steps with more configuration parameters. For example if users add `use_SVM_to_remove_outliers: true` to the `freqai` config, then FreqAI will automatically add the [`SVMOutlierExtractor`](#identifying-outliers-using-a-support-vector-machine-svm) to the pipeline. Likewise, users can add `principal_component_analysis: true` to the `freqai` config to activate PCA. The [DissimilarityIndex](#identifying-outliers-with-the-dissimilarity-index-di) is activated with `DI_threshold: 1`. Finally, noise can also be added to the data with `noise_standard_deviation: 0.1`. Finally, users can add [DBSCAN](#identifying-outliers-with-dbscan) outlier removal with `use_DBSCAN_to_remove_outliers: true`.
!!! note "More information available"
Please review the [parameter table](freqai-parameter-table.md) for more information on these parameters.
### Customizing the pipeline
Users are encouraged to customize the data pipeline to their needs by building their own data pipeline. This can be done by simply setting `dk.feature_pipeline` to their desired `Pipeline` object inside their `IFreqaiModel` `train()` function, or if they prefer not to touch the `train()` function, they can override `define_data_pipeline`/`define_label_pipeline` functions in their `IFreqaiModel`:
!!! note "More information available"
FreqAI uses the the [`DataSieve`](https://github.com/emergentmethods/datasieve) pipeline, which follows the SKlearn pipeline API, but adds, among other features, coherence between the X, y, and sample_weight vector point removals, feature removal, feature name following.
```python
from datasieve.transforms import SKLearnWrapper, DissimilarityIndex
from datasieve.pipeline import Pipeline
from sklearn.preprocessing import QuantileTransformer, StandardScaler
from freqai.base_models import BaseRegressionModel
User defines their custom label pipeline here (if they wish)
"""
label_pipeline = Pipeline([
('qt', SKLearnWrapper(StandardScaler())),
])
return label_pipeline
```
Here, you are defining the exact pipeline that will be used for your feature set during training and prediction. You can use *most* SKLearn transformation steps by wrapping them in the `SKLearnWrapper` class as shown above. In addition, you can use any of the transformations available in the [`DataSieve` library](https://github.com/emergentmethods/datasieve).
You can easily add your own transformation by creating a class that inherits from the datasieve `BaseTransform` and implementing your `fit()`, `transform()` and `inverse_transform()` methods:
```python
from datasieve.transforms.base_transform import BaseTransform
# do/dont do something with X, y, sample_weight, or/and feature_list
return X, y, sample_weight, feature_list
```
!!! note "Hint"
You can define this custom class in the same file as your `IFreqaiModel`.
### Migrating a custom `IFreqaiModel` to the new Pipeline
If you have created your own custom `IFreqaiModel` with a custom `train()`/`predict()` function, *and* you still rely on `data_cleaning_train/predict()`, then you will need to migrate to the new pipeline. If your model does *not* rely on `data_cleaning_train/predict()`, then you do not need to worry about this migration.
More details about the migration can be found [here](strategy_migration.md#freqai---new-data-pipeline).
## Outlier detection
## Outlier detection
Equity and crypto markets suffer from a high level of non-patterned noise in the form of outlier data points. FreqAI implements a variety of methods to identify such outliers and hence mitigate risk.
Equity and crypto markets suffer from a high level of non-patterned noise in the form of outlier data points. FreqAI implements a variety of methods to identify such outliers and hence mitigate risk.
### Identifying outliers with the Dissimilarity Index (DI)
### Identifying outliers with the Dissimilarity Index (DI)
The Dissimilarity Index (DI) aims to quantify the uncertainty associated with each prediction made by the model.
The Dissimilarity Index (DI) aims to quantify the uncertainty associated with each prediction made by the model.
You can tell FreqAI to remove outlier data points from the training/test data sets using the DI by including the following statement in the config:
You can tell FreqAI to remove outlier data points from the training/test data sets using the DI by including the following statement in the config:
@@ -205,7 +330,7 @@ You can tell FreqAI to remove outlier data points from the training/test data se
}
}
```
```
The DI allows predictions which are outliers (not existent in the model feature space) to be thrown out due to low levels of certainty. To do so, FreqAI measures the distance between each training data point (feature vector), $X_{a}$, and all other training data points:
Which will add `DissimilarityIndex` step to your `feature_pipeline` and set the threshold to 1. The DI allows predictions which are outliers (not existent in the model feature space) to be thrown out due to low levels of certainty. To do so, FreqAI measures the distance between each training data point (feature vector), $X_{a}$, and all other training data points:
@@ -239,9 +364,9 @@ You can tell FreqAI to remove outlier data points from the training/test data se
}
}
```
```
The SVM will be trained on the training data and any data point that the SVM deems to be beyond the feature space will be removed.
Which will add `SVMOutlierExtractor` step to your `feature_pipeline`. The SVM will be trained on the training data and any data point that the SVM deems to be beyond the feature space will be removed.
FreqAI uses `sklearn.linear_model.SGDOneClassSVM` (details are available on scikit-learn's webpage [here](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDOneClassSVM.html) (external website)) and you can elect to provide additional parameters for the SVM, such as `shuffle`, and `nu`.
You can elect to provide additional parameters for the SVM, such as `shuffle`, and `nu` via the `feature_parameters.svm_params` dictionary in the config.
The parameter `shuffle` is by default set to `False` to ensure consistent results. If it is set to `True`, running the SVM multiple times on the same data set might result in different outcomes due to `max_iter` being to low for the algorithm to reach the demanded `tol`. Increasing `max_iter` solves this issue but causes the procedure to take longer time.
The parameter `shuffle` is by default set to `False` to ensure consistent results. If it is set to `True`, running the SVM multiple times on the same data set might result in different outcomes due to `max_iter` being to low for the algorithm to reach the demanded `tol`. Increasing `max_iter` solves this issue but causes the procedure to take longer time.
@@ -259,7 +384,7 @@ You can configure FreqAI to use DBSCAN to cluster and remove outliers from the t
}
}
```
```
DBSCAN is an unsupervised machine learning algorithm that clusters data without needing to know how many clusters there should be.
Which will add the `DataSieveDBSCAN` step to your `feature_pipeline`. This is an unsupervised machine learning algorithm that clusters data without needing to know how many clusters there should be.
Given a number of data points $N$, and a distance $\varepsilon$, DBSCAN clusters the data set by setting all data points that have $N-1$ other data points within a distance of $\varepsilon$ as *core points*. A data point that is within a distance of $\varepsilon$ from a *core point* but that does not have $N-1$ other data points within a distance of $\varepsilon$ from itself is considered an *edge point*. A cluster is then the collection of *core points* and *edge points*. Data points that have no other data points at a distance $<\varepsilon$ are considered outliers. The figure below shows a cluster with $N = 3$.
Given a number of data points $N$, and a distance $\varepsilon$, DBSCAN clusters the data set by setting all data points that have $N-1$ other data points within a distance of $\varepsilon$ as *core points*. A data point that is within a distance of $\varepsilon$ from a *core point* but that does not have $N-1$ other data points within a distance of $\varepsilon$ from itself is considered an *edge point*. A cluster is then the collection of *core points* and *edge points*. Data points that have no other data points at a distance $<\varepsilon$ are considered outliers. The figure below shows a cluster with $N = 3$.
@@ -4,58 +4,114 @@ The table below will list all configuration parameters available for FreqAI. Som
Mandatory parameters are marked as **Required** and have to be set in one of the suggested ways.
Mandatory parameters are marked as **Required** and have to be set in one of the suggested ways.
### General configuration parameters
| Parameter | Description |
| Parameter | Description |
|------------|-------------|
|------------|-------------|
| | **General configuration parameters**
| | **General configuration parameters within the `config.freqai` tree**
| `freqai` | **Required.**<br> The parent dictionary containing all the parameters for controlling FreqAI. <br>**Datatype:** Dictionary.
| `freqai` | **Required.**<br> The parent dictionary containing all the parameters for controlling FreqAI. <br>**Datatype:** Dictionary.
| `train_period_days` | **Required.**<br> Number of days to use for the training data (width of the sliding window). <br>**Datatype:** Positive integer.
| `train_period_days` | **Required.**<br> Number of days to use for the training data (width of the sliding window). <br>**Datatype:** Positive integer.
| `backtest_period_days` | **Required.**<br> Number of days to inference from the trained model before sliding the `train_period_days` window defined above, and retraining the model during backtesting (more info [here](freqai-running.md#backtesting)). This can be fractional days, but beware that the provided `timerange` will be divided by this number to yield the number of trainings necessary to complete the backtest. <br>**Datatype:** Float.
| `backtest_period_days` | **Required.**<br> Number of days to inference from the trained model before sliding the `train_period_days` window defined above, and retraining the model during backtesting (more info [here](freqai-running.md#backtesting)). This can be fractional days, but beware that the provided `timerange` will be divided by this number to yield the number of trainings necessary to complete the backtest. <br>**Datatype:** Float.
| `identifier` | **Required.**<br> A unique ID for the current model. If models are saved to disk, the `identifier` allows for reloading specific pre-trained models/data. <br>**Datatype:** String.
| `identifier` | **Required.**<br> A unique ID for the current model. If models are saved to disk, the `identifier` allows for reloading specific pre-trained models/data. <br>**Datatype:** String.
| `live_retrain_hours` | Frequency of retraining during dry/live runs. <br>**Datatype:** Float > 0. <br> Default: `0` (models retrain as often as possible).
| `live_retrain_hours` | Frequency of retraining during dry/live runs. <br>**Datatype:** Float > 0. <br> Default: `0` (models retrain as often as possible).
| `expiration_hours` | Avoid making predictions if a model is more than `expiration_hours` old. <br>**Datatype:** Positive integer. <br> Default: `0` (models never expire).
| `expiration_hours` | Avoid making predictions if a model is more than `expiration_hours` old. <br>**Datatype:** Positive integer. <br> Default: `0` (models never expire).
| `purge_old_models` | Number of models to keep on disk (not relevant to backtesting). Default is 2, which means that dry/live runs will keep the latest 2 models on disk. Setting to 0 keeps all models. This parameter also accepts a boolean to maintain backwards compatibility. <br>**Datatype:**Integer. <br> Default: `2`.
| `save_backtest_models` | Save models to disk when running backtesting. Backtesting operates most efficiently by saving the prediction data and reusing them directly for subsequent runs (when you wish to tune entry/exit parameters). Saving backtesting models to disk also allows to use the same model files for starting a dry/live instance with the same model `identifier`. <br>**Datatype:** Boolean. <br> Default: `False` (no models are saved).
| `save_backtest_models` | Save models to disk when running backtesting. Backtesting operates most efficiently by saving the prediction data and reusing them directly for subsequent runs (when you wish to tune entry/exit parameters). Saving backtesting models to disk also allows to use the same model files for starting a dry/live instance with the same model `identifier`. <br>**Datatype:** Boolean. <br> Default: `False` (no models are saved).
| `fit_live_predictions_candles` | Number of historical candles to use for computing target (label) statistics from prediction data, instead of from the training dataset (more information can be found [here](freqai-configuration.md#creating-a-dynamic-target-threshold)). <br>**Datatype:** Positive integer.
| `fit_live_predictions_candles` | Number of historical candles to use for computing target (label) statistics from prediction data, instead of from the training dataset (more information can be found [here](freqai-configuration.md#creating-a-dynamic-target-threshold)). <br>**Datatype:** Positive integer.
| `follow_mode` | Use a `follower` that will look for models associated with a specific `identifier` and load those for inferencing. A `follower` will **not** train new models. <br>**Datatype:** Boolean. <br> Default: `False`.
| `continual_learning` | Use the final state of the most recently trained model as starting point for the new model, allowing for incremental learning (more information can be found [here](freqai-running.md#continual-learning)). Beware that this is currently a naive approach to incremental learning, and it has a high probability of overfitting/getting stuck in local minima while the market moves away from your model. We have the connections here primarily for experimental purposes and so that it is ready for more mature approaches to continual learning in chaotic systems like the crypto market. <br>**Datatype:** Boolean. <br> Default: `False`.
| `continual_learning` | Use the final state of the most recently trained model as starting point for the new model, allowing for incremental learning (more information can be found [here](freqai-running.md#continual-learning)). <br>**Datatype:** Boolean. <br> Default: `False`.
| `write_metrics_to_disk` | Collect train timings, inference timings and cpu usage in json file. <br>**Datatype:** Boolean. <br> Default: `False`
| | **Feature parameters**
| `data_kitchen_thread_count` | <br> Designate the number of threads you want to use for data processing (outlier methods, normalization, etc.). This has no impact on the number of threads used for training. If user does not set it (default), FreqAI will use max number of threads - 2 (leaving 1 physical core available for Freqtrade bot and FreqUI) <br>**Datatype:** Positive integer.
| `activate_tensorboard` | <br> Indicate whether or not to activate tensorboard for the tensorboard enabled modules (currently Reinforcment Learning, XGBoost, Catboost, and PyTorch). Tensorboard needs Torch installed, which means you will need the torch/RL docker image or you need to answer "yes" to the install question about whether or not you wish to install Torch. <br>**Datatype:** Boolean. <br> Default: `True`.
### Feature parameters
| Parameter | Description |
|------------|-------------|
| | **Feature parameters within the `freqai.feature_parameters` sub dictionary**
| `feature_parameters` | A dictionary containing the parameters used to engineer the feature set. Details and examples are shown [here](freqai-feature-engineering.md). <br>**Datatype:** Dictionary.
| `feature_parameters` | A dictionary containing the parameters used to engineer the feature set. Details and examples are shown [here](freqai-feature-engineering.md). <br>**Datatype:** Dictionary.
| `include_timeframes` | A list of timeframes that all indicators in `populate_any_indicators` will be created for. The list is added as features to the base indicators dataset. <br>**Datatype:** List of timeframes (strings).
| `include_timeframes` | A list of timeframes that all indicators in `feature_engineering_expand_*()` will be created for. The list is added as features to the base indicators dataset. <br>**Datatype:** List of timeframes (strings).
| `include_corr_pairlist` | A list of correlated coins that FreqAI will add as additional features to all `pair_whitelist` coins. All indicators set in `populate_any_indicators` during feature engineering (see details [here](freqai-feature-engineering.md)) will be created for each correlated coin. The correlated coins features are added to the base indicators dataset. <br>**Datatype:** List of assets (strings).
| `include_corr_pairlist` | A list of correlated coins that FreqAI will add as additional features to all `pair_whitelist` coins. All indicators set in `feature_engineering_expand_*()` during feature engineering (see details [here](freqai-feature-engineering.md)) will be created for each correlated coin. The correlated coins features are added to the base indicators dataset. <br>**Datatype:** List of assets (strings).
| `label_period_candles` | Number of candles into the future that the labels are created for. This is used in `populate_any_indicators` (see `templates/FreqaiExampleStrategy.py` for detailed usage). You can create custom labels and choose whether to make use of this parameter or not. <br>**Datatype:** Positive integer.
| `label_period_candles` | Number of candles into the future that the labels are created for. This is used in `feature_engineering_expand_all()` (see `templates/FreqaiExampleStrategy.py` for detailed usage). You can create custom labels and choose whether to make use of this parameter or not. <br>**Datatype:** Positive integer.
| `include_shifted_candles` | Add features from previous candles to subsequent candles with the intent of adding historical information. If used, FreqAI will duplicate and shift all features from the `include_shifted_candles` previous candles so that the information is available for the subsequent candle. <br>**Datatype:** Positive integer.
| `include_shifted_candles` | Add features from previous candles to subsequent candles with the intent of adding historical information. If used, FreqAI will duplicate and shift all features from the `include_shifted_candles` previous candles so that the information is available for the subsequent candle. <br>**Datatype:** Positive integer.
| `weight_factor` | Weight training data points according to their recency (see details [here](freqai-feature-engineering.md#weighting-features-for-temporal-importance)). <br>**Datatype:** Positive float (typically <1).
| `weight_factor` | Weight training data points according to their recency (see details [here](freqai-feature-engineering.md#weighting-features-for-temporal-importance)). <br>**Datatype:** Positive float (typically <1).
|`indicator_max_period_candles`|**No longer used (#7325)**.Replacedby`startup_candle_count`whichissetinthe [strategy](freqai-configuration.md#building-a-freqai-strategy).`startup_candle_count`istimeframeindependentanddefinesthemaximum*period*usedin`populate_any_indicators()`forindicatorcreation.FreqAIusesthisparametertogetherwiththemaximumtimeframein`include_time_frames`tocalculatehowmanydatapointstodownloadsuchthatthefirstdatapointdoesnotincludeaNaN.<br>**Datatype:** Positive integer.
|`indicator_max_period_candles`|**No longer used (#7325)**.Replacedby`startup_candle_count`whichissetinthe [strategy](freqai-configuration.md#building-a-freqai-strategy).`startup_candle_count`istimeframeindependentanddefinesthemaximum*period*usedin`feature_engineering_*()`forindicatorcreation.FreqAIusesthisparametertogetherwiththemaximumtimeframein`include_time_frames`tocalculatehowmanydatapointstodownloadsuchthatthefirstdatapointdoesnotincludeaNaN.<br>**Datatype:** Positive integer.
| `indicator_periods_candles` | Time periods to calculate indicators for. The indicators are added to the base indicator dataset. <br>**Datatype:** List of positive integers.
| `indicator_periods_candles` | Time periods to calculate indicators for. The indicators are added to the base indicator dataset. <br>**Datatype:** List of positive integers.
| `principal_component_analysis` | Automatically reduce the dimensionality of the data set using Principal Component Analysis. See details about how it works [here](#reducing-data-dimensionality-with-principal-component-analysis) <br>**Datatype:** Boolean. <br> Default: `False`.
| `principal_component_analysis` | Automatically reduce the dimensionality of the data set using Principal Component Analysis. See details about how it works [here](#reducing-data-dimensionality-with-principal-component-analysis) <br>**Datatype:** Boolean. <br> Default: `False`.
| `plot_feature_importances` | Create a feature importance plot for each model for the top/bottom `plot_feature_importances` number of features. <br>**Datatype:** Integer. <br> Default: `0`.
| `plot_feature_importances` | Create a feature importance plot for each model for the top/bottom `plot_feature_importances` number of features. Plot is stored in `user_data/models/<identifier>/sub-train-<COIN>_<timestamp>.html`.<br>**Datatype:** Integer. <br> Default: `0`.
| `DI_threshold` | Activates the use of the Dissimilarity Index for outlier detection when set to > 0. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di). <br>**Datatype:** Positive float (typically <1).
| `DI_threshold` | Activates the use of the Dissimilarity Index for outlier detection when set to > 0. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di). <br>**Datatype:** Positive float (typically <1).
| `svm_params` | All parameters available in Sklearn's `SGDOneClassSVM()`. See details about some select parameters [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm). <br>**Datatype:** Dictionary.
| `svm_params` | All parameters available in Sklearn's `SGDOneClassSVM()`. See details about some select parameters [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm). <br>**Datatype:** Dictionary.
| `use_DBSCAN_to_remove_outliers` | Cluster data using the DBSCAN algorithm to identify and remove outliers from training and prediction data. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-with-dbscan). <br>**Datatype:** Boolean.
| `use_DBSCAN_to_remove_outliers` | Cluster data using the DBSCAN algorithm to identify and remove outliers from training and prediction data. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-with-dbscan). <br>**Datatype:** Boolean.
| `inlier_metric_window` | If set, FreqAI adds an `inlier_metric` to the training feature set and set the lookback to be the `inlier_metric_window`, i.e., the number of previous time points to compare the current candle to. Details of how the `inlier_metric` is computed can be found [here](freqai-feature-engineering.md#inlier-metric). <br>**Datatype:** Integer. <br> Default: `0`.
| `noise_standard_deviation` | If set, FreqAI adds noise to the training features with the aim of preventing overfitting. FreqAI generates random deviates from a gaussian distribution with a standard deviation of `noise_standard_deviation` and adds them to all data points. `noise_standard_deviation` should be kept relative to the normalized space, i.e., between -1 and 1. In other words, since data in FreqAI is always normalized to be between -1 and 1, `noise_standard_deviation: 0.05` would result in 32% of the data being randomly increased/decreased by more than 2.5% (i.e., the percent of data falling within the first standard deviation). <br>**Datatype:** Integer. <br> Default: `0`.
| `noise_standard_deviation` | If set, FreqAI adds noise to the training features with the aim of preventing overfitting. FreqAI generates random deviates from a gaussian distribution with a standard deviation of `noise_standard_deviation` and adds them to all data points. `noise_standard_deviation` should be kept relative to the normalized space, i.e., between -1 and 1. In other words, since data in FreqAI is always normalized to be between -1 and 1, `noise_standard_deviation: 0.05` would result in 32% of the data being randomly increased/decreased by more than 2.5% (i.e., the percent of data falling within the first standard deviation). <br>**Datatype:** Integer. <br> Default: `0`.
| `outlier_protection_percentage` | Enable to prevent outlier detection methods from discarding too much data. If more than `outlier_protection_percentage` % of points are detected as outliers by the SVM or DBSCAN, FreqAI will log a warning message and ignore outlier detection, i.e., the original dataset will be kept intact. If the outlier protection is triggered, no predictions will be made based on the training dataset. <br>**Datatype:** Float. <br> Default: `30`.
| `outlier_protection_percentage` | Enable to prevent outlier detection methods from discarding too much data. If more than `outlier_protection_percentage` % of points are detected as outliers by the SVM or DBSCAN, FreqAI will log a warning message and ignore outlier detection, i.e., the original dataset will be kept intact. If the outlier protection is triggered, no predictions will be made based on the training dataset. <br>**Datatype:** Float. <br> Default: `30`.
| `reverse_train_test_order` | Split the feature dataset (see below) and use the latest data split for training and test on historical split of the data. This allows the model to be trained up to the most recent data point, while avoiding overfitting. However, you should be careful to understand the unorthodox nature of this parameter before employing it. <br>**Datatype:** Boolean. <br> Default: `False` (no reversal).
| `reverse_train_test_order` | Split the feature dataset (see below) and use the latest data split for training and test on historical split of the data. This allows the model to be trained up to the most recent data point, while avoiding overfitting. However, you should be careful to understand the unorthodox nature of this parameter before employing it. <br>**Datatype:** Boolean. <br> Default: `False` (no reversal).
| | **Data split parameters**
| `shuffle_after_split` | Split the data into train and test sets, and then shuffle both sets individually. <br>**Datatype:** Boolean. <br> Default: `False`.
| `data_split_parameters` | Include any additional parameters available from Scikit-learn `test_train_split()`, which are shown [here](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) (external website). <br>**Datatype:** Dictionary.
| `buffer_train_data_candles` | Cut `buffer_train_data_candles` off the beginning and end of the training data *after* the indicators were populated. The main example use is when predicting maxima and minima, the argrelextrema function cannot know the maxima/minima at the edges of the timerange. To improve model accuracy, it is best to compute argrelextrema on the full timerange and then use this function to cut off the edges (buffer) by the kernel. In another case, if the targets are set to a shifted price movement, this buffer is unnecessary because the shifted candles at the end of the timerange will be NaN and FreqAI will automatically cut those off of the training dataset.<br>**Datatype:** Integer. <br> Default: `0`.
