This will explicitly fail if a file (or an invalid symlink) is present.
Freqtrade requires these files to be valid files - so failing here is correct behavior.
closes#10720
We can't rely on the "trades" subarray from the order
to contain everything we need
As such, we need to ensure that required properties are present and not None.
closes#10398
The help command doesn't have consistent formatting.
- /stop: "Description" doesn't conform to the other formatting.
- Statistics header isn't on it's own line.
> The built-in version is signed by Microsoft while newer versions are community-maintained and signed with a different certificate, causing Install-Module to sometimes throw a error requiring us to accept the new publisher certificate.
source: https://pester.dev/docs/introduction/installation#windows
No default value is specified in the docs for the processing_mode, making it unclear that the default behaviour is to filter out pairs, rather than append.
Fix logical error in the conditional checks for model classes. The `elif` statement that looks for "lightgbm.sklearn" or "xgb" in the model class string is now broken into two separate conditions because the old condition would always evaluate to `True` due to the non-empty string "xgb".
This will tell freqtrade to output a pickled dictionary of strategy, pairs and corresponding
DataFrame of the candles that resulted in buy signals. Depending on how many buys your strategy
makes, this file may get quite large, so periodically check your `user_data/backtest_results`
folder to delete old exports.
DataFrame of the candles that resulted in entry and exit signals.
Depending on how many entries your strategy makes, this file may get quite large, so periodically check your `user_data/backtest_results` folder to delete old exports.
Before running your next backtest, make sure you either delete your old backtest results or run
backtesting with the `--cache none` option to make sure no cached results are used.
If all goes well, you should now see a `backtest-result-{timestamp}_signals.pkl` file in the
`user_data/backtest_results` folder.
If all goes well, you should now see a `backtest-result-{timestamp}_signals.pkl` and `backtest-result-{timestamp}_exited.pkl` files in the `user_data/backtest_results` folder.
To analyze the entry/exit tags, we now need to use the `freqtrade backtesting-analysis` command
with `--analysis-groups` option provided with space-separated arguments:
@@ -103,6 +101,10 @@ The indicators have to be present in your strategy's main DataFrame (either for
timeframe or for informative timeframes) otherwise they will simply be ignored in the script
output.
!!! Note "Indicator List"
The indicator values will be displayed for both entry and exit points. If `--indicator-list all` is specified,
only the indicators at the entry point will be shown to avoid excessively large lists, which could occur depending on the strategy.
There are a range of candle and trade-related fields that are included in the analysis so are
automatically accessible by including them on the indicator-list, and these include:
@@ -118,6 +120,53 @@ automatically accessible by including them on the indicator-list, and these incl
- **profit_ratio :** trade profit ratio
- **profit_abs :** absolute profit return of the trade
`min_rate`, `max_rate`, `is_open`, `enter_tag`, `leverage`, `is_short`, `open_timestamp`, `close_timestamp` and `orders`
#### Filtering Indicators Based on Entry or Exit Signals
The `--indicator-list` option, by default, displays indicator values for both entry and exit signals. To filter the indicator values exclusively for entry signals, you can use the `--entry-only` argument. Similarly, to display indicator values only at exit signals, use the `--exit-only` argument.
Example: Display indicator values at entry signals:
This guide walks you through utilizing public trade data for advanced orderflow analysis in Freqtrade.
!!! Warning "Experimental Feature"
The orderflow feature is currently in beta and may be subject to changes in future releases. Please report any issues or feedback on the [Freqtrade GitHub repository](https://github.com/freqtrade/freqtrade/issues).
!!! Warning "Performance"
Orderflow requires raw trades data. This data is rather large, and can cause a slow initial startup, when freqtrade needs to download the trades data for the last X candles. Additionally, enabling this feature will cause increased memory usage. Please ensure to have sufficient resources available.
## Getting Started
### Enable Public Trades
In your `config.json` file, set the `use_public_trades` option to true under the `exchange` section.
```json
"exchange":{
...
"use_public_trades":true,
}
```
### Configure Orderflow Processing
Define your desired settings for orderflow processing within the orderflow section of config.json. Here, you can adjust factors like:
-`cache_size`: How many previous orderflow candles are saved into cache instead of calculated every new candle
-`max_candles`: Filter how many candles would you like to get trades data for.
-`scale`: This controls the price bin size for the footprint chart.
-`stacked_imbalance_range`: Defines the minimum consecutive imbalanced price levels required for consideration.
-`imbalance_volume`: Filters out imbalances with volume below this threshold.
-`imbalance_ratio`: Filters out imbalances with a ratio (difference between ask and bid volume) lower than this value.
```json
"orderflow":{
"cache_size":1000,
"max_candles":1500,
"scale":0.5,
"stacked_imbalance_range":3,// needs at least this amount of imbalance next to each other
"imbalance_volume":1,// filters out below
"imbalance_ratio":3// filters out ratio lower than
},
```
## Downloading Trade Data for Backtesting
To download historical trade data for backtesting, use the --dl-trades flag with the freqtrade download-data command.
Not all exchanges provide public trade data. For supported exchanges, freqtrade will warn you if public trade data is not available if you start downloading data with the `--dl-trades` flag.
## Accessing Orderflow Data
Once activated, several new columns become available in your dataframe:
``` python
dataframe["trades"] # Contains information about each individual trade.
dataframe["orderflow"] # Represents a footprint chart dict (see below)
dataframe["imbalances"] # Contains information about imbalances in the order flow.
dataframe["bid"] # Total bid volume
dataframe["ask"] # Total ask volume
dataframe["delta"] # Difference between ask and bid volume.
dataframe["min_delta"] # Minimum delta within the candle
dataframe["max_delta"] # Maximum delta within the candle
dataframe["total_trades"] # Total number of trades
dataframe["stacked_imbalances_bid"] # Price level of stacked bid imbalance
dataframe["stacked_imbalances_ask"] # Price level of stacked ask imbalance
```
You can access these columns in your strategy code for further analysis. Here's an example:
This column provides a detailed breakdown of buy and sell orders at different price levels, offering valuable insights into order flow dynamics. The `scale` parameter in your configuration determines the price bin size for this representation
The `orderflow` column contains a dict with the following structure:
``` output
{
"price": {
"bid_amount": 0.0,
"ask_amount": 0.0,
"bid": 0,
"ask": 0,
"delta": 0.0,
"total_volume": 0.0,
"total_trades": 0
}
}
```
#### Orderflow column explanation
- key: Price bin - binned at `scale` intervals
- `bid_amount`: Total volume bought at each price level.
- `ask_amount`: Total volume sold at each price level.
- `bid`: Number of buy orders at each price level.
- `ask`: Number of sell orders at each price level.
- `delta`: Difference between ask and bid volume at each price level.
- `total_volume`: Total volume (ask amount + bid amount) at each price level.
- `total_trades`: Total number of trades (ask + bid) at each price level.
By leveraging these features, you can gain valuable insights into market sentiment and potential trading opportunities based on order flow analysis.
### Raw trades data (`dataframe["trades"]`)
List with the individual trades that occurred during the candle. This data can be used for more granular analysis of order flow dynamics.
Each individual entry contains a dict with the following keys:
- `timestamp`: Timestamp of the trade.
- `date`: Date of the trade.
- `price`: Price of the trade.
- `amount`: Volume of the trade.
- `side`: Buy or sell.
- `id`: Unique identifier for the trade.
- `cost`: Total cost of the trade (price * amount).
### Imbalances (`dataframe["imbalances"]`)
This column provides a dict with information about imbalances in the order flow. An imbalance occurs when there is a significant difference between the ask and bid volume at a given price level.
Each row looks as follows - with price as index, and the corresponding bid and ask imbalance values as columns
You can use whatever naming convention you want, freqtrade1 and 2 are arbitrary. Note, that you will need to use different database files, port mappings and telegram configurations for each instance, as mentioned above.
## Use a different database system
Freqtrade is using SQLAlchemy, which supports multiple different database systems. As such, a multitude of database systems should be supported.
Freqtrade does not depend or install any additional database driver. Please refer to the [SQLAlchemy docs](https://docs.sqlalchemy.org/en/14/core/engines.html#database-urls) on installation instructions for the respective database systems.
The following systems have been tested and are known to work with freqtrade:
* sqlite (default)
* PostgreSQL
* MariaDB
!!! Warning
By using one of the below database systems, you acknowledge that you know how to manage such a system. The freqtrade team will not provide any support with setup or maintenance (or backups) of the below database systems.
Freqtrade will automatically create the tables necessary upon startup.
If you're running different instances of Freqtrade, you must either setup one database per Instance or use different users / schemas for your connections.
### MariaDB / MySQL
Freqtrade supports MariaDB by using SQLAlchemy, which supports multiple different database systems.
@@ -452,6 +454,7 @@ It contains some useful key metrics about performance of your strategy on backte
-`Backtesting from` / `Backtesting to`: Backtesting range (usually defined with the `--timerange` option).
-`Max open trades`: Setting of `max_open_trades` (or `--max-open-trades`) - or number of pairs in the pairlist (whatever is lower).
-`Trading Mode`: Spot or Futures trading.
-`Total/Daily Avg Trades`: Identical to the total trades of the backtest output table / Total trades divided by the backtesting duration in days (this will give you information about how many trades to expect from the strategy).
-`Starting balance`: Start balance - as given by dry-run-wallet (config or command line).
-`Final balance`: Final balance - starting balance + absolute profit.
@@ -530,10 +533,10 @@ You can then load the trades to perform further analysis as shown in the [data a
Since backtesting lacks some detailed information about what happens within a candle, it needs to take a few assumptions:
- Exchange [trading limits](#trading-limits-in-backtesting) are respected
- Entries happen at open-price
- Entries happen at open-price unless a custom price logic has been specified
- All orders are filled at the requested price (no slippage) as long as the price is within the candle's high/low range
- Exit-signal exits happen at open-price of the consecutive candle
- Exits don't free their trade slot for a new trade until the next candle
- Exits free their trade slot for a new trade with a different pair
- Exit-signal is favored over Stoploss, because exit-signals are assumed to trigger on candle's open
- ROI
- Exits are compared to high - but the ROI value is used (e.g. ROI = 2%, high=5% - so the exit will be at 2%)
@@ -631,10 +634,10 @@ Detailed output for all strategies one after the other will be available, so mak
@@ -123,6 +123,19 @@ This is similar to using multiple `--config` parameters, but simpler in usage as
If multiple files are in the `add_config_files` section, then they will be assumed to be at identical levels, having the last occurrence override the earlier config (unless a parent already defined such a key).
## Editor autocomplete and validation
If you are using an editor that supports JSON schema, you can use the schema provided by Freqtrade to get autocompletion and validation of your configuration file by adding the following line to the top of your configuration file:
The develop schema is available as `https://schema.freqtrade.io/schema_dev.json` - though we recommend to stick to the stable version for the best experience.
## Configuration parameters
The table below will list all configuration parameters available.
@@ -204,11 +217,11 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `exchange.uid` | API uid to use for the exchange. Only required when you are in production mode and for exchanges that use uid for API requests.<br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `exchange.pair_whitelist` | List of pairs to use by the bot for trading and to check for potential trades during backtesting. Supports regex pairs as `.*/BTC`. Not used by VolumePairList. [More information](plugins.md#pairlists-and-pairlist-handlers). <br> **Datatype:** List
| `exchange.pair_blacklist` | List of pairs the bot must absolutely avoid for trading and backtesting. [More information](plugins.md#pairlists-and-pairlist-handlers). <br> **Datatype:** List
| `exchange.ccxt_config` | Additional CCXT parameters passed to both ccxt instances (sync and async). This is usually the correct place for additional ccxt configurations. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation). Please avoid adding exchange secrets here (use the dedicated fields instead), as they may be contained in logs. <br> **Datatype:** Dict
| `exchange.ccxt_sync_config` | Additional CCXT parameters passed to the regular (sync) ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation) <br> **Datatype:** Dict
| `exchange.ccxt_async_config` | Additional CCXT parameters passed to the async ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation) <br> **Datatype:** Dict
| `exchange.ccxt_config` | Additional CCXT parameters passed to both ccxt instances (sync and async). This is usually the correct place for additional ccxt configurations. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://docs.ccxt.com/#/README?id=overriding-exchange-properties-upon-instantiation). Please avoid adding exchange secrets here (use the dedicated fields instead), as they may be contained in logs. <br> **Datatype:** Dict
| `exchange.ccxt_sync_config` | Additional CCXT parameters passed to the regular (sync) ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://docs.ccxt.com/#/README?id=overriding-exchange-properties-upon-instantiation) <br> **Datatype:** Dict
| `exchange.ccxt_async_config` | Additional CCXT parameters passed to the async ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://docs.ccxt.com/#/README?id=overriding-exchange-properties-upon-instantiation) <br> **Datatype:** Dict
| `exchange.enable_ws` | Enable the usage of Websockets for the exchange. <br>[More information](#consuming-exchange-websockets).<br>*Defaults to `true`.* <br> **Datatype:** Boolean
| `exchange.markets_refresh_interval` | The interval in minutes in which markets are reloaded. <br>*Defaults to `60` minutes.* <br> **Datatype:** Positive Integer
| `exchange.skip_pair_validation` | Skip pairlist validation on startup.<br>*Defaults to `false`*<br> **Datatype:** Boolean
| `exchange.skip_open_order_update` | Skips open order updates on startup should the exchange cause problems. Only relevant in live conditions.<br>*Defaults to `false`*<br> **Datatype:** Boolean
| `exchange.unknown_fee_rate` | Fallback value to use when calculating trading fees. This can be useful for exchanges which have fees in non-tradable currencies. The value provided here will be multiplied with the "fee cost".<br>*Defaults to `None`<br> **Datatype:** float
| `exchange.log_responses` | Log relevant exchange responses. For debug mode only - use with care.<br>*Defaults to `false`*<br> **Datatype:** Boolean
@@ -216,7 +229,6 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| | **Plugins**
| `edge.*` | Please refer to [edge configuration document](edge.md) for detailed explanation of all possible configuration options.
| `pairlists` | Define one or more pairlists to be used. [More information](plugins.md#pairlists-and-pairlist-handlers). <br>*Defaults to `StaticPairList`.* <br> **Datatype:** List of Dicts
| `protections` | Define one or more protections to be used. [More information](plugins.md#protections). <br> **Datatype:** List of Dicts
| | **Telegram**
| `telegram.enabled` | Enable the usage of Telegram. <br> **Datatype:** Boolean
| `telegram.token` | Your Telegram bot token. Only required if `telegram.enabled` is `true`. <br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
@@ -409,6 +421,8 @@ Or another example if your position adjustment assumes it can do 1 additional bu
--8<-- "includes/pricing.md"
## Further Configuration details
### Understand minimal_roi
The `minimal_roi` configuration parameter is a JSON object where the key is a duration
@@ -568,7 +582,14 @@ The possible values are: `GTC` (default), `FOK` or `IOC`.
This is ongoing work. For now, it is supported only for binance, gate and kucoin.
Please don't change the default value unless you know what you are doing and have researched the impact of using different values for your particular exchange.
### What values can be used for fiat_display_currency?
### Fiat conversion
Freqtrade uses the Coingecko API to convert the coin value to it's corresponding fiat value for the Telegram reports.
The FIAT currency can be set in the configuration file as `fiat_display_currency`.
