Compare commits

..

13 Commits

Author SHA1 Message Date
robcaulk
6c96a2464f Merge remote-tracking branch 'origin/develop' into feat/convolutional-neural-net 2022-12-16 12:24:35 +01:00
robcaulk
2c3a310ce2 allow DI with CNN 2022-12-07 20:30:13 +01:00
robcaulk
71c6ff18c4 try to avoid possible memory leaks 2022-12-07 20:08:31 +01:00
robcaulk
b438cd4b3f add newline to end of freqai-configuration.md 2022-12-07 19:52:31 +01:00
robcaulk
6343fbf9e3 remove verbose from CNNPredictionModel 2022-12-07 00:02:02 +01:00
robcaulk
389ab7e44b add test for CNNPredictionModel 2022-12-06 23:50:34 +01:00
robcaulk
665eed3906 add documentation for CNN, allow it to interact with model_training_parameters 2022-12-06 23:26:07 +01:00
robcaulk
9ce8255f24 isort. 2022-12-05 21:03:05 +01:00
robcaulk
72b1d1c9ae allow users to pass 0 test data 2022-12-05 20:55:05 +01:00
robcaulk
5826fae8ee Merge remote-tracking branch 'origin/develop' into feat/convolutional-neural-net 2022-12-05 20:40:19 +01:00
robcaulk
43c0d305a3 fix tensorflow version 2022-12-05 20:36:08 +01:00
Emre
ad7729e5d8 Fix function signature 2022-12-03 17:43:59 +03:00
robcaulk
57aaa390d0 start convolution neural network plugin 2022-11-27 17:42:03 +01:00
594 changed files with 61209 additions and 107679 deletions

21
.devcontainer/Dockerfile Normal file
View File

@@ -0,0 +1,21 @@
FROM freqtradeorg/freqtrade:develop
USER root
# Install dependencies
COPY requirements-dev.txt /freqtrade/
RUN apt-get update \
&& apt-get -y install git mercurial sudo vim build-essential \
&& apt-get clean \
&& mkdir -p /home/ftuser/.vscode-server /home/ftuser/.vscode-server-insiders /home/ftuser/commandhistory \
&& echo "export PROMPT_COMMAND='history -a'" >> /home/ftuser/.bashrc \
&& echo "export HISTFILE=~/commandhistory/.bash_history" >> /home/ftuser/.bashrc \
&& chown ftuser:ftuser -R /home/ftuser/.local/ \
&& chown ftuser: -R /home/ftuser/
USER ftuser
RUN pip install --user autopep8 -r docs/requirements-docs.txt -r requirements-dev.txt --no-cache-dir
# Empty the ENTRYPOINT to allow all commands
ENTRYPOINT []

View File

@@ -1,44 +1,41 @@
{
"name": "freqtrade Develop",
"image": "ghcr.io/freqtrade/freqtrade-devcontainer:latest",
"build": {
"dockerfile": "Dockerfile",
"context": ".."
},
// Use 'forwardPorts' to make a list of ports inside the container available locally.
"forwardPorts": [
8080
],
"mounts": [
"source=freqtrade-bashhistory,target=/home/ftuser/commandhistory,type=volume"
],
"workspaceMount": "source=${localWorkspaceFolder},target=/workspaces/freqtrade,type=bind,consistency=cached",
// Uncomment to connect as a non-root user if you've added one. See https://aka.ms/vscode-remote/containers/non-root.
"remoteUser": "ftuser",
"onCreateCommand": "pip install --user -e .",
"postCreateCommand": "freqtrade create-userdir --userdir user_data/",
"workspaceFolder": "/workspaces/freqtrade",
"customizations": {
"vscode": {
"settings": {
"terminal.integrated.shell.linux": "/bin/bash",
"editor.insertSpaces": true,
"files.trimTrailingWhitespace": true,
"[markdown]": {
"files.trimTrailingWhitespace": false
},
"python.pythonPath": "/usr/local/bin/python",
"[python]": {
"editor.codeActionsOnSave": {
"source.organizeImports": "explicit"
},
"editor.formatOnSave": true,
"editor.defaultFormatter": "charliermarsh.ruff"
}
},
// Add the IDs of extensions you want installed when the container is created.
"extensions": [
"ms-python.python",
"ms-python.vscode-pylance",
"charliermarsh.ruff",
"davidanson.vscode-markdownlint",
"ms-azuretools.vscode-docker",
"vscode-icons-team.vscode-icons",
"github.vscode-github-actions",
],
}
}
"settings": {
"terminal.integrated.shell.linux": "/bin/bash",
"editor.insertSpaces": true,
"files.trimTrailingWhitespace": true,
"[markdown]": {
"files.trimTrailingWhitespace": false,
},
"python.pythonPath": "/usr/local/bin/python",
},
// Add the IDs of extensions you want installed when the container is created.
"extensions": [
"ms-python.python",
"ms-python.vscode-pylance",
"davidanson.vscode-markdownlint",
"ms-azuretools.vscode-docker",
"vscode-icons-team.vscode-icons",
],
}

View File

@@ -1,21 +0,0 @@
FROM freqtradeorg/freqtrade:develop_freqairl
USER root
# Install dependencies
COPY requirements-dev.txt /freqtrade/
ARG USERNAME=ftuser
RUN apt-get update \
&& apt-get -y install --no-install-recommends apt-utils dialog git ssh vim build-essential zsh \
&& apt-get clean \
&& mkdir -p /home/${USERNAME}/.vscode-server /home/${USERNAME}/.vscode-server-insiders /home/${USERNAME}/commandhistory \
&& chown ${USERNAME}:${USERNAME} -R /home/${USERNAME}/.local/ \
&& chown ${USERNAME}: -R /home/${USERNAME}/
USER ftuser
RUN pip install --user autopep8 -r docs/requirements-docs.txt -r requirements-dev.txt --no-cache-dir
# Empty the ENTRYPOINT to allow all commands
ENTRYPOINT []

View File

@@ -1,12 +0,0 @@
{
"name": "freqtrade Dev container image builder",
"build": {
"dockerfile": "Dockerfile",
"context": "../../"
},
"features": {
"ghcr.io/devcontainers/features/common-utils:2": {
},
"ghcr.io/stuartleeks/dev-container-features/shell-history:0.0.3": {}
}
}

View File

@@ -10,20 +10,8 @@ updates:
directory: "/"
schedule:
interval: weekly
time: "03:00"
timezone: "Etc/UTC"
open-pull-requests-limit: 15
open-pull-requests-limit: 10
target-branch: develop
groups:
types:
patterns:
- "types-*"
pytest:
patterns:
- "pytest*"
mkdocs:
patterns:
- "mkdocs*"
- package-ecosystem: "github-actions"
directory: "/"

View File

@@ -1,47 +0,0 @@
name: Binance Leverage tiers update
on:
schedule:
- cron: "0 3 * * 4"
# on demand
workflow_dispatch:
permissions:
contents: read
jobs:
auto-update:
runs-on: ubuntu-latest
environment:
name: develop
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.12"
- name: Install ccxt
run: pip install ccxt
- name: Run leverage tier update
env:
CI_WEB_PROXY: ${{ secrets.CI_WEB_PROXY }}
FREQTRADE__EXCHANGE__KEY: ${{ secrets.BINANCE_EXCHANGE_KEY }}
FREQTRADE__EXCHANGE__SECRET: ${{ secrets.BINANCE_EXCHANGE_SECRET }}
run: python build_helpers/binance_update_lev_tiers.py
- uses: peter-evans/create-pull-request@v6
with:
token: ${{ secrets.REPO_SCOPED_TOKEN }}
add-paths: freqtrade/exchange/binance_leverage_tiers.json
labels: |
Tech maintenance
Dependencies
branch: update/binance-leverage-tiers
title: Update Binance Leverage Tiers
commit-message: "chore: update pre-commit hooks"
committer: Freqtrade Bot <noreply@github.com>
body: Update binance leverage tiers.
delete-branch: true

View File

@@ -11,39 +11,39 @@ on:
types: [published]
pull_request:
schedule:
- cron: '0 3 * * 4'
- cron: '0 5 * * 4'
concurrency:
group: "${{ github.workflow }}-${{ github.ref }}-${{ github.event_name }}"
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
permissions:
repository-projects: read
jobs:
build-linux:
build_linux:
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ "ubuntu-20.04", "ubuntu-22.04", "ubuntu-24.04" ]
python-version: ["3.9", "3.10", "3.11", "3.12"]
os: [ ubuntu-18.04, ubuntu-20.04, ubuntu-22.04 ]
python-version: ["3.8", "3.9", "3.10"]
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
- name: Cache_dependencies
uses: actions/cache@v4
uses: actions/cache@v3
id: cache
with:
path: ~/dependencies/
key: ${{ runner.os }}-dependencies
- name: pip cache (linux)
uses: actions/cache@v4
uses: actions/cache@v3
if: runner.os == 'Linux'
with:
path: ~/.cache/pip
key: test-${{ matrix.os }}-${{ matrix.python-version }}-pip
@@ -54,22 +54,18 @@ jobs:
cd build_helpers && ./install_ta-lib.sh ${HOME}/dependencies/; cd ..
- name: Installation - *nix
if: runner.os == 'Linux'
run: |
python -m pip install --upgrade "pip<=24.0" wheel
python -m pip install --upgrade pip wheel
export LD_LIBRARY_PATH=${HOME}/dependencies/lib:$LD_LIBRARY_PATH
export TA_LIBRARY_PATH=${HOME}/dependencies/lib
export TA_INCLUDE_PATH=${HOME}/dependencies/include
pip install -r requirements-dev.txt
pip install -e ft_client/
pip install -e .
- name: Check for version alignment
run: |
python build_helpers/freqtrade_client_version_align.py
- name: Tests
run: |
pytest --random-order --cov=freqtrade --cov=freqtrade_client --cov-config=.coveragerc
pytest --random-order --cov=freqtrade --cov-config=.coveragerc
- name: Coveralls
if: (runner.os == 'Linux' && matrix.python-version == '3.10' && matrix.os == 'ubuntu-22.04')
@@ -80,20 +76,9 @@ jobs:
# Allow failure for coveralls
coveralls || true
- name: Check for repository changes
run: |
if [ -n "$(git status --porcelain)" ]; then
echo "Repository is dirty, changes detected:"
git status
git diff
exit 1
else
echo "Repository is clean, no changes detected."
fi
- name: Backtesting (multi)
run: |
cp tests/testdata/config.tests.json config.json
cp config_examples/config_bittrex.example.json config.json
freqtrade create-userdir --userdir user_data
freqtrade new-strategy -s AwesomeStrategy
freqtrade new-strategy -s AwesomeStrategyMin --template minimal
@@ -101,22 +86,18 @@ jobs:
- name: Hyperopt
run: |
cp tests/testdata/config.tests.json config.json
cp config_examples/config_bittrex.example.json config.json
freqtrade create-userdir --userdir user_data
freqtrade hyperopt --datadir tests/testdata -e 6 --strategy SampleStrategy --hyperopt-loss SharpeHyperOptLossDaily --print-all
- name: Flake8
run: |
flake8
- name: Sort imports (isort)
run: |
isort --check .
- name: Run Ruff
run: |
ruff check --output-format=github
- name: Run Ruff format check
run: |
ruff format --check
- name: Mypy
run: |
mypy freqtrade scripts tests
@@ -129,117 +110,77 @@ jobs:
details: Freqtrade CI failed on ${{ matrix.os }}
webhookUrl: ${{ secrets.DISCORD_WEBHOOK }}
build-macos:
build_macos:
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ "macos-12", "macos-13", "macos-14" ]
python-version: ["3.9", "3.10", "3.11", "3.12"]
exclude:
- os: "macos-14"
python-version: "3.9"
os: [ macos-latest ]
python-version: ["3.8", "3.9", "3.10"]
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
check-latest: true
- name: Cache_dependencies
uses: actions/cache@v4
uses: actions/cache@v3
id: cache
with:
path: ~/dependencies/
key: ${{ matrix.os }}-dependencies
key: ${{ runner.os }}-dependencies
- name: pip cache (macOS)
uses: actions/cache@v4
uses: actions/cache@v3
if: runner.os == 'macOS'
with:
path: ~/Library/Caches/pip
key: ${{ matrix.os }}-${{ matrix.python-version }}-pip
key: test-${{ matrix.os }}-${{ matrix.python-version }}-pip
- name: TA binary *nix
if: steps.cache.outputs.cache-hit != 'true'
run: |
cd build_helpers && ./install_ta-lib.sh ${HOME}/dependencies/; cd ..
- name: Installation - macOS (Brew)
- name: Installation - macOS
if: runner.os == 'macOS'
run: |
# brew update
# TODO: Should be the brew upgrade
# homebrew fails to update python due to unlinking failures
# https://github.com/actions/runner-images/issues/6817
rm /usr/local/bin/2to3 || true
rm /usr/local/bin/2to3-3.11 || true
rm /usr/local/bin/2to3-3.12 || true
rm /usr/local/bin/idle3 || true
rm /usr/local/bin/idle3.11 || true
rm /usr/local/bin/idle3.12 || true
rm /usr/local/bin/pydoc3 || true
rm /usr/local/bin/pydoc3.11 || true
rm /usr/local/bin/pydoc3.12 || true
rm /usr/local/bin/python3 || true
rm /usr/local/bin/python3.11 || true
rm /usr/local/bin/python3.12 || true
rm /usr/local/bin/python3-config || true
rm /usr/local/bin/python3.11-config || true
rm /usr/local/bin/python3.12-config || true
brew install hdf5 c-blosc libomp
- name: Installation (python)
run: |
python -m pip install --upgrade "pip<=24.0" wheel
brew update
brew install hdf5 c-blosc
python -m pip install --upgrade pip wheel
export LD_LIBRARY_PATH=${HOME}/dependencies/lib:$LD_LIBRARY_PATH
export TA_LIBRARY_PATH=${HOME}/dependencies/lib
export TA_INCLUDE_PATH=${HOME}/dependencies/include
pip install -r requirements-dev.txt
pip install -e ft_client/
pip install -e .
- name: Tests
run: |
pytest --random-order
- name: Check for repository changes
run: |
if [ -n "$(git status --porcelain)" ]; then
echo "Repository is dirty, changes detected:"
git status
git diff
exit 1
else
echo "Repository is clean, no changes detected."
fi
- name: Backtesting
run: |
cp tests/testdata/config.tests.json config.json
cp config_examples/config_bittrex.example.json config.json
freqtrade create-userdir --userdir user_data
freqtrade new-strategy -s AwesomeStrategyAdv --template advanced
freqtrade backtesting --datadir tests/testdata --strategy AwesomeStrategyAdv
- name: Hyperopt
run: |
cp tests/testdata/config.tests.json config.json
cp config_examples/config_bittrex.example.json config.json
freqtrade create-userdir --userdir user_data
freqtrade hyperopt --datadir tests/testdata -e 5 --strategy SampleStrategy --hyperopt-loss SharpeHyperOptLossDaily --print-all
- name: Flake8
run: |
flake8
- name: Sort imports (isort)
run: |
isort --check .
- name: Run Ruff
run: |
ruff check --output-format=github
- name: Run Ruff format check
run: |
ruff format --check
- name: Mypy
run: |
mypy freqtrade scripts
@@ -252,24 +193,24 @@ jobs:
details: Test Succeeded!
webhookUrl: ${{ secrets.DISCORD_WEBHOOK }}
build-windows:
build_windows:
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ windows-latest ]
python-version: ["3.9", "3.10", "3.11", "3.12"]
python-version: ["3.8", "3.9", "3.10"]
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
- name: Pip cache (Windows)
uses: actions/cache@v4
uses: actions/cache@v3
with:
path: ~\AppData\Local\pip\Cache
key: ${{ matrix.os }}-${{ matrix.python-version }}-pip
@@ -282,53 +223,26 @@ jobs:
run: |
pytest --random-order
- name: Check for repository changes
run: |
if (git status --porcelain) {
Write-Host "Repository is dirty, changes detected:"
git status
git diff
exit 1
}
else {
Write-Host "Repository is clean, no changes detected."
}
- name: Backtesting
run: |
cp tests/testdata/config.tests.json config.json
cp config_examples/config_bittrex.example.json config.json
freqtrade create-userdir --userdir user_data
freqtrade backtesting --datadir tests/testdata --strategy SampleStrategy
- name: Hyperopt
run: |
cp tests/testdata/config.tests.json config.json
cp config_examples/config_bittrex.example.json config.json
freqtrade create-userdir --userdir user_data
freqtrade hyperopt --datadir tests/testdata -e 5 --strategy SampleStrategy --hyperopt-loss SharpeHyperOptLossDaily --print-all
- name: Run Ruff
- name: Flake8
run: |
ruff check --output-format=github
- name: Run Ruff format check
run: |
ruff format --check
flake8
- name: Mypy
run: |
mypy freqtrade scripts tests
- name: Run Pester tests (PowerShell)
run: |
$PSVersionTable
Set-PSRepository psgallery -InstallationPolicy trusted
Install-Module -Name Pester -RequiredVersion 5.3.1 -Confirm:$false -Force -SkipPublisherCheck
$Error.clear()
Invoke-Pester -Path "tests" -CI
if ($Error.Length -gt 0) {exit 1}
shell: powershell
- name: Discord notification
uses: rjstone/discord-webhook-notify@v1
if: failure() && ( github.event_name != 'pull_request' || github.event.pull_request.head.repo.fork == false)
@@ -337,15 +251,15 @@ jobs:
details: Test Failed
webhookUrl: ${{ secrets.DISCORD_WEBHOOK }}
mypy-version-check:
mypy_version_check:
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: "3.12"
python-version: "3.10"
- name: pre-commit dependencies
run: |
@@ -355,26 +269,26 @@ jobs:
pre-commit:
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- uses: actions/setup-python@v5
- uses: actions/setup-python@v4
with:
python-version: "3.12"
- uses: pre-commit/action@v3.0.1
python-version: "3.10"
- uses: pre-commit/action@v3.0.0
docs-check:
docs_check:
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- name: Documentation syntax
run: |
./tests/test_docs.sh
- name: Set up Python
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: "3.12"
python-version: "3.10"
- name: Documentation build
run: |
@@ -391,26 +305,28 @@ jobs:
webhookUrl: ${{ secrets.DISCORD_WEBHOOK }}
build-linux-online:
build_linux_online:
# Run pytest with "live" checks
runs-on: ubuntu-22.04
# permissions:
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: "3.12"
python-version: "3.9"
- name: Cache_dependencies
uses: actions/cache@v4
uses: actions/cache@v3
id: cache
with:
path: ~/dependencies/
key: ${{ runner.os }}-dependencies
- name: pip cache (linux)
uses: actions/cache@v4
uses: actions/cache@v3
if: runner.os == 'Linux'
with:
path: ~/.cache/pip
key: test-${{ matrix.os }}-${{ matrix.python-version }}-pip
@@ -421,36 +337,34 @@ jobs:
cd build_helpers && ./install_ta-lib.sh ${HOME}/dependencies/; cd ..
- name: Installation - *nix
if: runner.os == 'Linux'
run: |
python -m pip install --upgrade "pip<=24.0" wheel
python -m pip install --upgrade pip wheel
export LD_LIBRARY_PATH=${HOME}/dependencies/lib:$LD_LIBRARY_PATH
export TA_LIBRARY_PATH=${HOME}/dependencies/lib
export TA_INCLUDE_PATH=${HOME}/dependencies/include
pip install -r requirements-dev.txt
pip install -e ft_client/
pip install -e .
- name: Tests incl. ccxt compatibility tests
env:
CI_WEB_PROXY: http://152.67.78.211:13128
run: |
pytest --random-order --longrun --durations 20 -n auto
pytest --random-order --cov=freqtrade --cov-config=.coveragerc --longrun
# Notify only once - when CI completes (and after deploy) in case it's successful
# Notify only once - when CI completes (and after deploy) in case it's successfull
notify-complete:
needs: [
build-linux,
build-macos,
build-windows,
docs-check,
mypy-version-check,
build_linux,
build_macos,
build_windows,
docs_check,
mypy_version_check,
pre-commit,
build-linux-online
build_linux_online
]
runs-on: ubuntu-22.04
# Discord notification can't handle schedule events
if: github.event_name != 'schedule' && github.repository == 'freqtrade/freqtrade'
if: (github.event_name != 'schedule')
permissions:
repository-projects: read
steps:
@@ -471,95 +385,44 @@ jobs:
details: Test Completed!
webhookUrl: ${{ secrets.DISCORD_WEBHOOK }}
build:
name: "Build"
needs: [ build-linux, build-macos, build-windows, docs-check, mypy-version-check, pre-commit ]
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.12"
- name: Build distribution
run: |
pip install -U build
python -m build --sdist --wheel
- name: Upload artifacts 📦
uses: actions/upload-artifact@v4
with:
name: freqtrade-build
path: |
dist
retention-days: 10
- name: Build Client distribution
run: |
pip install -U build
python -m build --sdist --wheel ft_client
- name: Upload artifacts 📦
uses: actions/upload-artifact@v4
with:
name: freqtrade-client-build
path: |
ft_client/dist
retention-days: 10
deploy-pypi:
name: "Deploy to PyPI"
needs: [ build ]
runs-on: ubuntu-22.04
if: (github.event_name == 'release')
environment:
name: release
url: https://pypi.org/p/freqtrade
permissions:
id-token: write
steps:
- uses: actions/checkout@v4
- name: Download artifact 📦
uses: actions/download-artifact@v4
with:
pattern: freqtrade*-build
path: dist
merge-multiple: true
- name: Publish to PyPI (Test)
uses: pypa/gh-action-pypi-publish@v1.9.0
with:
repository-url: https://test.pypi.org/legacy/
- name: Publish to PyPI
uses: pypa/gh-action-pypi-publish@v1.9.0
deploy-docker:
needs: [ build-linux, build-macos, build-windows, docs-check, mypy-version-check, pre-commit ]
deploy:
needs: [ build_linux, build_macos, build_windows, docs_check, mypy_version_check, pre-commit ]
runs-on: ubuntu-22.04
if: (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'release') && github.repository == 'freqtrade/freqtrade'
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: "3.12"
python-version: "3.9"
- name: Extract branch name
id: extract-branch
shell: bash
run: echo "##[set-output name=branch;]$(echo ${GITHUB_REF##*/})"
id: extract_branch
- name: Build distribution
run: |
echo "GITHUB_REF='${GITHUB_REF}'"
echo "branch=${GITHUB_REF##*/}" >> "$GITHUB_OUTPUT"
pip install -U setuptools wheel
python setup.py sdist bdist_wheel
- name: Publish to PyPI (Test)
uses: pypa/gh-action-pypi-publish@v1.6.4
if: (github.event_name == 'release')
with:
user: __token__
password: ${{ secrets.pypi_test_password }}
repository_url: https://test.pypi.org/legacy/
- name: Publish to PyPI
uses: pypa/gh-action-pypi-publish@v1.6.4
if: (github.event_name == 'release')
with:
user: __token__
password: ${{ secrets.pypi_password }}
- name: Dockerhub login
env:
@@ -576,39 +439,36 @@ jobs:
sudo systemctl restart docker
docker version -f '{{.Server.Experimental}}'
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
id: buildx
uses: docker/setup-buildx-action@v3
uses: crazy-max/ghaction-docker-buildx@v3.3.1
with:
buildx-version: latest
qemu-version: latest
- name: Available platforms
run: echo ${{ steps.buildx.outputs.platforms }}
- name: Build and test and push docker images
env:
BRANCH_NAME: ${{ steps.extract-branch.outputs.branch }}
IMAGE_NAME: freqtradeorg/freqtrade
BRANCH_NAME: ${{ steps.extract_branch.outputs.branch }}
run: |
build_helpers/publish_docker_multi.sh
deploy-arm:
name: "Deploy Docker"
permissions:
packages: write
needs: [ deploy-docker ]
deploy_arm:
needs: [ deploy ]
# Only run on 64bit machines
runs-on: [self-hosted, linux, ARM64]
if: (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'release') && github.repository == 'freqtrade/freqtrade'
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- name: Extract branch name
id: extract-branch
run: |
echo "GITHUB_REF='${GITHUB_REF}'"
echo "branch=${GITHUB_REF##*/}" >> "$GITHUB_OUTPUT"
shell: bash
run: echo "##[set-output name=branch;]$(echo ${GITHUB_REF##*/})"
id: extract_branch
- name: Dockerhub login
env:
@@ -619,9 +479,8 @@ jobs:
- name: Build and test and push docker images
env:
BRANCH_NAME: ${{ steps.extract-branch.outputs.branch }}
GHCR_USERNAME: ${{ github.actor }}
GHCR_TOKEN: ${{ secrets.GITHUB_TOKEN }}
IMAGE_NAME: freqtradeorg/freqtrade
BRANCH_NAME: ${{ steps.extract_branch.outputs.branch }}
run: |
build_helpers/publish_docker_arm64.sh

View File

@@ -1,45 +0,0 @@
name: Devcontainer Pre-Build
on:
workflow_dispatch:
schedule:
- cron: "0 3 * * 0"
# push:
# branches:
# - "master"
# tags:
# - "v*.*.*"
# pull_requests:
# branches:
# - "master"
concurrency:
group: "${{ github.workflow }}"
cancel-in-progress: true
permissions:
packages: write
jobs:
build-and-push:
runs-on: ubuntu-latest
steps:
-
name: Checkout
id: checkout
uses: actions/checkout@v4
-
name: Login to GitHub Container Registry
uses: docker/login-action@v3
with:
registry: ghcr.io
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
-
name: Pre-build dev container image
uses: devcontainers/ci@v0.3
with:
subFolder: .github
imageName: ghcr.io/${{ github.repository }}-devcontainer
cacheFrom: ghcr.io/${{ github.repository }}-devcontainer
push: always

View File

@@ -1,18 +0,0 @@
name: Update Docker Hub Description
on:
push:
branches:
- stable
jobs:
dockerHubDescription:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Docker Hub Description
uses: peter-evans/dockerhub-description@v4
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }}
repository: freqtradeorg/freqtrade

View File

@@ -0,0 +1,17 @@
name: Update Docker Hub Description
on:
push:
branches:
- stable
jobs:
dockerHubDescription:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Docker Hub Description
uses: peter-evans/dockerhub-description@v3
env:
DOCKERHUB_USERNAME: ${{ secrets.DOCKER_USERNAME }}
DOCKERHUB_PASSWORD: ${{ secrets.DOCKER_PASSWORD }}
DOCKERHUB_REPOSITORY: freqtradeorg/freqtrade

View File

@@ -1,41 +0,0 @@
name: Pre-commit auto-update
on:
schedule:
- cron: "0 3 * * 2"
# on demand
workflow_dispatch:
permissions:
contents: read
jobs:
auto-update:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.12"
- name: Install pre-commit
run: pip install pre-commit
- name: Run auto-update
run: pre-commit autoupdate
- uses: peter-evans/create-pull-request@v6
with:
token: ${{ secrets.REPO_SCOPED_TOKEN }}
add-paths: .pre-commit-config.yaml
labels: |
Tech maintenance
Dependencies
branch: update/pre-commit-hooks
title: Update pre-commit hooks
commit-message: "chore: update pre-commit hooks"
committer: Freqtrade Bot <noreply@github.com>
body: Update versions of pre-commit hooks to latest version.
delete-branch: true

4
.gitignore vendored
View File

@@ -83,9 +83,6 @@ instance/
# Scrapy stuff:
.scrapy
# memray
memray-*
# Sphinx documentation
docs/_build/
# Mkdocs documentation
@@ -111,6 +108,7 @@ target/
#exceptions
!*.gitkeep
!config_examples/config_binance.example.json
!config_examples/config_bittrex.example.json
!config_examples/config_full.example.json
!config_examples/config_kraken.example.json
!config_examples/config_freqai.example.json

View File

@@ -2,41 +2,33 @@
# See https://pre-commit.com/hooks.html for more hooks
repos:
- repo: https://github.com/pycqa/flake8
rev: "7.1.0"
rev: "4.0.1"
hooks:
- id: flake8
additional_dependencies: [Flake8-pyproject]
# stages: [push]
- repo: https://github.com/pre-commit/mirrors-mypy
rev: "v1.10.0"
rev: "v0.942"
hooks:
- id: mypy
exclude: build_helpers
additional_dependencies:
- types-cachetools==5.3.0.7
- types-cachetools==5.2.1
- types-filelock==3.2.7
- types-requests==2.32.0.20240622
- types-tabulate==0.9.0.20240106
- types-python-dateutil==2.9.0.20240316
- SQLAlchemy==2.0.31
- types-requests==2.28.11.5
- types-tabulate==0.9.0.0
- types-python-dateutil==2.8.19.4
# stages: [push]
- repo: https://github.com/pycqa/isort
rev: "5.13.2"
rev: "5.10.1"
hooks:
- id: isort
name: isort (python)
# stages: [push]
- repo: https://github.com/charliermarsh/ruff-pre-commit
# Ruff version.
rev: 'v0.4.10'
hooks:
- id: ruff
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.6.0
rev: v2.4.0
hooks:
- id: end-of-file-fixer
exclude: |
@@ -54,10 +46,3 @@ repos:
(?x)^(
.*\.md
)$
- repo: https://github.com/codespell-project/codespell
rev: v2.3.0
hooks:
- id: codespell
additional_dependencies:
- tomli

View File

@@ -1,14 +1,8 @@
# .readthedocs.yml
version: 2
build:
os: "ubuntu-22.04"
tools:
python: "3.11"
image: latest
python:
install:
- requirements: docs/requirements-docs.txt
mkdocs:
configuration: mkdocs.yml
version: 3.8
setup_py_install: false

View File

@@ -1,11 +0,0 @@
{
"recommendations": [
"ms-python.python",
"ms-python.vscode-pylance",
"charliermarsh.ruff",
"davidanson.vscode-markdownlint",
"ms-azuretools.vscode-docker",
"vscode-icons-team.vscode-icons",
"github.vscode-github-actions",
]
}