### Data split parameters
| Parameter | Description |
|------------|-------------|
| | **Data split parameters within the `freqai.data_split_parameters` sub dictionary**
| `data_split_parameters` | Include any additional parameters available from scikit-learn `test_train_split()`, which are shown [here](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) (external website). <br>**Datatype:** Dictionary.
| `test_size` | The fraction of data that should be used for testing instead of training. <br>**Datatype:** Positive float <1.
| `test_size` | The fraction of data that should be used for testing instead of training. <br>**Datatype:** Positive float <1.
| `model_training_parameters` | A flexible dictionary that includes all parameters available by the selected model library. For example, if you use `LightGBMRegressor`, this dictionary can contain any parameter available by the `LightGBMRegressor` [here](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html) (external website). If you select a different model, this dictionary can contain any parameter from that model. <br>**Datatype:** Dictionary.
### Model training parameters
| Parameter | Description |
|------------|-------------|
| | **Model training parameters within the `freqai.model_training_parameters` sub dictionary**
| `model_training_parameters` | A flexible dictionary that includes all parameters available by the selected model library. For example, if you use `LightGBMRegressor`, this dictionary can contain any parameter available by the `LightGBMRegressor` [here](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html) (external website). If you select a different model, this dictionary can contain any parameter from that model. A list of the currently available models can be found [here](freqai-configuration.md#using-different-prediction-models). <br>**Datatype:** Dictionary.
| `n_estimators` | The number of boosted trees to fit in the training of the model. <br>**Datatype:** Integer.
| `n_estimators` | The number of boosted trees to fit in the training of the model. <br>**Datatype:** Integer.
| `learning_rate` | Boosting learning rate during training of the model. <br>**Datatype:** Float.
| `learning_rate` | Boosting learning rate during training of the model. <br>**Datatype:** Float.
| `n_jobs`, `thread_count`, `task_type` | Set the number of threads for parallel processing and the `task_type` (`gpu` or `cpu`). Different model libraries use different parameter names. <br>**Datatype:** Float.
| `n_jobs`, `thread_count`, `task_type` | Set the number of threads for parallel processing and the `task_type` (`gpu` or `cpu`). Different model libraries use different parameter names. <br>**Datatype:** Float.
| | *Reinforcement Learning Parameters**
### Reinforcement Learning parameters
| Parameter | Description |
|------------|-------------|
| | **Reinforcement Learning Parameters within the `freqai.rl_config` sub dictionary**
| `rl_config` | A dictionary containing the control parameters for a Reinforcement Learning model. <br>**Datatype:** Dictionary.
| `rl_config` | A dictionary containing the control parameters for a Reinforcement Learning model. <br>**Datatype:** Dictionary.
| `train_cycles` | Training time steps will be set based on the `train_cycles * number of training data points. <br> **Datatype:** Integer.
| `train_cycles` | Training time steps will be set based on the `train_cycles * number of training data points. <br> **Datatype:** Integer.
| `cpu_count`| Number of processors to dedicate to the ReinforcementLearning training process. <br> **Datatype:** int.
| `max_trade_duration_candles`| Guides the agent training to keep trades below desired length. Example usage shown in `prediction_models/ReinforcementLearner.py` within the customizable `calculate_reward()` function. <br> **Datatype:** int.
| `max_trade_duration_candles`| Guides the agent training to keep trades below desired length. Example usage shown in `prediction_models/ReinforcementLearner.py` within the user customizable `calculate_reward()` <br> **Datatype:** int.
| `model_type`| Model string from stable_baselines3 or SBcontrib. Available strings include: `'TRPO', 'ARS', 'RecurrentPPO', 'MaskablePPO', 'PPO', 'A2C', 'DQN'`. User should ensure that `model_training_parameters` match those available to the corresponding stable_baselines3 model by visiting their documentation. [PPO doc](https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html) (external website) <br> **Datatype:** string.
| `model_type` | Model string from stable_baselines3 or SBcontrib. Available strings include: `'TRPO', 'ARS', 'RecurrentPPO', 'MaskablePPO', 'PPO', 'A2C', 'DQN'`. User should ensure that `model_training_parameters` match those available to the corresponding stable_baselines3 model by visiting their documentaiton. [PPO doc](https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html) (external website) <br> **Datatype:** string.
| `policy_type` | One of the available policy types from stable_baselines3 <br> **Datatype:** string.
| `policy_type` | One of the available policy types from stable_baselines3 <br> **Datatype:** string.
| `max_training_drawdown_pct` | The maximum drawdown that the agent is allowed to experience during training. <br> **Datatype:** float. <br> Default: 0.8
| `max_training_drawdown_pct` | The maximum drawdown that the agent is allowed to experience during training. <br> **Datatype:** float. <br> Default: 0.8
| `cpu_count` | Number of threads/cpus to dedicate to the Reinforcement Learning training process (depending on if `ReinforcementLearning_multiproc` is selected or not). <br> **Datatype:** int.
| `cpu_count` | Number of threads/cpus to dedicate to the Reinforcement Learning training process (depending on if `ReinforcementLearning_multiproc` is selected or not). Recommended to leave this untouched, by default, this value is set to the total number of physical cores minus 1. <br> **Datatype:** int.
| `model_reward_parameters` | Parameters used inside the user customizable `calculate_reward()` function in `ReinforcementLearner.py` <br> **Datatype:** int.
| `model_reward_parameters` | Parameters used inside the customizable `calculate_reward()` function in `ReinforcementLearner.py` <br> **Datatype:** int.
| `add_state_info` | Tell FreqAI to include state information in the feature set for training and inferencing. The current state variables include trade duration, current profit, trade position. This is only available in dry/live runs, and is automatically switched to false for backtesting. <br> **Datatype:** bool. <br> Default: `False`.
| `net_arch` | Network architecture which is well described in [`stable_baselines3` doc](https://stable-baselines3.readthedocs.io/en/master/guide/custom_policy.html#examples). In summary: `[<sharedlayers>, dict(vf=[<non-sharedvaluenetworklayers>], pi=[<non-sharedpolicynetworklayers>])]`. By default this is set to `[128, 128]`, which defines 2 shared hidden layers with 128 units each.
| `randomize_starting_position` | Randomize the starting point of each episode to avoid overfitting. <br> **Datatype:** bool. <br> Default: `False`.
| `drop_ohlc_from_features` | Do not include the normalized ohlc data in the feature set passed to the agent during training (ohlc will still be used for driving the environment in all cases) <br> **Datatype:** Boolean. <br> **Default:** `False`
| `progress_bar` | Display a progress bar with the current progress, elapsed time and estimated remaining time. <br> **Datatype:** Boolean. <br> Default: `False`.
### PyTorch parameters
#### general
| Parameter | Description |
|------------|-------------|
| | **Model training parameters within the `freqai.model_training_parameters` sub dictionary**
| `learning_rate` | Learning rate to be passed to the optimizer. <br> **Datatype:** float. <br> Default: `3e-4`.
| `model_kwargs` | Parameters to be passed to the model class. <br> **Datatype:** dict. <br> Default: `{}`.
| `trainer_kwargs` | Parameters to be passed to the trainer class. <br> **Datatype:** dict. <br> Default: `{}`.
#### trainer_kwargs
| Parameter | Description |
|--------------|-------------|
| | **Model training parameters within the `freqai.model_training_parameters.model_kwargs` sub dictionary**
| `n_epochs` | The `n_epochs` parameter is a crucial setting in the PyTorch training loop that determines the number of times the entire training dataset will be used to update the model's parameters. An epoch represents one full pass through the entire training dataset. Overrides `n_steps`. Either `n_epochs` or `n_steps` must be set. <br><br> **Datatype:** int. optional. <br> Default: `10`.
| `n_steps` | An alternative way of setting `n_epochs` - the number of training iterations to run. Iteration here refer to the number of times we call `optimizer.step()`. Ignored if `n_epochs` is set. A simplified version of the function: <br><br> n_epochs = n_steps / (n_obs / batch_size) <br><br> The motivation here is that `n_steps` is easier to optimize and keep stable across different n_obs - the number of data points. <br> <br> **Datatype:** int. optional. <br> Default: `None`.
| `batch_size` | The size of the batches to use during training. <br><br> **Datatype:** int. <br> Default: `64`.
### Additional parameters
| Parameter | Description |
|------------|-------------|
| | **Extraneous parameters**
| | **Extraneous parameters**
| `keras` | If the selected model makes use of Keras (typical for Tensorflow-based prediction models), this flag needs to be activated so that the model save/loading follows Keras standards. <br> **Datatype:** Boolean. <br> Default: `False`.
| `freqai.keras` | If the selected model makes use of Keras (typical for TensorFlow-based prediction models), this flag needs to be activated so that the model save/loading follows Keras standards. <br> **Datatype:** Boolean. <br> Default: `False`.
| `conv_width` | The width of a convolutional neural network input tensor. This replaces the need for shifting candles (`include_shifted_candles`) by feeding in historical data points as the second dimension of the tensor. Technically, this parameter can also be used for regressors, but it only adds computational overhead and does not change the model training/prediction. <br> **Datatype:** Integer. <br> Default: `2`.
| `freqai.conv_width` | The width of a neural network input tensor. This replaces the need for shifting candles (`include_shifted_candles`) by feeding in historical data points as the second dimension of the tensor. Technically, this parameter can also be used for regressors, but it only adds computational overhead and does not change the model training/prediction. <br> **Datatype:** Integer. <br> Default: `2`.
| `freqai.reduce_df_footprint` | Recast all numeric columns to float32/int32, with the objective of reducing ram/disk usage and decreasing train/inference timing. This parameter is set in the main level of the Freqtrade configuration file (not inside FreqAI). <br> **Datatype:** Boolean. <br> Default: `False`.
Reinforcement learning dependencies include large packages such as `torch`, which should be explicitly requested during `./setup.sh -i` by answering "y" to the question "Do you also want dependencies for freqai-rl (~700mb additional space required) [y/N]?" Users who prefer docker should ensure they use the docker image appended with `_freqaiRL`.
Reinforcement learning dependencies include large packages such as `torch`, which should be explicitly requested during `./setup.sh -i` by answering "y" to the question "Do you also want dependencies for freqai-rl (~700mb additional space required) [y/N]?".
Users who prefer docker should ensure they use the docker image appended with `_freqairl`.
## Background and terminology
### What is RL and why does FreqAI need it?
Reinforcement learning involves two important components, the *agent* and the training *environment*. During agent training, the agent moves through historical data candle by candle, always making 1 of a set of actions: Long entry, long exit, short entry, short exit, neutral). During this training process, the environment tracks the performance of these actions and rewards the agent according to a custom user made `calculate_reward()` (here we offer a default reward for users to build on if they wish [details here](#creating-a-custom-reward-function)). The reward is used to train weights in a neural network.
A second important component of the FreqAI RL implementation is the use of *state* information. State information is fed into the network at each step, including current profit, current position, and current trade duration. These are used to train the agent in the training environment, and to reinforce the agent in dry/live (this functionality is not available in backtesting). *FreqAI + Freqtrade is a perfect match for this reinforcing mechanism since this information is readily available in live deployments.*
Reinforcement learning is a natural progression for FreqAI, since it adds a new layer of adaptivity and market reactivity that Classifiers and Regressors cannot match. However, Classifiers and Regressors have strengths that RL does not have such as robust predictions. Improperly trained RL agents may find "cheats" and "tricks" to maximize reward without actually winning any trades. For this reason, RL is more complex and demands a higher level of understanding than typical Classifiers and Regressors.
### The RL interface
With the current framework, we aim to expose the training environment via the common "prediction model" file, which is a user inherited `BaseReinforcementLearner` object (e.g. `freqai/prediction_models/ReinforcementLearner`). Inside this user class, the RL environment is available and customized via `MyRLEnv` as [shown below](#creating-a-custom-reward-function).
We envision the majority of users focusing their effort on creative design of the `calculate_reward()` function [details here](#creating-a-custom-reward-function), while leaving the rest of the environment untouched. Other users may not touch the environment at all, and they will only play with the configuration settings and the powerful feature engineering that already exists in FreqAI. Meanwhile, we enable advanced users to create their own model classes entirely.
The framework is built on stable_baselines3 (torch) and OpenAI gym for the base environment class. But generally speaking, the model class is well isolated. Thus, the addition of competing libraries can be easily integrated into the existing framework. For the environment, it is inheriting from `gym.Env` which means that it is necessary to write an entirely new environment in order to switch to a different library.
### Important considerations
As explained above, the agent is "trained" in an artificial trading "environment". In our case, that environment may seem quite similar to a real Freqtrade backtesting environment, but it is *NOT*. In fact, the RL training environment is much more simplified. It does not incorporate any of the complicated strategy logic, such as callbacks like `custom_exit`, `custom_stoploss`, leverage controls, etc. The RL environment is instead a very "raw" representation of the true market, where the agent has free will to learn the policy (read: stoploss, take profit, etc.) which is enforced by the `calculate_reward()`. Thus, it is important to consider that the agent training environment is not identical to the real world.
## Running Reinforcement Learning
Setting up and running a Reinforcement Learning model is the same as running a Regressor or Classifier. The same two flags, `--freqaimodel` and `--strategy`, must be defined on the command line:
Setting up and running a Reinforcement Learning model is the same as running a Regressor or Classifier. The same two flags, `--freqaimodel` and `--strategy`, must be defined on the command line:
@@ -9,70 +34,41 @@ Setting up and running a Reinforcement Learning model is the same as running a R
where `ReinforcementLearner` will use the templated `ReinforcementLearner` from `freqai/prediction_models/ReinforcementLearner`. The strategy, on the other hand, follows the same base [feature engineering](freqai-feature-engineering.md) with `populate_any_indicators` as a typical Regressor:
where `ReinforcementLearner` will use the templated `ReinforcementLearner` from `freqai/prediction_models/ReinforcementLearner` (or a custom user defined one located in `user_data/freqaimodels`). The strategy, on the other hand, follows the same base [feature engineering](freqai-feature-engineering.md) with `feature_engineering_*` as a typical Regressor. The difference lies in the creation of the targets, Reinforcement Learning doesn't require them. However, FreqAI requires a default (neutral) value to be set in the action column:
# For RL, there are no direct targets to set. This is filler (neutral)
# For RL, there are no direct targets to set. This is filler (neutral)
# until the agent sends an action.
# until the agent sends an action.
df["&-action"]=0
dataframe["&-action"]=0
returndataframe
returndf
```
```
Most of the function remains the same as for typical Regressors, however, the function above shows how the strategy must pass the raw price data to the agent so that it has access to raw OHLCV in the training environent:
Most of the function remains the same as for typical Regressors, however, the function below shows how the strategy must pass the raw price data to the agent so that it has access to raw OHLCV in the training environment:
Finally, there is no explicit "label" to make - instead the you need to assign the `&-action` column which will contain the agent's actions when accessed in `populate_entry/exit_trends()`. In the present example, the user set the neutral action to 0. This value should align with the environment used. FreqAI provides two environments, both use 0 as the neutral action.
Finally, there is no explicit "label" to make - instead it is necessary to assign the `&-action` column which will contain the agent's actions when accessed in `populate_entry/exit_trends()`. In the present example, the neutral action to 0. This value should align with the environment used. FreqAI provides two environments, both use 0 as the neutral action.
After users realize there are no labels to set, they will soon understand that the agent is making its "own" entry and exit decisions. This makes strategy construction rather simple. The entry and exit signals come from the agent in the form of an integer - which are used directly to decide entries and exits in the strategy:
After users realize there are no labels to set, they will soon understand that the agent is making its "own" entry and exit decisions. This makes strategy construction rather simple. The entry and exit signals come from the agent in the form of an integer - which are used directly to decide entries and exits in the strategy:
@@ -111,11 +107,12 @@ It is important to consider that `&-action` depends on which environment they ch
## Configuring the Reinforcement Learner
## Configuring the Reinforcement Learner
In order to configure the `Reinforcement Learner` the following dictionary to their`freqai` config:
In order to configure the `Reinforcement Learner` the following dictionary must exist in the `freqai` config:
```json
```json
"rl_config":{
"rl_config":{
"train_cycles":25,
"train_cycles":25,
"add_state_info":true,
"max_trade_duration_candles":300,
"max_trade_duration_candles":300,
"max_training_drawdown_pct":0.02,
"max_training_drawdown_pct":0.02,
"cpu_count":8,
"cpu_count":8,
@@ -128,30 +125,87 @@ In order to configure the `Reinforcement Learner` the following dictionary to th
}
}
```
```
Parameter details can be found [here](freqai-parameter-table.md), but in general the `train_cycles` decides how many times the agent should cycle through the candle data in its artificial environemtn to train weights in the model. `model_type` is a string which selects one of the available models in [stable_baselines](https://stable-baselines3.readthedocs.io/en/master/)(external link).
Parameter details can be found [here](freqai-parameter-table.md), but in general the `train_cycles` decides how many times the agent should cycle through the candle data in its artificial environment to train weights in the model. `model_type` is a string which selects one of the available models in [stable_baselines](https://stable-baselines3.readthedocs.io/en/master/)(external link).
## Creating the reward
!!! Note
If you would like to experiment with `continual_learning`, then you should set that value to `true` in the main `freqai` configuration dictionary. This will tell the Reinforcement Learning library to continue training new models from the final state of previous models, instead of retraining new models from scratch each time a retrain is initiated.
As users begin to modify the strategy and the prediction model, they will quickly realize some important differences between the Reinforcement Learner and the Regressors/Classifiers. Firstly, the strategy does not set a target value (no labels!). Instead, the user sets a `calculate_reward()` function inside their custom `ReinforcementLearner.py` file. A default `calculate_reward()` is provided inside `prediction_models/ReinforcementLearner.py` to give users the necessary building blocks to start their own models. It is inside the `calculate_reward()` where users express their creative theories about the market. For example, the user wants to reward their agent when it makes a winning trade, and penalize the agent when it makes a losing trade. Or perhaps, the user wishes to reward the agnet for entering trades, and penalize the agent for sitting in trades too long. Below we show examples of how these rewards are all calculated:
!!! Note
Remember that the general `model_training_parameters` dictionary should contain all the model hyperparameter customizations for the particular `model_type`. For example, `PPO` parameters can be found [here](https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html).
## Creating a custom reward function
!!! danger "Not for production"
Warning!
The reward function provided with the Freqtrade source code is a showcase of functionality designed to show/test as many possible environment control features as possible. It is also designed to run quickly on small computers. This is a benchmark, it is *not* for live production. Please beware that you will need to create your own custom_reward() function or use a template built by other users outside of the Freqtrade source code.