Removing `fiat_display_currency` completely from the configuration will skip initializing coingecko, and will not show any FIAT currency conversion. This has no importance for the correct functioning of the bot.
#### What values can be used for fiat_display_currency?
The `fiat_display_currency` configuration parameter sets the base currency to use for the
conversion from coin to fiat in the bot Telegram reports.
@@ -587,7 +608,49 @@ The valid values are:
"BTC", "ETH", "XRP", "LTC", "BCH", "BNB"
```
Removing `fiat_display_currency` completely from the configuration will skip initializing coingecko, and will not show any FIAT currency conversion. This has no importance for the correct functioning of the bot.
#### Coingecko Rate limit problems
On some IP ranges, coingecko is heavily rate-limiting.
In such cases, you may want to add your coingecko API key to the configuration.
``` json
{
"fiat_display_currency": "USD",
"coingecko": {
"api_key": "your-api",
"is_demo": true
}
}
```
Freqtrade supports both Demo and Pro coingecko API keys.
The Coingecko API key is NOT required for the bot to function correctly.
It is only used for the conversion of coin to fiat in the Telegram reports, which usually also work without API key.
## Consuming exchange Websockets
Freqtrade can consume websockets through ccxt.pro.
Freqtrade aims ensure data is available at all times.
Should the websocket connection fail (or be disabled), the bot will fall back to REST API calls.
Should you experience problems you suspect are caused by websockets, you can disable these via the setting `exchange.enable_ws`, which defaults to true.
```jsonc
"exchange": {
// ...
"enable_ws": false,
// ...
}
```
Should you be required to use a proxy, please refer to the [proxy section](#using-proxy-with-freqtrade) for more information.
!!! Info "Rollout"
We're implementing this out slowly, ensuring stability of your bots.
Currently, usage is limited to ohlcv data streams.
It's also limited to a few exchanges, with new exchanges being added on an ongoing basis.
## Using Dry-run mode
@@ -625,9 +688,9 @@ Once you will be happy with your bot performance running in the Dry-run mode, yo
* API-keys may or may not be provided. Only Read-Only operations (i.e. operations that do not alter account state) on the exchange are performed in dry-run mode.
* Wallets (`/balance`) are simulated based on `dry_run_wallet`.
* Orders are simulated, and will not be posted to the exchange.
* Market orders fill based on orderbook volume the moment the order is placed.
* Market orders fill based on orderbook volume the moment the order is placed, with a maximum slippage of 5%.
* Limit orders fill once the price reaches the defined level - or time out based on `unfilledtimeout` settings.
* Limit orders will be converted to market orders if they cross the price by more than 1%.
* Limit orders will be converted to market orders if they cross the price by more than 1%, and will be filled immediately based regular market order rules (see point about Market orders above).
* In combination with `stoploss_on_exchange`, the stop_loss price is assumed to be filled.
* Open orders (not trades, which are stored in the database) are kept open after bot restarts, with the assumption that they were not filled while being offline.
@@ -677,7 +740,7 @@ You should also make sure to read the [Exchanges](exchanges.md) section of the d
**NEVER** share your private configuration file or your exchange keys with anyone!
### Using proxy with Freqtrade
## Using a proxy with Freqtrade
To use a proxy with freqtrade, export your proxy settings using the variables `"HTTP_PROXY"` and `"HTTPS_PROXY"` set to the appropriate values.
This will have the proxy settings applied to everything (telegram, coingecko, ...) **except** for exchange requests.
By default, `download-data` sub-command downloads Candles (OHLCV) data. Some exchanges also provide historic trade-data via their API.
By default, `download-data` sub-command downloads Candles (OHLCV) data. Most exchanges also provide historic trade-data via their API.
This data can be useful if you need many different timeframes, since it is only downloaded once, and then resampled locally to the desired timeframes.
Since this data is large by default, the files use the feather fileformat by default. They are stored in your data-directory with the naming convention of `<pair>-trades.feather` (`ETH_BTC-trades.feather`). Incremental mode is also supported, as for historic OHLCV data, so downloading the data once per week with `--days 8` will create an incremental data-repository.
Since this data is large by default, the files use the feather fileformat by default. They are stored in your data-directory with the naming convention of `<pair>-trades.feather` (`ETH_BTC-trades.feather`). Incremental mode is also supported, as for historic OHLCV data, so downloading the data once per week with `--days 8` will create an incremental data-repository.
To use this mode, simply add `--dl-trades` to your call. This will swap the download method to download trades, and resamples the data locally.
To use this mode, simply add `--dl-trades` to your call. This will swap the download method to download trades.
If `--convert` is also provided, the resample step will happen automatically and overwrite eventually existing OHLCV data for the given pair/timeframe combinations.
!!! Warning "do not use"
You should not use this unless you're a kraken user. Most other exchanges provide OHLCV data with sufficient history.
!!! Warning "Do not use"
You should not use this unless you're a kraken user (Kraken does not provide historic OHLCV data).
Most other exchanges provide OHLCV data with sufficient history, so downloading multiple timeframes through that method will still proof to be a lot faster than downloading trades data.
!!! Note "Kraken user"
Kraken users should read [this](exchanges.md#historic-kraken-data) before starting to download data.
While this method uses async calls, it will be slow, since it requires the result of the previous call to generate the next request to the exchange.
!!! Warning
The historic trades are not available during Freqtrade dry-run and live trade modes because all exchanges tested provide this data with a delay of few 100 candles, so it's not suitable for real-time trading.
!!! Note "Kraken user"
Kraken users should read [this](exchanges.md#historic-kraken-data) before starting to download data.
## Next step
Great, you now have backtest data downloaded, so you can now start [backtesting](backtesting.md) your strategy.
Great, you now have some data downloaded, so you can now start [backtesting](backtesting.md) your strategy.
version 2023.3 saw the removal of `populate_any_indicators` in favor of split methods for feature engineering and targets. Please read the [migration document](strategy_migration.md#freqai-strategy) for full details.
## Removal of `protections` from configuration
Setting protections from the configuration via `"protections": [],` has been removed in 2024.10, after having raised deprecation warnings for over 3 years.
@@ -22,7 +22,7 @@ This will spin up a local server (usually on port 8000) so you can see if everyt
## Developer setup
To configure a development environment, you can either use the provided [DevContainer](#devcontainer-setup), or use the `setup.sh` script and answer "y" when asked "Do you want to install dependencies for dev [y/N]? ".
Alternatively (e.g. if your system is not supported by the setup.sh script), follow the manual installation process and run `pip3 install -e .[all]`.
Alternatively (e.g. if your system is not supported by the setup.sh script), follow the manual installation process and run `pip3 install -r requirements-dev.txt` - followed by `pip3 install -e .[all]`.
This will install all required tools for development, including `pytest`, `ruff`, `mypy`, and `coveralls`.
@@ -116,7 +116,7 @@ A similar setup can also be taken for Pycharm - using `freqtrade` as module name
This assumes that you have the repository checked out, and the editor is started at the repository root level (so setup.py is at the top level of your repository).
This assumes that you have the repository checked out, and the editor is started at the repository root level (so pyproject.toml is at the top level of your repository).
## ErrorHandling
@@ -205,7 +205,7 @@ This is called with each iteration of the bot (only if the Pairlist Handler is a
It must return the resulting pairlist (which may then be passed into the chain of Pairlist Handlers).
Validations are optional, the parent class exposes a `_verify_blacklist(pairlist)` and `_whitelist_for_active_markets(pairlist)` to do default filtering. Use this if you limit your result to a certain number of pairs - so the end-result is not shorter than expected.
Validations are optional, the parent class exposes a `verify_blacklist(pairlist)` and `_whitelist_for_active_markets(pairlist)` to do default filtering. Use this if you limit your result to a certain number of pairs - so the end-result is not shorter than expected.
#### filter_pairlist
@@ -219,7 +219,7 @@ The default implementation in the base class simply calls the `_validate_pair()`
If overridden, it must return the resulting pairlist (which may then be passed into the next Pairlist Handler in the chain).
Validations are optional, the parent class exposes a `_verify_blacklist(pairlist)` and `_whitelist_for_active_markets(pairlist)` to do default filters. Use this if you limit your result to a certain number of pairs - so the end result is not shorter than expected.
Validations are optional, the parent class exposes a `verify_blacklist(pairlist)` and `_whitelist_for_active_markets(pairlist)` to do default filters. Use this if you limit your result to a certain number of pairs - so the end result is not shorter than expected.
In `VolumePairList`, this implements different methods of sorting, does early validation so only the expected number of pairs is returned.
@@ -241,7 +241,6 @@ No protection should use datetime directly, but use the provided `date_now` vari
!!! Tip "Writing a new Protection"
Best copy one of the existing Protections to have a good example.
Don't forget to register your protection in `constants.py` under the variable `AVAILABLE_PROTECTIONS` - otherwise it will not be selectable.
#### Implementation of a new protection
@@ -481,21 +480,24 @@ Once the PR against stable is merged (best right after merging):
### pypi
!!! Note
This process is now automated as part of Github Actions.
!!! Warning "Manual Releases"
This process is automated as part of Github Actions.
Manual pypi pushes should not be necessary.
To create a pypi release, please run the following commands:
??? example "Manual release"
To manually create a pypi release, please run the following commands:
Additional requirement: `wheel`, `twine` (for uploading), account on pypi with proper permissions.
Additional requirement: `wheel`, `twine` (for uploading), account on pypi with proper permissions.
``` bash
python setup.py sdist bdist_wheel
``` bash
pip install -U build
python -m build --sdist --wheel
# For pypi test (to check if some change to the installation did work)
@@ -127,6 +127,13 @@ These settings will be checked on startup, and freqtrade will show an error if t
Freqtrade will not attempt to change these settings.
## Bingx
BingX supports [time_in_force](configuration.md#understand-order_time_in_force) with settings "GTC" (good till cancelled), "IOC" (immediate-or-cancel) and "PO" (Post only) settings.
!!! Tip "Stoploss on Exchange"
Bingx supports `stoploss_on_exchange` and can use both stop-limit and stop-market orders. It provides great advantages, so we recommend to benefit from it by enabling stoploss on exchange.
## Kraken
Kraken supports [time_in_force](configuration.md#understand-order_time_in_force) with settings "GTC" (good till cancelled), "IOC" (immediate-or-cancel) and "PO" (Post only) settings.
@@ -248,18 +255,24 @@ The configuration parameter `exchange.unknown_fee_rate` can be used to specify t
## Bybit
Futures trading on bybit is currently supported for USDT markets, and will use isolated futures mode.
Users with unified accounts (there's no way back) can create a Sub-account which will start as "non-unified", and can therefore use isolated futures.
On startup, freqtrade will set the position mode to "One-way Mode" for the whole (sub)account. This avoids making this call over and over again (slowing down bot operations), but means that changes to this setting may result in exceptions and errors
On startup, freqtrade will set the position mode to "One-way Mode" for the whole (sub)account. This avoids making this call over and over again (slowing down bot operations), but means that changes to this setting may result in exceptions and errors.
As bybit doesn't provide funding rate history, the dry-run calculation is used for live trades as well.
API Keys for live futures trading (Subaccount on non-unified) must have the following permissions:
API Keys for live futures trading must have the following permissions:
* Read-write
* Contract - Orders
* Contract - Positions
We do strongly recommend to limit all API keys to the IP you're going to use it from.
!!! Warning "Unified accounts"
Freqtrade assumes accounts to be dedicated to the bot.
We therefore recommend the usage of one subaccount per bot. This is especially important when using unified accounts.
Other configurations (multiple bots on one account, manual non-bot trades on the bot account) are not supported and may lead to unexpected behavior.
!!! Tip "Stoploss on Exchange"
Bybit (futures only) supports `stoploss_on_exchange` and uses `stop-loss-limit` orders. It provides great advantages, so we recommend to benefit from it by enabling stoploss on exchange.
On futures, Bybit supports both `stop-limit` as well as `stop-market` orders. You can use either `"limit"` or `"market"` in the `order_types.stoploss` configuration setting to decide which type to use.
Freqtrade provides a builtin webserver, which can serve [FreqUI](https://github.com/freqtrade/frequi), the freqtrade frontend.
By default, the UI is automatically installed as part of the installation (script, docker).
freqUI can also be manually installed by using the `freqtrade install-ui` command.
This same command can also be used to update freqUI to new new releases.
Once the bot is started in trade / dry-run mode (with `freqtrade trade`) - the UI will be available under the configured API port (by default `http://127.0.0.1:8080`).
??? Note "Looking to contribute to freqUI?"
Developers should not use this method, but instead clone the corresponding use the method described in the [freqUI repository](https://github.com/freqtrade/frequi) to get the source-code of freqUI. A working installation of node will be required to build the frontend.
!!! tip "freqUI is not required to run freqtrade"
freqUI is an optional component of freqtrade, and is not required to run the bot.
It is a frontend that can be used to monitor the bot and to interact with it - but freqtrade itself will work perfectly fine without it.
## Configuration
FreqUI does not have it's own configuration file - but assumes a working setup for the [rest-api](rest-api.md) is available.
Please refer to the corresponding documentation page to get setup with freqUI
## UI
FreqUI is a modern, responsive web application that can be used to monitor and interact with your bot.
FreqUI provides a light, as well as a dark theme.
Themes can be easily switched via a prominent button at the top of the page.
The theme of the screenshots on this page will adapt to the selected documentation Theme, so to see the dark (or light) version, please switch the theme of the Documentation.
### Login
The below screenshot shows the login screen of freqUI.
The Cors error shown in this screenshot is due to the fact that the UI is running on a different port than the API, and [CORS](#cors) has not been setup correctly yet.
### Trade view
The trade view allows you to visualize the trades that the bot is making and to interact with the bot.
On this page, you can also interact with the bot by starting and stopping it and - if configured - force trade entries and exits.
FreqUI Plots can be configured either via a `plot_config` configuration object in the strategy (which can be loaded via "from strategy" button) or via the UI.
Multiple plot configurations can be created and switched at will - allowing for flexible, different views into your charts.
The plot configuration can be accessed via the "Plot Configurator" (Cog icon) button in the top right corner of the trade view.
When freqtrade is started in [webserver mode](utils.md#webserver-mode) (freqtrade started with `freqtrade webserver`), the backtesting view becomes available.
This view allows you to backtest strategies and visualize the results.
You can also load and visualize previous backtest results, as well as compare the results with each other.
@@ -224,7 +224,7 @@ where $W_i$ is the weight of data point $i$ in a total set of $n$ data points. B
## Building the data pipeline
By default, FreqAI builds a dynamic pipeline based on user congfiguration settings. The default settings are robust and designed to work with a variety of methods. These two steps are a `MinMaxScaler(-1,1)` and a `VarianceThreshold` which removes any column that has 0 variance. Users can activate other steps with more configuration parameters. For example if users add `use_SVM_to_remove_outliers: true` to the `freqai` config, then FreqAI will automatically add the [`SVMOutlierExtractor`](#identifying-outliers-using-a-support-vector-machine-svm) to the pipeline. Likewise, users can add `principal_component_analysis: true` to the `freqai` config to activate PCA. The [DissimilarityIndex](#identifying-outliers-with-the-dissimilarity-index-di) is activated with `DI_threshold: 1`. Finally, noise can also be added to the data with `noise_standard_deviation: 0.1`. Finally, users can add [DBSCAN](#identifying-outliers-with-dbscan) outlier removal with `use_DBSCAN_to_remove_outliers: true`.