View File

@@ -45,17 +45,16 @@ pytest tests/test_<file_name>.py::test_<method_name>
### 2. Test if your code is PEP8 compliant
#### Run Ruff
#### Run Flake8
```bash
ruff check .
flake8 freqtrade tests scripts
```
We receive a lot of code that fails the `ruff` checks.
We receive a lot of code that fails the `flake8` checks.
To help with that, we encourage you to install the git pre-commit
hook that will warn you when you try to commit code that fails these checks.
you can manually run pre-commit with `pre-commit run -a`.
hook that will warn you when you try to commit code that fails these checks.
Guide for installing them is [here](http://flake8.pycqa.org/en/latest/user/using-hooks.html).
##### Additional styles applied
@@ -72,12 +71,12 @@ you can manually run pre-commit with `pre-commit run -a`.
mypy freqtrade
```
### 4. Ensure formatting is correct
### 4. Ensure all imports are correct
#### Run ruff
#### Run isort
``` bash
ruff format .
isort .
```
## (Core)-Committer Guide
@@ -125,7 +124,7 @@ Exceptions:
Contributors may be given commit privileges. Preference will be given to those with:
1. Past contributions to Freqtrade and other related open-source projects. Contributions to Freqtrade include both code (both accepted and pending) and friendly participation in the issue tracker and Pull request reviews. Both quantity and quality are considered.
1. Past contributions to Freqtrade and other related open-source projects. Contributions to Freqtrade include both code (both accepted and pending) and friendly participation in the issue tracker and Pull request reviews. Quantity and quality are considered.
1. A coding style that the other core committers find simple, minimal, and clean.
1. Access to resources for cross-platform development and testing.
1. Time to devote to the project regularly.

View File

@@ -1,4 +1,4 @@
FROM python:3.12.4-slim-bookworm as base
FROM python:3.10.7-slim-bullseye as base
# Setup env
ENV LANG C.UTF-8
@@ -25,7 +25,7 @@ FROM base as python-deps
RUN apt-get update \
&& apt-get -y install build-essential libssl-dev git libffi-dev libgfortran5 pkg-config cmake gcc \
&& apt-get clean \
&& pip install --upgrade "pip<=24.0" wheel
&& pip install --upgrade pip
# Install TA-lib
COPY build_helpers/* /tmp/
@@ -35,7 +35,7 @@ ENV LD_LIBRARY_PATH /usr/local/lib
# Install dependencies
COPY --chown=ftuser:ftuser requirements.txt requirements-hyperopt.txt /freqtrade/
USER ftuser
RUN pip install --user --no-cache-dir "numpy<2.0" \
RUN pip install --user --no-cache-dir numpy \
&& pip install --user --no-cache-dir -r requirements-hyperopt.txt
# Copy dependencies to runtime-image

View File

@@ -5,5 +5,3 @@ recursive-include freqtrade/templates/ *.j2 *.ipynb
include freqtrade/exchange/binance_leverage_tiers.json
include freqtrade/rpc/api_server/ui/fallback_file.html
include freqtrade/rpc/api_server/ui/favicon.ico
prune tests

View File

@@ -1,7 +1,6 @@
# ![freqtrade](https://raw.githubusercontent.com/freqtrade/freqtrade/develop/docs/assets/freqtrade_poweredby.svg)
[![Freqtrade CI](https://github.com/freqtrade/freqtrade/workflows/Freqtrade%20CI/badge.svg)](https://github.com/freqtrade/freqtrade/actions/)
[![DOI](https://joss.theoj.org/papers/10.21105/joss.04864/status.svg)](https://doi.org/10.21105/joss.04864)
[![Coverage Status](https://coveralls.io/repos/github/freqtrade/freqtrade/badge.svg?branch=develop&service=github)](https://coveralls.io/github/freqtrade/freqtrade?branch=develop)
[![Documentation](https://readthedocs.org/projects/freqtrade/badge/)](https://www.freqtrade.io)
[![Maintainability](https://api.codeclimate.com/v1/badges/5737e6d668200b7518ff/maintainability)](https://codeclimate.com/github/freqtrade/freqtrade/maintainability)
@@ -28,10 +27,9 @@ hesitate to read the source code and understand the mechanism of this bot.
Please read the [exchange specific notes](docs/exchanges.md) to learn about eventual, special configurations needed for each exchange.
- [X] [Binance](https://www.binance.com/)
- [X] [Bitmart](https://bitmart.com/)
- [X] [BingX](https://bingx.com/invite/0EM9RX)
- [X] [Bittrex](https://bittrex.com/)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [HTX](https://www.htx.com/) (Former Huobi)
- [X] [Huobi](http://huobi.com/)
- [X] [Kraken](https://kraken.com/)
- [X] [OKX](https://okx.com/) (Former OKEX)
- [ ] [potentially many others](https://github.com/ccxt/ccxt/). _(We cannot guarantee they will work)_
@@ -41,7 +39,6 @@ Please read the [exchange specific notes](docs/exchanges.md) to learn about even
- [X] [Binance](https://www.binance.com/)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [OKX](https://okx.com/)
- [X] [Bybit](https://bybit.com/)
Please make sure to read the [exchange specific notes](docs/exchanges.md), as well as the [trading with leverage](docs/leverage.md) documentation before diving in.
@@ -60,7 +57,7 @@ Please find the complete documentation on the [freqtrade website](https://www.fr
## Features
- [x] **Based on Python 3.9+**: For botting on any operating system - Windows, macOS and Linux.
- [x] **Based on Python 3.8+**: For botting on any operating system - Windows, macOS and Linux.
- [x] **Persistence**: Persistence is achieved through sqlite.
- [x] **Dry-run**: Run the bot without paying money.
- [x] **Backtesting**: Run a simulation of your buy/sell strategy.
@@ -166,10 +163,6 @@ first. If it hasn't been reported, please
ensure you follow the template guide so that the team can assist you as
quickly as possible.
For every [issue](https://github.com/freqtrade/freqtrade/issues/new/choose) created, kindly follow up and mark satisfaction or reminder to close issue when equilibrium ground is reached.
--Maintain github's [community policy](https://docs.github.com/en/site-policy/github-terms/github-community-code-of-conduct)--
### [Feature Requests](https://github.com/freqtrade/freqtrade/labels/enhancement)
Have you a great idea to improve the bot you want to share? Please,
@@ -208,9 +201,9 @@ To run this bot we recommend you a cloud instance with a minimum of:
### Software requirements
- [Python >= 3.9](http://docs.python-guide.org/en/latest/starting/installation/)
- [Python >= 3.8](http://docs.python-guide.org/en/latest/starting/installation/)
- [pip](https://pip.pypa.io/en/stable/installing/)
- [git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git)
- [TA-Lib](https://ta-lib.github.io/ta-lib-python/)
- [TA-Lib](https://mrjbq7.github.io/ta-lib/install.html)
- [virtualenv](https://virtualenv.pypa.io/en/stable/installation.html) (Recommended)
- [Docker](https://www.docker.com/products/docker) (Recommended)

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -1,23 +0,0 @@
#!/usr/bin/env python3
import json
import os
from pathlib import Path
import ccxt
key = os.environ.get("FREQTRADE__EXCHANGE__KEY")
secret = os.environ.get("FREQTRADE__EXCHANGE__SECRET")
proxy = os.environ.get("CI_WEB_PROXY")
exchange = ccxt.binance(
{"apiKey": key, "secret": secret, "httpsProxy": proxy, "options": {"defaultType": "swap"}}
)
_ = exchange.load_markets()
lev_tiers = exchange.fetch_leverage_tiers()
# Assumes this is running in the root of the repository.
file = Path("freqtrade/exchange/binance_leverage_tiers.json")
json.dump(dict(sorted(lev_tiers.items())), file.open("w"), indent=2)

View File

@@ -1,15 +0,0 @@
#!/usr/bin/env python3
from freqtrade import __version__ as ft_version
from freqtrade_client import __version__ as client_version
def main():
if ft_version != client_version:
print(f"Versions do not match: \nft: {ft_version} \nclient: {client_version}")
exit(1)
print(f"Versions match: ft: {ft_version}, client: {client_version}")
exit(0)
if __name__ == "__main__":
main()

View File

@@ -8,9 +8,8 @@ if [ -n "$2" ] || [ ! -f "${INSTALL_LOC}/lib/libta_lib.a" ]; then
tar zxvf ta-lib-0.4.0-src.tar.gz
cd ta-lib \
&& sed -i.bak "s|0.00000001|0.000000000000000001 |g" src/ta_func/ta_utility.h \
&& echo "Downloading gcc config.guess and config.sub" \
&& curl -s 'https://raw.githubusercontent.com/gcc-mirror/gcc/master/config.guess' -o config.guess \
&& curl -s 'https://raw.githubusercontent.com/gcc-mirror/gcc/master/config.sub' -o config.sub \
&& curl 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -o config.guess \
&& curl 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -o config.sub \
&& ./configure --prefix=${INSTALL_LOC}/ \
&& make
if [ $? -ne 0 ]; then

View File

@@ -1,11 +1,18 @@
# vendored Wheels compiled via https://github.com/xmatthias/ta-lib-python/tree/ta_bundled_040
# Downloads don't work automatically, since the URL is regenerated via javascript.
# Downloaded from https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
python -m pip install --upgrade "pip<=24.0" wheel
python -m pip install --upgrade pip wheel
$pyv = python -c "import sys; print(f'{sys.version_info.major}.{sys.version_info.minor}')"
pip install --find-links=build_helpers\ --prefer-binary TA-Lib
if ($pyv -eq '3.8') {
pip install build_helpers\TA_Lib-0.4.25-cp38-cp38-win_amd64.whl
}
if ($pyv -eq '3.9') {
pip install build_helpers\TA_Lib-0.4.25-cp39-cp39-win_amd64.whl
}
if ($pyv -eq '3.10') {
pip install build_helpers\TA_Lib-0.4.25-cp310-cp310-win_amd64.whl
}
pip install -r requirements-dev.txt
pip install -e .

View File

@@ -1,4 +1,4 @@
# File used in CI to ensure pre-commit dependencies are kept up-to-date.
# File used in CI to ensure pre-commit dependencies are kept uptodate.
import sys
from pathlib import Path
@@ -6,30 +6,23 @@ from pathlib import Path
import yaml
pre_commit_file = Path(".pre-commit-config.yaml")
require_dev = Path("requirements-dev.txt")
require = Path("requirements.txt")
pre_commit_file = Path('.pre-commit-config.yaml')
require_dev = Path('requirements-dev.txt')
with require_dev.open("r") as rfile:
with require_dev.open('r') as rfile:
requirements = rfile.readlines()
with require.open("r") as rfile:
requirements.extend(rfile.readlines())
# Extract types only
type_reqs = [
r.strip("\n") for r in requirements if r.startswith("types-") or r.startswith("SQLAlchemy")
]
type_reqs = [r.strip('\n') for r in requirements if r.startswith('types-')]
with pre_commit_file.open("r") as file:
f = yaml.load(file, Loader=yaml.SafeLoader)
with pre_commit_file.open('r') as file:
f = yaml.load(file, Loader=yaml.FullLoader)
mypy_repo = [
repo for repo in f["repos"] if repo["repo"] == "https://github.com/pre-commit/mirrors-mypy"
]
mypy_repo = [repo for repo in f['repos'] if repo['repo']
== 'https://github.com/pre-commit/mirrors-mypy']
hooks = mypy_repo[0]["hooks"][0]["additional_dependencies"]
hooks = mypy_repo[0]['hooks'][0]['additional_dependencies']
errors = []
for hook in hooks:

View File

@@ -3,22 +3,18 @@
# Use BuildKit, otherwise building on ARM fails
export DOCKER_BUILDKIT=1
IMAGE_NAME=freqtradeorg/freqtrade
CACHE_IMAGE=freqtradeorg/freqtrade_cache
GHCR_IMAGE_NAME=ghcr.io/freqtrade/freqtrade
# Replace / with _ to create a valid tag
TAG=$(echo "${BRANCH_NAME}" | sed -e "s/\//_/g")
TAG_PLOT=${TAG}_plot
TAG_FREQAI=${TAG}_freqai
TAG_FREQAI_RL=${TAG_FREQAI}rl
TAG_FREQAI_TORCH=${TAG_FREQAI}torch
TAG_PI="${TAG}_pi"
TAG_ARM=${TAG}_arm
TAG_PLOT_ARM=${TAG_PLOT}_arm
TAG_FREQAI_ARM=${TAG_FREQAI}_arm
TAG_FREQAI_RL_ARM=${TAG_FREQAI_RL}_arm
CACHE_IMAGE=freqtradeorg/freqtrade_cache
echo "Running for ${TAG}"
@@ -42,19 +38,19 @@ if [ $? -ne 0 ]; then
echo "failed building multiarch images"
return 1
fi
docker build --build-arg sourceimage=freqtrade --build-arg sourcetag=${TAG_ARM} -t freqtrade:${TAG_PLOT_ARM} -f docker/Dockerfile.plot .
docker build --build-arg sourceimage=freqtrade --build-arg sourcetag=${TAG_ARM} -t freqtrade:${TAG_FREQAI_ARM} -f docker/Dockerfile.freqai .
docker build --build-arg sourceimage=freqtrade --build-arg sourcetag=${TAG_FREQAI_ARM} -t freqtrade:${TAG_FREQAI_RL_ARM} -f docker/Dockerfile.freqai_rl .
# Tag image for upload and next build step
docker tag freqtrade:$TAG_ARM ${CACHE_IMAGE}:$TAG_ARM
docker build --cache-from freqtrade:${TAG_ARM} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG_ARM} -t freqtrade:${TAG_PLOT_ARM} -f docker/Dockerfile.plot .
docker build --cache-from freqtrade:${TAG_ARM} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG_ARM} -t freqtrade:${TAG_FREQAI_ARM} -f docker/Dockerfile.freqai .
docker build --cache-from freqtrade:${TAG_ARM} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG_ARM} -t freqtrade:${TAG_FREQAI_RL_ARM} -f docker/Dockerfile.freqai_rl .
docker tag freqtrade:$TAG_PLOT_ARM ${CACHE_IMAGE}:$TAG_PLOT_ARM
docker tag freqtrade:$TAG_FREQAI_ARM ${CACHE_IMAGE}:$TAG_FREQAI_ARM
docker tag freqtrade:$TAG_FREQAI_RL_ARM ${CACHE_IMAGE}:$TAG_FREQAI_RL_ARM
# Run backtest
docker run --rm -v $(pwd)/tests/testdata/config.tests.json:/freqtrade/config.json:ro -v $(pwd)/tests:/tests freqtrade:${TAG_ARM} backtesting --datadir /tests/testdata --strategy-path /tests/strategy/strats/ --strategy StrategyTestV3
docker run --rm -v $(pwd)/config_examples/config_bittrex.example.json:/freqtrade/config.json:ro -v $(pwd)/tests:/tests freqtrade:${TAG_ARM} backtesting --datadir /tests/testdata --strategy-path /tests/strategy/strats/ --strategy StrategyTestV3
if [ $? -ne 0 ]; then
echo "failed running backtest"
@@ -63,6 +59,7 @@ fi
docker images
# docker push ${IMAGE_NAME}
docker push ${CACHE_IMAGE}:$TAG_PLOT_ARM
docker push ${CACHE_IMAGE}:$TAG_FREQAI_ARM
docker push ${CACHE_IMAGE}:$TAG_FREQAI_RL_ARM
@@ -73,47 +70,25 @@ docker push ${CACHE_IMAGE}:$TAG_ARM
# Otherwise installation might fail.
echo "create manifests"
docker manifest create ${IMAGE_NAME}:${TAG} ${CACHE_IMAGE}:${TAG} ${CACHE_IMAGE}:${TAG_ARM} ${IMAGE_NAME}:${TAG_PI}
docker manifest create --amend ${IMAGE_NAME}:${TAG} ${CACHE_IMAGE}:${TAG_ARM} ${IMAGE_NAME}:${TAG_PI} ${CACHE_IMAGE}:${TAG}
docker manifest push -p ${IMAGE_NAME}:${TAG}
docker manifest create ${IMAGE_NAME}:${TAG_PLOT} ${CACHE_IMAGE}:${TAG_PLOT} ${CACHE_IMAGE}:${TAG_PLOT_ARM}
docker manifest create ${IMAGE_NAME}:${TAG_PLOT} ${CACHE_IMAGE}:${TAG_PLOT_ARM} ${CACHE_IMAGE}:${TAG_PLOT}
docker manifest push -p ${IMAGE_NAME}:${TAG_PLOT}
docker manifest create ${IMAGE_NAME}:${TAG_FREQAI} ${CACHE_IMAGE}:${TAG_FREQAI} ${CACHE_IMAGE}:${TAG_FREQAI_ARM}
docker manifest create ${IMAGE_NAME}:${TAG_FREQAI} ${CACHE_IMAGE}:${TAG_FREQAI_ARM} ${CACHE_IMAGE}:${TAG_FREQAI}
docker manifest push -p ${IMAGE_NAME}:${TAG_FREQAI}
docker manifest create ${IMAGE_NAME}:${TAG_FREQAI_RL} ${CACHE_IMAGE}:${TAG_FREQAI_RL} ${CACHE_IMAGE}:${TAG_FREQAI_RL_ARM}
docker manifest create ${IMAGE_NAME}:${TAG_FREQAI_RL} ${CACHE_IMAGE}:${TAG_FREQAI_RL_ARM} ${CACHE_IMAGE}:${TAG_FREQAI_RL}
docker manifest push -p ${IMAGE_NAME}:${TAG_FREQAI_RL}
# Create special Torch tag - which is identical to the RL tag.
docker manifest create ${IMAGE_NAME}:${TAG_FREQAI_TORCH} ${CACHE_IMAGE}:${TAG_FREQAI_RL} ${CACHE_IMAGE}:${TAG_FREQAI_RL_ARM}
docker manifest push -p ${IMAGE_NAME}:${TAG_FREQAI_TORCH}
# copy images to ghcr.io
alias crane="docker run --rm -i -v $(pwd)/.crane:/home/nonroot/.docker/ gcr.io/go-containerregistry/crane"
mkdir .crane
chmod a+rwx .crane
echo "${GHCR_TOKEN}" | crane auth login ghcr.io -u "${GHCR_USERNAME}" --password-stdin
crane copy ${IMAGE_NAME}:${TAG_FREQAI_RL} ${GHCR_IMAGE_NAME}:${TAG_FREQAI_RL}
crane copy ${IMAGE_NAME}:${TAG_FREQAI_RL} ${GHCR_IMAGE_NAME}:${TAG_FREQAI_TORCH}
crane copy ${IMAGE_NAME}:${TAG_FREQAI} ${GHCR_IMAGE_NAME}:${TAG_FREQAI}
crane copy ${IMAGE_NAME}:${TAG_PLOT} ${GHCR_IMAGE_NAME}:${TAG_PLOT}
crane copy ${IMAGE_NAME}:${TAG} ${GHCR_IMAGE_NAME}:${TAG}
# Tag as latest for develop builds
if [ "${TAG}" = "develop" ]; then
echo 'Tagging image as latest'
docker manifest create ${IMAGE_NAME}:latest ${CACHE_IMAGE}:${TAG_ARM} ${IMAGE_NAME}:${TAG_PI} ${CACHE_IMAGE}:${TAG}
docker manifest push -p ${IMAGE_NAME}:latest
crane copy ${IMAGE_NAME}:latest ${GHCR_IMAGE_NAME}:latest
fi
docker images
rm -rf .crane
# Cleanup old images from arm64 node.
docker image prune -a --force --filter "until=24h"

View File

@@ -2,8 +2,6 @@
# The below assumes a correctly setup docker buildx environment
IMAGE_NAME=freqtradeorg/freqtrade
CACHE_IMAGE=freqtradeorg/freqtrade_cache
# Replace / with _ to create a valid tag
TAG=$(echo "${BRANCH_NAME}" | sed -e "s/\//_/g")
TAG_PLOT=${TAG}_plot
@@ -13,6 +11,7 @@ TAG_PI="${TAG}_pi"
PI_PLATFORM="linux/arm/v7"
echo "Running for ${TAG}"
CACHE_IMAGE=freqtradeorg/freqtrade_cache
CACHE_TAG=${CACHE_IMAGE}:${TAG_PI}_cache
# Add commit and commit_message to docker container
@@ -27,10 +26,7 @@ if [ "${GITHUB_EVENT_NAME}" = "schedule" ]; then
--cache-to=type=registry,ref=${CACHE_TAG} \
-f docker/Dockerfile.armhf \
--platform ${PI_PLATFORM} \
-t ${IMAGE_NAME}:${TAG_PI} \
--push \
--provenance=false \
.
-t ${IMAGE_NAME}:${TAG_PI} --push .
else
echo "event ${GITHUB_EVENT_NAME}: building with cache"
# Build regular image
@@ -39,16 +35,12 @@ else
# Pull last build to avoid rebuilding the whole image
# docker pull --platform ${PI_PLATFORM} ${IMAGE_NAME}:${TAG}
# disable provenance due to https://github.com/docker/buildx/issues/1509
docker buildx build \
--cache-from=type=registry,ref=${CACHE_TAG} \
--cache-to=type=registry,ref=${CACHE_TAG} \
-f docker/Dockerfile.armhf \
--platform ${PI_PLATFORM} \
-t ${IMAGE_NAME}:${TAG_PI} \
--push \
--provenance=false \
.
-t ${IMAGE_NAME}:${TAG_PI} --push .
fi
if [ $? -ne 0 ]; then
@@ -58,16 +50,16 @@ fi
# Tag image for upload and next build step
docker tag freqtrade:$TAG ${CACHE_IMAGE}:$TAG
docker build --build-arg sourceimage=freqtrade --build-arg sourcetag=${TAG} -t freqtrade:${TAG_PLOT} -f docker/Dockerfile.plot .
docker build --build-arg sourceimage=freqtrade --build-arg sourcetag=${TAG} -t freqtrade:${TAG_FREQAI} -f docker/Dockerfile.freqai .
docker build --build-arg sourceimage=freqtrade --build-arg sourcetag=${TAG_FREQAI} -t freqtrade:${TAG_FREQAI_RL} -f docker/Dockerfile.freqai_rl .
docker build --cache-from freqtrade:${TAG} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG} -t freqtrade:${TAG_PLOT} -f docker/Dockerfile.plot .
docker build --cache-from freqtrade:${TAG} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG} -t freqtrade:${TAG_FREQAI} -f docker/Dockerfile.freqai .
docker build --cache-from freqtrade:${TAG_FREQAI} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG_FREQAI} -t freqtrade:${TAG_FREQAI_RL} -f docker/Dockerfile.freqai_rl .
docker tag freqtrade:$TAG_PLOT ${CACHE_IMAGE}:$TAG_PLOT
docker tag freqtrade:$TAG_FREQAI ${CACHE_IMAGE}:$TAG_FREQAI
docker tag freqtrade:$TAG_FREQAI_RL ${CACHE_IMAGE}:$TAG_FREQAI_RL
# Run backtest
docker run --rm -v $(pwd)/tests/testdata/config.tests.json:/freqtrade/config.json:ro -v $(pwd)/tests:/tests freqtrade:${TAG} backtesting --datadir /tests/testdata --strategy-path /tests/strategy/strats/ --strategy StrategyTestV3
docker run --rm -v $(pwd)/config_examples/config_bittrex.example.json:/freqtrade/config.json:ro -v $(pwd)/tests:/tests freqtrade:${TAG} backtesting --datadir /tests/testdata --strategy-path /tests/strategy/strats/ --strategy StrategyTestV3
if [ $? -ne 0 ]; then
echo "failed running backtest"
@@ -76,10 +68,12 @@ fi
docker images
docker push ${CACHE_IMAGE}:$TAG
docker push ${CACHE_IMAGE}
docker push ${CACHE_IMAGE}:$TAG_PLOT
docker push ${CACHE_IMAGE}:$TAG_FREQAI
docker push ${CACHE_IMAGE}:$TAG_FREQAI_RL
docker push ${CACHE_IMAGE}:$TAG
docker images

View File

@@ -1,6 +1,6 @@
{
"max_open_trades": 3,
"stake_currency": "USDT",
"stake_currency": "BTC",
"stake_amount": 0.05,
"tradable_balance_ratio": 0.99,
"fiat_display_currency": "USD",
@@ -36,21 +36,21 @@
"ccxt_async_config": {
},
"pair_whitelist": [
"ALGO/USDT",
"ATOM/USDT",
"BAT/USDT",
"BCH/USDT",
"BRD/USDT",
"EOS/USDT",
"ETH/USDT",
"IOTA/USDT",
"LINK/USDT",
"LTC/USDT",
"NEO/USDT",
"NXS/USDT",
"XMR/USDT",
"XRP/USDT",
"XTZ/USDT"
"ALGO/BTC",
"ATOM/BTC",
"BAT/BTC",
"BCH/BTC",
"BRD/BTC",
"EOS/BTC",
"ETH/BTC",
"IOTA/BTC",
"LINK/BTC",
"LTC/BTC",
"NEO/BTC",
"NXS/BTC",
"XMR/BTC",
"XRP/BTC",
"XTZ/BTC"
],
"pair_blacklist": [
"BNB/.*"
@@ -59,6 +59,20 @@
"pairlists": [
{"method": "StaticPairList"}
],
"edge": {
"enabled": false,
"process_throttle_secs": 3600,
"calculate_since_number_of_days": 7,
"allowed_risk": 0.01,
"stoploss_range_min": -0.01,
"stoploss_range_max": -0.1,
"stoploss_range_step": -0.01,
"minimum_winrate": 0.60,
"minimum_expectancy": 0.20,
"min_trade_number": 10,
"max_trade_duration_minute": 1440,
"remove_pumps": false
},
"telegram": {
"enabled": false,
"token": "your_telegram_token",

View File

@@ -29,11 +29,14 @@
"order_book_top": 1
},
"exchange": {
"name": "binance",
"name": "bittrex",
"key": "your_exchange_key",
"secret": "your_exchange_secret",
"ccxt_config": {},
"ccxt_async_config": {},
"ccxt_config": {"enableRateLimit": true},
"ccxt_async_config": {
"enableRateLimit": true,
"rateLimit": 500
},
"pair_whitelist": [
"ETH/BTC",
"LTC/BTC",
@@ -53,6 +56,20 @@
"pairlists": [
{"method": "StaticPairList"}
],
"edge": {
"enabled": false,
"process_throttle_secs": 3600,
"calculate_since_number_of_days": 7,
"allowed_risk": 0.01,
"stoploss_range_min": -0.01,
"stoploss_range_max": -0.1,
"stoploss_range_step": -0.01,
"minimum_winrate": 0.60,
"minimum_expectancy": 0.20,
"min_trade_number": 10,
"max_trade_duration_minute": 1440,
"remove_pumps": false
},
"telegram": {
"enabled": false,
"token": "your_telegram_token",

View File

@@ -21,8 +21,8 @@
"ccxt_config": {},
"ccxt_async_config": {},
"pair_whitelist": [
"1INCH/USDT:USDT",
"ALGO/USDT:USDT"
"1INCH/USDT",
"ALGO/USDT"
],
"pair_blacklist": []
},
@@ -48,11 +48,11 @@
],
"freqai": {
"enabled": true,
"purge_old_models": 2,
"purge_old_models": true,
"train_period_days": 15,
"backtest_period_days": 7,
"live_retrain_hours": 0,
"identifier": "unique-id",
"identifier": "uniqe-id",
"feature_parameters": {
"include_timeframes": [
"3m",
@@ -60,8 +60,8 @@
"1h"
],
"include_corr_pairlist": [
"BTC/USDT:USDT",
"ETH/USDT:USDT"
"BTC/USDT",
"ETH/USDT"
],
"label_period_candles": 20,
"include_shifted_candles": 2,

View File

@@ -60,7 +60,6 @@
"force_entry": "market",
"stoploss": "market",
"stoploss_on_exchange": false,
"stoploss_price_type": "last",
"stoploss_on_exchange_interval": 60,
"stoploss_on_exchange_limit_ratio": 0.99
},
@@ -70,7 +69,6 @@
},
"pairlists": [
{"method": "StaticPairList"},
{"method": "FullTradesFilter"},
{
"method": "VolumePairList",
"number_assets": 20,
@@ -90,6 +88,7 @@
],
"exchange": {
"name": "binance",
"sandbox": false,
"key": "your_exchange_key",
"secret": "your_exchange_secret",
"password": "",
@@ -206,6 +205,6 @@
"recursive_strategy_search": false,
"add_config_files": [],
"reduce_df_footprint": false,
"dataformat_ohlcv": "feather",
"dataformat_trades": "feather"
"dataformat_ohlcv": "json",
"dataformat_trades": "jsongz"
}

View File

@@ -64,6 +64,20 @@
"pairlists": [
{"method": "StaticPairList"}
],
"edge": {
"enabled": false,
"process_throttle_secs": 3600,
"calculate_since_number_of_days": 7,
"allowed_risk": 0.01,
"stoploss_range_min": -0.01,
"stoploss_range_max": -0.1,
"stoploss_range_step": -0.01,
"minimum_winrate": 0.60,
"minimum_expectancy": 0.20,
"min_trade_number": 10,
"max_trade_duration_minute": 1440,
"remove_pumps": false
},
"telegram": {
"enabled": false,
"token": "your_telegram_token",

View File

@@ -6,15 +6,6 @@ services:
# image: freqtradeorg/freqtrade:develop
# Use plotting image
# image: freqtradeorg/freqtrade:develop_plot
# # Enable GPU Image and GPU Resources (only relevant for freqAI)
# # Make sure to uncomment the whole deploy section
# deploy:
# resources:
# reservations:
# devices:
# - driver: nvidia
# count: 1
# capabilities: [gpu]
# Build step - only needed when additional dependencies are needed
# build:
# context: .
@@ -25,7 +16,7 @@ services:
- "./user_data:/freqtrade/user_data"
# Expose api on port 8080 (localhost only)
# Please read the https://www.freqtrade.io/en/stable/rest-api/ documentation
# for more information.
# before enabling this.
ports:
- "127.0.0.1:8080:8080"
# Default command used when running `docker compose up`

View File

@@ -1,4 +1,4 @@
FROM python:3.11.8-slim-bookworm as base
FROM python:3.9.12-slim-bullseye as base
# Setup env
ENV LANG C.UTF-8
@@ -11,13 +11,12 @@ ENV FT_APP_ENV="docker"
# Prepare environment
RUN mkdir /freqtrade \
&& apt-get update \
&& apt-get -y install sudo libatlas3-base libopenblas-dev curl sqlite3 libhdf5-dev libutf8proc-dev libsnappy-dev \
&& apt-get -y install sudo libatlas3-base curl sqlite3 libhdf5-dev libutf8proc-dev libsnappy-dev \
&& apt-get clean \
&& useradd -u 1000 -G sudo -U -m ftuser \
&& chown ftuser:ftuser /freqtrade \
# Allow sudoers
&& echo "ftuser ALL=(ALL) NOPASSWD: /bin/chown" >> /etc/sudoers \
&& pip install --upgrade "pip<=24.0"
&& echo "ftuser ALL=(ALL) NOPASSWD: /bin/chown" >> /etc/sudoers
WORKDIR /freqtrade
@@ -26,16 +25,19 @@ FROM base as python-deps
RUN apt-get update \
&& apt-get -y install build-essential libssl-dev libffi-dev libgfortran5 pkg-config cmake gcc \
&& apt-get clean \
&& pip install --upgrade pip \
&& echo "[global]\nextra-index-url=https://www.piwheels.org/simple" > /etc/pip.conf
# Install TA-lib
COPY build_helpers/* /tmp/
RUN cd /tmp && /tmp/install_ta-lib.sh && rm -r /tmp/*ta-lib*
ENV LD_LIBRARY_PATH /usr/local/lib
# Install dependencies
COPY --chown=ftuser:ftuser requirements.txt /freqtrade/
USER ftuser
RUN pip install --user --no-cache-dir numpy \
&& pip install --user --no-index --find-links /tmp/ pyarrow TA-Lib \
&& pip install --user /tmp/pyarrow-*.whl \
&& pip install --user --no-cache-dir -r requirements.txt
# Copy dependencies to runtime-image

View File

@@ -1,8 +1,8 @@
FROM freqtradeorg/freqtrade:develop_plot
# Pin prompt-toolkit to avoid questionary version conflict
RUN pip install jupyterlab "prompt-toolkit<=3.0.36" jupyter-client --user --no-cache-dir
# Pin jupyter-client to avoid tornado version conflict
RUN pip install jupyterlab jupyter-client==7.3.4 --user --no-cache-dir
# Empty the ENTRYPOINT to allow all commands
ENTRYPOINT []

View File

@@ -1,36 +0,0 @@
---
version: '3'
services:
freqtrade:
image: freqtradeorg/freqtrade:stable_freqaitorch
# # Enable GPU Image and GPU Resources
# # Make sure to uncomment the whole deploy section
# deploy:
# resources:
# reservations:
# devices:
# - driver: nvidia
# count: 1
# capabilities: [gpu]
# Build step - only needed when additional dependencies are needed
# build:
# context: .
# dockerfile: "./docker/Dockerfile.custom"
restart: unless-stopped
container_name: freqtrade
volumes:
- "./user_data:/freqtrade/user_data"
# Expose api on port 8080 (localhost only)
# Please read the https://www.freqtrade.io/en/stable/rest-api/ documentation
# for more information.
ports:
- "127.0.0.1:8080:8080"
# Default command used when running `docker compose up`
command: >
trade
--logfile /freqtrade/user_data/logs/freqtrade.log
--db-url sqlite:////freqtrade/user_data/tradesv3.sqlite
--config /freqtrade/user_data/config.json
--freqaimodel XGBoostRegressor
--strategy FreqaiExampleStrategy

View File

@@ -6,7 +6,7 @@ services:
context: ..
dockerfile: docker/Dockerfile.jupyter
restart: unless-stopped
# container_name: freqtrade
container_name: freqtrade
ports:
- "127.0.0.1:8888:8888"
volumes:

View File

@@ -29,22 +29,20 @@ If all goes well, you should now see a `backtest-result-{timestamp}_signals.pkl`
`user_data/backtest_results` folder.
To analyze the entry/exit tags, we now need to use the `freqtrade backtesting-analysis` command
with `--analysis-groups` option provided with space-separated arguments:
with `--analysis-groups` option provided with space-separated arguments (default `0 1 2`):
``` bash
freqtrade backtesting-analysis -c <config.json> --analysis-groups 0 1 2 3 4 5
freqtrade backtesting-analysis -c <config.json> --analysis-groups 0 1 2 3 4
```
This command will read from the last backtesting results. The `--analysis-groups` option is
used to specify the various tabular outputs showing the profit of each group or trade,
used to specify the various tabular outputs showing the profit fo each group or trade,
ranging from the simplest (0) to the most detailed per pair, per buy and per sell tag (4):
* 0: overall winrate and profit summary by enter_tag
* 1: profit summaries grouped by enter_tag
* 2: profit summaries grouped by enter_tag and exit_tag
* 3: profit summaries grouped by pair and enter_tag
* 4: profit summaries grouped by pair, enter_ and exit_tag (this can get quite large)
* 5: profit summaries grouped by exit_tag
More options are available by running with the `-h` option.
@@ -103,22 +101,6 @@ The indicators have to be present in your strategy's main DataFrame (either for
timeframe or for informative timeframes) otherwise they will simply be ignored in the script
output.
There are a range of candle and trade-related fields that are included in the analysis so are
automatically accessible by including them on the indicator-list, and these include:
- **open_date :** trade open datetime
- **close_date :** trade close datetime
- **min_rate :** minimum price seen throughout the position
- **max_rate :** maximum price seen throughout the position
- **open :** signal candle open price
- **close :** signal candle close price
- **high :** signal candle high price
- **low :** signal candle low price
- **volume :** signal candle volume
- **profit_ratio :** trade profit ratio
- **profit_abs :** absolute profit return of the trade
### Filtering the trade output by date
To show only trades between dates within your backtested timerange, supply the usual `timerange` option in `YYYYMMDD-[YYYYMMDD]` format:
@@ -132,38 +114,3 @@ For example, if your backtest timerange was `20220101-20221231` but you only wan
```bash
freqtrade backtesting-analysis -c <config.json> --timerange 20220101-20220201
```
### Printing out rejected signals
Use the `--rejected-signals` option to print out rejected signals.
```bash
freqtrade backtesting-analysis -c <config.json> --rejected-signals
```
### Writing tables to CSV
Some of the tabular outputs can become large, so printing them out to the terminal is not preferable.
Use the `--analysis-to-csv` option to disable printing out of tables to standard out and write them to CSV files.
```bash
freqtrade backtesting-analysis -c <config.json> --analysis-to-csv
```
By default this will write one file per output table you specified in the `backtesting-analysis` command, e.g.
```bash
freqtrade backtesting-analysis -c <config.json> --analysis-to-csv --rejected-signals --analysis-groups 0 1
```
This will write to `user_data/backtest_results`:
* rejected_signals.csv
* group_0.csv
* group_1.csv
To override where the files will be written, also specify the `--analysis-csv-path` option.
```bash
freqtrade backtesting-analysis -c <config.json> --analysis-to-csv --analysis-csv-path another/data/path/
```

View File

@@ -75,7 +75,7 @@ This function needs to return a floating point number (`float`). Smaller numbers
## Overriding pre-defined spaces
To override a pre-defined space (`roi_space`, `generate_roi_table`, `stoploss_space`, `trailing_space`, `max_open_trades_space`), define a nested class called Hyperopt and define the required spaces as follows:
To override a pre-defined space (`roi_space`, `generate_roi_table`, `stoploss_space`, `trailing_space`), define a nested class called Hyperopt and define the required spaces as follows:
```python
from freqtrade.optimize.space import Categorical, Dimension, Integer, SKDecimal
@@ -123,12 +123,6 @@ class MyAwesomeStrategy(IStrategy):
Categorical([True, False], name='trailing_only_offset_is_reached'),
]
# Define a custom max_open_trades space
def max_open_trades_space(self) -> List[Dimension]:
return [
Integer(-1, 10, name='max_open_trades'),
]
```
!!! Note
@@ -136,7 +130,7 @@ class MyAwesomeStrategy(IStrategy):
### Dynamic parameters
Parameters can also be defined dynamically, but must be available to the instance once the [`bot_start()` callback](strategy-callbacks.md#bot-start) has been called.
Parameters can also be defined dynamically, but must be available to the instance once the * [`bot_start()` callback](strategy-callbacks.md#bot-start) has been called.
``` python

View File

@@ -192,7 +192,7 @@ $RepeatedMsgReduction on
### Logging to journald
This needs the `cysystemd` python package installed as dependency (`pip install cysystemd`), which is not available on Windows. Hence, the whole journald logging functionality is not available for a bot running on Windows.
This needs the `systemd` python package installed as the dependency, which is not available on Windows. Hence, the whole journald logging functionality is not available for a bot running on Windows.
To send Freqtrade log messages to `journald` system service use the `--logfile` command line option with the value in the following format:

Binary file not shown.

Before

Width:  |  Height:  |  Size: 94 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 91 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 133 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 135 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 242 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 241 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 209 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 80 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 79 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

