mirror of
https://github.com/freqtrade/freqtrade.git
synced 2025-11-29 08:33:07 +00:00
Compare commits
653 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d104fb13a0 | ||
|
|
047de2e0ff | ||
|
|
ead9e6f116 | ||
|
|
b17918d8cf | ||
|
|
79910870a3 | ||
|
|
e7e7a17183 | ||
|
|
3fa31bfe20 | ||
|
|
b2abdab7cd | ||
|
|
fd7dfc95e3 | ||
|
|
797617abaa | ||
|
|
9a400d0e6f | ||
|
|
8f18a52cdf | ||
|
|
d638a4a0ff | ||
|
|
bbf472e69b | ||
|
|
83f45d0e65 | ||
|
|
d6122585f7 | ||
|
|
2fcff78756 | ||
|
|
af1d2ee2a2 | ||
|
|
f56f5179d2 | ||
|
|
c2b40da762 | ||
|
|
05e4b63091 | ||
|
|
8b2abf4422 | ||
|
|
997b80fd7b | ||
|
|
5a7e822342 | ||
|
|
1d39cc18bf | ||
|
|
e39af17207 | ||
|
|
4ce95dd1c3 | ||
|
|
47fca02ba0 | ||
|
|
ed2485dd57 | ||
|
|
6dc15fad01 | ||
|
|
27566a4c8a | ||
|
|
3860a5a8c5 | ||
|
|
235721d9d9 | ||
|
|
5a057e4b94 | ||
|
|
b90e7d75c6 | ||
|
|
1c26a6600b | ||
|
|
161446393d | ||
|
|
9df302f2f0 | ||
|
|
e95fa83ea2 | ||
|
|
b151a2c3e1 | ||
|
|
ce7f7d828d | ||
|
|
7a69bdff6a | ||
|
|
1abb71d5a3 | ||
|
|
2e57ad695f | ||
|
|
bb36c9500f | ||
|
|
235067c79f | ||
|
|
11e604d613 | ||
|
|
f7505536ff | ||
|
|
b096c857ae | ||
|
|
b41b966443 | ||
|
|
e01e712b8c | ||
|
|
327b055468 | ||
|
|
221f242a4c | ||
|
|
a9d310ca00 | ||
|
|
f26b49ee06 | ||
|
|
380244f8b1 | ||
|
|
c01c9ee411 | ||
|
|
0f046ceaf2 | ||
|
|
a7bd6725f5 | ||
|
|
c61b72e5cc | ||
|
|
e2a19402ec | ||
|
|
d909fde4bb | ||
|
|
2bb4af911c | ||
|
|
00a392b262 | ||
|
|
6f5ba27251 | ||
|
|
6ddbc8c00d | ||
|
|
a00fcd68f8 | ||
|
|
fb7fb7f59c | ||
|
|
d7916366bd | ||
|
|
ad82ad4407 | ||
|
|
8dfe43f370 | ||
|
|
4549fb349c | ||
|
|
889a732e06 | ||
|
|
52ec2324dd | ||
|
|
8f04225282 | ||
|
|
4c23771d39 | ||
|
|
0eddc6b7ad | ||
|
|
787e94924d | ||
|
|
955a63725a | ||
|
|
27a36bfb40 | ||
|
|
e5f01ab2e8 | ||
|
|
40d7d05e4e | ||
|
|
14d2e3e88e | ||
|
|
c6ee8fcf54 | ||
|
|
3552fa431b | ||
|
|
3dd33cde00 | ||
|
|
ee3b69ea63 | ||
|
|
b0639ab319 | ||
|
|
cfd8b068e7 | ||
|
|
8621dc96e7 | ||
|
|
11f24aff97 | ||
|
|
dcc3ef1309 | ||
|
|
4812bcc28b | ||
|
|
c048e7229a | ||
|
|
4ea3f41d48 | ||
|
|
6874123974 | ||
|
|
8d332fb99e | ||
|
|
f4933a9cff | ||
|
|
4369e3cdeb | ||
|
|
9bfe96d4d6 | ||
|
|
91bf8abf38 | ||
|
|
9c1fea0e7b | ||
|
|
ac2147727f | ||
|
|
ea45349235 | ||
|
|
e734ab52de | ||
|
|
75628403b0 | ||
|
|
b3642749fd | ||
|
|
f735973bf8 | ||
|
|
bdb778cb9f | ||
|
|
ab5b272868 | ||
|
|
49d6b0afb8 | ||
|
|
bb5a12dc11 | ||
|
|
0539c6bf26 | ||
|
|
f95f954df7 | ||
|
|
5ee4586989 | ||
|
|
9c39fd6e92 | ||
|
|
c8ee48bc98 | ||
|
|
ef52a7a328 | ||
|
|
635ab73706 | ||
|
|
c4d38e6de6 | ||
|
|
dd8a8b0f1f | ||
|
|
8fd96118a5 | ||
|
|
db0cad04ab | ||
|
|
d64d0e9f94 | ||
|
|
adda506499 | ||
|
|
c8525959ee | ||
|
|
2b95a0a7e5 | ||
|
|
c64c10e76f | ||
|
|
b9c439cdd9 | ||
|
|
d8ba2b5df3 | ||
|
|
5e37dd901d | ||
|
|
031ac01b8d | ||
|
|
6ccc12f337 | ||
|
|
8738b8d551 | ||
|
|
f2ff85421a | ||
|
|
cb5a67e9e0 | ||
|
|
ca934c7568 | ||
|
|
6f0204fcd3 | ||
|
|
c81adf76c2 | ||
|
|
78de614910 | ||
|
|
201a8fe0ba | ||
|
|
e5221932e8 | ||
|
|
3d5889060d | ||
|
|
68c3c764b7 | ||
|
|
fba89d2082 | ||
|
|
7823ed6cc0 | ||
|
|
c23ff9d7c2 | ||
|
|
5f82108aae | ||
|
|
454baa7b5b | ||
|
|
69e9691730 | ||
|
|
8c8b315994 | ||
|
|
e8ff5cb783 | ||
|
|
256a8c686e | ||
|
|
69ddbe3944 | ||
|
|
79f7f82c59 | ||
|
|
35714c469b | ||
|
|
cf9ba527bb | ||
|
|
d0e0e156b1 | ||
|
|
8a55423ac7 | ||
|
|
66131d5103 | ||
|
|
1fd2a2532d | ||
|
|
9d36dc7ac6 | ||
|
|
59cb9e39dd | ||
|
|
d4b282d6f7 | ||
|
|
e57bb6bc97 | ||
|
|
3ce17b740b | ||
|
|
7eced953b3 | ||
|
|
768a7b47ec | ||
|
|
096cb0d1ee | ||
|
|
4235ab0c7e | ||
|
|
6e56f84fe3 | ||
|
|
ff14208105 | ||
|
|
626ea6b119 | ||
|
|
d8c0621887 | ||
|
|
d1662db813 | ||
|
|
17296fdf9c | ||
|
|
e4cd29d88c | ||
|
|
eeec1b0b38 | ||
|
|
e043fdba50 | ||
|
|
7f0e1c27c6 | ||
|
|
bdff34017a | ||
|
|
7280d6bb3b | ||
|
|
061e930eb1 | ||
|
|
240606c5a4 | ||
|
|
6134764d5e | ||
|
|
45a9c304b6 | ||
|
|
c970ae8add | ||
|
|
3cf419cbcd | ||
|
|
8ad32e7498 | ||
|
|
722b5569bd | ||
|
|
e8fe5a4f17 | ||
|
|
a314175565 | ||
|
|
9505f380bf | ||
|
|
127ca83dea | ||
|
|
5acfe2c89c | ||
|
|
aa5a5ce8e1 | ||
|
|
e8eb28996d | ||
|
|
9af9caae09 | ||
|
|
a0fff43648 | ||
|
|
b7bd1eba6f | ||
|
|
6d63b9400b | ||
|
|
e0ba2f3a15 | ||
|
|
7d16012f61 | ||
|
|
4a422cac5b | ||
|
|
884594a967 | ||
|
|
c7c5c41f41 | ||
|
|
12d89a9061 | ||
|
|
7d117e8ca2 | ||
|
|
f6322bd02d | ||
|
|
a3aafffbd2 | ||
|
|
52b4a2c921 | ||
|
|
32857f50ea | ||
|
|
40945b4eff | ||
|
|
1dbc294b80 | ||
|
|
5bc84dca56 | ||
|
|
8c0e66008a | ||
|
|
4a1a197943 | ||
|
|
43f6a7e3c9 | ||
|
|
1bece11eb3 | ||
|
|
3c1cd72430 | ||
|
|
1ca2a8d638 | ||
|
|
7359a76b77 | ||
|
|
75e6315aac | ||
|
|
d68eac92b8 | ||
|
|
b4957a2e37 | ||
|
|
448f02960f | ||
|
|
5a43dd4766 | ||
|
|
10f34563f8 | ||
|
|
d8d0a60322 | ||
|
|
4c6eee8dfe | ||
|
|
a598b8554d | ||
|
|
511023ee10 | ||
|
|
8212a5af77 | ||
|
|
af5fc76dc6 | ||
|
|
e6ee55a69b | ||
|
|
4dda9c6daa | ||
|
|
5da5369ca4 | ||
|
|
ea04210eb3 | ||
|
|
e64327f353 | ||
|
|
4d4ec11a8a | ||
|
|
4f77e3f595 | ||
|
|
0b68ca6cb3 | ||
|
|
0c2eb8dc58 | ||
|
|
b2106ef4a2 | ||
|
|
ee1fa34df2 | ||
|
|
c4b0f24cd7 | ||
|
|
a1d50dbfa2 | ||
|
|
8436f9ade4 | ||
|
|
2e78f7503e | ||
|
|
5c0f5588a6 | ||
|
|
3d6d006e84 | ||
|
|
1c5ea317e6 | ||
|
|
31faad776e | ||
|
|
eea95f79aa | ||
|
|
f020daa357 | ||
|
|
dacbcdb710 | ||
|
|
a9e239ca7a | ||
|
|
65550335ee | ||
|
|
01db789d42 | ||
|
|
6fe0895e74 | ||
|
|
c93a27af7d | ||
|
|
67ce7917cc | ||
|
|
9b447cdf1e | ||
|
|
98ba0042d8 | ||
|
|
f64b9503f9 | ||
|
|
e734a664b4 | ||
|
|
942f0b4fbd | ||
|
|
a2ba466918 | ||
|
|
7ba459db88 | ||
|
|
ab39144af8 | ||
|
|
092e30a159 | ||
|
|
e6db5bd193 | ||
|
|
5cd08ce554 | ||
|
|
e51085ebc6 | ||
|
|
817b6f9bde | ||
|
|
b204a93d1c | ||
|
|
977bfa08b7 | ||
|
|
ba6cba31be | ||
|
|
1880f9ffa1 | ||
|
|
9d3dda4e12 | ||
|
|
0310a26b80 | ||
|
|
86956908d0 | ||
|
|
b204da3317 | ||
|
|
e16c433cb8 | ||
|
|
c5510491e5 | ||
|
|
29725440c8 | ||
|
|
accc1b509b | ||
|
|
4b06b4772d | ||
|
|
a90b7c0bf5 | ||
|
|
c4168055f9 | ||
|
|
b12dbd2bea | ||
|
|
be07ea5d4f | ||
|
|
e729c5f9fd | ||
|
|
5c8181fdd3 | ||
|
|
3329279b71 | ||
|
|
6b201d525e | ||
|
|
8c2098c262 | ||
|
|
6274197f85 | ||
|
|
ae42d57a26 | ||
|
|
2d2699b0ad | ||
|
|
fec4cb3cf9 | ||
|
|
4a886e1b97 | ||
|
|
2c36a09b4f | ||
|
|
1717f86702 | ||
|
|
72504e62ad | ||
|
|
65e8359908 | ||
|
|
794bca1379 | ||
|
|
5e084ad2e5 | ||
|
|
fca73531cf | ||
|
|
9da28e5328 | ||
|
|
fd420738cd | ||
|
|
48e8965322 | ||
|
|
ce1b90885e | ||
|
|
5f98530ef9 | ||
|
|
69087c30e7 | ||
|
|
d534f88d1c | ||
|
|
caca070c1a | ||
|
|
36b33fb407 | ||
|
|
6e143d4a5d | ||
|
|
757c6dc5ca | ||
|
|
01dfca80ab | ||
|
|
2f7b29ed34 | ||
|
|
b49a118764 | ||
|
|
c7683a7b61 | ||
|
|
5d60c62645 | ||
|
|
96c2ca67e9 | ||
|
|
b0e5fb3940 | ||
|
|
8c54036fa5 | ||
|
|
859f7ff3de | ||
|
|
b2c87c3591 | ||
|
|
62f4bd27ec | ||
|
|
26c06e38be | ||
|
|
78451447ac | ||
|
|
0f7720dec0 | ||
|
|
b9fe364d9c | ||
|
|
97e7b60656 | ||
|
|
936e49e8ee | ||
|
|
6bc3439cb7 | ||
|
|
ec72c91b17 | ||
|
|
2809379b56 | ||
|
|
e965b2e454 | ||
|
|
d82a0ad7b5 | ||
|
|
f04598c5e5 | ||
|
|
f82d52c6d3 | ||
|
|
fc0548ce0b | ||
|
|
8cc763b664 | ||
|
|
ed90e77ea0 | ||
|
|
1eb691d461 | ||
|
|
571dea6e9c | ||
|
|
02071df8fa | ||
|
|
cca4fa1178 | ||
|
|
7e2f857aa5 | ||
|
|
3d72d32845 | ||
|
|
52db6ac7d7 | ||
|
|
d94f3e7679 | ||
|
|
7af14d1985 | ||
|
|
44a38e8362 | ||
|
|
0be4084eac | ||
|
|
937734365f | ||
|
|
66b34edc0b | ||
|
|
6f0f954686 | ||
|
|
7453ff2fb5 | ||
|
|
b8ab6fe42b | ||
|
|
e0d5242a45 | ||
|
|
402a247c92 | ||
|
|
886b86f7c5 | ||
|
|
b0ab400ff3 | ||
|
|
bf872e8ed4 | ||
|
|
447feb16b4 | ||
|
|
636f5753e1 | ||
|
|
11ff454b3b | ||
|
|
6bb75f0dd4 | ||
|
|
1567cd2849 | ||
|
|
34e7e3efea | ||
|
|
2c7aa9f721 | ||
|
|
24e806f081 | ||
|
|
b0396af4c4 | ||
|
|
efaa959bfa | ||
|
|
7939716a5e | ||
|
|
4f834c8964 | ||
|
|
ffd7394adb | ||
|
|
2107dce2cd | ||
|
|
72101f059d | ||
|
|
75ec19062c | ||
|
|
64fcb1ed11 | ||
|
|
dec3c0f374 | ||
|
|
1b86bf8a1d | ||
|
|
2cd9043c51 | ||
|
|
b3ef024e9e | ||
|
|
964bf76469 | ||
|
|
ad74e65673 | ||
|
|
ac36ba6592 | ||
|
|
ca88cac08b | ||
|
|
d211bf47f1 | ||
|
|
11d7e7925e | ||
|
|
bc4d1c5326 | ||
|
|
10b93f080a | ||
|
|
876ce85cd8 | ||
|
|
9a7794c520 | ||
|
|
1a4d94a6f3 | ||
|
|
1e44cfe2fc | ||
|
|
502090c199 | ||
|
|
385d9d30b7 | ||
|
|
e763e2ad35 | ||
|
|
a89c647255 | ||
|
|
1beaf6f05c | ||
|
|
21949c0446 | ||
|
|
6e6bccfd3e | ||
|
|
a7f882a7fe | ||
|
|
0c4dab37d7 | ||
|
|
1af4fa0419 | ||
|
|
37495884d4 | ||
|
|
2e087750e0 | ||
|
|
64e803356a | ||
|
|
7172bc0af3 | ||
|
|
feb6e5c466 | ||
|
|
8b27b408c7 | ||
|
|
a9515dee81 | ||
|
|
71064c02e5 | ||
|
|
66dc1fd339 | ||
|
|
7542909e18 | ||
|
|
a39f23a5c7 | ||
|
|
d748cf6531 | ||
|
|
663cfc6211 | ||
|
|
bdb535d0e6 | ||
|
|
5dee86eda7 | ||
|
|
c36547a563 | ||
|
|
afd54d39a5 | ||
|
|
5844756ba1 | ||
|
|
4a800fe467 | ||
|
|
fd940dbba2 | ||
|
|
320b3e20a6 | ||
|
|
fc11c79b77 | ||
|
|
87e144a95a | ||
|
|
9ef814689e | ||
|
|
2bd66fbb47 | ||
|
|
9eceb2f38c | ||
|
|
1da1972c18 | ||
|
|
e332fbfb47 | ||
|
|
2806110869 | ||
|
|
cfe88f06d2 | ||
|
|
ad8a4897ce | ||
|
|
4f15b30339 | ||
|
|
229ee643cd | ||
|
|
41e37f9d32 | ||
|
|
d9bdd879ab | ||
|
|
f8d7c2e21d | ||
|
|
4cdd6bc6c3 | ||
|
|
e246259792 | ||
|
|
3523f564bd | ||
|
|
265d782af8 | ||
|
|
94ca2988a0 | ||
|
|
6656740f21 | ||
|
|
99842402f7 | ||
|
|
16b3363970 | ||
|
|
b89390c06b | ||
|
|
c8e827d483 | ||
|
|
fc8c6b06ad | ||
|
|
e3056b141a | ||
|
|
05ea36f03b | ||
|
|
61f1701e56 | ||
|
|
beaaa94406 | ||
|
|
6b736c49d4 | ||
|
|
33b028b104 | ||
|
|
88337b6c5e | ||
|
|
e39e40dc60 | ||
|
|
317e0b5f2b | ||
|
|
4404d112a9 | ||
|
|
f81139b97c | ||
|
|
14557f2d32 | ||
|
|
f10f00f5e8 | ||
|
|
675a97c1cb | ||
|
|
c066f014e3 | ||
|
|
6d39adc739 | ||
|
|
135aaa2be2 | ||
|
|
dc577d2a1a | ||
|
|
4d4589becd | ||
|
|
f7f88aa14d | ||
|
|
17d74429b5 | ||
|
|
5ac141f72b | ||
|
|
0b8ef1b880 | ||
|
|
c269eef77e | ||
|
|
21172802de | ||
|
|
17b8cb2f7c | ||
|
|
6ec91d11ae | ||
|
|
984dec12df | ||
|
|
11f2bbdd08 | ||
|
|
41f5c32526 | ||
|
|
4dcb6395ef | ||
|
|
46ad8afeb9 | ||
|
|
49891967f2 | ||
|
|
4acb0830e3 | ||
|
|
e61659a2bc | ||
|
|
c2125698a7 | ||
|
|
093181e8f2 | ||
|
|
bdaf230bd1 | ||
|
|
9dcab313b5 | ||
|
|
c9bbeedd88 | ||
|
|
94bc91ef57 | ||
|
|
7a726da691 | ||
|
|
71b81ee7cd | ||
|
|
f61ae9c7e2 | ||
|
|
12e31208e1 | ||
|
|
ac7419e975 | ||
|
|
72f4e1475c | ||
|
|
74254bb893 | ||
|
|
54bf1634c7 | ||
|
|
6f928b826f | ||
|
|
cc04f3279a | ||
|
|
fcb960185e | ||
|
|
250ae2d006 | ||
|
|
b5d1017779 | ||
|
|
26ed17fa02 | ||
|
|
e890bc0718 | ||
|
|
10ea2b44c7 | ||
|
|
d9d1735333 | ||
|
|
48328fb29d | ||
|
|
49c0fdf367 | ||
|
|
ac046d6a2d | ||
|
|
af16ce874c | ||
|
|
e2594e7494 | ||
|
|
77e3e9e899 | ||
|
|
cafc9479b7 | ||
|
|
8f02050fde | ||
|
|
565c0496d9 | ||
|
|
d0f900f567 | ||
|
|
30dd63fcb9 | ||
|
|
8aee368f60 | ||
|
|
e0d9603e99 | ||
|
|
88ecb935b9 | ||
|
|
9c6fee3841 | ||
|
|
5fc8426b9b | ||
|
|
430cd24bbc | ||
|
|
08d040db14 | ||
|
|
5311614d54 | ||
|
|
193d88c9c8 | ||
|
|
1f543666f4 | ||
|
|
fd955028a8 | ||
|
|
7bccf2129f | ||
|
|
f6a32f4ffd | ||
|
|
b666c418bb | ||
|
|
af1dbf7dff | ||
|
|
f074383d6a | ||
|
|
785f0d396f | ||
|
|
6315516d50 | ||
|
|
6237806817 | ||
|
|
e572653616 | ||
|
|
12e8e29b4e | ||
|
|
5ecf93e84b | ||
|
|
9f1bdc19aa | ||
|
|
35836479de | ||
|
|
e03e8547c0 | ||
|
|
bcd27f5517 | ||
|
|
ce02a3ff33 | ||
|
|
85de8ca63f | ||
|
|
4c54640800 | ||
|
|
cb7a0f9bff | ||
|
|
90808683e2 | ||
|
|
8fdec5f3a6 | ||
|
|
4e9a43ebf6 | ||
|
|
3bc390cb2e | ||
|
|
12af6ea766 | ||
|
|
51ba4d14e9 | ||
|
|
6b3b5f201d | ||
|
|
fc887efd4b | ||
|
|
0874b1a959 | ||
|
|
eec7837167 | ||
|
|
1317de8c1c | ||
|
|
dbb92f686f | ||
|
|
aa8eb14461 | ||
|
|
3d05669f61 | ||
|
|
8a86169256 | ||
|
|
8ec0469b11 | ||
|
|
9bb25be880 | ||
|
|
0ed84fbcc1 | ||
|
|
a7426755bc | ||
|
|
df5e6409a4 | ||
|
|
5649d1d4da | ||
|
|
36c82ad67c | ||
|
|
35a388bf9a | ||
|
|
ee37693729 | ||
|
|
05f0b32e3b | ||
|
|
636298bb71 | ||
|
|
31e19add27 | ||
|
|
eb31b574c1 | ||
|
|
9366c77e42 | ||
|
|
af7afa80a9 | ||
|
|
9e75c768c0 | ||
|
|
4c52109fa3 | ||
|
|
c2010d160f | ||
|
|
33e25434b4 | ||
|
|
756e1f5d5b | ||
|
|
01984a06af | ||
|
|
7cc8da23c2 | ||
|
|
bf9a6dd6e7 | ||
|
|
818a3342b9 | ||
|
|
680e7ba98f | ||
|
|
5ad6652e55 | ||
|
|
70a0c2e625 | ||
|
|
3e6a2bf9b0 | ||
|
|
104fa9e32d | ||
|
|
e73cd1487e | ||
|
|
9869a21951 | ||
|
|
3f5c18a035 | ||
|
|
e183707979 | ||
|
|
ceddcd9242 | ||
|
|
d8af0dc9c4 | ||
|
|
1c4a7c7a05 | ||
|
|
7b9f82c71a | ||
|
|
5142b6bc0d | ||
|
|
209eb63ede | ||
|
|
2e675efa13 | ||
|
|
073dac8d5f | ||
|
|
a0edbe4797 | ||
|
|
2e79aaae00 | ||
|
|
5488789bc4 | ||
|
|
b2ecfd28a7 | ||
|
|
7a5f457b2f | ||
|
|
36f14249d4 | ||
|
|
7d871faf04 | ||
|
|
91ce1cb2ae | ||
|
|
9aac367534 | ||
|
|
b8357c36ca | ||
|
|
b252bdd3c7 | ||
|
|
ac4aa8ed2b | ||
|
|
2306c74dc1 | ||
|
|
5abd616ae9 | ||
|
|
ce979b21f9 | ||
|
|
8e0788cf5f | ||
|
|
877d53f439 | ||
|
|
3d4be92cc6 | ||
|
|
c5bf029701 | ||
|
|
9e4f9798e6 | ||
|
|
3ef2a57bca | ||
|
|
e20b94d836 | ||
|
|
4636de30cd | ||
|
|
2ea157d9d3 | ||
|
|
987da010c9 | ||
|
|
5ad352fdf1 | ||
|
|
2df80fc49a | ||
|
|
e990b9fb13 | ||
|
|
2b416d3b62 | ||
|
|
d5c98a3c39 | ||
|
|
46b97d2be4 | ||
|
|
767442198e | ||
|
|
a9ef4c3ab0 | ||
|
|
e5e63d5bee | ||
|
|
0fb155d6ee | ||
|
|
bad2cdabf2 | ||
|
|
7bd55971dc | ||
|
|
efefcb240b | ||
|
|
f57787882d | ||
|
|
d12a7ff18b |
@@ -1,11 +1,12 @@
|
||||
FROM freqtradeorg/freqtrade:develop
|
||||
FROM freqtradeorg/freqtrade:develop_freqairl
|
||||
|
||||
USER root
|
||||
# Install dependencies
|
||||
COPY requirements-dev.txt /freqtrade/
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get -y install git mercurial sudo vim build-essential \
|
||||
&& apt-get -y install --no-install-recommends apt-utils dialog \
|
||||
&& apt-get -y install --no-install-recommends git sudo vim build-essential \
|
||||
&& apt-get clean \
|
||||
&& mkdir -p /home/ftuser/.vscode-server /home/ftuser/.vscode-server-insiders /home/ftuser/commandhistory \
|
||||
&& echo "export PROMPT_COMMAND='history -a'" >> /home/ftuser/.bashrc \
|
||||
|
||||
@@ -19,23 +19,24 @@
|
||||
"postCreateCommand": "freqtrade create-userdir --userdir user_data/",
|
||||
|
||||
"workspaceFolder": "/workspaces/freqtrade",
|
||||
|
||||
"settings": {
|
||||
"terminal.integrated.shell.linux": "/bin/bash",
|
||||
"editor.insertSpaces": true,
|
||||
"files.trimTrailingWhitespace": true,
|
||||
"[markdown]": {
|
||||
"files.trimTrailingWhitespace": false,
|
||||
"customizations": {
|
||||
"settings": {
|
||||
"terminal.integrated.shell.linux": "/bin/bash",
|
||||
"editor.insertSpaces": true,
|
||||
"files.trimTrailingWhitespace": true,
|
||||
"[markdown]": {
|
||||
"files.trimTrailingWhitespace": false,
|
||||
},
|
||||
"python.pythonPath": "/usr/local/bin/python",
|
||||
},
|
||||
"python.pythonPath": "/usr/local/bin/python",
|
||||
},
|
||||
|
||||
// Add the IDs of extensions you want installed when the container is created.
|
||||
"extensions": [
|
||||
"ms-python.python",
|
||||
"ms-python.vscode-pylance",
|
||||
"davidanson.vscode-markdownlint",
|
||||
"ms-azuretools.vscode-docker",
|
||||
"vscode-icons-team.vscode-icons",
|
||||
],
|
||||
// Add the IDs of extensions you want installed when the container is created.
|
||||
"extensions": [
|
||||
"ms-python.python",
|
||||
"ms-python.vscode-pylance",
|
||||
"davidanson.vscode-markdownlint",
|
||||
"ms-azuretools.vscode-docker",
|
||||
"vscode-icons-team.vscode-icons",
|
||||
],
|
||||
}
|
||||
}
|
||||
|
||||
8
.github/workflows/ci.yml
vendored
8
.github/workflows/ci.yml
vendored
@@ -136,6 +136,7 @@ jobs:
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
check-latest: true
|
||||
|
||||
- name: Cache_dependencies
|
||||
uses: actions/cache@v3
|
||||
@@ -159,7 +160,8 @@ jobs:
|
||||
- name: Installation - macOS
|
||||
if: runner.os == 'macOS'
|
||||
run: |
|
||||
brew update
|
||||
# brew update
|
||||
# TODO: Should be the brew upgrade
|
||||
# homebrew fails to update python due to unlinking failures
|
||||
# https://github.com/actions/runner-images/issues/6817
|
||||
rm /usr/local/bin/2to3 || true
|
||||
@@ -459,7 +461,7 @@ jobs:
|
||||
python setup.py sdist bdist_wheel
|
||||
|
||||
- name: Publish to PyPI (Test)
|
||||
uses: pypa/gh-action-pypi-publish@v1.8.6
|
||||
uses: pypa/gh-action-pypi-publish@v1.8.8
|
||||
if: (github.event_name == 'release')
|
||||
with:
|
||||
user: __token__
|
||||
@@ -467,7 +469,7 @@ jobs:
|
||||
repository_url: https://test.pypi.org/legacy/
|
||||
|
||||
- name: Publish to PyPI
|
||||
uses: pypa/gh-action-pypi-publish@v1.8.6
|
||||
uses: pypa/gh-action-pypi-publish@v1.8.8
|
||||
if: (github.event_name == 'release')
|
||||
with:
|
||||
user: __token__
|
||||
|
||||
@@ -8,17 +8,17 @@ repos:
|
||||
# stages: [push]
|
||||
|
||||
- repo: https://github.com/pre-commit/mirrors-mypy
|
||||
rev: "v1.0.1"
|
||||
rev: "v1.3.0"
|
||||
hooks:
|
||||
- id: mypy
|
||||
exclude: build_helpers
|
||||
additional_dependencies:
|
||||
- types-cachetools==5.3.0.5
|
||||
- types-cachetools==5.3.0.6
|
||||
- types-filelock==3.2.7
|
||||
- types-requests==2.30.0.0
|
||||
- types-tabulate==0.9.0.2
|
||||
- types-python-dateutil==2.8.19.13
|
||||
- SQLAlchemy==2.0.15
|
||||
- types-requests==2.31.0.2
|
||||
- types-tabulate==0.9.0.3
|
||||
- types-python-dateutil==2.8.19.14
|
||||
- SQLAlchemy==2.0.19
|
||||
# stages: [push]
|
||||
|
||||
- repo: https://github.com/pycqa/isort
|
||||
@@ -30,7 +30,7 @@ repos:
|
||||
|
||||
- repo: https://github.com/charliermarsh/ruff-pre-commit
|
||||
# Ruff version.
|
||||
rev: 'v0.0.263'
|
||||
rev: 'v0.0.270'
|
||||
hooks:
|
||||
- id: ruff
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
FROM python:3.10.11-slim-bullseye as base
|
||||
FROM python:3.11.4-slim-bullseye as base
|
||||
|
||||
# Setup env
|
||||
ENV LANG C.UTF-8
|
||||
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
build_helpers/TA_Lib-0.4.27-cp310-cp310-win_amd64.whl
Normal file
BIN
build_helpers/TA_Lib-0.4.27-cp310-cp310-win_amd64.whl
Normal file
Binary file not shown.
BIN
build_helpers/TA_Lib-0.4.27-cp311-cp311-win_amd64.whl
Normal file
BIN
build_helpers/TA_Lib-0.4.27-cp311-cp311-win_amd64.whl
Normal file
Binary file not shown.
BIN
build_helpers/TA_Lib-0.4.27-cp38-cp38-win_amd64.whl
Normal file
BIN
build_helpers/TA_Lib-0.4.27-cp38-cp38-win_amd64.whl
Normal file
Binary file not shown.
BIN
build_helpers/TA_Lib-0.4.27-cp39-cp39-win_amd64.whl
Normal file
BIN
build_helpers/TA_Lib-0.4.27-cp39-cp39-win_amd64.whl
Normal file
Binary file not shown.