By default, FreqAI builds a dynamic pipeline based on user configuration settings. The default settings are robust and designed to work with a variety of methods. These two steps are a `MinMaxScaler(-1,1)` and a `VarianceThreshold` which removes any column that has 0 variance. Users can activate other steps with more configuration parameters. For example if users add `use_SVM_to_remove_outliers: true` to the `freqai` config, then FreqAI will automatically add the [`SVMOutlierExtractor`](#identifying-outliers-using-a-support-vector-machine-svm) to the pipeline. Likewise, users can add `principal_component_analysis: true` to the `freqai` config to activate PCA. The [DissimilarityIndex](#identifying-outliers-with-the-dissimilarity-index-di) is activated with `DI_threshold: 1`. Finally, noise can also be added to the data with `noise_standard_deviation: 0.1`. Finally, users can add [DBSCAN](#identifying-outliers-with-dbscan) outlier removal with `use_DBSCAN_to_remove_outliers: true`.
!!! note "More information available"
Please review the [parameter table](freqai-parameter-table.md) for more information on these parameters.
@@ -391,3 +391,18 @@ Given a number of data points $N$, and a distance $\varepsilon$, DBSCAN clusters

FreqAI uses `sklearn.cluster.DBSCAN` (details are available on scikit-learn's webpage [here](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html) (external website)) with `min_samples` ($N$) taken as 1/4 of the no. of time points (candles) in the feature set. `eps` ($\varepsilon$) is computed automatically as the elbow point in the *k-distance graph* computed from the nearest neighbors in the pairwise distances of all data points in the feature set.
### Data dimensionality reduction with Principal Component Analysis
You can reduce the dimensionality of your features by activating the principal_component_analysis in the config:
```json
"freqai": {
"feature_parameters" : {
"principal_component_analysis": true
}
}
```
This will perform PCA on the features and reduce their dimensionality so that the explained variance of the data set is >= 0.999. Reducing data dimensionality makes training the model faster and hence allows for more up-to-date models.
@@ -22,6 +22,7 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
| `write_metrics_to_disk` | Collect train timings, inference timings and cpu usage in json file. <br>**Datatype:** Boolean. <br> Default: `False`
| `data_kitchen_thread_count` | <br> Designate the number of threads you want to use for data processing (outlier methods, normalization, etc.). This has no impact on the number of threads used for training. If user does not set it (default), FreqAI will use max number of threads - 2 (leaving 1 physical core available for Freqtrade bot and FreqUI) <br>**Datatype:** Positive integer.
| `activate_tensorboard` | <br> Indicate whether or not to activate tensorboard for the tensorboard enabled modules (currently Reinforcment Learning, XGBoost, Catboost, and PyTorch). Tensorboard needs Torch installed, which means you will need the torch/RL docker image or you need to answer "yes" to the install question about whether or not you wish to install Torch. <br>**Datatype:** Boolean. <br> Default: `True`.
| `wait_for_training_iteration_on_reload` | <br> When using /reload or ctrl-c, wait for the current training iteration to finish before completing graceful shutdown. If set to `False`, FreqAI will break the current training iteration, allowing you to shutdown gracefully more quickly, but you will lose your current training iteration. <br>**Datatype:** Boolean. <br> Default: `True`.
### Feature parameters
@@ -36,7 +37,7 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
| `weight_factor` | Weight training data points according to their recency (see details [here](freqai-feature-engineering.md#weighting-features-for-temporal-importance)). <br>**Datatype:** Positive float (typically <1).
|`indicator_max_period_candles`|**No longer used (#7325)**.Replacedby`startup_candle_count`whichissetinthe [strategy](freqai-configuration.md#building-a-freqai-strategy).`startup_candle_count`istimeframeindependentanddefinesthemaximum*period*usedin`feature_engineering_*()`forindicatorcreation.FreqAIusesthisparametertogetherwiththemaximumtimeframein`include_time_frames`tocalculatehowmanydatapointstodownloadsuchthatthefirstdatapointdoesnotincludeaNaN.<br>**Datatype:** Positive integer.
| `indicator_periods_candles` | Time periods to calculate indicators for. The indicators are added to the base indicator dataset. <br>**Datatype:** List of positive integers.
| `principal_component_analysis` | Automatically reduce the dimensionality of the data set using Principal Component Analysis. See details about how it works [here](#reducing-data-dimensionality-with-principal-component-analysis) <br>**Datatype:** Boolean. <br> Default: `False`.
| `principal_component_analysis` | Automatically reduce the dimensionality of the data set using Principal Component Analysis. See details about how it works [here](freqai-feature-engineering.md#data-dimensionality-reduction-with-principal-component-analysis) <br>**Datatype:** Boolean. <br> Default: `False`.
| `plot_feature_importances` | Create a feature importance plot for each model for the top/bottom `plot_feature_importances` number of features. Plot is stored in `user_data/models/<identifier>/sub-train-<COIN>_<timestamp>.html`. <br>**Datatype:** Integer. <br> Default: `0`.
| `DI_threshold` | Activates the use of the Dissimilarity Index for outlier detection when set to > 0. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di). <br>**Datatype:** Positive float (typically <1).
To allow for tweaking your strategy (**not** the features!), FreqAI will automatically save the predictions during backtesting so that they can be reused for future backtests and live runs using the same `identifier` model. This provides a performance enhancement geared towards enabling **high-level hyperopting** of entry/exit criteria.
An additional directory called `backtesting_predictions`, which contains all the predictions stored in `hdf` format, will be created in the `unique-id` folder.
An additional directory called `backtesting_predictions`, which contains all the predictions stored in `feather` format, will be created in the `unique-id` folder.
To change your **features**, you **must** set a new `identifier` in the config to signal to FreqAI to train new models.
To save the models generated during a particular backtest so that you can start a live deployment from one of them instead of training a new model, you must set `save_backtest_models` to `True` in the config.
!!! Note
To ensure that the model can be reused, freqAI will call your strategy with a dataframe of length 1.
If your strategy requires more data than this to generate the same features, you can't reuse backtest predictions for live deployment and need to update your `identifier` for each new backtest.
### Backtest live collected predictions
FreqAI allow you to reuse live historic predictions through the backtest parameter `--freqai-backtest-live-models`. This can be useful when you want to reuse predictions generated in dry/run for comparison or other study.
The `--timerange` parameter must not be informed, as it will be automatically calculated through the data in the historic predictions file.
### Downloading data to cover the full backtest period
For live/dry deployments, FreqAI will download the necessary data automatically. However, to use backtesting functionality, you need to download the necessary data using `download-data` (details [here](data-download.md#data-downloading)). You need to pay careful attention to understanding how much *additional* data needs to be downloaded to ensure that there is a sufficient amount of training data *before* the start of the backtesting time range. The amount of additional data can be roughly estimated by moving the start date of the time range backwards by `train_period_days` and the `startup_candle_count` (see the [parameter table](freqai-parameter-table.md) for detailed descriptions of these parameters) from the beginning of the desired backtesting time range.
@@ -445,7 +445,6 @@ While this strategy is most likely too simple to provide consistent profit, it s
Whether you are using `.range` functionality or the alternatives above, you should try to use space ranges as small as possible since this will improve CPU/RAM usage.
## Optimizing protections
Freqtrade can also optimize protections. How you optimize protections is up to you, and the following should be considered as example only.
@@ -589,14 +588,15 @@ Currently, the following loss functions are builtin:
* `ShortTradeDurHyperOptLoss` - (default legacy Freqtrade hyperoptimization loss function) - Mostly for short trade duration and avoiding losses.
* `OnlyProfitHyperOptLoss` - takes only amount of profit into consideration.
* `SharpeHyperOptLoss` - optimizes Sharpe Ratio calculated on trade returns relative to standard deviation.
* `SharpeHyperOptLossDaily` - optimizes Sharpe Ratio calculated on **daily** trade returns relative to standard deviation.
* `SortinoHyperOptLoss` - optimizes Sortino Ratio calculated on trade returns relative to **downside** standard deviation.
* `SharpeHyperOptLoss` - Optimizes Sharpe Ratio calculated on trade returns relative to standard deviation.
* `SharpeHyperOptLossDaily` - Optimizes Sharpe Ratio calculated on **daily** trade returns relative to standard deviation.
* `SortinoHyperOptLoss` - Optimizes Sortino Ratio calculated on trade returns relative to **downside** standard deviation.
* `SortinoHyperOptLossDaily` - optimizes Sortino Ratio calculated on **daily** trade returns relative to **downside** standard deviation.
* `MaxDrawDownHyperOptLoss` - Optimizes Maximum absolute drawdown.
* `MaxDrawDownRelativeHyperOptLoss` - Optimizes both maximum absolute drawdown while also adjusting for maximum relative drawdown.
* `CalmarHyperOptLoss` - Optimizes Calmar Ratio calculated on trade returns relative to max drawdown.
* `ProfitDrawDownHyperOptLoss` - Optimizes by max Profit & min Drawdown objective. `DRAWDOWN_MULT` variable within the hyperoptloss file can be adjusted to be stricter or more flexible on drawdown purposes.
* `MultiMetricHyperOptLoss` - Optimizes by several key metrics to achieve balanced performance. The primary focus is on maximizing Profit and minimizing Drawdown, while also considering additional metrics such as Profit Factor, Expectancy Ratio and Winrate. Moreover, it applies a penalty for epochs with a low number of trades, encouraging strategies with adequate trade frequency.
Creation of a custom loss function is covered in the [Advanced Hyperopt](advanced-hyperopt.md) part of the documentation.
This whole section is only necessary in cross-origin cases (where you multiple bot API's running on `localhost:8081`, `localhost:8082`, ...), and want to combine them into one FreqUI instance.
??? info "Technical explanation"
All web-based front-ends are subject to [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS) - Cross-Origin Resource Sharing.
Since most of the requests to the Freqtrade API must be authenticated, a proper CORS policy is key to avoid security problems.
Also, the standard disallows `*` CORS policies for requests with credentials, so this setting must be set appropriately.
Users can allow access from different origin URL's to the bot API via the `CORS_origins` configuration setting.
It consists of a list of allowed URL's that are allowed to consume resources from the bot's API.
Assuming your application is deployed as `https://frequi.freqtrade.io/home/` - this would mean that the following configuration becomes necessary:
```jsonc
{
//...
"jwt_secret_key":"somethingrandom",
"CORS_origins":["https://frequi.freqtrade.io"],
//...
}
```
In the following (pretty common) case, FreqUI is accessible on `http://localhost:8080/trade` (this is what you see in your navbar when navigating to freqUI).

The correct configuration for this case is `http://localhost:8080` - the main part of the URL including the port.
```jsonc
{
//...
"jwt_secret_key":"somethingrandom",
"CORS_origins":["http://localhost:8080"],
//...
}
```
!!! Tip "trailing Slash"
The trailing slash is not allowed in the `CORS_origins` configuration (e.g. `"http://localhots:8080/"`).
Such a configuration will not take effect, and the cors errors will remain.
!!! Note
We strongly recommend to also set `jwt_secret_key` to something random and known only to yourself to avoid unauthorized access to your bot.
Pairlist Handlers define the list of pairs (pairlist) that the bot should trade. They are configured in the `pairlists` section of the configuration settings.
In your configuration, you can use Static Pairlist (defined by the [`StaticPairList`](#static-pair-list) Pairlist Handler) and Dynamic Pairlist (defined by the [`VolumePairList`](#volume-pair-list) Pairlist Handler).
In your configuration, you can use Static Pairlist (defined by the [`StaticPairList`](#static-pair-list) Pairlist Handler) and Dynamic Pairlist (defined by the [`VolumePairList`](#volume-pair-list) and [`PercentChangePairList`](#percent-change-pair-list) Pairlist Handlers).
Additionally, [`AgeFilter`](#agefilter), [`PrecisionFilter`](#precisionfilter), [`PriceFilter`](#pricefilter), [`ShuffleFilter`](#shufflefilter), [`SpreadFilter`](#spreadfilter) and [`VolatilityFilter`](#volatilityfilter) act as Pairlist Filters, removing certain pairs and/or moving their positions in the pairlist.
If multiple Pairlist Handlers are used, they are chained and a combination of all Pairlist Handlers forms the resulting pairlist the bot uses for trading and backtesting. Pairlist Handlers are executed in the sequence they are configured. You can define either `StaticPairList`, `VolumePairList`, `ProducerPairList`, `RemotePairList` or`MarketCapPairList` as the starting Pairlist Handler.
If multiple Pairlist Handlers are used, they are chained and a combination of all Pairlist Handlers forms the resulting pairlist the bot uses for trading and backtesting. Pairlist Handlers are executed in the sequence they are configured. You can define either `StaticPairList`, `VolumePairList`, `ProducerPairList`, `RemotePairList`,`MarketCapPairList` or `PercentChangePairList` as the starting Pairlist Handler.
Inactive markets are always removed from the resulting pairlist. Explicitly blacklisted pairs (those in the `pair_blacklist` configuration setting) are also always removed from the resulting pairlist.
@@ -22,6 +22,7 @@ You may also use something like `.*DOWN/BTC` or `.*UP/BTC` to exclude leveraged
* [`StaticPairList`](#static-pair-list) (default, if not configured differently)
@@ -54,7 +55,6 @@ It uses configuration from `exchange.pair_whitelist` and `exchange.pair_blacklis
By default, only currently enabled pairs are allowed.
To skip pair validation against active markets, set `"allow_inactive": true` within the `StaticPairList` configuration.
This can be useful for backtesting expired pairs (like quarterly spot-markets).
This option must be configured along with `exchange.skip_pair_validation` in the exchange configuration.
When used in a "follow-up" position (e.g. after VolumePairlist), all pairs in `'pair_whitelist'` will be added to the end of the pairlist.
@@ -152,6 +152,89 @@ More sophisticated approach can be used, by using `lookback_timeframe` for candl
!!! Note
`VolumePairList` does not support backtesting mode.
#### Percent Change Pair List
`PercentChangePairList` filters and sorts pairs based on the percentage change in their price over the last 24 hours or any defined timeframe as part of advanced options. This allows traders to focus on assets that have experienced significant price movements, either positive or negative.
**Configuration Options**
* `number_assets`: Specifies the number of top pairs to select based on the 24-hour percentage change.
* `min_value`: Sets a minimum percentage change threshold. Pairs with a percentage change below this value will be filtered out.
* `max_value`: Sets a maximum percentage change threshold. Pairs with a percentage change above this value will be filtered out.
* `sort_direction`: Specifies the order in which pairs are sorted based on their percentage change. Accepts two values: `asc` for ascending order and `desc` for descending order.
* `refresh_period`: Defines the interval (in seconds) at which the pairlist will be refreshed. The default is 1800 seconds (30 minutes).
* `lookback_days`: Number of days to look back. When `lookback_days` is selected, the `lookback_timeframe` is defaulted to 1 day.
* `lookback_timeframe`: Timeframe to use for the lookback period.
* `lookback_period`: Number of periods to look back at.
When PercentChangePairList is used after other Pairlist Handlers, it will operate on the outputs of those handlers. If it is the leading Pairlist Handler, it will select pairs from all available markets with the specified stake currency.