As you begin to modify the strategy and the prediction model, you will quickly realize some important differences between the Reinforcement Learner and the Regressors/Classifiers. Firstly, the strategy does not set a target value (no labels!). Instead, you set the `calculate_reward()` function inside the `MyRLEnv` class (see below). A default `calculate_reward()` is provided inside `prediction_models/ReinforcementLearner.py` to demonstrate the necessary building blocks for creating rewards, but this is *not* designed for production. Users *must* create their own custom reinforcement learning model class or use a pre-built one from outside the Freqtrade source code and save it to `user_data/freqaimodels`. It is inside the `calculate_reward()` where creative theories about the market can be expressed. For example, you can reward your agent when it makes a winning trade, and penalize the agent when it makes a losing trade. Or perhaps, you wish to reward the agent for entering trades, and penalize the agent for sitting in trades too long. Below we show examples of how these rewards are all calculated:
!!! note "Hint"
The best reward functions are ones that are continuously differentiable, and well scaled. In other words, adding a single large negative penalty to a rare event is not a good idea, and the neural net will not be able to learn that function. Instead, it is better to add a small negative penalty to a common event. This will help the agent learn faster. Not only this, but you can help improve the continuity of your rewards/penalties by having them scale with severity according to some linear/exponential functions. In other words, you'd slowly scale the penalty as the duration of the trade increases. This is better than a single large penalty occurring at a single point in time.
@@ -178,25 +232,49 @@ As users begin to modify the strategy and the prediction model, they will quickl
return0.
return0.
```
```
### Creating a custom agent
## Using Tensorboard
Users can inherit from `stable_baselines3` and customize anything they wish about their agent. Doing this is for advanced users only, an example is presented in `freqai/RL/ReinforcementLearnerCustomAgent.py`
Reinforcement Learning models benefit from tracking training metrics. FreqAI has integrated Tensorboard to allow users to track training and evaluation performance across all coins and across all retrainings. Tensorboard is activated via the following command:
### Using Tensorboard
Reinforcement Learning models benefit from tracking training metrics. FreqAI has integrated Tensorboard to allow users to track training and evaluation performance across all coins and across all retrainings. To start, the user should ensure Tensorboard is installed on their computer:
```bash
```bash
pip3 install tensorboard
```
Next, the user can activate Tensorboard with the following command:
```bash
cd freqtrade
tensorboard --logdir user_data/models/unique-id
tensorboard --logdir user_data/models/unique-id
```
```
where `unique-id` is the `identifier` set in the `freqai` configuration file. This command must be run in a separate shell if the user wishes to view the output in their browser at 127.0.0.1:6060 (6060 is the default port used by Tensorboard).
where `unique-id` is the `identifier` set in the `freqai` configuration file. This command must be run in a separate shell to view the output in the browser at 127.0.0.1:6006 (6006 is the default port used by Tensorboard).


## Custom logging
FreqAI also provides a built in episodic summary logger called `self.tensorboard_log` for adding custom information to the Tensorboard log. By default, this function is already called once per step inside the environment to record the agent actions. All values accumulated for all steps in a single episode are reported at the conclusion of each episode, followed by a full reset of all metrics to 0 in preparation for the subsequent episode.
`self.tensorboard_log` can also be used anywhere inside the environment, for example, it can be added to the `calculate_reward` function to collect more detailed information about how often various parts of the reward were called:
```python
classMyRLEnv(Base5ActionRLEnv):
"""
User made custom environment. This class inherits from BaseEnvironment and gym.Env.
Users can override any functions from those parent classes. Here is an example
of a user customized `calculate_reward()` function.
"""
defcalculate_reward(self,action:int)->float:
ifnotself._is_valid(action):
self.tensorboard_log("invalid")
return-2
```
!!! Note
The `self.tensorboard_log()` function is designed for tracking incremented objects only i.e. events, actions inside the training environment. If the event of interest is a float, the float can be passed as the second argument e.g. `self.tensorboard_log("float_metric1", 0.23)`. In this case the metric values are not incremented.
## Choosing a base environment
FreqAI provides three base environments, `Base3ActionRLEnvironment`, `Base4ActionEnvironment` and `Base5ActionEnvironment`. As the names imply, the environments are customized for agents that can select from 3, 4 or 5 actions. The `Base3ActionEnvironment` is the simplest, the agent can select from hold, long, or short. This environment can also be used for long-only bots (it automatically follows the `can_short` flag from the strategy), where long is the enter condition and short is the exit condition. Meanwhile, in the `Base4ActionEnvironment`, the agent can enter long, enter short, hold neutral, or exit position. Finally, in the `Base5ActionEnvironment`, the agent has the same actions as Base4, but instead of a single exit action, it separates exit long and exit short. The main changes stemming from the environment selection include:
* the actions available in the `calculate_reward`
* the actions consumed by the user strategy
All of the FreqAI provided environments inherit from an action/position agnostic environment object called the `BaseEnvironment`, which contains all shared logic. The architecture is designed to be easily customized. The simplest customization is the `calculate_reward()` (see details [here](#creating-a-custom-reward-function)). However, the customizations can be further extended into any of the functions inside the environment. You can do this by simply overriding those functions inside your `MyRLEnv` in the prediction model file. Or for more advanced customizations, it is encouraged to create an entirely new environment inherited from `BaseEnvironment`.
!!! Note
Only the `Base3ActionRLEnv` can do long-only training/trading (set the user strategy attribute `can_short = False`).
*want* to retrain a new model with the same config file, you should simply change the `identifier`.
*want* to retrain a new model with the same config file, you should simply change the `identifier`.
This way, you can return to using any model you wish by simply specifying the `identifier`.
This way, you can return to using any model you wish by simply specifying the `identifier`.
!!! Note
Backtesting calls `set_freqai_targets()` one time for each backtest window (where the number of windows is the full backtest timerange divided by the `backtest_period_days` parameter). Doing this means that the targets simulate dry/live behavior without look ahead bias. However, the definition of the features in `feature_engineering_*()` is performed once on the entire training timerange. This means that you should be sure that features do not look-ahead into the future.
More details about look-ahead bias can be found in [Common Mistakes](strategy-customization.md#common-mistakes-when-developing-strategies).
---
---
### Saving prediction data
### Saving prediction data
To allow for tweaking your strategy (**not** the features!), FreqAI will automatically save the predictions during backtesting so that they can be reused for future backtests and live runs using the same `identifier` model. This provides a performance enhancement geared towards enabling **high-level hyperopting** of entry/exit criteria.
To allow for tweaking your strategy (**not** the features!), FreqAI will automatically save the predictions during backtesting so that they can be reused for future backtests and live runs using the same `identifier` model. This provides a performance enhancement geared towards enabling **high-level hyperopting** of entry/exit criteria.
An additional directory called `predictions`, which contains all the predictions stored in `hdf` format, will be created in the `unique-id` folder.
An additional directory called `backtesting_predictions`, which contains all the predictions stored in `hdf` format, will be created in the `unique-id` folder.
To change your **features**, you **must** set a new `identifier` in the config to signal to FreqAI to train new models.
To change your **features**, you **must** set a new `identifier` in the config to signal to FreqAI to train new models.
To save the models generated during a particular backtest so that you can start a live deployment from one of them instead of training a new model, you must set `save_backtest_models` to `True` in the config.
To save the models generated during a particular backtest so that you can start a live deployment from one of them instead of training a new model, you must set `save_backtest_models` to `True` in the config.
### Backtest live collected predictions
FreqAI allow you to reuse live historic predictions through the backtest parameter `--freqai-backtest-live-models`. This can be useful when you want to reuse predictions generated in dry/run for comparison or other study.
The `--timerange` parameter must not be informed, as it will be automatically calculated through the data in the historic predictions file.
### Downloading data to cover the full backtest period
### Downloading data to cover the full backtest period
For live/dry deployments, FreqAI will download the necessary data automatically. However, to use backtesting functionality, you need to download the necessary data using `download-data` (details [here](data-download.md#data-downloading)). You need to pay careful attention to understanding how much *additional* data needs to be downloaded to ensure that there is a sufficient amount of training data *before* the start of the backtesting time range. The amount of additional data can be roughly estimated by moving the start date of the time range backwards by `train_period_days` and the `startup_candle_count` (see the [parameter table](freqai-parameter-table.md) for detailed descriptions of these parameters) from the beginning of the desired backtesting time range.
For live/dry deployments, FreqAI will download the necessary data automatically. However, to use backtesting functionality, you need to download the necessary data using `download-data` (details [here](data-download.md#data-downloading)). You need to pay careful attention to understanding how much *additional* data needs to be downloaded to ensure that there is a sufficient amount of training data *before* the start of the backtesting time range. The amount of additional data can be roughly estimated by moving the start date of the time range backwards by `train_period_days` and the `startup_candle_count` (see the [parameter table](freqai-parameter-table.md) for detailed descriptions of these parameters) from the beginning of the desired backtesting time range.
@@ -109,7 +120,7 @@ In the presented example config, the user will only allow predictions on models
Model training parameters are unique to the selected machine learning library. FreqAI allows you to set any parameter for any library using the `model_training_parameters` dictionary in the config. The example config (found in `config_examples/config_freqai.example.json`) shows some of the example parameters associated with `Catboost` and `LightGBM`, but you can add any parameters available in those libraries or any other machine learning library you choose to implement.
Model training parameters are unique to the selected machine learning library. FreqAI allows you to set any parameter for any library using the `model_training_parameters` dictionary in the config. The example config (found in `config_examples/config_freqai.example.json`) shows some of the example parameters associated with `Catboost` and `LightGBM`, but you can add any parameters available in those libraries or any other machine learning library you choose to implement.
Data split parameters are defined in `data_split_parameters` which can be any parameters associated with Scikit-learn's `train_test_split()` function. `train_test_split()` has a parameters called `shuffle` which allows to shuffle the data or keep it unshuffled. This is particularly useful to avoid biasing training with temporally auto-correlated data. More details about these parameters can be found the [Scikit-learn website](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) (external website).
Data split parameters are defined in `data_split_parameters` which can be any parameters associated with scikit-learn's `train_test_split()` function. `train_test_split()` has a parameters called `shuffle` which allows to shuffle the data or keep it unshuffled. This is particularly useful to avoid biasing training with temporally auto-correlated data. More details about these parameters can be found the [scikit-learn website](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) (external website).
The FreqAI specific parameter `label_period_candles` defines the offset (number of candles into the future) used for the `labels`. In the presented [example config](freqai-configuration.md#setting-up-the-configuration-file), the user is asking for `labels` that are 24 candles in the future.
The FreqAI specific parameter `label_period_candles` defines the offset (number of candles into the future) used for the `labels`. In the presented [example config](freqai-configuration.md#setting-up-the-configuration-file), the user is asking for `labels` that are 24 candles in the future.
@@ -117,6 +128,12 @@ The FreqAI specific parameter `label_period_candles` defines the offset (number
You can choose to adopt a continual learning scheme by setting `"continual_learning": true` in the config. By enabling `continual_learning`, after training an initial model from scratch, subsequent trainings will start from the final model state of the preceding training. This gives the new model a "memory" of the previous state. By default, this is set to `False` which means that all new models are trained from scratch, without input from previous models.
You can choose to adopt a continual learning scheme by setting `"continual_learning": true` in the config. By enabling `continual_learning`, after training an initial model from scratch, subsequent trainings will start from the final model state of the preceding training. This gives the new model a "memory" of the previous state. By default, this is set to `False` which means that all new models are trained from scratch, without input from previous models.
???+ danger "Continual learning enforces a constant parameter space"
Since `continual_learning` means that the model parameter space *cannot* change between trainings, `principal_component_analysis` is automatically disabled when `continual_learning` is enabled. Hint: PCA changes the parameter space and the number of features, learn more about PCA [here](freqai-feature-engineering.md#data-dimensionality-reduction-with-principal-component-analysis).
???+ danger "Experimental functionality"
Beware that this is currently a naive approach to incremental learning, and it has a high probability of overfitting/getting stuck in local minima while the market moves away from your model. We have the mechanics available in FreqAI primarily for experimental purposes and so that it is ready for more mature approaches to continual learning in chaotic systems like the crypto market.
## Hyperopt
## Hyperopt
You can hyperopt using the same command as for [typical Freqtrade hyperopt](hyperopt.md):
You can hyperopt using the same command as for [typical Freqtrade hyperopt](hyperopt.md):
`hyperopt` requires you to have the data pre-downloaded in the same fashion as if you were doing [backtesting](#backtesting). In addition, you must consider some restrictions when trying to hyperopt FreqAI strategies:
`hyperopt` requires you to have the data pre-downloaded in the same fashion as if you were doing [backtesting](#backtesting). In addition, you must consider some restrictions when trying to hyperopt FreqAI strategies:
- The `--analyze-per-epoch` hyperopt parameter is not compatible with FreqAI.
- The `--analyze-per-epoch` hyperopt parameter is not compatible with FreqAI.
- It's not possible to hyperopt indicators in the `populate_any_indicators()` function. This means that you cannot optimize model parameters using hyperopt. Apart from this exception, it is possible to optimize all other [spaces](hyperopt.md#running-hyperopt-with-smaller-search-space).
- It's not possible to hyperopt indicators in the `feature_engineering_*()` and `set_freqai_targets()` functions. This means that you cannot optimize model parameters using hyperopt. Apart from this exception, it is possible to optimize all other [spaces](hyperopt.md#running-hyperopt-with-smaller-search-space).
- The backtesting instructions also apply to hyperopt.
- The backtesting instructions also apply to hyperopt.
The best method for combining hyperopt and FreqAI is to focus on hyperopting entry/exit thresholds/criteria. You need to focus on hyperopting parameters that are not used in your features. For example, you should not try to hyperopt rolling window lengths in the feature creation, or any part of the FreqAI config which changes predictions. In order to efficiently hyperopt the FreqAI strategy, FreqAI stores predictions as dataframes and reuses them. Hence the requirement to hyperopt entry/exit thresholds/criteria only.
The best method for combining hyperopt and FreqAI is to focus on hyperopting entry/exit thresholds/criteria. You need to focus on hyperopting parameters that are not used in your features. For example, you should not try to hyperopt rolling window lengths in the feature creation, or any part of the FreqAI config which changes predictions. In order to efficiently hyperopt the FreqAI strategy, FreqAI stores predictions as dataframes and reuses them. Hence the requirement to hyperopt entry/exit thresholds/criteria only.
This specific hyperopt would help you understand the appropriate `DI_values` for your particular parameter space.
This specific hyperopt would help you understand the appropriate `DI_values` for your particular parameter space.
## Setting up a follower
## Using Tensorboard
You can indicate to the bot that it should not train models, but instead should look for models trained by a leader with a specific `identifier` by defining:
!!! note "Availability"
FreqAI includes tensorboard for a variety of models, including XGBoost, all PyTorch models, Reinforcement Learning, and Catboost. If you would like to see Tensorboard integrated into another model type, please open an issue on the [Freqtrade GitHub](https://github.com/freqtrade/freqtrade/issues)
```json
!!! danger "Requirements"
"freqai":{
Tensorboard logging requires the FreqAI torch installation/docker image.
"follow_mode":true,
"identifier":"example"
}
The easiest way to use tensorboard is to ensure `freqai.activate_tensorboard` is set to `True` (default setting) in your configuration file, run FreqAI, then open a separate shell and run:
```bash
cd freqtrade
tensorboard --logdir user_data/models/unique-id
```
```
In this example, the user has a leader bot with the `"identifier": "example"`. The leader bot is already running or is launched simultaneously with the follower. The follower will load models created by the leader and inference them to obtain predictions instead of training its own models.
where `unique-id` is the `identifier` set in the `freqai` configuration file. This command must be runin a separate shell if you wish to view the output in your browser at 127.0.0.1:6060 (6060 is the default port used by Tensorboard).

!!! note "Deactivate for improved performance"
Tensorboard logging can slow down training and should be deactivated for production use.
FreqAI is a software designed to automate a variety of tasks associated with training a predictive machine learning model to generate market forecasts given a set of input features.
FreqAI is a software designed to automate a variety of tasks associated with training a predictive machine learning model to generate market forecasts given a set of input signals. In general, FreqAI aims to be a sandbox for easily deploying robust machine learning libraries on real-time data ([details](#freqai-position-in-open-source-machine-learning-landscape)).
!!! Note
FreqAI is, and always will be, a not-for-profit, open-source project. FreqAI does *not* have a crypto token, FreqAI does *not* sell signals, and FreqAI does not have a domain besides the present [freqtrade documentation](https://www.freqtrade.io/en/latest/freqai/).
Features include:
Features include:
@@ -19,7 +22,7 @@ Features include:
* **Automatic data download** - Compute timeranges for data downloads and update historic data (in live deployments)
* **Automatic data download** - Compute timeranges for data downloads and update historic data (in live deployments)
* **Cleaning of incoming data** - Handle NaNs safely before training and model inferencing
* **Cleaning of incoming data** - Handle NaNs safely before training and model inferencing
* **Dimensionality reduction** - Reduce the size of the training data via [Principal Component Analysis](freqai-feature-engineering.md#data-dimensionality-reduction-with-principal-component-analysis)
* **Dimensionality reduction** - Reduce the size of the training data via [Principal Component Analysis](freqai-feature-engineering.md#data-dimensionality-reduction-with-principal-component-analysis)
* **Deploying bot fleets** - Set one bot to train models while a fleet of [follower bots](freqai-running.md#setting-up-a-follower) inference the models and handle trades
* **Deploying bot fleets** - Set one bot to train models while a fleet of [consumers](producer-consumer.md) use signals.
## Quick start
## Quick start
@@ -31,6 +34,9 @@ freqtrade trade --config config_examples/config_freqai.example.json --strategy F
You will see the boot-up process of automatic data downloading, followed by simultaneous training and trading.
You will see the boot-up process of automatic data downloading, followed by simultaneous training and trading.
!!! danger "Not for production"
The example strategy provided with the Freqtrade source code is designed for showcasing/testing a wide variety of FreqAI features. It is also designed to run on small computers so that it can be used as a benchmark between developers and users. It is *not* designed to be run in production.
An example strategy, prediction model, and config to use as a starting points can be found in
An example strategy, prediction model, and config to use as a starting points can be found in
`freqtrade/templates/FreqaiExampleStrategy.py`, `freqtrade/freqai/prediction_models/LightGBMRegressor.py`, and
`freqtrade/templates/FreqaiExampleStrategy.py`, `freqtrade/freqai/prediction_models/LightGBMRegressor.py`, and
Catboost will not be installed on arm devices (raspberry, Mac M1, ARM based VPS, ...), since it does not provide wheels for this platform.
Catboost will not be installed on low-powered arm devices (raspberry), since it does not provide wheels for this platform.
### Usage with docker
### Usage with docker
If you are using docker, a dedicated tag with FreqAI dependencies is available as `:freqai`. As such - you can replace the image line in your docker-compose file with `image: freqtradeorg/freqtrade:develop_freqai`. This image contains the regular FreqAI dependencies. Similar to native installs, Catboost will not be available on ARM based devices.
If you are using docker, a dedicated tag with FreqAI dependencies is available as `:freqai`. As such - you can replace the image line in your dockercompose file with `image: freqtradeorg/freqtrade:develop_freqai`. This image contains the regular FreqAI dependencies. Similar to native installs, Catboost will not be available on ARM based devices. If you would like to use PyTorch or Reinforcement learning, you should use the torch or RL tags, `image: freqtradeorg/freqtrade:develop_freqaitorch`, `image: freqtradeorg/freqtrade:develop_freqairl`.
!!! note "docker-compose-freqai.yml"
We do provide an explicit docker-compose file for this in `docker/docker-compose-freqai.yml` - which can be used via `docker compose -f docker/docker-compose-freqai.yml run ...` - or can be copied to replace the original docker file. This docker-compose file also contains a (disabled) section to enable GPU resources within docker containers. This obviously assumes the system has GPU resources available.
### FreqAI position in open-source machine learning landscape
Forecasting chaotic time-series based systems, such as equity/cryptocurrency markets, requires a broad set of tools geared toward testing a wide range of hypotheses. Fortunately, a recent maturation of robust machine learning libraries (e.g. `scikit-learn`) has opened up a wide range of research possibilities. Scientists from a diverse range of fields can now easily prototype their studies on an abundance of established machine learning algorithms. Similarly, these user-friendly libraries enable "citzen scientists" to use their basic Python skills for data exploration. However, leveraging these machine learning libraries on historical and live chaotic data sources can be logistically difficult and expensive. Additionally, robust data collection, storage, and handling presents a disparate challenge. [`FreqAI`](#freqai) aims to provide a generalized and extensible open-sourced framework geared toward live deployments of adaptive modeling for market forecasting. The `FreqAI` framework is effectively a sandbox for the rich world of open-source machine learning libraries. Inside the `FreqAI` sandbox, users find they can combine a wide variety of third-party libraries to test creative hypotheses on a free live 24/7 chaotic data source - cryptocurrency exchange data.