@@ -1,21 +1,11 @@
|
||||
# Downloads don't work automatically, since the URL is regenerated via javascript.
|
||||
# Downloaded from https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
|
||||
# vendored Wheels compiled via https://github.com/xmatthias/ta-lib-python/tree/ta_bundled_040
|
||||
|
||||
python -m pip install --upgrade pip wheel
|
||||
|
||||
$pyv = python -c "import sys; print(f'{sys.version_info.major}.{sys.version_info.minor}')"
|
||||
|
||||
if ($pyv -eq '3.8') {
|
||||
pip install build_helpers\TA_Lib-0.4.26-cp38-cp38-win_amd64.whl
|
||||
}
|
||||
if ($pyv -eq '3.9') {
|
||||
pip install build_helpers\TA_Lib-0.4.26-cp39-cp39-win_amd64.whl
|
||||
}
|
||||
if ($pyv -eq '3.10') {
|
||||
pip install build_helpers\TA_Lib-0.4.26-cp310-cp310-win_amd64.whl
|
||||
}
|
||||
if ($pyv -eq '3.11') {
|
||||
pip install build_helpers\TA_Lib-0.4.26-cp311-cp311-win_amd64.whl
|
||||
}
|
||||
|
||||
pip install --find-links=build_helpers\ TA-Lib
|
||||
|
||||
pip install -r requirements-dev.txt
|
||||
pip install -e .
|
||||
|
||||
Binary file not shown.
@@ -32,5 +32,5 @@ services:
|
||||
--logfile /freqtrade/user_data/logs/freqtrade.log
|
||||
--db-url sqlite:////freqtrade/user_data/tradesv3.sqlite
|
||||
--config /freqtrade/user_data/config.json
|
||||
--freqai-model XGBoostClassifier
|
||||
--strategy SampleStrategy
|
||||
--freqaimodel XGBoostRegressor
|
||||
--strategy FreqaiExampleStrategy
|
||||
|
||||
@@ -103,6 +103,22 @@ The indicators have to be present in your strategy's main DataFrame (either for
|
||||
timeframe or for informative timeframes) otherwise they will simply be ignored in the script
|
||||
output.
|
||||
|
||||
There are a range of candle and trade-related fields that are included in the analysis so are
|
||||
automatically accessible by including them on the indicator-list, and these include:
|
||||
|
||||
- **open_date :** trade open datetime
|
||||
- **close_date :** trade close datetime
|
||||
- **min_rate :** minimum price seen throughout the position
|
||||
- **max_rate :** maxiumum price seen throughout the position
|
||||
- **open :** signal candle open price
|
||||
- **close :** signal candle close price
|
||||
- **high :** signal candle high price
|
||||
- **low :** signal candle low price
|
||||
- **volume :** signal candle volumne
|
||||
- **profit_ratio :** trade profit ratio
|
||||
- **profit_abs :** absolute profit return of the trade
|
||||
|
||||
|
||||
### Filtering the trade output by date
|
||||
|
||||
To show only trades between dates within your backtested timerange, supply the usual `timerange` option in `YYYYMMDD-[YYYYMMDD]` format:
|
||||
|
||||
@@ -136,7 +136,7 @@ class MyAwesomeStrategy(IStrategy):
|
||||
|
||||
### Dynamic parameters
|
||||
|
||||
Parameters can also be defined dynamically, but must be available to the instance once the * [`bot_start()` callback](strategy-callbacks.md#bot-start) has been called.
|
||||
Parameters can also be defined dynamically, but must be available to the instance once the [`bot_start()` callback](strategy-callbacks.md#bot-start) has been called.
|
||||
|
||||
``` python
|
||||
|
||||
|
||||
@@ -305,7 +305,7 @@ A backtesting result will look like that:
|
||||
| Sharpe | 2.97 |
|
||||
| Calmar | 6.29 |
|
||||
| Profit factor | 1.11 |
|
||||
| Expectancy | -0.15 |
|
||||
| Expectancy (Ratio) | -0.15 (-0.05) |
|
||||
| Avg. stake amount | 0.001 BTC |
|
||||
| Total trade volume | 0.429 BTC |
|
||||
| | |
|
||||
@@ -324,6 +324,7 @@ A backtesting result will look like that:
|
||||
| Days win/draw/lose | 12 / 82 / 25 |
|
||||
| Avg. Duration Winners | 4:23:00 |
|
||||
| Avg. Duration Loser | 6:55:00 |
|
||||
| Max Consecutive Wins / Loss | 3 / 4 |
|
||||
| Rejected Entry signals | 3089 |
|
||||
| Entry/Exit Timeouts | 0 / 0 |
|
||||
| Canceled Trade Entries | 34 |
|
||||
@@ -409,7 +410,7 @@ It contains some useful key metrics about performance of your strategy on backte
|
||||
| Sharpe | 2.97 |
|
||||
| Calmar | 6.29 |
|
||||
| Profit factor | 1.11 |
|
||||
| Expectancy | -0.15 |
|
||||
| Expectancy (Ratio) | -0.15 (-0.05) |
|
||||
| Avg. stake amount | 0.001 BTC |
|
||||
| Total trade volume | 0.429 BTC |
|
||||
| | |
|
||||
@@ -428,6 +429,7 @@ It contains some useful key metrics about performance of your strategy on backte
|
||||
| Days win/draw/lose | 12 / 82 / 25 |
|
||||
| Avg. Duration Winners | 4:23:00 |
|
||||
| Avg. Duration Loser | 6:55:00 |
|
||||
| Max Consecutive Wins / Loss | 3 / 4 |
|
||||
| Rejected Entry signals | 3089 |
|
||||
| Entry/Exit Timeouts | 0 / 0 |
|
||||
| Canceled Trade Entries | 34 |
|
||||
@@ -467,6 +469,7 @@ It contains some useful key metrics about performance of your strategy on backte
|
||||
- `Best day` / `Worst day`: Best and worst day based on daily profit.
|
||||
- `Days win/draw/lose`: Winning / Losing days (draws are usually days without closed trade).
|
||||
- `Avg. Duration Winners` / `Avg. Duration Loser`: Average durations for winning and losing trades.
|
||||
- `Max Consecutive Wins / Loss`: Maximum consecutive wins/losses in a row.
|
||||
- `Rejected Entry signals`: Trade entry signals that could not be acted upon due to `max_open_trades` being reached.
|
||||
- `Entry/Exit Timeouts`: Entry/exit orders which did not fill (only applicable if custom pricing is used).
|
||||
- `Canceled Trade Entries`: Number of trades that have been canceled by user request via `adjust_entry_price`.
|
||||
@@ -534,6 +537,7 @@ Since backtesting lacks some detailed information about what happens within a ca
|
||||
- ROI
|
||||
- exits are compared to high - but the ROI value is used (e.g. ROI = 2%, high=5% - so the exit will be at 2%)
|
||||
- exits are never "below the candle", so a ROI of 2% may result in a exit at 2.4% if low was at 2.4% profit
|
||||
- ROI entries which came into effect on the triggering candle (e.g. `120: 0.02` for 1h candles, from `60: 0.05`) will use the candle's open as exit rate
|
||||
- Force-exits caused by `<N>=-1` ROI entries use low as exit value, unless N falls on the candle open (e.g. `120: -1` for 1h candles)
|
||||
- Stoploss exits happen exactly at stoploss price, even if low was lower, but the loss will be `2 * fees` higher than the stoploss price
|
||||
- Stoploss is evaluated before ROI within one candle. So you can often see more trades with the `stoploss` exit reason comparing to the results obtained with the same strategy in the Dry Run/Live Trade modes
|
||||
|
||||
@@ -682,16 +682,14 @@ To use a proxy for exchange connections - you will have to define the proxies as
|
||||
{
|
||||
"exchange": {
|
||||
"ccxt_config": {
|
||||
"aiohttp_proxy": "http://addr:port",
|
||||
"proxies": {
|
||||
"http": "http://addr:port",
|
||||
"https": "http://addr:port"
|
||||
},
|
||||
"httpsProxy": "http://addr:port",
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
For more information on available proxy types, please consult the [ccxt proxy documentation](https://docs.ccxt.com/#/README?id=proxy).
|
||||
|
||||
## Next step
|
||||
|
||||
Now you have configured your config.json, the next step is to [start your bot](bot-usage.md).
|
||||
|
||||
@@ -6,7 +6,7 @@ To download data (candles / OHLCV) needed for backtesting and hyperoptimization
|
||||
|
||||
If no additional parameter is specified, freqtrade will download data for `"1m"` and `"5m"` timeframes for the last 30 days.
|
||||
Exchange and pairs will come from `config.json` (if specified using `-c/--config`).
|
||||
Otherwise `--exchange` becomes mandatory.
|
||||
Without provided configuration, `--exchange` becomes mandatory.
|
||||
|
||||
You can use a relative timerange (`--days 20`) or an absolute starting point (`--timerange 20200101-`). For incremental downloads, the relative approach should be used.
|
||||
|
||||
@@ -83,40 +83,47 @@ Common arguments:
|
||||
|
||||
```
|
||||
|
||||
!!! Tip "Downloading all data for one quote currency"
|
||||
Often, you'll want to download data for all pairs of a specific quote-currency. In such cases, you can use the following shorthand:
|
||||
`freqtrade download-data --exchange binance --pairs .*/USDT <...>`. The provided "pairs" string will be expanded to contain all active pairs on the exchange.
|
||||
To also download data for inactive (delisted) pairs, add `--include-inactive-pairs` to the command.
|
||||
|
||||
!!! Note "Startup period"
|
||||
`download-data` is a strategy-independent command. The idea is to download a big chunk of data once, and then iteratively increase the amount of data stored.
|
||||
|
||||
For that reason, `download-data` does not care about the "startup-period" defined in a strategy. It's up to the user to download additional days if the backtest should start at a specific point in time (while respecting startup period).
|
||||
|
||||
### Pairs file
|
||||
### Start download
|
||||
|
||||
In alternative to the whitelist from `config.json`, a `pairs.json` file can be used.
|
||||
If you are using Binance for example:
|
||||
|
||||
- create a directory `user_data/data/binance` and copy or create the `pairs.json` file in that directory.
|
||||
- update the `pairs.json` file to contain the currency pairs you are interested in.
|
||||
A very simple command (assuming an available `config.json` file) can look as follows.
|
||||
|
||||
```bash
|
||||
mkdir -p user_data/data/binance
|
||||
touch user_data/data/binance/pairs.json
|
||||
freqtrade download-data --exchange binance
|
||||
```
|
||||
|
||||
The format of the `pairs.json` file is a simple json list.
|
||||
Mixing different stake-currencies is allowed for this file, since it's only used for downloading.
|
||||
This will download historical candle (OHLCV) data for all the currency pairs defined in the configuration.
|
||||
|
||||
``` json
|
||||
[
|
||||
"ETH/BTC",
|
||||
"ETH/USDT",
|
||||
"BTC/USDT",
|
||||
"XRP/ETH"
|
||||
]
|
||||
Alternatively, specify the pairs directly
|
||||
|
||||
```bash
|
||||
freqtrade download-data --exchange binance --pairs ETH/USDT XRP/USDT BTC/USDT
|
||||
```
|
||||
|
||||
!!! Tip "Downloading all data for one quote currency"
|
||||
Often, you'll want to download data for all pairs of a specific quote-currency. In such cases, you can use the following shorthand:
|
||||
`freqtrade download-data --exchange binance --pairs .*/USDT <...>`. The provided "pairs" string will be expanded to contain all active pairs on the exchange.
|
||||
To also download data for inactive (delisted) pairs, add `--include-inactive-pairs` to the command.
|
||||
or as regex (in this case, to download all active USDT pairs)
|
||||
|
||||
```bash
|
||||
freqtrade download-data --exchange binance --pairs .*/USDT
|
||||
```
|
||||
|
||||
### Other Notes
|
||||
|
||||
* To use a different directory than the exchange specific default, use `--datadir user_data/data/some_directory`.
|
||||
* To change the exchange used to download the historical data from, please use a different configuration file (you'll probably need to adjust rate limits etc.)
|
||||
* To use `pairs.json` from some other directory, use `--pairs-file some_other_dir/pairs.json`.
|
||||
* To download historical candle (OHLCV) data for only 10 days, use `--days 10` (defaults to 30 days).
|
||||
* To download historical candle (OHLCV) data from a fixed starting point, use `--timerange 20200101-` - which will download all data from January 1st, 2020.
|
||||
* Use `--timeframes` to specify what timeframe download the historical candle (OHLCV) data for. Default is `--timeframes 1m 5m` which will download 1-minute and 5-minute data.
|
||||
* To use exchange, timeframe and list of pairs as defined in your configuration file, use the `-c/--config` option. With this, the script uses the whitelist defined in the config as the list of currency pairs to download data for and does not require the pairs.json file. You can combine `-c/--config` with most other options.
|
||||
|
||||
??? Note "Permission denied errors"
|
||||
If your configuration directory `user_data` was made by docker, you may get the following error:
|
||||
@@ -131,39 +138,7 @@ Mixing different stake-currencies is allowed for this file, since it's only used
|
||||
sudo chown -R $UID:$GID user_data
|
||||
```
|
||||
|
||||
### Start download
|
||||
|
||||
Then run:
|
||||
|
||||
```bash
|
||||
freqtrade download-data --exchange binance
|
||||
```
|
||||
|
||||
This will download historical candle (OHLCV) data for all the currency pairs you defined in `pairs.json`.
|
||||
|
||||
Alternatively, specify the pairs directly
|
||||
|
||||
```bash
|
||||
freqtrade download-data --exchange binance --pairs ETH/USDT XRP/USDT BTC/USDT
|
||||
```
|
||||
|
||||
or as regex (to download all active USDT pairs)
|
||||
|
||||
```bash
|
||||
freqtrade download-data --exchange binance --pairs .*/USDT
|
||||
```
|
||||
|
||||
### Other Notes
|
||||
|
||||
- To use a different directory than the exchange specific default, use `--datadir user_data/data/some_directory`.
|
||||
- To change the exchange used to download the historical data from, please use a different configuration file (you'll probably need to adjust rate limits etc.)
|
||||
- To use `pairs.json` from some other directory, use `--pairs-file some_other_dir/pairs.json`.
|
||||
- To download historical candle (OHLCV) data for only 10 days, use `--days 10` (defaults to 30 days).
|
||||
- To download historical candle (OHLCV) data from a fixed starting point, use `--timerange 20200101-` - which will download all data from January 1st, 2020.
|
||||
- Use `--timeframes` to specify what timeframe download the historical candle (OHLCV) data for. Default is `--timeframes 1m 5m` which will download 1-minute and 5-minute data.
|
||||
- To use exchange, timeframe and list of pairs as defined in your configuration file, use the `-c/--config` option. With this, the script uses the whitelist defined in the config as the list of currency pairs to download data for and does not require the pairs.json file. You can combine `-c/--config` with most other options.
|
||||
|
||||
#### Download additional data before the current timerange
|
||||
### Download additional data before the current timerange
|
||||
|
||||
Assuming you downloaded all data from 2022 (`--timerange 20220101-`) - but you'd now like to also backtest with earlier data.
|
||||
You can do so by using the `--prepend` flag, combined with `--timerange` - specifying an end-date.
|
||||
@@ -238,7 +213,36 @@ Size has been taken from the BTC/USDT 1m spot combination for the timerange spec
|
||||
|
||||
To have a best performance/size mix, we recommend the use of either feather or parquet.
|
||||
|
||||
#### Sub-command convert data
|
||||
### Pairs file
|
||||
|
||||
In alternative to the whitelist from `config.json`, a `pairs.json` file can be used.
|
||||
If you are using Binance for example:
|
||||
|
||||
* create a directory `user_data/data/binance` and copy or create the `pairs.json` file in that directory.
|
||||
* update the `pairs.json` file to contain the currency pairs you are interested in.
|
||||
|
||||
```bash
|
||||
mkdir -p user_data/data/binance
|
||||
touch user_data/data/binance/pairs.json
|
||||
```
|
||||
|
||||
The format of the `pairs.json` file is a simple json list.
|
||||
Mixing different stake-currencies is allowed for this file, since it's only used for downloading.
|
||||
|
||||
``` json
|
||||
[
|
||||
"ETH/BTC",
|
||||
"ETH/USDT",
|
||||
"BTC/USDT",
|
||||
"XRP/ETH"
|
||||
]
|
||||
```
|
||||
|
||||
!!! Note
|
||||
The `pairs.json` file is only used when no configuration is loaded (implicitly by naming, or via `--config` flag).
|
||||
You can force the usage of this file via `--pairs-file pairs.json` - however we recommend to use the pairlist from within the configuration, either via `exchange.pair_whitelist` or `pairs` setting in the configuration.
|
||||
|
||||
## Sub-command convert data
|
||||
|
||||
```
|
||||
usage: freqtrade convert-data [-h] [-v] [--logfile FILE] [-V] [-c PATH]
|
||||
@@ -290,7 +294,7 @@ Common arguments:
|
||||
|
||||
```
|
||||
|
||||
##### Example converting data
|
||||
### Example converting data
|
||||
|
||||
The following command will convert all candle (OHLCV) data available in `~/.freqtrade/data/binance` from json to jsongz, saving diskspace in the process.
|
||||
It'll also remove original json data files (`--erase` parameter).
|
||||
@@ -299,7 +303,7 @@ It'll also remove original json data files (`--erase` parameter).
|
||||
freqtrade convert-data --format-from json --format-to jsongz --datadir ~/.freqtrade/data/binance -t 5m 15m --erase
|
||||
```
|
||||
|
||||
#### Sub-command convert trade data
|
||||
## Sub-command convert trade data
|
||||
|
||||
```
|
||||
usage: freqtrade convert-trade-data [-h] [-v] [--logfile FILE] [-V] [-c PATH]
|
||||
@@ -342,7 +346,7 @@ Common arguments:
|
||||
|
||||
```
|
||||
|
||||
##### Example converting trades
|
||||
### Example converting trades
|
||||
|
||||
The following command will convert all available trade-data in `~/.freqtrade/data/kraken` from jsongz to json.
|
||||
It'll also remove original jsongz data files (`--erase` parameter).
|
||||
@@ -351,7 +355,7 @@ It'll also remove original jsongz data files (`--erase` parameter).
|
||||
freqtrade convert-trade-data --format-from jsongz --format-to json --datadir ~/.freqtrade/data/kraken --erase
|
||||
```
|
||||
|
||||
### Sub-command trades to ohlcv
|
||||
## Sub-command trades to ohlcv
|
||||
|
||||
When you need to use `--dl-trades` (kraken only) to download data, conversion of trades data to ohlcv data is the last step.
|
||||
This command will allow you to repeat this last step for additional timeframes without re-downloading the data.
|
||||
@@ -400,13 +404,13 @@ Common arguments:
|
||||
|
||||
```
|
||||
|
||||
#### Example trade-to-ohlcv conversion
|
||||
### Example trade-to-ohlcv conversion
|
||||
|
||||
``` bash
|
||||
freqtrade trades-to-ohlcv --exchange kraken -t 5m 1h 1d --pairs BTC/EUR ETH/EUR
|
||||
```
|
||||
|
||||
### Sub-command list-data
|
||||
## Sub-command list-data
|
||||
|
||||
You can get a list of downloaded data using the `list-data` sub-command.
|
||||
|
||||
@@ -451,7 +455,7 @@ Common arguments:
|
||||
|
||||
```
|
||||
|
||||
#### Example list-data
|
||||
### Example list-data
|
||||
|
||||
```bash
|
||||
> freqtrade list-data --userdir ~/.freqtrade/user_data/
|
||||
@@ -465,7 +469,7 @@ ETH/BTC 5m, 15m, 30m, 1h, 2h, 4h, 6h, 12h, 1d
|
||||
ETH/USDT 5m, 15m, 30m, 1h, 2h, 4h
|
||||
```
|
||||
|
||||
### Trades (tick) data
|
||||
## Trades (tick) data
|
||||
|
||||
By default, `download-data` sub-command downloads Candles (OHLCV) data. Some exchanges also provide historic trade-data via their API.
|
||||
This data can be useful if you need many different timeframes, since it is only downloaded once, and then resampled locally to the desired timeframes.
|
||||
|
||||
@@ -453,7 +453,13 @@ Once the PR against stable is merged (best right after merging):
|
||||
* Use the button "Draft a new release" in the Github UI (subsection releases).
|
||||
* Use the version-number specified as tag.
|
||||
* Use "stable" as reference (this step comes after the above PR is merged).
|
||||
* Use the above changelog as release comment (as codeblock)
|
||||
* Use the above changelog as release comment (as codeblock).
|
||||
* Use the below snippet for the new release
|
||||
|
||||
??? Tip "Release template"
|
||||
````
|
||||
--8<-- "includes/release_template.md"
|
||||
````
|
||||
|
||||
## Releases
|
||||
|
||||
|
||||
@@ -259,10 +259,17 @@ The configuration parameter `exchange.unknown_fee_rate` can be used to specify t
|
||||
|
||||
Futures trading on bybit is currently supported for USDT markets, and will use isolated futures mode.
|
||||
Users with unified accounts (there's no way back) can create a Sub-account which will start as "non-unified", and can therefore use isolated futures.
|
||||
On startup, freqtrade will set the position mode to "One-way Mode" for the whole (sub)account. This avoids making this call over and over again (slowing down bot operations), but means that changes to this setting may result in exceptions and errors.
|
||||
On startup, freqtrade will set the position mode to "One-way Mode" for the whole (sub)account. This avoids making this call over and over again (slowing down bot operations), but means that changes to this setting may result in exceptions and errors
|
||||
|
||||
As bybit doesn't provide funding rate history, the dry-run calculation is used for live trades as well.
|
||||
|
||||
API Keys for live futures trading (Subaccount on non-unified) must have the following permissions:
|
||||
* Read-write
|
||||
* Contract - Orders
|
||||
* Contract - Positions
|
||||
|
||||
We do strongly recommend to limit all API keys to the IP you're going to use it from.
|
||||
|
||||
!!! Tip "Stoploss on Exchange"
|
||||
Bybit (futures only) supports `stoploss_on_exchange` and uses `stop-loss-limit` orders. It provides great advantages, so we recommend to benefit from it by enabling stoploss on exchange.
|
||||
On futures, Bybit supports both `stop-limit` as well as `stop-market` orders. You can use either `"limit"` or `"market"` in the `order_types.stoploss` configuration setting to decide which type to use.
|
||||
|
||||
@@ -43,10 +43,10 @@ The FreqAI strategy requires including the following lines of code in the standa
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
|
||||
# the model will return all labels created by user in `set_freqai_labels()`
|
||||
# the model will return all labels created by user in `set_freqai_targets()`
|
||||
# (& appended targets), an indication of whether or not the prediction should be accepted,
|
||||
# the target mean/std values for each of the labels created by user in
|
||||
# `feature_engineering_*` for each training period.
|
||||
# `set_freqai_targets()` for each training period.
|
||||
|
||||
dataframe = self.freqai.start(dataframe, metadata, self)
|
||||
|
||||
@@ -160,7 +160,7 @@ Below are the values you can expect to include/use inside a typical strategy dat
|
||||
|------------|-------------|
|
||||
| `df['&*']` | Any dataframe column prepended with `&` in `set_freqai_targets()` is treated as a training target (label) inside FreqAI (typically following the naming convention `&-s*`). For example, to predict the close price 40 candles into the future, you would set `df['&-s_close'] = df['close'].shift(-self.freqai_info["feature_parameters"]["label_period_candles"])` with `"label_period_candles": 40` in the config. FreqAI makes the predictions and gives them back under the same key (`df['&-s_close']`) to be used in `populate_entry/exit_trend()`. <br> **Datatype:** Depends on the output of the model.
|
||||
| `df['&*_std/mean']` | Standard deviation and mean values of the defined labels during training (or live tracking with `fit_live_predictions_candles`). Commonly used to understand the rarity of a prediction (use the z-score as shown in `templates/FreqaiExampleStrategy.py` and explained [here](#creating-a-dynamic-target-threshold) to evaluate how often a particular prediction was observed during training or historically with `fit_live_predictions_candles`). <br> **Datatype:** Float.
|
||||
| `df['do_predict']` | Indication of an outlier data point. The return value is integer between -2 and 2, which lets you know if the prediction is trustworthy or not. `do_predict==1` means that the prediction is trustworthy. If the Dissimilarity Index (DI, see details [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di)) of the input data point is above the threshold defined in the config, FreqAI will subtract 1 from `do_predict`, resulting in `do_predict==0`. If `use_SVM_to_remove_outliers()` is active, the Support Vector Machine (SVM, see details [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm)) may also detect outliers in training and prediction data. In this case, the SVM will also subtract 1 from `do_predict`. If the input data point was considered an outlier by the SVM but not by the DI, or vice versa, the result will be `do_predict==0`. If both the DI and the SVM considers the input data point to be an outlier, the result will be `do_predict==-1`. As with the SVM, if `use_DBSCAN_to_remove_outliers` is active, DBSCAN (see details [here](freqai-feature-engineering.md#identifying-outliers-with-dbscan)) may also detect outliers and subtract 1 from `do_predict`. Hence, if both the SVM and DBSCAN are active and identify a datapoint that was above the DI threshold as an outlier, the result will be `do_predict==-2`. A particular case is when `do_predict == 2`, which means that the model has expired due to exceeding `expired_hours`. <br> **Datatype:** Integer between -2 and 2.
|
||||
| `df['do_predict']` | Indication of an outlier data point. The return value is integer between -2 and 2, which lets you know if the prediction is trustworthy or not. `do_predict==1` means that the prediction is trustworthy. If the Dissimilarity Index (DI, see details [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di)) of the input data point is above the threshold defined in the config, FreqAI will subtract 1 from `do_predict`, resulting in `do_predict==0`. If `use_SVM_to_remove_outliers` is active, the Support Vector Machine (SVM, see details [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm)) may also detect outliers in training and prediction data. In this case, the SVM will also subtract 1 from `do_predict`. If the input data point was considered an outlier by the SVM but not by the DI, or vice versa, the result will be `do_predict==0`. If both the DI and the SVM considers the input data point to be an outlier, the result will be `do_predict==-1`. As with the SVM, if `use_DBSCAN_to_remove_outliers` is active, DBSCAN (see details [here](freqai-feature-engineering.md#identifying-outliers-with-dbscan)) may also detect outliers and subtract 1 from `do_predict`. Hence, if both the SVM and DBSCAN are active and identify a datapoint that was above the DI threshold as an outlier, the result will be `do_predict==-2`. A particular case is when `do_predict == 2`, which means that the model has expired due to exceeding `expired_hours`. <br> **Datatype:** Integer between -2 and 2.
|
||||
| `df['DI_values']` | Dissimilarity Index (DI) values are proxies for the level of confidence FreqAI has in the prediction. A lower DI means the prediction is close to the training data, i.e., higher prediction confidence. See details about the DI [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di). <br> **Datatype:** Float.
|
||||
| `df['%*']` | Any dataframe column prepended with `%` in `feature_engineering_*()` is treated as a training feature. For example, you can include the RSI in the training feature set (similar to in `templates/FreqaiExampleStrategy.py`) by setting `df['%-rsi']`. See more details on how this is done [here](freqai-feature-engineering.md). <br> **Note:** Since the number of features prepended with `%` can multiply very quickly (10s of thousands of features are easily engineered using the multiplictative functionality of, e.g., `include_shifted_candles` and `include_timeframes` as described in the [parameter table](freqai-parameter-table.md)), these features are removed from the dataframe that is returned from FreqAI to the strategy. To keep a particular type of feature for plotting purposes, you would prepend it with `%%`. <br> **Datatype:** Depends on the output of the model.
|
||||
|
||||
|
||||
@@ -180,6 +180,9 @@ You can ask for each of the defined features to be included also for informative
|
||||
|
||||
In total, the number of features the user of the presented example strat has created is: length of `include_timeframes` * no. features in `feature_engineering_expand_*()` * length of `include_corr_pairlist` * no. `include_shifted_candles` * length of `indicator_periods_candles`
|
||||
$= 3 * 3 * 3 * 2 * 2 = 108$.
|
||||
|
||||
!!! note "Learn more about creative feature engineering"
|
||||
Check out our [medium article](https://emergentmethods.medium.com/freqai-from-price-to-prediction-6fadac18b665) geared toward helping users learn how to creatively engineer features.
|
||||
|
||||
### Gain finer control over `feature_engineering_*` functions with `metadata`
|
||||
|
||||
@@ -209,41 +212,7 @@ Another example, where the user wants to use live metrics from the trade databas
|
||||
|
||||
You need to set the standard dictionary in the config so that FreqAI can return proper dataframe shapes. These values will likely be overridden by the prediction model, but in the case where the model has yet to set them, or needs a default initial value, the pre-set values are what will be returned.
|
||||
|
||||
## Feature normalization
|
||||
|
||||
FreqAI is strict when it comes to data normalization. The train features, $X^{train}$, are always normalized to [-1, 1] using a shifted min-max normalization:
|
||||
|
||||
$$X^{train}_{norm} = 2 * \frac{X^{train} - X^{train}.min()}{X^{train}.max() - X^{train}.min()} - 1$$
|
||||
|
||||
All other data (test data and unseen prediction data in dry/live/backtest) is always automatically normalized to the training feature space according to industry standards. FreqAI stores all the metadata required to ensure that test and prediction features will be properly normalized and that predictions are properly denormalized. For this reason, it is not recommended to eschew industry standards and modify FreqAI internals - however - advanced users can do so by inheriting `train()` in their custom `IFreqaiModel` and using their own normalization functions.
|
||||
|
||||
## Data dimensionality reduction with Principal Component Analysis
|
||||
|
||||
You can reduce the dimensionality of your features by activating the `principal_component_analysis` in the config:
|
||||
|
||||
```json
|
||||
"freqai": {
|
||||
"feature_parameters" : {
|
||||
"principal_component_analysis": true
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
This will perform PCA on the features and reduce their dimensionality so that the explained variance of the data set is >= 0.999. Reducing data dimensionality makes training the model faster and hence allows for more up-to-date models.
|
||||
|
||||
## Inlier metric
|
||||
|
||||
The `inlier_metric` is a metric aimed at quantifying how similar the features of a data point are to the most recent historical data points.
|
||||
|
||||
You define the lookback window by setting `inlier_metric_window` and FreqAI computes the distance between the present time point and each of the previous `inlier_metric_window` lookback points. A Weibull function is fit to each of the lookback distributions and its cumulative distribution function (CDF) is used to produce a quantile for each lookback point. The `inlier_metric` is then computed for each time point as the average of the corresponding lookback quantiles. The figure below explains the concept for an `inlier_metric_window` of 5.
|
||||
|
||||

|
||||
|
||||
FreqAI adds the `inlier_metric` to the training features and hence gives the model access to a novel type of temporal information.
|
||||
|
||||
This function does **not** remove outliers from the data set.
|
||||
|
||||
## Weighting features for temporal importance
|
||||
### Weighting features for temporal importance
|
||||
|
||||
FreqAI allows you to set a `weight_factor` to weight recent data more strongly than past data via an exponential function:
|
||||
|
||||
@@ -253,13 +222,103 @@ where $W_i$ is the weight of data point $i$ in a total set of $n$ data points. B
|
||||
|
||||

|
||||
|
||||
## Building the data pipeline
|
||||
|
||||
By default, FreqAI builds a dynamic pipeline based on user congfiguration settings. The default settings are robust and designed to work with a variety of methods. These two steps are a `MinMaxScaler(-1,1)` and a `VarianceThreshold` which removes any column that has 0 variance. Users can activate other steps with more configuration parameters. For example if users add `use_SVM_to_remove_outliers: true` to the `freqai` config, then FreqAI will automatically add the [`SVMOutlierExtractor`](#identifying-outliers-using-a-support-vector-machine-svm) to the pipeline. Likewise, users can add `principal_component_analysis: true` to the `freqai` config to activate PCA. The [DissimilarityIndex](#identifying-outliers-with-the-dissimilarity-index-di) is activated with `DI_threshold: 1`. Finally, noise can also be added to the data with `noise_standard_deviation: 0.1`. Finally, users can add [DBSCAN](#identifying-outliers-with-dbscan) outlier removal with `use_DBSCAN_to_remove_outliers: true`.