View File

@@ -31,9 +31,9 @@ optional arguments:
Specify timeframe (`1m`, `5m`, `30m`, `1h`, `1d`).
--timerange TIMERANGE
Specify what timerange of data to use.
--data-format-ohlcv {json,jsongz,hdf5,feather,parquet}
--data-format-ohlcv {json,jsongz,hdf5}
Storage format for downloaded candle (OHLCV) data.
(default: `feather`).
(default: `json`).
--max-open-trades INT
Override the value of the `max_open_trades`
configuration setting.
@@ -170,11 +170,11 @@ freqtrade backtesting --strategy AwesomeStrategy --dry-run-wallet 1000
Using a different on-disk historical candle (OHLCV) data source
Assume you downloaded the history data from the Binance exchange and kept it in the `user_data/data/binance-20180101` directory.
Assume you downloaded the history data from the Bittrex exchange and kept it in the `user_data/data/bittrex-20180101` directory.
You can then use this data for backtesting as follows:
```bash
freqtrade backtesting --strategy AwesomeStrategy --datadir user_data/data/binance-20180101
freqtrade backtesting --strategy AwesomeStrategy --datadir user_data/data/bittrex-20180101
```
---
@@ -252,42 +252,41 @@ The most important in the backtesting is to understand the result.
A backtesting result will look like that:
```
================================================ BACKTESTING REPORT =================================================
| Pair | Trades | Avg Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Wins Draws Loss Win% |
|----------+--------+----------------+------------------+----------------+--------------+--------------------------|
| ADA/BTC | 35 | -0.11 | -0.00019428 | -1.94 | 4:35:00 | 14 0 21 40.0 |
| ARK/BTC | 11 | -0.41 | -0.00022647 | -2.26 | 2:03:00 | 3 0 8 27.3 |
| BTS/BTC | 32 | 0.31 | 0.00048938 | 4.89 | 5:05:00 | 18 0 14 56.2 |
| DASH/BTC | 13 | -0.08 | -0.00005343 | -0.53 | 4:39:00 | 6 0 7 46.2 |
| ENG/BTC | 18 | 1.36 | 0.00122807 | 12.27 | 2:50:00 | 8 0 10 44.4 |
| EOS/BTC | 36 | 0.08 | 0.00015304 | 1.53 | 3:34:00 | 16 0 20 44.4 |
| ETC/BTC | 26 | 0.37 | 0.00047576 | 4.75 | 6:14:00 | 11 0 15 42.3 |
| ETH/BTC | 33 | 0.30 | 0.00049856 | 4.98 | 7:31:00 | 16 0 17 48.5 |
| IOTA/BTC | 32 | 0.03 | 0.00005444 | 0.54 | 3:12:00 | 14 0 18 43.8 |
| LSK/BTC | 15 | 1.75 | 0.00131413 | 13.13 | 2:58:00 | 6 0 9 40.0 |
| LTC/BTC | 32 | -0.04 | -0.00006886 | -0.69 | 4:49:00 | 11 0 21 34.4 |
| NANO/BTC | 17 | 1.26 | 0.00107058 | 10.70 | 1:55:00 | 10 0 7 58.5 |
| NEO/BTC | 23 | 0.82 | 0.00094936 | 9.48 | 2:59:00 | 10 0 13 43.5 |
| REQ/BTC | 9 | 1.17 | 0.00052734 | 5.27 | 3:47:00 | 4 0 5 44.4 |
| XLM/BTC | 16 | 1.22 | 0.00097800 | 9.77 | 3:15:00 | 7 0 9 43.8 |
| XMR/BTC | 23 | -0.18 | -0.00020696 | -2.07 | 5:30:00 | 12 0 11 52.2 |
| XRP/BTC | 35 | 0.66 | 0.00114897 | 11.48 | 3:49:00 | 12 0 23 34.3 |
| ZEC/BTC | 22 | -0.46 | -0.00050971 | -5.09 | 2:22:00 | 7 0 15 31.8 |
| TOTAL | 429 | 0.36 | 0.00762792 | 76.20 | 4:12:00 | 186 0 243 43.4 |
============================================= LEFT OPEN TRADES REPORT =============================================
| Pair | Trades | Avg Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Win Draw Loss Win% |
|----------+---------+----------------+------------------+----------------+----------------+---------------------|
| ADA/BTC | 1 | 0.89 | 0.00004434 | 0.44 | 6:00:00 | 1 0 0 100 |
| LTC/BTC | 1 | 0.68 | 0.00003421 | 0.34 | 2:00:00 | 1 0 0 100 |
| TOTAL | 2 | 0.78 | 0.00007855 | 0.78 | 4:00:00 | 2 0 0 100 |
==================== EXIT REASON STATS ====================
========================================================= BACKTESTING REPORT =========================================================
| Pair | Entries | Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Wins Draws Loss Win% |
|:---------|--------:|---------------:|---------------:|-----------------:|---------------:|:-------------|-------------------------:|
| ADA/BTC | 35 | -0.11 | -3.88 | -0.00019428 | -1.94 | 4:35:00 | 14 0 21 40.0 |
| ARK/BTC | 11 | -0.41 | -4.52 | -0.00022647 | -2.26 | 2:03:00 | 3 0 8 27.3 |
| BTS/BTC | 32 | 0.31 | 9.78 | 0.00048938 | 4.89 | 5:05:00 | 18 0 14 56.2 |
| DASH/BTC | 13 | -0.08 | -1.07 | -0.00005343 | -0.53 | 4:39:00 | 6 0 7 46.2 |
| ENG/BTC | 18 | 1.36 | 24.54 | 0.00122807 | 12.27 | 2:50:00 | 8 0 10 44.4 |
| EOS/BTC | 36 | 0.08 | 3.06 | 0.00015304 | 1.53 | 3:34:00 | 16 0 20 44.4 |
| ETC/BTC | 26 | 0.37 | 9.51 | 0.00047576 | 4.75 | 6:14:00 | 11 0 15 42.3 |
| ETH/BTC | 33 | 0.30 | 9.96 | 0.00049856 | 4.98 | 7:31:00 | 16 0 17 48.5 |
| IOTA/BTC | 32 | 0.03 | 1.09 | 0.00005444 | 0.54 | 3:12:00 | 14 0 18 43.8 |
| LSK/BTC | 15 | 1.75 | 26.26 | 0.00131413 | 13.13 | 2:58:00 | 6 0 9 40.0 |
| LTC/BTC | 32 | -0.04 | -1.38 | -0.00006886 | -0.69 | 4:49:00 | 11 0 21 34.4 |
| NANO/BTC | 17 | 1.26 | 21.39 | 0.00107058 | 10.70 | 1:55:00 | 10 0 7 58.5 |
| NEO/BTC | 23 | 0.82 | 18.97 | 0.00094936 | 9.48 | 2:59:00 | 10 0 13 43.5 |
| REQ/BTC | 9 | 1.17 | 10.54 | 0.00052734 | 5.27 | 3:47:00 | 4 0 5 44.4 |
| XLM/BTC | 16 | 1.22 | 19.54 | 0.00097800 | 9.77 | 3:15:00 | 7 0 9 43.8 |
| XMR/BTC | 23 | -0.18 | -4.13 | -0.00020696 | -2.07 | 5:30:00 | 12 0 11 52.2 |
| XRP/BTC | 35 | 0.66 | 22.96 | 0.00114897 | 11.48 | 3:49:00 | 12 0 23 34.3 |
| ZEC/BTC | 22 | -0.46 | -10.18 | -0.00050971 | -5.09 | 2:22:00 | 7 0 15 31.8 |
| TOTAL | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 0 243 43.4 |
========================================================= EXIT REASON STATS ==========================================================
| Exit Reason | Exits | Wins | Draws | Losses |
|--------------------+---------+-------+--------+---------|
|:-------------------|--------:|------:|-------:|--------:|
| trailing_stop_loss | 205 | 150 | 0 | 55 |
| stop_loss | 166 | 0 | 0 | 166 |
| exit_signal | 56 | 36 | 0 | 20 |
| force_exit | 2 | 0 | 0 | 2 |
====================================================== LEFT OPEN TRADES REPORT ======================================================
| Pair | Entries | Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Win Draw Loss Win% |
|:---------|---------:|---------------:|---------------:|-----------------:|---------------:|:---------------|--------------------:|
| ADA/BTC | 1 | 0.89 | 0.89 | 0.00004434 | 0.44 | 6:00:00 | 1 0 0 100 |
| LTC/BTC | 1 | 0.68 | 0.68 | 0.00003421 | 0.34 | 2:00:00 | 1 0 0 100 |
| TOTAL | 2 | 0.78 | 1.57 | 0.00007855 | 0.78 | 4:00:00 | 2 0 0 100 |
================== SUMMARY METRICS ==================
| Metric | Value |
|-----------------------------+---------------------|
@@ -301,11 +300,7 @@ A backtesting result will look like that:
| Absolute profit | 0.00762792 BTC |
| Total profit % | 76.2% |
| CAGR % | 460.87% |
| Sortino | 1.88 |
| Sharpe | 2.97 |
| Calmar | 6.29 |
| Profit factor | 1.11 |
| Expectancy (Ratio) | -0.15 (-0.05) |
| Avg. stake amount | 0.001 BTC |
| Total trade volume | 0.429 BTC |
| | |
@@ -324,7 +319,6 @@ A backtesting result will look like that:
| Days win/draw/lose | 12 / 82 / 25 |
| Avg. Duration Winners | 4:23:00 |
| Avg. Duration Loser | 6:55:00 |
| Max Consecutive Wins / Loss | 3 / 4 |
| Rejected Entry signals | 3089 |
| Entry/Exit Timeouts | 0 / 0 |
| Canceled Trade Entries | 34 |
@@ -358,7 +352,7 @@ here:
The bot has made `429` trades for an average duration of `4:12:00`, with a performance of `76.20%` (profit), that means it has
earned a total of `0.00762792 BTC` starting with a capital of 0.01 BTC.
The column `Avg Profit %` shows the average profit for all trades made.
The column `Avg Profit %` shows the average profit for all trades made while the column `Cum Profit %` sums up all the profits/losses.
The column `Tot Profit %` shows instead the total profit % in relation to the starting balance.
In the above results, we have a starting balance of 0.01 BTC and an absolute profit of 0.00762792 BTC - so the `Tot Profit %` will be `(0.00762792 / 0.01) * 100 ~= 76.2%`.
@@ -406,11 +400,7 @@ It contains some useful key metrics about performance of your strategy on backte
| Absolute profit | 0.00762792 BTC |
| Total profit % | 76.2% |
| CAGR % | 460.87% |
| Sortino | 1.88 |
| Sharpe | 2.97 |
| Calmar | 6.29 |
| Profit factor | 1.11 |
| Expectancy (Ratio) | -0.15 (-0.05) |
| Avg. stake amount | 0.001 BTC |
| Total trade volume | 0.429 BTC |
| | |
@@ -429,7 +419,6 @@ It contains some useful key metrics about performance of your strategy on backte
| Days win/draw/lose | 12 / 82 / 25 |
| Avg. Duration Winners | 4:23:00 |
| Avg. Duration Loser | 6:55:00 |
| Max Consecutive Wins / Loss | 3 / 4 |
| Rejected Entry signals | 3089 |
| Entry/Exit Timeouts | 0 / 0 |
| Canceled Trade Entries | 34 |
@@ -458,18 +447,14 @@ It contains some useful key metrics about performance of your strategy on backte
- `Absolute profit`: Profit made in stake currency.
- `Total profit %`: Total profit. Aligned to the `TOTAL` row's `Tot Profit %` from the first table. Calculated as `(End capital Starting capital) / Starting capital`.
- `CAGR %`: Compound annual growth rate.
- `Sortino`: Annualized Sortino ratio.
- `Sharpe`: Annualized Sharpe ratio.
- `Calmar`: Annualized Calmar ratio.
- `Profit factor`: profit / loss.
- `Avg. stake amount`: Average stake amount, either `stake_amount` or the average when using dynamic stake amount.
- `Total trade volume`: Volume generated on the exchange to reach the above profit.
- `Best Pair` / `Worst Pair`: Best and worst performing pair, and it's corresponding `Tot Profit %`.
- `Best Pair` / `Worst Pair`: Best and worst performing pair, and it's corresponding `Cum Profit %`.
- `Best Trade` / `Worst Trade`: Biggest single winning trade and biggest single losing trade.
- `Best day` / `Worst day`: Best and worst day based on daily profit.
- `Days win/draw/lose`: Winning / Losing days (draws are usually days without closed trade).
- `Avg. Duration Winners` / `Avg. Duration Loser`: Average durations for winning and losing trades.
- `Max Consecutive Wins / Loss`: Maximum consecutive wins/losses in a row.
- `Rejected Entry signals`: Trade entry signals that could not be acted upon due to `max_open_trades` being reached.
- `Entry/Exit Timeouts`: Entry/exit orders which did not fill (only applicable if custom pricing is used).
- `Canceled Trade Entries`: Number of trades that have been canceled by user request via `adjust_entry_price`.
@@ -522,8 +507,8 @@ To save time, by default backtest will reuse a cached result from within the las
### Further backtest-result analysis
To further analyze your backtest results, freqtrade will export the trades to file by default.
You can then load the trades to perform further analysis as shown in the [data analysis](strategy_analysis_example.md#load-backtest-results-to-pandas-dataframe) backtesting section.
To further analyze your backtest results, you can [export the trades](#exporting-trades-to-file).
You can then load the trades to perform further analysis as shown in the [data analysis](data-analysis.md#backtesting) backtesting section.
## Assumptions made by backtesting
@@ -531,14 +516,12 @@ Since backtesting lacks some detailed information about what happens within a ca
- Exchange [trading limits](#trading-limits-in-backtesting) are respected
- Entries happen at open-price
- All orders are filled at the requested price (no slippage) as long as the price is within the candle's high/low range
- All orders are filled at the requested price (no slippage, no unfilled orders)
- Exit-signal exits happen at open-price of the consecutive candle
- Exits don't free their trade slot for a new trade until the next candle
- Exit-signal is favored over Stoploss, because exit-signals are assumed to trigger on candle's open
- ROI
- Exits are compared to high - but the ROI value is used (e.g. ROI = 2%, high=5% - so the exit will be at 2%)
- Exits are never "below the candle", so a ROI of 2% may result in a exit at 2.4% if low was at 2.4% profit
- ROI entries which came into effect on the triggering candle (e.g. `120: 0.02` for 1h candles, from `60: 0.05`) will use the candle's open as exit rate
- exits are compared to high - but the ROI value is used (e.g. ROI = 2%, high=5% - so the exit will be at 2%)
- exits are never "below the candle", so a ROI of 2% may result in a exit at 2.4% if low was at 2.4% profit
- Force-exits caused by `<N>=-1` ROI entries use low as exit value, unless N falls on the candle open (e.g. `120: -1` for 1h candles)
- Stoploss exits happen exactly at stoploss price, even if low was lower, but the loss will be `2 * fees` higher than the stoploss price
- Stoploss is evaluated before ROI within one candle. So you can often see more trades with the `stoploss` exit reason comparing to the results obtained with the same strategy in the Dry Run/Live Trade modes
@@ -588,7 +571,7 @@ These precision values are based on current exchange limits (as described in the
## Improved backtest accuracy
One big limitation of backtesting is it's inability to know how prices moved intra-candle (was high before close, or vice-versa?).
One big limitation of backtesting is it's inability to know how prices moved intra-candle (was high before close, or viceversa?).
So assuming you run backtesting with a 1h timeframe, there will be 4 prices for that candle (Open, High, Low, Close).
While backtesting does take some assumptions (read above) about this - this can never be perfect, and will always be biased in one way or the other.
@@ -619,22 +602,22 @@ To compare multiple strategies, a list of Strategies can be provided to backtest
This is limited to 1 timeframe value per run. However, data is only loaded once from disk so if you have multiple
strategies you'd like to compare, this will give a nice runtime boost.
All listed Strategies need to be in the same directory, unless also `--recursive-strategy-search` is specified, where sub-directories within the strategy directory are also considered.
All listed Strategies need to be in the same directory.
``` bash
freqtrade backtesting --timerange 20180401-20180410 --timeframe 5m --strategy-list Strategy001 Strategy002 --export trades
```
This will save the results to `user_data/backtest_results/backtest-result-<datetime>.json`, including results for both `Strategy001` and `Strategy002`.
This will save the results to `user_data/backtest_results/backtest-result-<strategy>.json`, injecting the strategy-name into the target filename.
There will be an additional table comparing win/losses of the different strategies (identical to the "Total" row in the first table).
Detailed output for all strategies one after the other will be available, so make sure to scroll up to see the details per strategy.
```
================================================== STRATEGY SUMMARY ===================================================================
| Strategy | Trades | Avg Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Wins | Draws | Losses | Drawdown % |
|-------------+---------+----------------+------------------+----------------+----------------+-------+--------+--------+------------|
| Strategy1 | 429 | 0.36 | 0.00762792 | 76.20 | 4:12:00 | 186 | 0 | 243 | 45.2 |
| Strategy2 | 1487 | -0.13 | -0.00988917 | -98.79 | 4:43:00 | 662 | 0 | 825 | 241.68 |
=========================================================== STRATEGY SUMMARY ===========================================================================
| Strategy | Entries | Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Wins | Draws | Losses | Drawdown % |
|:------------|---------:|---------------:|---------------:|-----------------:|---------------:|:---------------|------:|-------:|-------:|-----------:|
| Strategy1 | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 | 0 | 243 | 45.2 |
| Strategy2 | 1487 | -0.13 | -197.58 | -0.00988917 | -98.79 | 4:43:00 | 662 | 0 | 825 | 241.68 |
```
## Next step

View File

@@ -7,32 +7,16 @@ This page provides you some basic concepts on how Freqtrade works and operates.
* **Strategy**: Your trading strategy, telling the bot what to do.
* **Trade**: Open position.
* **Open Order**: Order which is currently placed on the exchange, and is not yet complete.
* **Pair**: Tradable pair, usually in the format of Base/Quote (e.g. `XRP/USDT` for spot, `XRP/USDT:USDT` for futures).
* **Pair**: Tradable pair, usually in the format of Base/Quote (e.g. XRP/USDT).
* **Timeframe**: Candle length to use (e.g. `"5m"`, `"1h"`, ...).
* **Indicators**: Technical indicators (SMA, EMA, RSI, ...).
* **Limit order**: Limit orders which execute at the defined limit price or better.
* **Market order**: Guaranteed to fill, may move price depending on the order size.
* **Current Profit**: Currently pending (unrealized) profit for this trade. This is mainly used throughout the bot and UI.
* **Realized Profit**: Already realized profit. Only relevant in combination with [partial exits](strategy-callbacks.md#adjust-trade-position) - which also explains the calculation logic for this.
* **Total Profit**: Combined realized and unrealized profit. The relative number (%) is calculated against the total investment in this trade.
## Fee handling
All profit calculations of Freqtrade include fees. For Backtesting / Hyperopt / Dry-run modes, the exchange default fee is used (lowest tier on the exchange). For live operations, fees are used as applied by the exchange (this includes BNB rebates etc.).
## Pair naming
Freqtrade follows the [ccxt naming convention](https://docs.ccxt.com/#/README?id=consistency-of-base-and-quote-currencies) for currencies.
Using the wrong naming convention in the wrong market will usually result in the bot not recognizing the pair, usually resulting in errors like "this pair is not available".
### Spot pair naming
For spot pairs, naming will be `base/quote` (e.g. `ETH/USDT`).
### Futures pair naming
For futures pairs, naming will be `base/quote:settle` (e.g. `ETH/USDT:USDT`).
## Bot execution logic
Starting freqtrade in dry-run or live mode (using `freqtrade trade`) will start the bot and start the bot iteration loop.
@@ -49,12 +33,10 @@ By default, the bot loop runs every few seconds (`internals.process_throttle_sec
* Call `populate_indicators()`
* Call `populate_entry_trend()`
* Call `populate_exit_trend()`
* Update trades open order state from exchange.
* Call `order_filled()` strategy callback for filled orders.
* Check timeouts for open orders.
* Calls `check_entry_timeout()` strategy callback for open entry orders.
* Calls `check_exit_timeout()` strategy callback for open exit orders.
* Calls `adjust_entry_price()` strategy callback for open entry orders.
* Check timeouts for open orders.
* Calls `check_entry_timeout()` strategy callback for open entry orders.
* Calls `check_exit_timeout()` strategy callback for open exit orders.
* Calls `adjust_entry_price()` strategy callback for open entry orders.
* Verifies existing positions and eventually places exit orders.
* Considers stoploss, ROI and exit-signal, `custom_exit()` and `custom_stoploss()`.
* Determine exit-price based on `exit_pricing` configuration setting or by using the `custom_exit_price()` callback.
@@ -75,10 +57,10 @@ This loop will be repeated again and again until the bot is stopped.
* Load historic data for configured pairlist.
* Calls `bot_start()` once.
* Calls `bot_loop_start()` once.
* Calculate indicators (calls `populate_indicators()` once per pair).
* Calculate entry / exit signals (calls `populate_entry_trend()` and `populate_exit_trend()` once per pair).
* Loops per candle simulating entry and exit points.
* Calls `bot_loop_start()` strategy callback.
* Check for Order timeouts, either via the `unfilledtimeout` configuration, or via `check_entry_timeout()` / `check_exit_timeout()` strategy callbacks.
* Calls `adjust_entry_price()` strategy callback for open entry orders.
* Check for trade entry signals (`enter_long` / `enter_short` columns).
@@ -87,15 +69,9 @@ This loop will be repeated again and again until the bot is stopped.
* In Margin and Futures mode, `leverage()` strategy callback is called to determine the desired leverage.
* Determine stake size by calling the `custom_stake_amount()` callback.
* Check position adjustments for open trades if enabled and call `adjust_trade_position()` to determine if an additional order is requested.
* Call `order_filled()` strategy callback for filled entry orders.
* Call `custom_stoploss()` and `custom_exit()` to find custom exit points.
* For exits based on exit-signal, custom-exit and partial exits: Call `custom_exit_price()` to determine exit price (Prices are moved to be within the closing candle).
* Call `order_filled()` strategy callback for filled exit orders.
* Generate backtest report output
!!! Note
Both Backtesting and Hyperopt include exchange default Fees in the calculation. Custom fees can be passed to backtesting / hyperopt by specifying the `--fee` argument.
!!! Warning "Callback call frequency"
Backtesting will call each callback at max. once per candle (`--timeframe-detail` modifies this behavior to once per detailed candle).
Most callbacks will be called once per iteration in live (usually every ~5s) - which can cause backtesting mismatches.

View File

@@ -3,7 +3,7 @@
This page explains the different parameters of the bot and how to run it.
!!! Note
If you've used `setup.sh`, don't forget to activate your virtual environment (`source .venv/bin/activate`) before running freqtrade commands.
If you've used `setup.sh`, don't forget to activate your virtual environment (`source .env/bin/activate`) before running freqtrade commands.
!!! Warning "Up-to-date clock"
The clock on the system running the bot must be accurate, synchronized to a NTP server frequently enough to avoid problems with communication to the exchanges.

View File

@@ -11,10 +11,10 @@ Per default, the bot loads the configuration from the `config.json` file, locate
You can specify a different configuration file used by the bot with the `-c/--config` command-line option.
If you used the [Quick start](docker_quickstart.md#docker-quick-start) method for installing
If you used the [Quick start](installation.md/#quick-start) method for installing
the bot, the installation script should have already created the default configuration file (`config.json`) for you.
If the default configuration file is not created we recommend to use `freqtrade new-config --config user_data/config.json` to generate a basic configuration file.
If the default configuration file is not created we recommend to use `freqtrade new-config --config config.json` to generate a basic configuration file.
The Freqtrade configuration file is to be written in JSON format.
@@ -49,13 +49,6 @@ FREQTRADE__EXCHANGE__SECRET=<yourExchangeSecret>
!!! Note
Environment variables detected are logged at startup - so if you can't find why a value is not what you think it should be based on the configuration, make sure it's not loaded from an environment variable.
!!! Tip "Validate combined result"
You can use the [show-config subcommand](utils.md#show-config) to see the final, combined configuration.
??? Warning "Loading sequence"
Environment variables are loaded after the initial configuration. As such, you cannot provide the path to the configuration through environment variables. Please use `--config path/to/config.json` for that.
This also applies to user_dir to some degree. while the user directory can be set through environment variables - the configuration will **not** be loaded from that location.
### Multiple configuration files
Multiple configuration files can be specified and used by the bot or the bot can read its configuration parameters from the process standard input stream.
@@ -63,9 +56,6 @@ Multiple configuration files can be specified and used by the bot or the bot can
You can specify additional configuration files in `add_config_files`. Files specified in this parameter will be loaded and merged with the initial config file. The files are resolved relative to the initial configuration file.
This is similar to using multiple `--config` parameters, but simpler in usage as you don't have to specify all files for all commands.
!!! Tip "Validate combined result"
You can use the [show-config subcommand](utils.md#show-config) to see the final, combined configuration.
!!! Tip "Use multiple configuration files to keep secrets secret"
You can use a 2nd configuration file containing your secrets. That way you can share your "primary" configuration file, while still keeping your API keys for yourself.
The 2nd file should only specify what you intend to override.
@@ -144,11 +134,11 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| Parameter | Description |
|------------|-------------|
| `max_open_trades` | **Required.** Number of open trades your bot is allowed to have. Only one open trade per pair is possible, so the length of your pairlist is another limitation that can apply. If -1 then it is ignored (i.e. potentially unlimited open trades, limited by the pairlist). [More information below](#configuring-amount-per-trade). [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Positive integer or -1.
| `max_open_trades` | **Required.** Number of open trades your bot is allowed to have. Only one open trade per pair is possible, so the length of your pairlist is another limitation that can apply. If -1 then it is ignored (i.e. potentially unlimited open trades, limited by the pairlist). [More information below](#configuring-amount-per-trade).<br> **Datatype:** Positive integer or -1.
| `stake_currency` | **Required.** Crypto-currency used for trading. <br> **Datatype:** String
| `stake_amount` | **Required.** Amount of crypto-currency your bot will use for each trade. Set it to `"unlimited"` to allow the bot to use all available balance. [More information below](#configuring-amount-per-trade). <br> **Datatype:** Positive float or `"unlimited"`.
| `tradable_balance_ratio` | Ratio of the total account balance the bot is allowed to trade. [More information below](#configuring-amount-per-trade). <br>*Defaults to `0.99` 99%).*<br> **Datatype:** Positive float between `0.1` and `1.0`.
| `available_capital` | Available starting capital for the bot. Useful when running multiple bots on the same exchange account. [More information below](#configuring-amount-per-trade). <br> **Datatype:** Positive float.
| `available_capital` | Available starting capital for the bot. Useful when running multiple bots on the same exchange account.[More information below](#configuring-amount-per-trade). <br> **Datatype:** Positive float.
| `amend_last_stake_amount` | Use reduced last stake amount if necessary. [More information below](#configuring-amount-per-trade). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `last_stake_amount_min_ratio` | Defines minimum stake amount that has to be left and executed. Applies only to the last stake amount when it's amended to a reduced value (i.e. if `amend_last_stake_amount` is set to `true`). [More information below](#configuring-amount-per-trade). <br>*Defaults to `0.5`.* <br> **Datatype:** Float (as ratio)
| `amount_reserve_percent` | Reserve some amount in min pair stake amount. The bot will reserve `amount_reserve_percent` + stoploss value when calculating min pair stake amount in order to avoid possible trade refusals. <br>*Defaults to `0.05` (5%).* <br> **Datatype:** Positive Float as ratio.
@@ -165,29 +155,29 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `trailing_stop_positive_offset` | Offset on when to apply `trailing_stop_positive`. Percentage value which should be positive. More details in the [stoploss documentation](stoploss.md#trailing-stop-loss-only-once-the-trade-has-reached-a-certain-offset). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0` (no offset).* <br> **Datatype:** Float
| `trailing_only_offset_is_reached` | Only apply trailing stoploss when the offset is reached. [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `fee` | Fee used during backtesting / dry-runs. Should normally not be configured, which has freqtrade fall back to the exchange default fee. Set as ratio (e.g. 0.001 = 0.1%). Fee is applied twice for each trade, once when buying, once when selling. <br> **Datatype:** Float (as ratio)
| `futures_funding_rate` | User-specified funding rate to be used when historical funding rates are not available from the exchange. This does not overwrite real historical rates. It is recommended that this be set to 0 unless you are testing a specific coin and you understand how the funding rate will affect freqtrade's profit calculations. [More information here](leverage.md#unavailable-funding-rates) <br>*Defaults to `None`.*<br> **Datatype:** Float
| `futures_funding_rate` | User-specified funding rate to be used when historical funding rates are not available from the exchange. This does not overwrite real historical rates. It is recommended that this be set to 0 unless you are testing a specific coin and you understand how the funding rate will affect freqtrade's profit calculations. [More information here](leverage.md#unavailable-funding-rates) <br>*Defaults to None.*<br> **Datatype:** Float
| `trading_mode` | Specifies if you want to trade regularly, trade with leverage, or trade contracts whose prices are derived from matching cryptocurrency prices. [leverage documentation](leverage.md). <br>*Defaults to `"spot"`.* <br> **Datatype:** String
| `margin_mode` | When trading with leverage, this determines if the collateral owned by the trader will be shared or isolated to each trading pair [leverage documentation](leverage.md). <br> **Datatype:** String
| `liquidation_buffer` | A ratio specifying how large of a safety net to place between the liquidation price and the stoploss to prevent a position from reaching the liquidation price [leverage documentation](leverage.md). <br>*Defaults to `0.05`.* <br> **Datatype:** Float
| | **Unfilled timeout**
| `unfilledtimeout.entry` | **Required.** How long (in minutes or seconds) the bot will wait for an unfilled entry order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `unfilledtimeout.exit` | **Required.** How long (in minutes or seconds) the bot will wait for an unfilled exit order to complete, after which the order will be cancelled and repeated at current (new) price, as long as there is a signal. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `unfilledtimeout.unit` | Unit to use in unfilledtimeout setting. Note: If you set unfilledtimeout.unit to "seconds", "internals.process_throttle_secs" must be inferior or equal to timeout [Strategy Override](#parameters-in-the-strategy). <br> *Defaults to `"minutes"`.* <br> **Datatype:** String
| `unfilledtimeout.unit` | Unit to use in unfilledtimeout setting. Note: If you set unfilledtimeout.unit to "seconds", "internals.process_throttle_secs" must be inferior or equal to timeout [Strategy Override](#parameters-in-the-strategy). <br> *Defaults to `minutes`.* <br> **Datatype:** String
| `unfilledtimeout.exit_timeout_count` | How many times can exit orders time out. Once this number of timeouts is reached, an emergency exit is triggered. 0 to disable and allow unlimited order cancels. [Strategy Override](#parameters-in-the-strategy).<br>*Defaults to `0`.* <br> **Datatype:** Integer
| | **Pricing**
| `entry_pricing.price_side` | Select the side of the spread the bot should look at to get the entry rate. [More information below](#entry-price).<br> *Defaults to `"same"`.* <br> **Datatype:** String (either `ask`, `bid`, `same` or `other`).
| `entry_pricing.price_side` | Select the side of the spread the bot should look at to get the entry rate. [More information below](#buy-price-side).<br> *Defaults to `same`.* <br> **Datatype:** String (either `ask`, `bid`, `same` or `other`).
| `entry_pricing.price_last_balance` | **Required.** Interpolate the bidding price. More information [below](#entry-price-without-orderbook-enabled).
| `entry_pricing.use_order_book` | Enable entering using the rates in [Order Book Entry](#entry-price-with-orderbook-enabled). <br> *Defaults to `true`.*<br> **Datatype:** Boolean
| `entry_pricing.use_order_book` | Enable entering using the rates in [Order Book Entry](#entry-price-with-orderbook-enabled). <br> *Defaults to `True`.*<br> **Datatype:** Boolean
| `entry_pricing.order_book_top` | Bot will use the top N rate in Order Book "price_side" to enter a trade. I.e. a value of 2 will allow the bot to pick the 2nd entry in [Order Book Entry](#entry-price-with-orderbook-enabled). <br>*Defaults to `1`.* <br> **Datatype:** Positive Integer
| `entry_pricing. check_depth_of_market.enabled` | Do not enter if the difference of buy orders and sell orders is met in Order Book. [Check market depth](#check-depth-of-market). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `entry_pricing. check_depth_of_market.bids_to_ask_delta` | The difference ratio of buy orders and sell orders found in Order Book. A value below 1 means sell order size is greater, while value greater than 1 means buy order size is higher. [Check market depth](#check-depth-of-market) <br> *Defaults to `0`.* <br> **Datatype:** Float (as ratio)
| `exit_pricing.price_side` | Select the side of the spread the bot should look at to get the exit rate. [More information below](#exit-price-side).<br> *Defaults to `"same"`.* <br> **Datatype:** String (either `ask`, `bid`, `same` or `other`).
| `exit_pricing.price_side` | Select the side of the spread the bot should look at to get the exit rate. [More information below](#exit-price-side).<br> *Defaults to `same`.* <br> **Datatype:** String (either `ask`, `bid`, `same` or `other`).
| `exit_pricing.price_last_balance` | Interpolate the exiting price. More information [below](#exit-price-without-orderbook-enabled).
| `exit_pricing.use_order_book` | Enable exiting of open trades using [Order Book Exit](#exit-price-with-orderbook-enabled). <br> *Defaults to `true`.*<br> **Datatype:** Boolean
| `exit_pricing.use_order_book` | Enable exiting of open trades using [Order Book Exit](#exit-price-with-orderbook-enabled). <br> *Defaults to `True`.*<br> **Datatype:** Boolean
| `exit_pricing.order_book_top` | Bot will use the top N rate in Order Book "price_side" to exit. I.e. a value of 2 will allow the bot to pick the 2nd ask rate in [Order Book Exit](#exit-price-with-orderbook-enabled)<br>*Defaults to `1`.* <br> **Datatype:** Positive Integer
| `custom_price_max_distance_ratio` | Configure maximum distance ratio between current and custom entry or exit price. <br>*Defaults to `0.02` 2%).*<br> **Datatype:** Positive float
| | **TODO**
| `use_exit_signal` | Use exit signals produced by the strategy in addition to the `minimal_roi`. <br>Setting this to false disables the usage of `"exit_long"` and `"exit_short"` columns. Has no influence on other exit methods (Stoploss, ROI, callbacks). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| `use_exit_signal` | Use exit signals produced by the strategy in addition to the `minimal_roi`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| `exit_profit_only` | Wait until the bot reaches `exit_profit_offset` before taking an exit decision. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `exit_profit_offset` | Exit-signal is only active above this value. Only active in combination with `exit_profit_only=True`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0`.* <br> **Datatype:** Float (as ratio)
| `ignore_roi_if_entry_signal` | Do not exit if the entry signal is still active. This setting takes preference over `minimal_roi` and `use_exit_signal`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
@@ -197,7 +187,8 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `position_adjustment_enable` | Enables the strategy to use position adjustments (additional buys or sells). [More information here](strategy-callbacks.md#adjust-trade-position). <br> [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.*<br> **Datatype:** Boolean
| `max_entry_position_adjustment` | Maximum additional order(s) for each open trade on top of the first entry Order. Set it to `-1` for unlimited additional orders. [More information here](strategy-callbacks.md#adjust-trade-position). <br> [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `-1`.*<br> **Datatype:** Positive Integer or -1
| | **Exchange**
| `exchange.name` | **Required.** Name of the exchange class to use. <br> **Datatype:** String
| `exchange.name` | **Required.** Name of the exchange class to use. [List below](#user-content-what-values-for-exchangename). <br> **Datatype:** String
| `exchange.sandbox` | Use the 'sandbox' version of the exchange, where the exchange provides a sandbox for risk-free integration. See [here](sandbox-testing.md) in more details.<br> **Datatype:** Boolean
| `exchange.key` | API key to use for the exchange. Only required when you are in production mode.<br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `exchange.secret` | API secret to use for the exchange. Only required when you are in production mode.<br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `exchange.password` | API password to use for the exchange. Only required when you are in production mode and for exchanges that use password for API requests.<br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
@@ -208,10 +199,10 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `exchange.ccxt_sync_config` | Additional CCXT parameters passed to the regular (sync) ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation) <br> **Datatype:** Dict
| `exchange.ccxt_async_config` | Additional CCXT parameters passed to the async ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation) <br> **Datatype:** Dict
| `exchange.markets_refresh_interval` | The interval in minutes in which markets are reloaded. <br>*Defaults to `60` minutes.* <br> **Datatype:** Positive Integer
| `exchange.skip_pair_validation` | Skip pairlist validation on startup.<br>*Defaults to `false`*<br> **Datatype:** Boolean
| `exchange.skip_open_order_update` | Skips open order updates on startup should the exchange cause problems. Only relevant in live conditions.<br>*Defaults to `false`*<br> **Datatype:** Boolean
| `exchange.skip_pair_validation` | Skip pairlist validation on startup.<br>*Defaults to `false`<br> **Datatype:** Boolean
| `exchange.skip_open_order_update` | Skips open order updates on startup should the exchange cause problems. Only relevant in live conditions.<br>*Defaults to `false`<br> **Datatype:** Boolean
| `exchange.unknown_fee_rate` | Fallback value to use when calculating trading fees. This can be useful for exchanges which have fees in non-tradable currencies. The value provided here will be multiplied with the "fee cost".<br>*Defaults to `None`<br> **Datatype:** float
| `exchange.log_responses` | Log relevant exchange responses. For debug mode only - use with care.<br>*Defaults to `false`*<br> **Datatype:** Boolean
| `exchange.log_responses` | Log relevant exchange responses. For debug mode only - use with care.<br>*Defaults to `false`<br> **Datatype:** Boolean
| `experimental.block_bad_exchanges` | Block exchanges known to not work with freqtrade. Leave on default unless you want to test if that exchange works now. <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| | **Plugins**
| `edge.*` | Please refer to [edge configuration document](edge.md) for detailed explanation of all possible configuration options.
@@ -222,7 +213,7 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `telegram.token` | Your Telegram bot token. Only required if `telegram.enabled` is `true`. <br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `telegram.chat_id` | Your personal Telegram account id. Only required if `telegram.enabled` is `true`. <br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `telegram.balance_dust_level` | Dust-level (in stake currency) - currencies with a balance below this will not be shown by `/balance`. <br> **Datatype:** float
| `telegram.reload` | Allow "reload" buttons on telegram messages. <br>*Defaults to `true`.<br> **Datatype:** boolean
| `telegram.reload` | Allow "reload" buttons on telegram messages. <br>*Defaults to `True`.<br> **Datatype:** boolean
| `telegram.notification_settings.*` | Detailed notification settings. Refer to the [telegram documentation](telegram-usage.md) for details.<br> **Datatype:** dictionary
| `telegram.allow_custom_messages` | Enable the sending of Telegram messages from strategies via the dataprovider.send_msg() function. <br> **Datatype:** Boolean
| | **Webhook**
@@ -252,7 +243,7 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `disable_dataframe_checks` | Disable checking the OHLCV dataframe returned from the strategy methods for correctness. Only use when intentionally changing the dataframe and understand what you are doing. [Strategy Override](#parameters-in-the-strategy).<br> *Defaults to `False`*. <br> **Datatype:** Boolean
| `internals.process_throttle_secs` | Set the process throttle, or minimum loop duration for one bot iteration loop. Value in second. <br>*Defaults to `5` seconds.* <br> **Datatype:** Positive Integer
| `internals.heartbeat_interval` | Print heartbeat message every N seconds. Set to 0 to disable heartbeat messages. <br>*Defaults to `60` seconds.* <br> **Datatype:** Positive Integer or 0
| `internals.sd_notify` | Enables use of the sd_notify protocol to tell systemd service manager about changes in the bot state and issue keep-alive pings. See [here](advanced-setup.md#configure-the-bot-running-as-a-systemd-service) for more details. <br> **Datatype:** Boolean
| `internals.sd_notify` | Enables use of the sd_notify protocol to tell systemd service manager about changes in the bot state and issue keep-alive pings. See [here](installation.md#7-optional-configure-freqtrade-as-a-systemd-service) for more details. <br> **Datatype:** Boolean
| `strategy` | **Required** Defines Strategy class to use. Recommended to be set via `--strategy NAME`. <br> **Datatype:** ClassName
| `strategy_path` | Adds an additional strategy lookup path (must be a directory). <br> **Datatype:** String
| `recursive_strategy_search` | Set to `true` to recursively search sub-directories inside `user_data/strategies` for a strategy. <br> **Datatype:** Boolean
@@ -260,8 +251,8 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `db_url` | Declares database URL to use. NOTE: This defaults to `sqlite:///tradesv3.dryrun.sqlite` if `dry_run` is `true`, and to `sqlite:///tradesv3.sqlite` for production instances. <br> **Datatype:** String, SQLAlchemy connect string
| `logfile` | Specifies logfile name. Uses a rolling strategy for log file rotation for 10 files with the 1MB limit per file. <br> **Datatype:** String
| `add_config_files` | Additional config files. These files will be loaded and merged with the current config file. The files are resolved relative to the initial file.<br> *Defaults to `[]`*. <br> **Datatype:** List of strings
| `dataformat_ohlcv` | Data format to use to store historical candle (OHLCV) data. <br> *Defaults to `feather`*. <br> **Datatype:** String
| `dataformat_trades` | Data format to use to store historical trades data. <br> *Defaults to `feather`*. <br> **Datatype:** String
| `dataformat_ohlcv` | Data format to use to store historical candle (OHLCV) data. <br> *Defaults to `json`*. <br> **Datatype:** String
| `dataformat_trades` | Data format to use to store historical trades data. <br> *Defaults to `jsongz`*. <br> **Datatype:** String
| `reduce_df_footprint` | Recast all numeric columns to float32/int32, with the objective of reducing ram/disk usage (and decreasing train/inference timing in FreqAI). (Currently only affects FreqAI use-cases) <br> **Datatype:** Boolean. <br> Default: `False`.
### Parameters in the strategy
@@ -272,7 +263,6 @@ Values set in the configuration file always overwrite values set in the strategy
* `minimal_roi`
* `timeframe`
* `stoploss`
* `max_open_trades`
* `trailing_stop`
* `trailing_stop_positive`
* `trailing_stop_positive_offset`
@@ -331,13 +321,11 @@ For example, if you have 10 ETH available in your wallet on the exchange and `tr
To fully utilize compounding profits when using multiple bots on the same exchange account, you'll want to limit each bot to a certain starting balance.
This can be accomplished by setting `available_capital` to the desired starting balance.
Assuming your account has 10000 USDT and you want to run 2 different strategies on this exchange.
Assuming your account has 10.000 USDT and you want to run 2 different strategies on this exchange.
You'd set `available_capital=5000` - granting each bot an initial capital of 5000 USDT.
The bot will then split this starting balance equally into `max_open_trades` buckets.
Profitable trades will result in increased stake-sizes for this bot - without affecting the stake-sizes of the other bot.
Adjusting `available_capital` requires reloading the configuration to take effect. Adjusting the `available_capital` adds the difference between the previous `available_capital` and the new `available_capital`. Decreasing the available capital when trades are open doesn't exit the trades. The difference is returned to the wallet when the trades conclude. The outcome of this differs depending on the price movement between the adjustment and exiting the trades.
!!! Warning "Incompatible with `tradable_balance_ratio`"
Setting this option will replace any configuration of `tradable_balance_ratio`.
@@ -370,7 +358,7 @@ This setting works in combination with `max_open_trades`. The maximum capital en
For example, the bot will at most use (0.05 BTC x 3) = 0.15 BTC, assuming a configuration of `max_open_trades=3` and `stake_amount=0.05`.
!!! Note
This setting respects the [available balance configuration](#tradable-balance).
This setting respects the [available balance configuration](#available-balance).
#### Dynamic stake amount
@@ -515,13 +503,13 @@ Configuration:
Please carefully read the section [Market order pricing](#market-order-pricing) section when using market orders.
!!! Note "Stoploss on exchange"
`order_types.stoploss_on_exchange_interval` is not mandatory. Do not change its value if you are
`stoploss_on_exchange_interval` is not mandatory. Do not change its value if you are
unsure of what you are doing. For more information about how stoploss works please
refer to [the stoploss documentation](stoploss.md).
If `order_types.stoploss_on_exchange` is enabled and the stoploss is cancelled manually on the exchange, then the bot will create a new stoploss order.
If `stoploss_on_exchange` is enabled and the stoploss is cancelled manually on the exchange, then the bot will create a new stoploss order.
!!! Warning "Warning: order_types.stoploss_on_exchange failures"
!!! Warning "Warning: stoploss_on_exchange failures"
If stoploss on exchange creation fails for some reason, then an "emergency exit" is initiated. By default, this will exit the trade using a market order. The order-type for the emergency-exit can be changed by setting the `emergency_exit` value in the `order_types` dictionary - however, this is not advised.
### Understand order_time_in_force
@@ -547,7 +535,7 @@ is automatically cancelled by the exchange.
**PO (Post only):**
Post only order. The order is either placed as a maker order, or it is canceled.
This means the order must be placed on orderbook for at least time in an unfilled state.
This means the order must be placed on orderbook for at at least time in an unfilled state.
#### time_in_force config
@@ -568,14 +556,7 @@ The possible values are: `GTC` (default), `FOK` or `IOC`.
This is ongoing work. For now, it is supported only for binance, gate and kucoin.
Please don't change the default value unless you know what you are doing and have researched the impact of using different values for your particular exchange.
### Fiat conversion
Freqtrade uses the Coingecko API to convert the coin value to it's corresponding fiat value for the Telegram reports.
The FIAT currency can be set in the configuration file as `fiat_display_currency`.
Removing `fiat_display_currency` completely from the configuration will skip initializing coingecko, and will not show any FIAT currency conversion. This has no importance for the correct functioning of the bot.
#### What values can be used for fiat_display_currency?
### What values can be used for fiat_display_currency?
The `fiat_display_currency` configuration parameter sets the base currency to use for the
conversion from coin to fiat in the bot Telegram reports.
@@ -591,29 +572,9 @@ In addition to fiat currencies, a range of crypto currencies is supported.
The valid values are:
```json
"BTC", "ETH", "XRP", "LTC", "BCH", "BNB"
"BTC", "ETH", "XRP", "LTC", "BCH", "USDT"
```
#### Coingecko Rate limit problems
On some IP ranges, coingecko is heavily rate-limiting.
In such cases, you may want to add your coingecko API key to the configuration.
``` json
{
"fiat_display_currency": "USD",
"coingecko": {
"api_key": "your-api",
"is_demo": true
}
}
```
Freqtrade supports both Demo and Pro coingecko API keys.
The Coingecko API key is NOT required for the bot to function correctly.
It is only used for the conversion of coin to fiat in the Telegram reports, which usually also work without API key.
## Using Dry-run mode
We recommend starting the bot in the Dry-run mode to see how your bot will
@@ -633,7 +594,7 @@ creating trades on the exchange.
```json
"exchange": {
"name": "binance",
"name": "bittrex",
"key": "key",
"secret": "secret",
...
@@ -652,7 +613,6 @@ Once you will be happy with your bot performance running in the Dry-run mode, yo
* Orders are simulated, and will not be posted to the exchange.
* Market orders fill based on orderbook volume the moment the order is placed.
* Limit orders fill once the price reaches the defined level - or time out based on `unfilledtimeout` settings.
* Limit orders will be converted to market orders if they cross the price by more than 1%.
* In combination with `stoploss_on_exchange`, the stop_loss price is assumed to be filled.
* Open orders (not trades, which are stored in the database) are kept open after bot restarts, with the assumption that they were not filled while being offline.
@@ -683,7 +643,7 @@ API Keys are usually only required for live trading (trading for real money, bot
```json
{
"exchange": {
"name": "binance",
"name": "bittrex",
"key": "af8ddd35195e9dc500b9a6f799f6f5c93d89193b",
"secret": "08a9dc6db3d7b53e1acebd9275677f4b0a04f1a5",
//"password": "", // Optional, not needed by all exchanges)
@@ -705,7 +665,7 @@ You should also make sure to read the [Exchanges](exchanges.md) section of the d
### Using proxy with Freqtrade
To use a proxy with freqtrade, export your proxy settings using the variables `"HTTP_PROXY"` and `"HTTPS_PROXY"` set to the appropriate values.
This will have the proxy settings applied to everything (telegram, coingecko, ...) **except** for exchange requests.
This will have the proxy settings applied to everything (telegram, coingecko, ...) except exchange requests.
``` bash
export HTTP_PROXY="http://addr:port"
@@ -721,14 +681,15 @@ To use a proxy for exchange connections - you will have to define the proxies as
{
"exchange": {
"ccxt_config": {
"httpsProxy": "http://addr:port",
}
"aiohttp_proxy": "http://addr:port",
"proxies": {
"http": "http://addr:port",
"https": "http://addr:port"
},
}
}
```
For more information on available proxy types, please consult the [ccxt proxy documentation](https://docs.ccxt.com/#/README?id=proxy).
## Next step
Now you have configured your config.json, the next step is to [start your bot](bot-usage.md).

View File

@@ -10,7 +10,7 @@ You can run this server using the following command: `docker compose -f docker/d
This will create a dockercontainer running jupyter lab, which will be accessible using `https://127.0.0.1:8888/lab`.
Please use the link that's printed in the console after startup for simplified login.
For more information, Please visit the [Data analysis with Docker](docker_quickstart.md#data-analysis-using-docker-compose) section.
For more information, Please visit the [Data analysis with Docker](docker_quickstart.md#data-analayis-using-docker-compose) section.
### Pro tips
@@ -27,7 +27,7 @@ For this to work, first activate your virtual environment and run the following
``` bash
# Activate virtual environment
source .venv/bin/activate
source .env/bin/activate
pip install ipykernel
ipython kernel install --user --name=freqtrade