### Citing FreqAI
FreqAI is [published in the Journal of Open Source Software](https://joss.theoj.org/papers/10.21105/joss.04864). If you find FreqAI useful in your research, please use the following citation:
```bibtex
@article{Caulk2022,
doi = {10.21105/joss.04864},
url = {https://doi.org/10.21105/joss.04864},
year = {2022}, publisher = {The Open Journal},
volume = {7}, number = {80}, pages = {4864},
author = {Robert A. Caulk and Elin Törnquist and Matthias Voppichler and Andrew R. Lawless and Ryan McMullan and Wagner Costa Santos and Timothy C. Pogue and Johan van der Vlugt and Stefan P. Gehring and Pascal Schmidt},
title = {FreqAI: generalizing adaptive modeling for chaotic time-series market forecasts},
journal = {Journal of Open Source Software} }
```
## Common pitfalls
## Common pitfalls
@@ -79,6 +107,18 @@ This is for performance reasons - FreqAI relies on making quick predictions/retr
it needs to download all the training data at the beginning of a dry/live instance. FreqAI stores and appends
it needs to download all the training data at the beginning of a dry/live instance. FreqAI stores and appends
new candles automatically for future retrains. This means that if new pairs arrive later in the dry run due to a volume pairlist, it will not have the data ready. However, FreqAI does work with the `ShufflePairlist` or a `VolumePairlist` which keeps the total pairlist constant (but reorders the pairs according to volume).
new candles automatically for future retrains. This means that if new pairs arrive later in the dry run due to a volume pairlist, it will not have the data ready. However, FreqAI does work with the `ShufflePairlist` or a `VolumePairlist` which keeps the total pairlist constant (but reorders the pairs according to volume).
## Additional learning materials
Here we compile some external materials that provide deeper looks into various components of FreqAI:
- [Real-time head-to-head: Adaptive modeling of financial market data using XGBoost and CatBoost](https://emergentmethods.medium.com/real-time-head-to-head-adaptive-modeling-of-financial-market-data-using-xgboost-and-catboost-995a115a7495)
- [FreqAI - from price to prediction](https://emergentmethods.medium.com/freqai-from-price-to-prediction-6fadac18b665)
## Support
You can find support for FreqAI in a variety of places, including the [Freqtrade discord](https://discord.gg/Jd8JYeWHc4), the dedicated [FreqAI discord](https://discord.gg/7AMWACmbjT), and in [github issues](https://github.com/freqtrade/freqtrade/issues).
## Credits
## Credits
FreqAI is developed by a group of individuals who all contribute specific skillsets to the project.
FreqAI is developed by a group of individuals who all contribute specific skillsets to the project.
@@ -94,6 +134,8 @@ Code review and software architecture brainstorming:
Software development:
Software development:
Wagner Costa @wagnercosta
Wagner Costa @wagnercosta
Emre Suzen @aemr3
Timothy Pogue @wizrds
Beta testing and bug reporting:
Beta testing and bug reporting:
Stefan Gehring @bloodhunter4rc, @longyu, Andrew Lawless @paranoidandy, Pascal Schmidt @smidelis, Ryan McMullan @smarmau, Juha Nykänen @suikula, Johan van der Vlugt @jooopiert, Richárd Józsa @richardjosza, Timothy Pogue @wizrds
Stefan Gehring @bloodhunter4rc, @longyu, Andrew Lawless @paranoidandy, Pascal Schmidt @smidelis, Ryan McMullan @smarmau, Juha Nykänen @suikula, Johan van der Vlugt @jooopiert, Richárd Józsa @richardjosza
Specify which parameters to hyperopt. Space-separated
Specify which parameters to hyperopt. Space-separated
list.
list.
--print-all Print all results, not only the best ones.
--print-all Print all results, not only the best ones.
@@ -180,6 +180,7 @@ Rarely you may also need to create a [nested class](advanced-hyperopt.md#overrid
*`generate_roi_table` - for custom ROI optimization (if you need the ranges for the values in the ROI table that differ from default or the number of entries (steps) in the ROI table which differs from the default 4 steps)
*`generate_roi_table` - for custom ROI optimization (if you need the ranges for the values in the ROI table that differ from default or the number of entries (steps) in the ROI table which differs from the default 4 steps)
*`stoploss_space` - for custom stoploss optimization (if you need the range for the stoploss parameter in the optimization hyperspace that differs from default)
*`stoploss_space` - for custom stoploss optimization (if you need the range for the stoploss parameter in the optimization hyperspace that differs from default)
*`trailing_space` - for custom trailing stop optimization (if you need the ranges for the trailing stop parameters in the optimization hyperspace that differ from default)
*`trailing_space` - for custom trailing stop optimization (if you need the ranges for the trailing stop parameters in the optimization hyperspace that differ from default)
*`max_open_trades_space` - for custom max_open_trades optimization (if you need the ranges for the max_open_trades parameter in the optimization hyperspace that differ from default)
!!! Tip "Quickly optimize ROI, stoploss and trailing stoploss"
!!! Tip "Quickly optimize ROI, stoploss and trailing stoploss"
You can quickly optimize the spaces `roi`, `stoploss` and `trailing` without changing anything in your strategy.
You can quickly optimize the spaces `roi`, `stoploss` and `trailing` without changing anything in your strategy.
@@ -336,11 +337,15 @@ There are four parameter types each suited for different purposes.
* `CategoricalParameter` - defines a parameter with a predetermined number of choices.
* `CategoricalParameter` - defines a parameter with a predetermined number of choices.
* `BooleanParameter` - Shorthand for `CategoricalParameter([True, False])` - great for "enable" parameters.
* `BooleanParameter` - Shorthand for `CategoricalParameter([True, False])` - great for "enable" parameters.
!!! Tip "Disabling parameter optimization"
### Parameter options
Each parameter takes two boolean parameters:
* `load` - when set to `False` it will not load values configured in `buy_params` and `sell_params`.
There are two parameter options that can help you to quickly test various ideas:
* `optimize` - when set to `False` parameter will not be included in optimization process.
Use these parameters to quickly prototype various ideas.
* `optimize` - when set to `False`, the parameter will not be included in optimization process. (Default: True)
* `load` - when set to `False`, results of a previous hyperopt run (in `buy_params` and `sell_params` either in your strategy or the JSON output file) will not be used as the starting value for subsequent hyperopts. The default value specified in the parameter will be used instead. (Default: True)
!!! Tip "Effects of `load=False` on backtesting"
Be aware that setting the `load` option to `False` will mean backtesting will also use the default value specified in the parameter and *not* the value found through hyperoptimisation.
!!! Warning
!!! Warning
Hyperoptable parameters cannot be used in `populate_indicators` - as hyperopt does not recalculate indicators for each epoch, so the starting value would be used in this case.
Hyperoptable parameters cannot be used in `populate_indicators` - as hyperopt does not recalculate indicators for each epoch, so the starting value would be used in this case.
@@ -365,7 +370,7 @@ class MyAwesomeStrategy(IStrategy):
timeframe = '15m'
timeframe = '15m'
minimal_roi = {
minimal_roi = {
"0": 0.10
"0": 0.10
},
}
# Define the parameter spaces
# Define the parameter spaces
buy_ema_short = IntParameter(3, 50, default=5)
buy_ema_short = IntParameter(3, 50, default=5)
buy_ema_long = IntParameter(15, 200, default=50)
buy_ema_long = IntParameter(15, 200, default=50)
@@ -432,9 +437,14 @@ While this strategy is most likely too simple to provide consistent profit, it s
`range` property may also be used with `DecimalParameter` and `CategoricalParameter`. `RealParameter` does not provide this property due to infinite search space.
`range` property may also be used with `DecimalParameter` and `CategoricalParameter`. `RealParameter` does not provide this property due to infinite search space.
??? Hint "Performance tip"
??? Hint "Performance tip"
During normal hyperopting, indicators are calculated once and supplied to each epoch, linearly increasing RAM usage as a factor of increasing cores. As this also has performance implications, hyperopt provides `--analyze-per-epoch` which will move the execution of `populate_indicators()` to the epoch process, calculating a single value per parameter per epoch instead of using the `.range` functionality. In this case, `.range` functionality will only return the actually used value. This will reduce RAM usage, but increase CPU usage. However, your hyperopting run will be less likely to fail due to Out Of Memory (OOM) issues.
During normal hyperopting, indicators are calculated once and supplied to each epoch, linearly increasing RAM usage as a factor of increasing cores. As this also has performance implications, there are two alternatives to reduce RAM usage
In either case, you should try to use space ranges as small as possible this will improve CPU/RAM usage in both scenarios.
* Move `ema_short` and `ema_long` calculations from `populate_indicators()` to `populate_entry_trend()`. Since `populate_entry_trend()` will be calculated every epoch, you don't need to use `.range` functionality.
* hyperopt provides `--analyze-per-epoch` which will move the execution of `populate_indicators()` to the epoch process, calculating a single value per parameter per epoch instead of using the `.range` functionality. In this case, `.range` functionality will only return the actually used value.
These alternatives will reduce RAM usage, but increase CPU usage. However, your hyperopting run will be less likely to fail due to Out Of Memory (OOM) issues.
Whether you are using `.range` functionality or the alternatives above, you should try to use space ranges as small as possible since this will improve CPU/RAM usage.
## Optimizing protections
## Optimizing protections
@@ -643,6 +653,7 @@ Legal values are:
* `roi`: just optimize the minimal profit table for your strategy
* `roi`: just optimize the minimal profit table for your strategy
* `stoploss`: search for the best stoploss value
* `stoploss`: search for the best stoploss value
* `trailing`: search for the best trailing stop values
* `trailing`: search for the best trailing stop values
* `trades`: search for the best max open trades values
* `protection`: search for the best protection parameters (read the [protections section](#optimizing-protections) on how to properly define these)
* `protection`: search for the best protection parameters (read the [protections section](#optimizing-protections) on how to properly define these)
* `default`: `all` except `trailing` and `protection`
* `default`: `all` except `trailing` and `protection`
* space-separated list of any of the above values for example `--spaces roi stoploss`
* space-separated list of any of the above values for example `--spaces roi stoploss`
@@ -915,6 +926,12 @@ Once the optimized strategy has been implemented into your strategy, you should
To achieve same the results (number of trades, their durations, profit, etc.) as during Hyperopt, please use the same configuration and parameters (timerange, timeframe, ...) used for hyperopt `--dmmp`/`--disable-max-market-positions` and `--eps`/`--enable-position-stacking` for Backtesting.
To achieve same the results (number of trades, their durations, profit, etc.) as during Hyperopt, please use the same configuration and parameters (timerange, timeframe, ...) used for hyperopt `--dmmp`/`--disable-max-market-positions` and `--eps`/`--enable-position-stacking` for Backtesting.
Should results not match, please double-check to make sure you transferred all conditions correctly.
### Why do my backtest results not match my hyperopt results?
Pay special care to the stoploss (and trailing stoploss) parameters, as these are often set in configuration files, which override changes to the strategy.
Should results not match, check the following factors:
You should also carefully review the log of your backtest to ensure that there were no parameters inadvertently set by the configuration (like `stoploss` or `trailing_stop`).
* You may have added parameters to hyperopt in `populate_indicators()` where they will be calculated only once **for all epochs**. If you are, for example, trying to optimise multiple SMA timeperiod values, the hyperoptable timeperiod parameter should be placed in `populate_entry_trend()` which is calculated every epoch. See [Optimizing an indicator parameter](https://www.freqtrade.io/en/stable/hyperopt/#optimizing-an-indicator-parameter).
* If you have disabled the auto-export of hyperopt parameters into the JSON parameters file, double-check to make sure you transferred all hyperopted values into your strategy correctly.
* Check the logs to verify what parameters are being set and what values are being used.
* Pay special care to the stoploss, max_open_trades and trailing stoploss parameters, as these are often set in configuration files, which override changes to the strategy. Check the logs of your backtest to ensure that there were no parameters inadvertently set by the configuration (like `stoploss`, `max_open_trades` or `trailing_stop`).
* Verify that you do not have an unexpected parameters JSON file overriding the parameters or the default hyperopt settings in your strategy.
* Verify that any protections that are enabled in backtesting are also enabled when hyperopting, and vice versa. When using `--space protection`, protections are auto-enabled for hyperopting.
@@ -6,7 +6,7 @@ In your configuration, you can use Static Pairlist (defined by the [`StaticPairL
Additionally, [`AgeFilter`](#agefilter), [`PrecisionFilter`](#precisionfilter), [`PriceFilter`](#pricefilter), [`ShuffleFilter`](#shufflefilter), [`SpreadFilter`](#spreadfilter) and [`VolatilityFilter`](#volatilityfilter) act as Pairlist Filters, removing certain pairs and/or moving their positions in the pairlist.
Additionally, [`AgeFilter`](#agefilter), [`PrecisionFilter`](#precisionfilter), [`PriceFilter`](#pricefilter), [`ShuffleFilter`](#shufflefilter), [`SpreadFilter`](#spreadfilter) and [`VolatilityFilter`](#volatilityfilter) act as Pairlist Filters, removing certain pairs and/or moving their positions in the pairlist.
If multiple Pairlist Handlers are used, they are chained and a combination of all Pairlist Handlers forms the resulting pairlist the bot uses for trading and backtesting. Pairlist Handlers are executed in the sequence they are configured. You should always configure either `StaticPairList` or `VolumePairList` as the starting Pairlist Handler.
If multiple Pairlist Handlers are used, they are chained and a combination of all Pairlist Handlers forms the resulting pairlist the bot uses for trading and backtesting. Pairlist Handlers are executed in the sequence they are configured. You can define either `StaticPairList`, `VolumePairList`, `ProducerPairList`, `RemotePairList` or `MarketCapPairList` as the starting Pairlist Handler.
Inactive markets are always removed from the resulting pairlist. Explicitly blacklisted pairs (those in the `pair_blacklist` configuration setting) are also always removed from the resulting pairlist.
Inactive markets are always removed from the resulting pairlist. Explicitly blacklisted pairs (those in the `pair_blacklist` configuration setting) are also always removed from the resulting pairlist.
@@ -23,7 +23,10 @@ You may also use something like `.*DOWN/BTC` or `.*UP/BTC` to exclude leveraged
* [`StaticPairList`](#static-pair-list) (default, if not configured differently)
* [`StaticPairList`](#static-pair-list) (default, if not configured differently)
* [`VolumePairList`](#volume-pair-list)
* [`VolumePairList`](#volume-pair-list)
* [`ProducerPairList`](#producerpairlist)
* [`ProducerPairList`](#producerpairlist)
* [`RemotePairList`](#remotepairlist)
* [`MarketCapPairList`](#marketcappairlist)
* [`AgeFilter`](#agefilter)
* [`AgeFilter`](#agefilter)
* [`FullTradesFilter`](#fulltradesfilter)
* [`OffsetFilter`](#offsetfilter)
* [`OffsetFilter`](#offsetfilter)
* [`PerformanceFilter`](#performancefilter)
* [`PerformanceFilter`](#performancefilter)
* [`PrecisionFilter`](#precisionfilter)
* [`PrecisionFilter`](#precisionfilter)
@@ -65,7 +68,7 @@ When used in the leading position of the chain of Pairlist Handlers, the `pair_w
The `refresh_period` setting allows to define the period (in seconds), at which the pairlist will be refreshed. Defaults to 1800s (30 minutes).
The `refresh_period` setting allows to define the period (in seconds), at which the pairlist will be refreshed. Defaults to 1800s (30 minutes).
The pairlist cache (`refresh_period`) on `VolumePairList` is only applicable to generating pairlists.
The pairlist cache (`refresh_period`) on `VolumePairList` is only applicable to generating pairlists.
Filtering instances (not the first position in the list) will not apply any cache and will always use up-to-date data.
Filtering instances (not the first position in the list) will not apply any cache (beyond caching candles for the duration of the candle in advanced mode) and will always use up-to-date data.
`VolumePairList` is per default based on the ticker data from exchange, as reported by the ccxt library:
`VolumePairList` is per default based on the ticker data from exchange, as reported by the ccxt library:
@@ -78,12 +81,14 @@ Filtering instances (not the first position in the list) will not apply any cach
"number_assets":20,
"number_assets":20,
"sort_key":"quoteVolume",
"sort_key":"quoteVolume",
"min_value":0,
"min_value":0,
"max_value":8000000,
"refresh_period":1800
"refresh_period":1800
}
}
],
],
```
```
You can define a minimum volume with `min_value` - which will filter out pairs with a volume lower than the specified value in the specified timerange.
You can define a minimum volume with `min_value` - which will filter out pairs with a volume lower than the specified value in the specified timerange.
In addition to that, you can also define a maximum volume with `max_value` - which will filter out pairs with a volume higher than the specified value in the specified timerange.
##### VolumePairList Advanced mode
##### VolumePairList Advanced mode
@@ -110,8 +115,8 @@ For convenience `lookback_days` can be specified, which will imply that 1d candl
!!! Warning "Performance implications when using lookback range"
!!! Warning "Performance implications when using lookback range"
If used in first position in combination with lookback, the computation of the range based volume can be time and resource consuming, as it downloads candles for all tradable pairs. Hence it's highly advised to use the standard approach with `VolumeFilter` to narrow the pairlist down for further range volume calculation.
If used in first position in combination with lookback, the computation of the range based volume can be time and resource consuming, as it downloads candles for all tradable pairs. Hence it's highly advised to use the standard approach with `VolumeFilter` to narrow the pairlist down for further range volume calculation.
??? Tip "Unsupported exchanges (Bittrex, Gemini)"
??? Tip "Unsupported exchanges"
On some exchanges (like Bittrex and Gemini), regular VolumePairList does not work as the api does not natively provide 24h volume. This can be worked around by using candle data to build the volume.
On some exchanges (like Gemini), regular VolumePairList does not work as the api does not natively provide 24h volume. This can be worked around by using candle data to build the volume.
To roughly simulate 24h volume, you can use the following configuration.
To roughly simulate 24h volume, you can use the following configuration.
Please note that These pairlists will only refresh once per day.
Please note that These pairlists will only refresh once per day.
@@ -173,6 +178,114 @@ You can limit the length of the pairlist with the optional parameter `number_ass
`ProducerPairList` can also be used multiple times in sequence, combining the pairs from multiple producers.
`ProducerPairList` can also be used multiple times in sequence, combining the pairs from multiple producers.
Obviously in complex such configurations, the Producer may not provide data for all pairs, so the strategy must be fit for this.
Obviously in complex such configurations, the Producer may not provide data for all pairs, so the strategy must be fit for this.
#### RemotePairList
It allows the user to fetch a pairlist from a remote server or a locally stored json file within the freqtrade directory, enabling dynamic updates and customization of the trading pairlist.
The RemotePairList is defined in the pairlists section of the configuration settings. It uses the following configuration options:
```json
"pairlists": [
{
"method": "RemotePairList",
"mode": "whitelist",
"processing_mode": "filter",
"pairlist_url": "https://example.com/pairlist",
"number_assets": 10,
"refresh_period": 1800,
"keep_pairlist_on_failure": true,
"read_timeout": 60,
"bearer_token": "my-bearer-token",
"save_to_file": "user_data/filename.json"
}
]
```
The optional `mode` option specifies if the pairlist should be used as a `blacklist` or as a `whitelist`. The default value is "whitelist".
The optional `processing_mode` option in the RemotePairList configuration determines how the retrieved pairlist is processed. It can have two values: "filter" or "append". The default value is "filter".
In "filter" mode, the retrieved pairlist is used as a filter. Only the pairs present in both the original pairlist and the retrieved pairlist are included in the final pairlist. Other pairs are filtered out.
In "append" mode, the retrieved pairlist is added to the original pairlist. All pairs from both lists are included in the final pairlist without any filtering.
The `pairlist_url` option specifies the URL of the remote server where the pairlist is located, or the path to a local file (if file:/// is prepended). This allows the user to use either a remote server or a local file as the source for the pairlist.
The `save_to_file` option, when provided with a valid filename, saves the processed pairlist to that file in JSON format. This option is optional, and by default, the pairlist is not saved to a file.
??? Example "Multi bot with shared pairlist example"
`save_to_file` can be used to save the pairlist to a file with Bot1:
```json
"pairlists": [
{
"method": "RemotePairList",
"mode": "whitelist",
"pairlist_url": "https://example.com/pairlist",
"number_assets": 10,
"refresh_period": 1800,
"keep_pairlist_on_failure": true,
"read_timeout": 60,
"save_to_file": "user_data/filename.json"
}
]
```
This saved pairlist file can be loaded by Bot2, or any additional bot with this configuration:
The user is responsible for providing a server or local file that returns a JSON object with the following structure:
```json
{
"pairs": ["XRP/USDT", "ETH/USDT", "LTC/USDT"],
"refresh_period": 1800
}
```
The `pairs` property should contain a list of strings with the trading pairs to be used by the bot. The `refresh_period` property is optional and specifies the number of seconds that the pairlist should be cached before being refreshed.
The optional `keep_pairlist_on_failure` specifies whether the previous received pairlist should be used if the remote server is not reachable or returns an error. The default value is true.
The optional `read_timeout` specifies the maximum amount of time (in seconds) to wait for a response from the remote source, The default value is 60.
The optional `bearer_token` will be included in the requests Authorization Header.
!!! Note
In case of a server error the last received pairlist will be kept if `keep_pairlist_on_failure` is set to true, when set to false a empty pairlist is returned.