`PercentChangePairList` uses ticker data from the exchange, provided via the ccxt library:
The percentage change is calculated as the change in price over the last 24 hours.
??? Note "Unsupported exchanges"
On some exchanges (like HTX), regular PercentChangePairList does not work as the api does not natively provide 24h percent change in price. This can be worked around by using candle data to calculate the percentage change. To roughly simulate 24h percent change, you can use the following configuration. Please note that these pairlists will only refresh once per day.
```json
"pairlists": [
{
"method": "PercentChangePairList",
"number_assets": 20,
"min_value": 0,
"refresh_period": 86400,
"lookback_days": 1
}
],
```
**Example Configuration to Read from Ticker**
```json
"pairlists": [
{
"method": "PercentChangePairList",
"number_assets": 15,
"min_value": -10,
"max_value": 50
}
],
```
In this configuration:
1. The top 15 pairs are selected based on the highest percentage change in price over the last 24 hours.
2. Only pairs with a percentage change between -10% and 50% are considered.
**Example Configuration to Read from Candles**
```json
"pairlists": [
{
"method": "PercentChangePairList",
"number_assets": 15,
"sort_key": "percentage",
"min_value": 0,
"refresh_period": 3600,
"lookback_timeframe": "1h",
"lookback_period": 72
}
],
```
This example builds the percent change pairs based on a rolling period of 3 days of 1-hour candles by using `lookback_timeframe` for candle size and `lookback_period` which specifies the number of candles.
The percent change in price is calculated using the following formula, which expresses the percentage difference between the current candle's close price and the previous candle's close price, as defined by the specified timeframe and lookback period:
When used in conjunction with `lookback_days` and `lookback_timeframe` the `refresh_period` can not be smaller than the candle size in seconds. As this will result in unnecessary requests to the exchanges API.
!!! Warning "Performance implications when using lookback range"
If used in first position in combination with lookback, the computation of the range-based percent change can be time and resource consuming, as it downloads candles for all tradable pairs. Hence it's highly advised to use the standard approach with `PercentChangePairList` to narrow the pairlist down for further percent-change calculation.
!!! Note "Backtesting"
`PercentChangePairList` does not support backtesting mode.
#### ProducerPairList
With `ProducerPairList`, you can reuse the pairlist from a [Producer](producer-consumer.md) without explicitly defining the pairlist on each consumer.
@@ -277,14 +360,21 @@ The optional `bearer_token` will be included in the requests Authorization Heade
"method": "MarketCapPairList",
"number_assets": 20,
"max_rank": 50,
"refresh_period": 86400
"refresh_period": 86400,
"categories": ["layer-1"]
}
]
```
`number_assets` defines the maximum number of pairs returned by the pairlist. `max_rank` will determine the maximum rank used in creating/filtering the pairlist. It's expected that some coins within the top `max_rank` marketcap will not be included in the resulting pairlist since not all pairs will have active trading pairs in your preferred market/stake/exchange combination.
`refresh_period` setting defines the period (in seconds) at which the marketcap rank data will be refreshed. Defaults to 86,400s (1 day). The pairlist cache (`refresh_period`) is applicable on both generating pairlists (first position in the list) and filtering instances (not the first position in the list).
The `refresh_period` setting defines the interval (in seconds) at which the marketcap rank data will be refreshed. The default is 86,400 seconds (1 day). The pairlist cache (`refresh_period`) applies to both generating pairlists (when in the first position in the list) and filtering instances (when not in the first position in the list).
The `categories` setting specifies the [coingecko categories](https://www.coingecko.com/en/categories) from which to select coins from. The default is an empty list `[]`, meaning no category filtering is applied.
If an incorrect category string is chosen, the plugin will print the available categories from CoinGecko and fail. The category should be the ID of the category, for example, for `https://www.coingecko.com/en/categories/layer-1`, the category ID would be `layer-1`. You can pass multiple categories such as `["layer-1", "meme-token"]` to select from several categories.
!!! Warning "Many categories"
Each added category corresponds to one API call to CoinGecko. The more categories you add, the longer the pairlist generation will take, potentially causing rate limit issues.
#### AgeFilter
@@ -373,7 +463,7 @@ Filters low-value coins which would not allow setting stoplosses.
Namely, pairs are blacklisted if a variance of one percent or more in the stop price would be caused by precision rounding on the exchange, i.e. `rounded(stop_price) <= rounded(stop_price * 0.99)`. The idea is to avoid coins with a value VERY close to their lower trading boundary, not allowing setting of proper stoploss.
!!! Tip "PerformanceFilter is pointless for futures trading"
!!! Tip "PrecisionFilter is pointless for futures trading"
The above does not apply to shorts. And for longs, in theory the trade will be liquidated first.
This feature is still in it's testing phase. Should you notice something you think is wrong please let us know via Discord or via Github Issue.
Protections will protect your strategy from unexpected events and market conditions by temporarily stop trading for either one pair, or for all pairs.
All protection end times are rounded up to the next candle to avoid sudden, unexpected intra-candle buys.
!!! Note
!!! Tip "Usage tips"
Not all Protections will work for all strategies, and parameters will need to be tuned for your strategy to improve performance.
!!! Tip
Each Protection can be configured multiple times with different parameters, to allow different levels of protection (short-term / long-term).
!!! Note "Backtesting"
Protections are supported by backtesting and hyperopt, but must be explicitly enabled by using the `--enable-protections` flag.
!!! Warning "Setting protections from the configuration"
Setting protections from the configuration via `"protections": [],` key should be considered deprecated and will be removed in a future version.
It is also no longer guaranteed that your protections apply to the strategy in cases where the strategy defines [protections as property](hyperopt.md#optimizing-protections).
### Available Protections
* [`StoplossGuard`](#stoploss-guard) Stop trading if a certain amount of stoploss occurred within a certain time window.
@@ -36,6 +28,7 @@ All protection end times are rounded up to the next candle to avoid sudden, unex
| `lookback_period_candles` | Only trades that completed within the last `lookback_period_candles` candles will be considered. This setting may be ignored by some Protections. <br>**Datatype:** Positive integer (in candles).
| `lookback_period` | Only trades that completed after `current_time - lookback_period` will be considered. <br>Cannot be used together with `lookback_period_candles`. <br>This setting may be ignored by some Protections. <br>**Datatype:** Float (in minutes)
| `trade_limit` | Number of trades required at minimum (not used by all Protections). <br>**Datatype:** Positive integer
| `unlock_at` | Time when trading will be unlocked regularly (not used by all Protections). <br>**Datatype:** string <br>**Input Format:** "HH:MM" (24-hours)
!!! Note "Durations"
Durations (`stop_duration*` and `lookback_period*` can be defined in either minutes or candles).
@@ -44,7 +37,7 @@ All protection end times are rounded up to the next candle to avoid sudden, unex
#### Stoploss Guard
`StoplossGuard` selects all trades within `lookback_period` in minutes (or in candles when using `lookback_period_candles`).
If `trade_limit` or more trades resulted in stoploss, trading will stop for `stop_duration` in minutes (or in candles when using `stop_duration_candles`).
If `trade_limit` or more trades resulted in stoploss, trading will stop for `stop_duration` in minutes (or in candles when using `stop_duration_candles`, or until the set time when using `unlock_at`).
This applies across all pairs, unless `only_per_pair` is set to true, which will then only look at one pair at a time.
@@ -97,7 +90,7 @@ def protections(self):
#### Low Profit Pairs
`LowProfitPairs` uses all trades for a pair within `lookback_period` in minutes (or in candles when using `lookback_period_candles`) to determine the overall profit ratio.
If that ratio is below `required_profit`, that pair will be locked for `stop_duration` in minutes (or in candles when using `stop_duration_candles`).
If that ratio is below `required_profit`, that pair will be locked for `stop_duration` in minutes (or in candles when using `stop_duration_candles`, or until the set time when using `unlock_at`).
For futures bots, setting `only_per_side` will make the bot only consider one side, and will then only lock this one side, allowing for example shorts to continue after a series of long losses.
@@ -120,7 +113,7 @@ def protections(self):
#### Cooldown Period
`CooldownPeriod` locks a pair for `stop_duration` in minutes (or in candles when using `stop_duration_candles`) after selling, avoiding a re-entry for this pair for `stop_duration` minutes.
`CooldownPeriod` locks a pair for `stop_duration` in minutes (or in candles when using `stop_duration_candles`, or until the set time when using `unlock_at`) after exiting, avoiding a re-entry for this pair for `stop_duration` minutes.
The below example will stop trading a pair for 2 candles after closing a trade, allowing this pair to "cool down".
@@ -24,7 +24,7 @@ The easiest way to install and run Freqtrade is to clone the bot Github reposito
The `stable` branch contains the code of the last release (done usually once per month on an approximately one week old snapshot of the `develop` branch to prevent packaging bugs, so potentially it's more stable).
!!! Note
Python3.9 or higher and the corresponding `pip` are assumed to be available. The install-script will warn you and stop if that's not the case. `git` is also needed to clone the Freqtrade repository.
Python3.10 or higher and the corresponding `pip` are assumed to be available. The install-script will warn you and stop if that's not the case. `git` is also needed to clone the Freqtrade repository.
Also, python headers (`python<yourversion>-dev` / `python<yourversion>-devel`) must be available for the installation to complete successfully.
!!! Warning "Up-to-date clock"
@@ -42,7 +42,7 @@ These requirements apply to both [Script Installation](#script-installation) and
@@ -101,3 +101,4 @@ This could lead to a false-negative (the strategy will then be reported as non-b
-`lookahead-analysis` has access to everything that backtesting has too.
Please don't provoke any configs like enabling position stacking.
If you decide to do so, then make doubly sure that you won't ever run out of `max_open_trades` amount and neither leftover money in your wallet.
- In the results table, the `biased_indicators` column will falsely flag FreqAI target indicators defined in `set_freqai_targets()` as biased. These are not biased and can safely be ignored.
This page explains how to plot prices, indicators and profits.
!!! Warning "Deprecated"
The commands described in this page (`plot-dataframe`, `plot-profit`) should be considered deprecated and are in maintenance mode.
This is mostly for the performance problems even medium sized plots can cause, but also because "store a file and open it in a browser" isn't very intuitive from a UI perspective.
While there are no immediate plans to remove them, they are not actively maintained - and may be removed short-term should major changes be required to keep them working.
Please use [FreqUI](freq-ui.md) for plotting needs, which doesn't struggle with the same performance problems.
## Installation / Setup
Plotting modules use the Plotly library. You can install / upgrade this by running the following command:
Freqtrade provides a builtin webserver, which can serve [FreqUI](https://github.com/freqtrade/frequi), the freqtrade UI.
By default, the UI is not included in the installation (except for docker images), and must be installed explicitly with `freqtrade install-ui`.
This same command can also be used to update freqUI, should there be a new release.
Once the bot is started in trade / dry-run mode (with `freqtrade trade`) - the UI will be available under the configured port below (usually `http://127.0.0.1:8080`).
!!! Note "developers"
Developers should not use this method, but instead use the method described in the [freqUI repository](https://github.com/freqtrade/frequi) to get the source-code of freqUI.
FreqUI now has it's own dedicated [documentation section](freq-ui.md) - please refer to that section for all information regarding the FreqUI.
## Configuration
@@ -126,6 +118,14 @@ By default, the script assumes `127.0.0.1` (localhost) and port `8080` to be use
| `delete_lock <lock_id>` | Deletes (disables) the lock by id.
| `locks add <pair>, <until>, [side], [reason]` | Locks a pair until "until". (Until will be rounded up to the nearest timeframe).
| `profit` | Display a summary of your profit/loss from close trades and some stats about your performance.
| `forceexit <trade_id>` | Instantly exits the given trade (Ignoring `minimum_roi`).
| `forceexit <trade_id> [order_type] [amount]` | Instantly exits the given trade (ignoring `minimum_roi`), using the given order type ("market" or "limit", uses your config setting if not specified), and the chosen amount (full sell if not specified).
| `forceexit all` | Instantly exits all open trades (Ignoring `minimum_roi`).
| `forceenter <pair> [rate]` | Instantly enters the given pair. Rate is optional. (`force_entry_enable` must be set to True)
| `forceenter <pair><side> [rate]` | Instantly longs or shorts the given pair. Rate is optional. (`force_entry_enable` must be set to True)
@@ -488,42 +488,4 @@ Since the access token has a short timeout (15 min) - the `token/refresh` reques
This whole section is only necessary in cross-origin cases (where you multiple bot API's running on `localhost:8081`, `localhost:8082`, ...), and want to combine them into one FreqUI instance.
??? info "Technical explanation"
All web-based front-ends are subject to [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS) - Cross-Origin Resource Sharing.
Since most of the requests to the Freqtrade API must be authenticated, a proper CORS policy is key to avoid security problems.
Also, the standard disallows `*` CORS policies for requests with credentials, so this setting must be set appropriately.
Users can allow access from different origin URL's to the bot API via the `CORS_origins` configuration setting.
It consists of a list of allowed URL's that are allowed to consume resources from the bot's API.
Assuming your application is deployed as `https://frequi.freqtrade.io/home/` - this would mean that the following configuration becomes necessary:
```jsonc
{
//...
"jwt_secret_key": "somethingrandom",
"CORS_origins": ["https://frequi.freqtrade.io"],
//...
}
```
In the following (pretty common) case, FreqUI is accessible on `http://localhost:8080/trade` (this is what you see in your navbar when navigating to freqUI).

The correct configuration for this case is `http://localhost:8080` - the main part of the URL including the port.
```jsonc
{
//...
"jwt_secret_key": "somethingrandom",
"CORS_origins": ["http://localhost:8080"],
//...
}
```
!!! Note
We strongly recommend to also set `jwt_secret_key` to something random and known only to yourself to avoid unauthorized access to your bot.
This page contains some help if you want to edit your sqlite db.
This page contains some help if you want to query your sqlite db.
!!! Tip "Other Database systems"
To use other Database Systems like PostgreSQL or MariaDB, you can use the same queries, but you need to use the respective client for the database system. [Click here](advanced-setup.md#use-a-different-database-system) to learn how to setup a different database system with freqtrade.
!!! Warning
If you are not familiar with SQL, you should be very careful when running queries on your database.
Always make sure to have a backup of your database before running any queries.
## Install sqlite3
@@ -43,13 +50,25 @@ sqlite3
.schema <table_name>
```
## Get all trades in the table
### Get all trades in the table
```sql
SELECT * FROM trades;
```
## Fix trade still open after a manual exit on the exchange
## Destructive queries
Queries that write to the database.
These queries should usually not be necessary as freqtrade tries to handle all database operations itself - or exposes them via API or telegram commands.
!!! Warning
Please make sure you have a backup of your database before running any of the below queries.
!!! Danger
You should also **never** run any writing query (`update`, `insert`, `delete`) while a bot is connected to the database.
This can and will lead to data corruption - most likely, without the possibility of recovery.
### Fix trade still open after a manual exit on the exchange
!!! Warning
Manually selling a pair on the exchange will not be detected by the bot and it will try to sell anyway. Whenever possible, /forceexit <tradeid> should be used to accomplish the same thing.