|
||||
|
||||
!!! note "More information available"
|
||||
Please review the [parameter table](freqai-parameter-table.md) for more information on these parameters.
|
||||
|
||||
|
||||
### Customizing the pipeline
|
||||
|
||||
Users are encouraged to customize the data pipeline to their needs by building their own data pipeline. This can be done by simply setting `dk.feature_pipeline` to their desired `Pipeline` object inside their `IFreqaiModel` `train()` function, or if they prefer not to touch the `train()` function, they can override `define_data_pipeline`/`define_label_pipeline` functions in their `IFreqaiModel`:
|
||||
|
||||
!!! note "More information available"
|
||||
FreqAI uses the the [`DataSieve`](https://github.com/emergentmethods/datasieve) pipeline, which follows the SKlearn pipeline API, but adds, among other features, coherence between the X, y, and sample_weight vector point removals, feature removal, feature name following.
|
||||
|
||||
```python
|
||||
from datasieve.transforms import SKLearnWrapper, DissimilarityIndex
|
||||
from datasieve.pipeline import Pipeline
|
||||
from sklearn.preprocessing import QuantileTransformer, StandardScaler
|
||||
from freqai.base_models import BaseRegressionModel
|
||||
|
||||
|
||||
class MyFreqaiModel(BaseRegressionModel):
|
||||
"""
|
||||
Some cool custom model
|
||||
"""
|
||||
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
||||
"""
|
||||
My custom fit function
|
||||
"""
|
||||
model = cool_model.fit()
|
||||
return model
|
||||
|
||||
def define_data_pipeline(self) -> Pipeline:
|
||||
"""
|
||||
User defines their custom feature pipeline here (if they wish)
|
||||
"""
|
||||
feature_pipeline = Pipeline([
|
||||
('qt', SKLearnWrapper(QuantileTransformer(output_distribution='normal'))),
|
||||
('di', ds.DissimilarityIndex(di_threshold=1))
|
||||
])
|
||||
|
||||
return feature_pipeline
|
||||
|
||||
def define_label_pipeline(self) -> Pipeline:
|
||||
"""
|
||||
User defines their custom label pipeline here (if they wish)
|
||||
"""
|
||||
label_pipeline = Pipeline([
|
||||
('qt', SKLearnWrapper(StandardScaler())),
|
||||
])
|
||||
|
||||
return label_pipeline
|
||||
```
|
||||
|
||||
Here, you are defining the exact pipeline that will be used for your feature set during training and prediction. You can use *most* SKLearn transformation steps by wrapping them in the `SKLearnWrapper` class as shown above. In addition, you can use any of the transformations available in the [`DataSieve` library](https://github.com/emergentmethods/datasieve).
|
||||
|
||||
You can easily add your own transformation by creating a class that inherits from the datasieve `BaseTransform` and implementing your `fit()`, `transform()` and `inverse_transform()` methods:
|
||||
|
||||
```python
|
||||
from datasieve.transforms.base_transform import BaseTransform
|
||||
# import whatever else you need
|
||||
|
||||
class MyCoolTransform(BaseTransform):
|
||||
def __init__(self, **kwargs):
|
||||
self.param1 = kwargs.get('param1', 1)
|
||||
|
||||
def fit(self, X, y=None, sample_weight=None, feature_list=None, **kwargs):
|
||||
# do something with X, y, sample_weight, or/and feature_list
|
||||
return X, y, sample_weight, feature_list
|
||||
|
||||
def transform(self, X, y=None, sample_weight=None,
|
||||
feature_list=None, outlier_check=False, **kwargs):
|
||||
# do something with X, y, sample_weight, or/and feature_list
|
||||
return X, y, sample_weight, feature_list
|
||||
|
||||
def inverse_transform(self, X, y=None, sample_weight=None, feature_list=None, **kwargs):
|
||||
# do/dont do something with X, y, sample_weight, or/and feature_list
|
||||
return X, y, sample_weight, feature_list
|
||||
```
|
||||
|
||||
!!! note "Hint"
|
||||
You can define this custom class in the same file as your `IFreqaiModel`.
|
||||
|
||||
### Migrating a custom `IFreqaiModel` to the new Pipeline
|
||||
|
||||
If you have created your own custom `IFreqaiModel` with a custom `train()`/`predict()` function, *and* you still rely on `data_cleaning_train/predict()`, then you will need to migrate to the new pipeline. If your model does *not* rely on `data_cleaning_train/predict()`, then you do not need to worry about this migration.
|
||||
|
||||
More details about the migration can be found [here](strategy_migration.md#freqai---new-data-pipeline).
|
||||
|
||||
## Outlier detection
|
||||
|
||||
Equity and crypto markets suffer from a high level of non-patterned noise in the form of outlier data points. FreqAI implements a variety of methods to identify such outliers and hence mitigate risk.
|
||||
|
||||
### Identifying outliers with the Dissimilarity Index (DI)
|
||||
|
||||
The Dissimilarity Index (DI) aims to quantify the uncertainty associated with each prediction made by the model.
|
||||
The Dissimilarity Index (DI) aims to quantify the uncertainty associated with each prediction made by the model.
|
||||
|
||||
You can tell FreqAI to remove outlier data points from the training/test data sets using the DI by including the following statement in the config:
|
||||
|
||||
@@ -271,7 +330,7 @@ You can tell FreqAI to remove outlier data points from the training/test data se
|
||||
}
|
||||
```
|
||||
|
||||
The DI allows predictions which are outliers (not existent in the model feature space) to be thrown out due to low levels of certainty. To do so, FreqAI measures the distance between each training data point (feature vector), $X_{a}$, and all other training data points:
|
||||
Which will add `DissimilarityIndex` step to your `feature_pipeline` and set the threshold to 1. The DI allows predictions which are outliers (not existent in the model feature space) to be thrown out due to low levels of certainty. To do so, FreqAI measures the distance between each training data point (feature vector), $X_{a}$, and all other training data points:
|
||||
|
||||
$$ d_{ab} = \sqrt{\sum_{j=1}^p(X_{a,j}-X_{b,j})^2} $$
|
||||
|
||||
@@ -305,9 +364,9 @@ You can tell FreqAI to remove outlier data points from the training/test data se
|
||||
}
|
||||
```
|
||||
|
||||
The SVM will be trained on the training data and any data point that the SVM deems to be beyond the feature space will be removed.
|
||||
Which will add `SVMOutlierExtractor` step to your `feature_pipeline`. The SVM will be trained on the training data and any data point that the SVM deems to be beyond the feature space will be removed.
|
||||
|
||||
FreqAI uses `sklearn.linear_model.SGDOneClassSVM` (details are available on scikit-learn's webpage [here](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDOneClassSVM.html) (external website)) and you can elect to provide additional parameters for the SVM, such as `shuffle`, and `nu`.
|
||||
You can elect to provide additional parameters for the SVM, such as `shuffle`, and `nu` via the `feature_parameters.svm_params` dictionary in the config.
|
||||
|
||||
The parameter `shuffle` is by default set to `False` to ensure consistent results. If it is set to `True`, running the SVM multiple times on the same data set might result in different outcomes due to `max_iter` being to low for the algorithm to reach the demanded `tol`. Increasing `max_iter` solves this issue but causes the procedure to take longer time.
|
||||
|
||||
@@ -325,7 +384,7 @@ You can configure FreqAI to use DBSCAN to cluster and remove outliers from the t
|
||||
}
|
||||
```
|
||||
|
||||
DBSCAN is an unsupervised machine learning algorithm that clusters data without needing to know how many clusters there should be.
|
||||
Which will add the `DataSieveDBSCAN` step to your `feature_pipeline`. This is an unsupervised machine learning algorithm that clusters data without needing to know how many clusters there should be.
|
||||
|
||||
Given a number of data points $N$, and a distance $\varepsilon$, DBSCAN clusters the data set by setting all data points that have $N-1$ other data points within a distance of $\varepsilon$ as *core points*. A data point that is within a distance of $\varepsilon$ from a *core point* but that does not have $N-1$ other data points within a distance of $\varepsilon$ from itself is considered an *edge point*. A cluster is then the collection of *core points* and *edge points*. Data points that have no other data points at a distance $<\varepsilon$ are considered outliers. The figure below shows a cluster with $N = 3$.
|
||||
|
||||
|
||||
@@ -42,7 +42,6 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
|
||||
| `use_SVM_to_remove_outliers` | Train a support vector machine to detect and remove outliers from the training dataset, as well as from incoming data points. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm). <br> **Datatype:** Boolean.
|
||||
| `svm_params` | All parameters available in Sklearn's `SGDOneClassSVM()`. See details about some select parameters [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm). <br> **Datatype:** Dictionary.
|
||||
| `use_DBSCAN_to_remove_outliers` | Cluster data using the DBSCAN algorithm to identify and remove outliers from training and prediction data. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-with-dbscan). <br> **Datatype:** Boolean.
|
||||
| `inlier_metric_window` | If set, FreqAI adds an `inlier_metric` to the training feature set and set the lookback to be the `inlier_metric_window`, i.e., the number of previous time points to compare the current candle to. Details of how the `inlier_metric` is computed can be found [here](freqai-feature-engineering.md#inlier-metric). <br> **Datatype:** Integer. <br> Default: `0`.
|
||||
| `noise_standard_deviation` | If set, FreqAI adds noise to the training features with the aim of preventing overfitting. FreqAI generates random deviates from a gaussian distribution with a standard deviation of `noise_standard_deviation` and adds them to all data points. `noise_standard_deviation` should be kept relative to the normalized space, i.e., between -1 and 1. In other words, since data in FreqAI is always normalized to be between -1 and 1, `noise_standard_deviation: 0.05` would result in 32% of the data being randomly increased/decreased by more than 2.5% (i.e., the percent of data falling within the first standard deviation). <br> **Datatype:** Integer. <br> Default: `0`.
|
||||
| `outlier_protection_percentage` | Enable to prevent outlier detection methods from discarding too much data. If more than `outlier_protection_percentage` % of points are detected as outliers by the SVM or DBSCAN, FreqAI will log a warning message and ignore outlier detection, i.e., the original dataset will be kept intact. If the outlier protection is triggered, no predictions will be made based on the training dataset. <br> **Datatype:** Float. <br> Default: `30`.
|
||||
| `reverse_train_test_order` | Split the feature dataset (see below) and use the latest data split for training and test on historical split of the data. This allows the model to be trained up to the most recent data point, while avoiding overfitting. However, you should be careful to understand the unorthodox nature of this parameter before employing it. <br> **Datatype:** Boolean. <br> Default: `False` (no reversal).
|
||||
|
||||
@@ -76,7 +76,7 @@ pip install -r requirements-freqai.txt
|
||||
|
||||
### Usage with docker
|
||||
|
||||
If you are using docker, a dedicated tag with FreqAI dependencies is available as `:freqai`. As such - you can replace the image line in your docker compose file with `image: freqtradeorg/freqtrade:develop_freqai`. This image contains the regular FreqAI dependencies. Similar to native installs, Catboost will not be available on ARM based devices.
|
||||
If you are using docker, a dedicated tag with FreqAI dependencies is available as `:freqai`. As such - you can replace the image line in your docker compose file with `image: freqtradeorg/freqtrade:develop_freqai`. This image contains the regular FreqAI dependencies. Similar to native installs, Catboost will not be available on ARM based devices. If you would like to use PyTorch or Reinforcement learning, you should use the torch or RL tags, `image: freqtradeorg/freqtrade:develop_freqaitorch`, `image: freqtradeorg/freqtrade:develop_freqairl`.
|
||||
|
||||
!!! note "docker-compose-freqai.yml"
|
||||
We do provide an explicit docker-compose file for this in `docker/docker-compose-freqai.yml` - which can be used via `docker compose -f docker/docker-compose-freqai.yml run ...` - or can be copied to replace the original docker file. This docker-compose file also contains a (disabled) section to enable GPU resources within docker containers. This obviously assumes the system has GPU resources available.
|
||||
@@ -107,6 +107,13 @@ This is for performance reasons - FreqAI relies on making quick predictions/retr
|
||||
it needs to download all the training data at the beginning of a dry/live instance. FreqAI stores and appends
|
||||
new candles automatically for future retrains. This means that if new pairs arrive later in the dry run due to a volume pairlist, it will not have the data ready. However, FreqAI does work with the `ShufflePairlist` or a `VolumePairlist` which keeps the total pairlist constant (but reorders the pairs according to volume).
|
||||
|
||||
## Additional learning materials
|
||||
|
||||
Here we compile some external materials that provide deeper looks into various components of FreqAI:
|
||||
|
||||
- [Real-time head-to-head: Adaptive modeling of financial market data using XGBoost and CatBoost](https://emergentmethods.medium.com/real-time-head-to-head-adaptive-modeling-of-financial-market-data-using-xgboost-and-catboost-995a115a7495)
|
||||
- [FreqAI - from price to prediction](https://emergentmethods.medium.com/freqai-from-price-to-prediction-6fadac18b665)
|
||||
|
||||
## Credits
|
||||
|
||||
FreqAI is developed by a group of individuals who all contribute specific skillsets to the project.
|
||||
|
||||
@@ -184,6 +184,8 @@ The RemotePairList is defined in the pairlists section of the configuration sett
|
||||
"pairlists": [
|
||||
{
|
||||
"method": "RemotePairList",
|
||||
"mode": "whitelist",
|
||||
"processing_mode": "filter",
|
||||
"pairlist_url": "https://example.com/pairlist",
|
||||
"number_assets": 10,
|
||||
"refresh_period": 1800,
|
||||
@@ -194,6 +196,14 @@ The RemotePairList is defined in the pairlists section of the configuration sett
|
||||
]
|
||||
```
|
||||
|
||||
The optional `mode` option specifies if the pairlist should be used as a `blacklist` or as a `whitelist`. The default value is "whitelist".
|
||||
|
||||
The optional `processing_mode` option in the RemotePairList configuration determines how the retrieved pairlist is processed. It can have two values: "filter" or "append".
|
||||
|
||||
In "filter" mode, the retrieved pairlist is used as a filter. Only the pairs present in both the original pairlist and the retrieved pairlist are included in the final pairlist. Other pairs are filtered out.
|
||||
|
||||
In "append" mode, the retrieved pairlist is added to the original pairlist. All pairs from both lists are included in the final pairlist without any filtering.
|
||||
|
||||
The `pairlist_url` option specifies the URL of the remote server where the pairlist is located, or the path to a local file (if file:/// is prepended). This allows the user to use either a remote server or a local file as the source for the pairlist.
|
||||
|
||||
The user is responsible for providing a server or local file that returns a JSON object with the following structure:
|
||||
@@ -201,7 +211,7 @@ The user is responsible for providing a server or local file that returns a JSON
|
||||
```json
|
||||
{
|
||||
"pairs": ["XRP/USDT", "ETH/USDT", "LTC/USDT"],
|
||||
"refresh_period": 1800,
|
||||
"refresh_period": 1800
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
37
docs/includes/release_template.md
Normal file
37
docs/includes/release_template.md
Normal file
@@ -0,0 +1,37 @@
|
||||
## Highlighted changes
|
||||
|
||||
- ...
|
||||
|
||||
### How to update
|
||||
|
||||
As always, you can update your bot using one of the following commands:
|
||||
|
||||
#### docker-compose
|
||||
|
||||
```bash
|
||||
docker-compose pull
|
||||
docker-compose up -d
|
||||
```
|
||||
|
||||
#### Installation via setup script
|
||||
|
||||
```
|
||||
# Deactivate venv and run
|
||||
./setup.sh --update
|
||||
```
|
||||
|
||||
#### Plain native installation
|
||||
|
||||
```
|
||||
git pull
|
||||
pip install -U -r requirements.txt
|
||||
```
|
||||
|
||||
<details>
|
||||
<summary>Expand full changelog</summary>
|
||||
|
||||
```
|
||||
<Paste your changelog here>
|
||||
```
|
||||
|
||||
</details>
|
||||
11
docs/includes/showcase.md
Normal file
11
docs/includes/showcase.md
Normal file
@@ -0,0 +1,11 @@
|
||||
This section will highlight a few projects from members of the community.
|
||||
!!! Note
|
||||
The projects below are for the most part not maintained by the freqtrade , therefore use your own caution before using them.
|
||||
|
||||
- [Example freqtrade strategies](https://github.com/freqtrade/freqtrade-strategies/)
|
||||
- [FrequentHippo - Grafana dashboard with dry/live runs and backtests](http://frequenthippo.ddns.net:3000/) (by hippocritical).
|
||||
- [Online pairlist generator](https://remotepairlist.com/) (by Blood4rc).
|
||||
- [Freqtrade Backtesting Project](https://bt.robot.co.network/) (by Blood4rc).
|
||||
- [Freqtrade analysis notebook](https://github.com/froggleston/freqtrade_analysis_notebook) (by Froggleston).
|
||||
- [TUI for freqtrade](https://github.com/froggleston/freqtrade-frogtrade9000) (by Froggleston).
|
||||
- [Bot Academy](https://botacademy.ddns.net/) (by stash86) - Blog about crypto bot projects.
|
||||
@@ -63,6 +63,10 @@ Exchanges confirmed working by the community:
|
||||
- [X] [Bitvavo](https://bitvavo.com/)
|
||||
- [X] [Kucoin](https://www.kucoin.com/)
|
||||
|
||||
## Community showcase
|
||||
|
||||
--8<-- "includes/showcase.md"
|
||||
|
||||
## Requirements
|
||||
|
||||
### Hardware requirements
|
||||
|
||||
100
docs/lookahead-analysis.md
Normal file
100
docs/lookahead-analysis.md
Normal file
@@ -0,0 +1,100 @@
|
||||
# Lookahead analysis
|
||||
|
||||
This page explains how to validate your strategy in terms of look ahead bias.
|
||||
|
||||
Checking look ahead bias is the bane of any strategy since it is sometimes very easy to introduce backtest bias -
|
||||
but very hard to detect.
|
||||
|
||||
Backtesting initializes all timestamps at once and calculates all indicators in the beginning.
|
||||
This means that if your indicators or entry/exit signals could look into future candles and falsify your backtest.
|
||||
|
||||
Lookahead-analysis requires historic data to be available.
|
||||
To learn how to get data for the pairs and exchange you're interested in,
|
||||
head over to the [Data Downloading](data-download.md) section of the documentation.
|
||||
|
||||
This command is built upon backtesting since it internally chains backtests and pokes at the strategy to provoke it to show look ahead bias.
|
||||
This is done by not looking at the strategy itself - but at the results it returned.
|
||||
The results are things like changed indicator-values and moved entries/exits compared to the full backtest.
|
||||
|
||||
You can use commands of [Backtesting](backtesting.md).
|
||||
It also supports the lookahead-analysis of freqai strategies.
|
||||
|
||||
- `--cache` is forced to "none".
|
||||
- `--max-open-trades` is forced to be at least equal to the number of pairs.
|
||||
- `--dry-run-wallet` is forced to be basically infinite.
|
||||
|
||||
## Lookahead-analysis command reference
|
||||
|
||||
```
|
||||
usage: freqtrade lookahead-analysis [-h] [-v] [--logfile FILE] [-V] [-c PATH]
|
||||
[-d PATH] [--userdir PATH] [-s NAME]
|
||||
[--strategy-path PATH]
|
||||
[--recursive-strategy-search]
|
||||
[--freqaimodel NAME]
|
||||
[--freqaimodel-path PATH] [-i TIMEFRAME]
|
||||
[--timerange TIMERANGE]
|
||||
[--data-format-ohlcv {json,jsongz,hdf5,feather,parquet}]
|
||||
[--max-open-trades INT]
|
||||
[--stake-amount STAKE_AMOUNT]
|
||||
[--fee FLOAT] [-p PAIRS [PAIRS ...]]
|
||||
[--enable-protections]
|
||||
[--dry-run-wallet DRY_RUN_WALLET]
|
||||
[--timeframe-detail TIMEFRAME_DETAIL]
|
||||
[--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]]
|
||||
[--export {none,trades,signals}]
|
||||
[--export-filename PATH]
|
||||
[--breakdown {day,week,month} [{day,week,month} ...]]
|
||||
[--cache {none,day,week,month}]
|
||||
[--freqai-backtest-live-models]
|
||||
[--minimum-trade-amount INT]
|
||||
[--targeted-trade-amount INT]
|
||||
[--lookahead-analysis-exportfilename LOOKAHEAD_ANALYSIS_EXPORTFILENAME]
|
||||
|
||||
options:
|
||||
--minimum-trade-amount INT
|
||||
Minimum trade amount for lookahead-analysis
|
||||
--targeted-trade-amount INT
|
||||
Targeted trade amount for lookahead analysis
|
||||
--lookahead-analysis-exportfilename LOOKAHEAD_ANALYSIS_EXPORTFILENAME
|
||||
Use this csv-filename to store lookahead-analysis-
|
||||
results
|
||||
```
|
||||
|
||||
!!! Note ""
|
||||
The above Output was reduced to options `lookahead-analysis` adds on top of regular backtesting commands.
|
||||
|
||||
### Summary
|
||||
|
||||
Checks a given strategy for look ahead bias via lookahead-analysis
|
||||
Look ahead bias means that the backtest uses data from future candles thereby not making it viable beyond backtesting
|
||||
and producing false hopes for the one backtesting.
|
||||
|
||||
### Introduction
|
||||
|
||||
Many strategies - without the programmer knowing - have fallen prey to look ahead bias.
|
||||
|
||||
Any backtest will populate the full dataframe including all time stamps at the beginning.
|
||||
If the programmer is not careful or oblivious how things work internally
|
||||
(which sometimes can be really hard to find out) then it will just look into the future making the strategy amazing
|
||||
but not realistic.
|
||||
|
||||
This command is made to try to verify the validity in the form of the aforementioned look ahead bias.
|
||||
|
||||
### How does the command work?
|
||||
|
||||
It will start with a backtest of all pairs to generate a baseline for indicators and entries/exits.
|
||||
After the backtest ran, it will look if the `minimum-trade-amount` is met
|
||||
and if not cancel the lookahead-analysis for this strategy.
|
||||
|
||||
After setting the baseline it will then do additional runs for every entry and exit separately.
|
||||
When a verification-backtest is done, it will compare the indicators as the signal (either entry or exit) and report the bias.
|
||||
After all signals have been verified or falsified a result-table will be generated for the user to see.
|
||||
|
||||
### Caveats
|
||||
|
||||
- `lookahead-analysis` can only verify / falsify the trades it calculated and verified.
|
||||
If the strategy has many different signals / signal types, it's up to you to select appropriate parameters to ensure that all signals have triggered at least once. Not triggered signals will not have been verified.
|
||||
This could lead to a false-negative (the strategy will then be reported as non-biased).
|
||||
- `lookahead-analysis` has access to everything that backtesting has too.
|
||||
Please don't provoke any configs like enabling position stacking.
|
||||
If you decide to do so, then make doubly sure that you won't ever run out of `max_open_trades` amount and neither leftover money in your wallet.
|
||||
@@ -1,6 +1,6 @@
|
||||
markdown==3.3.7
|
||||
mkdocs==1.4.3
|
||||
mkdocs-material==9.1.14
|
||||
mkdocs-material==9.1.19
|
||||
mdx_truly_sane_lists==1.3
|
||||
pymdown-extensions==10.0.1
|
||||
pymdown-extensions==10.1
|
||||
jinja2==3.1.2
|
||||
|
||||
@@ -750,7 +750,7 @@ class DigDeeperStrategy(IStrategy):
|
||||
# Hope you have a deep wallet!
|
||||
try:
|
||||
# This returns first order stake size
|
||||
stake_amount = filled_entries[0].cost
|
||||
stake_amount = filled_entries[0].stake_amount
|
||||
# This then calculates current safety order size
|
||||
stake_amount = stake_amount * (1 + (count_of_entries * 0.25))
|
||||
return stake_amount
|
||||
|
||||
@@ -342,16 +342,12 @@ The above configuration would therefore mean:
|
||||
|
||||
The calculation does include fees.
|
||||
|
||||
To disable ROI completely, set it to an insanely high number:
|
||||
To disable ROI completely, set it to an empty dictionary:
|
||||
|
||||
```python
|
||||
minimal_roi = {
|
||||
"0": 100
|
||||
}
|
||||
minimal_roi = {}
|
||||
```
|
||||
|
||||
While technically not completely disabled, this would exit once the trade reaches 10000% Profit.
|
||||
|
||||
To use times based on candle duration (timeframe), the following snippet can be handy.
|
||||
This will allow you to change the timeframe for the strategy, and ROI times will still be set as candles (e.g. after 3 candles ...)
|
||||
|
||||
|
||||
@@ -728,3 +728,86 @@ Targets now get their own, dedicated method.
|
||||
|
||||
return dataframe
|
||||
```
|
||||
|
||||
|
||||
### FreqAI - New data Pipeline
|
||||
|
||||
If you have created your own custom `IFreqaiModel` with a custom `train()`/`predict()` function, *and* you still rely on `data_cleaning_train/predict()`, then you will need to migrate to the new pipeline. If your model does *not* rely on `data_cleaning_train/predict()`, then you do not need to worry about this migration. That means that this migration guide is relevant for a very small percentage of power-users. If you stumbled upon this guide by mistake, feel free to inquire in depth about your problem in the Freqtrade discord server.
|
||||
|
||||
The conversion involves first removing `data_cleaning_train/predict()` and replacing them with a `define_data_pipeline()` and `define_label_pipeline()` function to your `IFreqaiModel` class:
|
||||
|
||||
```python linenums="1" hl_lines="11-14 47-49 55-57"
|
||||
class MyCoolFreqaiModel(BaseRegressionModel):
|
||||
"""
|
||||
Some cool custom IFreqaiModel you made before Freqtrade version 2023.6
|
||||
"""
|
||||
def train(
|
||||
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
|
||||
) -> Any:
|
||||
|
||||
# ... your custom stuff
|
||||
|
||||
# Remove these lines
|
||||
# data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
# self.data_cleaning_train(dk)
|
||||
# data_dictionary = dk.normalize_data(data_dictionary)
|
||||
# (1)
|
||||
|
||||
# Add these lines. Now we control the pipeline fit/transform ourselves
|
||||
dd = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)
|
||||
dk.label_pipeline = self.define_label_pipeline(threads=dk.thread_count)
|
||||
|
||||
(dd["train_features"],
|
||||
dd["train_labels"],
|
||||
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
|
||||
dd["train_labels"],
|
||||
dd["train_weights"])
|
||||
|
||||
(dd["test_features"],
|
||||
dd["test_labels"],
|
||||
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
|
||||
dd["test_labels"],
|
||||
dd["test_weights"])
|
||||
|
||||
dd["train_labels"], _, _ = dk.label_pipeline.fit_transform(dd["train_labels"])
|
||||
dd["test_labels"], _, _ = dk.label_pipeline.transform(dd["test_labels"])
|
||||
|
||||
# ... your custom code
|
||||
|
||||
return model
|
||||
|
||||
def predict(
|
||||
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
|
||||
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
|
||||
|
||||
# ... your custom stuff
|
||||
|
||||
# Remove these lines:
|
||||
# self.data_cleaning_predict(dk)
|
||||
# (2)
|
||||
|
||||
# Add these lines:
|
||||
dk.data_dictionary["prediction_features"], outliers, _ = dk.feature_pipeline.transform(
|
||||
dk.data_dictionary["prediction_features"], outlier_check=True)
|
||||
|
||||
# Remove this line
|
||||
# pred_df = dk.denormalize_labels_from_metadata(pred_df)
|
||||
# (3)
|
||||
|
||||
# Replace with these lines
|
||||
pred_df, _, _ = dk.label_pipeline.inverse_transform(pred_df)
|
||||
if self.freqai_info.get("DI_threshold", 0) > 0:
|
||||
dk.DI_values = dk.feature_pipeline["di"].di_values
|
||||
else:
|
||||
dk.DI_values = np.zeros(outliers.shape[0])
|
||||
dk.do_predict = outliers
|
||||
|
||||
# ... your custom code
|
||||
return (pred_df, dk.do_predict)
|
||||
```
|
||||
|
||||
|
||||
1. Data normalization and cleaning is now homogenized with the new pipeline definition. This is created in the new `define_data_pipeline()` and `define_label_pipeline()` functions. The `data_cleaning_train()` and `data_cleaning_predict()` functions are no longer used. You can override `define_data_pipeline()` to create your own custom pipeline if you wish.
|
||||
2. Data normalization and cleaning is now homogenized with the new pipeline definition. This is created in the new `define_data_pipeline()` and `define_label_pipeline()` functions. The `data_cleaning_train()` and `data_cleaning_predict()` functions are no longer used. You can override `define_data_pipeline()` to create your own custom pipeline if you wish.
|
||||
3. Data denormalization is done with the new pipeline. Replace this with the lines below.
|
||||
|
||||
@@ -287,12 +287,17 @@ Return a summary of your profit/loss and performance.
|
||||
> **Best Performing:** `PAY/BTC: 50.23%`
|
||||
> **Trading volume:** `0.5 BTC`
|
||||
> **Profit factor:** `1.04`
|
||||
> **Win / Loss:** `102 / 36`
|
||||
> **Winrate:** `73.91%`
|
||||
> **Expectancy (Ratio):** `4.87 (1.66)`
|
||||
> **Max Drawdown:** `9.23% (0.01255 BTC)`
|
||||
|
||||
The relative profit of `1.2%` is the average profit per trade.
|
||||
The relative profit of `15.2 Σ%` is be based on the starting capital - so in this case, the starting capital was `0.00485701 * 1.152 = 0.00738 BTC`.
|
||||
Starting capital is either taken from the `available_capital` setting, or calculated by using current wallet size - profits.
|
||||
Profit Factor is calculated as gross profits / gross losses - and should serve as an overall metric for the strategy.
|
||||
Expectancy corresponds to the average return per currency unit at risk, i.e. the winrate and the risk-reward ratio (the average gain of winning trades compared to the average loss of losing trades).
|
||||
Expectancy Ratio is expected profit or loss of a subsequent trade based on the performance of all past trades.
|
||||
Max drawdown corresponds to the backtesting metric `Absolute Drawdown (Account)` - calculated as `(Absolute Drawdown) / (DrawdownHigh + startingBalance)`.
|
||||
Bot started date will refer to the date the bot was first started. For older bots, this will default to the first trade's open date.
|
||||
|
||||
|
||||
@@ -141,7 +141,8 @@ Most properties here can be None as they are dependant on the exchange response.
|
||||
`amount` | float | Amount in base currency
|
||||
`filled` | float | Filled amount (in base currency)
|
||||
`remaining` | float | Remaining amount
|
||||
`cost` | float | Cost of the order - usually average * filled
|
||||
`cost` | float | Cost of the order - usually average * filled (*Exchange dependant on futures, may contain the cost with or without leverage and may be in contracts.*)
|
||||
`stake_amount` | float | Stake amount used for this order. *Added in 2023.7.*
|
||||
`order_date` | datetime | Order creation date **use `order_date_utc` instead**
|
||||
`order_date_utc` | datetime | Order creation date (in UTC)
|
||||
`order_fill_date` | datetime | Order fill date **use `order_fill_utc` instead**
|
||||
|
||||
@@ -80,12 +80,18 @@ When using the Form-Encoded or JSON-Encoded configuration you can configure any
|
||||
|
||||
The result would be a POST request with e.g. `Status: running` body and `Content-Type: text/plain` header.
|
||||
|
||||
Optional parameters are available to enable automatic retries for webhook messages. The `webhook.retries` parameter can be set for the maximum number of retries the webhook request should attempt if it is unsuccessful (i.e. HTTP response status is not 200). By default this is set to `0` which is disabled. An additional `webhook.retry_delay` parameter can be set to specify the time in seconds between retry attempts. By default this is set to `0.1` (i.e. 100ms). Note that increasing the number of retries or retry delay may slow down the trader if there are connectivity issues with the webhook. Example configuration for retries:
|
||||
## Additional configurations
|
||||
|
||||
The `webhook.retries` parameter can be set for the maximum number of retries the webhook request should attempt if it is unsuccessful (i.e. HTTP response status is not 200). By default this is set to `0` which is disabled. An additional `webhook.retry_delay` parameter can be set to specify the time in seconds between retry attempts. By default this is set to `0.1` (i.e. 100ms). Note that increasing the number of retries or retry delay may slow down the trader if there are connectivity issues with the webhook.
|
||||
You can also specify `webhook.timeout` - which defines how long the bot will wait until it assumes the other host as unresponsive (defaults to 10s).
|
||||
|
||||
Example configuration for retries:
|
||||
|
||||
```json
|
||||
"webhook": {
|
||||
"enabled": true,
|
||||
"url": "https://<YOURHOOKURL>",
|
||||
"timeout": 10,
|
||||
"retries": 3,
|
||||
"retry_delay": 0.2,
|
||||
"status": {
|
||||
@@ -109,6 +115,8 @@ Custom messages can be sent to Webhook endpoints via the `self.dp.send_msg()` fu
|
||||
|
||||
Different payloads can be configured for different events. Not all fields are necessary, but you should configure at least one of the dicts, otherwise the webhook will never be called.
|
||||
|
||||
## Webhook Message types
|
||||
|
||||
### Entry
|
||||
|
||||
The fields in `webhook.entry` are filled when the bot executes a long/short. Parameters are filled using string.format.