#### MarketCapPairList
`MarketCapPairList` employs sorting/filtering of pairs by their marketcap rank based of CoinGecko. It will only recognize coins up to the coin placed at rank 250. The returned pairlist will be sorted based of their marketcap ranks.
```json
"pairlists": [
{
"method": "MarketCapPairList",
"number_assets": 20,
"max_rank": 50,
"refresh_period": 86400
}
]
```
`number_assets` defines the maximum number of pairs returned by the pairlist. `max_rank` will determine the maximum rank used in creating/filtering the pairlist. It's expected that some coins within the top `max_rank` marketcap will not be included in the resulting pairlist since not all pairs will have active trading pairs in your preferred market/stake/exchange combination.
`refresh_period` setting defines the period (in seconds) at which the marketcap rank data will be refreshed. Defaults to 86,400s (1 day). The pairlist cache (`refresh_period`) is applicable on both generating pairlists (first position in the list) and filtering instances (not the first position in the list).
#### AgeFilter
#### AgeFilter
Removes pairs that have been listed on the exchange for less than `min_days_listed` days (defaults to `10`) or more than `max_days_listed` days (defaults `None` mean infinity).
Removes pairs that have been listed on the exchange for less than `min_days_listed` days (defaults to `10`) or more than `max_days_listed` days (defaults `None` mean infinity).
@@ -183,6 +296,17 @@ be caught out buying before the pair has finished dropping in price.
This filter allows freqtrade to ignore pairs until they have been listed for at least `min_days_listed` days and listed before `max_days_listed`.
This filter allows freqtrade to ignore pairs until they have been listed for at least `min_days_listed` days and listed before `max_days_listed`.
#### FullTradesFilter
Shrink whitelist to consist only in-trade pairs when the trade slots are full (when `max_open_trades` isn't being set to `-1` in the config).
When the trade slots are full, there is no need to calculate indicators of the rest of the pairs (except informative pairs) since no new trade can be opened. By shrinking the whitelist to just the in-trade pairs, you can improve calculation speeds and reduce CPU usage. When a trade slot is free (either a trade is closed or `max_open_trades` value in config is increased), then the whitelist will return to normal state.
When multiple pairlist filters are being used, it's recommended to put this filter at second position directly below the primary pairlist, so when the trade slots are full, the bot doesn't have to download data for the rest of the filters.
!!! Warning "Backtesting"
`FullTradesFilter` does not support backtesting mode.
#### OffsetFilter
#### OffsetFilter
Offsets an incoming pairlist by a given `offset` value.
Offsets an incoming pairlist by a given `offset` value.
@@ -247,6 +371,11 @@ As this Filter uses past performance of the bot, it'll have some startup-period
Filters low-value coins which would not allow setting stoplosses.
Filters low-value coins which would not allow setting stoplosses.
Namely, pairs are blacklisted if a variance of one percent or more in the stop price would be caused by precision rounding on the exchange, i.e. `rounded(stop_price) <= rounded(stop_price * 0.99)`. The idea is to avoid coins with a value VERY close to their lower trading boundary, not allowing setting of proper stoploss.
!!! Tip "PerformanceFilter is pointless for futures trading"
The above does not apply to shorts. And for longs, in theory the trade will be liquidated first.
!!! Warning "Backtesting"
!!! Warning "Backtesting"
`PrecisionFilter` does not support backtesting mode using multiple strategies.
`PrecisionFilter` does not support backtesting mode using multiple strategies.
@@ -268,7 +397,7 @@ This option is disabled by default, and will only apply if set to > 0.
The `max_value` setting removes pairs where the minimum value change is above a specified value.
The `max_value` setting removes pairs where the minimum value change is above a specified value.
This is useful when an exchange has unbalanced limits. For example, if step-size = 1 (so you can only buy 1, or 2, or 3, but not 1.1 Coins) - and the price is pretty high (like 20\$) as the coin has risen sharply since the last limit adaption.
This is useful when an exchange has unbalanced limits. For example, if step-size = 1 (so you can only buy 1, or 2, or 3, but not 1.1 Coins) - and the price is pretty high (like 20\$) as the coin has risen sharply since the last limit adaption.
As a result of the above, you can only buy for 20\$, or 40\$ - but not for 25\$.
As a result of the above, you can only buy for 20\$, or 40\$ - but not for 25\$.
On exchanges that deduct fees from the receiving currency (e.g. FTX) - this can result in high value coins / amounts that are unsellable as the amount is slightly below the limit.
On exchanges that deduct fees from the receiving currency (e.g. binance) - this can result in high value coins / amounts that are unsellable as the amount is slightly below the limit.
The `low_price_ratio` setting removes pairs where a raise of 1 price unit (pip) is above the `low_price_ratio` ratio.
The `low_price_ratio` setting removes pairs where a raise of 1 price unit (pip) is above the `low_price_ratio` ratio.
This option is disabled by default, and will only apply if set to > 0.
This option is disabled by default, and will only apply if set to > 0.
@@ -286,6 +415,18 @@ Min price precision for SHITCOIN/BTC is 8 decimals. If its price is 0.00000011 -
Shuffles (randomizes) pairs in the pairlist. It can be used for preventing the bot from trading some of the pairs more frequently then others when you want all pairs be treated with the same priority.
Shuffles (randomizes) pairs in the pairlist. It can be used for preventing the bot from trading some of the pairs more frequently then others when you want all pairs be treated with the same priority.
By default, ShuffleFilter will shuffle pairs once per candle.
To shuffle on every iteration, set `"shuffle_frequency"` to `"iteration"` instead of the default of `"candle"`.
``` json
{
"method": "ShuffleFilter",
"shuffle_frequency": "candle",
"seed": 42
}
```
!!! Tip
!!! Tip
You may set the `seed` value for this Pairlist to obtain reproducible results, which can be useful for repeated backtesting sessions. If `seed` is not set, the pairs are shuffled in the non-repeatable random order. ShuffleFilter will automatically detect runmodes and apply the `seed` only for backtesting modes - if a `seed` value is set.
You may set the `seed` value for this Pairlist to obtain reproducible results, which can be useful for repeated backtesting sessions. If `seed` is not set, the pairs are shuffled in the non-repeatable random order. ShuffleFilter will automatically detect runmodes and apply the `seed` only for backtesting modes - if a `seed` value is set.
@@ -311,11 +452,13 @@ If the trading range over the last 10 days is <1% or >99%, remove the pair from
"lookback_days": 10,
"lookback_days": 10,
"min_rate_of_change": 0.01,
"min_rate_of_change": 0.01,
"max_rate_of_change": 0.99,
"max_rate_of_change": 0.99,
"refresh_period": 1440
"refresh_period": 86400
}
}
]
]
```
```
Adding `"sort_direction": "asc"` or `"sort_direction": "desc"` enables sorting for this pairlist.
!!! Tip
!!! Tip
This Filter can be used to automatically remove stable coin pairs, which have a very low trading range, and are therefore extremely difficult to trade with profit.
This Filter can be used to automatically remove stable coin pairs, which have a very low trading range, and are therefore extremely difficult to trade with profit.
Additionally, it can also be used to automatically remove pairs with extreme high/low variance over a given amount of time.
Additionally, it can also be used to automatically remove pairs with extreme high/low variance over a given amount of time.
@@ -343,6 +486,8 @@ If the volatility over the last 10 days is not in the range of 0.05-0.50, remove
]
]
```
```
Adding `"sort_direction": "asc"` or `"sort_direction": "desc"` enables sorting mode for this pairlist.
### Full example of Pairlist Handlers
### Full example of Pairlist Handlers
The below example blacklists `BNB/BTC`, uses `VolumePairList` with `20` assets, sorting pairs by `quoteVolume` and applies [`PrecisionFilter`](#precisionfilter) and [`PriceFilter`](#pricefilter), filtering all assets where 1 price unit is > 1%. Then the [`SpreadFilter`](#spreadfilter) and [`VolatilityFilter`](#volatilityfilter) is applied and pairs are finally shuffled with the random seed set to some predefined value.
The below example blacklists `BNB/BTC`, uses `VolumePairList` with `20` assets, sorting pairs by `quoteVolume` and applies [`PrecisionFilter`](#precisionfilter) and [`PriceFilter`](#pricefilter), filtering all assets where 1 price unit is > 1%. Then the [`SpreadFilter`](#spreadfilter) and [`VolatilityFilter`](#volatilityfilter) is applied and pairs are finally shuffled with the random seed set to some predefined value.
@@ -366,7 +511,7 @@ The below example blacklists `BNB/BTC`, uses `VolumePairList` with `20` assets,
@@ -149,7 +149,7 @@ The below example assumes a timeframe of 1 hour:
* Locks each pair after selling for an additional 5 candles (`CooldownPeriod`), giving other pairs a chance to get filled.
* Locks each pair after selling for an additional 5 candles (`CooldownPeriod`), giving other pairs a chance to get filled.
* Stops trading for 4 hours (`4 * 1h candles`) if the last 2 days (`48 * 1h candles`) had 20 trades, which caused a max-drawdown of more than 20%. (`MaxDrawdown`).
* Stops trading for 4 hours (`4 * 1h candles`) if the last 2 days (`48 * 1h candles`) had 20 trades, which caused a max-drawdown of more than 20%. (`MaxDrawdown`).
* Stops trading if more than 4 stoploss occur for all pairs within a 1 day (`24 * 1h candles`) limit (`StoplossGuard`).
* Stops trading if more than 4 stoploss occur for all pairs within a 1 day (`24 * 1h candles`) limit (`StoplossGuard`).
* Locks all pairs that had 4 Trades within the last 6 hours (`6 * 1h candles`) with a combined profit ratio of below 0.02 (<2%) (`LowProfitPairs`).
* Locks all pairs that had 2 Trades within the last 6 hours (`6 * 1h candles`) with a combined profit ratio of below 0.02 (<2%) (`LowProfitPairs`).
* Locks all pairs for 2 candles that had a profit of below 0.01 (<1%) within the last 24h (`24 * 1h candles`), a minimum of 4 trades.
* Locks all pairs for 2 candles that had a profit of below 0.01 (<1%) within the last 24h (`24 * 1h candles`), a minimum of 4 trades.
@@ -32,17 +33,16 @@ Freqtrade is a free and open source crypto trading bot written in Python. It is
- Run: Test your strategy with simulated money (Dry-Run mode) or deploy it with real money (Live-Trade mode).
- Run: Test your strategy with simulated money (Dry-Run mode) or deploy it with real money (Live-Trade mode).
- Run using Edge (optional module): The concept is to find the best historical [trade expectancy](edge.md#expectancy) by markets based on variation of the stop-loss and then allow/reject markets to trade. The sizing of the trade is based on a risk of a percentage of your capital.
- Run using Edge (optional module): The concept is to find the best historical [trade expectancy](edge.md#expectancy) by markets based on variation of the stop-loss and then allow/reject markets to trade. The sizing of the trade is based on a risk of a percentage of your capital.
- Control/Monitor: Use Telegram or a WebUI (start/stop the bot, show profit/loss, daily summary, current open trades results, etc.).
- Control/Monitor: Use Telegram or a WebUI (start/stop the bot, show profit/loss, daily summary, current open trades results, etc.).
- Analyse: Further analysis can be performed on either Backtesting data or Freqtrade trading history (SQL database), including automated standard plots, and methods to load the data into [interactive environments](data-analysis.md).
- Analyze: Further analysis can be performed on either Backtesting data or Freqtrade trading history (SQL database), including automated standard plots, and methods to load the data into [interactive environments](data-analysis.md).
## Supported exchange marketplaces
## Supported exchange marketplaces
Please read the [exchange specific notes](exchanges.md) to learn about eventual, special configurations needed for each exchange.
Please read the [exchange specific notes](exchanges.md) to learn about eventual, special configurations needed for each exchange.
- [X] [Binance](https://www.binance.com/)
- [X] [Binance](https://www.binance.com/)
- [X] [Bittrex](https://bittrex.com/)
- [X] [Bitmart](https://bitmart.com/)
- [X] [FTX](https://ftx.com/#a=2258149)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [Huobi](http://huobi.com/)
- [X] [HTX](https://www.htx.com/) (Former Huobi)
- [X] [Kraken](https://kraken.com/)
- [X] [Kraken](https://kraken.com/)
- [X] [OKX](https://okx.com/) (Former OKEX)
- [X] [OKX](https://okx.com/) (Former OKEX)
- [ ] [potentially many others through <img alt="ccxt" width="30px" src="assets/ccxt-logo.svg" />](https://github.com/ccxt/ccxt/). _(We cannot guarantee they will work)_
- [ ] [potentially many others through <img alt="ccxt" width="30px" src="assets/ccxt-logo.svg" />](https://github.com/ccxt/ccxt/). _(We cannot guarantee they will work)_
@@ -51,7 +51,8 @@ Please read the [exchange specific notes](exchanges.md) to learn about eventual,
- [X] [Binance](https://www.binance.com/)
- [X] [Binance](https://www.binance.com/)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [OKX](https://okx.com/).
- [X] [OKX](https://okx.com/)
- [X] [Bybit](https://bybit.com/)
Please make sure to read the [exchange specific notes](exchanges.md), as well as the [trading with leverage](leverage.md) documentation before diving in.
Please make sure to read the [exchange specific notes](exchanges.md), as well as the [trading with leverage](leverage.md) documentation before diving in.
@@ -62,6 +63,10 @@ Exchanges confirmed working by the community:
- [X] [Bitvavo](https://bitvavo.com/)
- [X] [Bitvavo](https://bitvavo.com/)
- [X] [Kucoin](https://www.kucoin.com/)
- [X] [Kucoin](https://www.kucoin.com/)
## Community showcase
--8<--"includes/showcase.md"
## Requirements
## Requirements
### Hardware requirements
### Hardware requirements
@@ -78,7 +83,7 @@ To run this bot we recommend you a linux cloud instance with a minimum of:
@@ -24,7 +24,7 @@ The easiest way to install and run Freqtrade is to clone the bot Github reposito
The `stable` branch contains the code of the last release (done usually once per month on an approximately one week old snapshot of the `develop` branch to prevent packaging bugs, so potentially it's more stable).
The `stable` branch contains the code of the last release (done usually once per month on an approximately one week old snapshot of the `develop` branch to prevent packaging bugs, so potentially it's more stable).
!!! Note
!!! Note
Python3.8 or higher and the corresponding `pip` are assumed to be available. The install-script will warn you and stop if that's not the case. `git` is also needed to clone the Freqtrade repository.
Python3.9 or higher and the corresponding `pip` are assumed to be available. The install-script will warn you and stop if that's not the case. `git` is also needed to clone the Freqtrade repository.
Also, python headers (`python<yourversion>-dev` / `python<yourversion>-devel`) must be available for the installation to complete successfully.
Also, python headers (`python<yourversion>-dev` / `python<yourversion>-devel`) must be available for the installation to complete successfully.
!!! Warning "Up-to-date clock"
!!! Warning "Up-to-date clock"
@@ -42,11 +42,11 @@ These requirements apply to both [Script Installation](#script-installation) and
@@ -64,11 +64,9 @@ You will also have to pick a "margin mode" (explanation below) - with freqtrade
##### Pair namings
##### Pair namings
Freqtrade follows the [ccxt naming conventions for futures](https://docs.ccxt.com/en/latest/manual.html?#perpetual-swap-perpetual-future).
Freqtrade follows the [ccxt naming conventions for futures](https://docs.ccxt.com/#/README?id=perpetual-swap-perpetual-future).
A futures pair will therefore have the naming of `base/quote:settle` (e.g. `ETH/USDT:USDT`).
A futures pair will therefore have the naming of `base/quote:settle` (e.g. `ETH/USDT:USDT`).
Binance is currently still an exception to this naming scheme, where pairs are named `ETH/USDT` also for futures markets, but will be aligned as soon as CCXT is ready.
### Margin mode
### Margin mode
On top of `trading_mode` - you will also have to configure your `margin_mode`.
On top of `trading_mode` - you will also have to configure your `margin_mode`.
@@ -92,6 +90,8 @@ One account is used to share collateral between markets (trading pairs). Margin
"margin_mode": "cross"
"margin_mode": "cross"
```
```
Please read the [exchange specific notes](exchanges.md) for exchanges that support this mode and how they differ.
## Set leverage to use
## Set leverage to use
Different strategies and risk profiles will require different levels of leverage.
Different strategies and risk profiles will require different levels of leverage.
Use this csv-filename to store lookahead-analysis-
results
```
!!! Note ""
The above Output was reduced to options `lookahead-analysis` adds on top of regular backtesting commands.
### Summary
Checks a given strategy for look ahead bias via lookahead-analysis
Look ahead bias means that the backtest uses data from future candles thereby not making it viable beyond backtesting
and producing false hopes for the one backtesting.
### Introduction
Many strategies - without the programmer knowing - have fallen prey to look ahead bias.
Any backtest will populate the full dataframe including all time stamps at the beginning.
If the programmer is not careful or oblivious how things work internally
(which sometimes can be really hard to find out) then it will just look into the future making the strategy amazing
but not realistic.
This command is made to try to verify the validity in the form of the aforementioned look ahead bias.
### How does the command work?
It will start with a backtest of all pairs to generate a baseline for indicators and entries/exits.
After the backtest ran, it will look if the `minimum-trade-amount` is met
and if not cancel the lookahead-analysis for this strategy.
After setting the baseline it will then do additional runs for every entry and exit separately.
When a verification-backtest is done, it will compare the indicators as the signal (either entry or exit) and report the bias.
After all signals have been verified or falsified a result-table will be generated for the user to see.
### Caveats
-`lookahead-analysis` can only verify / falsify the trades it calculated and verified.
If the strategy has many different signals / signal types, it's up to you to select appropriate parameters to ensure that all signals have triggered at least once. Not triggered signals will not have been verified.
This could lead to a false-negative (the strategy will then be reported as non-biased).
-`lookahead-analysis` has access to everything that backtesting has too.
Please don't provoke any configs like enabling position stacking.
If you decide to do so, then make doubly sure that you won't ever run out of `max_open_trades` amount and neither leftover money in your wallet.
@@ -21,6 +21,7 @@ Enable subscribing to an instance by adding the `external_message_consumer` sect
"name":"default",// This can be any name you'd like, default is "default"
"name":"default",// This can be any name you'd like, default is "default"
"host":"127.0.0.1",// The host from your producer's api_server config
"host":"127.0.0.1",// The host from your producer's api_server config
"port":8080,// The port from your producer's api_server config
"port":8080,// The port from your producer's api_server config
"secure":false,// Use a secure websockets connection, default false
"ws_token":"sercet_Ws_t0ken"// The ws_token from your producer's api_server config
"ws_token":"sercet_Ws_t0ken"// The ws_token from your producer's api_server config
}
}
],
],
@@ -41,13 +42,14 @@ Enable subscribing to an instance by adding the `external_message_consumer` sect
| `producers` | **Required.** List of producers <br>**Datatype:** Array.
| `producers` | **Required.** List of producers <br>**Datatype:** Array.
| `producers.name` | **Required.** Name of this producer. This name must be used in calls to `get_producer_pairs()` and `get_producer_df()` if more than one producer is used.<br>**Datatype:** string
| `producers.name` | **Required.** Name of this producer. This name must be used in calls to `get_producer_pairs()` and `get_producer_df()` if more than one producer is used.<br>**Datatype:** string
| `producers.host` | **Required.** The hostname or IP address from your producer.<br>**Datatype:** string
| `producers.host` | **Required.** The hostname or IP address from your producer.<br>**Datatype:** string
| `producers.port` | **Required.** The port matching the above host.<br>**Datatype:**string
| `producers.port` | **Required.** The port matching the above host.<br>*Defaults to `8080`.*<br>**Datatype:**Integer
| `producers.secure` | **Optional.** Use ssl in websockets connection. Default False.<br>**Datatype:** string
| `producers.ws_token` | **Required.**`ws_token` as configured on the producer.<br>**Datatype:** string
| `producers.ws_token` | **Required.**`ws_token` as configured on the producer.<br>**Datatype:** string
| | **Optional settings**
| | **Optional settings**
| `wait_timeout` | Timeout until we ping again if no message is received. <br>*Defaults to `300`.*<br>**Datatype:** Integer - in seconds.
| `wait_timeout` | Timeout until we ping again if no message is received. <br>*Defaults to `300`.*<br>**Datatype:** Integer - in seconds.
| `wait_timeout` | Ping timeout <br>*Defaults to `10`.*<br>**Datatype:** Integer - in seconds.
| `ping_timeout` | Ping timeout <br>*Defaults to `10`.*<br>**Datatype:** Integer - in seconds.
| `sleep_time` | Sleep time before retrying to connect.<br>*Defaults to `10`.*<br>**Datatype:** Integer - in seconds.
| `sleep_time` | Sleep time before retrying to connect.<br>*Defaults to `10`.*<br>**Datatype:** Integer - in seconds.
| `remove_entry_exit_signals` | Remove signal columns from the dataframe (set them to 0) on dataframe receipt.<br>*Defaults to `10`.*<br>**Datatype:**Integer - in seconds.
| `remove_entry_exit_signals` | Remove signal columns from the dataframe (set them to 0) on dataframe receipt.<br>*Defaults to `false`.*<br>**Datatype:**Boolean.
| `message_size_limit` | Size limit per message<br>*Defaults to `8`.*<br>**Datatype:** Integer - Megabytes.
| `message_size_limit` | Size limit per message<br>*Defaults to `8`.*<br>**Datatype:** Integer - Megabytes.