@@ -69,7 +88,7 @@ SET is_open=0,
WHERE id=<trade_ID_to_update>;
```
### Example
#### Example
```sql
UPDATE trades
@@ -82,7 +101,7 @@ SET is_open=0,
WHERE id=31;
```
## Remove trade from the database
### Remove trade from the database
!!! Tip "Use RPC Methods to delete trades"
Consider using `/delete <tradeid>` via telegram or rest API. That's the recommended way to deleting trades.
@@ -100,39 +119,3 @@ DELETE FROM trades WHERE id = 31;
!!! Warning
This will remove this trade from the database. Please make sure you got the correct id and **NEVER** run this query without the `where` clause.
## Use a different database system
Freqtrade is using SQLAlchemy, which supports multiple different database systems. As such, a multitude of database systems should be supported.
Freqtrade does not depend or install any additional database driver. Please refer to the [SQLAlchemy docs](https://docs.sqlalchemy.org/en/14/core/engines.html#database-urls) on installation instructions for the respective database systems.
The following systems have been tested and are known to work with freqtrade:
* sqlite (default)
* PostgreSQL
* MariaDB
!!! Warning
By using one of the below database systems, you acknowledge that you know how to manage such a system. The freqtrade team will not provide any support with setup or maintenance (or backups) of the below database systems.
Freqtrade will automatically create the tables necessary upon startup.
If you're running different instances of Freqtrade, you must either setup one database per Instance or use different users / schemas for your connections.
### MariaDB / MySQL
Freqtrade supports MariaDB by using SQLAlchemy, which supports multiple different database systems.
# Freqtrade Strategies 101: A Quick Start for Strategy Development
For the purposes of this quick start, we are assuming you are familiar with the basics of trading, and have read the
[Freqtrade basics](bot-basics.md) page.
## Required Knowledge
A strategy in Freqtrade is a Python class that defines the logic for buying and selling cryptocurrency `assets`.
Assets are defined as `pairs`, which represent the `coin` and the `stake`. The coin is the asset you are trading using another currency as the stake.
Data is supplied by the exchange in the form of `candles`, which are made up of a six values: `date`, `open`, `high`, `low`, `close` and `volume`.
`Technical analysis` functions analyse the candle data using various computational and statistical formulae, and produce secondary values called `indicators`.
Indicators are analysed on the asset pair candles to generate `signals`.
Signals are turned into `orders` on a cryptocurrency `exchange`, i.e. `trades`.
We use the terms `entry` and `exit` instead of `buying` and `selling` because Freqtrade supports both `long` and `short` trades.
- **long**: You buy the coin based on a stake, e.g. buying the coin BTC using USDT as your stake, and you make a profit by selling the coin at a higher rate than you paid for. In long trades, profits are made by the coin value going up versus the stake.
- **short**: You borrow capital from the exchange in the form of the coin, and you pay back the stake value of the coin later. In short trades profits are made by the coin value going down versus the stake (you pay the loan off at a lower rate).
Whilst Freqtrade supports spot and futures markets for certain exchanges, for simplicity we will focus on spot (long) trades only.
## Structure of a Basic Strategy
### Main dataframe
Freqtrade strategies use a tabular data structure with rows and columns known as a `dataframe` to generate signals to enter and exit trades.
Each pair in your configured pairlist has its own dataframe. Dataframes are indexed by the `date` column, e.g. `2024-06-31 12:00`.
The next 5 columns represent the `open`, `high`, `low`, `close` and `volume` (OHLCV) data.
### Populate indicator values
The `populate_indicators` function adds columns to the dataframe that represent the technical analysis indicator values.
Examples of common indicators include Relative Strength Index, Bollinger Bands, Money Flow Index, Moving Average, and Average True Range.
Columns are added to the dataframe by calling technical analysis functions, e.g. ta-lib's RSI function `ta.RSI()`, and assigning them to a column name, e.g. `rsi`
```python
dataframe['rsi']=ta.RSI(dataframe)
```
??? Hint "Technical Analysis libraries"
Different libraries work in different ways to generate indicator values. Please check the documentation of each library to understand
how to integrate it into your strategy. You can also check the [Freqtrade example strategies](https://github.com/freqtrade/freqtrade-strategies) to give you ideas.
### Populate entry signals
The `populate_entry_trend` function defines conditions for an entry signal.
The dataframe column `enter_long` is added to the dataframe, and when a value of `1` is in this column, Freqtrade sees an entry signal.
??? Hint "Shorting"
To enter short trades, use the `enter_short` column.
### Populate exit signals
The `populate_exit_trend` function defines conditions for an exit signal.
The dataframe column `exit_long` is added to the dataframe, and when a value of `1` is in this column, Freqtrade sees an exit signal.
??? Hint "Shorting"
To exit short trades, use the `exit_short` column.
## A simple strategy
Here is a minimal example of a Freqtrade strategy:
```python
fromfreqtrade.strategyimportIStrategy
frompandasimportDataFrame
importtalib.abstractasta
classMyStrategy(IStrategy):
# set the initial stoploss to -10%
stoploss=-0.10
# exit profitable positions at any time when the profit is greater than 1%
When a signal is found (a `1` in an entry or exit column), Freqtrade will attempt to make an order, i.e. a `trade` or `position`.
Each new trade position takes up a `slot`. Slots represent the maximum number of concurrent new trades that can be opened.
The number of slots is defined by the `max_open_trades` [configuration](configuration.md) option.
However, there can be a range of scenarios where generating a signal does not always create a trade order. These include:
- not enough remaining stake to buy an asset, or funds in your wallet to sell an asset (including any fees)
- not enough remaining free slots for a new trade to be opened (the number of positions you have open equals the `max_open_trades` option)
- there is already an open trade for a pair (Freqtrade cannot stack positions - however it can [adjust existing positions](strategy-callbacks.md#adjust-trade-position))
- if an entry and exit signal is present on the same candle, they are considered as [colliding](strategy-customization.md#colliding-signals), and no order will be raised
- the strategy actively rejects the trade order due to logic you specify by using one of the relevant [entry](strategy-callbacks.md#trade-entry-buy-order-confirmation) or [exit](strategy-callbacks.md#trade-exit-sell-order-confirmation) callbacks
Read through the [strategy customization](strategy-customization.md) documentation for more details.
## Backtesting and forward testing
Strategy development can be a long and frustrating process, as turning our human "gut instincts" into a working computer-controlled
("algo") strategy is not always straightforward.
Therefore a strategy should be tested to verify that it is going to work as intended.
Freqtrade has two testing modes:
- **backtesting**: using historical data that you [download from an exchange](data-download.md), backtesting is a quick way to assess performance of a strategy. However, it can be very easy to distort results so a strategy will look a lot more profitable than it really is. Check the [backtesting documentation](backtesting.md) for more information.
- **dry run**: often referred to as _forward testing_, dry runs use real time data from the exchange. However, any signals that would result in trades are tracked as normal by Freqtrade, but do not have any trades opened on the exchange itself. Forward testing runs in real time, so whilst it takes longer to get results it is a much more reliable indicator of **potential** performance than backtesting.
Dry runs are enabled by setting `dry_run` to true in your [configuration](configuration.md#using-dry-run-mode).
!!! Warning "Backtests can be very inaccurate"
There are many reasons why backtest results may not match reality. Please check the [backtesting assumptions](backtesting.md#assumptions-made-by-backtesting) and [common strategy mistakes](strategy-customization.md#common-mistakes-when-developing-strategies) documentation.
Some websites that list and rank Freqtrade strategies show impressive backtest results. Do not assume these results are achieveable or realistic.
??? Hint "Useful commands"
Freqtrade includes two useful commands to check for basic flaws in strategies: [lookahead-analysis](lookahead-analysis.md) and [recursive-analysis](recursive-analysis.md).
### Assessing backtesting and dry run results
Always dry run your strategy after backtesting it to see if backtesting and dry run results are sufficiently similar.
If there is any significant difference, verify that your entry and exit signals are consistent and appear on the same candles between the two modes. However, there will always be differences between dry runs and backtests:
- Backtesting assumes all orders fill. In dry runs this might not be the case if using limit orders or there is no volume on the exchange.
- Following an entry signal on candle close, backtesting assumes trades enter at the next candle's open price (unless you have custom pricing callbacks in your strategy). In dry runs, there is often a delay between signals and trades opening.
This is because when new candles come in on your main timeframe, e.g. every 5 minutes, it takes time for Freqtrade to analyse all pair dataframes. Therefore, Freqtrade will attempt to open trades a few seconds (ideally a small a delay as possible)
after candle open.
- As entry rates in dry runs might not match backtesting, this means profit calculations will also differ. Therefore, it is normal if ROI, stoploss, trailing stoploss and callback exits are not identical.
- The more computational "lag" you have between new candles coming in and your signals being raised and trades being opened will result in greater price unpredictability. Make sure your computer is powerful enough to process the data for the number
of pairs you have in your pairlist within a reasonable time. Freqtrade will warn you in the logs if there are significant data processing delays.
## Controlling or monitoring a running bot
Once your bot is running in dry or live mode, Freqtrade has five mechanisms to control or monitor a running bot:
- **[FreqUI](freq-ui.md)**: The easiest to get started with, FreqUI is a web interface to see and control current activity of your bot.
- **[Telegram](telegram-usage.md)**: On mobile devices, Telegram integration is available to get alerts about your bot activity and to control certain aspects.
- **[FTUI](https://github.com/freqtrade/ftui)**: FTUI is a terminal (command line) interface to Freqtrade, and allows monitoring of a running bot only.
- **[REST API](rest-api.md)**: The REST API allows programmers to develop their own tools to interact with a Freqtrade bot.
- **[Webhooks](webhook-config.md)**: Freqtrade can send information to other services, e.g. discord, by webhooks.
### Logs
Freqtrade generates extensive debugging logs to help you understand what's happening. Please familiarise yourself with the information and error messages you might see in your bot logs.
## Final Thoughts
Algo trading is difficult, and most public strategies are not good performers due to the time and effort to make a strategy work profitably in multiple scenarios.
Therefore, taking public strategies and using backtests as a way to assess performance is often problematic. However, Freqtrade provides useful ways to help you make decisions and do your due diligence.
There are many different ways to achieve profitability, and there is no one single tip, trick or config option that will fix a poorly performing strategy.
Freqtrade is an open source platform with a large and helpful community - make sure to visit our [discord channel](https://discord.gg/p7nuUNVfP7) to discuss your strategy with others!
As always, only invest what you are willing to lose.
## Conclusion
Developing a strategy in Freqtrade involves defining entry and exit signals based on technical indicators. By following the structure and methods outlined above, you can create and test your own trading strategies.
Common questions and answers are available on our [FAQ](faq.md).
To continue, refer to the more in-depth [Freqtrade strategy customization documentation](strategy-customization.md).
# Between 2% and 10%, sell if EMA-long above EMA-short
if 0.02 < current_profit < 0.1:
if last_candle['emalong'] > last_candle['emashort']:
return 'ema_long_below_80'
if last_candle["emalong"] > last_candle["emashort"]:
return "ema_long_below_80"
# Sell any positions at a loss if they are held for more than one day.
if current_profit < 0.0 and (current_time - trade.open_date_utc).days >= 1:
return 'unclog'
return "unclog"
```
See [Dataframe access](strategy-advanced.md#dataframe-access) for more information about dataframe use in strategy callbacks.
@@ -165,7 +172,8 @@ E.g. If the `current_rate` is 200 USD, then returning `0.02` will set the stoplo
During backtesting, `current_rate` (and `current_profit`) are provided against the candle's high (or low for short trades) - while the resulting stoploss is evaluated against the candle's low (or high for short trades).
The absolute value of the return value is used (the sign is ignored), so returning `0.05` or `-0.05` have the same result, a stoploss 5% below the current price.
Returning None will be interpreted as "no desire to change", and is the only safe way to return when you'd like to not modify the stoploss.
Returning `None` will be interpreted as "no desire to change", and is the only safe way to return when you'd like to not modify the stoploss.
`NaN` and `inf` values are considered invalid and will be ignored (identical to `None`).
Stoploss on exchange works similar to `trailing_stop`, and the stoploss on exchange is updated as configured in `stoploss_on_exchange_interval` ([More details about stoploss on exchange](stoploss.md#stop-loss-on-exchangefreqtrade)).
@@ -194,9 +202,7 @@ Of course, many more things are possible, and all examples can be combined at wi
To simulate a regular trailing stoploss of 4% (trailing 4% behind the maximum reached price) you would use the following very simple method:
``` python
# additional imports required
from datetime import datetime
from freqtrade.persistence import Trade
# Default imports
class AwesomeStrategy(IStrategy):
@@ -204,7 +210,7 @@ class AwesomeStrategy(IStrategy):
@@ -234,8 +240,7 @@ class AwesomeStrategy(IStrategy):
Use the initial stoploss for the first 60 minutes, after this change to 10% trailing stoploss, and after 2 hours (120 minutes) we use a 5% trailing stoploss.
``` python
from datetime import datetime, timedelta
from freqtrade.persistence import Trade
# Default imports
class AwesomeStrategy(IStrategy):
@@ -243,7 +248,7 @@ class AwesomeStrategy(IStrategy):
@@ -291,8 +295,7 @@ Use a different stoploss depending on the pair.
In this example, we'll trail the highest price with 10% trailing stoploss for `ETH/BTC` and `XRP/BTC`, with 5% trailing stoploss for `LTC/BTC` and with 15% for all other pairs.
``` python
from datetime import datetime
from freqtrade.persistence import Trade
# Default imports
class AwesomeStrategy(IStrategy):
@@ -300,13 +303,13 @@ class AwesomeStrategy(IStrategy):
@@ -467,37 +466,34 @@ The helper function `stoploss_from_absolute()` can be used to convert from an ab
??? Example "Returning a stoploss using absolute price from the custom stoploss function"
If we want to trail a stop price at 2xATR below current price we can call `stoploss_from_absolute(current_rate+(side* candle['atr'] *2),current_rate,is_short=trade.is_short,leverage=trade.leverage)`.
If we want to trail a stop price at 2xATR below current price we can call `stoploss_from_absolute(current_rate+(side* candle["atr"] *2),current_rate=current_rate,is_short=trade.is_short,leverage=trade.leverage)`.
For futures, we need to adjust the direction (up or down), as well as adjust for leverage, since the [`custom_stoploss`](strategy-callbacks.md#custom-stoploss) callback returns the ["risk for this trade"](stoploss.md#stoploss-and-leverage) - not the relative price movement.
``` python
from datetime import datetime
from freqtrade.persistence import Trade
from freqtrade.strategy import IStrategy, stoploss_from_absolute, timeframe_to_prev_date
# Cancel sell order if price is more than 2% below the order.
if current_price < order.price * 0.98:
return True
@@ -662,6 +655,8 @@ This are the last methods that will be called before an order is placed.
`confirm_trade_entry()` can be used to abort a trade entry at the latest second (maybe because the price is not what we expect).
``` python
# Default imports
class AwesomeStrategy(IStrategy):
# ... populate_* methods
@@ -686,7 +681,7 @@ class AwesomeStrategy(IStrategy):
:param time_in_force: Time in force. Defaults to GTC (Good-til-cancelled).
:param current_time: datetime object, containing the current datetime
:param entry_tag: Optional entry_tag (buy_tag) if provided with the buy signal.