View File

@@ -6,7 +6,7 @@ To download data (candles / OHLCV) needed for backtesting and hyperoptimization
If no additional parameter is specified, freqtrade will download data for `"1m"` and `"5m"` timeframes for the last 30 days.
Exchange and pairs will come from `config.json` (if specified using `-c/--config`).
Without provided configuration, `--exchange` becomes mandatory.
Otherwise `--exchange` becomes mandatory.
You can use a relative timerange (`--days 20`) or an absolute starting point (`--timerange 20200101-`). For incremental downloads, the relative approach should be used.
@@ -24,14 +24,14 @@ usage: freqtrade download-data [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[--days INT] [--new-pairs-days INT]
[--include-inactive-pairs]
[--timerange TIMERANGE] [--dl-trades]
[--convert] [--exchange EXCHANGE]
[--exchange EXCHANGE]
[-t TIMEFRAMES [TIMEFRAMES ...]] [--erase]
[--data-format-ohlcv {json,jsongz,hdf5,feather,parquet}]
[--data-format-trades {json,jsongz,hdf5,feather,parquet}]
[--data-format-trades {json,jsongz,hdf5}]
[--trading-mode {spot,margin,futures}]
[--prepend]
options:
optional arguments:
-h, --help show this help message and exit
-p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...]
Limit command to these pairs. Pairs are space-
@@ -48,12 +48,8 @@ options:
--dl-trades Download trades instead of OHLCV data. The bot will
resample trades to the desired timeframe as specified
as --timeframes/-t.
--convert Convert downloaded trades to OHLCV data. Only
applicable in combination with `--dl-trades`. Will be
automatic for exchanges which don't have historic
OHLCV (e.g. Kraken). If not provided, use `trades-to-
ohlcv` to convert trades data to OHLCV data.
--exchange EXCHANGE Exchange name. Only valid if no config is provided.
--exchange EXCHANGE Exchange name (default: `bittrex`). Only valid if no
config is provided.
-t TIMEFRAMES [TIMEFRAMES ...], --timeframes TIMEFRAMES [TIMEFRAMES ...]
Specify which tickers to download. Space-separated
list. Default: `1m 5m`.
@@ -61,18 +57,17 @@ options:
exchange/pairs/timeframes.
--data-format-ohlcv {json,jsongz,hdf5,feather,parquet}
Storage format for downloaded candle (OHLCV) data.
(default: `feather`).
--data-format-trades {json,jsongz,hdf5,feather,parquet}
(default: `json`).
--data-format-trades {json,jsongz,hdf5}
Storage format for downloaded trades data. (default:
`feather`).
`jsongz`).
--trading-mode {spot,margin,futures}, --tradingmode {spot,margin,futures}
Select Trading mode
--prepend Allow data prepending. (Data-appending is disabled)
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE, --log-file FILE
Log to the file specified. Special values are:
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
@@ -88,47 +83,40 @@ Common arguments:
```
!!! Tip "Downloading all data for one quote currency"
Often, you'll want to download data for all pairs of a specific quote-currency. In such cases, you can use the following shorthand:
`freqtrade download-data --exchange binance --pairs .*/USDT <...>`. The provided "pairs" string will be expanded to contain all active pairs on the exchange.
To also download data for inactive (delisted) pairs, add `--include-inactive-pairs` to the command.
!!! Note "Startup period"
`download-data` is a strategy-independent command. The idea is to download a big chunk of data once, and then iteratively increase the amount of data stored.
For that reason, `download-data` does not care about the "startup-period" defined in a strategy. It's up to the user to download additional days if the backtest should start at a specific point in time (while respecting startup period).
### Start download
### Pairs file
A very simple command (assuming an available `config.json` file) can look as follows.
In alternative to the whitelist from `config.json`, a `pairs.json` file can be used.
If you are using Binance for example:
- create a directory `user_data/data/binance` and copy or create the `pairs.json` file in that directory.
- update the `pairs.json` file to contain the currency pairs you are interested in.
```bash
freqtrade download-data --exchange binance
mkdir -p user_data/data/binance
touch user_data/data/binance/pairs.json
```
This will download historical candle (OHLCV) data for all the currency pairs defined in the configuration.
The format of the `pairs.json` file is a simple json list.
Mixing different stake-currencies is allowed for this file, since it's only used for downloading.
Alternatively, specify the pairs directly
```bash
freqtrade download-data --exchange binance --pairs ETH/USDT XRP/USDT BTC/USDT
``` json
[
"ETH/BTC",
"ETH/USDT",
"BTC/USDT",
"XRP/ETH"
]
```
or as regex (in this case, to download all active USDT pairs)
```bash
freqtrade download-data --exchange binance --pairs .*/USDT
```
### Other Notes
* To use a different directory than the exchange specific default, use `--datadir user_data/data/some_directory`.
* To change the exchange used to download the historical data from, please use a different configuration file (you'll probably need to adjust rate limits etc.)
* To use `pairs.json` from some other directory, use `--pairs-file some_other_dir/pairs.json`.
* To download historical candle (OHLCV) data for only 10 days, use `--days 10` (defaults to 30 days).
* To download historical candle (OHLCV) data from a fixed starting point, use `--timerange 20200101-` - which will download all data from January 1st, 2020.
* Use `--timeframes` to specify what timeframe download the historical candle (OHLCV) data for. Default is `--timeframes 1m 5m` which will download 1-minute and 5-minute data.
* To use exchange, timeframe and list of pairs as defined in your configuration file, use the `-c/--config` option. With this, the script uses the whitelist defined in the config as the list of currency pairs to download data for and does not require the pairs.json file. You can combine `-c/--config` with most other options.
!!! Tip "Downloading all data for one quote currency"
Often, you'll want to download data for all pairs of a specific quote-currency. In such cases, you can use the following shorthand:
`freqtrade download-data --exchange binance --pairs .*/USDT <...>`. The provided "pairs" string will be expanded to contain all active pairs on the exchange.
To also download data for inactive (delisted) pairs, add `--include-inactive-pairs` to the command.
??? Note "Permission denied errors"
If your configuration directory `user_data` was made by docker, you may get the following error:
@@ -143,7 +131,39 @@ freqtrade download-data --exchange binance --pairs .*/USDT
sudo chown -R $UID:$GID user_data
```
### Download additional data before the current timerange
### Start download
Then run:
```bash
freqtrade download-data --exchange binance
```
This will download historical candle (OHLCV) data for all the currency pairs you defined in `pairs.json`.
Alternatively, specify the pairs directly
```bash
freqtrade download-data --exchange binance --pairs ETH/USDT XRP/USDT BTC/USDT
```
or as regex (to download all active USDT pairs)
```bash
freqtrade download-data --exchange binance --pairs .*/USDT
```
### Other Notes
- To use a different directory than the exchange specific default, use `--datadir user_data/data/some_directory`.
- To change the exchange used to download the historical data from, please use a different configuration file (you'll probably need to adjust rate limits etc.)
- To use `pairs.json` from some other directory, use `--pairs-file some_other_dir/pairs.json`.
- To download historical candle (OHLCV) data for only 10 days, use `--days 10` (defaults to 30 days).
- To download historical candle (OHLCV) data from a fixed starting point, use `--timerange 20200101-` - which will download all data from January 1st, 2020.
- Use `--timeframes` to specify what timeframe download the historical candle (OHLCV) data for. Default is `--timeframes 1m 5m` which will download 1-minute and 5-minute data.
- To use exchange, timeframe and list of pairs as defined in your configuration file, use the `-c/--config` option. With this, the script uses the whitelist defined in the config as the list of currency pairs to download data for and does not require the pairs.json file. You can combine `-c/--config` with most other options.
#### Download additional data before the current timerange
Assuming you downloaded all data from 2022 (`--timerange 20220101-`) - but you'd now like to also backtest with earlier data.
You can do so by using the `--prepend` flag, combined with `--timerange` - specifying an end-date.
@@ -159,13 +179,13 @@ freqtrade download-data --exchange binance --pairs ETH/USDT XRP/USDT BTC/USDT --
Freqtrade currently supports the following data-formats:
* `feather` - a dataformat based on Apache Arrow
* `json` - plain "text" json files
* `jsongz` - a gzip-zipped version of json files
* `hdf5` - a high performance datastore
* `feather` - a dataformat based on Apache Arrow (OHLCV only)
* `parquet` - columnar datastore (OHLCV only)
By default, both OHLCV data and trades data are stored in the `feather` format.
By default, OHLCV data is stored as `json` data, while trades data is stored as `jsongz` data.
This can be changed via the `--data-format-ohlcv` and `--data-format-trades` command line arguments respectively.
To persist this change, you should also add the following snippet to your configuration, so you don't have to insert the above arguments each time:
@@ -208,46 +228,17 @@ time freqtrade list-data --show-timerange --data-format-ohlcv <dataformat>
| Format | Size | timing |
|------------|-------------|-------------|
| `feather` | 72Mb | 3.5s |
| `json` | 149Mb | 25.6s |
| `jsongz` | 39Mb | 27s |
| `hdf5` | 145Mb | 3.9s |
| `feather` | 72Mb | 3.5s |
| `parquet` | 83Mb | 3.8s |
Size has been taken from the BTC/USDT 1m spot combination for the timerange specified above.
To have a best performance/size mix, we recommend using the default feather format, or parquet.
To have a best performance/size mix, we recommend the use of either feather or parquet.
### Pairs file
In alternative to the whitelist from `config.json`, a `pairs.json` file can be used.
If you are using Binance for example:
* create a directory `user_data/data/binance` and copy or create the `pairs.json` file in that directory.
* update the `pairs.json` file to contain the currency pairs you are interested in.
```bash
mkdir -p user_data/data/binance
touch user_data/data/binance/pairs.json
```
The format of the `pairs.json` file is a simple json list.
Mixing different stake-currencies is allowed for this file, since it's only used for downloading.
``` json
[
"ETH/BTC",
"ETH/USDT",
"BTC/USDT",
"XRP/ETH"
]
```
!!! Note
The `pairs.json` file is only used when no configuration is loaded (implicitly by naming, or via `--config` flag).
You can force the usage of this file via `--pairs-file pairs.json` - however we recommend to use the pairlist from within the configuration, either via `exchange.pair_whitelist` or `pairs` setting in the configuration.
## Sub-command convert data
#### Sub-command convert data
```
usage: freqtrade convert-data [-h] [-v] [--logfile FILE] [-V] [-c PATH]
@@ -260,7 +251,7 @@ usage: freqtrade convert-data [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[--trading-mode {spot,margin,futures}]
[--candle-types {spot,futures,mark,index,premiumIndex,funding_rate} [{spot,futures,mark,index,premiumIndex,funding_rate} ...]]
options:
optional arguments:
-h, --help show this help message and exit
-p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...]
Limit command to these pairs. Pairs are space-
@@ -271,20 +262,19 @@ options:
Destination format for data conversion.
--erase Clean all existing data for the selected
exchange/pairs/timeframes.
--exchange EXCHANGE Exchange name. Only valid if no config is provided.
--exchange EXCHANGE Exchange name (default: `bittrex`). Only valid if no
config is provided.
-t TIMEFRAMES [TIMEFRAMES ...], --timeframes TIMEFRAMES [TIMEFRAMES ...]
Specify which tickers to download. Space-separated
list. Default: `1m 5m`.
--trading-mode {spot,margin,futures}, --tradingmode {spot,margin,futures}
Select Trading mode
--candle-types {spot,futures,mark,index,premiumIndex,funding_rate} [{spot,futures,mark,index,premiumIndex,funding_rate} ...]
Select candle type to convert. Defaults to all
available types.
Select candle type to use
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE, --log-file FILE
Log to the file specified. Special values are:
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
@@ -297,9 +287,10 @@ Common arguments:
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
```
### Example converting data
##### Example converting data
The following command will convert all candle (OHLCV) data available in `~/.freqtrade/data/binance` from json to jsongz, saving diskspace in the process.
It'll also remove original json data files (`--erase` parameter).
@@ -308,7 +299,7 @@ It'll also remove original json data files (`--erase` parameter).
freqtrade convert-data --format-from json --format-to jsongz --datadir ~/.freqtrade/data/binance -t 5m 15m --erase
```
## Sub-command convert trade data
#### Sub-command convert trade data
```
usage: freqtrade convert-trade-data [-h] [-v] [--logfile FILE] [-V] [-c PATH]
@@ -319,7 +310,7 @@ usage: freqtrade convert-trade-data [-h] [-v] [--logfile FILE] [-V] [-c PATH]
{json,jsongz,hdf5,feather,parquet}
[--erase] [--exchange EXCHANGE]
options:
optional arguments:
-h, --help show this help message and exit
-p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...]
Limit command to these pairs. Pairs are space-
@@ -330,12 +321,12 @@ options:
Destination format for data conversion.
--erase Clean all existing data for the selected
exchange/pairs/timeframes.
--exchange EXCHANGE Exchange name. Only valid if no config is provided.
--exchange EXCHANGE Exchange name (default: `bittrex`). Only valid if no
config is provided.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE, --log-file FILE
Log to the file specified. Special values are:
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
@@ -351,7 +342,7 @@ Common arguments:
```
### Example converting trades
##### Example converting trades
The following command will convert all available trade-data in `~/.freqtrade/data/kraken` from jsongz to json.
It'll also remove original jsongz data files (`--erase` parameter).
@@ -360,7 +351,7 @@ It'll also remove original jsongz data files (`--erase` parameter).
freqtrade convert-trade-data --format-from jsongz --format-to json --datadir ~/.freqtrade/data/kraken --erase
```
## Sub-command trades to ohlcv
### Sub-command trades to ohlcv
When you need to use `--dl-trades` (kraken only) to download data, conversion of trades data to ohlcv data is the last step.
This command will allow you to repeat this last step for additional timeframes without re-downloading the data.
@@ -372,9 +363,9 @@ usage: freqtrade trades-to-ohlcv [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-t TIMEFRAMES [TIMEFRAMES ...]]
[--exchange EXCHANGE]
[--data-format-ohlcv {json,jsongz,hdf5,feather,parquet}]
[--data-format-trades {json,jsongz,hdf5,feather}]
[--data-format-trades {json,jsongz,hdf5}]
options:
optional arguments:
-h, --help show this help message and exit
-p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...]
Limit command to these pairs. Pairs are space-
@@ -382,18 +373,18 @@ options:
-t TIMEFRAMES [TIMEFRAMES ...], --timeframes TIMEFRAMES [TIMEFRAMES ...]
Specify which tickers to download. Space-separated
list. Default: `1m 5m`.
--exchange EXCHANGE Exchange name. Only valid if no config is provided.
--exchange EXCHANGE Exchange name (default: `bittrex`). Only valid if no
config is provided.
--data-format-ohlcv {json,jsongz,hdf5,feather,parquet}
Storage format for downloaded candle (OHLCV) data.
(default: `feather`).
--data-format-trades {json,jsongz,hdf5,feather}
(default: `json`).
--data-format-trades {json,jsongz,hdf5}
Storage format for downloaded trades data. (default:
`feather`).
`jsongz`).
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE, --log-file FILE
Log to the file specified. Special values are:
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
@@ -409,13 +400,13 @@ Common arguments:
```
### Example trade-to-ohlcv conversion
#### Example trade-to-ohlcv conversion
``` bash
freqtrade trades-to-ohlcv --exchange kraken -t 5m 1h 1d --pairs BTC/EUR ETH/EUR
```
## Sub-command list-data
### Sub-command list-data
You can get a list of downloaded data using the `list-data` sub-command.
@@ -427,12 +418,13 @@ usage: freqtrade list-data [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
[--trading-mode {spot,margin,futures}]
[--show-timerange]
options:
optional arguments:
-h, --help show this help message and exit
--exchange EXCHANGE Exchange name. Only valid if no config is provided.
--exchange EXCHANGE Exchange name (default: `bittrex`). Only valid if no
config is provided.
--data-format-ohlcv {json,jsongz,hdf5,feather,parquet}
Storage format for downloaded candle (OHLCV) data.
(default: `feather`).
(default: `json`).
-p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...]
Limit command to these pairs. Pairs are space-
separated.
@@ -443,8 +435,7 @@ options:
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE, --log-file FILE
Log to the file specified. Special values are:
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
@@ -460,7 +451,7 @@ Common arguments:
```
### Example list-data
#### Example list-data
```bash
> freqtrade list-data --userdir ~/.freqtrade/user_data/
@@ -474,22 +465,17 @@ ETH/BTC 5m, 15m, 30m, 1h, 2h, 4h, 6h, 12h, 1d
ETH/USDT 5m, 15m, 30m, 1h, 2h, 4h
```
## Trades (tick) data
### Trades (tick) data
By default, `download-data` sub-command downloads Candles (OHLCV) data. Most exchanges also provide historic trade-data via their API.
By default, `download-data` sub-command downloads Candles (OHLCV) data. Some exchanges also provide historic trade-data via their API.
This data can be useful if you need many different timeframes, since it is only downloaded once, and then resampled locally to the desired timeframes.
Since this data is large by default, the files use the feather file format by default. They are stored in your data-directory with the naming convention of `<pair>-trades.feather` (`ETH_BTC-trades.feather`). Incremental mode is also supported, as for historic OHLCV data, so downloading the data once per week with `--days 8` will create an incremental data-repository.
Since this data is large by default, the files use gzip by default. They are stored in your data-directory with the naming convention of `<pair>-trades.json.gz` (`ETH_BTC-trades.json.gz`). Incremental mode is also supported, as for historic OHLCV data, so downloading the data once per week with `--days 8` will create an incremental data-repository.
To use this mode, simply add `--dl-trades` to your call. This will swap the download method to download trades.
If `--convert` is also provided, the resample step will happen automatically and overwrite eventually existing OHLCV data for the given pair/timeframe combinations.
To use this mode, simply add `--dl-trades` to your call. This will swap the download method to download trades, and resamples the data locally.
!!! Warning "Do not use"
You should not use this unless you're a kraken user (Kraken does not provide historic OHLCV data).
Most other exchanges provide OHLCV data with sufficient history, so downloading multiple timeframes through that method will still proof to be a lot faster than downloading trades data.
!!! Note "Kraken user"
Kraken users should read [this](exchanges.md#historic-kraken-data) before starting to download data.
!!! Warning "do not use"
You should not use this unless you're a kraken user. Most other exchanges provide OHLCV data with sufficient history.
Example call:
@@ -500,6 +486,12 @@ freqtrade download-data --exchange kraken --pairs XRP/EUR ETH/EUR --days 20 --dl
!!! Note
While this method uses async calls, it will be slow, since it requires the result of the previous call to generate the next request to the exchange.
!!! Warning
The historic trades are not available during Freqtrade dry-run and live trade modes because all exchanges tested provide this data with a delay of few 100 candles, so it's not suitable for real-time trading.
!!! Note "Kraken user"
Kraken users should read [this](exchanges.md#historic-kraken-data) before starting to download data.
## Next step
Great, you now have some data downloaded, so you can now start [backtesting](backtesting.md) your strategy.
Great, you now have backtest data downloaded, so you can now start [backtesting](backtesting.md) your strategy.

View File

@@ -74,8 +74,3 @@ Webhook terminology changed from "sell" to "exit", and from "buy" to "entry", re
* `webhooksell`, `webhookexit` -> `exit`
* `webhooksellfill`, `webhookexitfill` -> `exit_fill`
* `webhooksellcancel`, `webhookexitcancel` -> `exit_cancel`
## Removal of `populate_any_indicators`
version 2023.3 saw the removal of `populate_any_indicators` in favor of split methods for feature engineering and targets. Please read the [migration document](strategy_migration.md#freqai-strategy) for full details.

View File

@@ -24,7 +24,7 @@ This will spin up a local server (usually on port 8000) so you can see if everyt
To configure a development environment, you can either use the provided [DevContainer](#devcontainer-setup), or use the `setup.sh` script and answer "y" when asked "Do you want to install dependencies for dev [y/N]? ".
Alternatively (e.g. if your system is not supported by the setup.sh script), follow the manual installation process and run `pip3 install -e .[all]`.
This will install all required tools for development, including `pytest`, `ruff`, `mypy`, and `coveralls`.
This will install all required tools for development, including `pytest`, `flake8`, `mypy`, and `coveralls`.
Then install the git hook scripts by running `pre-commit install`, so your changes will be verified locally before committing.
This avoids a lot of waiting for CI already, as some basic formatting checks are done locally on your machine.
@@ -77,13 +77,13 @@ def test_method_to_test(caplog):
### Debug configuration
To debug freqtrade, we recommend VSCode (with the Python extension) with the following launch configuration (located in `.vscode/launch.json`).
To debug freqtrade, we recommend VSCode with the following launch configuration (located in `.vscode/launch.json`).
Details will obviously vary between setups - but this should work to get you started.
``` json
{
"name": "freqtrade trade",
"type": "debugpy",
"type": "python",
"request": "launch",
"module": "freqtrade",
"console": "integratedTerminal",
@@ -102,19 +102,6 @@ This method can also be used to debug a strategy, by setting the breakpoints wit
A similar setup can also be taken for Pycharm - using `freqtrade` as module name, and setting the command line arguments as "parameters".
??? Tip "Correct venv usage"
When using a virtual environment (which you should), make sure that your Editor is using the correct virtual environment to avoid problems or "unknown import" errors.
#### Vscode
You can select the correct environment in VSCode with the command "Python: Select Interpreter" - which will show you environments the extension detected.
If your environment has not been detected, you can also pick a path manually.
#### Pycharm
In pycharm, you can select the appropriate Environment in the "Run/Debug Configurations" window.
![Pycharm debug configuration](assets/pycharm_debug.png)
!!! Note "Startup directory"
This assumes that you have the repository checked out, and the editor is started at the repository root level (so setup.py is at the top level of your repository).
@@ -129,8 +116,6 @@ Below is an outline of exception inheritance hierarchy:
+ FreqtradeException
|
+---+ OperationalException
| |
| +---+ ConfigurationError
|
+---+ DependencyException
| |
@@ -261,7 +246,7 @@ For that reason, they must implement the following methods:
The `until` portion should be calculated using the provided `calculate_lock_end()` method.
All Protections should use `"stop_duration"` / `"stop_duration_candles"` to define how long a pair (or all pairs) should be locked.
All Protections should use `"stop_duration"` / `"stop_duration_candles"` to define how long a a pair (or all pairs) should be locked.
The content of this is made available as `self._stop_duration` to the each Protection.
If your protection requires a look-back period, please use `"lookback_period"` / `"lockback_period_candles"` to keep all protections aligned.
@@ -305,7 +290,7 @@ The `IProtection` parent class provides a helper method for this in `calculate_l
Most exchanges supported by CCXT should work out of the box.
To quickly test the public endpoints of an exchange, add a configuration for your exchange to `tests/exchange_online/conftest.py` and run these tests with `pytest --longrun tests/exchange_online/test_ccxt_compat.py`.
To quickly test the public endpoints of an exchange, add a configuration for your exchange to `test_ccxt_compat.py` and run these tests with `pytest --longrun tests/exchange/test_ccxt_compat.py`.
Completing these tests successfully a good basis point (it's a requirement, actually), however these won't guarantee correct exchange functioning, as this only tests public endpoints, but no private endpoint (like generate order or similar).
Also try to use `freqtrade download-data` for an extended timerange (multiple months) and verify that the data downloaded correctly (no holes, the specified timerange was actually downloaded).
@@ -320,7 +305,6 @@ Additional tests / steps to complete:
* Check if balance shows correctly (*)
* Create market order (*)
* Create limit order (*)
* Cancel order (*)
* Complete trade (enter + exit) (*)
* Compare result calculation between exchange and bot
* Ensure fees are applied correctly (check the database against the exchange)
@@ -343,18 +327,18 @@ To check how the new exchange behaves, you can use the following snippet:
``` python
import ccxt
from datetime import datetime, timezone
from datetime import datetime
from freqtrade.data.converter import ohlcv_to_dataframe
ct = ccxt.binance() # Use the exchange you're testing
ct = ccxt.binance()
timeframe = "1d"
pair = "BTC/USDT" # Make sure to use a pair that exists on that exchange!
pair = "XLM/BTC" # Make sure to use a pair that exists on that exchange!
raw = ct.fetch_ohlcv(pair, timeframe=timeframe)
# convert to dataframe
df1 = ohlcv_to_dataframe(raw, timeframe, pair=pair, drop_incomplete=False)
print(df1.tail(1))
print(datetime.now(timezone.utc))
print(datetime.utcnow())
```
``` output
@@ -378,8 +362,8 @@ from pathlib import Path
exchange = ccxt.binance({
'apiKey': '<apikey>',
'secret': '<secret>',
'options': {'defaultType': 'swap'}
'secret': '<secret>'
'options': {'defaultType': 'future'}
})
_ = exchange.load_markets()
@@ -421,9 +405,6 @@ This part of the documentation is aimed at maintainers, and shows how to create
### Create release branch
!!! Note
Make sure that the `stable` branch is up-to-date!
First, pick a commit that's about one week old (to not include latest additions to releases).
``` bash
@@ -436,11 +417,14 @@ Determine if crucial bugfixes have been made between this commit and the current
* Merge the release branch (stable) into this branch.
* Edit `freqtrade/__init__.py` and add the version matching the current date (for example `2019.7` for July 2019). Minor versions can be `2019.7.1` should we need to do a second release that month. Version numbers must follow allowed versions from PEP0440 to avoid failures pushing to pypi.
* Commit this part.
* Push that branch to the remote and create a PR against the **stable branch**.
* push that branch to the remote and create a PR against the stable branch.
* Update develop version to next version following the pattern `2019.8-dev`.
### Create changelog from git commits
!!! Note
Make sure that the `stable` branch is up-to-date!
``` bash
# Needs to be done before merging / pulling that branch.
git log --oneline --no-decorate --no-merges stable..new_release
@@ -469,13 +453,7 @@ Once the PR against stable is merged (best right after merging):
* Use the button "Draft a new release" in the Github UI (subsection releases).
* Use the version-number specified as tag.
* Use "stable" as reference (this step comes after the above PR is merged).
* Use the above changelog as release comment (as codeblock).
* Use the below snippet for the new release
??? Tip "Release template"
````
--8<-- "includes/release_template.md"
````
* Use the above changelog as release comment (as codeblock)
## Releases

View File

@@ -14,9 +14,6 @@ Start by downloading and installing Docker / Docker Desktop for your platform:
Freqtrade documentation assumes the use of Docker desktop (or the docker compose plugin).
While the docker-compose standalone installation still works, it will require changing all `docker compose` commands from `docker compose` to `docker-compose` to work (e.g. `docker compose up -d` will become `docker-compose up -d`).
??? Warning "Docker on windows"
If you just installed docker on a windows system, make sure to reboot your system, otherwise you might encounter unexplainable Problems related to network connectivity to docker containers.
## Freqtrade with docker
Freqtrade provides an official Docker image on [Dockerhub](https://hub.docker.com/r/freqtradeorg/freqtrade/), as well as a [docker compose file](https://github.com/freqtrade/freqtrade/blob/stable/docker-compose.yml) ready for usage.
@@ -81,7 +78,7 @@ If you've selected to enable FreqUI in the `new-config` step, you will have freq
You can now access the UI by typing localhost:8080 in your browser.
??? Note "UI Access on a remote server"
??? Note "UI Access on a remote servers"
If you're running on a VPS, you should consider using either a ssh tunnel, or setup a VPN (openVPN, wireguard) to connect to your bot.
This will ensure that freqUI is not directly exposed to the internet, which is not recommended for security reasons (freqUI does not support https out of the box).
Setup of these tools is not part of this tutorial, however many good tutorials can be found on the internet.
@@ -131,7 +128,7 @@ All freqtrade arguments will be available by running `docker compose run --rm fr
!!! Note "`docker compose run --rm`"
Including `--rm` will remove the container after completion, and is highly recommended for all modes except trading mode (running with `freqtrade trade` command).
??? Note "Using docker without docker compose"
??? Note "Using docker without docker"
"`docker compose run --rm`" will require a compose file to be provided.
Some freqtrade commands that don't require authentication such as `list-pairs` can be run with "`docker run --rm`" instead.
For example `docker run --rm freqtradeorg/freqtrade:stable list-pairs --exchange binance --quote BTC --print-json`.
@@ -175,7 +172,7 @@ You can then run `docker compose build --pull` to build the docker image, and ru
### Plotting with docker
Commands `freqtrade plot-profit` and `freqtrade plot-dataframe` ([Documentation](plotting.md)) are available by changing the image to `*_plot` in your `docker-compose.yml` file.
Commands `freqtrade plot-profit` and `freqtrade plot-dataframe` ([Documentation](plotting.md)) are available by changing the image to `*_plot` in your docker-compose.yml file.
You can then use these commands as follows:
``` bash
@@ -206,20 +203,16 @@ docker compose -f docker/docker-compose-jupyter.yml build --no-cache
### Docker on Windows
* Error: `"Timestamp for this request is outside of the recvWindow."`
The market api requests require a synchronized clock but the time in the docker container shifts a bit over time into the past.
To fix this issue temporarily you need to run `wsl --shutdown` and restart docker again (a popup on windows 10 will ask you to do so).
A permanent solution is either to host the docker container on a linux host or restart the wsl from time to time with the scheduler.
* Error: `"Timestamp for this request is outside of the recvWindow."`
* The market api requests require a synchronized clock but the time in the docker container shifts a bit over time into the past.
To fix this issue temporarily you need to run `wsl --shutdown` and restart docker again (a popup on windows 10 will ask you to do so).
A permanent solution is either to host the docker container on a linux host or restart the wsl from time to time with the scheduler.
``` bash
taskkill /IM "Docker Desktop.exe" /F
wsl --shutdown
start "" "C:\Program Files\Docker\Docker\Docker Desktop.exe"
```
* Cannot connect to the API (Windows)
If you're on windows and just installed Docker (desktop), make sure to reboot your System. Docker can have problems with network connectivity without a restart.
You should obviously also make sure to have your [settings](#accessing-the-ui) accordingly.
``` bash
taskkill /IM "Docker Desktop.exe" /F
wsl --shutdown
start "" "C:\Program Files\Docker\Docker\Docker Desktop.exe"
```
!!! Warning
Due to the above, we do not recommend the usage of docker on windows for production setups, but only for experimentation, datadownload and backtesting.

View File

@@ -2,10 +2,6 @@
The `Edge Positioning` module uses probability to calculate your win rate and risk reward ratio. It will use these statistics to control your strategy trade entry points, position size and, stoploss.
!!! Danger "Deprecated functionality"
`Edge positioning` (or short Edge) is currently in maintenance mode only (we keep existing functionality alive) and should be considered as deprecated.
It will currently not receive new features until either someone stepped forward to take up ownership of that module - or we'll decide to remove edge from freqtrade.
!!! Warning
When using `Edge positioning` with a dynamic whitelist (VolumePairList), make sure to also use `AgeFilter` and set it to at least `calculate_since_number_of_days` to avoid problems with missing data.
@@ -137,7 +133,7 @@ $$ R = \frac{\text{average_profit}}{\text{average_loss}} = \frac{\mu_{win}}{\mu_
### Expectancy
By combining the Win Rate $W$ and the Risk Reward ratio $R$ to create an expectancy ratio $E$. A expectance ratio is the expected return of the investment made in a trade. We can compute the value of $E$ as follows:
By combining the Win Rate $W$ and and the Risk Reward ratio $R$ to create an expectancy ratio $E$. A expectance ratio is the expected return of the investment made in a trade. We can compute the value of $E$ as follows:
$$E = R * W - L$$