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
""" Freqtrade bot """
|
||||
__version__ = '2023.5'
|
||||
__version__ = '2023.7'
|
||||
|
||||
if 'dev' in __version__:
|
||||
from pathlib import Path
|
||||
|
||||
@@ -19,7 +19,8 @@ from freqtrade.commands.list_commands import (start_list_exchanges, start_list_f
|
||||
start_list_markets, start_list_strategies,
|
||||
start_list_timeframes, start_show_trades)
|
||||
from freqtrade.commands.optimize_commands import (start_backtesting, start_backtesting_show,
|
||||
start_edge, start_hyperopt)
|
||||
start_edge, start_hyperopt,
|
||||
start_lookahead_analysis)
|
||||
from freqtrade.commands.pairlist_commands import start_test_pairlist
|
||||
from freqtrade.commands.plot_commands import start_plot_dataframe, start_plot_profit
|
||||
from freqtrade.commands.strategy_utils_commands import start_strategy_update
|
||||
|
||||
27
freqtrade/commands/arguments.py
Normal file → Executable file
27
freqtrade/commands/arguments.py
Normal file → Executable file
@@ -67,8 +67,7 @@ ARGS_BUILD_STRATEGY = ["user_data_dir", "strategy", "template"]
|
||||
|
||||
ARGS_CONVERT_DATA = ["pairs", "format_from", "format_to", "erase", "exchange"]
|
||||
|
||||
ARGS_CONVERT_DATA_OHLCV = ARGS_CONVERT_DATA + ["timeframes", "trading_mode",
|
||||
"candle_types"]
|
||||
ARGS_CONVERT_DATA_OHLCV = ARGS_CONVERT_DATA + ["timeframes", "trading_mode", "candle_types"]
|
||||
|
||||
ARGS_CONVERT_TRADES = ["pairs", "timeframes", "exchange", "dataformat_ohlcv", "dataformat_trades"]
|
||||
|
||||
@@ -117,7 +116,11 @@ NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list
|
||||
|
||||
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-strategy"]
|
||||
|
||||
ARGS_STRATEGY_UTILS = ["strategy_list", "strategy_path", "recursive_strategy_search"]
|
||||
ARGS_STRATEGY_UPDATER = ["strategy_list", "strategy_path", "recursive_strategy_search"]
|
||||
|
||||
ARGS_LOOKAHEAD_ANALYSIS = [
|
||||
a for a in ARGS_BACKTEST if a not in ("position_stacking", "use_max_market_positions", 'cache')
|
||||
] + ["minimum_trade_amount", "targeted_trade_amount", "lookahead_analysis_exportfilename"]
|
||||
|
||||
|
||||
class Arguments:
|
||||
@@ -201,8 +204,9 @@ class Arguments:
|
||||
start_install_ui, start_list_data, start_list_exchanges,
|
||||
start_list_freqAI_models, start_list_markets,
|
||||
start_list_strategies, start_list_timeframes,
|
||||
start_new_config, start_new_strategy, start_plot_dataframe,
|
||||
start_plot_profit, start_show_trades, start_strategy_update,
|
||||
start_lookahead_analysis, start_new_config,
|
||||
start_new_strategy, start_plot_dataframe, start_plot_profit,
|
||||
start_show_trades, start_strategy_update,
|
||||
start_test_pairlist, start_trading, start_webserver)
|
||||
|
||||
subparsers = self.parser.add_subparsers(dest='command',
|
||||
@@ -451,4 +455,15 @@ class Arguments:
|
||||
'files to the current version',
|
||||
parents=[_common_parser])
|
||||
strategy_updater_cmd.set_defaults(func=start_strategy_update)
|
||||
self._build_args(optionlist=ARGS_STRATEGY_UTILS, parser=strategy_updater_cmd)
|
||||
self._build_args(optionlist=ARGS_STRATEGY_UPDATER, parser=strategy_updater_cmd)
|
||||
|
||||
# Add lookahead_analysis subcommand
|
||||
lookahead_analayis_cmd = subparsers.add_parser(
|
||||
'lookahead-analysis',
|
||||
help="Check for potential look ahead bias.",
|
||||
parents=[_common_parser, _strategy_parser])
|
||||
|
||||
lookahead_analayis_cmd.set_defaults(func=start_lookahead_analysis)
|
||||
|
||||
self._build_args(optionlist=ARGS_LOOKAHEAD_ANALYSIS,
|
||||
parser=lookahead_analayis_cmd)
|
||||
|
||||
@@ -5,6 +5,7 @@ from typing import Any, Dict, List
|
||||
|
||||
from questionary import Separator, prompt
|
||||
|
||||
from freqtrade.configuration.detect_environment import running_in_docker
|
||||
from freqtrade.configuration.directory_operations import chown_user_directory
|
||||
from freqtrade.constants import UNLIMITED_STAKE_AMOUNT
|
||||
from freqtrade.exceptions import OperationalException
|
||||
@@ -179,7 +180,7 @@ def ask_user_config() -> Dict[str, Any]:
|
||||
"name": "api_server_listen_addr",
|
||||
"message": ("Insert Api server Listen Address (0.0.0.0 for docker, "
|
||||
"otherwise best left untouched)"),
|
||||
"default": "127.0.0.1",
|
||||
"default": "127.0.0.1" if not running_in_docker() else "0.0.0.0",
|
||||
"when": lambda x: x['api_server']
|
||||
},
|
||||
{
|
||||
|
||||
23
freqtrade/commands/cli_options.py
Normal file → Executable file
23
freqtrade/commands/cli_options.py
Normal file → Executable file
@@ -381,7 +381,7 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
),
|
||||
"candle_types": Arg(
|
||||
'--candle-types',
|
||||
help='Select candle type to use',
|
||||
help='Select candle type to convert. Defaults to all available types.',
|
||||
choices=[c.value for c in CandleType],
|
||||
nargs='+',
|
||||
),
|
||||
@@ -450,14 +450,12 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
),
|
||||
"exchange": Arg(
|
||||
'--exchange',
|
||||
help=f'Exchange name (default: `{constants.DEFAULT_EXCHANGE}`). '
|
||||
f'Only valid if no config is provided.',
|
||||
help='Exchange name. Only valid if no config is provided.',
|
||||
),
|
||||
"timeframes": Arg(
|
||||
'-t', '--timeframes',
|
||||
help='Specify which tickers to download. Space-separated list. '
|
||||
'Default: `1m 5m`.',
|
||||
default=['1m', '5m'],
|
||||
nargs='+',
|
||||
),
|
||||
"prepend_data": Arg(
|
||||
@@ -690,4 +688,21 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
help='Run backtest with ready models.',
|
||||
action='store_true'
|
||||
),
|
||||
"minimum_trade_amount": Arg(
|
||||
'--minimum-trade-amount',
|
||||
help='Minimum trade amount for lookahead-analysis',
|
||||
type=check_int_positive,
|
||||
metavar='INT',
|
||||
),
|
||||
"targeted_trade_amount": Arg(
|
||||
'--targeted-trade-amount',
|
||||
help='Targeted trade amount for lookahead analysis',
|
||||
type=check_int_positive,
|
||||
metavar='INT',
|
||||
),
|
||||
"lookahead_analysis_exportfilename": Arg(
|
||||
'--lookahead-analysis-exportfilename',
|
||||
help="Use this csv-filename to store lookahead-analysis-results",
|
||||
type=str
|
||||
),
|
||||
}
|
||||
|
||||
@@ -1,18 +1,16 @@
|
||||
import logging
|
||||
import sys
|
||||
from collections import defaultdict
|
||||
from datetime import datetime, timedelta
|
||||
from typing import Any, Dict, List
|
||||
from typing import Any, Dict
|
||||
|
||||
from freqtrade.configuration import TimeRange, setup_utils_configuration
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT, Config
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT, DL_DATA_TIMEFRAMES, Config
|
||||
from freqtrade.data.converter import convert_ohlcv_format, convert_trades_format
|
||||
from freqtrade.data.history import (convert_trades_to_ohlcv, refresh_backtest_ohlcv_data,
|
||||
refresh_backtest_trades_data)
|
||||
from freqtrade.enums import CandleType, RunMode, TradingMode
|
||||
from freqtrade.data.history import convert_trades_to_ohlcv, download_data_main
|
||||
from freqtrade.enums import RunMode, TradingMode
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import market_is_active, timeframe_to_minutes
|
||||
from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist, expand_pairlist
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
|
||||
from freqtrade.resolvers import ExchangeResolver
|
||||
from freqtrade.util.binance_mig import migrate_binance_futures_data
|
||||
|
||||
@@ -20,7 +18,7 @@ from freqtrade.util.binance_mig import migrate_binance_futures_data
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _data_download_sanity(config: Config) -> None:
|
||||
def _check_data_config_download_sanity(config: Config) -> None:
|
||||
if 'days' in config and 'timerange' in config:
|
||||
raise OperationalException("--days and --timerange are mutually exclusive. "
|
||||
"You can only specify one or the other.")
|
||||
@@ -37,78 +35,14 @@ def start_download_data(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
|
||||
|
||||
_data_download_sanity(config)
|
||||
timerange = TimeRange()
|
||||
if 'days' in config:
|
||||
time_since = (datetime.now() - timedelta(days=config['days'])).strftime("%Y%m%d")
|
||||
timerange = TimeRange.parse_timerange(f'{time_since}-')
|
||||
|
||||
if 'timerange' in config:
|
||||
timerange = timerange.parse_timerange(config['timerange'])
|
||||
|
||||
# Remove stake-currency to skip checks which are not relevant for datadownload
|
||||
config['stake_currency'] = ''
|
||||
|
||||
pairs_not_available: List[str] = []
|
||||
|
||||
# Init exchange
|
||||
exchange = ExchangeResolver.load_exchange(config, validate=False)
|
||||
markets = [p for p, m in exchange.markets.items() if market_is_active(m)
|
||||
or config.get('include_inactive')]
|
||||
|
||||
expanded_pairs = dynamic_expand_pairlist(config, markets)
|
||||
|
||||
# Manual validations of relevant settings
|
||||
if not config['exchange'].get('skip_pair_validation', False):
|
||||
exchange.validate_pairs(expanded_pairs)
|
||||
logger.info(f"About to download pairs: {expanded_pairs}, "
|
||||
f"intervals: {config['timeframes']} to {config['datadir']}")
|
||||
|
||||
for timeframe in config['timeframes']:
|
||||
exchange.validate_timeframes(timeframe)
|
||||
_check_data_config_download_sanity(config)
|
||||
|
||||
try:
|
||||
|
||||
if config.get('download_trades'):
|
||||
if config.get('trading_mode') == 'futures':
|
||||
raise OperationalException("Trade download not supported for futures.")
|
||||
pairs_not_available = refresh_backtest_trades_data(
|
||||
exchange, pairs=expanded_pairs, datadir=config['datadir'],
|
||||
timerange=timerange, new_pairs_days=config['new_pairs_days'],
|
||||
erase=bool(config.get('erase')), data_format=config['dataformat_trades'])
|
||||
|
||||
# Convert downloaded trade data to different timeframes
|
||||
convert_trades_to_ohlcv(
|
||||
pairs=expanded_pairs, timeframes=config['timeframes'],
|
||||
datadir=config['datadir'], timerange=timerange, erase=bool(config.get('erase')),
|
||||
data_format_ohlcv=config['dataformat_ohlcv'],
|
||||
data_format_trades=config['dataformat_trades'],
|
||||
)
|
||||
else:
|
||||
if not exchange.get_option('ohlcv_has_history', True):
|
||||
raise OperationalException(
|
||||
f"Historic klines not available for {exchange.name}. "
|
||||
"Please use `--dl-trades` instead for this exchange "
|
||||
"(will unfortunately take a long time)."
|
||||
)
|
||||
migrate_binance_futures_data(config)
|
||||
pairs_not_available = refresh_backtest_ohlcv_data(
|
||||
exchange, pairs=expanded_pairs, timeframes=config['timeframes'],
|
||||
datadir=config['datadir'], timerange=timerange,
|
||||
new_pairs_days=config['new_pairs_days'],
|
||||
erase=bool(config.get('erase')), data_format=config['dataformat_ohlcv'],
|
||||
trading_mode=config.get('trading_mode', 'spot'),
|
||||
prepend=config.get('prepend_data', False)
|
||||
)
|
||||
download_data_main(config)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
sys.exit("SIGINT received, aborting ...")
|
||||
|
||||
finally:
|
||||
if pairs_not_available:
|
||||
logger.info(f"Pairs [{','.join(pairs_not_available)}] not available "
|
||||
f"on exchange {exchange.name}.")
|
||||
|
||||
|
||||
def start_convert_trades(args: Dict[str, Any]) -> None:
|
||||
|
||||
@@ -123,6 +57,8 @@ def start_convert_trades(args: Dict[str, Any]) -> None:
|
||||
raise OperationalException(
|
||||
"Downloading data requires a list of pairs. "
|
||||
"Please check the documentation on how to configure this.")
|
||||
if 'timeframes' not in config:
|
||||
config['timeframes'] = DL_DATA_TIMEFRAMES
|
||||
|
||||
# Init exchange
|
||||
exchange = ExchangeResolver.load_exchange(config, validate=False)
|
||||
@@ -152,11 +88,10 @@ def start_convert_data(args: Dict[str, Any], ohlcv: bool = True) -> None:
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||
if ohlcv:
|
||||
migrate_binance_futures_data(config)
|
||||
candle_types = [CandleType.from_string(ct) for ct in config.get('candle_types', ['spot'])]
|
||||
for candle_type in candle_types:
|
||||
convert_ohlcv_format(config,
|
||||
convert_from=args['format_from'], convert_to=args['format_to'],
|
||||
erase=args['erase'], candle_type=candle_type)
|
||||
convert_ohlcv_format(config,
|
||||
convert_from=args['format_from'],
|
||||
convert_to=args['format_to'],
|
||||
erase=args['erase'])
|
||||
else:
|
||||
convert_trades_format(config,
|
||||
convert_from=args['format_from'], convert_to=args['format_to'],
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import csv
|
||||
import logging
|
||||
import sys
|
||||
from typing import Any, Dict, List
|
||||
from typing import Any, Dict, List, Union
|
||||
|
||||
import rapidjson
|
||||
from colorama import Fore, Style
|
||||
@@ -11,9 +11,10 @@ from tabulate import tabulate
|
||||
from freqtrade.configuration import setup_utils_configuration
|
||||
from freqtrade.enums import RunMode
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import market_is_active, validate_exchanges
|
||||
from freqtrade.exchange import list_available_exchanges, market_is_active
|
||||
from freqtrade.misc import parse_db_uri_for_logging, plural
|
||||
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
|
||||
from freqtrade.types import ValidExchangesType
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -25,18 +26,42 @@ def start_list_exchanges(args: Dict[str, Any]) -> None:
|
||||
:param args: Cli args from Arguments()
|
||||
:return: None
|
||||
"""
|
||||
exchanges = validate_exchanges(args['list_exchanges_all'])
|
||||
exchanges = list_available_exchanges(args['list_exchanges_all'])
|
||||
|
||||
if args['print_one_column']:
|
||||
print('\n'.join([e[0] for e in exchanges]))
|
||||
print('\n'.join([e['name'] for e in exchanges]))
|
||||
else:
|
||||
headers = {
|
||||
'name': 'Exchange name',
|
||||
'supported': 'Supported',
|
||||
'trade_modes': 'Markets',
|
||||
'comment': 'Reason',
|
||||
}
|
||||
headers.update({'valid': 'Valid'} if args['list_exchanges_all'] else {})
|
||||
|
||||
def build_entry(exchange: ValidExchangesType, valid: bool):
|
||||
valid_entry = {'valid': exchange['valid']} if valid else {}
|
||||
result: Dict[str, Union[str, bool]] = {
|
||||
'name': exchange['name'],
|
||||
**valid_entry,
|
||||
'supported': 'Official' if exchange['supported'] else '',
|
||||
'trade_modes': ', '.join(
|
||||
(f"{a['margin_mode']} " if a['margin_mode'] else '') + a['trading_mode']
|
||||
for a in exchange['trade_modes']
|
||||
),
|
||||
'comment': exchange['comment'],
|
||||
}
|
||||
|
||||
return result
|
||||
|
||||
if args['list_exchanges_all']:
|
||||
print("All exchanges supported by the ccxt library:")
|
||||
exchanges = [build_entry(e, True) for e in exchanges]
|
||||
else:
|
||||
print("Exchanges available for Freqtrade:")
|
||||
exchanges = [e for e in exchanges if e[1] is not False]
|
||||
exchanges = [build_entry(e, False) for e in exchanges if e['valid'] is not False]
|
||||
|
||||
print(tabulate(exchanges, headers=['Exchange name', 'Valid', 'reason']))
|
||||
print(tabulate(exchanges, headers=headers, ))
|
||||
|
||||
|
||||
def _print_objs_tabular(objs: List, print_colorized: bool) -> None:
|
||||
|
||||
@@ -132,3 +132,15 @@ def start_edge(args: Dict[str, Any]) -> None:
|
||||
# Initialize Edge object
|
||||
edge_cli = EdgeCli(config)
|
||||
edge_cli.start()
|
||||
|
||||
|
||||
def start_lookahead_analysis(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Start the backtest bias tester script
|
||||
:param args: Cli args from Arguments()
|
||||
:return: None
|
||||
"""
|
||||
from freqtrade.optimize.lookahead_analysis_helpers import LookaheadAnalysisSubFunctions
|
||||
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||
LookaheadAnalysisSubFunctions.start(config)
|
||||
|
||||
@@ -203,7 +203,7 @@ class Configuration:
|
||||
# This will override the strategy configuration
|
||||
self._args_to_config(config, argname='timeframe',
|
||||
logstring='Parameter -i/--timeframe detected ... '
|
||||
'Using timeframe: {} ...')
|
||||
'Using timeframe: {} ...')
|
||||
|
||||
self._args_to_config(config, argname='position_stacking',
|
||||
logstring='Parameter --enable-position-stacking detected ...')
|
||||
@@ -300,6 +300,9 @@ class Configuration:
|
||||
self._args_to_config(config, argname='hyperoptexportfilename',
|
||||
logstring='Using hyperopt file: {}')
|
||||
|
||||
self._args_to_config(config, argname='lookahead_analysis_exportfilename',
|
||||
logstring='Saving lookahead analysis results into {} ...')
|
||||
|
||||
self._args_to_config(config, argname='epochs',
|
||||
logstring='Parameter --epochs detected ... '
|
||||
'Will run Hyperopt with for {} epochs ...'
|
||||
@@ -474,6 +477,19 @@ class Configuration:
|
||||
self._args_to_config(config, argname='analysis_csv_path',
|
||||
logstring='Path to store analysis CSVs: {}')
|
||||
|
||||
self._args_to_config(config, argname='analysis_csv_path',
|
||||
logstring='Path to store analysis CSVs: {}')
|
||||
|
||||
# Lookahead analysis results
|
||||
self._args_to_config(config, argname='targeted_trade_amount',
|
||||
logstring='Targeted Trade amount: {}')
|
||||
|
||||
self._args_to_config(config, argname='minimum_trade_amount',
|
||||
logstring='Minimum Trade amount: {}')
|
||||
|
||||
self._args_to_config(config, argname='lookahead_analysis_exportfilename',
|
||||
logstring='Path to store lookahead-analysis-results: {}')
|
||||
|
||||
def _process_runmode(self, config: Config) -> None:
|
||||
|
||||
self._args_to_config(config, argname='dry_run',
|
||||
@@ -552,6 +568,7 @@ class Configuration:
|
||||
# Fall back to /dl_path/pairs.json
|
||||
pairs_file = config['datadir'] / 'pairs.json'
|
||||
if pairs_file.exists():
|
||||
logger.info(f'Reading pairs file "{pairs_file}".')
|
||||
config['pairs'] = load_file(pairs_file)
|
||||
if 'pairs' in config and isinstance(config['pairs'], list):
|
||||
config['pairs'].sort()
|
||||
|
||||
8
freqtrade/configuration/detect_environment.py
Normal file
8
freqtrade/configuration/detect_environment.py
Normal file
@@ -0,0 +1,8 @@
|
||||
import os
|
||||
|
||||
|
||||
def running_in_docker() -> bool:
|
||||
"""
|
||||
Check if we are running in a docker container
|
||||
"""
|
||||
return os.environ.get('FT_APP_ENV') == 'docker'
|
||||
@@ -3,6 +3,7 @@ import shutil
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from freqtrade.configuration.detect_environment import running_in_docker
|
||||
from freqtrade.constants import (USER_DATA_FILES, USERPATH_FREQAIMODELS, USERPATH_HYPEROPTS,
|
||||
USERPATH_NOTEBOOKS, USERPATH_STRATEGIES, Config)
|
||||
from freqtrade.exceptions import OperationalException
|
||||
@@ -30,8 +31,7 @@ def chown_user_directory(directory: Path) -> None:
|
||||
Use Sudo to change permissions of the home-directory if necessary
|
||||
Only applies when running in docker!
|
||||
"""
|
||||
import os
|
||||
if os.environ.get('FT_APP_ENV') == 'docker':
|
||||
if running_in_docker():
|
||||
try:
|
||||
import subprocess
|
||||
subprocess.check_output(
|
||||
|
||||
@@ -6,6 +6,8 @@ import re
|
||||
from datetime import datetime, timezone
|
||||
from typing import Optional
|
||||
|
||||
from typing_extensions import Self
|
||||
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT
|
||||
from freqtrade.exceptions import OperationalException
|
||||
|
||||
@@ -107,15 +109,15 @@ class TimeRange:
|
||||
self.startts = int(min_date.timestamp() + timeframe_secs * startup_candles)
|
||||
self.starttype = 'date'
|
||||
|
||||
@staticmethod
|
||||
def parse_timerange(text: Optional[str]) -> 'TimeRange':
|
||||
@classmethod
|
||||
def parse_timerange(cls, text: Optional[str]) -> Self:
|
||||
"""
|
||||
Parse the value of the argument --timerange to determine what is the range desired
|
||||
:param text: value from --timerange
|
||||
:return: Start and End range period
|
||||
"""
|
||||
if not text:
|
||||
return TimeRange(None, None, 0, 0)
|
||||
return cls(None, None, 0, 0)
|
||||
syntax = [(r'^-(\d{8})$', (None, 'date')),
|
||||
(r'^(\d{8})-$', ('date', None)),
|
||||
(r'^(\d{8})-(\d{8})$', ('date', 'date')),
|
||||
@@ -156,5 +158,5 @@ class TimeRange:
|
||||
if start > stop > 0:
|
||||
raise OperationalException(
|
||||
f'Start date is after stop date for timerange "{text}"')
|
||||
return TimeRange(stype[0], stype[1], start, stop)
|
||||
return cls(stype[0], stype[1], start, stop)
|
||||
raise OperationalException(f'Incorrect syntax for timerange "{text}"')
|
||||
|
||||
@@ -8,8 +8,8 @@ from typing import Any, Dict, List, Literal, Tuple
|
||||
from freqtrade.enums import CandleType, PriceType, RPCMessageType
|
||||
|
||||
|
||||
DOCS_LINK = "https://www.freqtrade.io/en/stable"
|
||||
DEFAULT_CONFIG = 'config.json'
|
||||
DEFAULT_EXCHANGE = 'bittrex'
|
||||
PROCESS_THROTTLE_SECS = 5 # sec
|
||||
HYPEROPT_EPOCH = 100 # epochs
|
||||
RETRY_TIMEOUT = 30 # sec
|
||||
@@ -65,6 +65,7 @@ TELEGRAM_SETTING_OPTIONS = ['on', 'off', 'silent']
|
||||
WEBHOOK_FORMAT_OPTIONS = ['form', 'json', 'raw']
|
||||
FULL_DATAFRAME_THRESHOLD = 100
|
||||
CUSTOM_TAG_MAX_LENGTH = 255
|
||||
DL_DATA_TIMEFRAMES = ['1m', '5m']
|
||||
|
||||
ENV_VAR_PREFIX = 'FREQTRADE__'
|
||||
|
||||
@@ -111,6 +112,8 @@ MINIMAL_CONFIG = {
|
||||
}
|
||||
}
|
||||
|
||||
__MESSAGE_TYPE_DICT: Dict[str, Dict[str, str]] = {x: {'type': 'object'} for x in RPCMessageType}
|
||||
|
||||
# Required json-schema for user specified config
|
||||
CONF_SCHEMA = {
|
||||
'type': 'object',
|
||||
@@ -148,7 +151,6 @@ CONF_SCHEMA = {
|
||||
'patternProperties': {
|
||||
'^[0-9.]+$': {'type': 'number'}
|
||||
},
|
||||
'minProperties': 1
|
||||
},
|
||||
'amount_reserve_percent': {'type': 'number', 'minimum': 0.0, 'maximum': 0.5},
|
||||
'stoploss': {'type': 'number', 'maximum': 0, 'exclusiveMaximum': True, 'minimum': -1},
|
||||
@@ -164,6 +166,9 @@ CONF_SCHEMA = {
|
||||
'trading_mode': {'type': 'string', 'enum': TRADING_MODES},
|
||||
'margin_mode': {'type': 'string', 'enum': MARGIN_MODES},
|
||||
'reduce_df_footprint': {'type': 'boolean', 'default': False},
|
||||
'minimum_trade_amount': {'type': 'number', 'default': 10},
|
||||
'targeted_trade_amount': {'type': 'number', 'default': 20},
|
||||
'lookahead_analysis_exportfilename': {'type': 'string'},
|
||||
'liquidation_buffer': {'type': 'number', 'minimum': 0.0, 'maximum': 0.99},
|
||||
'backtest_breakdown': {
|
||||
'type': 'array',
|
||||
@@ -351,7 +356,8 @@ CONF_SCHEMA = {
|
||||
'format': {'type': 'string', 'enum': WEBHOOK_FORMAT_OPTIONS, 'default': 'form'},
|
||||
'retries': {'type': 'integer', 'minimum': 0},
|
||||
'retry_delay': {'type': 'number', 'minimum': 0},
|
||||
**dict([(x, {'type': 'object'}) for x in RPCMessageType]),
|
||||
**__MESSAGE_TYPE_DICT,
|
||||
# **{x: {'type': 'object'} for x in RPCMessageType},
|
||||
# Below -> Deprecated
|
||||
'webhookentry': {'type': 'object'},
|
||||
'webhookentrycancel': {'type': 'object'},
|
||||
|
||||
@@ -170,6 +170,7 @@ def load_and_merge_backtest_result(strategy_name: str, filename: Path, results:
|
||||
|
||||
|
||||
def _get_backtest_files(dirname: Path) -> List[Path]:
|
||||
# Weird glob expression here avoids including .meta.json files.
|
||||
return list(reversed(sorted(dirname.glob('backtest-result-*-[0-9][0-9].json'))))
|
||||
|
||||
|
||||
@@ -184,7 +185,7 @@ def get_backtest_resultlist(dirname: Path):
|
||||
continue
|
||||
for s, v in metadata.items():
|
||||
results.append({
|
||||
'filename': filename.name,
|
||||
'filename': filename.stem,
|
||||
'strategy': s,
|
||||
'run_id': v['run_id'],
|
||||
'backtest_start_time': v['backtest_start_time'],
|
||||
@@ -193,6 +194,17 @@ def get_backtest_resultlist(dirname: Path):
|
||||
return results
|
||||
|
||||
|
||||
def delete_backtest_result(file_abs: Path):
|
||||
"""
|
||||
Delete backtest result file and corresponding metadata file.
|
||||
"""
|
||||
# *.meta.json
|
||||
logger.info(f"Deleting backtest result file: {file_abs.name}")
|
||||
file_abs_meta = file_abs.with_suffix('.meta.json')
|
||||
file_abs.unlink()
|
||||
file_abs_meta.unlink()
|
||||
|
||||
|
||||
def find_existing_backtest_stats(dirname: Union[Path, str], run_ids: Dict[str, str],
|
||||
min_backtest_date: Optional[datetime] = None) -> Dict[str, Any]:
|
||||
"""
|
||||
@@ -211,7 +223,6 @@ def find_existing_backtest_stats(dirname: Union[Path, str], run_ids: Dict[str, s
|
||||
'strategy_comparison': [],
|
||||
}
|
||||
|
||||
# Weird glob expression here avoids including .meta.json files.
|
||||
for filename in _get_backtest_files(dirname):
|
||||
metadata = load_backtest_metadata(filename)
|
||||
if not metadata:
|
||||
|
||||
@@ -11,7 +11,7 @@ import pandas as pd
|
||||
from pandas import DataFrame, to_datetime
|
||||
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS, Config, TradeList
|
||||
from freqtrade.enums import CandleType
|
||||
from freqtrade.enums import CandleType, TradingMode
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -96,8 +96,14 @@ def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str)
|
||||
'volume': 'sum'
|
||||
}
|
||||
timeframe_minutes = timeframe_to_minutes(timeframe)
|
||||
resample_interval = f'{timeframe_minutes}min'
|
||||
if timeframe_minutes >= 43200 and timeframe_minutes < 525600:
|
||||
# Monthly candles need special treatment to stick to the 1st of the month
|
||||
resample_interval = f'{timeframe}S'
|
||||
elif timeframe_minutes > 43200:
|
||||
resample_interval = timeframe
|
||||
# Resample to create "NAN" values
|
||||
df = dataframe.resample(f'{timeframe_minutes}min', on='date').agg(ohlcv_dict)
|
||||
df = dataframe.resample(resample_interval, on='date').agg(ohlcv_dict)
|
||||
|
||||
# Forwardfill close for missing columns
|
||||
df['close'] = df['close'].fillna(method='ffill')
|
||||
@@ -122,7 +128,7 @@ def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str)
|
||||
return df
|
||||
|
||||
|
||||
def trim_dataframe(df: DataFrame, timerange, df_date_col: str = 'date',
|
||||
def trim_dataframe(df: DataFrame, timerange, *, df_date_col: str = 'date',
|
||||
startup_candles: int = 0) -> DataFrame:
|
||||
"""
|
||||
Trim dataframe based on given timerange
|
||||
@@ -264,7 +270,6 @@ def convert_ohlcv_format(
|
||||
convert_from: str,
|
||||
convert_to: str,
|
||||
erase: bool,
|
||||
candle_type: CandleType
|
||||
):
|
||||
"""
|
||||
Convert OHLCV from one format to another
|
||||
@@ -272,7 +277,6 @@ def convert_ohlcv_format(
|
||||
:param convert_from: Source format
|
||||
:param convert_to: Target format
|
||||
:param erase: Erase source data (does not apply if source and target format are identical)
|
||||
:param candle_type: Any of the enum CandleType (must match trading mode!)