Instead of (or as well as) calculating indicators in `populate_indicators()` the follower instance listens on the connection to a producer instance's messages (or multiple producer instances in advanced configurations) and requests the producer's most recently analyzed dataframes for each pair in the active whitelist.
Instead of (or as well as) calculating indicators in `populate_indicators()` the follower instance listens on the connection to a producer instance's messages (or multiple producer instances in advanced configurations) and requests the producer's most recently analyzed dataframes for each pair in the active whitelist.
This page explains how to validate your strategy for inaccuracies due to recursive issues with certain indicators.
A recursive formula defines any term of a sequence relative to its preceding term(s). An example of a recursive formula is a<sub>n</sub> = a<sub>n-1</sub> + b.
Why does this matter for Freqtrade? In backtesting, the bot will get full data of the pairs according to the timerange specified. But in a dry/live run, the bot will be limited by the amount of data each exchanges gives.
For example, to calculate a very basic indicator called `steps`, the first row's value is always 0, while the following rows' values are equal to the value of the previous row plus 1. If I were to calculate it using the latest 1000 candles, then the `steps` value of the first row is 0, and the `steps` value at the last closed candle is 999.
What happens if the calculation is using only the latest 500 candles? Then instead of 999, the `steps` value at last closed candle is 499. The difference of the value means your backtest result can differ from your dry/live run result.
The `recursive-analysis` command requires historic data to be available. To learn how to get data for the pairs and exchange you're interested in,
head over to the [Data Downloading](data-download.md) section of the documentation.
This command is built upon preparing different lengths of data and calculates indicators based on them.
This does not backtest the strategy itself, but rather only calculates the indicators. After calculating the indicators of different startup candle values (`startup_candle_count`) are done, the values of last rows across all specified `startup_candle_count` are compared to see how much variance they show compared to the base calculation.
Command settings:
- Use the `-p` option to set your desired pair to analyze. Since we are only looking at indicator values, using more than one pair is redundant. Preferably use a pair with a relatively high price and at least moderate volatility, such as BTC or ETH, to avoid rounding issues that can make the results inaccurate. If no pair is set on the command, the pair used for this analysis is the first pair in the whitelist.
- It is recommended to set a long timerange (at least 5000 candles) so that the initial indicators' calculation that is going to be used as a benchmark has very small or no recursive issues itself. For example, for a 5m timeframe, a timerange of 5000 candles would be equal to 18 days.
-`--cache` is forced to "none" to avoid loading previous indicators calculation automatically.
In addition to the recursive formula check, this command also carries out a simple lookahead bias check on the indicator values only. For a full lookahead check, use [Lookahead-analysis](lookahead-analysis.md).
### Why are odd-numbered default startup candles used?
The default value for startup candles are odd numbers. When the bot fetches candle data from the exchange's API, the last candle is the one being checked by the bot and the rest of the data are the "startup candles".
For example, Binance allows 1000 candles per API call. When the bot receives 1000 candles, the last candle is the "current candle", and the preceding 999 candles are the "startup candles". By setting the startup candle count as 1000 instead of 999, the bot will try to fetch 1001 candles instead. The exchange API will then send candle data in a paginated form, i.e. in case of the Binance API, this will be two groups- one of length 1000 and another of length 1. This results in the bot thinking the strategy needs 1001 candles of data, and so it will download 2000 candles worth of data instead, which means there will be 1 "current candle" and 1999 "startup candles".
Furthermore, exchanges limit the number of consecutive bulk API calls, e.g. Binance allows 5 calls. In this case, only 5000 candles can be downloaded from Binance API without hitting the API rate limit, which means the max `startup_candle_count` you can have is 4999.
Please note that this candle limit may be changed in the future by the exchanges without any prior notice.
### How does the command work?
- Firstly an initial indicator calculation is carried out using the supplied timerange to generate a benchmark for indicator values.
- After setting the benchmark it will then carry out additional runs for each of the different startup candle count values.
- The command will then compare the indicator values at the last candle rows and report the differences in a table.
## Understanding the recursive-analysis output
This is an example of an output results table where at least one indicator has a recursive formula issue:
The column headers indicate the different `startup_candle_count` used in the analysis. The values in the table indicate the variance of the calculated indicators compared to the benchmark value.
`nan%` means the value of that indicator cannot be calculated due to lack of data. In this example, you cannot calculate RSI with length 30 with just 21 candles (1 current candle + 20 startup candles).
Users should assess the table per indicator to decide if the specified `startup_candle_count` results in a sufficiently small variance so that the indicator does not have any effect on entries and/or exits.
As such, aiming for absolute zero variance (shown by `-` value) might not be the best option, because some indicators might require you to use such a long `startup_candle_count` to have zero variance.
## Caveats
-`recursive-analysis` will only calculate and compare the indicator values at the last row. The output table reports the percentage differences between the different startup candle count calculations and the original benchmark calculation. Whether it has any actual impact on your entries and exits is not included.
- The ideal scenario is that indicators will have no variance (or at least very close to 0%) despite the startup candle being varied. In reality, indicators such as EMA are using a recursive formula to calculate indicator values, so the goal is not necessarily to have zero percentage variance, but to have the variance low enough (and therefore `startup_candle_count` high enough) that the recursion inherent in the indicator will not have any real impact on trading decisions.
-`recursive-analysis` will only run calculations on `populate_indicators` and `@informative` decorator(s). If you put any indicator calculation on `populate_entry_trend` or `populate_exit_trend`, it won't be calculated.
@@ -9,9 +9,6 @@ This same command can also be used to update freqUI, should there be a new relea
Once the bot is started in trade / dry-run mode (with `freqtrade trade`) - the UI will be available under the configured port below (usually `http://127.0.0.1:8080`).
Once the bot is started in trade / dry-run mode (with `freqtrade trade`) - the UI will be available under the configured port below (usually `http://127.0.0.1:8080`).
!!! info "Alpha release"
FreqUI is still considered an alpha release - if you encounter bugs or inconsistencies please open a [FreqUI issue](https://github.com/freqtrade/frequi/issues/new/choose).
!!! Note "developers"
!!! Note "developers"
Developers should not use this method, but instead use the method described in the [freqUI repository](https://github.com/freqtrade/frequi) to get the source-code of freqUI.
Developers should not use this method, but instead use the method described in the [freqUI repository](https://github.com/freqtrade/frequi) to get the source-code of freqUI.
@@ -98,11 +95,13 @@ Make sure that the following 2 lines are available in your docker-compose file:
### Consuming the API
### Consuming the API
You can consume the API by using the script `scripts/rest_client.py`.
You can consume the API by using `freqtrade-client` (also available as `scripts/rest_client.py`).
The client script only requires the `requests` module, so Freqtrade does not need to be installed on the system.
This command can be installed independent of the bot by using `pip install freqtrade-client`.
This module is designed to be lightweight, and only depends on the `requests` and `python-rapidjson` modules, skipping all heavy dependencies freqtrade otherwise needs.
By default, the script assumes `127.0.0.1` (localhost) and port `8080` to be used, however you can specify a configuration file to override this behaviour.
By default, the script assumes `127.0.0.1` (localhost) and port `8080` to be used, however you can specify a configuration file to override this behaviour.
@@ -123,9 +122,27 @@ By default, the script assumes `127.0.0.1` (localhost) and port `8080` to be use
| `reload_config` | Reloads the configuration file.
| `reload_config` | Reloads the configuration file.
| `trades` | List last trades. Limited to 500 trades per call.
| `trades` | List last trades. Limited to 500 trades per call.
| `trade/<tradeid>` | Get specific trade.
| `trade/<tradeid>` | Get specific trade.
| `delete_trade<trade_id>` | Remove trade from the database. Tries to close open orders. Requires manual handling of this trade on the exchange.
| `trades/<tradeid>` | DELETE - Remove trade from the database. Tries to close open orders. Requires manual handling of this trade on the exchange.
| `trades/<tradeid>/open-order` | DELETE - Cancel open order for this trade.
| `trades/<tradeid>/reload` | GET - Reload a trade from the Exchange. Only works in live, and can potentially help recover a trade that was manually sold on the exchange.
| `show_config` | Shows part of the current configuration with relevant settings to operation.
| `show_config` | Shows part of the current configuration with relevant settings to operation.
| `logs` | Shows last log messages.
| `logs` | Shows last log messages.
| `status` | Lists all open trades.
| `status` | Lists all open trades.
| `count` | Displays number of trades used and available.
| `count` | Displays number of trades used and available.
| `entries [pair]` | Shows profit statistics for each enter tags for given pair (or all pairs if pair isn't given). Pair is optional.
| `exits [pair]` | Shows profit statistics for each exit reasons for given pair (or all pairs if pair isn't given). Pair is optional.
| `mix_tags [pair]` | Shows profit statistics for each combinations of enter tag + exit reasons for given pair (or all pairs if pair isn't given). Pair is optional.
| `locks` | Displays currently locked pairs.
| `locks` | Displays currently locked pairs.
| `delete_lock <lock_id>` | Deletes (disables) the lock by id.
| `delete_lock <lock_id>` | Deletes (disables) the lock by id.
| `profit` | Display a summary of your profit/loss from close trades and some stats about your performance.
| `profit` | Display a summary of your profit/loss from close trades and some stats about your performance.
Possible commands can be listed from the rest-client script using the `help` command.
Possible commands can be listed from the rest-client script using the `help` command.
``` bash
``` bash
python3 scripts/rest_client.py help
freqtrade-client help
```
```
``` output
``` output
@@ -192,6 +216,11 @@ blacklist
:param add: List of coins to add (example: "BNB/BTC")
:param add: List of coins to add (example: "BNB/BTC")
cancel_open_order
Cancel open order for trade.
:param trade_id: Cancels open orders for this trade.
count
count
Return the amount of open trades.
Return the amount of open trades.
@@ -274,7 +303,6 @@ reload_config
Reload configuration.
Reload configuration.
show_config
show_config
Returns part of the configuration, relevant for trading operations.
Returns part of the configuration, relevant for trading operations.
start
start
@@ -320,6 +348,7 @@ version
whitelist
whitelist
Show the current whitelist.
Show the current whitelist.
```
```
### Message WebSocket
### Message WebSocket
@@ -389,6 +418,44 @@ Now anytime those types of RPC messages are sent in the bot, you will receive th
}
}
```
```
#### Reverse Proxy setup
When using [Nginx](https://nginx.org/en/docs/), the following configuration is required for WebSockets to work (Note this configuration is incomplete, it's missing some information and can not be used as is):
Please make sure to replace `<freqtrade_listen_ip>` (and the subsequent port) with the IP and Port matching your configuration/setup.
```
http {
map $http_upgrade $connection_upgrade {
default upgrade;
'' close;
}
#...
server {
#...
location / {
proxy_http_version 1.1;
proxy_pass http://<freqtrade_listen_ip>:8080;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $connection_upgrade;
proxy_set_header Host $host;
}
}
}
```
To properly configure your reverse proxy (securely), please consult it's documentation for proxying websockets.
- **Traefik**: Traefik supports websockets out of the box, see the [documentation](https://doc.traefik.io/traefik/)
- **Caddy**: Caddy v2 supports websockets out of the box, see the [documentation](https://caddyserver.com/docs/v2-upgrade#proxy)
!!! Tip "SSL certificates"
You can use tools like certbot to setup ssl certificates to access your bot's UI through encrypted connection by using any fo the above reverse proxies.
While this will protect your data in transit, we do not recommend to run the freqtrade API outside of your private network (VPN, SSH tunnel).
### OpenAPI interface
### OpenAPI interface
To enable the builtin openAPI interface (Swagger UI), specify `"enable_openapi": true` in the api_server configuration.
To enable the builtin openAPI interface (Swagger UI), specify `"enable_openapi": true` in the api_server configuration.
We also recommend to set `datadir` to something identifying downloaded data as sandbox data, to avoid having sandbox data mixed with data from the real exchange.
This can be done by adding the `"datadir"` key to the configuration.
Now, whenever you use this configuration, your data directory will be set to this directory.
---
## You should now be ready to test your sandbox
Ensure Freqtrade logs show the sandbox URL, and trades made are shown in sandbox. Also make sure to select a pair which shows at least some decent value (which very often is BTC/<somestablecoin>).
## Common problems with sandbox exchanges
Sandbox exchange instances often have very low volume, which can cause some problems which usually are not seen on a real exchange instance.
### Old Candles problem
Since Sandboxes often have low volume, candles can be quite old and show no volume.
To disable the error "Outdated history for pair ...", best increase the parameter `"outdated_offset"` to a number that seems realistic for the sandbox you're using.
### Unfilled orders
Sandboxes often have very low volumes - which means that many trades can go unfilled, or can go unfilled for a very long time.
To mitigate this, you can try to match the first order on the opposite orderbook side using the following configuration:
``` jsonc
"order_types": {
"entry": "limit",
"exit": "limit"
// ...
},
"entry_pricing": {
"price_side": "other",
// ...
},
"exit_pricing":{
"price_side": "other",
// ...
},
```
The configuration is similar to the suggested configuration for market orders - however by using limit-orders you can avoid moving the price too much, and you can set the worst price you might get.
@@ -23,10 +23,22 @@ These modes can be configured with these values:
'stoploss_on_exchange_limit_ratio': 0.99
'stoploss_on_exchange_limit_ratio': 0.99
```
```
!!! Note
Stoploss on exchange is only supported for the following exchanges, and not all exchanges support both stop-limit and stop-market.
Stoploss on exchange is only supported for Binance (stop-loss-limit), Huobi (stop-limit), Kraken (stop-loss-market, stop-loss-limit), FTX (stop limit and stop-market) Gateio (stop-limit), and Kucoin (stop-limit and stop-market) as of now.
The Order-type will be ignored if only one mode is available.
<ins>Do not set too low/tight stoploss value if using stop loss on exchange!</ins>
If set to low/tight then you have greater risk of missing fill on the order and stoploss will not work.
| Exchange | stop-loss type |
|----------|-------------|
| Binance | limit |
| Binance Futures | market, limit |
| HTX (former Huobi) | limit |
| kraken | market, limit |
| Gate | limit |
| Okx | limit |
| Kucoin | stop-limit, stop-market|
!!! Note "Tight stoploss"
<ins>Do not set too low/tight stoploss value when using stop loss on exchange!</ins>
If set to low/tight you will have greater risk of missing fill on the order and stoploss will not work.
### stoploss_on_exchange and stoploss_on_exchange_limit_ratio
### stoploss_on_exchange and stoploss_on_exchange_limit_ratio
@@ -52,6 +64,18 @@ The bot cannot do these every 5 seconds (at each iteration), otherwise it would
So this parameter will tell the bot how often it should update the stoploss order. The default value is 60 (1 minute).
So this parameter will tell the bot how often it should update the stoploss order. The default value is 60 (1 minute).
This same logic will reapply a stoploss order on the exchange should you cancel it accidentally.
This same logic will reapply a stoploss order on the exchange should you cancel it accidentally.
### stoploss_price_type
!!! Warning "Only applies to futures"
`stoploss_price_type` only applies to futures markets (on exchanges where it's available).
Freqtrade will perform a validation of this setting on startup, failing to start if an invalid setting for your exchange has been selected.
Supported price types are gonna differs between each exchanges. Please check with your exchange on which price types it supports.
Stoploss on exchange on futures markets can trigger on different price types.
The naming for these prices in exchange terminology often varies, but is usually something around "last" (or "contract price" ), "mark" and "index".
Acceptable values for this setting are `"last"`, `"mark"` and `"index"` - which freqtrade will transfer automatically to the corresponding API type, and place the [stoploss on exchange](#stoploss_on_exchange-and-stoploss_on_exchange_limit_ratio) order correspondingly.
### force_exit
### force_exit
`force_exit` is an optional value, which defaults to the same value as `exit` and is used when sending a `/forceexit` command from Telegram or from the Rest API.
`force_exit` is an optional value, which defaults to the same value as `exit` and is used when sending a `/forceexit` command from Telegram or from the Rest API.
@@ -87,7 +111,7 @@ At this stage the bot contains the following stoploss support modes:
2. Trailing stop loss.
2. Trailing stop loss.
3. Trailing stop loss, custom positive loss.
3. Trailing stop loss, custom positive loss.
4. Trailing stop loss only once the trade has reached a certain offset.
4. Trailing stop loss only once the trade has reached a certain offset.
@@ -185,11 +209,6 @@ You can also keep a static stoploss until the offset is reached, and then trail
If `trailing_only_offset_is_reached = True` then the trailing stoploss is only activated once the offset is reached. Until then, the stoploss remains at the configured `stoploss`.
If `trailing_only_offset_is_reached = True` then the trailing stoploss is only activated once the offset is reached. Until then, the stoploss remains at the configured `stoploss`.
This option can be used with or without `trailing_stop_positive`, but uses `trailing_stop_positive_offset` as offset.
This option can be used with or without `trailing_stop_positive`, but uses `trailing_stop_positive_offset` as offset.
This page explains some advanced concepts available for strategies.
This page explains some advanced concepts available for strategies.
If you're just getting started, please be familiar with the methods described in the [Strategy Customization](strategy-customization.md) documentation and with the [Freqtrade basics](bot-basics.md) first.
If you're just getting started, please familiarize yourself with the [Freqtrade basics](bot-basics.md) and methods described in [Strategy Customization](strategy-customization.md) first.
[Freqtrade basics](bot-basics.md) describes in which sequence each method described below is called, which can be helpful to understand which method to use for your custom needs.
The call sequence of the methods described here is covered under [bot execution logic](bot-basics.md#bot-execution-logic). Those docs are also helpful in deciding which method is most suitable for your customisation needs.
!!! Note
!!! Note
All callback methods described below should only be implemented in a strategy if they are actually used.
Callback methods should *only* be implemented if a strategy uses them.
!!! Tip
!!! Tip
You can get a strategy template containing all below methods by running `freqtrade new-strategy --strategy MyAwesomeStrategy --template advanced`
Start off with a strategy template containing all available callback methods by running `freqtrade new-strategy --strategy MyAwesomeStrategy --template advanced`
## Storing information
## Storing information (Persistent)
Storing information can be accomplished by creating a new dictionary within the strategy class.
Freqtrade allows storing/retrieving user custom information associated with a specific trade in the database.
The name of the variable can be chosen at will, but should be prefixed with `cust_` to avoid naming collisions with predefined strategy variables.
Using a trade object, information can be stored using `trade.set_custom_data(key='my_key', value=my_value)` and retrieved using `trade.get_custom_data(key='my_key')`. Each data entry is associated with a trade and a user supplied key (of type `string`). This means that this can only be used in callbacks that also provide a trade object.
For the data to be able to be stored within the database, freqtrade must serialized the data. This is done by converting the data to a JSON formatted string.
Freqtrade will attempt to reverse this action on retrieval, so from a strategy perspective, this should not be relevant.
The above is a simple example - there are simpler ways to retrieve trade data like entry-adjustments.
!!! Note
It is recommended that simple data types are used `[bool, int, float, str]` to ensure no issues when serializing the data that needs to be stored.
Storing big junks of data may lead to unintended side-effects, like a database becoming big (and as a consequence, also slow).
!!! Warning "Non-serializable data"
If supplied data cannot be serialized a warning is logged and the entry for the specified `key` will contain `None` as data.
??? Note "All attributes"
custom-data has the following accessors through the Trade object (assumed as `trade` below):
*`trade.get_custom_data(key='something', default=0)` - Returns the actual value given in the type provided.
*`trade.get_custom_data_entry(key='something')` - Returns the entry - including metadata. The value is accessible via `.value` property.
*`trade.set_custom_data(key='something', value={'some': 'value'})` - set or update the corresponding key for this trade. Value must be serializable - and we recommend to keep the stored data relatively small.
"value" can be any type (both in setting and receiving) - but must be json serializable.
## Storing information (Non-Persistent)
!!! Warning "Deprecated"
This method of storing information is deprecated and we do advise against using non-persistent storage.
Please use [Persistent Storage](#storing-information-persistent) instead.
It's content has therefore been collapsed.
??? Abstract "Storing information"
Storing information can be accomplished by creating a new dictionary within the strategy class.
The name of the variable can be chosen at will, but should be prefixed with `custom_` to avoid naming collisions with predefined strategy variables.
```python
class AwesomeStrategy(IStrategy):
# Create custom dictionary
# Create custom dictionary
custom_info = {}
custom_info = {}
@@ -32,12 +127,12 @@ class AwesomeStrategy(IStrategy):
The data is not persisted after a bot-restart (or config-reload). Also, the amount of data should be kept smallish (no DataFrames and such), otherwise the bot will start to consume a lot of memory and eventually run out of memory and crash.