View File

@@ -55,7 +55,7 @@ This configuration enables kraken, as well as rate-limiting to avoid bans from t
## Binance
!!! Warning "Server location and geo-ip restrictions"
Please be aware that Binance restricts API access regarding the server country. The current and non-exhaustive countries blocked are Canada, Malaysia, Netherlands and United States. Please go to [binance terms > b. Eligibility](https://www.binance.com/en/terms) to find up to date list.
Please be aware that binance restrict api access regarding the server country. The currents and non exhaustive countries blocked are United States, Malaysia (Singapour), Ontario (Canada). Please go to [binance terms > b. Eligibility](https://www.binance.com/en/terms) to find up to date list.
Binance supports [time_in_force](configuration.md#understand-order_time_in_force).
@@ -68,8 +68,6 @@ Binance supports [time_in_force](configuration.md#understand-order_time_in_force
For Binance, it is suggested to add `"BNB/<STAKE>"` to your blacklist to avoid issues, unless you are willing to maintain enough extra `BNB` on the account or unless you're willing to disable using `BNB` for fees.
Binance accounts may use `BNB` for fees, and if a trade happens to be on `BNB`, further trades may consume this position and make the initial BNB trade unsellable as the expected amount is not there anymore.
If not enough `BNB` is available to cover transaction fees, then fees will not be covered by `BNB` and no fee reduction will occur. Freqtrade will never buy BNB to cover for fees. BNB needs to be bought and monitored manually to this end.
### Binance sites
Binance has been split into 2, and users must use the correct ccxt exchange ID for their exchange, otherwise API keys are not recognized.
@@ -77,25 +75,6 @@ Binance has been split into 2, and users must use the correct ccxt exchange ID f
* [binance.com](https://www.binance.com/) - International users. Use exchange id: `binance`.
* [binance.us](https://www.binance.us/) - US based users. Use exchange id: `binanceus`.
### Binance RSA keys
Freqtrade supports binance RSA API keys.
We recommend to use them as environment variable.
``` bash
export FREQTRADE__EXCHANGE__SECRET="$(cat ./rsa_binance.private)"
```
They can however also be configured via configuration file. Since json doesn't support multi-line strings, you'll have to replace all newlines with `\n` to have a valid json file.
``` json
// ...
"key": "<someapikey>",
"secret": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBABACAFQA<...>s8KX8=\n-----END PRIVATE KEY-----"
// ...
```
### Binance Futures
Binance has specific (unfortunately complex) [Futures Trading Quantitative Rules](https://www.binance.com/en/support/faq/4f462ebe6ff445d4a170be7d9e897272) which need to be followed, and which prohibit a too low stake-amount (among others) for too many orders.
@@ -127,17 +106,8 @@ These settings will be checked on startup, and freqtrade will show an error if t
Freqtrade will not attempt to change these settings.
## Bingx
BingX supports [time_in_force](configuration.md#understand-order_time_in_force) with settings "GTC" (good till cancelled), "IOC" (immediate-or-cancel) and "PO" (Post only) settings.
!!! Tip "Stoploss on Exchange"
Bingx supports `stoploss_on_exchange` and can use both stop-limit and stop-market orders. It provides great advantages, so we recommend to benefit from it by enabling stoploss on exchange.
## Kraken
Kraken supports [time_in_force](configuration.md#understand-order_time_in_force) with settings "GTC" (good till cancelled), "IOC" (immediate-or-cancel) and "PO" (Post only) settings.
!!! Tip "Stoploss on Exchange"
Kraken supports `stoploss_on_exchange` and can use both stop-loss-market and stop-loss-limit orders. It provides great advantages, so we recommend to benefit from it.
You can use either `"limit"` or `"market"` in the `order_types.stoploss` configuration setting to decide which type to use.
@@ -147,41 +117,13 @@ Kraken supports [time_in_force](configuration.md#understand-order_time_in_force)
The Kraken API does only provide 720 historic candles, which is sufficient for Freqtrade dry-run and live trade modes, but is a problem for backtesting.
To download data for the Kraken exchange, using `--dl-trades` is mandatory, otherwise the bot will download the same 720 candles over and over, and you'll not have enough backtest data.
To speed up downloading, you can download the [trades zip files](https://support.kraken.com/hc/en-us/articles/360047543791-Downloadable-historical-market-data-time-and-sales-) kraken provides.
These are usually updated once per quarter. Freqtrade expects these files to be placed in `user_data/data/kraken/trades_csv`.
Due to the heavy rate-limiting applied by Kraken, the following configuration section should be used to download data:
A structure as follows can make sense if using incremental files, with the "full" history in one directory, and incremental files in different directories.
The assumption for this mode is that the data is downloaded and unzipped keeping filenames as they are.
Duplicate content will be ignored (based on timestamp) - though the assumption is that there is no gap in the data.
This means, if your "full" history ends in Q4 2022 - then both incremental updates Q1 2023 and Q2 2023 are available.
Not having this will lead to incomplete data, and therefore invalid results while using the data.
```
└── trades_csv
    ├── Kraken_full_history
   │   ├── BCHEUR.csv
   │   └── XBTEUR.csv
   ├── Kraken_Trading_History_Q1_2023
   │   ├── BCHEUR.csv
   │   └── XBTEUR.csv
   └── Kraken_Trading_History_Q2_2023
      ├── BCHEUR.csv
      └── XBTEUR.csv
```
You can convert these files into freqtrade files:
``` bash
freqtrade convert-trade-data --exchange kraken --format-from kraken_csv --format-to feather
# Convert trade data to different ohlcv timeframes
freqtrade trades-to-ohlcv -p BTC/EUR BCH/EUR --exchange kraken -t 1m 5m 15m 1h
```
The converted data also makes downloading data possible, and will start the download after the latest loaded trade.
``` bash
freqtrade download-data --exchange kraken --dl-trades -p BTC/EUR BCH/EUR
``` json
"ccxt_async_config": {
"enableRateLimit": true,
"rateLimit": 3100
},
```
!!! Warning "Downloading data from kraken"
@@ -192,6 +134,48 @@ freqtrade download-data --exchange kraken --dl-trades -p BTC/EUR BCH/EUR
Please pay attention that rateLimit configuration entry holds delay in milliseconds between requests, NOT requests\sec rate.
So, in order to mitigate Kraken API "Rate limit exceeded" exception, this configuration should be increased, NOT decreased.
## Bittrex
### Order types
Bittrex does not support market orders. If you have a message at the bot startup about this, you should change order type values set in your configuration and/or in the strategy from `"market"` to `"limit"`. See some more details on this [here in the FAQ](faq.md#im-getting-the-exchange-bittrex-does-not-support-market-orders-message-and-cannot-run-my-strategy).
Bittrex also does not support `VolumePairlist` due to limited / split API constellation at the moment.
Please use `StaticPairlist`. Other pairlists (other than `VolumePairlist`) should not be affected.
### Volume pairlist
Bittrex does not support the direct usage of VolumePairList. This can however be worked around by using the advanced mode with `lookback_days: 1` (or more), which will emulate 24h volume.
Read more in the [pairlist documentation](plugins.md#volumepairlist-advanced-mode).
### Restricted markets
Bittrex split its exchange into US and International versions.
The International version has more pairs available, however the API always returns all pairs, so there is currently no automated way to detect if you're affected by the restriction.
If you have restricted pairs in your whitelist, you'll get a warning message in the log on Freqtrade startup for each restricted pair.
The warning message will look similar to the following:
``` output
[...] Message: bittrex {"success":false,"message":"RESTRICTED_MARKET","result":null,"explanation":null}"
```
If you're an "International" customer on the Bittrex exchange, then this warning will probably not impact you.
If you're a US customer, the bot will fail to create orders for these pairs, and you should remove them from your whitelist.
You can get a list of restricted markets by using the following snippet:
``` python
import ccxt
ct = ccxt.bittrex()
lm = ct.load_markets()
res = [p for p, x in lm.items() if 'US' in x['info']['prohibitedIn']]
print(res)
```
## Kucoin
Kucoin requires a passphrase for each api key, you will therefore need to add this key into the configuration so your exchange section looks as follows:
@@ -217,10 +201,10 @@ Kucoin supports [time_in_force](configuration.md#understand-order_time_in_force)
For Kucoin, it is suggested to add `"KCS/<STAKE>"` to your blacklist to avoid issues, unless you are willing to maintain enough extra `KCS` on the account or unless you're willing to disable using `KCS` for fees.
Kucoin accounts may use `KCS` for fees, and if a trade happens to be on `KCS`, further trades may consume this position and make the initial `KCS` trade unsellable as the expected amount is not there anymore.
## HTX (formerly Huobi)
## Huobi
!!! Tip "Stoploss on Exchange"
HTX supports `stoploss_on_exchange` and uses `stop-limit` orders. It provides great advantages, so we recommend to benefit from it by enabling stoploss on exchange.
Huobi supports `stoploss_on_exchange` and uses `stop-limit` orders. It provides great advantages, so we recommend to benefit from it by enabling stoploss on exchange.
## OKX (former OKEX)
@@ -240,8 +224,8 @@ OKX requires a passphrase for each api key, you will therefore need to add this
OKX only provides 100 candles per api call. Therefore, the strategy will only have a pretty low amount of data available in backtesting mode.
!!! Warning "Futures"
OKX Futures has the concept of "position mode" - which can be "Buy/Sell" or long/short (hedge mode).
Freqtrade supports both modes (we recommend to use Buy/Sell mode) - but changing the mode mid-trading is not supported and will lead to exceptions and failures to place trades.
OKX Futures has the concept of "position mode" - which can be Net or long/short (hedge mode).
Freqtrade supports both modes (we recommend to use net mode) - but changing the mode mid-trading is not supported and will lead to exceptions and failures to place trades.
OKX also only provides MARK candles for the past ~3 months. Backtesting futures prior to that date will therefore lead to slight deviations, as funding-fees cannot be calculated correctly without this data.
## Gate.io
@@ -252,43 +236,6 @@ OKX requires a passphrase for each api key, you will therefore need to add this
Gate.io allows the use of `POINT` to pay for fees. As this is not a tradable currency (no regular market available), automatic fee calculations will fail (and default to a fee of 0).
The configuration parameter `exchange.unknown_fee_rate` can be used to specify the exchange rate between Point and the stake currency. Obviously, changing the stake-currency will also require changes to this value.
## Bybit
Futures trading on bybit is currently supported for USDT markets, and will use isolated futures mode.
Users with unified accounts (there's no way back) can create a Sub-account which will start as "non-unified", and can therefore use isolated futures.
On startup, freqtrade will set the position mode to "One-way Mode" for the whole (sub)account. This avoids making this call over and over again (slowing down bot operations), but means that changes to this setting may result in exceptions and errors
As bybit doesn't provide funding rate history, the dry-run calculation is used for live trades as well.
API Keys for live futures trading (Subaccount on non-unified) must have the following permissions:
* Read-write
* Contract - Orders
* Contract - Positions
We do strongly recommend to limit all API keys to the IP you're going to use it from.
!!! Tip "Stoploss on Exchange"
Bybit (futures only) supports `stoploss_on_exchange` and uses `stop-loss-limit` orders. It provides great advantages, so we recommend to benefit from it by enabling stoploss on exchange.
On futures, Bybit supports both `stop-limit` as well as `stop-market` orders. You can use either `"limit"` or `"market"` in the `order_types.stoploss` configuration setting to decide which type to use.
## Bitmart
Bitmart requires the API key Memo (the name you give the API key) to go along with the exchange key and secret.
It's therefore required to pass the UID as well.
```json
"exchange": {
"name": "bitmart",
"uid": "your_bitmart_api_key_memo",
"secret": "your_exchange_secret",
"password": "your_exchange_api_key_password",
// ...
}
```
!!! Warning "Necessary Verification"
Bitmart requires Verification Lvl2 to successfully trade on the spot market through the API - even though trading via UI works just fine with just Lvl1 verification.
## All exchanges
Should you experience constant errors with Nonce (like `InvalidNonce`), it is best to regenerate the API keys. Resetting Nonce is difficult and it's usually easier to regenerate the API keys.
@@ -306,7 +253,7 @@ $ pip3 install web3
Most exchanges return current incomplete candle via their OHLCV/klines API interface.
By default, Freqtrade assumes that incomplete candle is fetched from the exchange and removes the last candle assuming it's the incomplete candle.
Whether your exchange returns incomplete candles or not can be checked using [the helper script](developer.md#incomplete-candles) from the Contributor documentation.
Whether your exchange returns incomplete candles or not can be checked using [the helper script](developer.md#Incomplete-candles) from the Contributor documentation.
Due to the danger of repainting, Freqtrade does not allow you to use this incomplete candle.

View File

@@ -2,7 +2,7 @@
## Supported Markets
Freqtrade supports spot trading, as well as (isolated) futures trading for some selected exchanges. Please refer to the [documentation start page](index.md#supported-futures-exchanges-experimental) for an up-to-date list of supported exchanges.
Freqtrade supports spot trading only.
### Can my bot open short positions?
@@ -14,13 +14,13 @@ In spot markets, you can in some cases use leveraged spot tokens, which reflect
### Can my bot trade options or futures?
Futures trading is supported for selected exchanges. Please refer to the [documentation start page](index.md#supported-futures-exchanges-experimental) for an up-to-date list of supported exchanges.
Futures trading is supported for selected exchanges. Please refer to the [documentation start page](index.md#supported-futures-exchanges-experimental) for an uptodate list of supported exchanges.
## Beginner Tips & Tricks
* When you work with your strategy & hyperopt file you should use a proper code editor like VSCode or PyCharm. A good code editor will provide syntax highlighting as well as line numbers, making it easy to find syntax errors (most likely pointed out by Freqtrade during startup).
## Freqtrade common questions
## Freqtrade common issues
### Can freqtrade open multiple positions on the same pair in parallel?
@@ -36,7 +36,7 @@ Running the bot with `freqtrade trade --config config.json` shows the output `fr
This could be caused by the following reasons:
* The virtual environment is not active.
* Run `source .venv/bin/activate` to activate the virtual environment.
* Run `source .env/bin/activate` to activate the virtual environment.
* The installation did not complete successfully.
* Please check the [Installation documentation](installation.md).
@@ -78,14 +78,6 @@ Where possible (e.g. on binance), the use of the exchange's dedicated fee curren
On binance, it's sufficient to have BNB in your account, and have "Pay fees in BNB" enabled in your profile. Your BNB balance will slowly decline (as it's used to pay fees) - but you'll no longer encounter dust (Freqtrade will include the fees in the profit calculations).
Other exchanges don't offer such possibilities, where it's simply something you'll have to accept or move to a different exchange.
### I deposited more funds to the exchange, but my bot doesn't recognize this
Freqtrade will update the exchange balance when necessary (Before placing an order).
RPC calls (Telegram's `/balance`, API calls to `/balance`) can trigger an update at max. once per hour.
If `adjust_trade_position` is enabled (and the bot has open trades eligible for position adjustments) - then the wallets will be refreshed once per hour.
To force an immediate update, you can use `/reload_config` - which will restart the bot.
### I want to use incomplete candles
Freqtrade will not provide incomplete candles to strategies. Using incomplete candles will lead to repainting and consequently to strategies with "ghost" buys, which are impossible to both backtest, and verify after they happened.
@@ -128,9 +120,15 @@ This warning can point to one of the below problems:
* Barely traded pair -> Check the pair on the exchange webpage, look at the timeframe your strategy uses. If the pair does not have any volume in some candles (usually visualized with a "volume 0" bar, and a "_" as candle), this pair did not have any trades in this timeframe. These pairs should ideally be avoided, as they can cause problems with order-filling.
* API problem -> API returns wrong data (this only here for completeness, and should not happen with supported exchanges).
### I'm getting the "RESTRICTED_MARKET" message in the log
Currently known to happen for US Bittrex users.
Read [the Bittrex section about restricted markets](exchanges.md#restricted-markets) for more information.
### I'm getting the "Exchange XXX does not support market orders." message and cannot run my strategy
As the message says, your exchange does not support market orders and you have one of the [order types](configuration.md/#understand-order_types) set to "market". Your strategy was probably written with other exchanges in mind and sets "market" orders for "stoploss" orders, which is correct and preferable for most of the exchanges supporting market orders (but not for Gate.io).
As the message says, your exchange does not support market orders and you have one of the [order types](configuration.md/#understand-order_types) set to "market". Your strategy was probably written with other exchanges in mind and sets "market" orders for "stoploss" orders, which is correct and preferable for most of the exchanges supporting market orders (but not for Bittrex and Gate.io).
To fix this, redefine order types in the strategy to use "limit" instead of "market":
@@ -144,13 +142,6 @@ To fix this, redefine order types in the strategy to use "limit" instead of "mar
The same fix should be applied in the configuration file, if order types are defined in your custom config rather than in the strategy.
### I'm trying to start the bot live, but get an API permission error
Errors like `Invalid API-key, IP, or permissions for action` mean exactly what they actually say.
Your API key is either invalid (copy/paste error? check for leading/trailing spaces in the config), expired, or the IP you're running the bot from is not enabled in the Exchange's API console.
Usually, the permission "Spot Trading" (or the equivalent in the exchange you use) will be necessary.
Futures will usually have to be enabled specifically.
### How do I search the bot logs for something?
By default, the bot writes its log into stderr stream. This is implemented this way so that you can easily separate the bot's diagnostics messages from Backtesting, Edge and Hyperopt results, output from other various Freqtrade utility sub-commands, as well as from the output of your custom `print()`'s you may have inserted into your strategy. So if you need to search the log messages with the grep utility, you need to redirect stderr to stdout and disregard stdout.
@@ -257,26 +248,8 @@ The Edge module is mostly a result of brainstorming of [@mishaker](https://githu
You can find further info on expectancy, win rate, risk management and position size in the following sources:
- https://www.tradeciety.com/ultimate-math-guide-for-traders/
- http://www.vantharp.com/tharp-concepts/expectancy.asp
- https://samuraitradingacademy.com/trading-expectancy/
- https://www.learningmarkets.com/determining-expectancy-in-your-trading/
- https://www.lonestocktrader.com/make-money-trading-positive-expectancy/
- http://www.lonestocktrader.com/make-money-trading-positive-expectancy/
- https://www.babypips.com/trading/trade-expectancy-matter
## Official channels
Freqtrade is using exclusively the following official channels:
* [Freqtrade discord server](https://discord.gg/p7nuUNVfP7)
* [Freqtrade documentation (https://freqtrade.io)](https://freqtrade.io)
* [Freqtrade github organization](https://github.com/freqtrade)
Nobody affiliated with the freqtrade project will ask you about your exchange keys or anything else exposing your funds to exploitation.
Should you be asked to expose your exchange keys or send funds to some random wallet, then please don't follow these instructions.
Failing to follow these guidelines will not be responsibility of freqtrade.
## "Freqtrade token"
Freqtrade does not have a Crypto token offering.
Token offerings you find on the internet referring Freqtrade, FreqAI or freqUI must be considered to be a scam, trying to exploit freqtrade's popularity for their own, nefarious gains.

View File

@@ -1,85 +0,0 @@
# FreqUI
Freqtrade provides a builtin webserver, which can serve [FreqUI](https://github.com/freqtrade/frequi), the freqtrade frontend.
By default, the UI is automatically installed as part of the installation (script, docker).
freqUI can also be manually installed by using the `freqtrade install-ui` command.
This same command can also be used to update freqUI to new new releases.
Once the bot is started in trade / dry-run mode (with `freqtrade trade`) - the UI will be available under the configured API port (by default `http://127.0.0.1:8080`).
??? Note "Looking to contribute to freqUI?"
Developers should not use this method, but instead clone the corresponding use the method described in the [freqUI repository](https://github.com/freqtrade/frequi) to get the source-code of freqUI. A working installation of node will be required to build the frontend.
!!! tip "freqUI is not required to run freqtrade"
freqUI is an optional component of freqtrade, and is not required to run the bot.
It is a frontend that can be used to monitor the bot and to interact with it - but freqtrade itself will work perfectly fine without it.
## Configuration
FreqUI does not have it's own configuration file - but assumes a working setup for the [rest-api](rest-api.md) is available.
Please refer to the corresponding documentation page to get setup with freqUI
## UI
FreqUI is a modern, responsive web application that can be used to monitor and interact with your bot.
FreqUI provides a light, as well as a dark theme.
Themes can be easily switched via a prominent button at the top of the page.
The theme of the screenshots on this page will adapt to the selected documentation Theme, so to see the dark (or light) version, please switch the theme of the Documentation.
### Login
The below screenshot shows the login screen of freqUI.
![FreqUI - login](assets/frequi-login-CORS.png#only-dark)
![FreqUI - login](assets/frequi-login-CORS-light.png#only-light)
!!! Hint "CORS"
The Cors error shown in this screenshot is due to the fact that the UI is running on a different port than the API, and [CORS](#cors) has not been setup correctly yet.
### Trade view
The trade view allows you to visualize the trades that the bot is making and to interact with the bot.
On this page, you can also interact with the bot by starting and stopping it and - if configured - force trade entries and exits.
![FreqUI - trade view](assets/freqUI-trade-pane-dark.png#only-dark)
![FreqUI - trade view](assets/freqUI-trade-pane-light.png#only-light)
### Plot Configurator
FreqUI Plots can be configured either via a `plot_config` configuration object in the strategy (which can be loaded via "from strategy" button) or via the UI.
Multiple plot configurations can be created and switched at will - allowing for flexible, different views into your charts.
The plot configuration can be accessed via the "Plot Configurator" (Cog icon) button in the top right corner of the trade view.
![FreqUI - plot configuration](assets/freqUI-plot-configurator-dark.png#only-dark)
![FreqUI - plot configuration](assets/freqUI-plot-configurator-light.png#only-light)
### Settings
Several UI related settings can be changed by accessing the settings page.
Things you can change (among others):
* Timezone of the UI
* Visualization of open trades as part of the favicon (browser tab)
* Candle colors (up/down -> red/green)
* Enable / disable in-app notification types
![FreqUI - Settings view](assets/frequi-settings-dark.png#only-dark)
![FreqUI - Settings view](assets/frequi-settings-light.png#only-light)
## Backtesting
When freqtrade is started in [webserver mode](utils.md#webserver-mode) (freqtrade started with `freqtrade webserver`), the backtesting view becomes available.
This view allows you to backtest strategies and visualize the results.
You can also load and visualize previous backtest results, as well as compare the results with each other.
![FreqUI - Backtesting](assets/freqUI-backtesting-dark.png#only-dark)
![FreqUI - Backtesting](assets/freqUI-backtesting-light.png#only-light)
--8<-- "includes/cors.md"

View File

@@ -9,7 +9,7 @@ FreqAI is configured through the typical [Freqtrade config file](configuration.m
```json
"freqai": {
"enabled": true,
"purge_old_models": 2,
"purge_old_models": true,
"train_period_days": 30,
"backtest_period_days": 7,
"identifier" : "unique-id",
@@ -32,9 +32,6 @@ FreqAI is configured through the typical [Freqtrade config file](configuration.m
A full example config is available in `config_examples/config_freqai.example.json`.
!!! Note
The `identifier` is commonly overlooked by newcomers, however, this value plays an important role in your configuration. This value is a unique ID that you choose to describe one of your runs. Keeping it the same allows you to maintain crash resilience as well as faster backtesting. As soon as you want to try a new run (new features, new model, etc.), you should change this value (or delete the `user_data/models/unique-id` folder. More details available in the [parameter table](freqai-parameter-table.md#feature-parameters).
## Building a FreqAI strategy
The FreqAI strategy requires including the following lines of code in the standard [Freqtrade strategy](strategy-customization.md):
@@ -46,114 +43,116 @@ The FreqAI strategy requires including the following lines of code in the standa
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# the model will return all labels created by user in `set_freqai_targets()`
# the model will return all labels created by user in `populate_any_indicators`
# (& appended targets), an indication of whether or not the prediction should be accepted,
# the target mean/std values for each of the labels created by user in
# `set_freqai_targets()` for each training period.
# `populate_any_indicators()` for each training period.
dataframe = self.freqai.start(dataframe, metadata, self)
return dataframe
def feature_engineering_expand_all(self, dataframe: DataFrame, period, **kwargs) -> DataFrame:
def populate_any_indicators(
self, pair, df, tf, informative=None, set_generalized_indicators=False
):
"""
*Only functional with FreqAI enabled strategies*
This function will automatically expand the defined features on the config defined
`indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and
`include_corr_pairs`. In other words, a single feature defined in this function
will automatically expand to a total of
`indicator_periods_candles` * `include_timeframes` * `include_shifted_candles` *
`include_corr_pairs` numbers of features added to the model.
All features must be prepended with `%` to be recognized by FreqAI internals.
:param df: strategy dataframe which will receive the features
:param period: period of the indicator - usage example:
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
Function designed to automatically generate, name and merge features
from user indicated timeframes in the configuration file. User controls the indicators
passed to the training/prediction by prepending indicators with `'%-' + pair `
(see convention below). I.e. user should not prepend any supporting metrics
(e.g. bb_lowerband below) with % unless they explicitly want to pass that metric to the
model.
:param pair: pair to be used as informative
:param df: strategy dataframe which will receive merges from informatives
:param tf: timeframe of the dataframe which will modify the feature names
:param informative: the dataframe associated with the informative pair
"""
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
dataframe["%-adx-period"] = ta.ADX(dataframe, timeperiod=period)
dataframe["%-sma-period"] = ta.SMA(dataframe, timeperiod=period)
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
if informative is None:
informative = self.dp.get_pair_dataframe(pair, tf)
return dataframe
# first loop is automatically duplicating indicators for time periods
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
t = int(t)
informative[f"%-{pair}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
informative[f"%-{pair}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
informative[f"%-{pair}adx-period_{t}"] = ta.ADX(informative, window=t)
def feature_engineering_expand_basic(self, dataframe: DataFrame, **kwargs) -> DataFrame:
"""
*Only functional with FreqAI enabled strategies*
This function will automatically expand the defined features on the config defined
`include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
In other words, a single feature defined in this function
will automatically expand to a total of
`include_timeframes` * `include_shifted_candles` * `include_corr_pairs`
numbers of features added to the model.
indicators = [col for col in informative if col.startswith("%")]
# This loop duplicates and shifts all indicators to add a sense of recency to data
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
if n == 0:
continue
informative_shift = informative[indicators].shift(n)
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
informative = pd.concat((informative, informative_shift), axis=1)
Features defined here will *not* be automatically duplicated on user defined
`indicator_periods_candles`
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
skip_columns = [
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
]
df = df.drop(columns=skip_columns)
All features must be prepended with `%` to be recognized by FreqAI internals.
# Add generalized indicators here (because in live, it will call this
# function to populate indicators during training). Notice how we ensure not to
# add them multiple times
if set_generalized_indicators:
:param df: strategy dataframe which will receive the features
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-ema-200"] = ta.EMA(dataframe, timeperiod=200)
"""
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-raw_volume"] = dataframe["volume"]
dataframe["%-raw_price"] = dataframe["close"]
return dataframe
def feature_engineering_standard(self, dataframe: DataFrame, **kwargs) -> DataFrame:
"""
*Only functional with FreqAI enabled strategies*
This optional function will be called once with the dataframe of the base timeframe.
This is the final function to be called, which means that the dataframe entering this
function will contain all the features and columns created by all other
freqai_feature_engineering_* functions.
This function is a good place to do custom exotic feature extractions (e.g. tsfresh).
This function is a good place for any feature that should not be auto-expanded upon
(e.g. day of the week).
All features must be prepended with `%` to be recognized by FreqAI internals.
:param df: strategy dataframe which will receive the features
usage example: dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
"""
dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
dataframe["%-hour_of_day"] = (dataframe["date"].dt.hour + 1) / 25
return dataframe
def set_freqai_targets(self, dataframe: DataFrame, **kwargs) -> DataFrame:
"""
*Only functional with FreqAI enabled strategies*
Required function to set the targets for the model.
All targets must be prepended with `&` to be recognized by the FreqAI internals.
:param df: strategy dataframe which will receive the targets
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
"""
dataframe["&-s_close"] = (
dataframe["close"]
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
.mean()
/ dataframe["close"]
- 1
# user adds targets here by prepending them with &- (see convention below)
# If user wishes to use multiple targets, a multioutput prediction model
# needs to be used such as templates/CatboostPredictionMultiModel.py
df["&-s_close"] = (
df["close"]
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
.mean()
/ df["close"]
- 1
)
return dataframe
return df
```
Notice how the `feature_engineering_*()` is where [features](freqai-feature-engineering.md#feature-engineering) are added. Meanwhile `set_freqai_targets()` adds the labels/targets. A full example strategy is available in `templates/FreqaiExampleStrategy.py`.
Notice how the `populate_any_indicators()` is where [features](freqai-feature-engineering.md#feature-engineering) and labels/targets are added. A full example strategy is available in `templates/FreqaiExampleStrategy.py`.
Notice also the location of the labels under `if set_generalized_indicators:` at the bottom of the example. This is where single features and labels/targets should be added to the feature set to avoid duplication of them from various configuration parameters that multiply the feature set, such as `include_timeframes`.
!!! Note
The `self.freqai.start()` function cannot be called outside the `populate_indicators()`.
!!! Note
Features **must** be defined in `feature_engineering_*()`. Defining FreqAI features in `populate_indicators()`
will cause the algorithm to fail in live/dry mode. In order to add generalized features that are not associated with a specific pair or timeframe, you should use `feature_engineering_standard()`
(as exemplified in `freqtrade/templates/FreqaiExampleStrategy.py`).
Features **must** be defined in `populate_any_indicators()`. Defining FreqAI features in `populate_indicators()`
will cause the algorithm to fail in live/dry mode. In order to add generalized features that are not associated with a specific pair or timeframe, the following structure inside `populate_any_indicators()` should be used
(as exemplified in `freqtrade/templates/FreqaiExampleStrategy.py`):
```python
def populate_any_indicators(self, pair, df, tf, informative=None, set_generalized_indicators=False):
...
# Add generalized indicators here (because in live, it will call only this function to populate
# indicators for retraining). Notice how we ensure not to add them multiple times by associating
# these generalized indicators to the basepair/timeframe
if set_generalized_indicators:
df['%-day_of_week'] = (df["date"].dt.dayofweek + 1) / 7
df['%-hour_of_day'] = (df['date'].dt.hour + 1) / 25
# user adds targets here by prepending them with &- (see convention below)
# If user wishes to use multiple targets, a multioutput prediction model
# needs to be used such as templates/CatboostPredictionMultiModel.py
df["&-s_close"] = (
df["close"]
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
.mean()
/ df["close"]
- 1
)
```
Please see the example script located in `freqtrade/templates/FreqaiExampleStrategy.py` for a full example of `populate_any_indicators()`.
## Important dataframe key patterns
@@ -161,19 +160,18 @@ Below are the values you can expect to include/use inside a typical strategy dat
| DataFrame Key | Description |
|------------|-------------|
| `df['&*']` | Any dataframe column prepended with `&` in `set_freqai_targets()` is treated as a training target (label) inside FreqAI (typically following the naming convention `&-s*`). For example, to predict the close price 40 candles into the future, you would set `df['&-s_close'] = df['close'].shift(-self.freqai_info["feature_parameters"]["label_period_candles"])` with `"label_period_candles": 40` in the config. FreqAI makes the predictions and gives them back under the same key (`df['&-s_close']`) to be used in `populate_entry/exit_trend()`. <br> **Datatype:** Depends on the output of the model.
| `df['&*']` | Any dataframe column prepended with `&` in `populate_any_indicators()` is treated as a training target (label) inside FreqAI (typically following the naming convention `&-s*`). For example, to predict the close price 40 candles into the future, you would set `df['&-s_close'] = df['close'].shift(-self.freqai_info["feature_parameters"]["label_period_candles"])` with `"label_period_candles": 40` in the config. FreqAI makes the predictions and gives them back under the same key (`df['&-s_close']`) to be used in `populate_entry/exit_trend()`. <br> **Datatype:** Depends on the output of the model.
| `df['&*_std/mean']` | Standard deviation and mean values of the defined labels during training (or live tracking with `fit_live_predictions_candles`). Commonly used to understand the rarity of a prediction (use the z-score as shown in `templates/FreqaiExampleStrategy.py` and explained [here](#creating-a-dynamic-target-threshold) to evaluate how often a particular prediction was observed during training or historically with `fit_live_predictions_candles`). <br> **Datatype:** Float.
| `df['do_predict']` | Indication of an outlier data point. The return value is integer between -2 and 2, which lets you know if the prediction is trustworthy or not. `do_predict==1` means that the prediction is trustworthy. If the Dissimilarity Index (DI, see details [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di)) of the input data point is above the threshold defined in the config, FreqAI will subtract 1 from `do_predict`, resulting in `do_predict==0`. If `use_SVM_to_remove_outliers` is active, the Support Vector Machine (SVM, see details [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm)) may also detect outliers in training and prediction data. In this case, the SVM will also subtract 1 from `do_predict`. If the input data point was considered an outlier by the SVM but not by the DI, or vice versa, the result will be `do_predict==0`. If both the DI and the SVM considers the input data point to be an outlier, the result will be `do_predict==-1`. As with the SVM, if `use_DBSCAN_to_remove_outliers` is active, DBSCAN (see details [here](freqai-feature-engineering.md#identifying-outliers-with-dbscan)) may also detect outliers and subtract 1 from `do_predict`. Hence, if both the SVM and DBSCAN are active and identify a datapoint that was above the DI threshold as an outlier, the result will be `do_predict==-2`. A particular case is when `do_predict == 2`, which means that the model has expired due to exceeding `expired_hours`. <br> **Datatype:** Integer between -2 and 2.
| `df['do_predict']` | Indication of an outlier data point. The return value is integer between -2 and 2, which lets you know if the prediction is trustworthy or not. `do_predict==1` means that the prediction is trustworthy. If the Dissimilarity Index (DI, see details [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di)) of the input data point is above the threshold defined in the config, FreqAI will subtract 1 from `do_predict`, resulting in `do_predict==0`. If `use_SVM_to_remove_outliers()` is active, the Support Vector Machine (SVM, see details [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm)) may also detect outliers in training and prediction data. In this case, the SVM will also subtract 1 from `do_predict`. If the input data point was considered an outlier by the SVM but not by the DI, or vice versa, the result will be `do_predict==0`. If both the DI and the SVM considers the input data point to be an outlier, the result will be `do_predict==-1`. As with the SVM, if `use_DBSCAN_to_remove_outliers` is active, DBSCAN (see details [here](freqai-feature-engineering.md#identifying-outliers-with-dbscan)) may also detect outliers and subtract 1 from `do_predict`. Hence, if both the SVM and DBSCAN are active and identify a datapoint that was above the DI threshold as an outlier, the result will be `do_predict==-2`. A particular case is when `do_predict == 2`, which means that the model has expired due to exceeding `expired_hours`. <br> **Datatype:** Integer between -2 and 2.
| `df['DI_values']` | Dissimilarity Index (DI) values are proxies for the level of confidence FreqAI has in the prediction. A lower DI means the prediction is close to the training data, i.e., higher prediction confidence. See details about the DI [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di). <br> **Datatype:** Float.
| `df['%*']` | Any dataframe column prepended with `%` in `feature_engineering_*()` is treated as a training feature. For example, you can include the RSI in the training feature set (similar to in `templates/FreqaiExampleStrategy.py`) by setting `df['%-rsi']`. See more details on how this is done [here](freqai-feature-engineering.md). <br> **Note:** Since the number of features prepended with `%` can multiply very quickly (10s of thousands of features are easily engineered using the multiplictative functionality of, e.g., `include_shifted_candles` and `include_timeframes` as described in the [parameter table](freqai-parameter-table.md)), these features are removed from the dataframe that is returned from FreqAI to the strategy. To keep a particular type of feature for plotting purposes, you would prepend it with `%%` (see details below). <br> **Datatype:** Depends on the feature created by the user.
| `df['%%*']` | Any dataframe column prepended with `%%` in `feature_engineering_*()` is treated as a training feature, just the same as the above `%` prepend. However, in this case, the features are returned back to the strategy for FreqUI/plot-dataframe plotting and monitoring in Dry/Live/Backtesting <br> **Datatype:** Depends on the feature created by the user. Please note that features created in `feature_engineering_expand()` will have automatic FreqAI naming schemas depending on the expansions that you configured (i.e. `include_timeframes`, `include_corr_pairlist`, `indicators_periods_candles`, `include_shifted_candles`). So if you want to plot `%%-rsi` from `feature_engineering_expand_all()`, the final naming scheme for your plotting config would be: `%%-rsi-period_10_ETH/USDT:USDT_1h` for the `rsi` feature with `period=10`, `timeframe=1h`, and `pair=ETH/USDT:USDT` (the `:USDT` is added if you are using futures pairs). It is useful to simply add `print(dataframe.columns)` in your `populate_indicators()` after `self.freqai.start()` to see the full list of available features that are returned to the strategy for plotting purposes.
| `df['%*']` | Any dataframe column prepended with `%` in `populate_any_indicators()` is treated as a training feature. For example, you can include the RSI in the training feature set (similar to in `templates/FreqaiExampleStrategy.py`) by setting `df['%-rsi']`. See more details on how this is done [here](freqai-feature-engineering.md). <br> **Note:** Since the number of features prepended with `%` can multiply very quickly (10s of thousands of features are easily engineered using the multiplictative functionality of, e.g., `include_shifted_candles` and `include_timeframes` as described in the [parameter table](freqai-parameter-table.md)), these features are removed from the dataframe that is returned from FreqAI to the strategy. To keep a particular type of feature for plotting purposes, you would prepend it with `%%`. <br> **Datatype:** Depends on the output of the model.
## Setting the `startup_candle_count`
The `startup_candle_count` in the FreqAI strategy needs to be set up in the same way as in the standard Freqtrade strategy (see details [here](strategy-customization.md#strategy-startup-period)). This value is used by Freqtrade to ensure that a sufficient amount of data is provided when calling the `dataprovider`, to avoid any NaNs at the beginning of the first training. You can easily set this value by identifying the longest period (in candle units) which is passed to the indicator creation functions (e.g., TA-Lib functions). In the presented example, `startup_candle_count` is 20 since this is the maximum value in `indicators_periods_candles`.
The `startup_candle_count` in the FreqAI strategy needs to be set up in the same way as in the standard Freqtrade strategy (see details [here](strategy-customization.md#strategy-startup-period)). This value is used by Freqtrade to ensure that a sufficient amount of data is provided when calling the `dataprovider`, to avoid any NaNs at the beginning of the first training. You can easily set this value by identifying the longest period (in candle units) which is passed to the indicator creation functions (e.g., Ta-Lib functions). In the presented example, `startup_candle_count` is 20 since this is the maximum value in `indicators_periods_candles`.
!!! Note
There are instances where the TA-Lib functions actually require more data than just the passed `period` or else the feature dataset gets populated with NaNs. Anecdotally, multiplying the `startup_candle_count` by 2 always leads to a fully NaN free training dataset. Hence, it is typically safest to multiply the expected `startup_candle_count` by 2. Look out for this log message to confirm that the data is clean:
There are instances where the Ta-Lib functions actually require more data than just the passed `period` or else the feature dataset gets populated with NaNs. Anecdotally, multiplying the `startup_candle_count` by 2 always leads to a fully NaN free training dataset. Hence, it is typically safest to multiply the expected `startup_candle_count` by 2. Look out for this log message to confirm that the data is clean:
```
2022-08-31 15:14:04 - freqtrade.freqai.data_kitchen - INFO - dropped 0 training points due to NaNs in populated dataset 4319.
@@ -210,7 +208,7 @@ All of the aforementioned model libraries implement gradient boosted decision tr
* LightGBM: https://lightgbm.readthedocs.io/en/v3.3.2/#
* XGBoost: https://xgboost.readthedocs.io/en/stable/#
There are also numerous online articles describing and comparing the algorithms. Some relatively lightweight examples would be [CatBoost vs. LightGBM vs. XGBoost — Which is the best algorithm?](https://towardsdatascience.com/catboost-vs-lightgbm-vs-xgboost-c80f40662924#:~:text=In%20CatBoost%2C%20symmetric%20trees%2C%20or,the%20same%20depth%20can%20differ.) and [XGBoost, LightGBM or CatBoost — which boosting algorithm should I use?](https://medium.com/riskified-technology/xgboost-lightgbm-or-catboost-which-boosting-algorithm-should-i-use-e7fda7bb36bc). Keep in mind that the performance of each model is highly dependent on the application and so any reported metrics might not be true for your particular use of the model.
There are also numerous online articles describing and comparing the algorithms. Some relatively light-weight examples would be [CatBoost vs. LightGBM vs. XGBoost — Which is the best algorithm?](https://towardsdatascience.com/catboost-vs-lightgbm-vs-xgboost-c80f40662924#:~:text=In%20CatBoost%2C%20symmetric%20trees%2C%20or,the%20same%20depth%20can%20differ.) and [XGBoost, LightGBM or CatBoost — which boosting algorithm should I use?](https://medium.com/riskified-technology/xgboost-lightgbm-or-catboost-which-boosting-algorithm-should-i-use-e7fda7bb36bc). Keep in mind that the performance of each model is highly dependent on the application and so any reported metrics might not be true for your particular use of the model.
Apart from the models already available in FreqAI, it is also possible to customize and create your own prediction models using the `IFreqaiModel` class. You are encouraged to inherit `fit()`, `train()`, and `predict()` to customize various aspects of the training procedures. You can place custom FreqAI models in `user_data/freqaimodels` - and freqtrade will pick them up from there based on the provided `--freqaimodel` name - which has to correspond to the class name of your custom model.
Make sure to use unique names to avoid overriding built-in models.
@@ -242,180 +240,19 @@ df['&s-up_or_down'] = np.where( df["close"].shift(-100) > df["close"], 'up', 'do
df['&s-up_or_down'] = np.where( df["close"].shift(-100) == df["close"], 'same', df['&s-up_or_down'])
```
## PyTorch Module
### Convolutional Neural Network model
### Quick start
The `CNNPredictionModel` is a non-linear regression based on `Tensorflow` which follows very similar configuration to the other regressors. Feature engineering and label creation remains the same as highlighted [here](#building-a-freqai-strategy) and [here](#setting-model-targets). Control of the model is focused in the `model_training_parameters` configuration dictionary, which accepts any hyperparameter available to the CNN `fit()` function of Tensorflow [more here](https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit). For example, this is where the `epochs` and `batch_size` are controlled:
The easiest way to quickly run a pytorch model is with the following command (for regression task):
```bash
freqtrade trade --config config_examples/config_freqai.example.json --strategy FreqaiExampleStrategy --freqaimodel PyTorchMLPRegressor --strategy-path freqtrade/templates
```json
"model_training_parameters" : {
"batch_size": 64,
"epochs": 10,
"verbose": "auto",
"shuffle": false,
"workers": 1,
"use_multiprocessing": false
}
```
!!! Note "Installation/docker"
The PyTorch module requires large packages such as `torch`, which should be explicitly requested during `./setup.sh -i` by answering "y" to the question "Do you also want dependencies for freqai-rl or PyTorch (~700mb additional space required) [y/N]?".
Users who prefer docker should ensure they use the docker image appended with `_freqaitorch`.
We do provide an explicit docker-compose file for this in `docker/docker-compose-freqai.yml` - which can be used via `docker compose -f docker/docker-compose-freqai.yml run ...` - or can be copied to replace the original docker file.
This docker-compose file also contains a (disabled) section to enable GPU resources within docker containers. This obviously assumes the system has GPU resources available.
### Structure
#### Model
You can construct your own Neural Network architecture in PyTorch by simply defining your `nn.Module` class inside your custom [`IFreqaiModel` file](#using-different-prediction-models) and then using that class in your `def train()` function. Here is an example of logistic regression model implementation using PyTorch (should be used with nn.BCELoss criterion) for classification tasks.
```python
class LogisticRegression(nn.Module):
def __init__(self, input_size: int):
super().__init__()
# Define your layers
self.linear = nn.Linear(input_size, 1)
self.activation = nn.Sigmoid()
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Define the forward pass
out = self.linear(x)
out = self.activation(out)
return out
class MyCoolPyTorchClassifier(BasePyTorchClassifier):
"""
This is a custom IFreqaiModel showing how a user might setup their own
custom Neural Network architecture for their training.
"""
@property
def data_convertor(self) -> PyTorchDataConvertor:
return DefaultPyTorchDataConvertor(target_tensor_type=torch.float)
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
config = self.freqai_info.get("model_training_parameters", {})
self.learning_rate: float = config.get("learning_rate", 3e-4)
self.model_kwargs: Dict[str, Any] = config.get("model_kwargs", {})
self.trainer_kwargs: Dict[str, Any] = config.get("trainer_kwargs", {})
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
"""
class_names = self.get_class_names()
self.convert_label_column_to_int(data_dictionary, dk, class_names)
n_features = data_dictionary["train_features"].shape[-1]
model = LogisticRegression(
input_dim=n_features
)
model.to(self.device)
optimizer = torch.optim.AdamW(model.parameters(), lr=self.learning_rate)
criterion = torch.nn.CrossEntropyLoss()
init_model = self.get_init_model(dk.pair)
trainer = PyTorchModelTrainer(
model=model,
optimizer=optimizer,
criterion=criterion,
model_meta_data={"class_names": class_names},
device=self.device,
init_model=init_model,
data_convertor=self.data_convertor,
**self.trainer_kwargs,
)
trainer.fit(data_dictionary, self.splits)
return trainer
```
#### Trainer
The `PyTorchModelTrainer` performs the idiomatic PyTorch train loop:
Define our model, loss function, and optimizer, and then move them to the appropriate device (GPU or CPU). Inside the loop, we iterate through the batches in the dataloader, move the data to the device, compute the prediction and loss, backpropagate, and update the model parameters using the optimizer.
In addition, the trainer is responsible for the following:
- saving and loading the model
- converting the data from `pandas.DataFrame` to `torch.Tensor`.
#### Integration with Freqai module
Like all freqai models, PyTorch models inherit `IFreqaiModel`. `IFreqaiModel` declares three abstract methods: `train`, `fit`, and `predict`. we implement these methods in three levels of hierarchy.
From top to bottom:
1. `BasePyTorchModel` - Implements the `train` method. all `BasePyTorch*` inherit it. responsible for general data preparation (e.g., data normalization) and calling the `fit` method. Sets `device` attribute used by children classes. Sets `model_type` attribute used by the parent class.
2. `BasePyTorch*` - Implements the `predict` method. Here, the `*` represents a group of algorithms, such as classifiers or regressors. responsible for data preprocessing, predicting, and postprocessing if needed.
3. `PyTorch*Classifier` / `PyTorch*Regressor` - implements the `fit` method. responsible for the main train flaw, where we initialize the trainer and model objects.
![image](assets/freqai_pytorch-diagram.png)
#### Full example
Building a PyTorch regressor using MLP (multilayer perceptron) model, MSELoss criterion, and AdamW optimizer.
```python
class PyTorchMLPRegressor(BasePyTorchRegressor):
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
config = self.freqai_info.get("model_training_parameters", {})
self.learning_rate: float = config.get("learning_rate", 3e-4)
self.model_kwargs: Dict[str, Any] = config.get("model_kwargs", {})
self.trainer_kwargs: Dict[str, Any] = config.get("trainer_kwargs", {})
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
n_features = data_dictionary["train_features"].shape[-1]
model = PyTorchMLPModel(
input_dim=n_features,
output_dim=1,
**self.model_kwargs
)
model.to(self.device)
optimizer = torch.optim.AdamW(model.parameters(), lr=self.learning_rate)
criterion = torch.nn.MSELoss()
init_model = self.get_init_model(dk.pair)
trainer = PyTorchModelTrainer(
model=model,
optimizer=optimizer,
criterion=criterion,
device=self.device,
init_model=init_model,
target_tensor_type=torch.float,
**self.trainer_kwargs,
)
trainer.fit(data_dictionary)
return trainer
```
Here we create a `PyTorchMLPRegressor` class that implements the `fit` method. The `fit` method specifies the training building blocks: model, optimizer, criterion, and trainer. We inherit both `BasePyTorchRegressor` and `BasePyTorchModel`, where the former implements the `predict` method that is suitable for our regression task, and the latter implements the train method.
??? Note "Setting Class Names for Classifiers"
When using classifiers, the user must declare the class names (or targets) by overriding the `IFreqaiModel.class_names` attribute. This is achieved by setting `self.freqai.class_names` in the FreqAI strategy inside the `set_freqai_targets` method.
For example, if you are using a binary classifier to predict price movements as up or down, you can set the class names as follows:
```python
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs) -> DataFrame:
self.freqai.class_names = ["down", "up"]
dataframe['&s-up_or_down'] = np.where(dataframe["close"].shift(-100) >
dataframe["close"], 'up', 'down')
return dataframe
```
To see a full example, you can refer to the [classifier test strategy class](https://github.com/freqtrade/freqtrade/blob/develop/tests/strategy/strats/freqai_test_classifier.py).
#### Improving performance with `torch.compile()`
Torch provides a `torch.compile()` method that can be used to improve performance for specific GPU hardware. More details can be found [here](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html). In brief, you simply wrap your `model` in `torch.compile()`:
```python
model = PyTorchMLPModel(
input_dim=n_features,
output_dim=1,
**self.model_kwargs
)
model.to(self.device)
model = torch.compile(model)
```
Then proceed to use the model as normal. Keep in mind that doing this will remove eager execution, which means errors and tracebacks will not be informative.
Running the `CNNPredictionModel` is the same as other regressors: `--freqaimodel CNNPredictionModel`.

View File

@@ -2,150 +2,96 @@
## Defining the features
Low level feature engineering is performed in the user strategy within a set of functions called `feature_engineering_*`. These function set the `base features` such as, `RSI`, `MFI`, `EMA`, `SMA`, time of day, volume, etc. The `base features` can be custom indicators or they can be imported from any technical-analysis library that you can find. FreqAI is equipped with a set of functions to simplify rapid large-scale feature engineering:
Low level feature engineering is performed in the user strategy within a function called `populate_any_indicators()`. That function sets the `base features` such as, `RSI`, `MFI`, `EMA`, `SMA`, time of day, volume, etc. The `base features` can be custom indicators or they can be imported from any technical-analysis library that you can find. One important syntax rule is that all `base features` string names are prepended with `%-{pair}`, while labels/targets are prepended with `&`.
| Function | Description |
|---------------|-------------|
| `feature_engineering_expand_all()` | This optional function will automatically expand the defined features on the config defined `indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
| `feature_engineering_expand_basic()` | This optional function will automatically expand the defined features on the config defined `include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`. Note: this function does *not* expand across `indicator_periods_candles`.
| `feature_engineering_standard()` | This optional function will be called once with the dataframe of the base timeframe. This is the final function to be called, which means that the dataframe entering this function will contain all the features and columns from the base asset created by the other `feature_engineering_expand` functions. This function is a good place to do custom exotic feature extractions (e.g. tsfresh). This function is also a good place for any feature that should not be auto-expanded upon (e.g., day of the week).
| `set_freqai_targets()` | Required function to set the targets for the model. All targets must be prepended with `&` to be recognized by the FreqAI internals.
!!! Note
Adding the full pair string, e.g. XYZ/USD, in the feature name enables improved performance for dataframe caching on the backend. If you decide *not* to add the full pair string in the feature string, FreqAI will operate in a reduced performance mode.
Meanwhile, high level feature engineering is handled within `"feature_parameters":{}` in the FreqAI config. Within this file, it is possible to decide large scale feature expansions on top of the `base_features` such as "including correlated pairs" or "including informative timeframes" or even "including recent candles."
It is advisable to start from the template `feature_engineering_*` functions in the source provided example strategy (found in `templates/FreqaiExampleStrategy.py`) to ensure that the feature definitions are following the correct conventions. Here is an example of how to set the indicators and labels in the strategy:
It is advisable to start from the template `populate_any_indicators()` in the source provided example strategy (found in `templates/FreqaiExampleStrategy.py`) to ensure that the feature definitions are following the correct conventions. Here is an example of how to set the indicators and labels in the strategy:
```python
def feature_engineering_expand_all(self, dataframe: DataFrame, period, metadata, **kwargs) -> DataFrame:
def populate_any_indicators(
self, pair, df, tf, informative=None, set_generalized_indicators=False
):
"""
*Only functional with FreqAI enabled strategies*
This function will automatically expand the defined features on the config defined
`indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and
`include_corr_pairs`. In other words, a single feature defined in this function
will automatically expand to a total of
`indicator_periods_candles` * `include_timeframes` * `include_shifted_candles` *
`include_corr_pairs` numbers of features added to the model.
All features must be prepended with `%` to be recognized by FreqAI internals.
Access metadata such as the current pair/timeframe/period with:
`metadata["pair"]` `metadata["tf"]` `metadata["period"]`
:param df: strategy dataframe which will receive the features
:param period: period of the indicator - usage example:
:param metadata: metadata of current pair
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
Function designed to automatically generate, name, and merge features
from user-indicated timeframes in the configuration file. The user controls the indicators
passed to the training/prediction by prepending indicators with `'%-' + pair `
(see convention below). I.e., the user should not prepend any supporting metrics
(e.g., bb_lowerband below) with % unless they explicitly want to pass that metric to the
model.
:param pair: pair to be used as informative
:param df: strategy dataframe which will receive merges from informatives
:param tf: timeframe of the dataframe which will modify the feature names
:param informative: the dataframe associated with the informative pair
"""
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
dataframe["%-adx-period"] = ta.ADX(dataframe, timeperiod=period)
dataframe["%-sma-period"] = ta.SMA(dataframe, timeperiod=period)
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
if informative is None:
informative = self.dp.get_pair_dataframe(pair, tf)
bollinger = qtpylib.bollinger_bands(
qtpylib.typical_price(dataframe), window=period, stds=2.2
)
dataframe["bb_lowerband-period"] = bollinger["lower"]
dataframe["bb_middleband-period"] = bollinger["mid"]
dataframe["bb_upperband-period"] = bollinger["upper"]
# first loop is automatically duplicating indicators for time periods
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
t = int(t)
informative[f"%-{pair}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
informative[f"%-{pair}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
informative[f"%-{pair}adx-period_{t}"] = ta.ADX(informative, window=t)
dataframe["%-bb_width-period"] = (
dataframe["bb_upperband-period"]
- dataframe["bb_lowerband-period"]
) / dataframe["bb_middleband-period"]
dataframe["%-close-bb_lower-period"] = (
dataframe["close"] / dataframe["bb_lowerband-period"]
)
dataframe["%-roc-period"] = ta.ROC(dataframe, timeperiod=period)
dataframe["%-relative_volume-period"] = (
dataframe["volume"] / dataframe["volume"].rolling(period).mean()
)
return dataframe
def feature_engineering_expand_basic(self, dataframe: DataFrame, metadata, **kwargs) -> DataFrame:
"""
*Only functional with FreqAI enabled strategies*
This function will automatically expand the defined features on the config defined
`include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
In other words, a single feature defined in this function
will automatically expand to a total of
`include_timeframes` * `include_shifted_candles` * `include_corr_pairs`
numbers of features added to the model.
Features defined here will *not* be automatically duplicated on user defined
`indicator_periods_candles`
Access metadata such as the current pair/timeframe with:
`metadata["pair"]` `metadata["tf"]`
All features must be prepended with `%` to be recognized by FreqAI internals.
:param df: strategy dataframe which will receive the features
:param metadata: metadata of current pair
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-ema-200"] = ta.EMA(dataframe, timeperiod=200)
"""
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-raw_volume"] = dataframe["volume"]
dataframe["%-raw_price"] = dataframe["close"]
return dataframe
def feature_engineering_standard(self, dataframe: DataFrame, metadata, **kwargs) -> DataFrame:
"""
*Only functional with FreqAI enabled strategies*
This optional function will be called once with the dataframe of the base timeframe.
This is the final function to be called, which means that the dataframe entering this
function will contain all the features and columns created by all other
freqai_feature_engineering_* functions.
This function is a good place to do custom exotic feature extractions (e.g. tsfresh).
This function is a good place for any feature that should not be auto-expanded upon
(e.g. day of the week).
Access metadata such as the current pair with:
`metadata["pair"]`
All features must be prepended with `%` to be recognized by FreqAI internals.
:param df: strategy dataframe which will receive the features
:param metadata: metadata of current pair
usage example: dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
"""
dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
dataframe["%-hour_of_day"] = (dataframe["date"].dt.hour + 1) / 25
return dataframe
def set_freqai_targets(self, dataframe: DataFrame, metadata, **kwargs) -> DataFrame:
"""
*Only functional with FreqAI enabled strategies*
Required function to set the targets for the model.
All targets must be prepended with `&` to be recognized by the FreqAI internals.
Access metadata such as the current pair with:
`metadata["pair"]`
:param df: strategy dataframe which will receive the targets
:param metadata: metadata of current pair
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
"""
dataframe["&-s_close"] = (
dataframe["close"]
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
.mean()
/ dataframe["close"]
- 1
bollinger = qtpylib.bollinger_bands(
qtpylib.typical_price(informative), window=t, stds=2.2
)
return dataframe
informative[f"{pair}bb_lowerband-period_{t}"] = bollinger["lower"]
informative[f"{pair}bb_middleband-period_{t}"] = bollinger["mid"]
informative[f"{pair}bb_upperband-period_{t}"] = bollinger["upper"]
informative[f"%-{pair}bb_width-period_{t}"] = (
informative[f"{pair}bb_upperband-period_{t}"]
- informative[f"{pair}bb_lowerband-period_{t}"]
) / informative[f"{pair}bb_middleband-period_{t}"]
informative[f"%-{pair}close-bb_lower-period_{t}"] = (
informative["close"] / informative[f"{pair}bb_lowerband-period_{t}"]
)
informative[f"%-{pair}relative_volume-period_{t}"] = (
informative["volume"] / informative["volume"].rolling(t).mean()
)
indicators = [col for col in informative if col.startswith("%")]
# This loop duplicates and shifts all indicators to add a sense of recency to data
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
if n == 0:
continue
informative_shift = informative[indicators].shift(n)
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
informative = pd.concat((informative, informative_shift), axis=1)
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
skip_columns = [
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
]
df = df.drop(columns=skip_columns)
# Add generalized indicators here (because in live, it will call this
# function to populate indicators during training). Notice how we ensure not to
# add them multiple times
if set_generalized_indicators:
df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7
df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25
# user adds targets here by prepending them with &- (see convention below)
# If user wishes to use multiple targets, a multioutput prediction model
# needs to be used such as templates/CatboostPredictionMultiModel.py
df["&-s_close"] = (
df["close"]
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
.mean()
/ df["close"]
- 1
)
return df
```
In the presented example, the user does not wish to pass the `bb_lowerband` as a feature to the model,
@@ -172,29 +118,14 @@ After having defined the `base features`, the next step is to expand upon them u
}
```
The `include_timeframes` in the config above are the timeframes (`tf`) of each call to `feature_engineering_expand_*()` in the strategy. In the presented case, the user is asking for the `5m`, `15m`, and `4h` timeframes of the `rsi`, `mfi`, `roc`, and `bb_width` to be included in the feature set.
The `include_timeframes` in the config above are the timeframes (`tf`) of each call to `populate_any_indicators()` in the strategy. In the presented case, the user is asking for the `5m`, `15m`, and `4h` timeframes of the `rsi`, `mfi`, `roc`, and `bb_width` to be included in the feature set.
You can ask for each of the defined features to be included also for informative pairs using the `include_corr_pairlist`. This means that the feature set will include all the features from `feature_engineering_expand_*()` on all the `include_timeframes` for each of the correlated pairs defined in the config (`ETH/USD`, `LINK/USD`, and `BNB/USD` in the presented example).
You can ask for each of the defined features to be included also for informative pairs using the `include_corr_pairlist`. This means that the feature set will include all the features from `populate_any_indicators` on all the `include_timeframes` for each of the correlated pairs defined in the config (`ETH/USD`, `LINK/USD`, and `BNB/USD` in the presented example).
`include_shifted_candles` indicates the number of previous candles to include in the feature set. For example, `include_shifted_candles: 2` tells FreqAI to include the past 2 candles for each of the features in the feature set.
In total, the number of features the user of the presented example strategy has created is: length of `include_timeframes` * no. features in `feature_engineering_expand_*()` * length of `include_corr_pairlist` * no. `include_shifted_candles` * length of `indicator_periods_candles`
In total, the number of features the user of the presented example strat has created is: length of `include_timeframes` * no. features in `populate_any_indicators()` * length of `include_corr_pairlist` * no. `include_shifted_candles` * length of `indicator_periods_candles`
$= 3 * 3 * 3 * 2 * 2 = 108$.
!!! note "Learn more about creative feature engineering"
Check out our [medium article](https://emergentmethods.medium.com/freqai-from-price-to-prediction-6fadac18b665) geared toward helping users learn how to creatively engineer features.
### Gain finer control over `feature_engineering_*` functions with `metadata`
All `feature_engineering_*` and `set_freqai_targets()` functions are passed a `metadata` dictionary which contains information about the `pair`, `tf` (timeframe), and `period` that FreqAI is automating for feature building. As such, a user can use `metadata` inside `feature_engineering_*` functions as criteria for blocking/reserving features for certain timeframes, periods, pairs etc.
```python
def feature_engineering_expand_all(self, dataframe: DataFrame, period, metadata, **kwargs) -> DataFrame:
if metadata["tf"] == "1h":
dataframe["%-roc-period"] = ta.ROC(dataframe, timeperiod=period)
```
This will block `ta.ROC()` from being added to any timeframes other than `"1h"`.
### Returning additional info from training
@@ -212,7 +143,41 @@ Another example, where the user wants to use live metrics from the trade databas
You need to set the standard dictionary in the config so that FreqAI can return proper dataframe shapes. These values will likely be overridden by the prediction model, but in the case where the model has yet to set them, or needs a default initial value, the pre-set values are what will be returned.
### Weighting features for temporal importance
## Feature normalization
FreqAI is strict when it comes to data normalization. The train features, $X^{train}$, are always normalized to [-1, 1] using a shifted min-max normalization:
$$X^{train}_{norm} = 2 * \frac{X^{train} - X^{train}.min()}{X^{train}.max() - X^{train}.min()} - 1$$
All other data (test data and unseen prediction data in dry/live/backtest) is always automatically normalized to the training feature space according to industry standards. FreqAI stores all the metadata required to ensure that test and prediction features will be properly normalized and that predictions are properly denormalized. For this reason, it is not recommended to eschew industry standards and modify FreqAI internals - however - advanced users can do so by inheriting `train()` in their custom `IFreqaiModel` and using their own normalization functions.
## Data dimensionality reduction with Principal Component Analysis
You can reduce the dimensionality of your features by activating the `principal_component_analysis` in the config:
```json
"freqai": {
"feature_parameters" : {
"principal_component_analysis": true
}
}
```
This will perform PCA on the features and reduce their dimensionality so that the explained variance of the data set is >= 0.999. Reducing data dimensionality makes training the model faster and hence allows for more up-to-date models.
## Inlier metric
The `inlier_metric` is a metric aimed at quantifying how similar a the features of a data point are to the most recent historic data points.
You define the lookback window by setting `inlier_metric_window` and FreqAI computes the distance between the present time point and each of the previous `inlier_metric_window` lookback points. A Weibull function is fit to each of the lookback distributions and its cumulative distribution function (CDF) is used to produce a quantile for each lookback point. The `inlier_metric` is then computed for each time point as the average of the corresponding lookback quantiles. The figure below explains the concept for an `inlier_metric_window` of 5.
![inlier-metric](assets/freqai_inlier-metric.jpg)
FreqAI adds the `inlier_metric` to the training features and hence gives the model access to a novel type of temporal information.
This function does **not** remove outliers from the data set.
## Weighting features for temporal importance
FreqAI allows you to set a `weight_factor` to weight recent data more strongly than past data via an exponential function:
@@ -222,103 +187,13 @@ where $W_i$ is the weight of data point $i$ in a total set of $n$ data points. B
![weight-factor](assets/freqai_weight-factor.jpg)
## Building the data pipeline
By default, FreqAI builds a dynamic pipeline based on user configuration settings. The default settings are robust and designed to work with a variety of methods. These two steps are a `MinMaxScaler(-1,1)` and a `VarianceThreshold` which removes any column that has 0 variance. Users can activate other steps with more configuration parameters. For example if users add `use_SVM_to_remove_outliers: true` to the `freqai` config, then FreqAI will automatically add the [`SVMOutlierExtractor`](#identifying-outliers-using-a-support-vector-machine-svm) to the pipeline. Likewise, users can add `principal_component_analysis: true` to the `freqai` config to activate PCA. The [DissimilarityIndex](#identifying-outliers-with-the-dissimilarity-index-di) is activated with `DI_threshold: 1`. Finally, noise can also be added to the data with `noise_standard_deviation: 0.1`. Finally, users can add [DBSCAN](#identifying-outliers-with-dbscan) outlier removal with `use_DBSCAN_to_remove_outliers: true`.
!!! note "More information available"
Please review the [parameter table](freqai-parameter-table.md) for more information on these parameters.
### Customizing the pipeline
Users are encouraged to customize the data pipeline to their needs by building their own data pipeline. This can be done by simply setting `dk.feature_pipeline` to their desired `Pipeline` object inside their `IFreqaiModel` `train()` function, or if they prefer not to touch the `train()` function, they can override `define_data_pipeline`/`define_label_pipeline` functions in their `IFreqaiModel`:
!!! note "More information available"
FreqAI uses the [`DataSieve`](https://github.com/emergentmethods/datasieve) pipeline, which follows the SKlearn pipeline API, but adds, among other features, coherence between the X, y, and sample_weight vector point removals, feature removal, feature name following.
```python
from datasieve.transforms import SKLearnWrapper, DissimilarityIndex
from datasieve.pipeline import Pipeline
from sklearn.preprocessing import QuantileTransformer, StandardScaler
from freqai.base_models import BaseRegressionModel
class MyFreqaiModel(BaseRegressionModel):
"""
Some cool custom model
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
My custom fit function
"""
model = cool_model.fit()
return model
def define_data_pipeline(self) -> Pipeline:
"""
User defines their custom feature pipeline here (if they wish)
"""
feature_pipeline = Pipeline([
('qt', SKLearnWrapper(QuantileTransformer(output_distribution='normal'))),
('di', ds.DissimilarityIndex(di_threshold=1))
])
return feature_pipeline
def define_label_pipeline(self) -> Pipeline:
"""
User defines their custom label pipeline here (if they wish)
"""
label_pipeline = Pipeline([
('qt', SKLearnWrapper(StandardScaler())),
])
return label_pipeline
```
Here, you are defining the exact pipeline that will be used for your feature set during training and prediction. You can use *most* SKLearn transformation steps by wrapping them in the `SKLearnWrapper` class as shown above. In addition, you can use any of the transformations available in the [`DataSieve` library](https://github.com/emergentmethods/datasieve).
You can easily add your own transformation by creating a class that inherits from the datasieve `BaseTransform` and implementing your `fit()`, `transform()` and `inverse_transform()` methods:
```python
from datasieve.transforms.base_transform import BaseTransform
# import whatever else you need
class MyCoolTransform(BaseTransform):
def __init__(self, **kwargs):
self.param1 = kwargs.get('param1', 1)
def fit(self, X, y=None, sample_weight=None, feature_list=None, **kwargs):
# do something with X, y, sample_weight, or/and feature_list
return X, y, sample_weight, feature_list
def transform(self, X, y=None, sample_weight=None,
feature_list=None, outlier_check=False, **kwargs):
# do something with X, y, sample_weight, or/and feature_list
return X, y, sample_weight, feature_list
def inverse_transform(self, X, y=None, sample_weight=None, feature_list=None, **kwargs):
# do/dont do something with X, y, sample_weight, or/and feature_list
return X, y, sample_weight, feature_list
```
!!! note "Hint"
You can define this custom class in the same file as your `IFreqaiModel`.
### Migrating a custom `IFreqaiModel` to the new Pipeline
If you have created your own custom `IFreqaiModel` with a custom `train()`/`predict()` function, *and* you still rely on `data_cleaning_train/predict()`, then you will need to migrate to the new pipeline. If your model does *not* rely on `data_cleaning_train/predict()`, then you do not need to worry about this migration.
More details about the migration can be found [here](strategy_migration.md#freqai---new-data-pipeline).
## Outlier detection
Equity and crypto markets suffer from a high level of non-patterned noise in the form of outlier data points. FreqAI implements a variety of methods to identify such outliers and hence mitigate risk.
### Identifying outliers with the Dissimilarity Index (DI)
The Dissimilarity Index (DI) aims to quantify the uncertainty associated with each prediction made by the model.
The Dissimilarity Index (DI) aims to quantify the uncertainty associated with each prediction made by the model.
You can tell FreqAI to remove outlier data points from the training/test data sets using the DI by including the following statement in the config:
@@ -330,7 +205,7 @@ You can tell FreqAI to remove outlier data points from the training/test data se
}
```
Which will add `DissimilarityIndex` step to your `feature_pipeline` and set the threshold to 1. The DI allows predictions which are outliers (not existent in the model feature space) to be thrown out due to low levels of certainty. To do so, FreqAI measures the distance between each training data point (feature vector), $X_{a}$, and all other training data points:
The DI allows predictions which are outliers (not existent in the model feature space) to be thrown out due to low levels of certainty. To do so, FreqAI measures the distance between each training data point (feature vector), $X_{a}$, and all other training data points:
$$ d_{ab} = \sqrt{\sum_{j=1}^p(X_{a,j}-X_{b,j})^2} $$
@@ -364,9 +239,9 @@ You can tell FreqAI to remove outlier data points from the training/test data se
}
```
Which will add `SVMOutlierExtractor` step to your `feature_pipeline`. The SVM will be trained on the training data and any data point that the SVM deems to be beyond the feature space will be removed.
The SVM will be trained on the training data and any data point that the SVM deems to be beyond the feature space will be removed.
You can elect to provide additional parameters for the SVM, such as `shuffle`, and `nu` via the `feature_parameters.svm_params` dictionary in the config.
FreqAI uses `sklearn.linear_model.SGDOneClassSVM` (details are available on scikit-learn's webpage [here](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDOneClassSVM.html) (external website)) and you can elect to provide additional parameters for the SVM, such as `shuffle`, and `nu`.
The parameter `shuffle` is by default set to `False` to ensure consistent results. If it is set to `True`, running the SVM multiple times on the same data set might result in different outcomes due to `max_iter` being to low for the algorithm to reach the demanded `tol`. Increasing `max_iter` solves this issue but causes the procedure to take longer time.
@@ -384,25 +259,10 @@ You can configure FreqAI to use DBSCAN to cluster and remove outliers from the t
}
```
Which will add the `DataSieveDBSCAN` step to your `feature_pipeline`. This is an unsupervised machine learning algorithm that clusters data without needing to know how many clusters there should be.
DBSCAN is an unsupervised machine learning algorithm that clusters data without needing to know how many clusters there should be.
Given a number of data points $N$, and a distance $\varepsilon$, DBSCAN clusters the data set by setting all data points that have $N-1$ other data points within a distance of $\varepsilon$ as *core points*. A data point that is within a distance of $\varepsilon$ from a *core point* but that does not have $N-1$ other data points within a distance of $\varepsilon$ from itself is considered an *edge point*. A cluster is then the collection of *core points* and *edge points*. Data points that have no other data points at a distance $<\varepsilon$ are considered outliers. The figure below shows a cluster with $N = 3$.
![dbscan](assets/freqai_dbscan.jpg)
FreqAI uses `sklearn.cluster.DBSCAN` (details are available on scikit-learn's webpage [here](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html) (external website)) with `min_samples` ($N$) taken as 1/4 of the no. of time points (candles) in the feature set. `eps` ($\varepsilon$) is computed automatically as the elbow point in the *k-distance graph* computed from the nearest neighbors in the pairwise distances of all data points in the feature set.
### Data dimensionality reduction with Principal Component Analysis
You can reduce the dimensionality of your features by activating the principal_component_analysis in the config:
```json
"freqai": {
"feature_parameters" : {
"principal_component_analysis": true
}
}
```
This will perform PCA on the features and reduce their dimensionality so that the explained variance of the data set is >= 0.999. Reducing data dimensionality makes training the model faster and hence allows for more up-to-date models.