|
||||
"""
|
||||
from freqtrade.data.history.idatahandler import get_datahandler
|
||||
src = get_datahandler(config['datadir'], convert_from)
|
||||
@@ -280,37 +284,45 @@ def convert_ohlcv_format(
|
||||
timeframes = config.get('timeframes', [config.get('timeframe')])
|
||||
logger.info(f"Converting candle (OHLCV) for timeframe {timeframes}")
|
||||
|
||||
if 'pairs' not in config:
|
||||
config['pairs'] = []
|
||||
# Check timeframes or fall back to timeframe.
|
||||
for timeframe in timeframes:
|
||||
config['pairs'].extend(src.ohlcv_get_pairs(
|
||||
config['datadir'],
|
||||
timeframe,
|
||||
candle_type=candle_type
|
||||
))
|
||||
config['pairs'] = sorted(set(config['pairs']))
|
||||
logger.info(f"Converting candle (OHLCV) data for {config['pairs']}")
|
||||
candle_types = [CandleType.from_string(ct) for ct in config.get('candle_types', [
|
||||
c.value for c in CandleType])]
|
||||
logger.info(candle_types)
|
||||
paircombs = src.ohlcv_get_available_data(config['datadir'], TradingMode.SPOT)
|
||||
paircombs.extend(src.ohlcv_get_available_data(config['datadir'], TradingMode.FUTURES))
|
||||
|
||||
for timeframe in timeframes:
|
||||
for pair in config['pairs']:
|
||||
data = src.ohlcv_load(pair=pair, timeframe=timeframe,
|
||||
timerange=None,
|
||||
fill_missing=False,
|
||||
drop_incomplete=False,
|
||||
startup_candles=0,
|
||||
candle_type=candle_type)
|
||||
logger.info(f"Converting {len(data)} {timeframe} {candle_type} candles for {pair}")
|
||||
if len(data) > 0:
|
||||
trg.ohlcv_store(
|
||||
pair=pair,
|
||||
timeframe=timeframe,
|
||||
data=data,
|
||||
candle_type=candle_type
|
||||
)
|
||||
if erase and convert_from != convert_to:
|
||||
logger.info(f"Deleting source data for {pair} / {timeframe}")
|
||||
src.ohlcv_purge(pair=pair, timeframe=timeframe, candle_type=candle_type)
|
||||
if 'pairs' in config:
|
||||
# Filter pairs
|
||||
paircombs = [comb for comb in paircombs if comb[0] in config['pairs']]
|
||||
|
||||
if 'timeframes' in config:
|
||||
paircombs = [comb for comb in paircombs if comb[1] in config['timeframes']]
|
||||
paircombs = [comb for comb in paircombs if comb[2] in candle_types]
|
||||
|
||||
paircombs = sorted(paircombs, key=lambda x: (x[0], x[1], x[2].value))
|
||||
|
||||
formatted_paircombs = '\n'.join([f"{pair}, {timeframe}, {candle_type}"
|
||||
for pair, timeframe, candle_type in paircombs])
|
||||
|
||||
logger.info(f"Converting candle (OHLCV) data for the following pair combinations:\n"
|
||||
f"{formatted_paircombs}")
|
||||
for pair, timeframe, candle_type in paircombs:
|
||||
data = src.ohlcv_load(pair=pair, timeframe=timeframe,
|
||||
timerange=None,
|
||||
fill_missing=False,
|
||||
drop_incomplete=False,
|
||||
startup_candles=0,
|
||||
candle_type=candle_type)
|
||||
logger.info(f"Converting {len(data)} {timeframe} {candle_type} candles for {pair}")
|
||||
if len(data) > 0:
|
||||
trg.ohlcv_store(
|
||||
pair=pair,
|
||||
timeframe=timeframe,
|
||||
data=data,
|
||||
candle_type=candle_type
|
||||
)
|
||||
if erase and convert_from != convert_to:
|
||||
logger.info(f"Deleting source data for {pair} / {timeframe}")
|
||||
src.ohlcv_purge(pair=pair, timeframe=timeframe, candle_type=candle_type)
|
||||
|
||||
|
||||
def reduce_dataframe_footprint(df: DataFrame) -> DataFrame:
|
||||
|
||||
@@ -6,7 +6,7 @@ Includes:
|
||||
* download data from exchange and store to disk
|
||||
"""
|
||||
# flake8: noqa: F401
|
||||
from .history_utils import (convert_trades_to_ohlcv, get_timerange, load_data, load_pair_history,
|
||||
refresh_backtest_ohlcv_data, refresh_backtest_trades_data, refresh_data,
|
||||
validate_backtest_data)
|
||||
from .history_utils import (convert_trades_to_ohlcv, download_data_main, get_timerange, load_data,
|
||||
load_pair_history, refresh_backtest_ohlcv_data,
|
||||
refresh_backtest_trades_data, refresh_data, validate_backtest_data)
|
||||
from .idatahandler import get_datahandler
|
||||
|
||||
@@ -7,14 +7,17 @@ from typing import Dict, List, Optional, Tuple
|
||||
from pandas import DataFrame, concat
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
|
||||
from freqtrade.constants import (DATETIME_PRINT_FORMAT, DEFAULT_DATAFRAME_COLUMNS,
|
||||
DL_DATA_TIMEFRAMES, Config)
|
||||
from freqtrade.data.converter import (clean_ohlcv_dataframe, ohlcv_to_dataframe,
|
||||
trades_remove_duplicates, trades_to_ohlcv)
|
||||
from freqtrade.data.history.idatahandler import IDataHandler, get_datahandler
|
||||
from freqtrade.enums import CandleType
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.misc import format_ms_time
|
||||
from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist
|
||||
from freqtrade.util import format_ms_time
|
||||
from freqtrade.util.binance_mig import migrate_binance_futures_data
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -227,9 +230,11 @@ def _download_pair_history(pair: str, *,
|
||||
)
|
||||
|
||||
logger.debug("Current Start: %s",
|
||||
f"{data.iloc[0]['date']:DATETIME_PRINT_FORMAT}" if not data.empty else 'None')
|
||||
f"{data.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}"
|
||||
if not data.empty else 'None')
|
||||
logger.debug("Current End: %s",
|
||||
f"{data.iloc[-1]['date']:DATETIME_PRINT_FORMAT}" if not data.empty else 'None')
|
||||
f"{data.iloc[-1]['date']:{DATETIME_PRINT_FORMAT}}"
|
||||
if not data.empty else 'None')
|
||||
|
||||
# Default since_ms to 30 days if nothing is given
|
||||
new_data = exchange.get_historic_ohlcv(pair=pair,
|
||||
@@ -252,10 +257,12 @@ def _download_pair_history(pair: str, *,
|
||||
data = clean_ohlcv_dataframe(concat([data, new_dataframe], axis=0), timeframe, pair,
|
||||
fill_missing=False, drop_incomplete=False)
|
||||
|
||||
logger.debug("New Start: %s",
|
||||
f"{data.iloc[0]['date']:DATETIME_PRINT_FORMAT}" if not data.empty else 'None')
|
||||
logger.debug("New Start: %s",
|
||||
f"{data.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}"
|
||||
if not data.empty else 'None')
|
||||
logger.debug("New End: %s",
|
||||
f"{data.iloc[-1]['date']:DATETIME_PRINT_FORMAT}" if not data.empty else 'None')
|
||||
f"{data.iloc[-1]['date']:{DATETIME_PRINT_FORMAT}}"
|
||||
if not data.empty else 'None')
|
||||
|
||||
data_handler.ohlcv_store(pair, timeframe, data=data, candle_type=candle_type)
|
||||
return True
|
||||
@@ -290,7 +297,7 @@ def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes
|
||||
continue
|
||||
for timeframe in timeframes:
|
||||
|
||||
logger.info(f'Downloading pair {pair}, interval {timeframe}.')
|
||||
logger.debug(f'Downloading pair {pair}, {candle_type}, interval {timeframe}.')
|
||||
process = f'{idx}/{len(pairs)}'
|
||||
_download_pair_history(pair=pair, process=process,
|
||||
datadir=datadir, exchange=exchange,
|
||||
@@ -348,7 +355,7 @@ def _download_trades_history(exchange: Exchange,
|
||||
trades = []
|
||||
|
||||
if not since:
|
||||
since = int((datetime.now() - timedelta(days=-new_pairs_days)).timestamp()) * 1000
|
||||
since = int((datetime.now() - timedelta(days=new_pairs_days)).timestamp()) * 1000
|
||||
|
||||
from_id = trades[-1][1] if trades else None
|
||||
if trades and since < trades[-1][0]:
|
||||
@@ -479,3 +486,79 @@ def validate_backtest_data(data: DataFrame, pair: str, min_date: datetime,
|
||||
logger.warning("%s has missing frames: expected %s, got %s, that's %s missing values",
|
||||
pair, expected_frames, dflen, expected_frames - dflen)
|
||||
return found_missing
|
||||
|
||||
|
||||
def download_data_main(config: Config) -> None:
|
||||
|
||||
timerange = TimeRange()
|
||||
if 'days' in config:
|
||||
time_since = (datetime.now() - timedelta(days=config['days'])).strftime("%Y%m%d")
|
||||
timerange = TimeRange.parse_timerange(f'{time_since}-')
|
||||
|
||||
if 'timerange' in config:
|
||||
timerange = timerange.parse_timerange(config['timerange'])
|
||||
|
||||
# Remove stake-currency to skip checks which are not relevant for datadownload
|
||||
config['stake_currency'] = ''
|
||||
|
||||
pairs_not_available: List[str] = []
|
||||
|
||||
# Init exchange
|
||||
from freqtrade.resolvers.exchange_resolver import ExchangeResolver
|
||||
exchange = ExchangeResolver.load_exchange(config, validate=False)
|
||||
available_pairs = [
|
||||
p for p in exchange.get_markets(
|
||||
tradable_only=True, active_only=not config.get('include_inactive')
|
||||
).keys()
|
||||
]
|
||||
|
||||
expanded_pairs = dynamic_expand_pairlist(config, available_pairs)
|
||||
if 'timeframes' not in config:
|
||||
config['timeframes'] = DL_DATA_TIMEFRAMES
|
||||
|
||||
# Manual validations of relevant settings
|
||||
if not config['exchange'].get('skip_pair_validation', False):
|
||||
exchange.validate_pairs(expanded_pairs)
|
||||
logger.info(f"About to download pairs: {expanded_pairs}, "
|
||||
f"intervals: {config['timeframes']} to {config['datadir']}")
|
||||
|
||||
for timeframe in config['timeframes']:
|
||||
exchange.validate_timeframes(timeframe)
|
||||
|
||||
# Start downloading
|
||||
try:
|
||||
if config.get('download_trades'):
|
||||
if config.get('trading_mode') == 'futures':
|
||||
raise OperationalException("Trade download not supported for futures.")
|
||||
pairs_not_available = refresh_backtest_trades_data(
|
||||
exchange, pairs=expanded_pairs, datadir=config['datadir'],
|
||||
timerange=timerange, new_pairs_days=config['new_pairs_days'],
|
||||
erase=bool(config.get('erase')), data_format=config['dataformat_trades'])
|
||||
|
||||
# Convert downloaded trade data to different timeframes
|
||||
convert_trades_to_ohlcv(
|
||||
pairs=expanded_pairs, timeframes=config['timeframes'],
|
||||
datadir=config['datadir'], timerange=timerange, erase=bool(config.get('erase')),
|
||||
data_format_ohlcv=config['dataformat_ohlcv'],
|
||||
data_format_trades=config['dataformat_trades'],
|
||||
)
|
||||
else:
|
||||
if not exchange.get_option('ohlcv_has_history', True):
|
||||
raise OperationalException(
|
||||
f"Historic klines not available for {exchange.name}. "
|
||||
"Please use `--dl-trades` instead for this exchange "
|
||||
"(will unfortunately take a long time)."
|
||||
)
|
||||
migrate_binance_futures_data(config)
|
||||
pairs_not_available = refresh_backtest_ohlcv_data(
|
||||
exchange, pairs=expanded_pairs, timeframes=config['timeframes'],
|
||||
datadir=config['datadir'], timerange=timerange,
|
||||
new_pairs_days=config['new_pairs_days'],
|
||||
erase=bool(config.get('erase')), data_format=config['dataformat_ohlcv'],
|
||||
trading_mode=config.get('trading_mode', 'spot'),
|
||||
prepend=config.get('prepend_data', False)
|
||||
)
|
||||
finally:
|
||||
if pairs_not_available:
|
||||
logger.info(f"Pairs [{','.join(pairs_not_available)}] not available "
|
||||
f"on exchange {exchange.name}.")
|
||||
|
||||
@@ -194,32 +194,35 @@ def calculate_cagr(days_passed: int, starting_balance: float, final_balance: flo
|
||||
return (final_balance / starting_balance) ** (1 / (days_passed / 365)) - 1
|
||||
|
||||
|
||||
def calculate_expectancy(trades: pd.DataFrame) -> float:
|
||||
def calculate_expectancy(trades: pd.DataFrame) -> Tuple[float, float]:
|
||||
"""
|
||||
Calculate expectancy
|
||||
:param trades: DataFrame containing trades (requires columns close_date and profit_abs)
|
||||
:return: expectancy
|
||||
:return: expectancy, expectancy_ratio
|
||||
"""
|
||||
if len(trades) == 0:
|
||||
return 0
|
||||
|
||||
expectancy = 1
|
||||
expectancy = 0
|
||||
expectancy_ratio = 100
|
||||
|
||||
profit_sum = trades.loc[trades['profit_abs'] > 0, 'profit_abs'].sum()
|
||||
loss_sum = abs(trades.loc[trades['profit_abs'] < 0, 'profit_abs'].sum())
|
||||
nb_win_trades = len(trades.loc[trades['profit_abs'] > 0])
|
||||
nb_loss_trades = len(trades.loc[trades['profit_abs'] < 0])
|
||||
if len(trades) > 0:
|
||||
winning_trades = trades.loc[trades['profit_abs'] > 0]
|
||||
losing_trades = trades.loc[trades['profit_abs'] < 0]
|
||||
profit_sum = winning_trades['profit_abs'].sum()
|
||||
loss_sum = abs(losing_trades['profit_abs'].sum())
|
||||
nb_win_trades = len(winning_trades)
|
||||
nb_loss_trades = len(losing_trades)
|
||||
|
||||
if (nb_win_trades > 0) and (nb_loss_trades > 0):
|
||||
average_win = profit_sum / nb_win_trades
|
||||
average_loss = loss_sum / nb_loss_trades
|
||||
risk_reward_ratio = average_win / average_loss
|
||||
winrate = nb_win_trades / len(trades)
|
||||
expectancy = ((1 + risk_reward_ratio) * winrate) - 1
|
||||
elif nb_win_trades == 0:
|
||||
expectancy = 0
|
||||
average_win = (profit_sum / nb_win_trades) if nb_win_trades > 0 else 0
|
||||
average_loss = (loss_sum / nb_loss_trades) if nb_loss_trades > 0 else 0
|
||||
winrate = (nb_win_trades / len(trades))
|
||||
loserate = (nb_loss_trades / len(trades))
|
||||
|
||||
return expectancy
|
||||
expectancy = (winrate * average_win) - (loserate * average_loss)
|
||||
if (average_loss > 0):
|
||||
risk_reward_ratio = average_win / average_loss
|
||||
expectancy_ratio = ((1 + risk_reward_ratio) * winrate) - 1
|
||||
|
||||
return expectancy, expectancy_ratio
|
||||
|
||||
|
||||
def calculate_sortino(trades: pd.DataFrame, min_date: datetime, max_date: datetime,
|
||||
|
||||
@@ -172,13 +172,7 @@ class Edge:
|
||||
pair_data = pair_data.sort_values(by=['date'])
|
||||
pair_data = pair_data.reset_index(drop=True)
|
||||
|
||||
df_analyzed = self.strategy.advise_exit(
|
||||
dataframe=self.strategy.advise_entry(
|
||||
dataframe=pair_data,
|
||||
metadata={'pair': pair}
|
||||
),
|
||||
metadata={'pair': pair}
|
||||
)[headers].copy()
|
||||
df_analyzed = self.strategy.ft_advise_signals(pair_data, {'pair': pair})[headers].copy()
|
||||
|
||||
trades += self._find_trades_for_stoploss_range(df_analyzed, pair, self._stoploss_range)
|
||||
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
from enum import Enum
|
||||
|
||||
|
||||
class MarginMode(Enum):
|
||||
class MarginMode(str, Enum):
|
||||
"""
|
||||
Enum to distinguish between
|
||||
cross margin/futures margin_mode and
|
||||
|
||||
@@ -13,11 +13,11 @@ from freqtrade.exchange.exchange_utils import (ROUND_DOWN, ROUND_UP, amount_to_c
|
||||
amount_to_contracts, amount_to_precision,
|
||||
available_exchanges, ccxt_exchanges,
|
||||
contracts_to_amount, date_minus_candles,
|
||||
is_exchange_known_ccxt, market_is_active,
|
||||
price_to_precision, timeframe_to_minutes,
|
||||
timeframe_to_msecs, timeframe_to_next_date,
|
||||
timeframe_to_prev_date, timeframe_to_seconds,
|
||||
validate_exchange, validate_exchanges)
|
||||
is_exchange_known_ccxt, list_available_exchanges,
|
||||
market_is_active, price_to_precision,
|
||||
timeframe_to_minutes, timeframe_to_msecs,
|
||||
timeframe_to_next_date, timeframe_to_prev_date,
|
||||
timeframe_to_seconds, validate_exchange)
|
||||
from freqtrade.exchange.gate import Gate
|
||||
from freqtrade.exchange.hitbtc import Hitbtc
|
||||
from freqtrade.exchange.huobi import Huobi
|
||||
|
||||
@@ -34,6 +34,7 @@ class Binance(Exchange):
|
||||
"tickers_have_price": False,
|
||||
"floor_leverage": True,
|
||||
"stop_price_type_field": "workingType",
|
||||
"order_props_in_contracts": ['amount', 'cost', 'filled', 'remaining'],
|
||||
"stop_price_type_value_mapping": {
|
||||
PriceType.LAST: "CONTRACT_PRICE",
|
||||
PriceType.MARK: "MARK_PRICE",
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -28,7 +28,7 @@ class Bybit(Exchange):
|
||||
|
||||
_ft_has: Dict = {
|
||||
"ohlcv_candle_limit": 200,
|
||||
"ohlcv_has_history": False,
|
||||
"ohlcv_has_history": True,
|
||||
}
|
||||
_ft_has_futures: Dict = {
|
||||
"ohlcv_has_history": True,
|
||||
|
||||
@@ -80,9 +80,8 @@ class Exchange:
|
||||
"mark_ohlcv_price": "mark",
|
||||
"mark_ohlcv_timeframe": "8h",
|
||||
"ccxt_futures_name": "swap",
|
||||
"fee_cost_in_contracts": False, # Fee cost needs contract conversion
|
||||
"needs_trading_fees": False, # use fetch_trading_fees to cache fees
|
||||
"order_props_in_contracts": ['amount', 'cost', 'filled', 'remaining'],
|
||||
"order_props_in_contracts": ['amount', 'filled', 'remaining'],
|
||||
# Override createMarketBuyOrderRequiresPrice where ccxt has it wrong
|
||||
"marketOrderRequiresPrice": False,
|
||||
}
|
||||
@@ -191,7 +190,7 @@ class Exchange:
|
||||
|
||||
# Converts the interval provided in minutes in config to seconds
|
||||
self.markets_refresh_interval: int = exchange_conf.get(
|
||||
"markets_refresh_interval", 60) * 60
|
||||
"markets_refresh_interval", 60) * 60 * 1000
|
||||
|
||||
if self.trading_mode != TradingMode.SPOT and load_leverage_tiers:
|
||||
self.fill_leverage_tiers()
|
||||
@@ -301,7 +300,7 @@ class Exchange:
|
||||
return list((self._api.timeframes or {}).keys())
|
||||
|
||||
@property
|
||||
def markets(self) -> Dict:
|
||||
def markets(self) -> Dict[str, Any]:
|
||||
"""exchange ccxt markets"""
|
||||
if not self._markets:
|
||||
logger.info("Markets were not loaded. Loading them now..")
|
||||
@@ -1148,8 +1147,8 @@ class Exchange:
|
||||
else:
|
||||
limit_rate = stop_price * (2 - limit_price_pct)
|
||||
|
||||
bad_stop_price = ((stop_price <= limit_rate) if side ==
|
||||
"sell" else (stop_price >= limit_rate))
|
||||
bad_stop_price = ((stop_price < limit_rate) if side ==
|
||||
"sell" else (stop_price > limit_rate))
|
||||
# Ensure rate is less than stop price
|
||||
if bad_stop_price:
|
||||
# This can for example happen if the stop / liquidation price is set to 0
|
||||
@@ -1662,39 +1661,18 @@ class Exchange:
|
||||
|
||||
price_side = self._get_price_side(side, is_short, conf_strategy)
|
||||
|
||||
price_side_word = price_side.capitalize()
|
||||
|
||||
if conf_strategy.get('use_order_book', False):
|
||||
|
||||
order_book_top = conf_strategy.get('order_book_top', 1)
|
||||
if order_book is None:
|
||||
order_book = self.fetch_l2_order_book(pair, order_book_top)
|
||||
logger.debug('order_book %s', order_book)
|
||||
# top 1 = index 0
|
||||
try:
|
||||
obside: OBLiteral = 'bids' if price_side == 'bid' else 'asks'
|
||||
rate = order_book[obside][order_book_top - 1][0]
|
||||
except (IndexError, KeyError) as e:
|
||||
logger.warning(
|
||||
f"{pair} - {name} Price at location {order_book_top} from orderbook "
|
||||
f"could not be determined. Orderbook: {order_book}"
|
||||
)
|
||||
raise PricingError from e
|
||||
logger.debug(f"{pair} - {name} price from orderbook {price_side_word}"
|
||||
f"side - top {order_book_top} order book {side} rate {rate:.8f}")
|
||||
rate = self._get_rate_from_ob(pair, side, order_book, name, price_side,
|
||||
order_book_top)
|
||||
else:
|
||||
logger.debug(f"Using Last {price_side_word} / Last Price")
|
||||
logger.debug(f"Using Last {price_side.capitalize()} / Last Price")
|
||||
if ticker is None:
|
||||
ticker = self.fetch_ticker(pair)
|
||||
ticker_rate = ticker[price_side]
|
||||
if ticker['last'] and ticker_rate:
|
||||
if side == 'entry' and ticker_rate > ticker['last']:
|
||||
balance = conf_strategy.get('price_last_balance', 0.0)
|
||||
ticker_rate = ticker_rate + balance * (ticker['last'] - ticker_rate)
|
||||
elif side == 'exit' and ticker_rate < ticker['last']:
|
||||
balance = conf_strategy.get('price_last_balance', 0.0)
|
||||
ticker_rate = ticker_rate - balance * (ticker_rate - ticker['last'])
|
||||
rate = ticker_rate
|
||||
rate = self._get_rate_from_ticker(side, ticker, conf_strategy, price_side)
|
||||
|
||||
if rate is None:
|
||||
raise PricingError(f"{name}-Rate for {pair} was empty.")
|
||||
@@ -1703,6 +1681,43 @@ class Exchange:
|
||||
|
||||
return rate
|
||||
|
||||
def _get_rate_from_ticker(self, side: EntryExit, ticker: Ticker, conf_strategy: Dict[str, Any],
|
||||
price_side: BidAsk) -> Optional[float]:
|
||||
"""
|
||||
Get rate from ticker.
|
||||
"""
|
||||
ticker_rate = ticker[price_side]
|
||||
if ticker['last'] and ticker_rate:
|
||||
if side == 'entry' and ticker_rate > ticker['last']:
|
||||
balance = conf_strategy.get('price_last_balance', 0.0)
|
||||
ticker_rate = ticker_rate + balance * (ticker['last'] - ticker_rate)
|
||||
elif side == 'exit' and ticker_rate < ticker['last']:
|
||||
balance = conf_strategy.get('price_last_balance', 0.0)
|
||||
ticker_rate = ticker_rate - balance * (ticker_rate - ticker['last'])
|
||||
rate = ticker_rate
|
||||
return rate
|
||||
|
||||
def _get_rate_from_ob(self, pair: str, side: EntryExit, order_book: OrderBook, name: str,
|
||||
price_side: BidAsk, order_book_top: int) -> float:
|
||||
"""
|
||||
Get rate from orderbook
|
||||
:raises: PricingError if rate could not be determined.
|
||||
"""
|
||||
logger.debug('order_book %s', order_book)
|
||||
# top 1 = index 0
|
||||
try:
|
||||
obside: OBLiteral = 'bids' if price_side == 'bid' else 'asks'
|
||||
rate = order_book[obside][order_book_top - 1][0]
|
||||
except (IndexError, KeyError) as e:
|
||||
logger.warning(
|
||||
f"{pair} - {name} Price at location {order_book_top} from orderbook "
|
||||
f"could not be determined. Orderbook: {order_book}"
|
||||
)
|
||||
raise PricingError from e
|
||||
logger.debug(f"{pair} - {name} price from orderbook {price_side.capitalize()}"
|
||||
f"side - top {order_book_top} order book {side} rate {rate:.8f}")
|
||||
return rate
|
||||
|
||||
def get_rates(self, pair: str, refresh: bool, is_short: bool) -> Tuple[float, float]:
|
||||
entry_rate = None
|
||||
exit_rate = None
|
||||
@@ -1843,9 +1858,6 @@ class Exchange:
|
||||
if fee_curr is None:
|
||||
return None
|
||||
fee_cost = float(fee['cost'])
|
||||
if self._ft_has['fee_cost_in_contracts']:
|
||||
# Convert cost via "contracts" conversion
|
||||
fee_cost = self._contracts_to_amount(symbol, fee['cost'])
|
||||
|
||||
# Calculate fee based on order details
|
||||
if fee_curr == self.get_pair_base_currency(symbol):
|
||||
|
||||
@@ -9,7 +9,9 @@ import ccxt
|
||||
from ccxt import (DECIMAL_PLACES, ROUND, ROUND_DOWN, ROUND_UP, SIGNIFICANT_DIGITS, TICK_SIZE,
|
||||
TRUNCATE, decimal_to_precision)
|
||||
|
||||
from freqtrade.exchange.common import BAD_EXCHANGES, EXCHANGE_HAS_OPTIONAL, EXCHANGE_HAS_REQUIRED
|
||||
from freqtrade.exchange.common import (BAD_EXCHANGES, EXCHANGE_HAS_OPTIONAL, EXCHANGE_HAS_REQUIRED,
|
||||
SUPPORTED_EXCHANGES)
|
||||
from freqtrade.types import ValidExchangesType
|
||||
from freqtrade.util import FtPrecise
|
||||
from freqtrade.util.datetime_helpers import dt_from_ts, dt_ts
|
||||
|
||||
@@ -55,14 +57,41 @@ def validate_exchange(exchange: str) -> Tuple[bool, str]:
|
||||
return True, ''
|
||||
|
||||
|
||||
def validate_exchanges(all_exchanges: bool) -> List[Tuple[str, bool, str]]:
|
||||
def _build_exchange_list_entry(
|
||||
exchange_name: str, exchangeClasses: Dict[str, Any]) -> ValidExchangesType:
|
||||
valid, comment = validate_exchange(exchange_name)
|
||||
result: ValidExchangesType = {
|
||||
'name': exchange_name,
|
||||
'valid': valid,
|
||||
'supported': exchange_name.lower() in SUPPORTED_EXCHANGES,
|
||||
'comment': comment,
|
||||
'trade_modes': [{'trading_mode': 'spot', 'margin_mode': ''}],
|
||||
}
|
||||
if resolved := exchangeClasses.get(exchange_name.lower()):
|
||||
supported_modes = [{'trading_mode': 'spot', 'margin_mode': ''}] + [
|
||||
{'trading_mode': tm.value, 'margin_mode': mm.value}
|
||||
for tm, mm in resolved['class']._supported_trading_mode_margin_pairs
|
||||
]
|
||||
result.update({
|
||||
'trade_modes': supported_modes,
|
||||
})
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def list_available_exchanges(all_exchanges: bool) -> List[ValidExchangesType]:
|
||||
"""
|
||||
:return: List of tuples with exchangename, valid, reason.
|
||||
"""
|
||||
exchanges = ccxt_exchanges() if all_exchanges else available_exchanges()
|
||||
exchanges_valid = [
|
||||
(e, *validate_exchange(e)) for e in exchanges
|
||||
from freqtrade.resolvers.exchange_resolver import ExchangeResolver
|
||||
|
||||
subclassed = {e['name'].lower(): e for e in ExchangeResolver.search_all_objects({}, False)}
|
||||
|
||||
exchanges_valid: List[ValidExchangesType] = [
|
||||
_build_exchange_list_entry(e, subclassed) for e in exchanges
|
||||
]
|
||||
|
||||
return exchanges_valid
|
||||
|
||||
|
||||
|
||||
@@ -33,9 +33,6 @@ class Gate(Exchange):
|
||||
_ft_has_futures: Dict = {
|
||||
"needs_trading_fees": True,
|
||||
"marketOrderRequiresPrice": False,
|
||||
"tickers_have_bid_ask": False,
|
||||
"fee_cost_in_contracts": False, # Set explicitly to false for clarity
|
||||
"order_props_in_contracts": ['amount', 'filled', 'remaining'],
|
||||
"stop_price_type_field": "price_type",
|
||||
"stop_price_type_value_mapping": {
|
||||
PriceType.LAST: 0,
|
||||
|
||||
@@ -32,7 +32,6 @@ class Okx(Exchange):
|
||||
}
|
||||
_ft_has_futures: Dict = {
|
||||
"tickers_have_quoteVolume": False,
|
||||
"fee_cost_in_contracts": True,
|
||||
"stop_price_type_field": "slTriggerPxType",
|
||||
"stop_price_type_value_mapping": {
|
||||
PriceType.LAST: "last",
|
||||
@@ -125,6 +124,20 @@ class Okx(Exchange):
|
||||
params['posSide'] = self._get_posSide(side, reduceOnly)
|
||||
return params
|
||||
|
||||
def __fetch_leverage_already_set(self, pair: str, leverage: float, side: BuySell) -> bool:
|
||||
try:
|
||||
res_lev = self._api.fetch_leverage(symbol=pair, params={
|
||||
"mgnMode": self.margin_mode.value,
|
||||
"posSide": self._get_posSide(side, False),
|
||||
})
|
||||
self._log_exchange_response('get_leverage', res_lev)
|
||||
already_set = all(float(x['lever']) == leverage for x in res_lev['data'])
|
||||
return already_set
|
||||
|
||||
except ccxt.BaseError:
|
||||
# Assume all errors as "not set yet"
|
||||
return False
|
||||
|
||||
@retrier
|
||||
def _lev_prep(self, pair: str, leverage: float, side: BuySell, accept_fail: bool = False):
|
||||
if self.trading_mode != TradingMode.SPOT and self.margin_mode is not None:
|
||||
@@ -141,8 +154,11 @@ class Okx(Exchange):
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not set leverage due to {e.__class__.__name__}. Message: {e}') from e
|
||||
already_set = self.__fetch_leverage_already_set(pair, leverage, side)
|
||||
if not already_set:
|
||||
raise TemporaryError(
|
||||
f'Could not set leverage due to {e.__class__.__name__}. Message: {e}'
|
||||
) from e
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
@@ -182,6 +198,7 @@ class Okx(Exchange):
|
||||
order_reg['type'] = 'stoploss'
|
||||
order_reg['status_stop'] = 'triggered'
|
||||
return order_reg
|
||||
order = self._order_contracts_to_amount(order)
|
||||
order['type'] = 'stoploss'
|
||||
return order
|
||||
|
||||
|
||||
@@ -2,7 +2,7 @@ import logging
|
||||
import random
|
||||
from abc import abstractmethod
|
||||
from enum import Enum
|
||||
from typing import Optional, Type, Union
|
||||
from typing import List, Optional, Type, Union
|
||||
|
||||
import gymnasium as gym
|
||||
import numpy as np
|
||||
@@ -141,6 +141,9 @@ class BaseEnvironment(gym.Env):
|
||||
Unique to the environment action count. Must be inherited.