:param side: 'long' or 'short' - indicating the direction of the proposed trade
:param side: "long" or "short" - indicating the direction of the proposed trade
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return bool: When True is returned, then the buy-order is placed on the exchange.
False aborts the process
@@ -708,8 +703,7 @@ The exit-reasons (if applicable) will be in the following sequence:
* `trailing_stop_loss`
``` python
from freqtrade.persistence import Trade
# Default imports
class AwesomeStrategy(IStrategy):
@@ -735,14 +729,14 @@ class AwesomeStrategy(IStrategy):
or current rate for market orders.
:param time_in_force: Time in force. Defaults to GTC (Good-til-cancelled).
:param exit_reason: Exit reason.
Can be any of ['roi', 'stop_loss', 'stoploss_on_exchange', 'trailing_stop_loss',
'exit_signal', 'force_exit', 'emergency_exit']
Can be any of ["roi", "stop_loss", "stoploss_on_exchange", "trailing_stop_loss",
"exit_signal", "force_exit", "emergency_exit"]
:param current_time: datetime object, containing the current datetime
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return bool: When True, then the exit-order is placed on the exchange.
False aborts the process
"""
if exit_reason == 'force_exit' and trade.calc_profit_ratio(rate) < 0:
if exit_reason == "force_exit" and trade.calc_profit_ratio(rate) < 0:
# Reject force-sells with negative profit
# This is just a sample, please adjust to your needs
# (this does not necessarily make sense, assuming you know when you're force-selling)
@@ -768,7 +762,7 @@ This callback is **not** called when there is an open order (either buy or sell)
`adjust_trade_position()` is called very frequently for the duration of a trade, so you must keep your implementation as performant as possible.
Position adjustments will always be applied in the direction of the trade, so a positive value will always increase your position (negative values will decrease your position), no matter if it's a long or short trade.
Adjustment orders can be assigned with a tag by returning a 2 element Tuple, with the first element being the adjustment amount, and the 2nd element the tag (e.g. `return250,'increase_favorable_conditions'`).
Adjustment orders can be assigned with a tag by returning a 2 element Tuple, with the first element being the adjustment amount, and the 2nd element the tag (e.g. `return250,"increase_favorable_conditions"`).
Modifications to leverage are not possible, and the stake-amount returned is assumed to be before applying leverage.
@@ -790,7 +784,7 @@ Returning a value more than the above (so remaining stake_amount would become ne
!!! Note "About stake size"
Using fixed stake size means it will be the amount used for the first order, just like without position adjustment.
If you wish to buy additional orders with DCA, then make sure to leave enough funds in the wallet for that.
Using 'unlimited' stake amount with DCA orders requires you to also implement the `custom_stake_amount()` callback to avoid allocating all funds to the initial order.
Using `"unlimited"` stake amount with DCA orders requires you to also implement the `custom_stake_amount()` callback to avoid allocating all funds to the initial order.
!!! Warning "Stoploss calculation"
Stoploss is still calculated from the initial opening price, not averaged price.
@@ -808,9 +802,7 @@ Returning a value more than the above (so remaining stake_amount would become ne
Trades with long duration and 10s or even 100ds of position adjustments are therefore not recommended, and should be closed at regular intervals to not affect performance.
``` python
from freqtrade.persistence import Trade
from typing import Optional, Tuple, Union
# Default imports
class DigDeeperStrategy(IStrategy):
@@ -873,7 +865,7 @@ class DigDeeperStrategy(IStrategy):
if current_profit > 0.05 and trade.nr_of_successful_exits == 0:
@@ -1016,7 +1014,7 @@ class AwesomeStrategy(IStrategy):
:param proposed_leverage: A leverage proposed by the bot.
:param max_leverage: Max leverage allowed on this pair
:param entry_tag: Optional entry_tag (buy_tag) if provided with the buy signal.
:param side: 'long' or 'short' - indicating the direction of the proposed trade
:param side: "long" or "short" - indicating the direction of the proposed trade
:return: A leverage amount, which is between 1.0 and max_leverage.
"""
return 1.0
@@ -1033,6 +1031,8 @@ It will be called independent of the order type (entry, exit, stoploss or positi
Assuming that your strategy needs to store the high value of the candle at trade entry, this is possible with this callback as the following example show.
This page explains how to customize your strategies, add new indicators and set up trading rules.
Please familiarize yourself with [Freqtrade basics](bot-basics.md) first, which provides overall info on how the bot operates.
If you haven't already, please familiarize yourself with:
- the [Freqtrade strategy 101](freqtrade-101.md), which provides a quick start to strategy development
- the [Freqtrade bot basics](bot-basics.md), which provides overall info on how the bot operates
## Develop your own strategy
The bot includes a default strategy file.
Also, several other strategies are available in the [strategy repository](https://github.com/freqtrade/freqtrade-strategies).
You will however most likely have your own idea for a strategy.
This document intends to help you convert your strategy idea into your own strategy.
To get started, use `freqtrade new-strategy --strategy AwesomeStrategy` (you can obviously use your own naming for your strategy).
This will create a new strategy file from a template, which will be located under `user_data/strategies/AwesomeStrategy.py`.
This document intends to help you convert your ideas into a working strategy.
### Generating a strategy template
To get started, you can use the command:
```bash
freqtrade new-strategy --strategy AwesomeStrategy
```
This will create a new strategy called `AwesomeStrategy` from a template, which will be located using the filename `user_data/strategies/AwesomeStrategy.py`.
!!! Note
This is just a template file, which will most likely not be profitable out of the box.
There is a difference between the *name* of the strategy and the filename. In most commands, Freqtrade uses the *name* of the strategy, *not the filename*.
!!! Note
The `new-strategy` command generates starting examples which will not be profitable out of the box.
??? Hint "Different template levels"
`freqtrade new-strategy` has an additional parameter, `--template`, which controls the amount of pre-build information you get in the created strategy. Use `--template minimal` to get an empty strategy without any indicator examples, or `--template advanced` to get a template with most callbacks defined.
`freqtrade new-strategy` has an additional parameter, `--template`, which controls the amount of pre-build information you get in the created strategy. Use `--template minimal` to get an empty strategy without any indicator examples, or `--template advanced` to get a template with more complicated features defined.
### Anatomy of a strategy
A strategy file contains all the information needed to build a good strategy:
A strategy file contains all the information needed to build the strategy logic:
- Candle data in OHLCV format
- Indicators
- Entry strategy rules
-Exit strategy rules
-Minimal ROI recommended
- Stoploss strongly recommended
- Entry logic
-Signals
-Exit logic
- Signals
- Minimal ROI
- Callbacks ("custom functions")
- Stoploss
- Fixed/absolute
- Trailing
- Callbacks ("custom functions")
- Pricing [optional]
- Position adjustment [optional]
The bot also include a sample strategy called `SampleStrategy` you can update: `user_data/strategies/sample_strategy.py`.
You can test it with the parameter: `--strategy SampleStrategy`
The bot includes a sample strategy called `SampleStrategy` that you can use as a basis: `user_data/strategies/sample_strategy.py`.
You can test it with the parameter: `--strategy SampleStrategy`. Remember that you use the strategy class name, not the filename.
Additionally, there is an attribute called `INTERFACE_VERSION`, which defines the version of the strategy interface the bot should use.
The current version is 3 - which is also the default when it's not set explicitly in the strategy.
Future versions will require this to be set.
You may see older strategies set to interface version 2, and these will need to be updated to v3 terminology as future versions will require this to be set.
Starting the bot in dry or live mode is accomplished using the `trade` command:
```bash
freqtrade trade --strategy AwesomeStrategy
```
### Bot modes
Freqtrade strategies can be processed by the Freqtrade bot in 5 main modes:
- backtesting
- hyperopting
- dry ("forward testing")
- live
- FreqAI (not covered here)
Check the [configuration documentation](configuration.md) about how to set the bot to dry or live mode.
**Always use dry mode when testing as this gives you an idea of how your strategy will work in reality without risking capital.**
## Diving in deeper
**For the following section we will use the [user_data/strategies/sample_strategy.py](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/templates/sample_strategy.py)
file as reference.**
!!! Note "Strategies and Backtesting"
To avoid problems and unexpected differences between Backtesting and dry/live modes, please be aware
To avoid problems and unexpected differences between backtesting and dry/live modes, please be aware
that during backtesting the full time range is passed to the `populate_*()` methods at once.
It is therefore best to use vectorized operations (across the whole dataframe, not loops) and
avoid index referencing (`df.iloc[-1]`), but instead use `df.shift()` to get to the previous candle.
@@ -57,14 +98,22 @@ file as reference.**
needs to take care to avoid having the strategy utilize data from the future.
Some common patterns for this are listed in the [Common Mistakes](#common-mistakes-when-developing-strategies) section of this document.
??? Hint "Lookahead and recursive analysis"
Freqtrade includes two helpful commands to help assess common lookahead (using future data) and
recursive bias (variance in indicator values) issues. Before running a strategy in dry or live more,
you should always use these commands first. Please check the relevant documentation for
[lookahead](lookahead-analysis.md) and [recursive](recursive-analysis.md) analysis.
### Dataframe
Freqtrade uses [pandas](https://pandas.pydata.org/) to store/provide the candlestick (OHLCV) data.
Pandas is a great library developed for processing large amounts of data.
Pandas is a great library developed for processing large amounts of data in tabular format.
Each row in a dataframe corresponds to one candle on a chart, with the latest candle always being the last in the dataframe (sorted by date).
Each row in a dataframe corresponds to one candle on a chart, with the latest complete candle always being the last in the dataframe (sorted by date).
``` output
If we were to look at the first few rows of the main dataframe using the pandas `head()` function, we would see:
Pandas provides fast ways to calculate metrics. To benefit from this speed, it's advised to not use loops, but use vectorized methods instead.
Vectorized operations perform calculations across the whole range of data and are therefore, compared to looping through each row, a lot faster when calculating indicators.
As a dataframe is a table, simple python comparisons like the following will not work
A dataframe is a table where columns are not single values, but a series of data values. As such, simple python comparisons like the following will not work:
``` python
if dataframe['rsi'] > 30:
dataframe['enter_long'] = 1
```
The above section will fail with `The truth value of a Series is ambiguous. [...]`.
The above section will fail with `The truth value of a Series is ambiguous [...]`.
This must instead be written in a pandas-compatible way, so the operation is performed across the whole dataframe.
This must instead be written in a pandas-compatible way, so the operation is performed across the whole dataframe, i.e. `vectorisation`.
``` python
dataframe.loc[
@@ -97,13 +142,38 @@ This must instead be written in a pandas-compatible way, so the operation is per
With this section, you have a new column in your dataframe, which has `1` assigned whenever RSI is above 30.
Freqtrade uses this new column as an entry signal, where it is assumed that a trade will subsequently open on the next open candle.
Pandas provides fast ways to calculate metrics, i.e. "vectorisation". To benefit from this speed, it is advised to not use loops, but use vectorized methods instead.
Vectorized operations perform calculations across the whole range of data and are therefore, compared to looping through each row, a lot faster when calculating indicators.
??? Hint "Signals vs Trades"
- Signals are generated from indicators at candle close, and are intentions to enter a trade.
- Trades are orders that are executed (on the exchange in live mode) where a trade will then open as close to next candle open as possible.
!!! Warning "Trade order assumptions"
In backtesting, signals are generated on candle close. Trades are then initiated immeditely on next candle open.
In dry and live, this may be delayed due to all pair dataframes needing to be analysed first, then trade processing
for each of those pairs happens. This means that in dry/live you need to be mindful of having as low a computation
delay as possible, usually by running a low number of pairs and having a CPU with a good clock speed.
#### Why can't I see "real time" candle data?
Freqtrade does not store incomplete/unfinished candles in the dataframe.
The use of incomplete data for making strategy decisions is called "repainting" and you might see other platforms allow this.
Freqtrade does not. Only complete/finished candle data is available in the dataframe.
### Customize Indicators
Buy and sell signals need indicators. You can add more indicators by extending the list contained in the method `populate_indicators()` from your strategy file.
Entry and exit signals need indicators. You can add more indicators by extending the list contained in the method `populate_indicators()` from your strategy file.
You should only add the indicators used in either `populate_entry_trend()`, `populate_exit_trend()`, or to populate another indicator, otherwise performance may suffer.
It's important to always return the dataframe without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected.
It's important to always return the dataframe from these three functions without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected.
Additional technical libraries can be installed as necessary, or custom indicators may be written / invented by the strategy author.
### Strategy startup period
Most indicators have an instable startup period, in which they are either not available (NaN), or the calculation is incorrect. This can lead to inconsistencies, since Freqtrade does not know how long this instable period should be.
Some indicators have an unstable startup period in which there isn't enough candle data to calculate any values (NaN), or the calculation is incorrect. This can lead to inconsistencies, since Freqtrade does not know how long this unstable period is and uses whatever indicator values are in the dataframe.
To account for this, the strategy can be assigned the `startup_candle_count` attribute.
This should be set to the maximum number of candles that the strategy requires to calculate stable indicators. In the case where a user includes higher timeframes with informative pairs, the `startup_candle_count` does not necessarily change. The value is the maximum period (in candles) that any of the informatives timeframes need to compute stable indicators.
You can use [recursive-analysis](recursive-analysis.md) to check and find the correct `startup_candle_count` to be used.
You can use [recursive-analysis](recursive-analysis.md) to check and find the correct `startup_candle_count` to be used. When recursive analysis shows a variance of 0%, then you can be sure that you have enough startup candle data.
In this example strategy, this should be set to 400 (`startup_candle_count = 400`), since the minimum needed history for ema100 calculation to make sure the value is correct is 400 candles.
@@ -195,19 +269,22 @@ Let's try to backtest 1 month (January 2019) of 5m candles using an example stra
Assuming `startup_candle_count` is set to 400, backtesting knows it needs 400 candles to generate valid buy signals. It will load data from `20190101 - (400 * 5m)` - which is ~2018-12-30 11:40:00.
If this data is available, indicators will be calculated with this extended timerange. The instable startup period (up to 2019-01-01 00:00:00) will then be removed before starting backtesting.
Assuming `startup_candle_count` is set to 400, backtesting knows it needs 400 candles to generate valid entry signals. It will load data from `20190101 - (400 * 5m)` - which is ~2018-12-30 11:40:00.
!!! Note
If data for the startup period is not available, then the timerange will be adjusted to account for this startup period - so Backtesting would start at 2019-01-02 09:20:00.
If this data is available, indicators will be calculated with this extended timerange. The unstable startup period (up to 2019-01-01 00:00:00) will then be removed before backtesting is carried out.
!!! Note "Unavailable startup candle data"
If data for the startup period is not available, then the timerange will be adjusted to account for this startup period. In our example, backtesting would then start from 2019-01-02 09:20:00.
### Entry signal rules
Edit the method `populate_entry_trend()` in your strategy file to update your entry strategy.
It's important to always return the dataframe without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected.
It's important to always return the dataframe without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected. The strategy may then produce invalid values, or cease to work entirely.
This method will also define a new column, `"enter_long"` (`"enter_short"` for shorts), which needs to contain 1 for entries, and 0 for "no action". `enter_long` is a mandatory column that must be set even if the strategy is shorting only.
This method will also define a new column, `"enter_long"` (`"enter_short"` for shorts), which needs to contain `1` for entries, and `0` for "no action". `enter_long` is a mandatory column that must be set even if the strategy is shorting only.