View File

@@ -15,13 +15,13 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
| `identifier` | **Required.** <br> A unique ID for the current model. If models are saved to disk, the `identifier` allows for reloading specific pre-trained models/data. <br> **Datatype:** String.
| `live_retrain_hours` | Frequency of retraining during dry/live runs. <br> **Datatype:** Float > 0. <br> Default: `0` (models retrain as often as possible).
| `expiration_hours` | Avoid making predictions if a model is more than `expiration_hours` old. <br> **Datatype:** Positive integer. <br> Default: `0` (models never expire).
| `purge_old_models` | Number of models to keep on disk (not relevant to backtesting). Default is 2, which means that dry/live runs will keep the latest 2 models on disk. Setting to 0 keeps all models. This parameter also accepts a boolean to maintain backwards compatibility. <br> **Datatype:** Integer. <br> Default: `2`.
| `purge_old_models` | Delete obsolete models. <br> **Datatype:** Boolean. <br> Default: `False` (all historic models remain on disk).
| `save_backtest_models` | Save models to disk when running backtesting. Backtesting operates most efficiently by saving the prediction data and reusing them directly for subsequent runs (when you wish to tune entry/exit parameters). Saving backtesting models to disk also allows to use the same model files for starting a dry/live instance with the same model `identifier`. <br> **Datatype:** Boolean. <br> Default: `False` (no models are saved).
| `fit_live_predictions_candles` | Number of historical candles to use for computing target (label) statistics from prediction data, instead of from the training dataset (more information can be found [here](freqai-configuration.md#creating-a-dynamic-target-threshold)). <br> **Datatype:** Positive integer.
| `continual_learning` | Use the final state of the most recently trained model as starting point for the new model, allowing for incremental learning (more information can be found [here](freqai-running.md#continual-learning)). Beware that this is currently a naive approach to incremental learning, and it has a high probability of overfitting/getting stuck in local minima while the market moves away from your model. We have the connections here primarily for experimental purposes and so that it is ready for more mature approaches to continual learning in chaotic systems like the crypto market. <br> **Datatype:** Boolean. <br> Default: `False`.
| `follow_mode` | Use a `follower` that will look for models associated with a specific `identifier` and load those for inferencing. A `follower` will **not** train new models. <br> **Datatype:** Boolean. <br> Default: `False`.
| `continual_learning` | Use the final state of the most recently trained model as starting point for the new model, allowing for incremental learning (more information can be found [here](freqai-running.md#continual-learning)). <br> **Datatype:** Boolean. <br> Default: `False`.
| `write_metrics_to_disk` | Collect train timings, inference timings and cpu usage in json file. <br> **Datatype:** Boolean. <br> Default: `False`
| `data_kitchen_thread_count` | <br> Designate the number of threads you want to use for data processing (outlier methods, normalization, etc.). This has no impact on the number of threads used for training. If user does not set it (default), FreqAI will use max number of threads - 2 (leaving 1 physical core available for Freqtrade bot and FreqUI) <br> **Datatype:** Positive integer.
| `activate_tensorboard` | <br> Indicate whether or not to activate tensorboard for the tensorboard enabled modules (currently Reinforcment Learning, XGBoost, Catboost, and PyTorch). Tensorboard needs Torch installed, which means you will need the torch/RL docker image or you need to answer "yes" to the install question about whether or not you wish to install Torch. <br> **Datatype:** Boolean. <br> Default: `True`.
### Feature parameters
@@ -29,33 +29,32 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
|------------|-------------|
| | **Feature parameters within the `freqai.feature_parameters` sub dictionary**
| `feature_parameters` | A dictionary containing the parameters used to engineer the feature set. Details and examples are shown [here](freqai-feature-engineering.md). <br> **Datatype:** Dictionary.
| `include_timeframes` | A list of timeframes that all indicators in `feature_engineering_expand_*()` will be created for. The list is added as features to the base indicators dataset. <br> **Datatype:** List of timeframes (strings).
| `include_corr_pairlist` | A list of correlated coins that FreqAI will add as additional features to all `pair_whitelist` coins. All indicators set in `feature_engineering_expand_*()` during feature engineering (see details [here](freqai-feature-engineering.md)) will be created for each correlated coin. The correlated coins features are added to the base indicators dataset. <br> **Datatype:** List of assets (strings).
| `label_period_candles` | Number of candles into the future that the labels are created for. This can be used in `set_freqai_targets()` (see `templates/FreqaiExampleStrategy.py` for detailed usage). This parameter is not necessarily required, you can create custom labels and choose whether to make use of this parameter or not. Please see `templates/FreqaiExampleStrategy.py` to see the example usage. <br> **Datatype:** Positive integer.
| `include_timeframes` | A list of timeframes that all indicators in `populate_any_indicators` will be created for. The list is added as features to the base indicators dataset. <br> **Datatype:** List of timeframes (strings).
| `include_corr_pairlist` | A list of correlated coins that FreqAI will add as additional features to all `pair_whitelist` coins. All indicators set in `populate_any_indicators` during feature engineering (see details [here](freqai-feature-engineering.md)) will be created for each correlated coin. The correlated coins features are added to the base indicators dataset. <br> **Datatype:** List of assets (strings).
| `label_period_candles` | Number of candles into the future that the labels are created for. This is used in `populate_any_indicators` (see `templates/FreqaiExampleStrategy.py` for detailed usage). You can create custom labels and choose whether to make use of this parameter or not. <br> **Datatype:** Positive integer.
| `include_shifted_candles` | Add features from previous candles to subsequent candles with the intent of adding historical information. If used, FreqAI will duplicate and shift all features from the `include_shifted_candles` previous candles so that the information is available for the subsequent candle. <br> **Datatype:** Positive integer.
| `weight_factor` | Weight training data points according to their recency (see details [here](freqai-feature-engineering.md#weighting-features-for-temporal-importance)). <br> **Datatype:** Positive float (typically < 1).
| `indicator_max_period_candles` | **No longer used (#7325)**. Replaced by `startup_candle_count` which is set in the [strategy](freqai-configuration.md#building-a-freqai-strategy). `startup_candle_count` is timeframe independent and defines the maximum *period* used in `feature_engineering_*()` for indicator creation. FreqAI uses this parameter together with the maximum timeframe in `include_time_frames` to calculate how many data points to download such that the first data point does not include a NaN. <br> **Datatype:** Positive integer.
| `indicator_max_period_candles` | **No longer used (#7325)**. Replaced by `startup_candle_count` which is set in the [strategy](freqai-configuration.md#building-a-freqai-strategy). `startup_candle_count` is timeframe independent and defines the maximum *period* used in `populate_any_indicators()` for indicator creation. FreqAI uses this parameter together with the maximum timeframe in `include_time_frames` to calculate how many data points to download such that the first data point does not include a NaN. <br> **Datatype:** Positive integer.
| `indicator_periods_candles` | Time periods to calculate indicators for. The indicators are added to the base indicator dataset. <br> **Datatype:** List of positive integers.
| `principal_component_analysis` | Automatically reduce the dimensionality of the data set using Principal Component Analysis. See details about how it works [here](freqai-feature-engineering.md#data-dimensionality-reduction-with-principal-component-analysis) <br> **Datatype:** Boolean. <br> Default: `False`.
| `principal_component_analysis` | Automatically reduce the dimensionality of the data set using Principal Component Analysis. See details about how it works [here](#reducing-data-dimensionality-with-principal-component-analysis) <br> **Datatype:** Boolean. <br> Default: `False`.
| `plot_feature_importances` | Create a feature importance plot for each model for the top/bottom `plot_feature_importances` number of features. Plot is stored in `user_data/models/<identifier>/sub-train-<COIN>_<timestamp>.html`. <br> **Datatype:** Integer. <br> Default: `0`.
| `DI_threshold` | Activates the use of the Dissimilarity Index for outlier detection when set to > 0. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di). <br> **Datatype:** Positive float (typically < 1).
| `use_SVM_to_remove_outliers` | Train a support vector machine to detect and remove outliers from the training dataset, as well as from incoming data points. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm). <br> **Datatype:** Boolean.
| `svm_params` | All parameters available in Sklearn's `SGDOneClassSVM()`. See details about some select parameters [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm). <br> **Datatype:** Dictionary.
| `use_DBSCAN_to_remove_outliers` | Cluster data using the DBSCAN algorithm to identify and remove outliers from training and prediction data. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-with-dbscan). <br> **Datatype:** Boolean.
| `inlier_metric_window` | If set, FreqAI adds an `inlier_metric` to the training feature set and set the lookback to be the `inlier_metric_window`, i.e., the number of previous time points to compare the current candle to. Details of how the `inlier_metric` is computed can be found [here](freqai-feature-engineering.md#inlier-metric). <br> **Datatype:** Integer. <br> Default: `0`.
| `noise_standard_deviation` | If set, FreqAI adds noise to the training features with the aim of preventing overfitting. FreqAI generates random deviates from a gaussian distribution with a standard deviation of `noise_standard_deviation` and adds them to all data points. `noise_standard_deviation` should be kept relative to the normalized space, i.e., between -1 and 1. In other words, since data in FreqAI is always normalized to be between -1 and 1, `noise_standard_deviation: 0.05` would result in 32% of the data being randomly increased/decreased by more than 2.5% (i.e., the percent of data falling within the first standard deviation). <br> **Datatype:** Integer. <br> Default: `0`.
| `outlier_protection_percentage` | Enable to prevent outlier detection methods from discarding too much data. If more than `outlier_protection_percentage` % of points are detected as outliers by the SVM or DBSCAN, FreqAI will log a warning message and ignore outlier detection, i.e., the original dataset will be kept intact. If the outlier protection is triggered, no predictions will be made based on the training dataset. <br> **Datatype:** Float. <br> Default: `30`.
| `reverse_train_test_order` | Split the feature dataset (see below) and use the latest data split for training and test on historical split of the data. This allows the model to be trained up to the most recent data point, while avoiding overfitting. However, you should be careful to understand the unorthodox nature of this parameter before employing it. <br> **Datatype:** Boolean. <br> Default: `False` (no reversal).
| `shuffle_after_split` | Split the data into train and test sets, and then shuffle both sets individually. <br> **Datatype:** Boolean. <br> Default: `False`.
| `buffer_train_data_candles` | Cut `buffer_train_data_candles` off the beginning and end of the training data *after* the indicators were populated. The main example use is when predicting maxima and minima, the argrelextrema function cannot know the maxima/minima at the edges of the timerange. To improve model accuracy, it is best to compute argrelextrema on the full timerange and then use this function to cut off the edges (buffer) by the kernel. In another case, if the targets are set to a shifted price movement, this buffer is unnecessary because the shifted candles at the end of the timerange will be NaN and FreqAI will automatically cut those off of the training dataset.<br> **Datatype:** Integer. <br> Default: `0`.
### Data split parameters
| Parameter | Description |
|------------|-------------|
| | **Data split parameters within the `freqai.data_split_parameters` sub dictionary**
| `data_split_parameters` | Include any additional parameters available from scikit-learn `test_train_split()`, which are shown [here](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) (external website). <br> **Datatype:** Dictionary.
| `data_split_parameters` | Include any additional parameters available from Scikit-learn `test_train_split()`, which are shown [here](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) (external website). <br> **Datatype:** Dictionary.
| `test_size` | The fraction of data that should be used for testing instead of training. <br> **Datatype:** Positive float < 1.
| `shuffle` | Shuffle the training data points during training. Typically, to not remove the chronological order of data in time-series forecasting, this is set to `False`. <br> **Datatype:** Boolean. <br> Default: `False`.
| `shuffle` | Shuffle the training data points during training. Typically, to not remove the chronological order of data in time-series forecasting, this is set to `False`. <br> **Datatype:** Boolean. <br> Defaut: `False`.
### Model training parameters
@@ -74,8 +73,9 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
| | **Reinforcement Learning Parameters within the `freqai.rl_config` sub dictionary**
| `rl_config` | A dictionary containing the control parameters for a Reinforcement Learning model. <br> **Datatype:** Dictionary.
| `train_cycles` | Training time steps will be set based on the `train_cycles * number of training data points. <br> **Datatype:** Integer.
| `cpu_count` | Number of processors to dedicate to the Reinforcement Learning training process. <br> **Datatype:** int.
| `max_trade_duration_candles`| Guides the agent training to keep trades below desired length. Example usage shown in `prediction_models/ReinforcementLearner.py` within the customizable `calculate_reward()` function. <br> **Datatype:** int.
| `model_type` | Model string from stable_baselines3 or SBcontrib. Available strings include: `'TRPO', 'ARS', 'RecurrentPPO', 'MaskablePPO', 'PPO', 'A2C', 'DQN'`. User should ensure that `model_training_parameters` match those available to the corresponding stable_baselines3 model by visiting their documentation. [PPO doc](https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html) (external website) <br> **Datatype:** string.
| `model_type` | Model string from stable_baselines3 or SBcontrib. Available strings include: `'TRPO', 'ARS', 'RecurrentPPO', 'MaskablePPO', 'PPO', 'A2C', 'DQN'`. User should ensure that `model_training_parameters` match those available to the corresponding stable_baselines3 model by visiting their documentaiton. [PPO doc](https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html) (external website) <br> **Datatype:** string.
| `policy_type` | One of the available policy types from stable_baselines3 <br> **Datatype:** string.
| `max_training_drawdown_pct` | The maximum drawdown that the agent is allowed to experience during training. <br> **Datatype:** float. <br> Default: 0.8
| `cpu_count` | Number of threads/cpus to dedicate to the Reinforcement Learning training process (depending on if `ReinforcementLearning_multiproc` is selected or not). Recommended to leave this untouched, by default, this value is set to the total number of physical cores minus 1. <br> **Datatype:** int.
@@ -83,35 +83,12 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
| `add_state_info` | Tell FreqAI to include state information in the feature set for training and inferencing. The current state variables include trade duration, current profit, trade position. This is only available in dry/live runs, and is automatically switched to false for backtesting. <br> **Datatype:** bool. <br> Default: `False`.
| `net_arch` | Network architecture which is well described in [`stable_baselines3` doc](https://stable-baselines3.readthedocs.io/en/master/guide/custom_policy.html#examples). In summary: `[<shared layers>, dict(vf=[<non-shared value network layers>], pi=[<non-shared policy network layers>])]`. By default this is set to `[128, 128]`, which defines 2 shared hidden layers with 128 units each.
| `randomize_starting_position` | Randomize the starting point of each episode to avoid overfitting. <br> **Datatype:** bool. <br> Default: `False`.
| `drop_ohlc_from_features` | Do not include the normalized ohlc data in the feature set passed to the agent during training (ohlc will still be used for driving the environment in all cases) <br> **Datatype:** Boolean. <br> **Default:** `False`
| `progress_bar` | Display a progress bar with the current progress, elapsed time and estimated remaining time. <br> **Datatype:** Boolean. <br> Default: `False`.
### PyTorch parameters
#### general
| Parameter | Description |
|------------|-------------|
| | **Model training parameters within the `freqai.model_training_parameters` sub dictionary**
| `learning_rate` | Learning rate to be passed to the optimizer. <br> **Datatype:** float. <br> Default: `3e-4`.
| `model_kwargs` | Parameters to be passed to the model class. <br> **Datatype:** dict. <br> Default: `{}`.
| `trainer_kwargs` | Parameters to be passed to the trainer class. <br> **Datatype:** dict. <br> Default: `{}`.
#### trainer_kwargs
| Parameter | Description |
|--------------|-------------|
| | **Model training parameters within the `freqai.model_training_parameters.model_kwargs` sub dictionary**
| `n_epochs` | The `n_epochs` parameter is a crucial setting in the PyTorch training loop that determines the number of times the entire training dataset will be used to update the model's parameters. An epoch represents one full pass through the entire training dataset. Overrides `n_steps`. Either `n_epochs` or `n_steps` must be set. <br><br> **Datatype:** int. optional. <br> Default: `10`.
| `n_steps` | An alternative way of setting `n_epochs` - the number of training iterations to run. Iteration here refer to the number of times we call `optimizer.step()`. Ignored if `n_epochs` is set. A simplified version of the function: <br><br> n_epochs = n_steps / (n_obs / batch_size) <br><br> The motivation here is that `n_steps` is easier to optimize and keep stable across different n_obs - the number of data points. <br> <br> **Datatype:** int. optional. <br> Default: `None`.
| `batch_size` | The size of the batches to use during training. <br><br> **Datatype:** int. <br> Default: `64`.
### Additional parameters
| Parameter | Description |
|------------|-------------|
| | **Extraneous parameters**
| `freqai.keras` | If the selected model makes use of Keras (typical for TensorFlow-based prediction models), this flag needs to be activated so that the model save/loading follows Keras standards. <br> **Datatype:** Boolean. <br> Default: `False`.
| `freqai.conv_width` | The width of a neural network input tensor. This replaces the need for shifting candles (`include_shifted_candles`) by feeding in historical data points as the second dimension of the tensor. Technically, this parameter can also be used for regressors, but it only adds computational overhead and does not change the model training/prediction. <br> **Datatype:** Integer. <br> Default: `2`.
| `freqai.keras` | If the selected model makes use of Keras (typical for Tensorflow-based prediction models), this flag should be activated so that the model save/loading follows Keras standards. If the the provided `CNNPredictionModel` is used, then this is handled automatically. <br> **Datatype:** Boolean. <br> Default: `False`.
| `freqai.conv_width` | The width of a convolutional neural network input tensor. This replaces the need for shifting candles (`include_shifted_candles`) by feeding in historical data points as the second dimension of the tensor. Technically, this parameter can also be used for regressors, but it only adds computational overhead and does not change the model training/prediction. <br> **Datatype:** Integer. <br> Default: `2`.
| `freqai.reduce_df_footprint` | Recast all numeric columns to float32/int32, with the objective of reducing ram/disk usage and decreasing train/inference timing. This parameter is set in the main level of the Freqtrade configuration file (not inside FreqAI). <br> **Datatype:** Boolean. <br> Default: `False`.

View File

@@ -20,11 +20,11 @@ With the current framework, we aim to expose the training environment via the co
We envision the majority of users focusing their effort on creative design of the `calculate_reward()` function [details here](#creating-a-custom-reward-function), while leaving the rest of the environment untouched. Other users may not touch the environment at all, and they will only play with the configuration settings and the powerful feature engineering that already exists in FreqAI. Meanwhile, we enable advanced users to create their own model classes entirely.
The framework is built on stable_baselines3 (torch) and OpenAI gym for the base environment class. But generally speaking, the model class is well isolated. Thus, the addition of competing libraries can be easily integrated into the existing framework. For the environment, it is inheriting from `gym.Env` which means that it is necessary to write an entirely new environment in order to switch to a different library.
The framework is built on stable_baselines3 (torch) and OpenAI gym for the base environment class. But generally speaking, the model class is well isolated. Thus, the addition of competing libraries can be easily integrated into the existing framework. For the environment, it is inheriting from `gym.env` which means that it is necessary to write an entirely new environment in order to switch to a different library.
### Important considerations
As explained above, the agent is "trained" in an artificial trading "environment". In our case, that environment may seem quite similar to a real Freqtrade backtesting environment, but it is *NOT*. In fact, the RL training environment is much more simplified. It does not incorporate any of the complicated strategy logic, such as callbacks like `custom_exit`, `custom_stoploss`, leverage controls, etc. The RL environment is instead a very "raw" representation of the true market, where the agent has free will to learn the policy (read: stoploss, take profit, etc.) which is enforced by the `calculate_reward()`. Thus, it is important to consider that the agent training environment is not identical to the real world.
As explained above, the agent is "trained" in an artificial trading "environment". In our case, that environment may seem quite similar to a real Freqtrade backtesting environment, but it is *NOT*. In fact, the RL training environment is much more simplified. It does not incorporate any of the complicated strategy logic, such as callbacks like `custom_exit`, `custom_stoploss`, leverage controls, etc. The RL environment is instead a very "raw" representation of the true market, where the agent has free-will to learn the policy (read: stoploss, take profit, etc.) which is enforced by the `calculate_reward()`. Thus, it is important to consider that the agent training environment is not identical to the real world.
## Running Reinforcement Learning
@@ -34,38 +34,65 @@ Setting up and running a Reinforcement Learning model is the same as running a R
freqtrade trade --freqaimodel ReinforcementLearner --strategy MyRLStrategy --config config.json
```
where `ReinforcementLearner` will use the templated `ReinforcementLearner` from `freqai/prediction_models/ReinforcementLearner` (or a custom user defined one located in `user_data/freqaimodels`). The strategy, on the other hand, follows the same base [feature engineering](freqai-feature-engineering.md) with `feature_engineering_*` as a typical Regressor. The difference lies in the creation of the targets, Reinforcement Learning doesn't require them. However, FreqAI requires a default (neutral) value to be set in the action column:
where `ReinforcementLearner` will use the templated `ReinforcementLearner` from `freqai/prediction_models/ReinforcementLearner` (or a custom user defined one located in `user_data/freqaimodels`). The strategy, on the other hand, follows the same base [feature engineering](freqai-feature-engineering.md) with `populate_any_indicators` as a typical Regressor:
```python
def set_freqai_targets(self, dataframe, **kwargs) -> DataFrame:
"""
*Only functional with FreqAI enabled strategies*
Required function to set the targets for the model.
All targets must be prepended with `&` to be recognized by the FreqAI internals.
def populate_any_indicators(
self, pair, df, tf, informative=None, set_generalized_indicators=False
):
More details about feature engineering available:
if informative is None:
informative = self.dp.get_pair_dataframe(pair, tf)
https://www.freqtrade.io/en/latest/freqai-feature-engineering
# first loop is automatically duplicating indicators for time periods
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
:param df: strategy dataframe which will receive the targets
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
"""
# For RL, there are no direct targets to set. This is filler (neutral)
# until the agent sends an action.
dataframe["&-action"] = 0
return dataframe
t = int(t)
informative[f"%-{pair}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
informative[f"%-{pair}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
informative[f"%-{pair}adx-period_{t}"] = ta.ADX(informative, window=t)
# The following raw price values are necessary for RL models
informative[f"%-{pair}raw_close"] = informative["close"]
informative[f"%-{pair}raw_open"] = informative["open"]
informative[f"%-{pair}raw_high"] = informative["high"]
informative[f"%-{pair}raw_low"] = informative["low"]
indicators = [col for col in informative if col.startswith("%")]
# This loop duplicates and shifts all indicators to add a sense of recency to data
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
if n == 0:
continue
informative_shift = informative[indicators].shift(n)
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
informative = pd.concat((informative, informative_shift), axis=1)
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
skip_columns = [
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
]
df = df.drop(columns=skip_columns)
# Add generalized indicators here (because in live, it will call this
# function to populate indicators during training). Notice how we ensure not to
# add them multiple times
if set_generalized_indicators:
# For RL, there are no direct targets to set. This is filler (neutral)
# until the agent sends an action.
df["&-action"] = 0
return df
```
Most of the function remains the same as for typical Regressors, however, the function below shows how the strategy must pass the raw price data to the agent so that it has access to raw OHLCV in the training environment:
Most of the function remains the same as for typical Regressors, however, the function above shows how the strategy must pass the raw price data to the agent so that it has access to raw OHLCV in the training environment:
```python
def feature_engineering_standard(self, dataframe: DataFrame, **kwargs) -> DataFrame:
# The following features are necessary for RL models
dataframe[f"%-raw_close"] = dataframe["close"]
dataframe[f"%-raw_open"] = dataframe["open"]
dataframe[f"%-raw_high"] = dataframe["high"]
dataframe[f"%-raw_low"] = dataframe["low"]
return dataframe
informative[f"%-{pair}raw_close"] = informative["close"]
informative[f"%-{pair}raw_open"] = informative["open"]
informative[f"%-{pair}raw_high"] = informative["high"]
informative[f"%-{pair}raw_low"] = informative["low"]
```
Finally, there is no explicit "label" to make - instead it is necessary to assign the `&-action` column which will contain the agent's actions when accessed in `populate_entry/exit_trends()`. In the present example, the neutral action to 0. This value should align with the environment used. FreqAI provides two environments, both use 0 as the neutral action.
@@ -135,146 +162,125 @@ Parameter details can be found [here](freqai-parameter-table.md), but in general
## Creating a custom reward function
!!! danger "Not for production"
Warning!
The reward function provided with the Freqtrade source code is a showcase of functionality designed to show/test as many possible environment control features as possible. It is also designed to run quickly on small computers. This is a benchmark, it is *not* for live production. Please beware that you will need to create your own custom_reward() function or use a template built by other users outside of the Freqtrade source code.
As you begin to modify the strategy and the prediction model, you will quickly realize some important differences between the Reinforcement Learner and the Regressors/Classifiers. Firstly, the strategy does not set a target value (no labels!). Instead, you set the `calculate_reward()` function inside the `MyRLEnv` class (see below). A default `calculate_reward()` is provided inside `prediction_models/ReinforcementLearner.py` to demonstrate the necessary building blocks for creating rewards, but this is *not* designed for production. Users *must* create their own custom reinforcement learning model class or use a pre-built one from outside the Freqtrade source code and save it to `user_data/freqaimodels`. It is inside the `calculate_reward()` where creative theories about the market can be expressed. For example, you can reward your agent when it makes a winning trade, and penalize the agent when it makes a losing trade. Or perhaps, you wish to reward the agent for entering trades, and penalize the agent for sitting in trades too long. Below we show examples of how these rewards are all calculated:
!!! note "Hint"
The best reward functions are ones that are continuously differentiable, and well scaled. In other words, adding a single large negative penalty to a rare event is not a good idea, and the neural net will not be able to learn that function. Instead, it is better to add a small negative penalty to a common event. This will help the agent learn faster. Not only this, but you can help improve the continuity of your rewards/penalties by having them scale with severity according to some linear/exponential functions. In other words, you'd slowly scale the penalty as the duration of the trade increases. This is better than a single large penalty occurring at a single point in time.
As you begin to modify the strategy and the prediction model, you will quickly realize some important differences between the Reinforcement Learner and the Regressors/Classifiers. Firstly, the strategy does not set a target value (no labels!). Instead, you set the `calculate_reward()` function inside the `MyRLEnv` class (see below). A default `calculate_reward()` is provided inside `prediction_models/ReinforcementLearner.py` to demonstrate the necessary building blocks for creating rewards, but users are encouraged to create their own custom reinforcement learning model class (see below) and save it to `user_data/freqaimodels`. It is inside the `calculate_reward()` where creative theories about the market can be expressed. For example, you can reward your agent when it makes a winning trade, and penalize the agent when it makes a losing trade. Or perhaps, you wish to reward the agent for entering trades, and penalize the agent for sitting in trades too long. Below we show examples of how these rewards are all calculated:
```python
from freqtrade.freqai.prediction_models.ReinforcementLearner import ReinforcementLearner
from freqtrade.freqai.RL.Base5ActionRLEnv import Actions, Base5ActionRLEnv, Positions
from freqtrade.freqai.prediction_models.ReinforcementLearner import ReinforcementLearner
from freqtrade.freqai.RL.Base5ActionRLEnv import Actions, Base5ActionRLEnv, Positions
class MyCoolRLModel(ReinforcementLearner):
"""
User created RL prediction model.
Save this file to `freqtrade/user_data/freqaimodels`
then use it with:
freqtrade trade --freqaimodel MyCoolRLModel --config config.json --strategy SomeCoolStrat
Here the users can override any of the functions
available in the `IFreqaiModel` inheritance tree. Most importantly for RL, this
is where the user overrides `MyRLEnv` (see below), to define custom
`calculate_reward()` function, or to override any other parts of the environment.
This class also allows users to override any other part of the IFreqaiModel tree.
For example, the user can override `def fit()` or `def train()` or `def predict()`
to take fine-tuned control over these processes.
Another common override may be `def data_cleaning_predict()` where the user can
take fine-tuned control over the data handling pipeline.
"""
class MyRLEnv(Base5ActionRLEnv):
class MyCoolRLModel(ReinforcementLearner):
"""
User made custom environment. This class inherits from BaseEnvironment and gym.Env.
Users can override any functions from those parent classes. Here is an example
of a user customized `calculate_reward()` function.
User created RL prediction model.
Warning!
This is function is a showcase of functionality designed to show as many possible
environment control features as possible. It is also designed to run quickly
on small computers. This is a benchmark, it is *not* for live production.
Save this file to `freqtrade/user_data/freqaimodels`
then use it with:
freqtrade trade --freqaimodel MyCoolRLModel --config config.json --strategy SomeCoolStrat
Here the users can override any of the functions
available in the `IFreqaiModel` inheritance tree. Most importantly for RL, this
is where the user overrides `MyRLEnv` (see below), to define custom
`calculate_reward()` function, or to override any other parts of the environment.
This class also allows users to override any other part of the IFreqaiModel tree.
For example, the user can override `def fit()` or `def train()` or `def predict()`
to take fine-tuned control over these processes.
Another common override may be `def data_cleaning_predict()` where the user can
take fine-tuned control over the data handling pipeline.
"""
def calculate_reward(self, action: int) -> float:
# first, penalize if the action is not valid
if not self._is_valid(action):
return -2
pnl = self.get_unrealized_profit()
class MyRLEnv(Base5ActionRLEnv):
"""
User made custom environment. This class inherits from BaseEnvironment and gym.env.
Users can override any functions from those parent classes. Here is an example
of a user customized `calculate_reward()` function.
"""
def calculate_reward(self, action: int) -> float:
# first, penalize if the action is not valid
if not self._is_valid(action):
return -2
pnl = self.get_unrealized_profit()
factor = 100
pair = self.pair.replace(':', '')
# you can use feature values from dataframe
# Assumes the shifted RSI indicator has been generated in the strategy.
rsi_now = self.raw_features[f"%-rsi-period_10_shift-1_{pair}_"
f"{self.config['timeframe']}"].iloc[self._current_tick]
# reward agent for entering trades
if (action in (Actions.Long_enter.value, Actions.Short_enter.value)
and self._position == Positions.Neutral):
if rsi_now < 40:
factor = 40 / rsi_now
else:
factor = 1
return 25 * factor
# discourage agent from not entering trades
if action == Actions.Neutral.value and self._position == Positions.Neutral:
return -1
max_trade_duration = self.rl_config.get('max_trade_duration_candles', 300)
trade_duration = self._current_tick - self._last_trade_tick
if trade_duration <= max_trade_duration:
factor *= 1.5
elif trade_duration > max_trade_duration:
factor *= 0.5
# discourage sitting in position
if self._position in (Positions.Short, Positions.Long) and \
action == Actions.Neutral.value:
return -1 * trade_duration / max_trade_duration
# close long
if action == Actions.Long_exit.value and self._position == Positions.Long:
if pnl > self.profit_aim * self.rr:
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
return float(pnl * factor)
# close short
if action == Actions.Short_exit.value and self._position == Positions.Short:
if pnl > self.profit_aim * self.rr:
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
return float(pnl * factor)
return 0.
factor = 100
# reward agent for entering trades
if action in (Actions.Long_enter.value, Actions.Short_enter.value) \
and self._position == Positions.Neutral:
return 25
# discourage agent from not entering trades
if action == Actions.Neutral.value and self._position == Positions.Neutral:
return -1
max_trade_duration = self.rl_config.get('max_trade_duration_candles', 300)
trade_duration = self._current_tick - self._last_trade_tick
if trade_duration <= max_trade_duration:
factor *= 1.5
elif trade_duration > max_trade_duration:
factor *= 0.5
# discourage sitting in position
if self._position in (Positions.Short, Positions.Long) and \
action == Actions.Neutral.value:
return -1 * trade_duration / max_trade_duration
# close long
if action == Actions.Long_exit.value and self._position == Positions.Long:
if pnl > self.profit_aim * self.rr:
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
return float(pnl * factor)
# close short
if action == Actions.Short_exit.value and self._position == Positions.Short:
if pnl > self.profit_aim * self.rr:
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
return float(pnl * factor)
return 0.
```
## Using Tensorboard
### Using Tensorboard
Reinforcement Learning models benefit from tracking training metrics. FreqAI has integrated Tensorboard to allow users to track training and evaluation performance across all coins and across all retrainings. Tensorboard is activated via the following command:
```bash
cd freqtrade
tensorboard --logdir user_data/models/unique-id
```
where `unique-id` is the `identifier` set in the `freqai` configuration file. This command must be run in a separate shell to view the output in the browser at 127.0.0.1:6006 (6006 is the default port used by Tensorboard).
where `unique-id` is the `identifier` set in the `freqai` configuration file. This command must be run in a separate shell to view the output in their browser at 127.0.0.1:6006 (6006 is the default port used by Tensorboard).
![tensorboard](assets/tensorboard.jpg)
## Custom logging
### Custom logging
FreqAI also provides a built in episodic summary logger called `self.tensorboard_log` for adding custom information to the Tensorboard log. By default, this function is already called once per step inside the environment to record the agent actions. All values accumulated for all steps in a single episode are reported at the conclusion of each episode, followed by a full reset of all metrics to 0 in preparation for the subsequent episode.
`self.tensorboard_log` can also be used anywhere inside the environment, for example, it can be added to the `calculate_reward` function to collect more detailed information about how often various parts of the reward were called:
```python
class MyRLEnv(Base5ActionRLEnv):
"""
User made custom environment. This class inherits from BaseEnvironment and gym.Env.
Users can override any functions from those parent classes. Here is an example
of a user customized `calculate_reward()` function.
"""
def calculate_reward(self, action: int) -> float:
if not self._is_valid(action):
self.tensorboard_log("invalid")
return -2
```py
class MyRLEnv(Base5ActionRLEnv):
"""
User made custom environment. This class inherits from BaseEnvironment and gym.env.
Users can override any functions from those parent classes. Here is an example
of a user customized `calculate_reward()` function.
"""
def calculate_reward(self, action: int) -> float:
if not self._is_valid(action):
self.tensorboard_log("is_valid")
return -2
```
!!! Note
The `self.tensorboard_log()` function is designed for tracking incremented objects only i.e. events, actions inside the training environment. If the event of interest is a float, the float can be passed as the second argument e.g. `self.tensorboard_log("float_metric1", 0.23)`. In this case the metric values are not incremented.
The `self.tensorboard_log()` function is designed for tracking incremented objects only i.e. events, actions inside the training environment. If the event of interest is a float, the float can be passed as the second argument e.g. `self.tensorboard_log("float_metric1", 0.23)` would add 0.23 to `float_metric`. In this case you can also disable incrementing using `inc=False` parameter.
## Choosing a base environment
FreqAI provides three base environments, `Base3ActionRLEnvironment`, `Base4ActionEnvironment` and `Base5ActionEnvironment`. As the names imply, the environments are customized for agents that can select from 3, 4 or 5 actions. The `Base3ActionEnvironment` is the simplest, the agent can select from hold, long, or short. This environment can also be used for long-only bots (it automatically follows the `can_short` flag from the strategy), where long is the enter condition and short is the exit condition. Meanwhile, in the `Base4ActionEnvironment`, the agent can enter long, enter short, hold neutral, or exit position. Finally, in the `Base5ActionEnvironment`, the agent has the same actions as Base4, but instead of a single exit action, it separates exit long and exit short. The main changes stemming from the environment selection include:
### Choosing a base environment
FreqAI provides two base environments, `Base4ActionEnvironment` and `Base5ActionEnvironment`. As the names imply, the environments are customized for agents that can select from 4 or 5 actions. In the `Base4ActionEnvironment`, the agent can enter long, enter short, hold neutral, or exit position. Meanwhile, in the `Base5ActionEnvironment`, the agent has the same actions as Base4, but instead of a single exit action, it separates exit long and exit short. The main changes stemming from the environment selection include:
* the actions available in the `calculate_reward`
* the actions consumed by the user strategy
All of the FreqAI provided environments inherit from an action/position agnostic environment object called the `BaseEnvironment`, which contains all shared logic. The architecture is designed to be easily customized. The simplest customization is the `calculate_reward()` (see details [here](#creating-a-custom-reward-function)). However, the customizations can be further extended into any of the functions inside the environment. You can do this by simply overriding those functions inside your `MyRLEnv` in the prediction model file. Or for more advanced customizations, it is encouraged to create an entirely new environment inherited from `BaseEnvironment`.
Both of the FreqAI provided environments inherit from an action/position agnostic environment object called the `BaseEnvironment`, which contains all shared logic. The architecture is designed to be easily customized. The simplest customization is the `calculate_reward()` (see details [here](#creating-a-custom-reward-function)). However, the customizations can be further extended into any of the functions inside the environment. You can do this by simply overriding those functions inside your `MyRLEnv` in the prediction model file. Or for more advanced customizations, it is encouraged to create an entirely new environment inherited from `BaseEnvironment`.
!!! Note
Only the `Base3ActionRLEnv` can do long-only training/trading (set the user strategy attribute `can_short = False`).
FreqAI does not provide by default, a long-only training environment. However, creating one should be as simple as copy-pasting one of the built in environments and removing the `short` actions (and all associated references to those).