|
||||
"""
|
||||
|
||||
def action_masks(self) -> List[bool]:
|
||||
return [self._is_valid(action.value) for action in self.actions]
|
||||
|
||||
def seed(self, seed: int = 1):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
@@ -13,7 +13,8 @@ import pandas as pd
|
||||
import torch as th
|
||||
import torch.multiprocessing
|
||||
from pandas import DataFrame
|
||||
from stable_baselines3.common.callbacks import EvalCallback
|
||||
from sb3_contrib.common.maskable.callbacks import MaskableEvalCallback
|
||||
from sb3_contrib.common.maskable.utils import is_masking_supported
|
||||
from stable_baselines3.common.monitor import Monitor
|
||||
from stable_baselines3.common.utils import set_random_seed
|
||||
from stable_baselines3.common.vec_env import SubprocVecEnv, VecMonitor
|
||||
@@ -48,7 +49,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
||||
self.reward_params = self.freqai_info['rl_config']['model_reward_parameters']
|
||||
self.train_env: Union[VecMonitor, SubprocVecEnv, gym.Env] = gym.Env()
|
||||
self.eval_env: Union[VecMonitor, SubprocVecEnv, gym.Env] = gym.Env()
|
||||
self.eval_callback: Optional[EvalCallback] = None
|
||||
self.eval_callback: Optional[MaskableEvalCallback] = None
|
||||
self.model_type = self.freqai_info['rl_config']['model_type']
|
||||
self.rl_config = self.freqai_info['rl_config']
|
||||
self.df_raw: DataFrame = DataFrame()
|
||||
@@ -82,6 +83,9 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
||||
if self.ft_params.get('use_DBSCAN_to_remove_outliers', False):
|
||||
self.ft_params.update({'use_DBSCAN_to_remove_outliers': False})
|
||||
logger.warning('User tried to use DBSCAN with RL. Deactivating DBSCAN.')
|
||||
if self.ft_params.get('DI_threshold', False):
|
||||
self.ft_params.update({'DI_threshold': False})
|
||||
logger.warning('User tried to use DI_threshold with RL. Deactivating DI_threshold.')
|
||||
if self.freqai_info['data_split_parameters'].get('shuffle', False):
|
||||
self.freqai_info['data_split_parameters'].update({'shuffle': False})
|
||||
logger.warning('User tried to shuffle training data. Setting shuffle to False')
|
||||
@@ -107,27 +111,37 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
||||
training_filter=True,
|
||||
)
|
||||
|
||||
data_dictionary: Dict[str, Any] = dk.make_train_test_datasets(
|
||||
dd: Dict[str, Any] = dk.make_train_test_datasets(
|
||||
features_filtered, labels_filtered)
|
||||
self.df_raw = copy.deepcopy(data_dictionary["train_features"])
|
||||
self.df_raw = copy.deepcopy(dd["train_features"])
|
||||
dk.fit_labels() # FIXME useless for now, but just satiating append methods
|
||||
|
||||
# normalize all data based on train_dataset only
|
||||
prices_train, prices_test = self.build_ohlc_price_dataframes(dk.data_dictionary, pair, dk)
|
||||
|
||||
data_dictionary = dk.normalize_data(data_dictionary)
|
||||
dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)
|
||||
|
||||
# data cleaning/analysis
|
||||
self.data_cleaning_train(dk)
|
||||
(dd["train_features"],
|
||||
dd["train_labels"],
|
||||
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
|
||||
dd["train_labels"],
|
||||
dd["train_weights"])
|
||||
|
||||
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
|
||||
(dd["test_features"],
|
||||
dd["test_labels"],
|
||||
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
|
||||
dd["test_labels"],
|
||||
dd["test_weights"])
|
||||
|
||||
logger.info(
|
||||
f'Training model on {len(dk.data_dictionary["train_features"].columns)}'
|
||||
f' features and {len(data_dictionary["train_features"])} data points'
|
||||
f' features and {len(dd["train_features"])} data points'
|
||||
)
|
||||
|
||||
self.set_train_and_eval_environments(data_dictionary, prices_train, prices_test, dk)
|
||||
self.set_train_and_eval_environments(dd, prices_train, prices_test, dk)
|
||||
|
||||
model = self.fit(data_dictionary, dk)
|
||||
model = self.fit(dd, dk)
|
||||
|
||||
logger.info(f"--------------------done training {pair}--------------------")
|
||||
|
||||
@@ -151,9 +165,11 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
||||
|
||||
self.train_env = self.MyRLEnv(df=train_df, prices=prices_train, **env_info)
|
||||
self.eval_env = Monitor(self.MyRLEnv(df=test_df, prices=prices_test, **env_info))
|
||||
self.eval_callback = EvalCallback(self.eval_env, deterministic=True,
|
||||
render=False, eval_freq=len(train_df),
|
||||
best_model_save_path=str(dk.data_path))
|
||||
self.eval_callback = MaskableEvalCallback(self.eval_env, deterministic=True,
|
||||
render=False, eval_freq=len(train_df),
|
||||
best_model_save_path=str(dk.data_path),
|
||||
use_masking=(self.model_type == 'MaskablePPO' and
|
||||
is_masking_supported(self.eval_env)))
|
||||
|
||||
actions = self.train_env.get_actions()
|
||||
self.tensorboard_callback = TensorboardCallback(verbose=1, actions=actions)
|
||||
@@ -236,13 +252,10 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
||||
unfiltered_df, dk.training_features_list, training_filter=False
|
||||
)
|
||||
|
||||
filtered_dataframe = self.drop_ohlc_from_df(filtered_dataframe, dk)
|
||||
dk.data_dictionary["prediction_features"] = self.drop_ohlc_from_df(filtered_dataframe, dk)
|
||||
|
||||
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
|
||||
dk.data_dictionary["prediction_features"] = filtered_dataframe
|
||||
|
||||
# optional additional data cleaning/analysis
|
||||
self.data_cleaning_predict(dk)
|
||||
dk.data_dictionary["prediction_features"], _, _ = dk.feature_pipeline.transform(
|
||||
dk.data_dictionary["prediction_features"], outlier_check=True)
|
||||
|
||||
pred_df = self.rl_model_predict(
|
||||
dk.data_dictionary["prediction_features"], dk, self.model)
|
||||
|
||||
@@ -17,8 +17,8 @@ logger = logging.getLogger(__name__)
|
||||
class BaseClassifierModel(IFreqaiModel):
|
||||
"""
|
||||
Base class for regression type models (e.g. Catboost, LightGBM, XGboost etc.).
|
||||
User *must* inherit from this class and set fit() and predict(). See example scripts
|
||||
such as prediction_models/CatboostPredictionModel.py for guidance.
|
||||
User *must* inherit from this class and set fit(). See example scripts
|
||||
such as prediction_models/CatboostClassifier.py for guidance.
|
||||
"""
|
||||
|
||||
def train(
|
||||
@@ -50,21 +50,30 @@ class BaseClassifierModel(IFreqaiModel):
|
||||
logger.info(f"-------------------- Training on data from {start_date} to "
|
||||
f"{end_date} --------------------")
|
||||
# split data into train/test data.
|
||||
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
dd = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
if not self.freqai_info.get("fit_live_predictions_candles", 0) or not self.live:
|
||||
dk.fit_labels()
|
||||
# normalize all data based on train_dataset only
|
||||
data_dictionary = dk.normalize_data(data_dictionary)
|
||||
dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)
|
||||
|
||||
# optional additional data cleaning/analysis
|
||||
self.data_cleaning_train(dk)
|
||||
(dd["train_features"],
|
||||
dd["train_labels"],
|
||||
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
|
||||
dd["train_labels"],
|
||||
dd["train_weights"])
|
||||
|
||||
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
|
||||
(dd["test_features"],
|
||||
dd["test_labels"],
|
||||
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
|
||||
dd["test_labels"],
|
||||
dd["test_weights"])
|
||||
|
||||
logger.info(
|
||||
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
|
||||
)
|
||||
logger.info(f"Training model on {len(data_dictionary['train_features'])} data points")
|
||||
logger.info(f"Training model on {len(dd['train_features'])} data points")
|
||||
|
||||
model = self.fit(data_dictionary, dk)
|
||||
model = self.fit(dd, dk)
|
||||
|
||||
end_time = time()
|
||||
|
||||
@@ -89,10 +98,11 @@ class BaseClassifierModel(IFreqaiModel):
|
||||
filtered_df, _ = dk.filter_features(
|
||||
unfiltered_df, dk.training_features_list, training_filter=False
|
||||
)
|
||||
filtered_df = dk.normalize_data_from_metadata(filtered_df)
|
||||
|
||||
dk.data_dictionary["prediction_features"] = filtered_df
|
||||
|
||||
self.data_cleaning_predict(dk)
|
||||
dk.data_dictionary["prediction_features"], outliers, _ = dk.feature_pipeline.transform(
|
||||
dk.data_dictionary["prediction_features"], outlier_check=True)
|
||||
|
||||
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
|
||||
if self.CONV_WIDTH == 1:
|
||||
@@ -107,4 +117,10 @@ class BaseClassifierModel(IFreqaiModel):
|
||||
|
||||
pred_df = pd.concat([pred_df, pred_df_prob], axis=1)
|
||||
|
||||
if dk.feature_pipeline["di"]:
|
||||
dk.DI_values = dk.feature_pipeline["di"].di_values
|
||||
else:
|
||||
dk.DI_values = np.zeros(outliers.shape[0])
|
||||
dk.do_predict = outliers
|
||||
|
||||
return (pred_df, dk.do_predict)
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import logging
|
||||
from typing import Dict, List, Tuple
|
||||
from time import time
|
||||
from typing import Any, Dict, List, Tuple
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
@@ -35,6 +36,7 @@ class BasePyTorchClassifier(BasePyTorchModel):
|
||||
|
||||
return dataframe
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.class_name_to_index = None
|
||||
@@ -68,9 +70,12 @@ class BasePyTorchClassifier(BasePyTorchModel):
|
||||
filtered_df, _ = dk.filter_features(
|
||||
unfiltered_df, dk.training_features_list, training_filter=False
|
||||
)
|
||||
filtered_df = dk.normalize_data_from_metadata(filtered_df)
|
||||
|
||||
dk.data_dictionary["prediction_features"] = filtered_df
|
||||
self.data_cleaning_predict(dk)
|
||||
|
||||
dk.data_dictionary["prediction_features"], outliers, _ = dk.feature_pipeline.transform(
|
||||
dk.data_dictionary["prediction_features"], outlier_check=True)
|
||||
|
||||
x = self.data_convertor.convert_x(
|
||||
dk.data_dictionary["prediction_features"],
|
||||
device=self.device
|
||||
@@ -85,6 +90,13 @@ class BasePyTorchClassifier(BasePyTorchModel):
|
||||
pred_df_prob = DataFrame(probs.detach().tolist(), columns=class_names)
|
||||
pred_df = DataFrame(predicted_classes_str, columns=[dk.label_list[0]])
|
||||
pred_df = pd.concat([pred_df, pred_df_prob], axis=1)
|
||||
|
||||
if dk.feature_pipeline["di"]:
|
||||
dk.DI_values = dk.feature_pipeline["di"].di_values
|
||||
else:
|
||||
dk.DI_values = np.zeros(outliers.shape[0])
|
||||
dk.do_predict = outliers
|
||||
|
||||
return (pred_df, dk.do_predict)
|
||||
|
||||
def encode_class_names(
|
||||
@@ -149,3 +161,58 @@ class BasePyTorchClassifier(BasePyTorchModel):
|
||||
)
|
||||
|
||||
return self.class_names
|
||||
|
||||
def train(
|
||||
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
|
||||
) -> Any:
|
||||
"""
|
||||
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
|
||||
for storing, saving, loading, and analyzing the data.
|
||||
:param unfiltered_df: Full dataframe for the current training period
|
||||
:return:
|
||||
:model: Trained model which can be used to inference (self.predict)
|
||||
"""
|
||||
|
||||
logger.info(f"-------------------- Starting training {pair} --------------------")
|
||||
|
||||
start_time = time()
|
||||
|
||||
features_filtered, labels_filtered = dk.filter_features(
|
||||
unfiltered_df,
|
||||
dk.training_features_list,
|
||||
dk.label_list,
|
||||
training_filter=True,
|
||||
)
|
||||
|
||||
# split data into train/test data.
|
||||
dd = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
if not self.freqai_info.get("fit_live_predictions_candles", 0) or not self.live:
|
||||
dk.fit_labels()
|
||||
|
||||
dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)
|
||||
|
||||
(dd["train_features"],
|
||||
dd["train_labels"],
|
||||
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
|
||||
dd["train_labels"],
|
||||
dd["train_weights"])
|
||||
|
||||
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
|
||||
(dd["test_features"],
|
||||
dd["test_labels"],
|
||||
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
|
||||
dd["test_labels"],
|
||||
dd["test_weights"])
|
||||
|
||||
logger.info(
|
||||
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
|
||||
)
|
||||
logger.info(f"Training model on {len(dd['train_features'])} data points")
|
||||
|
||||
model = self.fit(dd, dk)
|
||||
end_time = time()
|
||||
|
||||
logger.info(f"-------------------- Done training {pair} "
|
||||
f"({end_time - start_time:.2f} secs) --------------------")
|
||||
|
||||
return model
|
||||
|
||||
@@ -1,12 +1,8 @@
|
||||
import logging
|
||||
from abc import ABC, abstractmethod
|
||||
from time import time
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
||||
from freqtrade.freqai.torch.PyTorchDataConvertor import PyTorchDataConvertor
|
||||
|
||||
@@ -29,51 +25,6 @@ class BasePyTorchModel(IFreqaiModel, ABC):
|
||||
self.splits = ["train", "test"] if test_size != 0 else ["train"]
|
||||
self.window_size = self.freqai_info.get("conv_width", 1)
|
||||
|
||||
def train(
|
||||
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
|
||||
) -> Any:
|
||||
"""
|
||||
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
|
||||
for storing, saving, loading, and analyzing the data.
|
||||
:param unfiltered_df: Full dataframe for the current training period
|
||||
:return:
|
||||
:model: Trained model which can be used to inference (self.predict)
|
||||
"""
|
||||
|
||||
logger.info(f"-------------------- Starting training {pair} --------------------")
|
||||
|
||||
start_time = time()
|
||||
|
||||
features_filtered, labels_filtered = dk.filter_features(
|
||||
unfiltered_df,
|
||||
dk.training_features_list,
|
||||
dk.label_list,
|
||||
training_filter=True,
|
||||
)
|
||||
|
||||
# split data into train/test data.
|
||||
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
if not self.freqai_info.get("fit_live_predictions", 0) or not self.live:
|
||||
dk.fit_labels()
|
||||
# normalize all data based on train_dataset only
|
||||
data_dictionary = dk.normalize_data(data_dictionary)
|
||||
|
||||
# optional additional data cleaning/analysis
|
||||
self.data_cleaning_train(dk)
|
||||
|
||||
logger.info(
|
||||
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
|
||||
)
|
||||
logger.info(f"Training model on {len(data_dictionary['train_features'])} data points")
|
||||
|
||||
model = self.fit(data_dictionary, dk)
|
||||
end_time = time()
|
||||
|
||||
logger.info(f"-------------------- Done training {pair} "
|
||||
f"({end_time - start_time:.2f} secs) --------------------")
|
||||
|
||||
return model
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def data_convertor(self) -> PyTorchDataConvertor:
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import logging
|
||||
from typing import Tuple
|
||||
from time import time
|
||||
from typing import Any, Tuple
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
@@ -17,6 +18,7 @@ class BasePyTorchRegressor(BasePyTorchModel):
|
||||
A PyTorch implementation of a regressor.
|
||||
User must implement fit method
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
@@ -36,10 +38,11 @@ class BasePyTorchRegressor(BasePyTorchModel):
|
||||
filtered_df, _ = dk.filter_features(
|
||||
unfiltered_df, dk.training_features_list, training_filter=False
|
||||
)
|
||||
filtered_df = dk.normalize_data_from_metadata(filtered_df)
|
||||
dk.data_dictionary["prediction_features"] = filtered_df
|
||||
|
||||
self.data_cleaning_predict(dk)
|
||||
dk.data_dictionary["prediction_features"], outliers, _ = dk.feature_pipeline.transform(
|
||||
dk.data_dictionary["prediction_features"], outlier_check=True)
|
||||
|
||||
x = self.data_convertor.convert_x(
|
||||
dk.data_dictionary["prediction_features"],
|
||||
device=self.device
|
||||
@@ -47,5 +50,71 @@ class BasePyTorchRegressor(BasePyTorchModel):
|
||||
self.model.model.eval()
|
||||
y = self.model.model(x)
|
||||
pred_df = DataFrame(y.detach().tolist(), columns=[dk.label_list[0]])
|
||||
pred_df = dk.denormalize_labels_from_metadata(pred_df)
|
||||
pred_df, _, _ = dk.label_pipeline.inverse_transform(pred_df)
|
||||
|
||||
if dk.feature_pipeline["di"]:
|
||||
dk.DI_values = dk.feature_pipeline["di"].di_values
|
||||
else:
|
||||
dk.DI_values = np.zeros(outliers.shape[0])
|
||||
dk.do_predict = outliers
|
||||
return (pred_df, dk.do_predict)
|
||||
|
||||
def train(
|
||||
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
|
||||
) -> Any:
|
||||
"""
|
||||
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
|
||||
for storing, saving, loading, and analyzing the data.
|
||||
:param unfiltered_df: Full dataframe for the current training period
|
||||
:return:
|
||||
:model: Trained model which can be used to inference (self.predict)
|
||||
"""
|
||||
|
||||
logger.info(f"-------------------- Starting training {pair} --------------------")
|
||||
|
||||
start_time = time()
|
||||
|
||||
features_filtered, labels_filtered = dk.filter_features(
|
||||
unfiltered_df,
|
||||
dk.training_features_list,
|
||||
dk.label_list,
|
||||
training_filter=True,
|
||||
)
|
||||
|
||||
# split data into train/test data.
|
||||
dd = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
if not self.freqai_info.get("fit_live_predictions_candles", 0) or not self.live:
|
||||
dk.fit_labels()
|
||||
dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)
|
||||
dk.label_pipeline = self.define_label_pipeline(threads=dk.thread_count)
|
||||
|
||||
dd["train_labels"], _, _ = dk.label_pipeline.fit_transform(dd["train_labels"])
|
||||
dd["test_labels"], _, _ = dk.label_pipeline.transform(dd["test_labels"])
|
||||
|
||||
(dd["train_features"],
|
||||
dd["train_labels"],
|
||||
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
|
||||
dd["train_labels"],
|
||||
dd["train_weights"])
|
||||
dd["train_labels"], _, _ = dk.label_pipeline.fit_transform(dd["train_labels"])
|
||||
|
||||
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
|
||||
(dd["test_features"],
|
||||
dd["test_labels"],
|
||||
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
|
||||
dd["test_labels"],
|
||||
dd["test_weights"])
|
||||
dd["test_labels"], _, _ = dk.label_pipeline.transform(dd["test_labels"])
|
||||
|
||||
logger.info(
|
||||
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
|
||||
)
|
||||
logger.info(f"Training model on {len(dd['train_features'])} data points")
|
||||
|
||||
model = self.fit(dd, dk)
|
||||
end_time = time()
|
||||
|
||||
logger.info(f"-------------------- Done training {pair} "
|
||||
f"({end_time - start_time:.2f} secs) --------------------")
|
||||
|
||||
return model
|
||||
|
||||
@@ -16,8 +16,8 @@ logger = logging.getLogger(__name__)
|
||||
class BaseRegressionModel(IFreqaiModel):
|
||||
"""
|
||||
Base class for regression type models (e.g. Catboost, LightGBM, XGboost etc.).
|
||||
User *must* inherit from this class and set fit() and predict(). See example scripts
|
||||
such as prediction_models/CatboostPredictionModel.py for guidance.
|
||||
User *must* inherit from this class and set fit(). See example scripts
|
||||
such as prediction_models/CatboostRegressor.py for guidance.
|
||||
"""
|
||||
|
||||
def train(
|
||||
@@ -49,21 +49,33 @@ class BaseRegressionModel(IFreqaiModel):
|
||||
logger.info(f"-------------------- Training on data from {start_date} to "
|
||||
f"{end_date} --------------------")
|
||||
# split data into train/test data.
|
||||
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
dd = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
if not self.freqai_info.get("fit_live_predictions_candles", 0) or not self.live:
|
||||
dk.fit_labels()
|
||||
# normalize all data based on train_dataset only
|
||||
data_dictionary = dk.normalize_data(data_dictionary)
|
||||
dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)
|
||||
dk.label_pipeline = self.define_label_pipeline(threads=dk.thread_count)
|
||||
|
||||
# optional additional data cleaning/analysis
|
||||
self.data_cleaning_train(dk)
|
||||
(dd["train_features"],
|
||||
dd["train_labels"],
|
||||
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
|
||||
dd["train_labels"],
|
||||
dd["train_weights"])
|
||||
dd["train_labels"], _, _ = dk.label_pipeline.fit_transform(dd["train_labels"])
|
||||
|
||||
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
|
||||
(dd["test_features"],
|
||||
dd["test_labels"],
|
||||
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
|
||||
dd["test_labels"],
|
||||
dd["test_weights"])
|
||||
dd["test_labels"], _, _ = dk.label_pipeline.transform(dd["test_labels"])
|
||||
|
||||
logger.info(
|
||||
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
|
||||
)
|
||||
logger.info(f"Training model on {len(data_dictionary['train_features'])} data points")
|
||||
logger.info(f"Training model on {len(dd['train_features'])} data points")
|
||||
|
||||
model = self.fit(data_dictionary, dk)
|
||||
model = self.fit(dd, dk)
|
||||
|
||||
end_time = time()
|
||||
|
||||
@@ -85,14 +97,12 @@ class BaseRegressionModel(IFreqaiModel):
|
||||
"""
|
||||
|
||||
dk.find_features(unfiltered_df)
|
||||
filtered_df, _ = dk.filter_features(
|
||||
dk.data_dictionary["prediction_features"], _ = dk.filter_features(
|
||||
unfiltered_df, dk.training_features_list, training_filter=False
|
||||
)
|
||||
filtered_df = dk.normalize_data_from_metadata(filtered_df)
|
||||
dk.data_dictionary["prediction_features"] = filtered_df
|
||||
|
||||
# optional additional data cleaning/analysis
|
||||
self.data_cleaning_predict(dk)
|
||||
dk.data_dictionary["prediction_features"], outliers, _ = dk.feature_pipeline.transform(
|
||||
dk.data_dictionary["prediction_features"], outlier_check=True)
|
||||
|
||||
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
|
||||
if self.CONV_WIDTH == 1:
|
||||
@@ -100,6 +110,11 @@ class BaseRegressionModel(IFreqaiModel):
|
||||
|
||||
pred_df = DataFrame(predictions, columns=dk.label_list)
|
||||
|
||||
pred_df = dk.denormalize_labels_from_metadata(pred_df)
|
||||
pred_df, _, _ = dk.label_pipeline.inverse_transform(pred_df)
|
||||
if dk.feature_pipeline["di"]:
|
||||
dk.DI_values = dk.feature_pipeline["di"].di_values
|
||||
else:
|
||||
dk.DI_values = np.zeros(outliers.shape[0])
|
||||
dk.do_predict = outliers
|
||||
|
||||
return (pred_df, dk.do_predict)
|
||||
|
||||
@@ -1,70 +0,0 @@
|
||||
import logging
|
||||
from time import time
|
||||
from typing import Any
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class BaseTensorFlowModel(IFreqaiModel):
|
||||
"""
|
||||
Base class for TensorFlow type models.
|
||||
User *must* inherit from this class and set fit() and predict().
|
||||
"""
|
||||
|
||||
def train(
|
||||
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
|
||||
) -> Any:
|
||||
"""
|
||||
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
|
||||
for storing, saving, loading, and analyzing the data.
|
||||
:param unfiltered_df: Full dataframe for the current training period
|
||||
:param metadata: pair metadata from strategy.
|
||||
:return:
|
||||
:model: Trained model which can be used to inference (self.predict)
|
||||
"""
|
||||
|
||||
logger.info(f"-------------------- Starting training {pair} --------------------")
|
||||
|
||||
start_time = time()
|
||||
|
||||
# filter the features requested by user in the configuration file and elegantly handle NaNs
|
||||
features_filtered, labels_filtered = dk.filter_features(
|
||||
unfiltered_df,
|
||||
dk.training_features_list,
|
||||
dk.label_list,
|
||||
training_filter=True,
|
||||
)
|
||||
|
||||
start_date = unfiltered_df["date"].iloc[0].strftime("%Y-%m-%d")
|
||||
end_date = unfiltered_df["date"].iloc[-1].strftime("%Y-%m-%d")
|
||||
logger.info(f"-------------------- Training on data from {start_date} to "
|
||||
f"{end_date} --------------------")
|
||||
# split data into train/test data.
|
||||
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
if not self.freqai_info.get("fit_live_predictions_candles", 0) or not self.live:
|
||||
dk.fit_labels()
|
||||
# normalize all data based on train_dataset only
|
||||
data_dictionary = dk.normalize_data(data_dictionary)
|
||||
|
||||
# optional additional data cleaning/analysis
|
||||
self.data_cleaning_train(dk)
|
||||
|
||||
logger.info(
|
||||
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
|
||||
)
|
||||
logger.info(f"Training model on {len(data_dictionary['train_features'])} data points")
|
||||
|
||||
model = self.fit(data_dictionary, dk)
|
||||
|
||||
end_time = time()
|
||||
|
||||
logger.info(f"-------------------- Done training {pair} "
|
||||
f"({end_time - start_time:.2f} secs) --------------------")
|
||||
|
||||
return model
|
||||
@@ -20,6 +20,7 @@ from pandas import DataFrame
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.data.history import load_pair_history
|
||||
from freqtrade.enums import CandleType
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
@@ -27,6 +28,11 @@ from freqtrade.strategy.interface import IStrategy
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
FEATURE_PIPELINE = "feature_pipeline"
|
||||
LABEL_PIPELINE = "label_pipeline"
|
||||
TRAINDF = "trained_df"
|
||||
METADATA = "metadata"
|
||||
|
||||
|
||||
class pair_info(TypedDict):
|
||||
model_filename: str
|
||||
@@ -424,7 +430,7 @@ class FreqaiDataDrawer:
|
||||
dk.data["training_features_list"] = list(dk.data_dictionary["train_features"].columns)
|
||||
dk.data["label_list"] = dk.label_list
|
||||
|
||||
with (save_path / f"{dk.model_filename}_metadata.json").open("w") as fp:
|
||||
with (save_path / f"{dk.model_filename}_{METADATA}.json").open("w") as fp:
|
||||
rapidjson.dump(dk.data, fp, default=self.np_encoder, number_mode=rapidjson.NM_NATIVE)
|
||||
|
||||
return
|
||||
@@ -449,39 +455,39 @@ class FreqaiDataDrawer:
|
||||
elif self.model_type in ["stable_baselines3", "sb3_contrib", "pytorch"]:
|
||||
model.save(save_path / f"{dk.model_filename}_model.zip")
|
||||
|
||||
if dk.svm_model is not None:
|
||||
dump(dk.svm_model, save_path / f"{dk.model_filename}_svm_model.joblib")
|
||||
|
||||
dk.data["data_path"] = str(dk.data_path)
|
||||
dk.data["model_filename"] = str(dk.model_filename)
|
||||
dk.data["training_features_list"] = dk.training_features_list
|
||||
dk.data["label_list"] = dk.label_list
|
||||
# store the metadata
|
||||
with (save_path / f"{dk.model_filename}_metadata.json").open("w") as fp:
|
||||
with (save_path / f"{dk.model_filename}_{METADATA}.json").open("w") as fp:
|
||||
rapidjson.dump(dk.data, fp, default=self.np_encoder, number_mode=rapidjson.NM_NATIVE)
|
||||
|
||||
# save the train data to file so we can check preds for area of applicability later
|
||||
# save the pipelines to pickle files
|
||||
with (save_path / f"{dk.model_filename}_{FEATURE_PIPELINE}.pkl").open("wb") as fp:
|
||||
cloudpickle.dump(dk.feature_pipeline, fp)
|
||||
|
||||
with (save_path / f"{dk.model_filename}_{LABEL_PIPELINE}.pkl").open("wb") as fp:
|
||||
cloudpickle.dump(dk.label_pipeline, fp)
|
||||
|
||||
# save the train data to file for post processing if desired
|
||||
dk.data_dictionary["train_features"].to_pickle(
|
||||
save_path / f"{dk.model_filename}_trained_df.pkl"
|
||||
save_path / f"{dk.model_filename}_{TRAINDF}.pkl"
|
||||
)
|
||||
|
||||
dk.data_dictionary["train_dates"].to_pickle(
|
||||
save_path / f"{dk.model_filename}_trained_dates_df.pkl"
|
||||
)
|
||||
|
||||
if self.freqai_info["feature_parameters"].get("principal_component_analysis"):
|
||||
cloudpickle.dump(
|
||||
dk.pca, (dk.data_path / f"{dk.model_filename}_pca_object.pkl").open("wb")
|
||||
)
|
||||
|
||||
self.model_dictionary[coin] = model
|
||||
self.pair_dict[coin]["model_filename"] = dk.model_filename
|
||||
self.pair_dict[coin]["data_path"] = str(dk.data_path)
|
||||
|
||||
if coin not in self.meta_data_dictionary:
|
||||
self.meta_data_dictionary[coin] = {}
|
||||
self.meta_data_dictionary[coin]["train_df"] = dk.data_dictionary["train_features"]
|
||||
self.meta_data_dictionary[coin]["meta_data"] = dk.data
|
||||
self.meta_data_dictionary[coin][METADATA] = dk.data
|
||||
self.meta_data_dictionary[coin][FEATURE_PIPELINE] = dk.feature_pipeline
|
||||
self.meta_data_dictionary[coin][LABEL_PIPELINE] = dk.label_pipeline
|
||||
self.save_drawer_to_disk()
|
||||
|
||||
return
|
||||
@@ -491,7 +497,7 @@ class FreqaiDataDrawer:
|
||||
Load only metadata into datakitchen to increase performance during
|
||||
presaved backtesting (prediction file loading).