You can name your entry signals by using the `"enter_tag"` column, which can help debug and assess your strategy later.
Sample from `user_data/strategies/sample_strategy.py`:
Buying requires sellers to buy from - therefore volume needs to be > 0 (`dataframe['volume'] > 0`) to make sure that the bot does not buy/sell in no-activity periods.
Buying requires sellers to buy from. Therefore volume needs to be > 0 (`dataframe['volume'] > 0`) to make sure that the bot does not buy/sell in no-activity periods.
### Exit signal rules
Edit the method `populate_exit_trend()` into your strategy file to update your exit strategy.
The exit-signal can be suppressed by setting `use_exit_signal` to false in the configuration or strategy.
`use_exit_signal` will not influence [signal collision rules](#colliding-signals) - which will still apply and can prevent entries.
It's important to always return the dataframe without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected.
It's important to always return the dataframe without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected. The strategy may then produce invalid values, or cease to work entirely.
This method will also define a new column, `"exit_long"` (`"exit_short"` for shorts), which needs to contain 1 for exits, and 0 for "no action".
This method will also define a new column, `"exit_long"` (`"exit_short"` for shorts), which needs to contain `1` for exits, and `0` for "no action".
You can name your exit signals by using the `"exit_tag"` column, which can help debug and assess your strategy later.
Sample from `user_data/strategies/sample_strategy.py`:
This dict defines the minimal Return On Investment (ROI) a trade should reach before exiting, independent from the exit signal.
The `minimal_roi` strategy variable defines the minimal Return On Investment (ROI) a trade should reach before exiting, independent from the exit signal.
It is of the following format, with the dict key (left side of the colon) being the minutes passed since the trade opened, and the value (right side of the colon) being the percentage.
It is of the following format, i.e. a python `dict`, with the dict key (left side of the colon) being the minutes passed since the trade opened, and the value (right side of the colon) being the percentage.
```python
minimal_roi = {
@@ -344,14 +432,19 @@ The above configuration would therefore mean:
The calculation does include fees.
#### Disabling minimal ROI
To disable ROI completely, set it to an empty dictionary:
```python
minimal_roi = {}
```
#### Using calculations in minimal ROI
To use times based on candle duration (timeframe), the following snippet can be handy.
This will allow you to change the timeframe for the strategy, and ROI times will still be set as candles (e.g. after 3 candles ...)
This will allow you to change the timeframe for the strategy, but the minimal ROI times will still be set as candles, e.g. after 3 candles.
``` python
from freqtrade.exchange import timeframe_to_minutes
@@ -368,9 +461,9 @@ class AwesomeStrategy(IStrategy):
```
??? info "Orders that don't fill immediately"
`minimal_roi` will take the `trade.open_date` as reference, which is the time the trade was initialized / the first order for this trade was placed.
This will also hold true for limit orders that don't fill immediately (usually in combination with "off-spot" prices through `custom_entry_price()`), as well as for cases where the initial order is replaced through `adjust_entry_price()`.
The time used will still be from the initial `trade.open_date` (when the initial order was first placed), not from the newly placed order date.
`minimal_roi` will take the `trade.open_date` as reference, which is the time the trade was initialized, i.e. when the first order for this trade was placed.
This will also hold true for limit orders that don't fill immediately (usually in combination with "off-spot" prices through `custom_entry_price()`), as well as for cases where the initial order price is replaced through `adjust_entry_price()`.
The time used will still be from the initial `trade.open_date` (when the initial order was first placed), not from the newly placed or adjusted order date.
### Stoploss
@@ -386,33 +479,44 @@ For the full documentation on stoploss features, look at the dedicated [stoploss
### Timeframe
This is the set of candles the bot should download and use for the analysis.
This is the periodicity of candles the bot should use in the strategy.
Common values are `"1m"`, `"5m"`, `"15m"`, `"1h"`, however all values supported by your exchange should work.
Please note that the same entry/exit signals may work well with one timeframe, but not with the others.
Please note that the same entry/exit signals may work well with one timeframe, but not with others.
This setting is accessible within the strategy methods as the `self.timeframe` attribute.
### Can short
To use short signals in futures markets, you will have to let us know to do so by setting `can_short=True`.
To use short signals in futures markets, you will have to set `can_short = True`.
Strategies which enable this will fail to load on spot markets.
Disabling of this will have short signals ignored (also in futures markets).
If you have `1` values in the `enter_short` column to raise short signals, setting `can_short = False` (which is the default) will mean that these short signals are ignored, even if you have specified futures markets in your configuration.
### Metadata dict
The metadata-dict (available for `populate_entry_trend`, `populate_exit_trend`, `populate_indicators`) contains additional information.
Currently this is `pair`, which can be accessed using `metadata['pair']` - and will return a pair in the format `XRP/BTC`.
The `metadata` dict (available for `populate_entry_trend`, `populate_exit_trend`, `populate_indicators`) contains additional information.
Currently this is `pair`, which can be accessed using `metadata['pair']`, and will return a pair in the format `XRP/BTC` (or `XRP/BTC:BTC` for futures markets).
The Metadata-dict should not be modified and does not persist information across multiple calls.
Instead, have a look at the [Storing information](strategy-advanced.md#storing-information-persistent) section.
The metadatadict should not be modified and does not persist information across multiple functions in your strategy.
Instead, please check the [Storing information](strategy-advanced.md#storing-information-persistent) section.
--8<-- "includes/strategy-imports.md"
## Strategy file loading
By default, freqtrade will attempt to load strategies from all `.py` files within `user_data/strategies`.
By default, freqtrade will attempt to load strategies from all `.py` files within the `userdir` (default `user_data/strategies`).
Assuming your strategy is called `AwesomeStrategy`, stored in the file `user_data/strategies/AwesomeStrategy.py`, then you can start freqtrade with `freqtrade trade --strategy AwesomeStrategy`.
Note that we're using the class-name, not the file name.
Assuming your strategy is called `AwesomeStrategy`, stored in the file `user_data/strategies/AwesomeStrategy.py`, then you can start freqtrade in dry (or live, depending on your configuration) mode with:
```bash
freqtrade trade --strategy AwesomeStrategy`
```
Note that we're using the class name, not the file name.
You can use `freqtrade list-strategies` to see a list of all strategies Freqtrade is able to load (all strategies in the correct folder).
It will also include a "status" field, highlighting potential problems.
@@ -424,9 +528,11 @@ It will also include a "status" field, highlighting potential problems.
### Get data for non-tradeable pairs
Data for additional, informative pairs (reference pairs) can be beneficial for some strategies.
Data for additional, informative pairs (reference pairs) can be beneficial for some strategies to see data on a wider timeframe.
OHLCV data for these pairs will be downloaded as part of the regular whitelist refresh process and is available via `DataProvider` just as other pairs (see below).
These parts will **not** be traded unless they are also specified in the pair whitelist, or have been selected by Dynamic Whitelisting.
These pairs will **not** be traded unless they are also specified in the pair whitelist, or have been selected by Dynamic Whitelisting, e.g. `VolumePairlist`.
The pairs need to be specified as tuples in the format `("pair", "timeframe")`, with pair as the first and timeframe as the second argument.
@@ -466,10 +572,13 @@ A full sample can be found [in the DataProvider section](#complete-data-provider
In most common case it is possible to easily define informative pairs by using a decorator. All decorated `populate_indicators_*` methods run in isolation,
not having access to data from other informative pairs, in the end all informative dataframes are merged and passed to main `populate_indicators()` method.
When hyperopting, use of hyperoptable parameter `.value` attribute is not supported. Please use `.range` attribute. See [optimizing an indicator parameter](hyperopt.md#optimizing-an-indicator-parameter)
for more information.
To easily define informative pairs, use the `@informative` decorator. All decorated `populate_indicators_*` methods run in isolation,
and do not have access to data from other informative pairs. However, all informative dataframes for each pair are merged and passed to main `populate_indicators()` method.
!!! Note
Do not use the `@informative` decorator if you need to use data from one informative pair when generating another informative pair. Instead, define informative pairs manually as described [in the DataProvider section](#complete-data-provider-sample).
When hyperopting, use of the hyperoptable parameter `.value` attribute is not supported. Please use the `.range` attribute. See [optimizing an indicator parameter](hyperopt.md#optimizing-an-indicator-parameter) for more information.
??? info "Full documentation"
``` python
@@ -566,10 +675,6 @@ for more information.
```
!!! Note
Do not use `@informative` decorator if you need to use data of one informative pair when generating another informative pair. Instead, define informative pairs
manually as described [in the DataProvider section](#complete-data-provider-sample).
!!! Note
Use string formatting when accessing informative dataframes of other pairs. This will allow easily changing stake currency in config without having to adjust strategy code.
@@ -590,18 +695,15 @@ for more information.
Alternatively column renaming may be used to remove stake currency from column names: `@informative('1h', 'BTC/{stake}', fmt='{base}_{column}_{timeframe}')`.
!!! Warning "Duplicate method names"
Methods tagged with `@informative()` decorator must always have unique names! Re-using same name (for example when copy-pasting already defined informative method)
will overwrite previously defined method and not produce any errors due to limitations of Python programming language. In such cases you will find that indicators
created in earlier-defined methods are not available in the dataframe. Carefully review method names and make sure they are unique!
Methods tagged with the `@informative()` decorator must always have unique names! Reusing the same name (for example when copy-pasting already defined informative methods) will overwrite previously defined methods and not produce any errors due to limitations of Python programming language. In such cases you will find that indicators created in methods higher up in the strategy file are not available in the dataframe. Carefully review method names and make sure they are unique!
### *merge_informative_pair()*
This method helps you merge an informative pair to a regular dataframe without lookahead bias.
It's there to help you merge the dataframe in a safe and consistent way.
This method helps you merge an informative pair to the regular main dataframe safely and consistently, without lookahead bias.
Options:
- Rename the columns for you to create unique columns
- Rename the columns to create unique columns
- Merge the dataframe without lookahead bias
- Forward-fill (optional)
@@ -652,20 +754,20 @@ All columns of the informative dataframe will be available on the returning data
```
!!! Warning "Informative timeframe < timeframe"
Using informative timeframes smaller than the dataframe timeframe is not recommended with this method, as it will not use any of the additional information this would provide.
To use the more detailed information properly, more advanced methods should be applied (which are out of scope for freqtrade documentation, as it'll depend on the respective need).
Using informative timeframes smaller than the main dataframe timeframe is not recommended with this method, as it will not use any of the additional information this would provide.
To use the more detailed information properly, more advanced methods should be applied (which are out of scope for this documentation).
## Additional data (DataProvider)
The strategy provides access to the `DataProvider`. This allows you to get additional data to use in your strategy.
All methods return `None` in case of failure (do not raise an exception).
All methods return `None` in case of failure, i.e. failures do not raise an exception.
Please always check the mode of operation to select the correct method to get data (samples see below).
Please always check the mode of operation to select the correct method to get data (see below for examples).
!!! Warning "Hyperopt"
Dataprovider is available during hyperopt, however it can only be used in `populate_indicators()` within a strategy.
It is not available in `populate_buy()` and `populate_sell()` methods, nor in `populate_indicators()`, if this method located in the hyperopt file.
!!! Warning "Hyperopt Limitations"
The DataProvider is available during hyperopt, however it can only be used in `populate_indicators()` **within a strategy**, not within a hyperopt class file.
It is also not available in `populate_entry_trend()` and `populate_exit_trend()` methods.
### Possible options for DataProvider
@@ -691,30 +793,31 @@ for pair, timeframe in self.dp.available_pairs:
### *current_whitelist()*
Imagine you've developed a strategy that trades the `5m` timeframe using signals generated from a `1d` timeframe on the top 10 volume pairs by volume.
Imagine you've developed a strategy that trades the `5m` timeframe using signals generated from a `1d` timeframe on the top 10 exchange pairs by volume.
The strategy might look something like this:
The strategy logic might look something like this:
*Scan through the top 10 pairs by volume using the `VolumePairList` every 5 minutes and use a 14 day RSI to buy and sell.*
*Scan through the top 10 pairs by volume using the `VolumePairList` every 5 minutes and use a 14 day RSI to enter and exit.*
Due to the limited available data, it's very difficult to resample `5m` candles into daily candles for use in a 14 day RSI. Most exchanges limit us to just 500-1000 candles which effectively gives us around 1.74 daily candles. We need 14 days at least!
Due to the limited available data, it's very difficult to resample `5m` candles into daily candles for use in a 14 day RSI. Most exchanges limit users to just 500-1000 candles which effectively gives us around 1.74 daily candles. We need 14 days at least!
Since we can't resample the data we will have to use an informative pair; and since the whitelist will be dynamic we don't know which pair(s) to use.
Since we can't resample the data we will have to use an informative pair, and since the whitelist will be dynamic we don't know which pair(s) to use! We have a problem!
This is where calling `self.dp.current_whitelist()` comes in handy.
This is where calling `self.dp.current_whitelist()` comes in handy to retrieve only those pairs in the whitelist.
```python
def informative_pairs(self):
# get access to all pairs available in whitelist.
pairs = self.dp.current_whitelist()
# Assign tf to each pair so they can be downloaded and cached for strategy.
# Assign timeframe to each pair so they can be downloaded and cached for strategy.
informative_pairs = [(pair, '1d') for pair in pairs]
return informative_pairs
```
??? Note "Plotting with current_whitelist"
Current whitelist is not supported for `plot-dataframe`, as this command is usually used by providing an explicit pairlist - and would therefore make the return values of this method misleading.
Current whitelist is not supported for `plot-dataframe`, as this command is usually used by providing an explicit pairlist and would therefore make the return values of this method misleading.
It's also not supported for FreqUI visualization in [webserver mode](utils.md#webserver-mode), as the configuration for webserver mode doesn't require a pairlist to be set.
### *get_pair_dataframe(pair, timeframe)*
@@ -755,7 +858,7 @@ if self.dp.runmode.value in ('live', 'dry_run'):
dataframe['best_ask'] = ob['asks'][0][0]
```
The orderbook structure is aligned with the order structure from [ccxt](https://github.com/ccxt/ccxt/wiki/Manual#order-book-structure), so the result will look as follows:
The orderbook structure is aligned with the order structure from [ccxt](https://github.com/ccxt/ccxt/wiki/Manual#order-book-structure), so the result will be formatted as follows:
``` js
{
@@ -773,7 +876,7 @@ The orderbook structure is aligned with the order structure from [ccxt](https://
}
```
Therefore, using `ob['bids'][0][0]` as demonstrated above will result in using the best bid price. `ob['bids'][0][1]` would look at the amount at this orderbook position.
Therefore, using `ob['bids'][0][0]` as demonstrated above will use the best bid price. `ob['bids'][0][1]` would look at the amount at this orderbook position.
!!! Warning "Warning about backtesting"
The order book is not part of the historic data which means backtesting and hyperopt will not work correctly if this method is used, as the method will return up-to-date values.
@@ -790,12 +893,12 @@ if self.dp.runmode.value in ('live', 'dry_run'):
!!! Warning
Although the ticker data structure is a part of the ccxt Unified Interface, the values returned by this method can
vary for different exchanges. For instance, many exchanges do not return `vwap` values, some exchanges
does not always fills in the `last` field (so it can be None), etc. So you need to carefully verify the ticker
vary for different exchanges. For instance, many exchanges do not return `vwap` values, and some exchanges
do not always fill in the `last` field (so it can be None), etc. So you need to carefully verify the ticker
data returned from the exchange and add appropriate error handling / defaults.