The data is not persisted after a bot-restart (or config-reload). Also, the amount of data should be kept smallish (no DataFrames and such), otherwise the bot will start to consume a lot of memory and eventually run out of memory and crash.
!!! Note
!!! Note
If the data is pair-specific, make sure to use pair as one of the keys in the dictionary.
If the data is pair-specific, make sure to use pair as one of the keys in the dictionary.
## Dataframe access
## Dataframe access
@@ -80,7 +175,7 @@ class AwesomeStrategy(IStrategy):
## Enter Tag
## Enter Tag
When your strategy has multiple buy signals, you can name the signal that triggered.
When your strategy has multiple buy signals, you can name the signal that triggered.
Then you can access you buy signal on `custom_exit`
Then you can access your buy signal on `custom_exit`
# Combine all dataframes, and reassign the original dataframe column
merged_frame = pd.concat(frames, axis=1)
dataframe = pd.concat(frames, axis=1)
```
```
Freqtrade does however also counter this by running `dataframe.copy()` on the dataframe right after the `populate_indicators()` method - so performance implications of this should be low to non-existant.
Freqtrade does however also counter this by running `dataframe.copy()` on the dataframe right after the `populate_indicators()` method - so performance implications of this should be low to non-existant.
Called at the start of the bot iteration (one loop).
Called at the start of the bot iteration (one loop).
Might be used to perform pair-independent tasks
Might be used to perform pair-independent tasks
(e.g. gather some remote resource for comparison)
(e.g. gather some remote resource for comparison)
:param current_time: datetime object, containing the current datetime
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
"""
"""
if self.config['runmode'].value in ('live', 'dry_run'):
if self.config['runmode'].value in ('live', 'dry_run'):
@@ -159,8 +162,34 @@ The stoploss price can only ever move upwards - if the stoploss value returned f
The method must return a stoploss value (float / number) as a percentage of the current price.
The method must return a stoploss value (float / number) as a percentage of the current price.
E.g. If the `current_rate` is 200 USD, then returning `0.02` will set the stoploss price 2% lower, at 196 USD.
E.g. If the `current_rate` is 200 USD, then returning `0.02` will set the stoploss price 2% lower, at 196 USD.
During backtesting, `current_rate` (and `current_profit`) are provided against the candle's high (or low for short trades) - while the resulting stoploss is evaluated against the candle's low (or high for short trades).
The absolute value of the return value is used (the sign is ignored), so returning `0.05` or `-0.05` have the same result, a stoploss 5% below the current price.
The absolute value of the return value is used (the sign is ignored), so returning `0.05` or `-0.05` have the same result, a stoploss 5% below the current price.
Returning None will be interpreted as "no desire to change", and is the only safe way to return when you'd like to not modify the stoploss.
Stoploss on exchange works similar to `trailing_stop`, and the stoploss on exchange is updated as configured in `stoploss_on_exchange_interval` ([More details about stoploss on exchange](stoploss.md#stop-loss-on-exchange-freqtrade)).
!!! Note "Use of dates"
All time-based calculations should be done based on `current_time` - using `datetime.now()` or `datetime.utcnow()` is discouraged, as this will break backtesting support.
!!! Tip "Trailing stoploss"
It's recommended to disable `trailing_stop` when using custom stoploss values. Both can work in tandem, but you might encounter the trailing stop to move the price higher while your custom function would not want this, causing conflicting behavior.
### Adjust stoploss after position adjustments
Depending on your strategy, you may encounter the need to adjust the stoploss in both directions after a [position adjustment](#adjust-trade-position).
For this, freqtrade will make an additional call with `after_fill=True` after an order fills, which will allow the strategy to move the stoploss in any direction (also widening the gap between stoploss and current price, which is otherwise forbidden).
!!! Note "backwards compatibility"
This call will only be made if the `after_fill` parameter is part of the function definition of your `custom_stoploss` function.
As such, this will not impact (and with that, surprise) existing, running strategies.
### Custom stoploss examples
The next section will show some examples on what's possible with the custom stoploss function.
Of course, many more things are possible, and all examples can be combined at will.
#### Trailing stop via custom stoploss
To simulate a regular trailing stoploss of 4% (trailing 4% behind the maximum reached price) you would use the following very simple method:
To simulate a regular trailing stoploss of 4% (trailing 4% behind the maximum reached price) you would use the following very simple method:
@@ -176,7 +205,8 @@ class AwesomeStrategy(IStrategy):
Custom stoploss logic, returning the new distance relative to current_rate (as ratio).
Custom stoploss logic, returning the new distance relative to current_rate (as ratio).
e.g. returning -0.05 would create a stoploss 5% below current_rate.
e.g. returning -0.05 would create a stoploss 5% below current_rate.
@@ -184,7 +214,7 @@ class AwesomeStrategy(IStrategy):
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
When not implemented by a strategy, returns the initial stoploss value
When not implemented by a strategy, returns the initial stoploss value.
Only called when use_custom_stoploss is set to True.
Only called when use_custom_stoploss is set to True.
:param pair: Pair that's currently analyzed
:param pair: Pair that's currently analyzed
@@ -192,25 +222,13 @@ class AwesomeStrategy(IStrategy):
:param current_time: datetime object, containing the current datetime
:param current_time: datetime object, containing the current datetime
:param current_rate: Rate, calculated based on pricing settings in exit_pricing.
:param current_rate: Rate, calculated based on pricing settings in exit_pricing.
:param current_profit: Current profit (as ratio), calculated based on current_rate.
:param current_profit: Current profit (as ratio), calculated based on current_rate.
:param after_fill: True if the stoploss is called after the order was filled.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return float: New stoploss value, relative to the currentrate
:return float: New stoploss value, relative to the current_rate
"""
"""
return -0.04
return -0.04
```
```
Stoploss on exchange works similar to `trailing_stop`, and the stoploss on exchange is updated as configured in `stoploss_on_exchange_interval` ([More details about stoploss on exchange](stoploss.md#stop-loss-on-exchange-freqtrade)).
!!! Note "Use of dates"
All time-based calculations should be done based on `current_time` - using `datetime.now()` or `datetime.utcnow()` is discouraged, as this will break backtesting support.
!!! Tip "Trailing stoploss"
It's recommended to disable `trailing_stop` when using custom stoploss values. Both can work in tandem, but you might encounter the trailing stop to move the price higher while your custom function would not want this, causing conflicting behavior.
### Custom stoploss examples
The next section will show some examples on what's possible with the custom stoploss function.
Of course, many more things are possible, and all examples can be combined at will.
#### Time based trailing stop
#### Time based trailing stop
Use the initial stoploss for the first 60 minutes, after this change to 10% trailing stoploss, and after 2 hours (120 minutes) we use a 5% trailing stoploss.
Use the initial stoploss for the first 60 minutes, after this change to 10% trailing stoploss, and after 2 hours (120 minutes) we use a 5% trailing stoploss.
@@ -226,14 +244,45 @@ class AwesomeStrategy(IStrategy):
#### Time based trailing stop with after-fill adjustments
Use the initial stoploss for the first 60 minutes, after this change to 10% trailing stoploss, and after 2 hours (120 minutes) we use a 5% trailing stoploss.
If an additional order fills, set stoploss to -10% below the new `open_rate` ([Averaged across all entries](#position-adjust-calculations)).
# return maximum stoploss value, keeping current stoploss price unchanged
# return maximum stoploss value, keeping current stoploss price unchanged
return 1
return None
```
```
See [Dataframe access](strategy-advanced.md#dataframe-access) for more information about dataframe use in strategy callbacks.
See [Dataframe access](strategy-advanced.md#dataframe-access) for more information about dataframe use in strategy callbacks.
@@ -361,15 +414,89 @@ See [Dataframe access](strategy-advanced.md#dataframe-access) for more informati
#### Stoploss relative to open price
#### Stoploss relative to open price
Stoploss values returned from `custom_stoploss()` always specify a percentage relative to `current_rate`. In order to set a stoploss relative to the *open* price, we need to use `current_profit` to calculate what percentage relative to the `current_rate` will give you the same result as if the percentage was specified from the open price.
Stoploss values returned from `custom_stoploss()` must specify a percentage relative to `current_rate`, but sometimes you may want to specify a stoploss relative to the _entry_ price instead.
`stoploss_from_open()` is a helper function to calculate a stoploss value that can be returned from `custom_stoploss` which will be equivalent to the desired trade profit above the entry point.
The helper function [`stoploss_from_open()`](strategy-customization.md#stoploss_from_open) can be used to convert from an open price relative stop, to a current price relative stop which can be returned from `custom_stoploss()`.
??? Example "Returning a stoploss relative to the open price from the customstoploss function"
Say the open price was $100, and `current_price` is $121 (`current_profit` will be `0.21`).
If we want a stop price at 7% above the open price we can call `stoploss_from_open(0.07, current_profit, False)` which will return `0.1157024793`. 11.57% below $121 is $107, which is the same as 7% above $100.
This function will consider leverage - so at 10x leverage, the actual stoploss would be 0.7% above $100 (0.7% * 10x = 7%).
``` python
from datetime import datetime
from freqtrade.persistence import Trade
from freqtrade.strategy import IStrategy, stoploss_from_open
Full examples can be found in the [Custom stoploss](strategy-advanced.md#custom-stoploss) section of the Documentation.
!!! Note
Providing invalid input to `stoploss_from_open()` may produce "CustomStoploss function did not return valid stoploss" warnings.
This may happen if `current_profit` parameter is below specified `open_relative_stop`. Such situations may arise when closing trade
is blocked by `confirm_trade_exit()` method. Warnings can be solved by never blocking stop loss sells by checking `exit_reason` in
`confirm_trade_exit()`, or by using `return stoploss_from_open(...) or 1` idiom, which will request to not change stop loss when
`current_profit <open_relative_stop`.
#### Stoploss percentage from absolute price
#### Stoploss percentage from absolute price
Stoploss values returned from `custom_stoploss()` always specify a percentage relative to `current_rate`. In order to set a stoploss at specified absolute price level, we need to use `stop_rate` to calculate what percentage relative to the `current_rate` will give you the same result as if the percentage was specified from the open price.
Stoploss values returned from `custom_stoploss()` always specify a percentage relative to `current_rate`. In order to set a stoploss at specified absolute price level, we need to use `stop_rate` to calculate what percentage relative to the `current_rate` will give you the same result as if the percentage was specified from the open price.
The helper function [`stoploss_from_absolute()`](strategy-customization.md#stoploss_from_absolute) can be used to convert from an absolute price, to a current price relative stop which can be returned from `custom_stoploss()`.
The helper function `stoploss_from_absolute()` can be used to convert from an absolute price, to a current price relative stop which can be returned from `custom_stoploss()`.
??? Example "Returning a stoploss using absolute price from the custom stoploss function"
If we want to trail a stop price at 2xATR below current price we can call `stoploss_from_absolute(current_rate+(side* candle['atr'] *2),current_rate,is_short=trade.is_short,leverage=trade.leverage)`.
For futures, we need to adjust the direction (up or down), as well as adjust for leverage, since the [`custom_stoploss`](strategy-callbacks.md#custom-stoploss) callback returns the ["risk for this trade"](stoploss.md#stoploss-and-leverage) - not the relative price movement.
``` python
from datetime import datetime
from freqtrade.persistence import Trade
from freqtrade.strategy import IStrategy, stoploss_from_absolute, timeframe_to_prev_date
@@ -384,6 +511,9 @@ Each of these methods are called right before placing an order on the exchange.
!!! Note
!!! Note
If your custom pricing function return None or an invalid value, price will fall back to `proposed_rate`, which is based on the regular pricing configuration.
If your custom pricing function return None or an invalid value, price will fall back to `proposed_rate`, which is based on the regular pricing configuration.
!!! Note
Using custom_entry_price, the Trade object will be available as soon as the first entry order associated with the trade is created, for the first entry, `trade` parameter value will be `None`.
### Custom order entry and exit price example
### Custom order entry and exit price example
``` python
``` python
@@ -394,7 +524,7 @@ class AwesomeStrategy(IStrategy):
@@ -631,26 +761,38 @@ The `position_adjustment_enable` strategy property enables the usage of `adjust_
For performance reasons, it's disabled by default and freqtrade will show a warning message on startup if enabled.
For performance reasons, it's disabled by default and freqtrade will show a warning message on startup if enabled.
`adjust_trade_position()` can be used to perform additional orders, for example to manage risk with DCA (Dollar Cost Averaging) or to increase or decrease positions.
`adjust_trade_position()` can be used to perform additional orders, for example to manage risk with DCA (Dollar Cost Averaging) or to increase or decrease positions.
`max_entry_position_adjustment` property is used to limit the number of additional buys per trade (on top of the first buy) that the bot can execute. By default, the value is -1 which means the bot have no limit on number of adjustment buys.
The strategy is expected to return a stake_amount (in stake currency) between `min_stake` and `max_stake` if and when an additional buy order should be made (position is increased).
If there are not enough funds in the wallet (the return value is above `max_stake`) then the signal will be ignored.
Additional orders also result in additional fees and those orders don't count towards `max_open_trades`.
Additional orders also result in additional fees and those orders don't count towards `max_open_trades`.
This callback is **not** called when there is an open order (either buy or sell) waiting for execution.
This callback is **not** called when there is an open order (either buy or sell) waiting for execution.
`adjust_trade_position()` is called very frequently for the duration of a trade, so you must keep your implementation as performant as possible.
`adjust_trade_position()` is called very frequently for the duration of a trade, so you must keep your implementation as performant as possible.
Additional Buys are ignored once you have reached the maximum amount of extra buys that you have set on `max_entry_position_adjustment`, but the callback is called anyway looking for partial exits.
Position adjustments will always be applied in the direction of the trade, so a positive value will always increase your position (negative values will decrease your position), no matter if it's a long or short trade.
Adjustment orders can be assigned with a tag by returning a 2 element Tuple, with the first element being the adjustment amount, and the 2nd element the tag (e.g. `return250,'increase_favorable_conditions'`).
Position adjustments will always be applied in the direction of the trade, so a positive value will always increase your position (negative values will decrease your position), no matter if it's a long or short trade. Modifications to leverage are not possible, and the stake-amount is assumed to be before applying leverage.
Modifications to leverage are not possible, and the stake-amount returned is assumed to be before applying leverage.
### Increase position
The strategy is expected to return a positive **stake_amount** (in stake currency) between `min_stake` and `max_stake` if and when an additional entry order should be made (position is increased -> buy order for long trades, sell order for short trades).
If there are not enough funds in the wallet (the return value is above `max_stake`) then the signal will be ignored.
`max_entry_position_adjustment` property is used to limit the number of additional entries per trade (on top of the first entry order) that the bot can execute. By default, the value is -1 which means the bot have no limit on number of adjustment entries.
Additional entries are ignored once you have reached the maximum amount of extra entries that you have set on `max_entry_position_adjustment`, but the callback is called anyway looking for partial exits.
### Decrease position
The strategy is expected to return a negative stake_amount (in stake currency) for a partial exit.
Returning the full owned stake at that point (`-trade.stake_amount`) results in a full exit.
Returning a value more than the above (so remaining stake_amount would become negative) will result in the bot ignoring the signal.
!!! Note "About stake size"
!!! Note "About stake size"
Using fixed stake size means it will be the amount used for the first order, just like without position adjustment.
Using fixed stake size means it will be the amount used for the first order, just like without position adjustment.
If you wish to buy additional orders with DCA, then make sure to leave enough funds in the wallet for that.
If you wish to buy additional orders with DCA, then make sure to leave enough funds in the wallet for that.
Using 'unlimited' stake amount with DCA orders requires you to also implement the `custom_stake_amount()` callback to avoid allocating all funds to the initial order.
Using 'unlimited' stake amount with DCA orders requires you to also implement the `custom_stake_amount()` callback to avoid allocating all funds to the initial order.
!!! Warning
!!! Warning "Stoploss calculation"
Stoploss is still calculated from the initial opening price, not averaged price.
Stoploss is still calculated from the initial opening price, not averaged price.
Regular stoploss rules still apply (cannot move down).
Regular stoploss rules still apply (cannot move down).
@@ -658,6 +800,12 @@ Position adjustments will always be applied in the direction of the trade, so a
!!! Warning "Backtesting"
!!! Warning "Backtesting"
During backtesting this callback is called for each candle in `timeframe` or `timeframe_detail`, so run-time performance will be affected.
During backtesting this callback is called for each candle in `timeframe` or `timeframe_detail`, so run-time performance will be affected.
This can also cause deviating results between live and backtesting, since backtesting can adjust the trade only once per candle, whereas live could adjust the trade multiple times per candle.
!!! Warning "Performance with many position adjustments"
Position adjustments can be a good approach to increase a strategy's output - but it can also have drawbacks if using this feature extensively.
Each of the orders will be attached to the trade object for the duration of the trade - hence increasing memory usage.
Trades with long duration and 10s or even 100ds of position adjustments are therefore not recommended, and should be closed at regular intervals to not affect performance.
``` python
``` python
from freqtrade.persistence import Trade
from freqtrade.persistence import Trade
@@ -692,11 +840,12 @@ class DigDeeperStrategy(IStrategy):
* Sell 150@14\$ -> Avg price: 10\$, total realized profit 950\$, 40% <- *This will be the last "Exit" message*
The total profit for this trade was 950$ on a 3350$ investment (`100@8$+100@9$+150@11$`). As such - the final relative profit is 28.35% (`950/3350`).
The total profit for this trade was 950$ on a 3350$ investment (`100@8$+100@9$+150@11$`). As such - the final relative profit is 28.35% (`950/3350`).
@@ -789,6 +940,8 @@ Returning any other price will cancel the existing order, and replace it with a
The trade open-date (`trade.open_date_utc`) will remain at the time of the very first order placed.
The trade open-date (`trade.open_date_utc`) will remain at the time of the very first order placed.
Please make sure to be aware of this - and eventually adjust your logic in other callbacks to account for this, and use the date of the first filled order instead.
Please make sure to be aware of this - and eventually adjust your logic in other callbacks to account for this, and use the date of the first filled order instead.
If the cancellation of the original order fails, then the order will not be replaced - though the order will most likely have been canceled on exchange. Having this happen on initial entries will result in the deletion of the order, while on position adjustment orders, it'll result in the trade size remaining as is.
!!! Warning "Regular timeout"
!!! Warning "Regular timeout"
Entry `unfilledtimeout` mechanism (as well as `check_entry_timeout()`) takes precedence over this.
Entry `unfilledtimeout` mechanism (as well as `check_entry_timeout()`) takes precedence over this.
Entry Orders that are cancelled via the above methods will not have this callback called. Be sure to update timeout values to match your expectations.
Entry Orders that are cancelled via the above methods will not have this callback called. Be sure to update timeout values to match your expectations.
@@ -826,7 +979,7 @@ class AwesomeStrategy(IStrategy):
"""
"""
# Limit orders to use and follow SMA200 as price target for the first 10 minutes since entry trigger for BTC/USDT pair.
# Limit orders to use and follow SMA200 as price target for the first 10 minutes since entry trigger for BTC/USDT pair.
if pair == 'BTC/USDT' and entry_tag == 'long_sma200' and side == 'long' and (current_time - timedelta(minutes=10) > trade.open_date_utc:
if pair == 'BTC/USDT' and entry_tag == 'long_sma200' and side == 'long' and (current_time - timedelta(minutes=10)) > trade.open_date_utc:
# just cancel the order if it has been filled more than half of the amount
# just cancel the order if it has been filled more than half of the amount
if order.filled > order.remaining:
if order.filled > order.remaining:
return None
return None
@@ -870,3 +1023,33 @@ class AwesomeStrategy(IStrategy):
All profit calculations include leverage. Stoploss / ROI also include leverage in their calculation.
All profit calculations include leverage. Stoploss / ROI also include leverage in their calculation.
Defining a stoploss of 10% at 10x leverage would trigger the stoploss with a 1% move to the downside.
Defining a stoploss of 10% at 10x leverage would trigger the stoploss with a 1% move to the downside.
## Order filled Callback
The `order_filled()` callback may be used to perform specific actions based on the current trade state after an order is filled.
It will be called independent of the order type (entry, exit, stoploss or position adjustment).
Assuming that your strategy needs to store the high value of the candle at trade entry, this is possible with this callback as the following example show.
Additional technical libraries can be installed as necessary, or custom indicators may be written / invented by the strategy author.
Additional technical libraries can be installed as necessary, or custom indicators may be written / invented by the strategy author.
@@ -168,7 +168,9 @@ Most indicators have an instable startup period, in which they are either not av
To account for this, the strategy can be assigned the `startup_candle_count` attribute.
To account for this, the strategy can be assigned the `startup_candle_count` attribute.
This should be set to the maximum number of candles that the strategy requires to calculate stable indicators. In the case where a user includes higher timeframes with informative pairs, the `startup_candle_count` does not necessarily change. The value is the maximum period (in candles) that any of the informatives timeframes need to compute stable indicators.
This should be set to the maximum number of candles that the strategy requires to calculate stable indicators. In the case where a user includes higher timeframes with informative pairs, the `startup_candle_count` does not necessarily change. The value is the maximum period (in candles) that any of the informatives timeframes need to compute stable indicators.