View File

@@ -41,11 +41,11 @@ FreqAI stores new model files after each successful training. These files become
```json
"freqai": {
"purge_old_models": 4,
"purge_old_models": true,
}
```
This will automatically purge all models older than the four most recently trained ones to save disk space. Inputing "0" will never purge any models.
This will automatically purge all models older than the two most recently trained ones to save disk space.
## Backtesting
@@ -67,10 +67,6 @@ Backtesting mode requires [downloading the necessary data](#downloading-data-to-
*want* to retrain a new model with the same config file, you should simply change the `identifier`.
This way, you can return to using any model you wish by simply specifying the `identifier`.
!!! Note
Backtesting calls `set_freqai_targets()` one time for each backtest window (where the number of windows is the full backtest timerange divided by the `backtest_period_days` parameter). Doing this means that the targets simulate dry/live behavior without look ahead bias. However, the definition of the features in `feature_engineering_*()` is performed once on the entire training timerange. This means that you should be sure that features do not look-ahead into the future.
More details about look-ahead bias can be found in [Common Mistakes](strategy-customization.md#common-mistakes-when-developing-strategies).
---
### Saving prediction data
@@ -120,7 +116,7 @@ In the presented example config, the user will only allow predictions on models
Model training parameters are unique to the selected machine learning library. FreqAI allows you to set any parameter for any library using the `model_training_parameters` dictionary in the config. The example config (found in `config_examples/config_freqai.example.json`) shows some of the example parameters associated with `Catboost` and `LightGBM`, but you can add any parameters available in those libraries or any other machine learning library you choose to implement.
Data split parameters are defined in `data_split_parameters` which can be any parameters associated with scikit-learn's `train_test_split()` function. `train_test_split()` has a parameters called `shuffle` which allows to shuffle the data or keep it unshuffled. This is particularly useful to avoid biasing training with temporally auto-correlated data. More details about these parameters can be found the [scikit-learn website](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) (external website).
Data split parameters are defined in `data_split_parameters` which can be any parameters associated with Scikit-learn's `train_test_split()` function. `train_test_split()` has a parameters called `shuffle` which allows to shuffle the data or keep it unshuffled. This is particularly useful to avoid biasing training with temporally auto-correlated data. More details about these parameters can be found the [Scikit-learn website](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) (external website).
The FreqAI specific parameter `label_period_candles` defines the offset (number of candles into the future) used for the `labels`. In the presented [example config](freqai-configuration.md#setting-up-the-configuration-file), the user is asking for `labels` that are 24 candles in the future.
@@ -128,12 +124,6 @@ The FreqAI specific parameter `label_period_candles` defines the offset (number
You can choose to adopt a continual learning scheme by setting `"continual_learning": true` in the config. By enabling `continual_learning`, after training an initial model from scratch, subsequent trainings will start from the final model state of the preceding training. This gives the new model a "memory" of the previous state. By default, this is set to `False` which means that all new models are trained from scratch, without input from previous models.
???+ danger "Continual learning enforces a constant parameter space"
Since `continual_learning` means that the model parameter space *cannot* change between trainings, `principal_component_analysis` is automatically disabled when `continual_learning` is enabled. Hint: PCA changes the parameter space and the number of features, learn more about PCA [here](freqai-feature-engineering.md#data-dimensionality-reduction-with-principal-component-analysis).
???+ danger "Experimental functionality"
Beware that this is currently a naive approach to incremental learning, and it has a high probability of overfitting/getting stuck in local minima while the market moves away from your model. We have the mechanics available in FreqAI primarily for experimental purposes and so that it is ready for more mature approaches to continual learning in chaotic systems like the crypto market.
## Hyperopt
You can hyperopt using the same command as for [typical Freqtrade hyperopt](hyperopt.md):
@@ -145,7 +135,7 @@ freqtrade hyperopt --hyperopt-loss SharpeHyperOptLoss --strategy FreqaiExampleSt
`hyperopt` requires you to have the data pre-downloaded in the same fashion as if you were doing [backtesting](#backtesting). In addition, you must consider some restrictions when trying to hyperopt FreqAI strategies:
- The `--analyze-per-epoch` hyperopt parameter is not compatible with FreqAI.
- It's not possible to hyperopt indicators in the `feature_engineering_*()` and `set_freqai_targets()` functions. This means that you cannot optimize model parameters using hyperopt. Apart from this exception, it is possible to optimize all other [spaces](hyperopt.md#running-hyperopt-with-smaller-search-space).
- It's not possible to hyperopt indicators in the `populate_any_indicators()` function. This means that you cannot optimize model parameters using hyperopt. Apart from this exception, it is possible to optimize all other [spaces](hyperopt.md#running-hyperopt-with-smaller-search-space).
- The backtesting instructions also apply to hyperopt.
The best method for combining hyperopt and FreqAI is to focus on hyperopting entry/exit thresholds/criteria. You need to focus on hyperopting parameters that are not used in your features. For example, you should not try to hyperopt rolling window lengths in the feature creation, or any part of the FreqAI config which changes predictions. In order to efficiently hyperopt the FreqAI strategy, FreqAI stores predictions as dataframes and reuses them. Hence the requirement to hyperopt entry/exit thresholds/criteria only.
@@ -161,14 +151,7 @@ This specific hyperopt would help you understand the appropriate `DI_values` for
## Using Tensorboard
!!! note "Availability"
FreqAI includes tensorboard for a variety of models, including XGBoost, all PyTorch models, Reinforcement Learning, and Catboost. If you would like to see Tensorboard integrated into another model type, please open an issue on the [Freqtrade GitHub](https://github.com/freqtrade/freqtrade/issues)
!!! danger "Requirements"
Tensorboard logging requires the FreqAI torch installation/docker image.
The easiest way to use tensorboard is to ensure `freqai.activate_tensorboard` is set to `True` (default setting) in your configuration file, run FreqAI, then open a separate shell and run:
CatBoost models benefit from tracking training metrics via Tensorboard. You can take advantage of the FreqAI integration to track training and evaluation performance across all coins and across all retrainings. Tensorboard is activated via the following command:
```bash
cd freqtrade
@@ -179,6 +162,19 @@ where `unique-id` is the `identifier` set in the `freqai` configuration file. Th
![tensorboard](assets/tensorboard.jpg)
## Setting up a follower
!!! note "Deactivate for improved performance"
Tensorboard logging can slow down training and should be deactivated for production use.
You can indicate to the bot that it should not train models, but instead should look for models trained by a leader with a specific `identifier` by defining:
```json
"freqai": {
"enabled": true,
"follow_mode": true,
"identifier": "example",
"feature_parameters": {
// leader bots feature_parameters inserted here
},
}
```
In this example, the user has a leader bot with the `"identifier": "example"`. The leader bot is already running or is launched simultaneously with the follower. The follower will load models created by the leader and inference them to obtain predictions instead of training its own models. The user will also need to duplicate the `feature_parameters` parameters from from the leaders freqai configuration file into the freqai section of the followers config.

View File

@@ -4,10 +4,7 @@
## Introduction
FreqAI is a software designed to automate a variety of tasks associated with training a predictive machine learning model to generate market forecasts given a set of input signals. In general, FreqAI aims to be a sandbox for easily deploying robust machine learning libraries on real-time data ([details](#freqai-position-in-open-source-machine-learning-landscape)).
!!! Note
FreqAI is, and always will be, a not-for-profit, open-source project. FreqAI does *not* have a crypto token, FreqAI does *not* sell signals, and FreqAI does not have a domain besides the present [freqtrade documentation](https://www.freqtrade.io/en/latest/freqai/).
FreqAI is a software designed to automate a variety of tasks associated with training a predictive machine learning model to generate market forecasts given a set of input signals. In general, the FreqAI aims to be a sand-box for easily deploying robust machine-learning libraries on real-time data ([details])(#freqai-position-in-open-source-machine-learning-landscape).
Features include:
@@ -22,7 +19,7 @@ Features include:
* **Automatic data download** - Compute timeranges for data downloads and update historic data (in live deployments)
* **Cleaning of incoming data** - Handle NaNs safely before training and model inferencing
* **Dimensionality reduction** - Reduce the size of the training data via [Principal Component Analysis](freqai-feature-engineering.md#data-dimensionality-reduction-with-principal-component-analysis)
* **Deploying bot fleets** - Set one bot to train models while a fleet of [consumers](producer-consumer.md) use signals.
* **Deploying bot fleets** - Set one bot to train models while a fleet of [follower bots](freqai-running.md#setting-up-a-follower) inference the models and handle trades
## Quick start
@@ -32,10 +29,7 @@ The easiest way to quickly test FreqAI is to run it in dry mode with the followi
freqtrade trade --config config_examples/config_freqai.example.json --strategy FreqaiExampleStrategy --freqaimodel LightGBMRegressor --strategy-path freqtrade/templates
```
You will see the boot-up process of automatic data downloading, followed by simultaneous training and trading.
!!! danger "Not for production"
The example strategy provided with the Freqtrade source code is designed for showcasing/testing a wide variety of FreqAI features. It is also designed to run on small computers so that it can be used as a benchmark between developers and users. It is *not* designed to be run in production.
You will see the boot-up process of automatic data downloading, followed by simultaneous training and trading.
An example strategy, prediction model, and config to use as a starting points can be found in
`freqtrade/templates/FreqaiExampleStrategy.py`, `freqtrade/freqai/prediction_models/LightGBMRegressor.py`, and
@@ -72,33 +66,16 @@ pip install -r requirements-freqai.txt
```
!!! Note
Catboost will not be installed on low-powered arm devices (raspberry), since it does not provide wheels for this platform.
Catboost will not be installed on arm devices (raspberry, Mac M1, ARM based VPS, ...), since it does not provide wheels for this platform.
### Usage with docker
If you are using docker, a dedicated tag with FreqAI dependencies is available as `:freqai`. As such - you can replace the image line in your docker compose file with `image: freqtradeorg/freqtrade:develop_freqai`. This image contains the regular FreqAI dependencies. Similar to native installs, Catboost will not be available on ARM based devices. If you would like to use PyTorch or Reinforcement learning, you should use the torch or RL tags, `image: freqtradeorg/freqtrade:develop_freqaitorch`, `image: freqtradeorg/freqtrade:develop_freqairl`.
If you are using docker, a dedicated tag with FreqAI dependencies is available as `:freqai`. As such - you can replace the image line in your docker-compose file with `image: freqtradeorg/freqtrade:develop_freqai`. This image contains the regular FreqAI dependencies. Similar to native installs, Catboost will not be available on ARM based devices.
!!! note "docker-compose-freqai.yml"
We do provide an explicit docker-compose file for this in `docker/docker-compose-freqai.yml` - which can be used via `docker compose -f docker/docker-compose-freqai.yml run ...` - or can be copied to replace the original docker file. This docker-compose file also contains a (disabled) section to enable GPU resources within docker containers. This obviously assumes the system has GPU resources available.
### FreqAI position in open-source machine learning landscape
Forecasting chaotic time-series based systems, such as equity/cryptocurrency markets, requires a broad set of tools geared toward testing a wide range of hypotheses. Fortunately, a recent maturation of robust machine learning libraries (e.g. `scikit-learn`) has opened up a wide range of research possibilities. Scientists from a diverse range of fields can now easily prototype their studies on an abundance of established machine learning algorithms. Similarly, these user-friendly libraries enable "citzen scientists" to use their basic Python skills for data exploration. However, leveraging these machine learning libraries on historical and live chaotic data sources can be logistically difficult and expensive. Additionally, robust data collection, storage, and handling presents a disparate challenge. [`FreqAI`](#freqai) aims to provide a generalized and extensible open-sourced framework geared toward live deployments of adaptive modeling for market forecasting. The `FreqAI` framework is effectively a sandbox for the rich world of open-source machine learning libraries. Inside the `FreqAI` sandbox, users find they can combine a wide variety of third-party libraries to test creative hypotheses on a free live 24/7 chaotic data source - cryptocurrency exchange data.
### Citing FreqAI
FreqAI is [published in the Journal of Open Source Software](https://joss.theoj.org/papers/10.21105/joss.04864). If you find FreqAI useful in your research, please use the following citation:
```bibtex
@article{Caulk2022,
doi = {10.21105/joss.04864},
url = {https://doi.org/10.21105/joss.04864},
year = {2022}, publisher = {The Open Journal},
volume = {7}, number = {80}, pages = {4864},
author = {Robert A. Caulk and Elin Törnquist and Matthias Voppichler and Andrew R. Lawless and Ryan McMullan and Wagner Costa Santos and Timothy C. Pogue and Johan van der Vlugt and Stefan P. Gehring and Pascal Schmidt},
title = {FreqAI: generalizing adaptive modeling for chaotic time-series market forecasts},
journal = {Journal of Open Source Software} }
```
Forecasting chaotic time-series based systems, such as equity/cryptocurrency markets, requires a broad set of tools geared toward testing a wide range of hypotheses. Fortunately, a recent maturation of robust machine learning libraries (e.g. `scikit-learn`) has opened up a wide range of research possibilities. Scientists from a diverse range of fields can now easily prototype their studies on an abundance of established machine learning algorithms. Similarly, these user-friendly libraries enable "citzen scientists" to use their basic Python skills for data-exploration. However, leveraging these machine learning libraries on historical and live chaotic data sources can be logistically difficult and expensive. Additionally, robust data-collection, storage, and handling presents a disparate challenge. [`FreqAI`](#freqai) aims to provide a generalized and extensible open-sourced framework geared toward live deployments of adaptive modeling for market forecasting. The `FreqAI` framework is effectively a sandbox for the rich world of open-source machine learning libraries. Inside the `FreqAI` sandbox, users find they can combine a wide variety of third-party libraries to test creative hypotheses on a free live 24/7 chaotic data source - cryptocurrency exchange data.
## Common pitfalls
@@ -107,18 +84,6 @@ This is for performance reasons - FreqAI relies on making quick predictions/retr
it needs to download all the training data at the beginning of a dry/live instance. FreqAI stores and appends
new candles automatically for future retrains. This means that if new pairs arrive later in the dry run due to a volume pairlist, it will not have the data ready. However, FreqAI does work with the `ShufflePairlist` or a `VolumePairlist` which keeps the total pairlist constant (but reorders the pairs according to volume).
## Additional learning materials
Here we compile some external materials that provide deeper looks into various components of FreqAI:
- [Real-time head-to-head: Adaptive modeling of financial market data using XGBoost and CatBoost](https://emergentmethods.medium.com/real-time-head-to-head-adaptive-modeling-of-financial-market-data-using-xgboost-and-catboost-995a115a7495)
- [FreqAI - from price to prediction](https://emergentmethods.medium.com/freqai-from-price-to-prediction-6fadac18b665)
## Support
You can find support for FreqAI in a variety of places, including the [Freqtrade discord](https://discord.gg/Jd8JYeWHc4), the dedicated [FreqAI discord](https://discord.gg/7AMWACmbjT), and in [github issues](https://github.com/freqtrade/freqtrade/issues).
## Credits
FreqAI is developed by a group of individuals who all contribute specific skillsets to the project.
@@ -134,8 +99,6 @@ Code review and software architecture brainstorming:
Software development:
Wagner Costa @wagnercosta
Emre Suzen @aemr3
Timothy Pogue @wizrds
Beta testing and bug reporting:
Stefan Gehring @bloodhunter4rc, @longyu, Andrew Lawless @paranoidandy, Pascal Schmidt @smidelis, Ryan McMullan @smarmau, Juha Nykänen @suikula, Johan van der Vlugt @jooopiert, Richárd Józsa @richardjosza
Stefan Gehring @bloodhunter4rc, @longyu, Andrew Lawless @paranoidandy, Pascal Schmidt @smidelis, Ryan McMullan @smarmau, Juha Nykänen @suikula, Johan van der Vlugt @jooopiert, Richárd Józsa @richardjosza, Timothy Pogue @wizrds

View File

@@ -14,7 +14,8 @@ To learn how to get data for the pairs and exchange you're interested in, head o
!!! Note
Since 2021.4 release you no longer have to write a separate hyperopt class, but can configure the parameters directly in the strategy.
The legacy method was supported up to 2021.8 and has been removed in 2021.9.
The legacy method is still supported, but it is no longer the recommended way of setting up hyperopt.
The legacy documentation is available at [Legacy Hyperopt](advanced-hyperopt.md#legacy-hyperopt).
## Install hyperopt dependencies
@@ -30,7 +31,7 @@ The docker-image includes hyperopt dependencies, no further action needed.
### Easy installation script (setup.sh) / Manual installation
```bash
source .venv/bin/activate
source .env/bin/activate
pip install -r requirements-hyperopt.txt
```
@@ -49,7 +50,7 @@ usage: freqtrade hyperopt [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
[--eps] [--dmmp] [--enable-protections]
[--dry-run-wallet DRY_RUN_WALLET]
[--timeframe-detail TIMEFRAME_DETAIL] [-e INT]
[--spaces {all,buy,sell,roi,stoploss,trailing,protection,trades,default} [{all,buy,sell,roi,stoploss,trailing,protection,trades,default} ...]]
[--spaces {all,buy,sell,roi,stoploss,trailing,protection,default} [{all,buy,sell,roi,stoploss,trailing,protection,default} ...]]
[--print-all] [--no-color] [--print-json] [-j JOBS]
[--random-state INT] [--min-trades INT]
[--hyperopt-loss NAME] [--disable-param-export]
@@ -95,7 +96,7 @@ optional arguments:
Specify detail timeframe for backtesting (`1m`, `5m`,
`30m`, `1h`, `1d`).
-e INT, --epochs INT Specify number of epochs (default: 100).
--spaces {all,buy,sell,roi,stoploss,trailing,protection,trades,default} [{all,buy,sell,roi,stoploss,trailing,protection,trades,default} ...]
--spaces {all,buy,sell,roi,stoploss,trailing,protection,default} [{all,buy,sell,roi,stoploss,trailing,protection,default} ...]
Specify which parameters to hyperopt. Space-separated
list.
--print-all Print all results, not only the best ones.
@@ -179,7 +180,6 @@ Rarely you may also need to create a [nested class](advanced-hyperopt.md#overrid
* `generate_roi_table` - for custom ROI optimization (if you need the ranges for the values in the ROI table that differ from default or the number of entries (steps) in the ROI table which differs from the default 4 steps)
* `stoploss_space` - for custom stoploss optimization (if you need the range for the stoploss parameter in the optimization hyperspace that differs from default)
* `trailing_space` - for custom trailing stop optimization (if you need the ranges for the trailing stop parameters in the optimization hyperspace that differ from default)
* `max_open_trades_space` - for custom max_open_trades optimization (if you need the ranges for the max_open_trades parameter in the optimization hyperspace that differ from default)
!!! Tip "Quickly optimize ROI, stoploss and trailing stoploss"
You can quickly optimize the spaces `roi`, `stoploss` and `trailing` without changing anything in your strategy.
@@ -336,15 +336,11 @@ There are four parameter types each suited for different purposes.
* `CategoricalParameter` - defines a parameter with a predetermined number of choices.
* `BooleanParameter` - Shorthand for `CategoricalParameter([True, False])` - great for "enable" parameters.
### Parameter options
There are two parameter options that can help you to quickly test various ideas:
* `optimize` - when set to `False`, the parameter will not be included in optimization process. (Default: True)
* `load` - when set to `False`, results of a previous hyperopt run (in `buy_params` and `sell_params` either in your strategy or the JSON output file) will not be used as the starting value for subsequent hyperopts. The default value specified in the parameter will be used instead. (Default: True)
!!! Tip "Effects of `load=False` on backtesting"
Be aware that setting the `load` option to `False` will mean backtesting will also use the default value specified in the parameter and *not* the value found through hyperoptimisation.
!!! Tip "Disabling parameter optimization"
Each parameter takes two boolean parameters:
* `load` - when set to `False` it will not load values configured in `buy_params` and `sell_params`.
* `optimize` - when set to `False` parameter will not be included in optimization process.
Use these parameters to quickly prototype various ideas.
!!! Warning
Hyperoptable parameters cannot be used in `populate_indicators` - as hyperopt does not recalculate indicators for each epoch, so the starting value would be used in this case.
@@ -369,7 +365,7 @@ class MyAwesomeStrategy(IStrategy):
timeframe = '15m'
minimal_roi = {
"0": 0.10
}
},
# Define the parameter spaces
buy_ema_short = IntParameter(3, 50, default=5)
buy_ema_long = IntParameter(15, 200, default=50)
@@ -404,7 +400,7 @@ class MyAwesomeStrategy(IStrategy):
return dataframe
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
conditions = []
conditions = []
conditions.append(qtpylib.crossed_above(
dataframe[f'ema_long_{self.buy_ema_long.value}'], dataframe[f'ema_short_{self.buy_ema_short.value}']
))
@@ -436,14 +432,9 @@ While this strategy is most likely too simple to provide consistent profit, it s
`range` property may also be used with `DecimalParameter` and `CategoricalParameter`. `RealParameter` does not provide this property due to infinite search space.
??? Hint "Performance tip"
During normal hyperopting, indicators are calculated once and supplied to each epoch, linearly increasing RAM usage as a factor of increasing cores. As this also has performance implications, there are two alternatives to reduce RAM usage
During normal hyperopting, indicators are calculated once and supplied to each epoch, linearly increasing RAM usage as a factor of increasing cores. As this also has performance implications, hyperopt provides `--analyze-per-epoch` which will move the execution of `populate_indicators()` to the epoch process, calculating a single value per parameter per epoch instead of using the `.range` functionality. In this case, `.range` functionality will only return the actually used value. This will reduce RAM usage, but increase CPU usage. However, your hyperopting run will be less likely to fail due to Out Of Memory (OOM) issues.
* Move `ema_short` and `ema_long` calculations from `populate_indicators()` to `populate_entry_trend()`. Since `populate_entry_trend()` will be calculated every epoch, you don't need to use `.range` functionality.
* hyperopt provides `--analyze-per-epoch` which will move the execution of `populate_indicators()` to the epoch process, calculating a single value per parameter per epoch instead of using the `.range` functionality. In this case, `.range` functionality will only return the actually used value.
These alternatives will reduce RAM usage, but increase CPU usage. However, your hyperopting run will be less likely to fail due to Out Of Memory (OOM) issues.
Whether you are using `.range` functionality or the alternatives above, you should try to use space ranges as small as possible since this will improve CPU/RAM usage.
In either case, you should try to use space ranges as small as possible this will improve CPU/RAM usage in both scenarios.
## Optimizing protections
@@ -652,7 +643,6 @@ Legal values are:
* `roi`: just optimize the minimal profit table for your strategy
* `stoploss`: search for the best stoploss value
* `trailing`: search for the best trailing stop values
* `trades`: search for the best max open trades values
* `protection`: search for the best protection parameters (read the [protections section](#optimizing-protections) on how to properly define these)
* `default`: `all` except `trailing` and `protection`
* space-separated list of any of the above values for example `--spaces roi stoploss`
@@ -764,7 +754,7 @@ Override the `roi_space()` method if you need components of the ROI tables to va
A sample for these methods can be found in the [overriding pre-defined spaces section](advanced-hyperopt.md#overriding-pre-defined-spaces).
!!! Note "Reduced search space"
To limit the search space further, Decimals are limited to 3 decimal places (a precision of 0.001). This is usually sufficient, every value more precise than this will usually result in overfitted results. You can however [overriding pre-defined spaces](advanced-hyperopt.md#overriding-pre-defined-spaces) to change this to your needs.
To limit the search space further, Decimals are limited to 3 decimal places (a precision of 0.001). This is usually sufficient, every value more precise than this will usually result in overfitted results. You can however [overriding pre-defined spaces](advanced-hyperopt.md#pverriding-pre-defined-spaces) to change this to your needs.
### Understand Hyperopt Stoploss results
@@ -806,7 +796,7 @@ If you have the `stoploss_space()` method in your custom hyperopt file, remove i
Override the `stoploss_space()` method and define the desired range in it if you need stoploss values to vary in other range during hyperoptimization. A sample for this method can be found in the [overriding pre-defined spaces section](advanced-hyperopt.md#overriding-pre-defined-spaces).
!!! Note "Reduced search space"
To limit the search space further, Decimals are limited to 3 decimal places (a precision of 0.001). This is usually sufficient, every value more precise than this will usually result in overfitted results. You can however [overriding pre-defined spaces](advanced-hyperopt.md#overriding-pre-defined-spaces) to change this to your needs.
To limit the search space further, Decimals are limited to 3 decimal places (a precision of 0.001). This is usually sufficient, every value more precise than this will usually result in overfitted results. You can however [overriding pre-defined spaces](advanced-hyperopt.md#pverriding-pre-defined-spaces) to change this to your needs.
### Understand Hyperopt Trailing Stop results
@@ -925,12 +915,6 @@ Once the optimized strategy has been implemented into your strategy, you should
To achieve same the results (number of trades, their durations, profit, etc.) as during Hyperopt, please use the same configuration and parameters (timerange, timeframe, ...) used for hyperopt `--dmmp`/`--disable-max-market-positions` and `--eps`/`--enable-position-stacking` for Backtesting.
### Why do my backtest results not match my hyperopt results?
Should results not match, check the following factors:
* You may have added parameters to hyperopt in `populate_indicators()` where they will be calculated only once **for all epochs**. If you are, for example, trying to optimise multiple SMA timeperiod values, the hyperoptable timeperiod parameter should be placed in `populate_entry_trend()` which is calculated every epoch. See [Optimizing an indicator parameter](https://www.freqtrade.io/en/stable/hyperopt/#optimizing-an-indicator-parameter).
* If you have disabled the auto-export of hyperopt parameters into the JSON parameters file, double-check to make sure you transferred all hyperopted values into your strategy correctly.
* Check the logs to verify what parameters are being set and what values are being used.
* Pay special care to the stoploss, max_open_trades and trailing stoploss parameters, as these are often set in configuration files, which override changes to the strategy. Check the logs of your backtest to ensure that there were no parameters inadvertently set by the configuration (like `stoploss`, `max_open_trades` or `trailing_stop`).
* Verify that you do not have an unexpected parameters JSON file overriding the parameters or the default hyperopt settings in your strategy.
* Verify that any protections that are enabled in backtesting are also enabled when hyperopting, and vice versa. When using `--space protection`, protections are auto-enabled for hyperopting.
Should results not match, please double-check to make sure you transferred all conditions correctly.
Pay special care to the stoploss (and trailing stoploss) parameters, as these are often set in configuration files, which override changes to the strategy.
You should also carefully review the log of your backtest to ensure that there were no parameters inadvertently set by the configuration (like `stoploss` or `trailing_stop`).

View File

@@ -1,43 +0,0 @@
## CORS
This whole section is only necessary in cross-origin cases (where you multiple bot API's running on `localhost:8081`, `localhost:8082`, ...), and want to combine them into one FreqUI instance.
??? info "Technical explanation"
All web-based front-ends are subject to [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS) - Cross-Origin Resource Sharing.
Since most of the requests to the Freqtrade API must be authenticated, a proper CORS policy is key to avoid security problems.
Also, the standard disallows `*` CORS policies for requests with credentials, so this setting must be set appropriately.
Users can allow access from different origin URL's to the bot API via the `CORS_origins` configuration setting.
It consists of a list of allowed URL's that are allowed to consume resources from the bot's API.
Assuming your application is deployed as `https://frequi.freqtrade.io/home/` - this would mean that the following configuration becomes necessary:
```jsonc
{
//...
"jwt_secret_key": "somethingrandom",
"CORS_origins": ["https://frequi.freqtrade.io"],
//...
}
```
In the following (pretty common) case, FreqUI is accessible on `http://localhost:8080/trade` (this is what you see in your navbar when navigating to freqUI).
![freqUI url](assets/frequi_url.png)
The correct configuration for this case is `http://localhost:8080` - the main part of the URL including the port.
```jsonc
{
//...
"jwt_secret_key": "somethingrandom",
"CORS_origins": ["http://localhost:8080"],
//...
}
```
!!! Tip "trailing Slash"
The trailing slash is not allowed in the `CORS_origins` configuration (e.g. `"http://localhots:8080/"`).
Such a configuration will not take effect, and the cors errors will remain.
!!! Note
We strongly recommend to also set `jwt_secret_key` to something random and known only to yourself to avoid unauthorized access to your bot.

View File

@@ -6,7 +6,7 @@ In your configuration, you can use Static Pairlist (defined by the [`StaticPairL
Additionally, [`AgeFilter`](#agefilter), [`PrecisionFilter`](#precisionfilter), [`PriceFilter`](#pricefilter), [`ShuffleFilter`](#shufflefilter), [`SpreadFilter`](#spreadfilter) and [`VolatilityFilter`](#volatilityfilter) act as Pairlist Filters, removing certain pairs and/or moving their positions in the pairlist.
If multiple Pairlist Handlers are used, they are chained and a combination of all Pairlist Handlers forms the resulting pairlist the bot uses for trading and backtesting. Pairlist Handlers are executed in the sequence they are configured. You can define either `StaticPairList`, `VolumePairList`, `ProducerPairList`, `RemotePairList` or `MarketCapPairList` as the starting Pairlist Handler.
If multiple Pairlist Handlers are used, they are chained and a combination of all Pairlist Handlers forms the resulting pairlist the bot uses for trading and backtesting. Pairlist Handlers are executed in the sequence they are configured. You should always configure either `StaticPairList` or `VolumePairList` as the starting Pairlist Handler.
Inactive markets are always removed from the resulting pairlist. Explicitly blacklisted pairs (those in the `pair_blacklist` configuration setting) are also always removed from the resulting pairlist.
@@ -23,10 +23,7 @@ You may also use something like `.*DOWN/BTC` or `.*UP/BTC` to exclude leveraged
* [`StaticPairList`](#static-pair-list) (default, if not configured differently)
* [`VolumePairList`](#volume-pair-list)
* [`ProducerPairList`](#producerpairlist)
* [`RemotePairList`](#remotepairlist)
* [`MarketCapPairList`](#marketcappairlist)
* [`AgeFilter`](#agefilter)
* [`FullTradesFilter`](#fulltradesfilter)
* [`OffsetFilter`](#offsetfilter)
* [`PerformanceFilter`](#performancefilter)
* [`PrecisionFilter`](#precisionfilter)
@@ -68,7 +65,7 @@ When used in the leading position of the chain of Pairlist Handlers, the `pair_w
The `refresh_period` setting allows to define the period (in seconds), at which the pairlist will be refreshed. Defaults to 1800s (30 minutes).
The pairlist cache (`refresh_period`) on `VolumePairList` is only applicable to generating pairlists.
Filtering instances (not the first position in the list) will not apply any cache (beyond caching candles for the duration of the candle in advanced mode) and will always use up-to-date data.
Filtering instances (not the first position in the list) will not apply any cache and will always use up-to-date data.
`VolumePairList` is per default based on the ticker data from exchange, as reported by the ccxt library:
@@ -81,14 +78,12 @@ Filtering instances (not the first position in the list) will not apply any cach
"number_assets": 20,
"sort_key": "quoteVolume",
"min_value": 0,
"max_value": 8000000,
"refresh_period": 1800
}
],
```
You can define a minimum volume with `min_value` - which will filter out pairs with a volume lower than the specified value in the specified timerange.
In addition to that, you can also define a maximum volume with `max_value` - which will filter out pairs with a volume higher than the specified value in the specified timerange.
##### VolumePairList Advanced mode
@@ -115,8 +110,8 @@ For convenience `lookback_days` can be specified, which will imply that 1d candl
!!! Warning "Performance implications when using lookback range"
If used in first position in combination with lookback, the computation of the range based volume can be time and resource consuming, as it downloads candles for all tradable pairs. Hence it's highly advised to use the standard approach with `VolumeFilter` to narrow the pairlist down for further range volume calculation.
??? Tip "Unsupported exchanges"
On some exchanges (like Gemini), regular VolumePairList does not work as the api does not natively provide 24h volume. This can be worked around by using candle data to build the volume.
??? Tip "Unsupported exchanges (Bittrex, Gemini)"
On some exchanges (like Bittrex and Gemini), regular VolumePairList does not work as the api does not natively provide 24h volume. This can be worked around by using candle data to build the volume.
To roughly simulate 24h volume, you can use the following configuration.
Please note that These pairlists will only refresh once per day.
@@ -178,114 +173,6 @@ You can limit the length of the pairlist with the optional parameter `number_ass
`ProducerPairList` can also be used multiple times in sequence, combining the pairs from multiple producers.
Obviously in complex such configurations, the Producer may not provide data for all pairs, so the strategy must be fit for this.
#### RemotePairList
It allows the user to fetch a pairlist from a remote server or a locally stored json file within the freqtrade directory, enabling dynamic updates and customization of the trading pairlist.
The RemotePairList is defined in the pairlists section of the configuration settings. It uses the following configuration options:
```json
"pairlists": [
{
"method": "RemotePairList",
"mode": "whitelist",
"processing_mode": "filter",
"pairlist_url": "https://example.com/pairlist",
"number_assets": 10,
"refresh_period": 1800,
"keep_pairlist_on_failure": true,
"read_timeout": 60,
"bearer_token": "my-bearer-token",
"save_to_file": "user_data/filename.json"
}
]
```
The optional `mode` option specifies if the pairlist should be used as a `blacklist` or as a `whitelist`. The default value is "whitelist".
The optional `processing_mode` option in the RemotePairList configuration determines how the retrieved pairlist is processed. It can have two values: "filter" or "append". The default value is "filter".
In "filter" mode, the retrieved pairlist is used as a filter. Only the pairs present in both the original pairlist and the retrieved pairlist are included in the final pairlist. Other pairs are filtered out.
In "append" mode, the retrieved pairlist is added to the original pairlist. All pairs from both lists are included in the final pairlist without any filtering.
The `pairlist_url` option specifies the URL of the remote server where the pairlist is located, or the path to a local file (if file:/// is prepended). This allows the user to use either a remote server or a local file as the source for the pairlist.
The `save_to_file` option, when provided with a valid filename, saves the processed pairlist to that file in JSON format. This option is optional, and by default, the pairlist is not saved to a file.
??? Example "Multi bot with shared pairlist example"
`save_to_file` can be used to save the pairlist to a file with Bot1:
```json
"pairlists": [
{
"method": "RemotePairList",
"mode": "whitelist",
"pairlist_url": "https://example.com/pairlist",
"number_assets": 10,
"refresh_period": 1800,
"keep_pairlist_on_failure": true,
"read_timeout": 60,
"save_to_file": "user_data/filename.json"
}
]
```
This saved pairlist file can be loaded by Bot2, or any additional bot with this configuration:
```json
"pairlists": [
{
"method": "RemotePairList",
"mode": "whitelist",
"pairlist_url": "file:///user_data/filename.json",
"number_assets": 10,
"refresh_period": 10,
"keep_pairlist_on_failure": true,
}
]
```
The user is responsible for providing a server or local file that returns a JSON object with the following structure:
```json
{
"pairs": ["XRP/USDT", "ETH/USDT", "LTC/USDT"],
"refresh_period": 1800
}
```
The `pairs` property should contain a list of strings with the trading pairs to be used by the bot. The `refresh_period` property is optional and specifies the number of seconds that the pairlist should be cached before being refreshed.
The optional `keep_pairlist_on_failure` specifies whether the previous received pairlist should be used if the remote server is not reachable or returns an error. The default value is true.
The optional `read_timeout` specifies the maximum amount of time (in seconds) to wait for a response from the remote source, The default value is 60.
The optional `bearer_token` will be included in the requests Authorization Header.
!!! Note
In case of a server error the last received pairlist will be kept if `keep_pairlist_on_failure` is set to true, when set to false a empty pairlist is returned.
#### MarketCapPairList
`MarketCapPairList` employs sorting/filtering of pairs by their marketcap rank based of CoinGecko. It will only recognize coins up to the coin placed at rank 250. The returned pairlist will be sorted based of their marketcap ranks.
```json
"pairlists": [
{
"method": "MarketCapPairList",
"number_assets": 20,
"max_rank": 50,
"refresh_period": 86400
}
]
```
`number_assets` defines the maximum number of pairs returned by the pairlist. `max_rank` will determine the maximum rank used in creating/filtering the pairlist. It's expected that some coins within the top `max_rank` marketcap will not be included in the resulting pairlist since not all pairs will have active trading pairs in your preferred market/stake/exchange combination.
`refresh_period` setting defines the period (in seconds) at which the marketcap rank data will be refreshed. Defaults to 86,400s (1 day). The pairlist cache (`refresh_period`) is applicable on both generating pairlists (first position in the list) and filtering instances (not the first position in the list).
#### AgeFilter
Removes pairs that have been listed on the exchange for less than `min_days_listed` days (defaults to `10`) or more than `max_days_listed` days (defaults `None` mean infinity).
@@ -296,17 +183,6 @@ be caught out buying before the pair has finished dropping in price.
This filter allows freqtrade to ignore pairs until they have been listed for at least `min_days_listed` days and listed before `max_days_listed`.
#### FullTradesFilter
Shrink whitelist to consist only in-trade pairs when the trade slots are full (when `max_open_trades` isn't being set to `-1` in the config).
When the trade slots are full, there is no need to calculate indicators of the rest of the pairs (except informative pairs) since no new trade can be opened. By shrinking the whitelist to just the in-trade pairs, you can improve calculation speeds and reduce CPU usage. When a trade slot is free (either a trade is closed or `max_open_trades` value in config is increased), then the whitelist will return to normal state.
When multiple pairlist filters are being used, it's recommended to put this filter at second position directly below the primary pairlist, so when the trade slots are full, the bot doesn't have to download data for the rest of the filters.
!!! Warning "Backtesting"
`FullTradesFilter` does not support backtesting mode.
#### OffsetFilter
Offsets an incoming pairlist by a given `offset` value.
@@ -371,11 +247,6 @@ As this Filter uses past performance of the bot, it'll have some startup-period
Filters low-value coins which would not allow setting stoplosses.
Namely, pairs are blacklisted if a variance of one percent or more in the stop price would be caused by precision rounding on the exchange, i.e. `rounded(stop_price) <= rounded(stop_price * 0.99)`. The idea is to avoid coins with a value VERY close to their lower trading boundary, not allowing setting of proper stoploss.
!!! Tip "PrecisionFilter is pointless for futures trading"
The above does not apply to shorts. And for longs, in theory the trade will be liquidated first.
!!! Warning "Backtesting"
`PrecisionFilter` does not support backtesting mode using multiple strategies.
@@ -452,13 +323,11 @@ If the trading range over the last 10 days is <1% or >99%, remove the pair from
"lookback_days": 10,
"min_rate_of_change": 0.01,
"max_rate_of_change": 0.99,
"refresh_period": 86400
"refresh_period": 1440
}
]
```
Adding `"sort_direction": "asc"` or `"sort_direction": "desc"` enables sorting for this pairlist.
!!! Tip
This Filter can be used to automatically remove stable coin pairs, which have a very low trading range, and are therefore extremely difficult to trade with profit.
Additionally, it can also be used to automatically remove pairs with extreme high/low variance over a given amount of time.
@@ -469,7 +338,7 @@ Volatility is the degree of historical variation of a pairs over time, it is mea
This filter removes pairs if the average volatility over a `lookback_days` days is below `min_volatility` or above `max_volatility`. Since this is a filter that requires additional data, the results are cached for `refresh_period`.
This filter can be used to narrow down your pairs to a certain volatility or avoid very volatile pairs.
This filter can be used to narrow down your pairs to a certain volatility or avoid very volatile pairs.
In the below example:
If the volatility over the last 10 days is not in the range of 0.05-0.50, remove the pair from the whitelist. The filter is applied every 24h.
@@ -486,8 +355,6 @@ If the volatility over the last 10 days is not in the range of 0.05-0.50, remove
]
```
Adding `"sort_direction": "asc"` or `"sort_direction": "desc"` enables sorting mode for this pairlist.
### Full example of Pairlist Handlers
The below example blacklists `BNB/BTC`, uses `VolumePairList` with `20` assets, sorting pairs by `quoteVolume` and applies [`PrecisionFilter`](#precisionfilter) and [`PriceFilter`](#pricefilter), filtering all assets where 1 price unit is > 1%. Then the [`SpreadFilter`](#spreadfilter) and [`VolatilityFilter`](#volatilityfilter) is applied and pairs are finally shuffled with the random seed set to some predefined value.
@@ -511,7 +378,7 @@ The below example blacklists `BNB/BTC`, uses `VolumePairList` with `20` assets,
"method": "RangeStabilityFilter",
"lookback_days": 10,
"min_rate_of_change": 0.01,
"refresh_period": 86400
"refresh_period": 1440
},
{
"method": "VolatilityFilter",