!!! Warning "Warning about backtesting"
This method will always return up-to-date values - so usage during backtesting / hyperopt without runmode checks will lead to wrong results.
This method will always return up-to-date / real-time values. As such, usage during backtesting / hyperopt without runmode checks will lead to wrong results, e.g. your whole dataframe will contain the same single value in all rows.
### Send Notification
@@ -814,7 +917,7 @@ Notifications will only be sent in trading modes (Live/Dry-run) - so this method
!!! Warning "Spamming"
You can spam yourself pretty good by setting `always_send=True` in this method. Use this with great care and only in conditions you know will not happen throughout a candle to avoid a message every 5 seconds.
### Complete Data-provider sample
### Complete DataProvider sample
```python
from freqtrade.strategy import IStrategy, merge_informative_pair
@@ -881,14 +984,14 @@ class SampleStrategy(IStrategy):
## Additional data (Wallets)
The strategy provides access to the `wallets` object. This contains the current balances on the exchange.
The strategy provides access to the `wallets` object. This contains the current balances of your wallets/accounts on the exchange.
!!! Note "Backtesting / Hyperopt"
Wallets behaves differently depending on the function it's called.
Wallets behaves differently depending on the function from which it is called.
Within `populate_*()` methods, it'll return the full wallet as configured.
Within [callbacks](strategy-callbacks.md), you'll get the wallet state corresponding to the actual simulated wallet at that point in the simulation process.
Please always check if `wallets` is available to avoid failures during backtesting.
Always check if `wallets` is available to avoid failures during backtesting.
``` python
if self.wallets:
@@ -907,15 +1010,15 @@ if self.wallets:
## Additional data (Trades)
A history of Trades can be retrieved in the strategy by querying the database.
A history of trades can be retrieved in the strategy by querying the database.
At the top of the file, import Trade.
At the top of the file, import the required object:
```python
from freqtrade.persistence import Trade
```
The following example queries for the current pair and trades from today, however other filters can easily be added.
The following example queries trades from today for the current pair (`metadata['pair']`). Other filters can easily be added.
@@ -933,7 +1036,9 @@ For a full list of available methods, please consult the [Trade object](trade-ob
## Prevent trades from happening for a specific pair
Freqtrade locks pairs automatically for the current candle (until that candle is over) when a pair is sold, preventing an immediate re-buy of that pair.
Freqtrade locks pairs automatically for the current candle (until that candle is over) when a pair exits, preventing an immediate re-entry of that pair.
This is to prevent "waterfalls" of many and frequent trades within a single candle.
Locked pairs will show the message `Pair <pair> is currently locked.`.
@@ -944,7 +1049,7 @@ Sometimes it may be desired to lock a pair after certain events happen (e.g. mul
Freqtrade has an easy method to do this from within the strategy, by calling `self.lock_pair(pair, until, [reason])`.
`until` must be a datetime object in the future, after which trading will be re-enabled for that pair, while `reason` is an optional string detailing why the pair was locked.
Locks can also be lifted manually, by calling `self.unlock_pair(pair)` or `self.unlock_reason(<reason>)` - providing reason the pair was locked with.
Locks can also be lifted manually, by calling `self.unlock_pair(pair)` or `self.unlock_reason(<reason>)`, providing the reason the pair was unlocked.
`self.unlock_reason(<reason>)` will unlock all pairs currently locked with the provided reason.
To verify if a pair is currently locked, use `self.is_pair_locked(pair)`.
@@ -953,7 +1058,7 @@ To verify if a pair is currently locked, use `self.is_pair_locked(pair)`.
Locked pairs will always be rounded up to the next candle. So assuming a `5m` timeframe, a lock with `until` set to 10:18 will lock the pair until the candle from 10:15-10:20 will be finished.
!!! Warning
Manually locking pairs is not available during backtesting, only locks via Protections are allowed.
Manually locking pairs is not available during backtesting. Only locks via Protections are allowed.
#### Pair locking example
@@ -963,7 +1068,7 @@ from datetime import timedelta, datetime, timezone
# Put the above lines a the top of the strategy file, next to all the other imports
# --------
# Within populate indicators (or populate_buy):
# Within populate indicators (or populate_entry_trend):
if self.config['runmode'].value in ('live', 'dry_run'):
# fetch closed trades for the last 2 days
trades = Trade.get_trades_proxy(
@@ -976,9 +1081,9 @@ if self.config['runmode'].value in ('live', 'dry_run'):
Printing more than a few rows is also possible (simply use `print(dataframe)` instead of `print(dataframe.tail())`), however not recommended, as that will be very verbose (~500 lines per pair every 5 seconds).
Printing more than a few rows is also possible by using `print(dataframe)` instead of `print(dataframe.tail())`. However this is not recommended, as can results in a lot of output (~500 lines per pair every 5 seconds).
## Common mistakes when developing strategies
### Peeking into the future while backtesting
### Looking into the future while backtesting
Backtesting analyzes the whole time-range at once for performance reasons. Because of this, strategy authors need to make sure that strategies do not look-ahead into the future.
This is a common pain-point, which can cause huge differences between backtesting and dry/live run methods, since they all use data which is not available during dry/live runs, so these strategies will perform well during backtesting, but will fail / perform badly in real conditions.
Backtesting analyzes the whole dataframe timerange at once for performance reasons. Because of this, strategy authors need to make sure that strategies do not lookahead into the future, i.e. using data that would not be available in dry or live mode.
The following lists some common patterns which should be avoided to prevent frustration:
This is a common pain-point, which can cause huge differences between backtesting and dry/live run methods. Strategies that look into the future will perform well during backtesting, often with incredible profits or winrates, but will fail or perform badly in real conditions.
The following list contains some common patterns which should be avoided to prevent frustration:
- don't use `shift(-1)` or other negative values. This uses data from the future in backtesting, which is not available in dry or live modes.
- don't use `.iloc[-1]` or any other absolute position in the dataframe within `populate_` functions, as this will be different between dry-run and backtesting. Absolute `iloc` indexing is safe to use in callbacks however - see [Strategy Callbacks](strategy-callbacks.md).
- don't use `dataframe['volume'].mean()`. This uses the full DataFrame for backtesting, including data from the future. Use `dataframe['volume'].rolling(<window>).mean()` instead
- don't use `.resample('1h')`. This uses the left border of the interval, so moves data from an hour to the start of the hour. Use `.resample('1h', label='right')` instead.
- don't use functions that use all dataframe or column values, e.g. `dataframe['mean_volume'] = dataframe['volume'].mean()`. As backtesting uses the full dataframe, at any point in the dataframe, the `'mean_volume'` series would include data from the future. Use rolling() calculations instead, e.g. `dataframe['volume'].rolling(<window>).mean()`.
- don't use `.resample('1h')`. This uses the left border of the period interval, so moves data from an hour boundary to the start of the hour. Use `.resample('1h', label='right')` instead.
!!! Tip "Identifying problems"
You may also want to check the 2 helper commands [lookahead-analysis](lookahead-analysis.md) and [recursive-analysis](recursive-analysis.md), which can each help you figure out problems with your strategy in different ways.
Please treat them as what they are - helpers to identify most common problems. A negative result of each does not guarantee that there's none of the above errors included.
You should always use the two helper commands [lookahead-analysis](lookahead-analysis.md) and [recursive-analysis](recursive-analysis.md), which can each help you figure out problems with your strategy in different ways.
Please treat them as what they are - helpers to identify most common problems. A negative result of each does not guarantee that there are none of the above errors included.
### Colliding signals
When conflicting signals collide (e.g. both `'enter_long'` and `'exit_long'` are 1), freqtrade will do nothing and ignore the entry signal. This will avoid trades that enter, and exit immediately. Obviously, this can potentially lead to missed entries.
When conflicting signals collide (e.g. both `'enter_long'` and `'exit_long'` are set to `1`), freqtrade will do nothing and ignore the entry signal. This will avoid trades that enter, and exit immediately. Obviously, this can potentially lead to missed entries.
The following rules apply, and entry signals will be ignored if more than one of the 3 signals is set:
@@ -1029,11 +1135,11 @@ The following rules apply, and entry signals will be ignored if more than one of
## Further strategy ideas
To get additional Ideas for strategies, head over to the [strategy repository](https://github.com/freqtrade/freqtrade-strategies). Feel free to use them as they are - but results will depend on the current market situation, pairs used etc. - therefore please backtest the strategy for your exchange/desired pairs first, evaluate carefully, use at your own risk.
Feel free to use any of them as inspiration for your own strategies.
We're happy to accept Pull Requests containing new Strategies to that repo.
To get additional ideas for strategies, head over to the [strategy repository](https://github.com/freqtrade/freqtrade-strategies). Feel free to use them as examples, but results will depend on the current market situation, pairs used, etc. Therefore, these strategies should be considered only for learning purposes, not real world trading. Please backtest the strategy for your exchange/desired pairs first, then dry run to evaluate carefully, and use at your own risk.
## Next step
Feel free to use any of them as inspiration for your own strategies. We're happy to accept Pull Requests containing new strategies to the repository.
## Next steps
Now you have a perfect strategy you probably want to backtest it.
Your next step is to learn [How to use the Backtesting](backtesting.md).
Your next step is to learn [how to use backtesting](backtesting.md).
| `amount`| float | Amount in Asset / Base currency that is currently owned. Will be 0.0 until the initial order fills. |
| `open_date`| datetime | Timestamp when trade was opened **use `open_date_utc` instead** |
| `open_date_utc`| datetime | Timestamp when trade was opened - in UTC. |
| `close_date`| datetime | Timestamp when trade was closed **use `close_date_utc` instead** |
| `close_date_utc`| datetime | Timestamp when trade was closed - in UTC. |
| `close_profit`| float | Relative profit at the time of trade closure. `0.01` == 1% |
| `close_profit_abs`| float | Absolute profit (in stake currency) at the time of trade closure. |
| `leverage` | float | Leverage used for this trade - defaults to 1.0 in spot markets. |
| `enter_tag`| string | Tag provided on entry via the `enter_tag` column in the dataframe. |
| `is_short` | boolean | True for short trades, False otherwise. |
| `orders` | Order[] | List of order objects attached to this trade (includes both filled and cancelled orders). |
| `date_last_filled_utc` | datetime | Time of the last filled order. |
| `entry_side` | "buy" / "sell" | Order Side the trade was entered. |
| `exit_side` | "buy" / "sell" | Order Side that will result in a trade exit / position reduction. |
| `trade_direction` | "long" / "short" | Trade direction in text - long or short. |
| `nr_of_successful_entries` | int | Number of successful (filled) entry orders. |
| `nr_of_successful_exits` | int | Number of successful (filled) exit orders. |
## Class methods
@@ -130,20 +130,20 @@ Most properties here can be None as they are dependent on the exchange response.
| Attribute | DataType | Description |
|------------|-------------|-------------|
`trade` | Trade | Trade object this order is attached to
`ft_pair` | string | Pair this order is for
`ft_is_open` | boolean | is the order filled?
`order_type` | string | Order type as defined on the exchange - usually market, limit or stoploss
`status` | string | Status as defined by ccxt. Usually open, closed, expired or canceled
`side` | string | Buy or Sell
`price` | float | Price the order was placed at
`average` | float | Average price the order filled at
`amount` | float | Amount in base currency
`filled` | float | Filled amount (in base currency)
`remaining` | float | Remaining amount
`cost` | float | Cost of the order - usually average * filled (*Exchange dependent on futures, may contain the cost with or without leverage and may be in contracts.*)
`stake_amount` | float | Stake amount used for this order. *Added in 2023.7.*
`order_date` | datetime | Order creation date **use `order_date_utc` instead**
`order_date_utc` | datetime | Order creation date (in UTC)
`order_fill_date` | datetime | Order fill date **use `order_fill_utc` instead**
`order_fill_date_utc` | datetime | Order fill date
| `trade` | Trade | Trade object this order is attached to |
| `ft_pair` | string | Pair this order is for |
| `ft_is_open` | boolean | is the order filled? |
| `order_type` | string | Order type as defined on the exchange - usually market, limit or stoploss |
| `status` | string | Status as defined by ccxt. Usually open, closed, expired or canceled |
| `side` | string | Buy or Sell |
| `price` | float | Price the order was placed at |
| `average` | float | Average price the order filled at |
| `amount` | float | Amount in base currency |
| `filled` | float | Filled amount (in base currency) |
| `remaining` | float | Remaining amount |
| `cost` | float | Cost of the order - usually average * filled (*Exchange dependent on futures, may contain the cost with or without leverage and may be in contracts.*) |
| `stake_amount` | float | Stake amount used for this order. *Added in 2023.7.* |
| `order_date` | datetime | Order creation date **use `order_date_utc` instead** |
| `order_date_utc` | datetime | Order creation date (in UTC) |
| `order_fill_date` | datetime | Order fill date **use `order_fill_utc` instead** |
| `order_fill_date_utc` | datetime | Order fill date |
Use the `list-hyperoptloss` subcommand to see all hyperopt loss functions available.
It provides a quick list of all available loss functions in your environment.
This subcommand can be useful for finding problems in your environment with loading loss functions: modules with Hyperopt-Loss functions that contain errors and failed to load are printed in red (LOAD FAILED), while hyperopt-Loss functions with duplicate names are printed in yellow (DUPLICATE NAME).
`freqtrade convert-db` can be used to convert your database from one system to another (sqlite -> postgres, postgres -> other postgres), migrating all trades, orders and Pairlocks.
Please refer to the [SQL cheatsheet](sql_cheatsheet.md#use-a-different-database-system) to learn about requirements for different database systems.
Please refer to the [corresponding documentation](advanced-setup.md#use-a-different-database-system) to learn about requirements for different database systems.
Now, choose your installation method, either automatically via script (recommended) or manually following the corresponding instructions.
## Install freqtrade automatically
### Run the installation script
The script will ask you a few questions to determine which parts should be installed.
```powershell
Set-ExecutionPolicy -ExecutionPolicy Bypass
cd freqtrade
. .\setup.ps1
```
## Install freqtrade manually
!!! Note "64bit Python version"
@@ -14,17 +38,11 @@ Otherwise, please follow the instructions below.
!!! Hint
Using the [Anaconda Distribution](https://www.anaconda.com/distribution/) under Windows can greatly help with installation problems. Check out the [Anaconda installation section](installation.md#installation-with-conda) in the documentation for more information.
Install ta-lib according to the [ta-lib documentation](https://github.com/TA-Lib/ta-lib-python#windows).
As compiling from source on windows has heavy dependencies (requires a partial visual studio installation), Freqtrade provides these dependencies (in the binary wheel format) for the latest 3 Python versions (3.9, 3.10 and 3.11) and for 64bit Windows.
As compiling from source on windows has heavy dependencies (requires a partial visual studio installation), Freqtrade provides these dependencies (in the binary wheel format) for the latest 3 Python versions (3.10, 3.11 and 3.12) and for 64bit Windows.
These Wheels are also used by CI running on windows, and are therefore tested together with freqtrade.
Other versions must be downloaded from the above link.
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.