In this example strategy, this should be set to 100 (`startup_candle_count = 100`), since the longest needed history is 100 candles.
You can use [recursive-analysis](recursive-analysis.md) to check and find the correct `startup_candle_count` to be used.
In this example strategy, this should be set to 400 (`startup_candle_count = 400`), since the minimum needed history for ema100 calculation to make sure the value is correct is 400 candles.
Assuming `startup_candle_count` is set to 100, backtesting knows it needs 100 candles to generate valid buy signals. It will load data from `20190101 - (100 * 5m)` - which is ~2018-12-31 15:30:00.
Assuming `startup_candle_count` is set to 400, backtesting knows it needs 400 candles to generate valid buy signals. It will load data from `20190101 - (400 * 5m)` - which is ~2018-12-30 11:40:00.
If this data is available, indicators will be calculated with this extended timerange. The instable startup period (up to 2019-01-01 00:00:00) will then be removed before starting backtesting.
If this data is available, indicators will be calculated with this extended timerange. The instable startup period (up to 2019-01-01 00:00:00) will then be removed before starting backtesting.
!!! Note
!!! Note
If data for the startup period is not available, then the timerange will be adjusted to account for this startup period - so Backtesting would start at 2019-01-01 08:30:00.
If data for the startup period is not available, then the timerange will be adjusted to account for this startup period - so Backtesting would start at 2019-01-02 09:20:00.
Edit the method `populate_exit_trend()` into your strategy file to update your exit strategy.
Edit the method `populate_exit_trend()` into your strategy file to update your exit strategy.
The exit-signal is only used for exits if `use_exit_signal` is set to true in the configuration.
The exit-signal can be suppressed by setting `use_exit_signal` to false in the configuration or strategy.
`use_exit_signal` will not influence [signal collision rules](#colliding-signals) - which will still apply and can prevent entries.
`use_exit_signal` will not influence [signal collision rules](#colliding-signals) - which will still apply and can prevent entries.
It's important to always return the dataframe without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected.
It's important to always return the dataframe without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected.
@@ -342,16 +344,12 @@ The above configuration would therefore mean:
The calculation does include fees.
The calculation does include fees.
To disable ROI completely, set it to an insanely high number:
To disable ROI completely, set it to an empty dictionary:
```python
```python
minimal_roi = {
minimal_roi = {}
"0": 100
}
```
```
While technically not completely disabled, this would exit once the trade reaches 10000% Profit.
To use times based on candle duration (timeframe), the following snippet can be handy.
To use times based on candle duration (timeframe), the following snippet can be handy.
This will allow you to change the timeframe for the strategy, and ROI times will still be set as candles (e.g. after 3 candles ...)
This will allow you to change the timeframe for the strategy, and ROI times will still be set as candles (e.g. after 3 candles ...)
@@ -364,11 +362,16 @@ class AwesomeStrategy(IStrategy):
timeframe_mins = timeframe_to_minutes(timeframe)
timeframe_mins = timeframe_to_minutes(timeframe)
minimal_roi = {
minimal_roi = {
"0": 0.05, # 5% for the first 3 candles
"0": 0.05, # 5% for the first 3 candles
str(timeframe_mins * 3)): 0.02, # 2% after 3 candles
str(timeframe_mins * 3): 0.02, # 2% after 3 candles
str(timeframe_mins * 6)): 0.01, # 1% After 6 candles
str(timeframe_mins * 6): 0.01, # 1% After 6 candles
}
}
```
```
??? info "Orders that don't fill immediately"
`minimal_roi` will take the `trade.open_date` as reference, which is the time the trade was initialized / the first order for this trade was placed.
This will also hold true for limit orders that don't fill immediately (usually in combination with "off-spot" prices through `custom_entry_price()`), as well as for cases where the initial order is replaced through `adjust_entry_price()`.
The time used will still be from the initial `trade.open_date` (when the initial order was first placed), not from the newly placed order date.
### Stoploss
### Stoploss
Setting a stoploss is highly recommended to protect your capital from strong moves against you.
Setting a stoploss is highly recommended to protect your capital from strong moves against you.
@@ -446,15 +449,17 @@ A full sample can be found [in the DataProvider section](#complete-data-provider
??? Note "Alternative candle types"
??? Note "Alternative candle types"
Informative_pairs can also provide a 3rd tuple element defining the candle type explicitly.
Informative_pairs can also provide a 3rd tuple element defining the candle type explicitly.
Availability of alternative candle-types will depend on the trading-mode and the exchange. Details about this can be found in the exchange documentation.
Availability of alternative candle-types will depend on the trading-mode and the exchange.
In general, spot pairs cannot be used in futures markets, and futures candles can't be used as informative pairs for spot bots.
Details about this may vary, if they do, this can be found in the exchange documentation.
``` python
``` python
def informative_pairs(self):
def informative_pairs(self):
return [
return [
("ETH/USDT", "5m", ""), # Uses default candletype, depends on trading_mode
("BTC/TUSD", "15m", "mark"), # Uses mark candles (only bots with `trading_mode=futures`)
]
]
```
```
***
***
@@ -486,17 +491,18 @@ for more information.
:param timeframe: Informative timeframe. Must always be equal or higher than strategy timeframe.
:param timeframe: Informative timeframe. Must always be equal or higher than strategy timeframe.
:param asset: Informative asset, for example BTC, BTC/USDT, ETH/BTC. Do not specify to use
:param asset: Informative asset, for example BTC, BTC/USDT, ETH/BTC. Do not specify to use
current pair.
current pair. Also supports limited pair format strings (see below)
:param fmt: Column format (str) or column formatter (callable(name, asset, timeframe)). When not
:param fmt: Column format (str) or column formatter (callable(name, asset, timeframe)). When not
specified, defaults to:
specified, defaults to:
* {base}_{quote}_{column}_{timeframe} if asset is specified.
* {base}_{quote}_{column}_{timeframe} if asset is specified.
* {column}_{timeframe} if asset is not specified.
* {column}_{timeframe} if asset is not specified.
Format string supports these format variables:
Pair format supports these format variables:
* {asset} - full name of the asset, for example 'BTC/USDT'.
* {base} - base currency in lower case, for example 'eth'.
* {base} - base currency in lower case, for example 'eth'.
* {BASE} - same as {base}, except in upper case.
* {BASE} - same as {base}, except in upper case.
* {quote} - quote currency in lower case, for example 'usdt'.
* {quote} - quote currency in lower case, for example 'usdt'.
* {QUOTE} - same as {quote}, except in upper case.
* {QUOTE} - same as {quote}, except in upper case.
Format string additionally supports this variables.
* {asset} - full name of the asset, for example 'BTC/USDT'.
* {column} - name of dataframe column.
* {column} - name of dataframe column.
* {timeframe} - timeframe of informative dataframe.
* {timeframe} - timeframe of informative dataframe.
:param ffill: ffill dataframe after merging informative pair.
:param ffill: ffill dataframe after merging informative pair.
@@ -588,6 +594,67 @@ for more information.
will overwrite previously defined method and not produce any errors due to limitations of Python programming language. In such cases you will find that indicators
will overwrite previously defined method and not produce any errors due to limitations of Python programming language. In such cases you will find that indicators
created in earlier-defined methods are not available in the dataframe. Carefully review method names and make sure they are unique!
created in earlier-defined methods are not available in the dataframe. Carefully review method names and make sure they are unique!
### *merge_informative_pair()*
This method helps you merge an informative pair to a regular dataframe without lookahead bias.
It's there to help you merge the dataframe in a safe and consistent way.
Options:
- Rename the columns for you to create unique columns
- Merge the dataframe without lookahead bias
- Forward-fill (optional)
For a full sample, please refer to the [complete data provider example](#complete-data-provider-sample) below.
All columns of the informative dataframe will be available on the returning dataframe in a renamed fashion:
!!! Example "Column renaming"
Assuming `inf_tf = '1d'` the resulting columns will be:
``` python
'date', 'open', 'high', 'low', 'close', 'rsi' # from the original dataframe
'date_1d', 'open_1d', 'high_1d', 'low_1d', 'close_1d', 'rsi_1d' # from the informative dataframe
```
??? Example "Column renaming - 1h"
Assuming `inf_tf = '1h'` the resulting columns will be:
``` python
'date', 'open', 'high', 'low', 'close', 'rsi' # from the original dataframe
'date_1h', 'open_1h', 'high_1h', 'low_1h', 'close_1h', 'rsi_1h' # from the informative dataframe
```
??? Example "Custom implementation"
A custom implementation for this is possible, and can be done as follows:
``` python
# Shift date by 1 candle
# This is necessary since the data is always the "open date"
# and a 15m candle starting at 12:15 should not know the close of the 1h candle from 12:00 to 13:00
# FFill to have the 1d value available in every row throughout the day.
# Without this, comparisons would only work once per day.
dataframe = dataframe.ffill()
```
!!! Warning "Informative timeframe < timeframe"
Using informative timeframes smaller than the dataframe timeframe is not recommended with this method, as it will not use any of the additional information this would provide.
To use the more detailed information properly, more advanced methods should be applied (which are out of scope for freqtrade documentation, as it'll depend on the respective need).
## Additional data (DataProvider)
## Additional data (DataProvider)
The strategy provides access to the `DataProvider`. This allows you to get additional data to use in your strategy.
The strategy provides access to the `DataProvider`. This allows you to get additional data to use in your strategy.
Be careful when using dataprovider in backtesting. `historic_ohlcv()` (and `get_pair_dataframe()`
In backtesting, `dp.get_pair_dataframe()` behavior differs depending on where it's called.
for the backtesting runmode) provides the full time-range in one go,
Within `populate_*()` methods, `dp.get_pair_dataframe()` returns the full timerange. Please make sure to not "look into the future" to avoid surprises when running in dry/live mode.
so please be aware of it and make sure to not "look into the future" to avoid surprises when running in dry/live mode.
Within [callbacks](strategy-callbacks.md), you'll get the full timerange up to the current (simulated) candle.
### *get_analyzed_dataframe(pair, timeframe)*
### *get_analyzed_dataframe(pair, timeframe)*
@@ -670,13 +737,13 @@ It can also be used in specific callbacks to get the signal that caused the acti
# FFill to have the 1d value available in every row throughout the day.
# Without this, comparisons would only work once per day.
dataframe = dataframe.ffill()
```
!!! Warning "Informative timeframe < timeframe"
Using informative timeframes smaller than the dataframe timeframe is not recommended with this method, as it will not use any of the additional information this would provide.
To use the more detailed information properly, more advanced methods should be applied (which are out of scope for freqtrade documentation, as it'll depend on the respective need).
***
### *stoploss_from_open()*
Stoploss values returned from `custom_stoploss` must specify a percentage relative to `current_rate`, but sometimes you may want to specify a stoploss relative to the open price instead. `stoploss_from_open()` is a helper function to calculate a stoploss value that can be returned from `custom_stoploss` which will be equivalent to the desired percentage above the open price.
??? Example "Returning a stoploss relative to the open price from the custom stoploss function"
Say the open price was $100, and `current_price` is $121 (`current_profit` will be `0.21`).
If we want a stop price at 7% above the open price we can call `stoploss_from_open(0.07, current_profit, False)` which will return `0.1157024793`. 11.57% below $121 is $107, which is the same as 7% above $100.
``` python
from datetime import datetime
from freqtrade.persistence import Trade
from freqtrade.strategy import IStrategy, stoploss_from_open
Full examples can be found in the [Custom stoploss](strategy-advanced.md#custom-stoploss) section of the Documentation.
!!! Note
Providing invalid input to `stoploss_from_open()` may produce "CustomStoploss function did not return valid stoploss" warnings.
This may happen if `current_profit` parameter is below specified `open_relative_stop`. Such situations may arise when closing trade
is blocked by `confirm_trade_exit()` method. Warnings can be solved by never blocking stop loss sells by checking `exit_reason` in
`confirm_trade_exit()`, or by using `return stoploss_from_open(...) or 1` idiom, which will request to not change stop loss when
`current_profit <open_relative_stop`.
### *stoploss_from_absolute()*
In some situations it may be confusing to deal with stops relative to current rate. Instead, you may define a stoploss level using an absolute price.
??? Example "Returning a stoploss using absolute price from the custom stoploss function"
If we want to trail a stop price at 2xATR below current price we can call `stoploss_from_absolute(current_rate-(candle['atr']*2),current_rate,is_short=trade.is_short)`.
``` python
from datetime import datetime
from freqtrade.persistence import Trade
from freqtrade.strategy import IStrategy, stoploss_from_absolute
The strategy provides access to the `Wallets` object. This contains the current balances on the exchange.
The strategy provides access to the `wallets` object. This contains the current balances on the exchange.
!!! Note
!!! Note "Backtesting / Hyperopt"
Wallets is not available during backtesting / hyperopt.
Wallets behaves differently depending on the function it's called.
Within `populate_*()` methods, it'll return the full wallet as configured.
Within [callbacks](strategy-callbacks.md), you'll get the wallet state corresponding to the actual simulated wallet at that point in the simulation process.
Please always check if `Wallets` is available to avoid failures during backtesting.
Please always check if `wallets` is available to avoid failures during backtesting.
``` python
``` python
if self.wallets:
if self.wallets:
@@ -987,38 +918,18 @@ from freqtrade.persistence import Trade
The following example queries for the current pair and trades from today, however other filters can easily be added.
The following example queries for the current pair and trades from today, however other filters can easily be added.
``` python
``` python
if self.config['runmode'].value in ('live', 'dry_run'):
# Analyze the conditions you'd like to lock the pair .... will probably be different for every strategy
# Analyze the conditions you'd like to lock the pair .... will probably be different for every strategy
sumprofit = sum(trade.close_profit for trade in trades)
sumprofit = sum(trade.close_profit for trade in trades)
if sumprofit < 0:
if sumprofit < 0:
@@ -1099,11 +1009,15 @@ This is a common pain-point, which can cause huge differences between backtestin
The following lists some common patterns which should be avoided to prevent frustration:
The following lists some common patterns which should be avoided to prevent frustration:
- don't use `shift(-1)`. This uses data from the future, which is not available.
- don't use `shift(-1)` or other negative values. This uses data from the future in backtesting, which is not available in dry or live modes.
- don't use `.iloc[-1]` or any other absolute position in the dataframe, this will be different between dry-run and backtesting.
- don't use `.iloc[-1]` or any other absolute position in the dataframe within `populate_` functions, as this will be different between dry-run and backtesting. Absolute `iloc` indexing is safe to use in callbacks however - see [Strategy Callbacks](strategy-callbacks.md).
- don't use `dataframe['volume'].mean()`. This uses the full DataFrame for backtesting, including data from the future. Use `dataframe['volume'].rolling(<window>).mean()` instead
- don't use `dataframe['volume'].mean()`. This uses the full DataFrame for backtesting, including data from the future. Use `dataframe['volume'].rolling(<window>).mean()` instead
- don't use `.resample('1h')`. This uses the left border of the interval, so moves data from an hour to the start of the hour. Use `.resample('1h', label='right')` instead.
- don't use `.resample('1h')`. This uses the left border of the interval, so moves data from an hour to the start of the hour. Use `.resample('1h', label='right')` instead.
!!! Tip "Identifying problems"
You may also want to check the 2 helper commands [lookahead-analysis](lookahead-analysis.md) and [recursive-analysis](recursive-analysis.md), which can each help you figure out problems with your strategy in different ways.
Please treat them as what they are - helpers to identify most common problems. A negative result of each does not guarantee that there's none of the above errors included.
### Colliding signals
### Colliding signals
When conflicting signals collide (e.g. both `'enter_long'` and `'exit_long'` are 1), freqtrade will do nothing and ignore the entry signal. This will avoid trades that enter, and exit immediately. Obviously, this can potentially lead to missed entries.
When conflicting signals collide (e.g. both `'enter_long'` and `'exit_long'` are 1), freqtrade will do nothing and ignore the entry signal. This will avoid trades that enter, and exit immediately. Obviously, this can potentially lead to missed entries.
Debugging a strategy can be time-consuming. Freqtrade offers helper functions to visualize raw data.
Debugging a strategy can be time-consuming. Freqtrade offers helper functions to visualize raw data.
The following assumes you work with SampleStrategy, data for 5m timeframe from Binance and have downloaded them into the data directory in the default location.
The following assumes you work with SampleStrategy, data for 5m timeframe from Binance and have downloaded them into the data directory in the default location.
Please follow the [documentation](https://www.freqtrade.io/en/stable/data-download/) for more details.
## Setup
## Setup
### Change Working directory to repository root
```python
```python
importos
frompathlibimportPath
frompathlibimportPath
# Change directory
# Modify this cell to insure that the output shows the correct path.
# Define all paths relative to the project root shown in the cell output
project_root="somedir/freqtrade"
i=0
try:
os.chdir(project_root)
assertPath('LICENSE').is_file()
except:
whilei<4and(notPath('LICENSE').is_file()):
os.chdir(Path(Path.cwd(),'../'))
i+=1
project_root=Path.cwd()
print(Path.cwd())
```
### Configure Freqtrade environment
```python
fromfreqtrade.configurationimportConfiguration
fromfreqtrade.configurationimportConfiguration
# Customize these according to your needs.
# Customize these according to your needs.
@@ -15,14 +40,14 @@ from freqtrade.configuration import Configuration
# Initialize empty configuration object
# Initialize empty configuration object
config=Configuration.from_files([])
config=Configuration.from_files([])
# Optionally (recommended), use existing configuration file
# Optionally (recommended), use existing configuration file
*`ignore_buying_expired_candle_after` -> moved to root level instead of "ask_strategy/exit_pricing"
* Terminology changes
* Terminology changes
* Sell reasons changed to reflect the new naming of "exit" instead of sells. Be careful in your strategy if you're using `exit_reason` checks and eventually update your strategy.
* Sell reasons changed to reflect the new naming of "exit" instead of sells. Be careful in your strategy if you're using `exit_reason` checks and eventually update your strategy.
*`sell_signal` -> `exit_signal`
*`sell_signal` -> `exit_signal`
*`custom_sell` -> `custom_exit`
*`custom_sell` -> `custom_exit`
*`force_sell` -> `force_exit`
*`force_sell` -> `force_exit`
*`emergency_sell` -> `emergency_exit`
*`emergency_sell` -> `emergency_exit`
* Order pricing
*`bid_strategy` -> `entry_pricing`
*`ask_strategy` -> `exit_pricing`
*`ask_last_balance` -> `price_last_balance`
*`bid_last_balance` -> `price_last_balance`
* Webhook terminology changed from "sell" to "exit", and from "buy" to entry
* Webhook terminology changed from "sell" to "exit", and from "buy" to entry
@@ -443,6 +450,7 @@ Please refer to the [pricing documentation](configuration.md#prices-used-for-ord
"use_order_book": true,
"use_order_book": true,
"order_book_top": 1,
"order_book_top": 1,
"bid_last_balance": 0.0
"bid_last_balance": 0.0
"ignore_buying_expired_candle_after": 120
}
}
}
}
```
```
@@ -466,6 +474,341 @@ after:
"use_order_book": true,
"use_order_book": true,
"order_book_top": 1,
"order_book_top": 1,
"price_last_balance": 0.0
"price_last_balance": 0.0
}
},
"ignore_buying_expired_candle_after": 120
}
}
```
```
## FreqAI strategy
The `populate_any_indicators()` method has been split into `feature_engineering_expand_all()`, `feature_engineering_expand_basic()`, `feature_engineering_standard()` and`set_freqai_targets()`.
For each new function, the pair (and timeframe where necessary) will be automatically added to the column.
As such, the definition of features becomes much simpler with the new logic.
For a full explanation of each method, please go to the corresponding [freqAI documentation page](freqai-feature-engineering.md#defining-the-features)
If you have created your own custom `IFreqaiModel` with a custom `train()`/`predict()` function, *and* you still rely on `data_cleaning_train/predict()`, then you will need to migrate to the new pipeline. If your model does *not* rely on `data_cleaning_train/predict()`, then you do not need to worry about this migration. That means that this migration guide is relevant for a very small percentage of power-users. If you stumbled upon this guide by mistake, feel free to inquire in depth about your problem in the Freqtrade discord server.
The conversion involves first removing `data_cleaning_train/predict()` and replacing them with a `define_data_pipeline()` and `define_label_pipeline()` function to your `IFreqaiModel` class:
1. Data normalization and cleaning is now homogenized with the new pipeline definition. This is created in the new `define_data_pipeline()` and `define_label_pipeline()` functions. The `data_cleaning_train()` and `data_cleaning_predict()` functions are no longer used. You can override `define_data_pipeline()` to create your own custom pipeline if you wish.
2. Data normalization and cleaning is now homogenized with the new pipeline definition. This is created in the new `define_data_pipeline()` and `define_label_pipeline()` functions. The `data_cleaning_train()` and `data_cleaning_predict()` functions are no longer used. You can override `define_data_pipeline()` to create your own custom pipeline if you wish.
3. Data denormalization is done with the new pipeline. Replace this with the lines below.
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.