|
||||
"""
|
||||
with (dk.data_path / f"{dk.model_filename}_metadata.json").open("r") as fp:
|
||||
with (dk.data_path / f"{dk.model_filename}_{METADATA}.json").open("r") as fp:
|
||||
dk.data = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
|
||||
dk.training_features_list = dk.data["training_features_list"]
|
||||
dk.label_list = dk.data["label_list"]
|
||||
@@ -511,15 +517,17 @@ class FreqaiDataDrawer:
|
||||
dk.data_path = Path(self.pair_dict[coin]["data_path"])
|
||||
|
||||
if coin in self.meta_data_dictionary:
|
||||
dk.data = self.meta_data_dictionary[coin]["meta_data"]
|
||||
dk.data_dictionary["train_features"] = self.meta_data_dictionary[coin]["train_df"]
|
||||
dk.data = self.meta_data_dictionary[coin][METADATA]
|
||||
dk.feature_pipeline = self.meta_data_dictionary[coin][FEATURE_PIPELINE]
|
||||
dk.label_pipeline = self.meta_data_dictionary[coin][LABEL_PIPELINE]
|
||||
else:
|
||||
with (dk.data_path / f"{dk.model_filename}_metadata.json").open("r") as fp:
|
||||
with (dk.data_path / f"{dk.model_filename}_{METADATA}.json").open("r") as fp:
|
||||
dk.data = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
|
||||
|
||||
dk.data_dictionary["train_features"] = pd.read_pickle(
|
||||
dk.data_path / f"{dk.model_filename}_trained_df.pkl"
|
||||
)
|
||||
with (dk.data_path / f"{dk.model_filename}_{FEATURE_PIPELINE}.pkl").open("rb") as fp:
|
||||
dk.feature_pipeline = cloudpickle.load(fp)
|
||||
with (dk.data_path / f"{dk.model_filename}_{LABEL_PIPELINE}.pkl").open("rb") as fp:
|
||||
dk.label_pipeline = cloudpickle.load(fp)
|
||||
|
||||
dk.training_features_list = dk.data["training_features_list"]
|
||||
dk.label_list = dk.data["label_list"]
|
||||
@@ -529,9 +537,6 @@ class FreqaiDataDrawer:
|
||||
model = self.model_dictionary[coin]
|
||||
elif self.model_type == 'joblib':
|
||||
model = load(dk.data_path / f"{dk.model_filename}_model.joblib")
|
||||
elif self.model_type == 'keras':
|
||||
from tensorflow import keras
|
||||
model = keras.models.load_model(dk.data_path / f"{dk.model_filename}_model.h5")
|
||||
elif 'stable_baselines' in self.model_type or 'sb3_contrib' == self.model_type:
|
||||
mod = importlib.import_module(
|
||||
self.model_type, self.freqai_info['rl_config']['model_type'])
|
||||
@@ -543,9 +548,6 @@ class FreqaiDataDrawer:
|
||||
model = zip["pytrainer"]
|
||||
model = model.load_from_checkpoint(zip)
|
||||
|
||||
if Path(dk.data_path / f"{dk.model_filename}_svm_model.joblib").is_file():
|
||||
dk.svm_model = load(dk.data_path / f"{dk.model_filename}_svm_model.joblib")
|
||||
|
||||
if not model:
|
||||
raise OperationalException(
|
||||
f"Unable to load model, ensure model exists at " f"{dk.data_path} "
|
||||
@@ -555,11 +557,6 @@ class FreqaiDataDrawer:
|
||||
if coin not in self.model_dictionary:
|
||||
self.model_dictionary[coin] = model
|
||||
|
||||
if self.config["freqai"]["feature_parameters"]["principal_component_analysis"]:
|
||||
dk.pca = cloudpickle.load(
|
||||
(dk.data_path / f"{dk.model_filename}_pca_object.pkl").open("rb")
|
||||
)
|
||||
|
||||
return model
|
||||
|
||||
def update_historic_data(self, strategy: IStrategy, dk: FreqaiDataKitchen) -> None:
|
||||
@@ -639,7 +636,7 @@ class FreqaiDataDrawer:
|
||||
pair=pair,
|
||||
timerange=timerange,
|
||||
data_format=self.config.get("dataformat_ohlcv", "json"),
|
||||
candle_type=self.config.get("trading_mode", "spot"),
|
||||
candle_type=self.config.get("candle_type_def", CandleType.SPOT),
|
||||
)
|
||||
|
||||
def get_base_and_corr_dataframes(
|
||||
|
||||
@@ -4,7 +4,6 @@ import logging
|
||||
import random
|
||||
import shutil
|
||||
from datetime import datetime, timezone
|
||||
from math import cos, sin
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
@@ -12,16 +11,12 @@ import numpy as np
|
||||
import numpy.typing as npt
|
||||
import pandas as pd
|
||||
import psutil
|
||||
from datasieve.pipeline import Pipeline
|
||||
from pandas import DataFrame
|
||||
from scipy import stats
|
||||
from sklearn import linear_model
|
||||
from sklearn.cluster import DBSCAN
|
||||
from sklearn.metrics.pairwise import pairwise_distances
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.neighbors import NearestNeighbors
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.constants import DOCS_LINK, Config
|
||||
from freqtrade.data.converter import reduce_dataframe_footprint
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import timeframe_to_seconds
|
||||
@@ -81,11 +76,12 @@ class FreqaiDataKitchen:
|
||||
self.backtest_predictions_folder: str = "backtesting_predictions"
|
||||
self.live = live
|
||||
self.pair = pair
|
||||
|
||||
self.svm_model: linear_model.SGDOneClassSVM = None
|
||||
self.keras: bool = self.freqai_config.get("keras", False)
|
||||
self.set_all_pairs()
|
||||
self.backtest_live_models = config.get("freqai_backtest_live_models", False)
|
||||
self.feature_pipeline = Pipeline()
|
||||
self.label_pipeline = Pipeline()
|
||||
self.DI_values: npt.NDArray = np.array([])
|
||||
|
||||
if not self.live:
|
||||
self.full_path = self.get_full_models_path(self.config)
|
||||
@@ -227,13 +223,7 @@ class FreqaiDataKitchen:
|
||||
drop_index = pd.isnull(filtered_df).any(axis=1) # get the rows that have NaNs,
|
||||
drop_index = drop_index.replace(True, 1).replace(False, 0) # pep8 requirement.
|
||||
if (training_filter):
|
||||
const_cols = list((filtered_df.nunique() == 1).loc[lambda x: x].index)
|
||||
if const_cols:
|
||||
filtered_df = filtered_df.filter(filtered_df.columns.difference(const_cols))
|
||||
self.data['constant_features_list'] = const_cols
|
||||
logger.warning(f"Removed features {const_cols} with constant values.")
|
||||
else:
|
||||
self.data['constant_features_list'] = []
|
||||
|
||||
# we don't care about total row number (total no. datapoints) in training, we only care
|
||||
# about removing any row with NaNs
|
||||
# if labels has multiple columns (user wants to train multiple modelEs), we detect here
|
||||
@@ -264,8 +254,7 @@ class FreqaiDataKitchen:
|
||||
self.data["filter_drop_index_training"] = drop_index
|
||||
|
||||
else:
|
||||
if 'constant_features_list' in self.data and len(self.data['constant_features_list']):
|
||||
filtered_df = self.check_pred_labels(filtered_df)
|
||||
|
||||
# we are backtesting so we need to preserve row number to send back to strategy,
|
||||
# so now we use do_predict to avoid any prediction based on a NaN
|
||||
drop_index = pd.isnull(filtered_df).any(axis=1)
|
||||
@@ -307,107 +296,6 @@ class FreqaiDataKitchen:
|
||||
|
||||
return self.data_dictionary
|
||||
|
||||
def normalize_data(self, data_dictionary: Dict) -> Dict[Any, Any]:
|
||||
"""
|
||||
Normalize all data in the data_dictionary according to the training dataset
|
||||
:param data_dictionary: dictionary containing the cleaned and
|
||||
split training/test data/labels
|
||||
:returns:
|
||||
:data_dictionary: updated dictionary with standardized values.
|
||||
"""
|
||||
|
||||
# standardize the data by training stats
|
||||
train_max = data_dictionary["train_features"].max()
|
||||
train_min = data_dictionary["train_features"].min()
|
||||
data_dictionary["train_features"] = (
|
||||
2 * (data_dictionary["train_features"] - train_min) / (train_max - train_min) - 1
|
||||
)
|
||||
data_dictionary["test_features"] = (
|
||||
2 * (data_dictionary["test_features"] - train_min) / (train_max - train_min) - 1
|
||||
)
|
||||
|
||||
for item in train_max.keys():
|
||||
self.data[item + "_max"] = train_max[item]
|
||||
self.data[item + "_min"] = train_min[item]
|
||||
|
||||
for item in data_dictionary["train_labels"].keys():
|
||||
if data_dictionary["train_labels"][item].dtype == object:
|
||||
continue
|
||||
train_labels_max = data_dictionary["train_labels"][item].max()
|
||||
train_labels_min = data_dictionary["train_labels"][item].min()
|
||||
data_dictionary["train_labels"][item] = (
|
||||
2
|
||||
* (data_dictionary["train_labels"][item] - train_labels_min)
|
||||
/ (train_labels_max - train_labels_min)
|
||||
- 1
|
||||
)
|
||||
if self.freqai_config.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
|
||||
data_dictionary["test_labels"][item] = (
|
||||
2
|
||||
* (data_dictionary["test_labels"][item] - train_labels_min)
|
||||
/ (train_labels_max - train_labels_min)
|
||||
- 1
|
||||
)
|
||||
|
||||
self.data[f"{item}_max"] = train_labels_max
|
||||
self.data[f"{item}_min"] = train_labels_min
|
||||
return data_dictionary
|
||||
|
||||
def normalize_single_dataframe(self, df: DataFrame) -> DataFrame:
|
||||
|
||||
train_max = df.max()
|
||||
train_min = df.min()
|
||||
df = (
|
||||
2 * (df - train_min) / (train_max - train_min) - 1
|
||||
)
|
||||
|
||||
for item in train_max.keys():
|
||||
self.data[item + "_max"] = train_max[item]
|
||||
self.data[item + "_min"] = train_min[item]
|
||||
|
||||
return df
|
||||
|
||||
def normalize_data_from_metadata(self, df: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Normalize a set of data using the mean and standard deviation from
|
||||
the associated training data.
|
||||
:param df: Dataframe to be standardized
|
||||
"""
|
||||
|
||||
train_max = [None] * len(df.keys())
|
||||
train_min = [None] * len(df.keys())
|
||||
|
||||
for i, item in enumerate(df.keys()):
|
||||
train_max[i] = self.data[f"{item}_max"]
|
||||
train_min[i] = self.data[f"{item}_min"]
|
||||
|
||||
train_max_series = pd.Series(train_max, index=df.keys())
|
||||
train_min_series = pd.Series(train_min, index=df.keys())
|
||||
|
||||
df = (
|
||||
2 * (df - train_min_series) / (train_max_series - train_min_series) - 1
|
||||
)
|
||||
|
||||
return df
|
||||
|
||||
def denormalize_labels_from_metadata(self, df: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Denormalize a set of data using the mean and standard deviation from
|
||||
the associated training data.
|
||||
:param df: Dataframe of predictions to be denormalized
|
||||
"""
|
||||
|
||||
for label in df.columns:
|
||||
if df[label].dtype == object or label in self.unique_class_list:
|
||||
continue
|
||||
df[label] = (
|
||||
(df[label] + 1)
|
||||
* (self.data[f"{label}_max"] - self.data[f"{label}_min"])
|
||||
/ 2
|
||||
) + self.data[f"{label}_min"]
|
||||
|
||||
return df
|
||||
|
||||
def split_timerange(
|
||||
self, tr: str, train_split: int = 28, bt_split: float = 7
|
||||
) -> Tuple[list, list]:
|
||||
@@ -452,9 +340,7 @@ class FreqaiDataKitchen:
|
||||
tr_training_list_timerange.append(copy.deepcopy(timerange_train))
|
||||
|
||||
# associated backtest period
|
||||
|
||||
timerange_backtest.startts = timerange_train.stopts
|
||||
|
||||
timerange_backtest.stopts = timerange_backtest.startts + int(bt_period)
|
||||
|
||||
if timerange_backtest.stopts > config_timerange.stopts:
|
||||
@@ -485,426 +371,6 @@ class FreqaiDataKitchen:
|
||||
|
||||
return df
|
||||
|
||||
def check_pred_labels(self, df_predictions: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Check that prediction feature labels match training feature labels.
|
||||
:param df_predictions: incoming predictions
|
||||
"""
|
||||
constant_labels = self.data['constant_features_list']
|
||||
df_predictions = df_predictions.filter(
|
||||
df_predictions.columns.difference(constant_labels)
|
||||
)
|
||||
logger.warning(
|
||||
f"Removed {len(constant_labels)} features from prediction features, "
|
||||
f"these were considered constant values during most recent training."
|
||||
)
|
||||
|
||||
return df_predictions
|
||||
|
||||
def principal_component_analysis(self) -> None:
|
||||
"""
|
||||
Performs Principal Component Analysis on the data for dimensionality reduction
|
||||
and outlier detection (see self.remove_outliers())
|
||||
No parameters or returns, it acts on the data_dictionary held by the DataHandler.
|
||||
"""
|
||||
|
||||
from sklearn.decomposition import PCA # avoid importing if we dont need it
|
||||
|
||||
pca = PCA(0.999)
|
||||
pca = pca.fit(self.data_dictionary["train_features"])
|
||||
n_keep_components = pca.n_components_
|
||||
self.data["n_kept_components"] = n_keep_components
|
||||
n_components = self.data_dictionary["train_features"].shape[1]
|
||||
logger.info("reduced feature dimension by %s", n_components - n_keep_components)
|
||||
logger.info("explained variance %f", np.sum(pca.explained_variance_ratio_))
|
||||
|
||||
train_components = pca.transform(self.data_dictionary["train_features"])
|
||||
self.data_dictionary["train_features"] = pd.DataFrame(
|
||||
data=train_components,
|
||||
columns=["PC" + str(i) for i in range(0, n_keep_components)],
|
||||
index=self.data_dictionary["train_features"].index,
|
||||
)
|
||||
# normalsing transformed training features
|
||||
self.data_dictionary["train_features"] = self.normalize_single_dataframe(
|
||||
self.data_dictionary["train_features"])
|
||||
|
||||
# keeping a copy of the non-transformed features so we can check for errors during
|
||||
# model load from disk
|
||||
self.data["training_features_list_raw"] = copy.deepcopy(self.training_features_list)
|
||||
self.training_features_list = self.data_dictionary["train_features"].columns
|
||||
|
||||
if self.freqai_config.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
|
||||
test_components = pca.transform(self.data_dictionary["test_features"])
|
||||
self.data_dictionary["test_features"] = pd.DataFrame(
|
||||
data=test_components,
|
||||
columns=["PC" + str(i) for i in range(0, n_keep_components)],
|
||||
index=self.data_dictionary["test_features"].index,
|
||||
)
|
||||
# normalise transformed test feature to transformed training features
|
||||
self.data_dictionary["test_features"] = self.normalize_data_from_metadata(
|
||||
self.data_dictionary["test_features"])
|
||||
|
||||
self.data["n_kept_components"] = n_keep_components
|
||||
self.pca = pca
|
||||
|
||||
logger.info(f"PCA reduced total features from {n_components} to {n_keep_components}")
|
||||
|
||||
if not self.data_path.is_dir():
|
||||
self.data_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
return None
|
||||
|
||||
def pca_transform(self, filtered_dataframe: DataFrame) -> None:
|
||||
"""
|
||||
Use an existing pca transform to transform data into components
|
||||
:param filtered_dataframe: DataFrame = the cleaned dataframe
|
||||
"""
|
||||
pca_components = self.pca.transform(filtered_dataframe)
|
||||
self.data_dictionary["prediction_features"] = pd.DataFrame(
|
||||
data=pca_components,
|
||||
columns=["PC" + str(i) for i in range(0, self.data["n_kept_components"])],
|
||||
index=filtered_dataframe.index,
|
||||
)
|
||||
# normalise transformed predictions to transformed training features
|
||||
self.data_dictionary["prediction_features"] = self.normalize_data_from_metadata(
|
||||
self.data_dictionary["prediction_features"])
|
||||
|
||||
def compute_distances(self) -> float:
|
||||
"""
|
||||
Compute distances between each training point and every other training
|
||||
point. This metric defines the neighborhood of trained data and is used
|
||||
for prediction confidence in the Dissimilarity Index
|
||||
"""
|
||||
# logger.info("computing average mean distance for all training points")
|
||||
pairwise = pairwise_distances(
|
||||
self.data_dictionary["train_features"], n_jobs=self.thread_count)
|
||||
# remove the diagonal distances which are itself distances ~0
|
||||
np.fill_diagonal(pairwise, np.NaN)
|
||||
pairwise = pairwise.reshape(-1, 1)
|
||||
avg_mean_dist = pairwise[~np.isnan(pairwise)].mean()
|
||||
|
||||
return avg_mean_dist
|
||||
|
||||
def get_outlier_percentage(self, dropped_pts: npt.NDArray) -> float:
|
||||
"""
|
||||
Check if more than X% of points werer dropped during outlier detection.
|
||||
"""
|
||||
outlier_protection_pct = self.freqai_config["feature_parameters"].get(
|
||||
"outlier_protection_percentage", 30)
|
||||
outlier_pct = (dropped_pts.sum() / len(dropped_pts)) * 100
|
||||
if outlier_pct >= outlier_protection_pct:
|
||||
return outlier_pct
|
||||
else:
|
||||
return 0.0
|
||||
|
||||
def use_SVM_to_remove_outliers(self, predict: bool) -> None:
|
||||
"""
|
||||
Build/inference a Support Vector Machine to detect outliers
|
||||
in training data and prediction
|
||||
:param predict: bool = If true, inference an existing SVM model, else construct one
|
||||
"""
|
||||
|
||||
if self.keras:
|
||||
logger.warning(
|
||||
"SVM outlier removal not currently supported for Keras based models. "
|
||||
"Skipping user requested function."
|
||||
)
|
||||
if predict:
|
||||
self.do_predict = np.ones(len(self.data_dictionary["prediction_features"]))
|
||||
return
|
||||
|
||||
if predict:
|
||||
if not self.svm_model:
|
||||
logger.warning("No svm model available for outlier removal")
|
||||
return
|
||||
y_pred = self.svm_model.predict(self.data_dictionary["prediction_features"])
|
||||
do_predict = np.where(y_pred == -1, 0, y_pred)
|
||||
|
||||
if (len(do_predict) - do_predict.sum()) > 0:
|
||||
logger.info(f"SVM tossed {len(do_predict) - do_predict.sum()} predictions.")
|
||||
self.do_predict += do_predict
|
||||
self.do_predict -= 1
|
||||
|
||||
else:
|
||||
# use SGDOneClassSVM to increase speed?
|
||||
svm_params = self.freqai_config["feature_parameters"].get(
|
||||
"svm_params", {"shuffle": False, "nu": 0.1})
|
||||
self.svm_model = linear_model.SGDOneClassSVM(**svm_params).fit(
|
||||
self.data_dictionary["train_features"]
|
||||
)
|
||||
y_pred = self.svm_model.predict(self.data_dictionary["train_features"])
|
||||
kept_points = np.where(y_pred == -1, 0, y_pred)
|
||||
# keep_index = np.where(y_pred == 1)
|
||||
outlier_pct = self.get_outlier_percentage(1 - kept_points)
|
||||
if outlier_pct:
|
||||
logger.warning(
|
||||
f"SVM detected {outlier_pct:.2f}% of the points as outliers. "
|
||||
f"Keeping original dataset."
|
||||
)
|
||||
self.svm_model = None
|
||||
return
|
||||
|
||||
self.data_dictionary["train_features"] = self.data_dictionary["train_features"][
|
||||
(y_pred == 1)
|
||||
]
|
||||
self.data_dictionary["train_labels"] = self.data_dictionary["train_labels"][
|
||||
(y_pred == 1)
|
||||
]
|
||||
self.data_dictionary["train_weights"] = self.data_dictionary["train_weights"][
|
||||
(y_pred == 1)
|
||||
]
|
||||
|
||||
logger.info(
|
||||
f"SVM tossed {len(y_pred) - kept_points.sum()}"
|
||||
f" train points from {len(y_pred)} total points."
|
||||
)
|
||||
|
||||
# same for test data
|
||||
# TODO: This (and the part above) could be refactored into a separate function
|
||||
# to reduce code duplication
|
||||
if self.freqai_config['data_split_parameters'].get('test_size', 0.1) != 0:
|
||||
y_pred = self.svm_model.predict(self.data_dictionary["test_features"])
|
||||
kept_points = np.where(y_pred == -1, 0, y_pred)
|
||||
self.data_dictionary["test_features"] = self.data_dictionary["test_features"][
|
||||
(y_pred == 1)
|
||||
]
|
||||
self.data_dictionary["test_labels"] = self.data_dictionary["test_labels"][(
|
||||
y_pred == 1)]
|
||||
self.data_dictionary["test_weights"] = self.data_dictionary["test_weights"][
|
||||
(y_pred == 1)
|
||||
]
|
||||
|
||||
logger.info(
|
||||
f"{self.pair}: SVM tossed {len(y_pred) - kept_points.sum()}"
|
||||
f" test points from {len(y_pred)} total points."
|
||||
)
|
||||
|
||||
return
|
||||
|
||||
def use_DBSCAN_to_remove_outliers(self, predict: bool, eps=None) -> None:
|
||||
"""
|
||||
Use DBSCAN to cluster training data and remove "noisy" data (read outliers).
|
||||
User controls this via the config param `DBSCAN_outlier_pct` which indicates the
|
||||
pct of training data that they want to be considered outliers.
|
||||
:param predict: bool = If False (training), iterate to find the best hyper parameters
|
||||
to match user requested outlier percent target.
|
||||
If True (prediction), use the parameters determined from
|
||||
the previous training to estimate if the current prediction point
|
||||
is an outlier.
|
||||
"""
|
||||
|
||||
if predict:
|
||||
if not self.data['DBSCAN_eps']:
|
||||
return
|
||||
train_ft_df = self.data_dictionary['train_features']
|
||||
pred_ft_df = self.data_dictionary['prediction_features']
|
||||
num_preds = len(pred_ft_df)
|
||||
df = pd.concat([train_ft_df, pred_ft_df], axis=0, ignore_index=True)
|
||||
clustering = DBSCAN(eps=self.data['DBSCAN_eps'],
|
||||
min_samples=self.data['DBSCAN_min_samples'],
|
||||
n_jobs=self.thread_count
|
||||
).fit(df)
|
||||
do_predict = np.where(clustering.labels_[-num_preds:] == -1, 0, 1)
|
||||
|
||||
if (len(do_predict) - do_predict.sum()) > 0:
|
||||
logger.info(f"DBSCAN tossed {len(do_predict) - do_predict.sum()} predictions")
|
||||
self.do_predict += do_predict
|
||||
self.do_predict -= 1
|
||||
|
||||
else:
|
||||
|
||||
def normalise_distances(distances):
|
||||
normalised_distances = (distances - distances.min()) / \
|
||||
(distances.max() - distances.min())
|
||||
return normalised_distances
|
||||
|
||||
def rotate_point(origin, point, angle):
|
||||
# rotate a point counterclockwise by a given angle (in radians)
|
||||
# around a given origin
|
||||
x = origin[0] + cos(angle) * (point[0] - origin[0]) - \
|
||||
sin(angle) * (point[1] - origin[1])
|
||||
y = origin[1] + sin(angle) * (point[0] - origin[0]) + \
|
||||
cos(angle) * (point[1] - origin[1])
|
||||
return (x, y)
|
||||
|
||||
MinPts = int(len(self.data_dictionary['train_features'].index) * 0.25)
|
||||
# measure pairwise distances to nearest neighbours
|
||||
neighbors = NearestNeighbors(
|
||||
n_neighbors=MinPts, n_jobs=self.thread_count)
|
||||
neighbors_fit = neighbors.fit(self.data_dictionary['train_features'])
|
||||
distances, _ = neighbors_fit.kneighbors(self.data_dictionary['train_features'])
|
||||
distances = np.sort(distances, axis=0).mean(axis=1)
|
||||
|
||||
normalised_distances = normalise_distances(distances)
|
||||
x_range = np.linspace(0, 1, len(distances))
|
||||
line = np.linspace(normalised_distances[0],
|
||||
normalised_distances[-1], len(normalised_distances))
|
||||
deflection = np.abs(normalised_distances - line)
|
||||
max_deflection_loc = np.where(deflection == deflection.max())[0][0]
|
||||
origin = x_range[max_deflection_loc], line[max_deflection_loc]
|
||||
point = x_range[max_deflection_loc], normalised_distances[max_deflection_loc]
|
||||
rot_angle = np.pi / 4
|
||||
elbow_loc = rotate_point(origin, point, rot_angle)
|
||||
|
||||
epsilon = elbow_loc[1] * (distances[-1] - distances[0]) + distances[0]
|
||||
|
||||
clustering = DBSCAN(eps=epsilon, min_samples=MinPts,
|
||||
n_jobs=int(self.thread_count)).fit(
|
||||
self.data_dictionary['train_features']
|
||||
)
|
||||
|
||||
logger.info(f'DBSCAN found eps of {epsilon:.2f}.')
|
||||
|
||||
self.data['DBSCAN_eps'] = epsilon
|
||||
self.data['DBSCAN_min_samples'] = MinPts
|
||||
dropped_points = np.where(clustering.labels_ == -1, 1, 0)
|
||||
|
||||
outlier_pct = self.get_outlier_percentage(dropped_points)
|
||||
if outlier_pct:
|
||||
logger.warning(
|
||||
f"DBSCAN detected {outlier_pct:.2f}% of the points as outliers. "
|
||||
f"Keeping original dataset."
|
||||
)
|
||||
self.data['DBSCAN_eps'] = 0
|
||||
return
|
||||
|
||||
self.data_dictionary['train_features'] = self.data_dictionary['train_features'][
|
||||
(clustering.labels_ != -1)
|
||||
]
|
||||
self.data_dictionary["train_labels"] = self.data_dictionary["train_labels"][
|
||||
(clustering.labels_ != -1)
|
||||
]
|
||||
self.data_dictionary["train_weights"] = self.data_dictionary["train_weights"][
|
||||
(clustering.labels_ != -1)
|
||||
]
|
||||
|
||||
logger.info(
|
||||
f"DBSCAN tossed {dropped_points.sum()}"
|
||||
f" train points from {len(clustering.labels_)}"
|
||||
)
|
||||
|
||||
return
|
||||
|
||||
def compute_inlier_metric(self, set_='train') -> None:
|
||||
"""
|
||||
Compute inlier metric from backwards distance distributions.
|
||||
This metric defines how well features from a timepoint fit
|
||||
into previous timepoints.
|
||||
"""
|
||||
|
||||
def normalise(dataframe: DataFrame, key: str) -> DataFrame:
|
||||
if set_ == 'train':
|
||||
min_value = dataframe.min()
|
||||
max_value = dataframe.max()
|
||||
self.data[f'{key}_min'] = min_value
|
||||
self.data[f'{key}_max'] = max_value
|
||||
else:
|
||||
min_value = self.data[f'{key}_min']
|
||||
max_value = self.data[f'{key}_max']
|
||||
return (dataframe - min_value) / (max_value - min_value)
|
||||
|
||||
no_prev_pts = self.freqai_config["feature_parameters"]["inlier_metric_window"]
|
||||
|
||||
if set_ == 'train':
|
||||
compute_df = copy.deepcopy(self.data_dictionary['train_features'])
|
||||
elif set_ == 'test':
|
||||
compute_df = copy.deepcopy(self.data_dictionary['test_features'])
|
||||
else:
|
||||
compute_df = copy.deepcopy(self.data_dictionary['prediction_features'])
|
||||
|
||||
compute_df_reindexed = compute_df.reindex(
|
||||
index=np.flip(compute_df.index)
|
||||
)
|
||||
|
||||
pairwise = pd.DataFrame(
|
||||
np.triu(
|
||||
pairwise_distances(compute_df_reindexed, n_jobs=self.thread_count)
|
||||
),
|
||||
columns=compute_df_reindexed.index,
|
||||
index=compute_df_reindexed.index
|
||||
)
|
||||
pairwise = pairwise.round(5)
|
||||
|
||||
column_labels = [
|
||||
'{}{}'.format('d', i) for i in range(1, no_prev_pts + 1)
|
||||
]
|
||||
distances = pd.DataFrame(
|
||||
columns=column_labels, index=compute_df.index
|
||||
)
|
||||
|
||||
for index in compute_df.index[no_prev_pts:]:
|
||||
current_row = pairwise.loc[[index]]
|
||||
current_row_no_zeros = current_row.loc[
|
||||
:, (current_row != 0).any(axis=0)
|
||||
]
|
||||
distances.loc[[index]] = current_row_no_zeros.iloc[
|
||||
:, :no_prev_pts
|
||||
]
|
||||
distances = distances.replace([np.inf, -np.inf], np.nan)
|
||||
drop_index = pd.isnull(distances).any(axis=1)
|
||||
distances = distances[drop_index == 0]
|
||||
|
||||
inliers = pd.DataFrame(index=distances.index)
|
||||
for key in distances.keys():
|
||||
current_distances = distances[key].dropna()
|
||||
current_distances = normalise(current_distances, key)
|
||||
if set_ == 'train':
|
||||
fit_params = stats.weibull_min.fit(current_distances)
|
||||
self.data[f'{key}_fit_params'] = fit_params
|
||||
else:
|
||||
fit_params = self.data[f'{key}_fit_params']
|
||||
quantiles = stats.weibull_min.cdf(current_distances, *fit_params)
|
||||
|
||||
df_inlier = pd.DataFrame(
|
||||
{key: quantiles}, index=distances.index
|
||||
)
|
||||
inliers = pd.concat(
|
||||
[inliers, df_inlier], axis=1
|
||||
)
|
||||
|
||||
inlier_metric = pd.DataFrame(
|
||||
data=inliers.sum(axis=1) / no_prev_pts,
|
||||
columns=['%-inlier_metric'],
|
||||
index=compute_df.index
|
||||
)
|
||||
|
||||
inlier_metric = (2 * (inlier_metric - inlier_metric.min()) /
|
||||
(inlier_metric.max() - inlier_metric.min()) - 1)
|
||||
|
||||
if set_ in ('train', 'test'):
|
||||
inlier_metric = inlier_metric.iloc[no_prev_pts:]
|
||||
compute_df = compute_df.iloc[no_prev_pts:]
|
||||
self.remove_beginning_points_from_data_dict(set_, no_prev_pts)
|
||||
self.data_dictionary[f'{set_}_features'] = pd.concat(
|
||||
[compute_df, inlier_metric], axis=1)
|
||||
else:
|
||||
self.data_dictionary['prediction_features'] = pd.concat(
|
||||
[compute_df, inlier_metric], axis=1)
|
||||
self.data_dictionary['prediction_features'].fillna(0, inplace=True)
|
||||
|
||||
logger.info('Inlier metric computed and added to features.')