View File

@@ -149,7 +149,7 @@ The below example assumes a timeframe of 1 hour:
* Locks each pair after selling for an additional 5 candles (`CooldownPeriod`), giving other pairs a chance to get filled.
* Stops trading for 4 hours (`4 * 1h candles`) if the last 2 days (`48 * 1h candles`) had 20 trades, which caused a max-drawdown of more than 20%. (`MaxDrawdown`).
* Stops trading if more than 4 stoploss occur for all pairs within a 1 day (`24 * 1h candles`) limit (`StoplossGuard`).
* Locks all pairs that had 2 Trades within the last 6 hours (`6 * 1h candles`) with a combined profit ratio of below 0.02 (<2%) (`LowProfitPairs`).
* Locks all pairs that had 4 Trades within the last 6 hours (`6 * 1h candles`) with a combined profit ratio of below 0.02 (<2%) (`LowProfitPairs`).
* Locks all pairs for 2 candles that had a profit of below 0.01 (<1%) within the last 24h (`24 * 1h candles`), a minimum of 4 trades.
``` python

View File

@@ -1,37 +0,0 @@
## Highlighted changes
- ...
### How to update
As always, you can update your bot using one of the following commands:
#### docker-compose
```bash
docker-compose pull
docker-compose up -d
```
#### Installation via setup script
```
# Deactivate venv and run
./setup.sh --update
```
#### Plain native installation
```
git pull
pip install -U -r requirements.txt
```
<details>
<summary>Expand full changelog</summary>
```
<Paste your changelog here>
```
</details>

View File

@@ -1,11 +0,0 @@
This section will highlight a few projects from members of the community.
!!! Note
The projects below are for the most part not maintained by the freqtrade , therefore use your own caution before using them.
- [Example freqtrade strategies](https://github.com/freqtrade/freqtrade-strategies/)
- [FrequentHippo - Grafana dashboard with dry/live runs and backtests](http://frequenthippo.ddns.net:3000/) (by hippocritical).
- [Online pairlist generator](https://remotepairlist.com/) (by Blood4rc).
- [Freqtrade Backtesting Project](https://strat.ninja/) (by Blood4rc).
- [Freqtrade analysis notebook](https://github.com/froggleston/freqtrade_analysis_notebook) (by Froggleston).
- [TUI for freqtrade](https://github.com/froggleston/freqtrade-frogtrade9000) (by Froggleston).
- [Bot Academy](https://botacademy.ddns.net/) (by stash86) - Blog about crypto bot projects.

View File

@@ -1,7 +1,6 @@
![freqtrade](assets/freqtrade_poweredby.svg)
[![Freqtrade CI](https://github.com/freqtrade/freqtrade/workflows/Freqtrade%20CI/badge.svg)](https://github.com/freqtrade/freqtrade/actions/)
[![DOI](https://joss.theoj.org/papers/10.21105/joss.04864/status.svg)](https://doi.org/10.21105/joss.04864)
[![Coverage Status](https://coveralls.io/repos/github/freqtrade/freqtrade/badge.svg?branch=develop&service=github)](https://coveralls.io/github/freqtrade/freqtrade?branch=develop)
[![Maintainability](https://api.codeclimate.com/v1/badges/5737e6d668200b7518ff/maintainability)](https://codeclimate.com/github/freqtrade/freqtrade/maintainability)
@@ -40,10 +39,9 @@ Freqtrade is a free and open source crypto trading bot written in Python. It is
Please read the [exchange specific notes](exchanges.md) to learn about eventual, special configurations needed for each exchange.
- [X] [Binance](https://www.binance.com/)
- [X] [Bitmart](https://bitmart.com/)
- [X] [BingX](https://bingx.com/invite/0EM9RX)
- [X] [Bittrex](https://bittrex.com/)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [HTX](https://www.htx.com/) (Former Huobi)
- [X] [Huobi](http://huobi.com/)
- [X] [Kraken](https://kraken.com/)
- [X] [OKX](https://okx.com/) (Former OKEX)
- [ ] [potentially many others through <img alt="ccxt" width="30px" src="assets/ccxt-logo.svg" />](https://github.com/ccxt/ccxt/). _(We cannot guarantee they will work)_
@@ -53,7 +51,6 @@ Please read the [exchange specific notes](exchanges.md) to learn about eventual,
- [X] [Binance](https://www.binance.com/)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [OKX](https://okx.com/)
- [X] [Bybit](https://bybit.com/)
Please make sure to read the [exchange specific notes](exchanges.md), as well as the [trading with leverage](leverage.md) documentation before diving in.
@@ -64,10 +61,6 @@ Exchanges confirmed working by the community:
- [X] [Bitvavo](https://bitvavo.com/)
- [X] [Kucoin](https://www.kucoin.com/)
## Community showcase
--8<-- "includes/showcase.md"
## Requirements
### Hardware requirements
@@ -84,7 +77,7 @@ To run this bot we recommend you a linux cloud instance with a minimum of:
Alternatively
- Python 3.9+
- Python 3.8+
- pip (pip3)
- git
- TA-Lib

View File

@@ -24,7 +24,7 @@ The easiest way to install and run Freqtrade is to clone the bot Github reposito
The `stable` branch contains the code of the last release (done usually once per month on an approximately one week old snapshot of the `develop` branch to prevent packaging bugs, so potentially it's more stable).
!!! Note
Python3.9 or higher and the corresponding `pip` are assumed to be available. The install-script will warn you and stop if that's not the case. `git` is also needed to clone the Freqtrade repository.
Python3.8 or higher and the corresponding `pip` are assumed to be available. The install-script will warn you and stop if that's not the case. `git` is also needed to clone the Freqtrade repository.
Also, python headers (`python<yourversion>-dev` / `python<yourversion>-devel`) must be available for the installation to complete successfully.
!!! Warning "Up-to-date clock"
@@ -42,19 +42,19 @@ These requirements apply to both [Script Installation](#script-installation) and
### Install guide
* [Python >= 3.9](http://docs.python-guide.org/en/latest/starting/installation/)
* [Python >= 3.8.x](http://docs.python-guide.org/en/latest/starting/installation/)
* [pip](https://pip.pypa.io/en/stable/installing/)
* [git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git)
* [virtualenv](https://virtualenv.pypa.io/en/stable/installation.html) (Recommended)
* [TA-Lib](https://ta-lib.github.io/ta-lib-python/) (install instructions [below](#install-ta-lib))
* [TA-Lib](https://mrjbq7.github.io/ta-lib/install.html) (install instructions [below](#install-ta-lib))
### Install code
We've included/collected install instructions for Ubuntu, MacOS, and Windows. These are guidelines and your success may vary with other distros.
OS Specific steps are listed first, the common section below is necessary for all systems.
OS Specific steps are listed first, the [Common](#common) section below is necessary for all systems.
!!! Note
Python3.9 or higher and the corresponding pip are assumed to be available.
Python3.8 or higher and the corresponding pip are assumed to be available.
=== "Debian/Ubuntu"
#### Install necessary dependencies
@@ -143,11 +143,11 @@ If you are on Debian, Ubuntu or MacOS, freqtrade provides the script to install
### Activate your virtual environment
Each time you open a new terminal, you must run `source .venv/bin/activate` to activate your virtual environment.
Each time you open a new terminal, you must run `source .env/bin/activate` to activate your virtual environment.
```bash
# activate virtual environment
source ./.venv/bin/activate
# then activate your .env
source ./.env/bin/activate
```
### Congratulations
@@ -169,10 +169,10 @@ You can as well update, configure and reset the codebase of your bot with `./scr
** --install **
With this option, the script will install the bot and most dependencies:
You will need to have git and python3.9+ installed beforehand for this to work.
You will need to have git and python3.8+ installed beforehand for this to work.
* Mandatory software as: `ta-lib`
* Setup your virtualenv under `.venv/`
* Setup your virtualenv under `.env/`
This option is a combination of installation tasks and `--reset`
@@ -204,7 +204,7 @@ sudo ./build_helpers/install_ta-lib.sh
##### TA-Lib manual installation
[Official installation guide](https://ta-lib.github.io/ta-lib-python/install.html)
Official webpage: https://mrjbq7.github.io/ta-lib/install.html
```bash
wget http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
@@ -225,18 +225,17 @@ rm -rf ./ta-lib*
You will run freqtrade in separated `virtual environment`
```bash
# create virtualenv in directory /freqtrade/.venv
python3 -m venv .venv
# create virtualenv in directory /freqtrade/.env
python3 -m venv .env
# run virtualenv
source .venv/bin/activate
source .env/bin/activate
```
#### Install python dependencies
```bash
python3 -m pip install --upgrade pip
python3 -m pip install -r requirements.txt
python3 -m pip install -e .
```
@@ -285,8 +284,10 @@ cd freqtrade
#### Freqtrade install: Conda Environment
Prepare conda-freqtrade environment, using file `environment.yml`, which exist in main freqtrade directory
```bash
conda create --name freqtrade python=3.12
conda env create -n freqtrade-conda -f environment.yml
```
!!! Note "Creating Conda Environment"
@@ -295,9 +296,12 @@ conda create --name freqtrade python=3.12
```bash
# choose your own packages
conda env create -n [name of the environment] [python version] [packages]
# point to file with packages
conda env create -n [name of the environment] -f [file]
```
#### Enter/exit freqtrade environment
#### Enter/exit freqtrade-conda environment
To check available environments, type
@@ -309,7 +313,7 @@ Enter installed environment
```bash
# enter conda environment
conda activate freqtrade
conda activate freqtrade-conda
# exit conda environment - don't do it now
conda deactivate
@@ -319,7 +323,6 @@ Install last python dependencies with pip
```bash
python3 -m pip install --upgrade pip
python3 -m pip install -r requirements.txt
python3 -m pip install -e .
```
@@ -327,7 +330,7 @@ Patch conda libta-lib (Linux only)
```bash
# Ensure that the environment is active!
conda activate freqtrade
conda activate freqtrade-conda
cd build_helpers
bash install_ta-lib.sh ${CONDA_PREFIX} nosudo
@@ -346,8 +349,8 @@ conda env list
# activate base environment
conda activate
# activate freqtrade environment
conda activate freqtrade
# activate freqtrade-conda environment
conda activate freqtrade-conda
#deactivate any conda environments
conda deactivate
@@ -383,7 +386,7 @@ You've made it this far, so you have successfully installed freqtrade.
freqtrade create-userdir --userdir user_data
# Step 2 - Create a new configuration file
freqtrade new-config --config user_data/config.json
freqtrade new-config --config config.json
```
You are ready to run, read [Bot Configuration](configuration.md), remember to start with `dry_run: True` and verify that everything is working.
@@ -393,7 +396,7 @@ To learn how to setup your configuration, please refer to the [Bot Configuration
### Start the Bot
```bash
freqtrade trade --config user_data/config.json --strategy SampleStrategy
freqtrade trade --config config.json --strategy SampleStrategy
```
!!! Warning
@@ -411,8 +414,8 @@ If you used (1)`Script` or (2)`Manual` installation, you need to run the bot in
# if:
bash: freqtrade: command not found
# then activate your virtual environment
source ./.venv/bin/activate
# then activate your .env
source ./.env/bin/activate
```
### MacOS installation error

View File

@@ -17,7 +17,7 @@ If you already have an existing strategy, please read the [strategy migration gu
## Shorting
Shorting is not possible when trading with [`trading_mode`](#leverage-trading-modes) set to `spot`. To short trade, `trading_mode` must be set to `margin`(currently unavailable) or [`futures`](#futures), with [`margin_mode`](#margin-mode) set to `cross`(currently unavailable) or [`isolated`](#isolated-margin-mode)
Shorting is not possible when trading with [`trading_mode`](#understand-tradingmode) set to `spot`. To short trade, `trading_mode` must be set to `margin`(currently unavailable) or [`futures`](#futures), with [`margin_mode`](#margin-mode) set to `cross`(currently unavailable) or [`isolated`](#isolated-margin-mode)
For a strategy to short, the strategy class must set the class variable `can_short = True`
@@ -64,9 +64,11 @@ You will also have to pick a "margin mode" (explanation below) - with freqtrade
##### Pair namings
Freqtrade follows the [ccxt naming conventions for futures](https://docs.ccxt.com/#/README?id=perpetual-swap-perpetual-future).
Freqtrade follows the [ccxt naming conventions for futures](https://docs.ccxt.com/en/latest/manual.html?#perpetual-swap-perpetual-future).
A futures pair will therefore have the naming of `base/quote:settle` (e.g. `ETH/USDT:USDT`).
Binance is currently still an exception to this naming scheme, where pairs are named `ETH/USDT` also for futures markets, but will be aligned as soon as CCXT is ready.
### Margin mode
On top of `trading_mode` - you will also have to configure your `margin_mode`.
@@ -90,8 +92,6 @@ One account is used to share collateral between markets (trading pairs). Margin
"margin_mode": "cross"
```
Please read the [exchange specific notes](exchanges.md) for exchanges that support this mode and how they differ.
## Set leverage to use
Different strategies and risk profiles will require different levels of leverage.

View File

@@ -1,103 +0,0 @@
# Lookahead analysis
This page explains how to validate your strategy in terms of look ahead bias.
Checking look ahead bias is the bane of any strategy since it is sometimes very easy to introduce backtest bias -
but very hard to detect.
Backtesting initializes all timestamps at once and calculates all indicators in the beginning.
This means that if your indicators or entry/exit signals could look into future candles and falsify your backtest.
Lookahead-analysis requires historic data to be available.
To learn how to get data for the pairs and exchange you're interested in,
head over to the [Data Downloading](data-download.md) section of the documentation.
This command is built upon backtesting since it internally chains backtests and pokes at the strategy to provoke it to show look ahead bias.
This is done by not looking at the strategy itself - but at the results it returned.
The results are things like changed indicator-values and moved entries/exits compared to the full backtest.
You can use commands of [Backtesting](backtesting.md).
It also supports the lookahead-analysis of freqai strategies.
- `--cache` is forced to "none".
- `--max-open-trades` is forced to be at least equal to the number of pairs.
- `--dry-run-wallet` is forced to be basically infinite (1 billion).
- `--stake-amount` is forced to be a static 10000 (10k).
- `--enable-protections` is forced to be off.
Those are set to avoid users accidentally generating false positives.
## Lookahead-analysis command reference
```
usage: freqtrade lookahead-analysis [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH] [-s NAME]
[--strategy-path PATH]
[--recursive-strategy-search]
[--freqaimodel NAME]
[--freqaimodel-path PATH] [-i TIMEFRAME]
[--timerange TIMERANGE]
[--data-format-ohlcv {json,jsongz,hdf5,feather,parquet}]
[--max-open-trades INT]
[--stake-amount STAKE_AMOUNT]
[--fee FLOAT] [-p PAIRS [PAIRS ...]]
[--dry-run-wallet DRY_RUN_WALLET]
[--timeframe-detail TIMEFRAME_DETAIL]
[--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]]
[--export {none,trades,signals}]
[--export-filename PATH]
[--breakdown {day,week,month} [{day,week,month} ...]]
[--cache {none,day,week,month}]
[--freqai-backtest-live-models]
[--minimum-trade-amount INT]
[--targeted-trade-amount INT]
[--lookahead-analysis-exportfilename LOOKAHEAD_ANALYSIS_EXPORTFILENAME]
options:
--minimum-trade-amount INT
Minimum trade amount for lookahead-analysis
--targeted-trade-amount INT
Targeted trade amount for lookahead analysis
--lookahead-analysis-exportfilename LOOKAHEAD_ANALYSIS_EXPORTFILENAME
Use this csv-filename to store lookahead-analysis-
results
```
!!! Note ""
The above Output was reduced to options `lookahead-analysis` adds on top of regular backtesting commands.
### Summary
Checks a given strategy for look ahead bias via lookahead-analysis
Look ahead bias means that the backtest uses data from future candles thereby not making it viable beyond backtesting
and producing false hopes for the one backtesting.
### Introduction
Many strategies - without the programmer knowing - have fallen prey to look ahead bias.
Any backtest will populate the full dataframe including all time stamps at the beginning.
If the programmer is not careful or oblivious how things work internally
(which sometimes can be really hard to find out) then it will just look into the future making the strategy amazing
but not realistic.
This command is made to try to verify the validity in the form of the aforementioned look ahead bias.
### How does the command work?
It will start with a backtest of all pairs to generate a baseline for indicators and entries/exits.
After the backtest ran, it will look if the `minimum-trade-amount` is met
and if not cancel the lookahead-analysis for this strategy.
After setting the baseline it will then do additional runs for every entry and exit separately.
When a verification-backtest is done, it will compare the indicators as the signal (either entry or exit) and report the bias.
After all signals have been verified or falsified a result-table will be generated for the user to see.
### Caveats
- `lookahead-analysis` can only verify / falsify the trades it calculated and verified.
If the strategy has many different signals / signal types, it's up to you to select appropriate parameters to ensure that all signals have triggered at least once. Not triggered signals will not have been verified.
This could lead to a false-negative (the strategy will then be reported as non-biased).
- `lookahead-analysis` has access to everything that backtesting has too.
Please don't provoke any configs like enabling position stacking.
If you decide to do so, then make doubly sure that you won't ever run out of `max_open_trades` amount and neither leftover money in your wallet.

View File

@@ -11,6 +11,9 @@
{% endif %}
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" {{ hidden }}>
<div class="md-sidebar__scrollwrap">
<div id="widget-wrapper">
</div>
<div class="md-sidebar__inner">
{% include "partials/nav.html" %}
</div>
@@ -41,4 +44,25 @@
<script src="https://code.jquery.com/jquery-3.4.1.min.js"
integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script>
<!-- Load binance SDK -->
<script async defer src="https://public.bnbstatic.com/static/js/broker-sdk/broker-sdk@1.0.0.min.js"></script>
<script>
window.onload = function () {
var sidebar = document.getElementById('widget-wrapper')
var newDiv = document.createElement("div");
newDiv.id = "widget";
try {
sidebar.prepend(newDiv);
window.binanceBrokerPortalSdk.initBrokerSDK('#widget', {
apiHost: 'https://www.binance.com',
brokerId: 'R4BD3S82',
slideTime: 4e4,
});
} catch(err) {
console.log(err)
}
}
</script>
{% endblock %}

View File

@@ -2,14 +2,6 @@
This page explains how to plot prices, indicators and profits.
!!! Warning "Deprecated"
The commands described in this page (`plot-dataframe`, `plot-profit`) should be considered deprecated and are in maintenance mode.
This is mostly for the performance problems even medium sized plots can cause, but also because "store a file and open it in a browser" isn't very intuitive from a UI perspective.
While there are no immediate plans to remove them, they are not actively maintained - and may be removed short-term should major changes be required to keep them working.
Please use [FreqUI](freq-ui.md) for plotting needs, which doesn't struggle with the same performance problems.
## Installation / Setup
Plotting modules use the Plotly library. You can install / upgrade this by running the following command:

View File

@@ -42,14 +42,14 @@ Enable subscribing to an instance by adding the `external_message_consumer` sect
| `producers` | **Required.** List of producers <br> **Datatype:** Array.
| `producers.name` | **Required.** Name of this producer. This name must be used in calls to `get_producer_pairs()` and `get_producer_df()` if more than one producer is used.<br> **Datatype:** string
| `producers.host` | **Required.** The hostname or IP address from your producer.<br> **Datatype:** string
| `producers.port` | **Required.** The port matching the above host.<br>*Defaults to `8080`.*<br> **Datatype:** Integer
| `producers.port` | **Required.** The port matching the above host.<br> **Datatype:** string
| `producers.secure` | **Optional.** Use ssl in websockets connection. Default False.<br> **Datatype:** string
| `producers.ws_token` | **Required.** `ws_token` as configured on the producer.<br> **Datatype:** string
| | **Optional settings**
| `wait_timeout` | Timeout until we ping again if no message is received. <br>*Defaults to `300`.*<br> **Datatype:** Integer - in seconds.
| `ping_timeout` | Ping timeout <br>*Defaults to `10`.*<br> **Datatype:** Integer - in seconds.
| `wait_timeout` | Ping timeout <br>*Defaults to `10`.*<br> **Datatype:** Integer - in seconds.
| `sleep_time` | Sleep time before retrying to connect.<br>*Defaults to `10`.*<br> **Datatype:** Integer - in seconds.
| `remove_entry_exit_signals` | Remove signal columns from the dataframe (set them to 0) on dataframe receipt.<br>*Defaults to `false`.*<br> **Datatype:** Boolean.
| `remove_entry_exit_signals` | Remove signal columns from the dataframe (set them to 0) on dataframe receipt.<br>*Defaults to `10`.*<br> **Datatype:** Integer - in seconds.
| `message_size_limit` | Size limit per message<br>*Defaults to `8`.*<br> **Datatype:** Integer - Megabytes.
Instead of (or as well as) calculating indicators in `populate_indicators()` the follower instance listens on the connection to a producer instance's messages (or multiple producer instances in advanced configurations) and requests the producer's most recently analyzed dataframes for each pair in the active whitelist.

View File

@@ -1,119 +0,0 @@
# Recursive analysis
This page explains how to validate your strategy for inaccuracies due to recursive issues with certain indicators.
A recursive formula defines any term of a sequence relative to its preceding term(s). An example of a recursive formula is a<sub>n</sub> = a<sub>n-1</sub> + b.
Why does this matter for Freqtrade? In backtesting, the bot will get full data of the pairs according to the timerange specified. But in a dry/live run, the bot will be limited by the amount of data each exchanges gives.
For example, to calculate a very basic indicator called `steps`, the first row's value is always 0, while the following rows' values are equal to the value of the previous row plus 1. If I were to calculate it using the latest 1000 candles, then the `steps` value of the first row is 0, and the `steps` value at the last closed candle is 999.
What happens if the calculation is using only the latest 500 candles? Then instead of 999, the `steps` value at last closed candle is 499. The difference of the value means your backtest result can differ from your dry/live run result.
The `recursive-analysis` command requires historic data to be available. To learn how to get data for the pairs and exchange you're interested in,
head over to the [Data Downloading](data-download.md) section of the documentation.
This command is built upon preparing different lengths of data and calculates indicators based on them.
This does not backtest the strategy itself, but rather only calculates the indicators. After calculating the indicators of different startup candle values (`startup_candle_count`) are done, the values of last rows across all specified `startup_candle_count` are compared to see how much variance they show compared to the base calculation.
Command settings:
- Use the `-p` option to set your desired pair to analyze. Since we are only looking at indicator values, using more than one pair is redundant. Preferably use a pair with a relatively high price and at least moderate volatility, such as BTC or ETH, to avoid rounding issues that can make the results inaccurate. If no pair is set on the command, the pair used for this analysis is the first pair in the whitelist.
- It is recommended to set a long timerange (at least 5000 candles) so that the initial indicators' calculation that is going to be used as a benchmark has very small or no recursive issues itself. For example, for a 5m timeframe, a timerange of 5000 candles would be equal to 18 days.
- `--cache` is forced to "none" to avoid loading previous indicators calculation automatically.
In addition to the recursive formula check, this command also carries out a simple lookahead bias check on the indicator values only. For a full lookahead check, use [Lookahead-analysis](lookahead-analysis.md).
## Recursive-analysis command reference
```
usage: freqtrade recursive-analysis [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH] [-s NAME]
[--strategy-path PATH]
[--recursive-strategy-search]
[--freqaimodel NAME]
[--freqaimodel-path PATH] [-i TIMEFRAME]
[--timerange TIMERANGE]
[--data-format-ohlcv {json,jsongz,hdf5,feather,parquet}]
[-p PAIR]
[--freqai-backtest-live-models]
[--startup-candle STARTUP_CANDLES [STARTUP_CANDLES ...]]
optional arguments:
-h, --help show this help message and exit
-i TIMEFRAME, --timeframe TIMEFRAME
Specify timeframe (`1m`, `5m`, `30m`, `1h`, `1d`).
--data-format-ohlcv {json,jsongz,hdf5,feather,parquet}
Storage format for downloaded candle (OHLCV) data.
(default: `feather`).
-p PAIR, --pairs PAIR
Limit command to this pair.
--startup-candle STARTUP_CANDLE [STARTUP_CANDLE ...]
Provide a space-separated list of startup_candle_count to
be checked. Default : `199 399 499 999 1999`.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default:
`userdir/config.json` or `config.json` whichever
exists). Multiple --config options may be used. Can be
set to `-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
Strategy arguments:
-s NAME, --strategy NAME
Specify strategy class name which will be used by the
bot.
--strategy-path PATH Specify additional strategy lookup path.
--timerange TIMERANGE
Specify what timerange of data to use.
```
### Why are odd-numbered default startup candles used?
The default value for startup candles are odd numbers. When the bot fetches candle data from the exchange's API, the last candle is the one being checked by the bot and the rest of the data are the "startup candles".
For example, Binance allows 1000 candles per API call. When the bot receives 1000 candles, the last candle is the "current candle", and the preceding 999 candles are the "startup candles". By setting the startup candle count as 1000 instead of 999, the bot will try to fetch 1001 candles instead. The exchange API will then send candle data in a paginated form, i.e. in case of the Binance API, this will be two groups- one of length 1000 and another of length 1. This results in the bot thinking the strategy needs 1001 candles of data, and so it will download 2000 candles worth of data instead, which means there will be 1 "current candle" and 1999 "startup candles".
Furthermore, exchanges limit the number of consecutive bulk API calls, e.g. Binance allows 5 calls. In this case, only 5000 candles can be downloaded from Binance API without hitting the API rate limit, which means the max `startup_candle_count` you can have is 4999.
Please note that this candle limit may be changed in the future by the exchanges without any prior notice.
### How does the command work?
- Firstly an initial indicator calculation is carried out using the supplied timerange to generate a benchmark for indicator values.
- After setting the benchmark it will then carry out additional runs for each of the different startup candle count values.
- The command will then compare the indicator values at the last candle rows and report the differences in a table.
## Understanding the recursive-analysis output
This is an example of an output results table where at least one indicator has a recursive formula issue:
```
| indicators | 20 | 40 | 80 | 100 | 150 | 300 | 999 |
|--------------+---------+---------+--------+--------+---------+---------+--------|
| rsi_30 | nan% | -6.025% | 0.612% | 0.828% | -0.140% | 0.000% | 0.000% |
| rsi_14 | 24.141% | -0.876% | 0.070% | 0.007% | -0.000% | -0.000% | - |
```
The column headers indicate the different `startup_candle_count` used in the analysis. The values in the table indicate the variance of the calculated indicators compared to the benchmark value.
`nan%` means the value of that indicator cannot be calculated due to lack of data. In this example, you cannot calculate RSI with length 30 with just 21 candles (1 current candle + 20 startup candles).
Users should assess the table per indicator to decide if the specified `startup_candle_count` results in a sufficiently small variance so that the indicator does not have any effect on entries and/or exits.
As such, aiming for absolute zero variance (shown by `-` value) might not be the best option, because some indicators might require you to use such a long `startup_candle_count` to have zero variance.
## Caveats
- `recursive-analysis` will only calculate and compare the indicator values at the last row. The output table reports the percentage differences between the different startup candle count calculations and the original benchmark calculation. Whether it has any actual impact on your entries and exits is not included.
- The ideal scenario is that indicators will have no variance (or at least very close to 0%) despite the startup candle being varied. In reality, indicators such as EMA are using a recursive formula to calculate indicator values, so the goal is not necessarily to have zero percentage variance, but to have the variance low enough (and therefore `startup_candle_count` high enough) that the recursion inherent in the indicator will not have any real impact on trading decisions.
- `recursive-analysis` will only run calculations on `populate_indicators` and `@informative` decorator(s). If you put any indicator calculation on `populate_entry_trend` or `populate_exit_trend`, it won't be calculated.

View File

@@ -1,6 +1,6 @@
markdown==3.6
mkdocs==1.6.0
mkdocs-material==9.5.27
markdown==3.3.7
mkdocs==1.4.2
mkdocs-material==8.5.11
mdx_truly_sane_lists==1.3
pymdown-extensions==10.8.1
jinja2==3.1.4
pymdown-extensions==9.9
jinja2==3.1.2

View File

@@ -1,8 +1,19 @@
# REST API
# REST API & FreqUI
## FreqUI
FreqUI now has it's own dedicated [documentation section](frequi.md) - please refer to that section for all information regarding the FreqUI.
Freqtrade provides a builtin webserver, which can serve [FreqUI](https://github.com/freqtrade/frequi), the freqtrade UI.
By default, the UI is not included in the installation (except for docker images), and must be installed explicitly with `freqtrade install-ui`.
This same command can also be used to update freqUI, should there be a new release.
Once the bot is started in trade / dry-run mode (with `freqtrade trade`) - the UI will be available under the configured port below (usually `http://127.0.0.1:8080`).
!!! info "Alpha release"
FreqUI is still considered an alpha release - if you encounter bugs or inconsistencies please open a [FreqUI issue](https://github.com/freqtrade/frequi/issues/new/choose).
!!! Note "developers"
Developers should not use this method, but instead use the method described in the [freqUI repository](https://github.com/freqtrade/frequi) to get the source-code of freqUI.
## Configuration
@@ -81,20 +92,17 @@ Make sure that the following 2 lines are available in your docker-compose file:
```
!!! Danger "Security warning"
By using `"8080:8080"` (or `"0.0.0.0:8080:8080"`) in the docker port mapping, the API will be available to everyone connecting to the server under the correct port, so others may be able to control your bot.
This **may** be safe if you're running the bot in a secure environment (like your home network), but it's not recommended to expose the API to the internet.
By using `8080:8080` in the docker port mapping, the API will be available to everyone connecting to the server under the correct port, so others may be able to control your bot.
## Rest API
### Consuming the API
You can consume the API by using `freqtrade-client` (also available as `scripts/rest_client.py`).
This command can be installed independent of the bot by using `pip install freqtrade-client`.
This module is designed to be lightweight, and only depends on the `requests` and `python-rapidjson` modules, skipping all heavy dependencies freqtrade otherwise needs.
You can consume the API by using the script `scripts/rest_client.py`.
The client script only requires the `requests` module, so Freqtrade does not need to be installed on the system.
``` bash
freqtrade-client <command> [optional parameters]
python3 scripts/rest_client.py <command> [optional parameters]
```
By default, the script assumes `127.0.0.1` (localhost) and port `8080` to be used, however you can specify a configuration file to override this behaviour.
@@ -115,35 +123,9 @@ By default, the script assumes `127.0.0.1` (localhost) and port `8080` to be use
```
``` bash
freqtrade-client --config rest_config.json <command> [optional parameters]
python3 scripts/rest_client.py --config rest_config.json <command> [optional parameters]
```
Commands with many arguments may require keyword arguments (for clarity) - which can be provided as follows:
``` bash
freqtrade-client --config rest_config.json forceenter BTC/USDT long enter_tag=GutFeeling
```
This method will work for all arguments - check the "show" command for a list of available parameters.
??? Note "Programmatic use"
The `freqtrade-client` package (installable independent of freqtrade) can be used in your own scripts to interact with the freqtrade API.
to do so, please use the following:
``` python
from freqtrade_client import FtRestClient
client = FtRestClient(server_url, username, password)
# Get the status of the bot
ping = client.ping()
print(ping)
# ...
```
For a full list of available commands, please refer to the list below.
### Available endpoints
| Command | Description |
@@ -155,29 +137,21 @@ This method will work for all arguments - check the "show" command for a list of
| `reload_config` | Reloads the configuration file.
| `trades` | List last trades. Limited to 500 trades per call.
| `trade/<tradeid>` | Get specific trade.
| `trades/<tradeid>` | DELETE - Remove trade from the database. Tries to close open orders. Requires manual handling of this trade on the exchange.
| `trades/<tradeid>/open-order` | DELETE - Cancel open order for this trade.
| `trades/<tradeid>/reload` | GET - Reload a trade from the Exchange. Only works in live, and can potentially help recover a trade that was manually sold on the exchange.
| `delete_trade <trade_id>` | Remove trade from the database. Tries to close open orders. Requires manual handling of this trade on the exchange.
| `show_config` | Shows part of the current configuration with relevant settings to operation.
| `logs` | Shows last log messages.
| `status` | Lists all open trades.
| `count` | Displays number of trades used and available.
| `entries [pair]` | Shows profit statistics for each enter tags for given pair (or all pairs if pair isn't given). Pair is optional.
| `exits [pair]` | Shows profit statistics for each exit reasons for given pair (or all pairs if pair isn't given). Pair is optional.
| `mix_tags [pair]` | Shows profit statistics for each combinations of enter tag + exit reasons for given pair (or all pairs if pair isn't given). Pair is optional.
| `locks` | Displays currently locked pairs.
| `delete_lock <lock_id>` | Deletes (disables) the lock by id.
| `locks add <pair>, <until>, [side], [reason]` | Locks a pair until "until". (Until will be rounded up to the nearest timeframe).
| `profit` | Display a summary of your profit/loss from close trades and some stats about your performance.
| `forceexit <trade_id> [order_type] [amount]` | Instantly exits the given trade (ignoring `minimum_roi`), using the given order type ("market" or "limit", uses your config setting if not specified), and the chosen amount (full sell if not specified).
| `forceexit <trade_id>` | Instantly exits the given trade (Ignoring `minimum_roi`).
| `forceexit all` | Instantly exits all open trades (Ignoring `minimum_roi`).
| `forceenter <pair> [rate]` | Instantly enters the given pair. Rate is optional. (`force_entry_enable` must be set to True)
| `forceenter <pair> <side> [rate]` | Instantly longs or shorts the given pair. Rate is optional. (`force_entry_enable` must be set to True)
| `performance` | Show performance of each finished trade grouped by pair.
| `balance` | Show account balance per currency.
| `daily <n>` | Shows profit or loss per day, over the last n days (n defaults to 7).
| `weekly <n>` | Shows profit or loss per week, over the last n days (n defaults to 4).
| `monthly <n>` | Shows profit or loss per month, over the last n days (n defaults to 3).
| `stats` | Display a summary of profit / loss reasons as well as average holding times.
| `whitelist` | Show the current whitelist.
| `blacklist [pair]` | Show the current blacklist, or adds a pair to the blacklist.
@@ -189,7 +163,7 @@ This method will work for all arguments - check the "show" command for a list of
| `strategy <strategy>` | Get specific Strategy content. **Alpha**
| `available_pairs` | List available backtest data. **Alpha**
| `version` | Show version.
| `sysinfo` | Show information about the system load.
| `sysinfo` | Show informations about the system load.
| `health` | Show bot health (last bot loop).
!!! Warning "Alpha status"
@@ -198,7 +172,7 @@ This method will work for all arguments - check the "show" command for a list of
Possible commands can be listed from the rest-client script using the `help` command.
``` bash
freqtrade-client help
python3 scripts/rest_client.py help
```
``` output
@@ -218,11 +192,6 @@ blacklist
:param add: List of coins to add (example: "BNB/BTC")
cancel_open_order
Cancel open order for trade.
:param trade_id: Cancels open orders for this trade.
count
Return the amount of open trades.
@@ -305,6 +274,7 @@ reload_config
Reload configuration.
show_config
Returns part of the configuration, relevant for trading operations.
start
@@ -350,7 +320,6 @@ version
whitelist
Show the current whitelist.
```
### Message WebSocket
@@ -455,7 +424,7 @@ To properly configure your reverse proxy (securely), please consult it's documen
- **Caddy**: Caddy v2 supports websockets out of the box, see the [documentation](https://caddyserver.com/docs/v2-upgrade#proxy)
!!! Tip "SSL certificates"
You can use tools like certbot to setup ssl certificates to access your bot's UI through encrypted connection by using any of the above reverse proxies.
You can use tools like certbot to setup ssl certificates to access your bot's UI through encrypted connection by using any fo the above reverse proxies.
While this will protect your data in transit, we do not recommend to run the freqtrade API outside of your private network (VPN, SSH tunnel).
### OpenAPI interface
@@ -488,4 +457,42 @@ Since the access token has a short timeout (15 min) - the `token/refresh` reques
{"access_token":"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpYXQiOjE1ODkxMTk5NzQsIm5iZiI6MTU4OTExOTk3NCwianRpIjoiMDBjNTlhMWUtMjBmYS00ZTk0LTliZjAtNWQwNTg2MTdiZDIyIiwiZXhwIjoxNTg5MTIwODc0LCJpZGVudGl0eSI6eyJ1IjoiRnJlcXRyYWRlciJ9LCJmcmVzaCI6ZmFsc2UsInR5cGUiOiJhY2Nlc3MifQ.1seHlII3WprjjclY6DpRhen0rqdF4j6jbvxIhUFaSbs"}
```
--8<-- "includes/cors.md"
### CORS
This whole section is only necessary in cross-origin cases (where you multiple bot API's running on `localhost:8081`, `localhost:8082`, ...), and want to combine them into one FreqUI instance.
??? info "Technical explanation"
All web-based front-ends are subject to [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS) - Cross-Origin Resource Sharing.
Since most of the requests to the Freqtrade API must be authenticated, a proper CORS policy is key to avoid security problems.
Also, the standard disallows `*` CORS policies for requests with credentials, so this setting must be set appropriately.
Users can allow access from different origin URL's to the bot API via the `CORS_origins` configuration setting.
It consists of a list of allowed URL's that are allowed to consume resources from the bot's API.
Assuming your application is deployed as `https://frequi.freqtrade.io/home/` - this would mean that the following configuration becomes necessary:
```jsonc
{
//...
"jwt_secret_key": "somethingrandom",
"CORS_origins": ["https://frequi.freqtrade.io"],
//...
}
```
In the following (pretty common) case, FreqUI is accessible on `http://localhost:8080/trade` (this is what you see in your navbar when navigating to freqUI).
![freqUI url](assets/frequi_url.png)
The correct configuration for this case is `http://localhost:8080` - the main part of the URL including the port.
```jsonc
{
//...
"jwt_secret_key": "somethingrandom",
"CORS_origins": ["http://localhost:8080"],
//...
}
```
!!! Note
We strongly recommend to also set `jwt_secret_key` to something random and known only to yourself to avoid unauthorized access to your bot.

121
docs/sandbox-testing.md Normal file
View File

@@ -0,0 +1,121 @@
# Sandbox API testing
Some exchanges provide sandboxes or testbeds for risk-free testing, while running the bot against a real exchange.
With some configuration, freqtrade (in combination with ccxt) provides access to these.
This document is an overview to configure Freqtrade to be used with sandboxes.
This can be useful to developers and trader alike.
!!! Warning
Sandboxes usually have very low volume, and either a very wide spread, or no orders available at all.
Therefore, sandboxes will usually not do a good job of showing you how a strategy would work in real trading.
## Exchanges known to have a sandbox / testnet
* [binance](https://testnet.binance.vision/)
* [coinbasepro](https://public.sandbox.pro.coinbase.com)
* [gemini](https://exchange.sandbox.gemini.com/)
* [huobipro](https://www.testnet.huobi.pro/)
* [kucoin](https://sandbox.kucoin.com/)
* [phemex](https://testnet.phemex.com/)
!!! Note
We did not test correct functioning of all of the above testnets. Please report your experiences with each sandbox.
---
## Configure a Sandbox account
When testing your API connectivity, make sure to use the appropriate sandbox / testnet URL.
In general, you should follow these steps to enable an exchange's sandbox:
* Figure out if an exchange has a sandbox (most likely by using google or the exchange's support documents)
* Create a sandbox account (often the sandbox-account requires separate registration)
* [Add some test assets to account](#add-test-funds)
* Create API keys
### Add test funds
Usually, sandbox exchanges allow depositing funds directly via web-interface.
You should make sure to have a realistic amount of funds available to your test-account, so results are representable of your real account funds.
!!! Warning
Test exchanges will **NEVER** require your real credit card or banking details!
## Configure freqtrade to use a exchange's sandbox
### Sandbox URLs
Freqtrade makes use of CCXT which in turn provides a list of URLs to Freqtrade.
These include `['test']` and `['api']`.
* `[Test]` if available will point to an Exchanges sandbox.
* `[Api]` normally used, and resolves to live API target on the exchange.
To make use of sandbox / test add "sandbox": true, to your config.json
```json
"exchange": {
"name": "coinbasepro",
"sandbox": true,
"key": "5wowfxemogxeowo;heiohgmd",
"secret": "/ZMH1P62rCVmwefewrgcewX8nh4gob+lywxfwfxwwfxwfNsH1ySgvWCUR/w==",
"password": "1bkjfkhfhfu6sr",
"outdated_offset": 5
"pair_whitelist": [
"BTC/USD"
]
},
"datadir": "user_data/data/coinbasepro_sandbox"
```
Also the following information:
* api-key (created for the sandbox webpage)
* api-secret (noted earlier)
* password (the passphrase - noted earlier)
!!! Tip "Different data directory"
We also recommend to set `datadir` to something identifying downloaded data as sandbox data, to avoid having sandbox data mixed with data from the real exchange.
This can be done by adding the `"datadir"` key to the configuration.
Now, whenever you use this configuration, your data directory will be set to this directory.
---
## You should now be ready to test your sandbox
Ensure Freqtrade logs show the sandbox URL, and trades made are shown in sandbox. Also make sure to select a pair which shows at least some decent value (which very often is BTC/<somestablecoin>).
## Common problems with sandbox exchanges
Sandbox exchange instances often have very low volume, which can cause some problems which usually are not seen on a real exchange instance.
### Old Candles problem
Since Sandboxes often have low volume, candles can be quite old and show no volume.
To disable the error "Outdated history for pair ...", best increase the parameter `"outdated_offset"` to a number that seems realistic for the sandbox you're using.
### Unfilled orders
Sandboxes often have very low volumes - which means that many trades can go unfilled, or can go unfilled for a very long time.
To mitigate this, you can try to match the first order on the opposite orderbook side using the following configuration:
``` jsonc
"order_types": {
"entry": "limit",
"exit": "limit"
// ...
},
"entry_pricing": {
"price_side": "other",
// ...
},
"exit_pricing":{
"price_side": "other",
// ...
},
```
The configuration is similar to the suggested configuration for market orders - however by using limit-orders you can avoid moving the price too much, and you can set the worst price you might get.

Some files were not shown because too many files have changed in this diff Show More