|
||||
|
||||
return None
|
||||
|
||||
def remove_beginning_points_from_data_dict(self, set_='train', no_prev_pts: int = 10):
|
||||
features = self.data_dictionary[f'{set_}_features']
|
||||
weights = self.data_dictionary[f'{set_}_weights']
|
||||
labels = self.data_dictionary[f'{set_}_labels']
|
||||
self.data_dictionary[f'{set_}_weights'] = weights[no_prev_pts:]
|
||||
self.data_dictionary[f'{set_}_features'] = features.iloc[no_prev_pts:]
|
||||
self.data_dictionary[f'{set_}_labels'] = labels.iloc[no_prev_pts:]
|
||||
|
||||
def add_noise_to_training_features(self) -> None:
|
||||
"""
|
||||
Add noise to train features to reduce the risk of overfitting.
|
||||
"""
|
||||
mu = 0 # no shift
|
||||
sigma = self.freqai_config["feature_parameters"]["noise_standard_deviation"]
|
||||
compute_df = self.data_dictionary['train_features']
|
||||
noise = np.random.normal(mu, sigma, [compute_df.shape[0], compute_df.shape[1]])
|
||||
self.data_dictionary['train_features'] += noise
|
||||
return
|
||||
|
||||
def find_features(self, dataframe: DataFrame) -> None:
|
||||
"""
|
||||
Find features in the strategy provided dataframe
|
||||
@@ -925,37 +391,6 @@ class FreqaiDataKitchen:
|
||||
labels = [c for c in column_names if "&" in c]
|
||||
self.label_list = labels
|
||||
|
||||
def check_if_pred_in_training_spaces(self) -> None:
|
||||
"""
|
||||
Compares the distance from each prediction point to each training data
|
||||
point. It uses this information to estimate a Dissimilarity Index (DI)
|
||||
and avoid making predictions on any points that are too far away
|
||||
from the training data set.
|
||||
"""
|
||||
|
||||
distance = pairwise_distances(
|
||||
self.data_dictionary["train_features"],
|
||||
self.data_dictionary["prediction_features"],
|
||||
n_jobs=self.thread_count,
|
||||
)
|
||||
|
||||
self.DI_values = distance.min(axis=0) / self.data["avg_mean_dist"]
|
||||
|
||||
do_predict = np.where(
|
||||
self.DI_values < self.freqai_config["feature_parameters"]["DI_threshold"],
|
||||
1,
|
||||
0,
|
||||
)
|
||||
|
||||
if (len(do_predict) - do_predict.sum()) > 0:
|
||||
logger.info(
|
||||
f"{self.pair}: DI tossed {len(do_predict) - do_predict.sum()} predictions for "
|
||||
"being too far from training data."
|
||||
)
|
||||
|
||||
self.do_predict += do_predict
|
||||
self.do_predict -= 1
|
||||
|
||||
def set_weights_higher_recent(self, num_weights: int) -> npt.ArrayLike:
|
||||
"""
|
||||
Set weights so that recent data is more heavily weighted during
|
||||
@@ -1325,9 +760,9 @@ class FreqaiDataKitchen:
|
||||
" which was deprecated on March 1, 2023. Please refer "
|
||||
"to the strategy migration guide to use the new "
|
||||
"feature_engineering_* methods: \n"
|
||||
"https://www.freqtrade.io/en/stable/strategy_migration/#freqai-strategy \n"
|
||||
f"{DOCS_LINK}/strategy_migration/#freqai-strategy \n"
|
||||
"And the feature_engineering_* documentation: \n"
|
||||
"https://www.freqtrade.io/en/latest/freqai-feature-engineering/"
|
||||
f"{DOCS_LINK}/freqai-feature-engineering/"
|
||||
)
|
||||
|
||||
tfs: List[str] = self.freqai_config["feature_parameters"].get("include_timeframes")
|
||||
@@ -1515,3 +950,32 @@ class FreqaiDataKitchen:
|
||||
timerange.startts += buffer * timeframe_to_seconds(self.config["timeframe"])
|
||||
|
||||
return timerange
|
||||
|
||||
# deprecated functions
|
||||
def normalize_data(self, data_dictionary: Dict) -> Dict[Any, Any]:
|
||||
"""
|
||||
Deprecation warning, migration assistance
|
||||
"""
|
||||
logger.warning(f"Your custom IFreqaiModel relies on the deprecated"
|
||||
" data pipeline. Please update your model to use the new data pipeline."
|
||||
" This can be achieved by following the migration guide at "
|
||||
f"{DOCS_LINK}/strategy_migration/#freqai-new-data-pipeline "
|
||||
"We added a basic pipeline for you, but this will be removed "
|
||||
"in a future version.")
|
||||
|
||||
return data_dictionary
|
||||
|
||||
def denormalize_labels_from_metadata(self, df: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Deprecation warning, migration assistance
|
||||
"""
|
||||
logger.warning(f"Your custom IFreqaiModel relies on the deprecated"
|
||||
" data pipeline. Please update your model to use the new data pipeline."
|
||||
" This can be achieved by following the migration guide at "
|
||||
f"{DOCS_LINK}/strategy_migration/#freqai-new-data-pipeline "
|
||||
"We added a basic pipeline for you, but this will be removed "
|
||||
"in a future version.")
|
||||
|
||||
pred_df, _, _ = self.label_pipeline.inverse_transform(df)
|
||||
|
||||
return pred_df
|
||||
|
||||
@@ -7,14 +7,18 @@ from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Literal, Optional, Tuple
|
||||
|
||||
import datasieve.transforms as ds
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import psutil
|
||||
from datasieve.pipeline import Pipeline
|
||||
from datasieve.transforms import SKLearnWrapper
|
||||
from numpy.typing import NDArray
|
||||
from pandas import DataFrame
|
||||
from sklearn.preprocessing import MinMaxScaler
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.constants import DOCS_LINK, Config
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.enums import RunMode
|
||||
from freqtrade.exceptions import OperationalException
|
||||
@@ -82,8 +86,6 @@ class IFreqaiModel(ABC):
|
||||
logger.warning("DI threshold is not configured for Keras models yet. Deactivating.")
|
||||
|
||||
self.CONV_WIDTH = self.freqai_info.get('conv_width', 1)
|
||||
if self.ft_params.get("inlier_metric_window", 0):
|
||||
self.CONV_WIDTH = self.ft_params.get("inlier_metric_window", 0) * 2
|
||||
self.class_names: List[str] = [] # used in classification subclasses
|
||||
self.pair_it = 0
|
||||
self.pair_it_train = 0
|
||||
@@ -503,68 +505,43 @@ class IFreqaiModel(ABC):
|
||||
"feature_engineering_* functions"
|
||||
)
|
||||
|
||||
def data_cleaning_train(self, dk: FreqaiDataKitchen) -> None:
|
||||
"""
|
||||
Base data cleaning method for train.
|
||||
Functions here improve/modify the input data by identifying outliers,
|
||||
computing additional metrics, adding noise, reducing dimensionality etc.
|
||||
"""
|
||||
|
||||
def define_data_pipeline(self, threads=-1) -> Pipeline:
|
||||
ft_params = self.freqai_info["feature_parameters"]
|
||||
pipe_steps = [
|
||||
('const', ds.VarianceThreshold(threshold=0)),
|
||||
('scaler', SKLearnWrapper(MinMaxScaler(feature_range=(-1, 1))))
|
||||
]
|
||||
|
||||
if ft_params.get('inlier_metric_window', 0):
|
||||
dk.compute_inlier_metric(set_='train')
|
||||
if self.freqai_info["data_split_parameters"]["test_size"] > 0:
|
||||
dk.compute_inlier_metric(set_='test')
|
||||
|
||||
if ft_params.get(
|
||||
"principal_component_analysis", False
|
||||
):
|
||||
dk.principal_component_analysis()
|
||||
if ft_params.get("principal_component_analysis", False):
|
||||
pipe_steps.append(('pca', ds.PCA(n_components=0.999)))
|
||||
pipe_steps.append(('post-pca-scaler',
|
||||
SKLearnWrapper(MinMaxScaler(feature_range=(-1, 1)))))
|
||||
|
||||
if ft_params.get("use_SVM_to_remove_outliers", False):
|
||||
dk.use_SVM_to_remove_outliers(predict=False)
|
||||
svm_params = ft_params.get(
|
||||
"svm_params", {"shuffle": False, "nu": 0.01})
|
||||
pipe_steps.append(('svm', ds.SVMOutlierExtractor(**svm_params)))
|
||||
|
||||
if ft_params.get("DI_threshold", 0):
|
||||
dk.data["avg_mean_dist"] = dk.compute_distances()
|
||||
di = ft_params.get("DI_threshold", 0)
|
||||
if di:
|
||||
pipe_steps.append(('di', ds.DissimilarityIndex(di_threshold=di, n_jobs=threads)))
|
||||
|
||||
if ft_params.get("use_DBSCAN_to_remove_outliers", False):
|
||||
if dk.pair in self.dd.old_DBSCAN_eps:
|
||||
eps = self.dd.old_DBSCAN_eps[dk.pair]
|
||||
else:
|
||||
eps = None
|
||||
dk.use_DBSCAN_to_remove_outliers(predict=False, eps=eps)
|
||||
self.dd.old_DBSCAN_eps[dk.pair] = dk.data['DBSCAN_eps']
|
||||
pipe_steps.append(('dbscan', ds.DBSCAN(n_jobs=threads)))
|
||||
|
||||
if self.freqai_info["feature_parameters"].get('noise_standard_deviation', 0):
|
||||
dk.add_noise_to_training_features()
|
||||
sigma = self.freqai_info["feature_parameters"].get('noise_standard_deviation', 0)
|
||||
if sigma:
|
||||
pipe_steps.append(('noise', ds.Noise(sigma=sigma)))
|
||||
|
||||
def data_cleaning_predict(self, dk: FreqaiDataKitchen) -> None:
|
||||
"""
|
||||
Base data cleaning method for predict.
|
||||
Functions here are complementary to the functions of data_cleaning_train.
|
||||
"""
|
||||
ft_params = self.freqai_info["feature_parameters"]
|
||||
return Pipeline(pipe_steps)
|
||||
|
||||
# ensure user is feeding the correct indicators to the model
|
||||
self.check_if_feature_list_matches_strategy(dk)
|
||||
def define_label_pipeline(self, threads=-1) -> Pipeline:
|
||||
|
||||
if ft_params.get('inlier_metric_window', 0):
|
||||
dk.compute_inlier_metric(set_='predict')
|
||||
label_pipeline = Pipeline([
|
||||
('scaler', SKLearnWrapper(MinMaxScaler(feature_range=(-1, 1))))
|
||||
])
|
||||
|
||||
if ft_params.get(
|
||||
"principal_component_analysis", False
|
||||
):
|
||||
dk.pca_transform(dk.data_dictionary['prediction_features'])
|
||||
|
||||
if ft_params.get("use_SVM_to_remove_outliers", False):
|
||||
dk.use_SVM_to_remove_outliers(predict=True)
|
||||
|
||||
if ft_params.get("DI_threshold", 0):
|
||||
dk.check_if_pred_in_training_spaces()
|
||||
|
||||
if ft_params.get("use_DBSCAN_to_remove_outliers", False):
|
||||
dk.use_DBSCAN_to_remove_outliers(predict=True)
|
||||
return label_pipeline
|
||||
|
||||
def model_exists(self, dk: FreqaiDataKitchen) -> bool:
|
||||
"""
|
||||
@@ -576,8 +553,6 @@ class IFreqaiModel(ABC):
|
||||
"""
|
||||
if self.dd.model_type == 'joblib':
|
||||
file_type = ".joblib"
|
||||
elif self.dd.model_type == 'keras':
|
||||
file_type = ".h5"
|
||||
elif self.dd.model_type in ["stable_baselines3", "sb3_contrib", "pytorch"]:
|
||||
file_type = ".zip"
|
||||
|
||||
@@ -699,15 +674,6 @@ class IFreqaiModel(ABC):
|
||||
hist_preds_df['close_price'] = strat_df['close']
|
||||
hist_preds_df['date_pred'] = strat_df['date']
|
||||
|
||||
# # for keras type models, the conv_window needs to be prepended so
|
||||
# # viewing is correct in frequi
|
||||
if self.freqai_info.get('keras', False) or self.ft_params.get('inlier_metric_window', 0):
|
||||
n_lost_points = self.freqai_info.get('conv_width', 2)
|
||||
zeros_df = DataFrame(np.zeros((n_lost_points, len(hist_preds_df.columns))),
|
||||
columns=hist_preds_df.columns)
|
||||
self.dd.historic_predictions[pair] = pd.concat(
|
||||
[zeros_df, hist_preds_df], axis=0, ignore_index=True)
|
||||
|
||||
def fit_live_predictions(self, dk: FreqaiDataKitchen, pair: str) -> None:
|
||||
"""
|
||||
Fit the labels with a gaussian distribution
|
||||
@@ -991,3 +957,50 @@ class IFreqaiModel(ABC):
|
||||
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
||||
data (NaNs) or felt uncertain about data (i.e. SVM and/or DI index)
|
||||
"""
|
||||
|
||||
# deprecated functions
|
||||
def data_cleaning_train(self, dk: FreqaiDataKitchen, pair: str):
|
||||
"""
|
||||
throw deprecation warning if this function is called
|
||||
"""
|
||||
logger.warning(f"Your model {self.__class__.__name__} relies on the deprecated"
|
||||
" data pipeline. Please update your model to use the new data pipeline."
|
||||
" This can be achieved by following the migration guide at "
|
||||
f"{DOCS_LINK}/strategy_migration/#freqai-new-data-pipeline")
|
||||
dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)
|
||||
dd = dk.data_dictionary
|
||||
(dd["train_features"],
|
||||
dd["train_labels"],
|
||||
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
|
||||
dd["train_labels"],
|
||||
dd["train_weights"])
|
||||
|
||||
(dd["test_features"],
|
||||
dd["test_labels"],
|
||||
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
|
||||
dd["test_labels"],
|
||||
dd["test_weights"])
|
||||
|
||||
dk.label_pipeline = self.define_label_pipeline(threads=dk.thread_count)
|
||||
|
||||
dd["train_labels"], _, _ = dk.label_pipeline.fit_transform(dd["train_labels"])
|
||||
dd["test_labels"], _, _ = dk.label_pipeline.transform(dd["test_labels"])
|
||||
return
|
||||
|
||||
def data_cleaning_predict(self, dk: FreqaiDataKitchen, pair: str):
|
||||
"""
|
||||
throw deprecation warning if this function is called
|
||||
"""
|
||||
logger.warning(f"Your model {self.__class__.__name__} relies on the deprecated"
|
||||
" data pipeline. Please update your model to use the new data pipeline."
|
||||
" This can be achieved by following the migration guide at "
|
||||
f"{DOCS_LINK}/strategy_migration/#freqai-new-data-pipeline")
|
||||
dd = dk.data_dictionary
|
||||
dd["predict_features"], outliers, _ = dk.feature_pipeline.transform(
|
||||
dd["predict_features"], outlier_check=True)
|
||||
if self.freqai_info.get("DI_threshold", 0) > 0:
|
||||
dk.DI_values = dk.feature_pipeline["di"].di_values
|
||||
else:
|
||||
dk.DI_values = np.zeros(outliers.shape[0])
|
||||
dk.do_predict = outliers
|
||||
return
|
||||
|
||||
@@ -32,8 +32,8 @@ class LightGBMClassifier(BaseClassifierModel):
|
||||
eval_set = None
|
||||
test_weights = None
|
||||
else:
|
||||
eval_set = (data_dictionary["test_features"].to_numpy(),
|
||||
data_dictionary["test_labels"].to_numpy()[:, 0])
|
||||
eval_set = [(data_dictionary["test_features"].to_numpy(),
|
||||
data_dictionary["test_labels"].to_numpy()[:, 0])]
|
||||
test_weights = data_dictionary["test_weights"]
|
||||
X = data_dictionary["train_features"].to_numpy()
|
||||
y = data_dictionary["train_labels"].to_numpy()[:, 0]
|
||||
@@ -42,7 +42,6 @@ class LightGBMClassifier(BaseClassifierModel):
|
||||
init_model = self.get_init_model(dk.pair)
|
||||
|
||||
model = LGBMClassifier(**self.model_training_parameters)
|
||||
|
||||
model.fit(X=X, y=y, eval_set=eval_set, sample_weight=train_weights,
|
||||
eval_sample_weight=[test_weights], init_model=init_model)
|
||||
|
||||
|
||||
@@ -32,7 +32,7 @@ class LightGBMRegressor(BaseRegressionModel):
|
||||
eval_set = None
|
||||
eval_weights = None
|
||||
else:
|
||||
eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
|
||||
eval_set = [(data_dictionary["test_features"], data_dictionary["test_labels"])]
|
||||
eval_weights = data_dictionary["test_weights"]
|
||||
X = data_dictionary["train_features"]
|
||||
y = data_dictionary["train_labels"]
|
||||
|
||||
@@ -42,10 +42,10 @@ class LightGBMRegressorMultiTarget(BaseRegressionModel):
|
||||
eval_weights = [data_dictionary["test_weights"]]
|
||||
eval_sets = [(None, None)] * data_dictionary['test_labels'].shape[1] # type: ignore
|
||||
for i in range(data_dictionary['test_labels'].shape[1]):
|
||||
eval_sets[i] = ( # type: ignore
|
||||
eval_sets[i] = [( # type: ignore
|
||||
data_dictionary["test_features"],
|
||||
data_dictionary["test_labels"].iloc[:, i]
|
||||
)
|
||||
)]
|
||||
|
||||
init_model = self.get_init_model(dk.pair)
|
||||
if init_model:
|
||||
|
||||
@@ -103,13 +103,13 @@ class PyTorchTransformerRegressor(BasePyTorchRegressor):
|
||||
"""
|
||||
|
||||
dk.find_features(unfiltered_df)
|
||||
filtered_df, _ = dk.filter_features(
|
||||
dk.data_dictionary["prediction_features"], _ = dk.filter_features(
|
||||
unfiltered_df, dk.training_features_list, training_filter=False
|
||||
)
|
||||
filtered_df = dk.normalize_data_from_metadata(filtered_df)
|
||||
dk.data_dictionary["prediction_features"] = filtered_df
|
||||
|
||||
self.data_cleaning_predict(dk)
|
||||
dk.data_dictionary["prediction_features"], outliers, _ = dk.feature_pipeline.transform(
|
||||
dk.data_dictionary["prediction_features"], outlier_check=True)
|
||||
|
||||
x = self.data_convertor.convert_x(
|
||||
dk.data_dictionary["prediction_features"],
|
||||
device=self.device
|
||||
@@ -131,7 +131,13 @@ class PyTorchTransformerRegressor(BasePyTorchRegressor):
|
||||
|
||||
yb = yb.cpu().squeeze()
|
||||
pred_df = pd.DataFrame(yb.detach().numpy(), columns=dk.label_list)
|
||||
pred_df = dk.denormalize_labels_from_metadata(pred_df)
|
||||
pred_df, _, _ = dk.label_pipeline.inverse_transform(pred_df)
|
||||
|
||||
if self.freqai_info.get("DI_threshold", 0) > 0:
|
||||
dk.DI_values = dk.feature_pipeline["di"].di_values
|
||||
else:
|
||||
dk.DI_values = np.zeros(outliers.shape[0])
|
||||
dk.do_predict = outliers
|
||||
|
||||
if x.shape[1] > 1:
|
||||
zeros_df = pd.DataFrame(np.zeros((x.shape[1] - len(pred_df), len(pred_df.columns))),
|
||||
|
||||
@@ -2,7 +2,8 @@ import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from pandas import DataFrame
|
||||
from stable_baselines3.common.callbacks import EvalCallback
|
||||
from sb3_contrib.common.maskable.callbacks import MaskableEvalCallback
|
||||
from sb3_contrib.common.maskable.utils import is_masking_supported
|
||||
from stable_baselines3.common.vec_env import SubprocVecEnv, VecMonitor
|
||||
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
@@ -55,9 +56,11 @@ class ReinforcementLearner_multiproc(ReinforcementLearner):
|
||||
env_info=env_info) for i
|
||||
in range(self.max_threads)]))
|
||||
|
||||
self.eval_callback = EvalCallback(self.eval_env, deterministic=True,
|
||||
render=False, eval_freq=eval_freq,
|
||||
best_model_save_path=str(dk.data_path))
|
||||
self.eval_callback = MaskableEvalCallback(self.eval_env, deterministic=True,
|
||||
render=False, eval_freq=eval_freq,
|
||||
best_model_save_path=str(dk.data_path),
|
||||
use_masking=(self.model_type == 'MaskablePPO' and
|
||||
is_masking_supported(self.eval_env)))
|
||||
|
||||
# TENSORBOARD CALLBACK DOES NOT RECOMMENDED TO USE WITH MULTIPLE ENVS,
|
||||
# IT WILL RETURN FALSE INFORMATIONS, NEVERTHLESS NOT THREAD SAFE WITH SB3!!!
|
||||
|
||||
@@ -5,6 +5,7 @@ from xgboost import XGBRFRegressor
|
||||
|
||||
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.tensorboard import TBCallback
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -44,7 +45,10 @@ class XGBoostRFRegressor(BaseRegressionModel):
|
||||
|
||||
model = XGBRFRegressor(**self.model_training_parameters)
|
||||
|
||||
model.set_params(callbacks=[TBCallback(dk.data_path)], activate=self.activate_tensorboard)
|
||||
model.fit(X=X, y=y, sample_weight=sample_weight, eval_set=eval_set,
|
||||
sample_weight_eval_set=eval_weights, xgb_model=xgb_model)
|
||||
# set the callbacks to empty so that we can serialize to disk later
|
||||
model.set_params(callbacks=[])
|
||||
|
||||
return model
|
||||
|
||||
@@ -231,7 +231,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
self.manage_open_orders()
|
||||
|
||||
# Protect from collisions with force_exit.
|
||||
# Without this, freqtrade my try to recreate stoploss_on_exchange orders
|
||||
# Without this, freqtrade may try to recreate stoploss_on_exchange orders
|
||||
# while exiting is in process, since telegram messages arrive in an different thread.
|
||||
with self._exit_lock:
|
||||
trades = Trade.get_open_trades()
|
||||
@@ -1302,6 +1302,10 @@ class FreqtradeBot(LoggingMixin):
|
||||
f"(orderid:{order['id']}) in order to add another one ...")
|
||||
|
||||
self.cancel_stoploss_on_exchange(trade)
|
||||
if not trade.is_open:
|
||||
logger.warning(
|
||||
f"Trade {trade} is closed, not creating trailing stoploss order.")
|
||||
return
|
||||
|
||||
# Create new stoploss order
|
||||
if not self.create_stoploss_order(trade=trade, stop_price=stoploss_norm):
|
||||
@@ -1379,7 +1383,10 @@ class FreqtradeBot(LoggingMixin):
|
||||
latest_candle_close_date = timeframe_to_next_date(self.strategy.timeframe,
|
||||
latest_candle_open_date)
|
||||
# Check if new candle
|
||||
if order_obj and latest_candle_close_date > order_obj.order_date_utc:
|
||||
if (
|
||||
order_obj and order_obj.side == trade.entry_side
|
||||
and latest_candle_close_date > order_obj.order_date_utc
|
||||
):
|
||||
# New candle
|
||||
proposed_rate = self.exchange.get_rate(
|
||||
trade.pair, side='entry', is_short=trade.is_short, refresh=True)
|
||||
@@ -1935,6 +1942,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
"""
|
||||
Applies the fee to amount (either from Order or from Trades).
|
||||
Can eat into dust if more than the required asset is available.
|
||||
In case of trade adjustment orders, trade.amount will not have been adjusted yet.
|
||||
Can't happen in Futures mode - where Fees are always in settlement currency,
|
||||
never in base currency.
|
||||
"""
|
||||
@@ -1944,6 +1952,10 @@ class FreqtradeBot(LoggingMixin):
|
||||
# check against remaining amount!
|
||||
amount_ = trade.amount - amount
|
||||
|
||||
if trade.nr_of_successful_entries >= 1 and order_obj.ft_order_side == trade.entry_side:
|
||||
# In case of rebuy's, trade.amount doesn't contain the amount of the last entry.
|
||||
amount_ = trade.amount + amount
|
||||
|
||||
if fee_abs != 0 and self.wallets.get_free(trade_base_currency) >= amount_:
|
||||
# Eat into dust if we own more than base currency
|
||||
logger.info(f"Fee amount for {trade} was in base currency - "
|
||||
@@ -1973,7 +1985,11 @@ class FreqtradeBot(LoggingMixin):
|
||||
# Init variables
|
||||
order_amount = safe_value_fallback(order, 'filled', 'amount')
|
||||
# Only run for closed orders
|
||||
if trade.fee_updated(order.get('side', '')) or order['status'] == 'open':
|
||||
if (
|
||||
trade.fee_updated(order.get('side', ''))
|
||||
or order['status'] == 'open'
|
||||
or order_obj.ft_fee_base
|
||||
):
|
||||
return None
|
||||
|
||||
trade_base_currency = self.exchange.get_pair_base_currency(trade.pair)
|
||||
|
||||
@@ -5,6 +5,7 @@ from logging.handlers import RotatingFileHandler, SysLogHandler
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.loggers.buffering_handler import FTBufferingHandler
|
||||
from freqtrade.loggers.set_log_levels import set_loggers
|
||||
from freqtrade.loggers.std_err_stream_handler import FTStdErrStreamHandler
|
||||
|
||||
|
||||
@@ -16,29 +17,6 @@ bufferHandler = FTBufferingHandler(1000)
|
||||
bufferHandler.setFormatter(Formatter(LOGFORMAT))
|
||||
|
||||
|
||||
def _set_loggers(verbosity: int = 0, api_verbosity: str = 'info') -> None:
|
||||
"""
|
||||
Set the logging level for third party libraries
|
||||
:return: None
|
||||
"""
|
||||
|
||||
logging.getLogger('requests').setLevel(
|
||||
logging.INFO if verbosity <= 1 else logging.DEBUG
|
||||
)
|
||||
logging.getLogger("urllib3").setLevel(
|
||||
logging.INFO if verbosity <= 1 else logging.DEBUG
|
||||
)
|
||||
logging.getLogger('ccxt.base.exchange').setLevel(
|
||||
logging.INFO if verbosity <= 2 else logging.DEBUG
|
||||
)
|
||||
logging.getLogger('telegram').setLevel(logging.INFO)
|
||||
logging.getLogger('httpx').setLevel(logging.INFO)
|
||||
|
||||
logging.getLogger('werkzeug').setLevel(
|
||||
logging.ERROR if api_verbosity == 'error' else logging.INFO
|
||||
)
|
||||
|
||||
|
||||
def get_existing_handlers(handlertype):
|
||||
"""
|
||||
Returns Existing handler or None (if the handler has not yet been added to the root handlers).
|
||||
@@ -115,6 +93,6 @@ def setup_logging(config: Config) -> None:
|
||||
logging.root.addHandler(handler_rf)
|
||||
|
||||
logging.root.setLevel(logging.INFO if verbosity < 1 else logging.DEBUG)
|
||||
_set_loggers(verbosity, config.get('api_server', {}).get('verbosity', 'info'))
|
||||
set_loggers(verbosity, config.get('api_server', {}).get('verbosity', 'info'))
|
||||
|
||||
logger.info('Verbosity set to %s', verbosity)
|
||||
|
||||
55
freqtrade/loggers/set_log_levels.py
Normal file
55
freqtrade/loggers/set_log_levels.py
Normal file
@@ -0,0 +1,55 @@
|
||||
|
||||
import logging
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def set_loggers(verbosity: int = 0, api_verbosity: str = 'info') -> None:
|
||||
"""
|
||||
Set the logging level for third party libraries
|
||||
:return: None
|
||||
"""
|
||||
|
||||
logging.getLogger('requests').setLevel(
|
||||
logging.INFO if verbosity <= 1 else logging.DEBUG
|
||||
)
|
||||
logging.getLogger("urllib3").setLevel(
|
||||
logging.INFO if verbosity <= 1 else logging.DEBUG
|
||||
)
|
||||
logging.getLogger('ccxt.base.exchange').setLevel(
|
||||
logging.INFO if verbosity <= 2 else logging.DEBUG
|
||||
)
|
||||
logging.getLogger('telegram').setLevel(logging.INFO)
|
||||
logging.getLogger('httpx').setLevel(logging.WARNING)
|
||||
|
||||
logging.getLogger('werkzeug').setLevel(
|
||||
logging.ERROR if api_verbosity == 'error' else logging.INFO
|
||||
)
|
||||
|
||||
|
||||
__BIAS_TESTER_LOGGERS = [
|
||||
'freqtrade.resolvers',
|
||||
'freqtrade.strategy.hyper',
|
||||
'freqtrade.configuration.config_validation',
|
||||
]
|
||||
|
||||
|
||||
def reduce_verbosity_for_bias_tester() -> None:
|
||||
"""
|
||||
Reduce verbosity for bias tester.
|
||||
It loads the same strategy several times, which would spam the log.
|
||||
"""
|
||||
logger.info("Reducing verbosity for bias tester.")
|
||||
for logger_name in __BIAS_TESTER_LOGGERS:
|
||||
logging.getLogger(logger_name).setLevel(logging.WARNING)
|
||||
|
||||
|
||||
def restore_verbosity_for_bias_tester() -> None:
|
||||
"""
|
||||
Restore verbosity after bias tester.
|
||||
"""
|
||||
logger.info("Restoring log verbosity.")
|
||||
log_level = logging.NOTSET
|
||||
for logger_name in __BIAS_TESTER_LOGGERS:
|
||||
logging.getLogger(logger_name).setLevel(log_level)
|
||||
@@ -3,7 +3,6 @@ Various tool function for Freqtrade and scripts
|
||||
"""
|
||||
import gzip
|
||||
import logging
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Iterator, List, Mapping, Optional, TextIO, Union
|
||||
from urllib.parse import urlparse
|
||||
@@ -117,20 +116,19 @@ def file_load_json(file: Path):
|
||||
return pairdata
|
||||
|
||||
|
||||
def is_file_in_dir(file: Path, directory: Path) -> bool:
|
||||
"""
|
||||
Helper function to check if file is in directory.
|
||||
"""
|
||||
return file.is_file() and file.parent.samefile(directory)
|
||||
|
||||
|
||||
def pair_to_filename(pair: str) -> str:
|
||||
for ch in ['/', ' ', '.', '@', '$', '+', ':']:
|
||||
pair = pair.replace(ch, '_')
|
||||
return pair
|
||||
|
||||
|
||||
def format_ms_time(date: int) -> str:
|
||||
"""
|
||||
convert MS date to readable format.
|
||||
: epoch-string in ms
|
||||
"""
|
||||
return datetime.fromtimestamp(date / 1000.0).strftime('%Y-%m-%dT%H:%M:%S')
|
||||
|
||||
|
||||
def deep_merge_dicts(source, destination, allow_null_overrides: bool = True):
|
||||
"""
|
||||
Values from Source override destination, destination is returned (and modified!!)
|
||||
|
||||
@@ -3,7 +3,7 @@ from typing import Callable
|
||||
from cachetools import TTLCache, cached
|
||||
|
||||
|
||||
class LoggingMixin():
|
||||
class LoggingMixin:
|
||||
"""
|
||||
Logging Mixin
|
||||
Shows similar messages only once every `refresh_period`.
|
||||
|
||||
@@ -24,6 +24,7 @@ from freqtrade.enums import (BacktestState, CandleType, ExitCheckTuple, ExitType
|
||||
from freqtrade.exceptions import DependencyException, OperationalException
|
||||
from freqtrade.exchange import (amount_to_contract_precision, price_to_precision,
|
||||
timeframe_to_minutes, timeframe_to_seconds)
|
||||
from freqtrade.exchange.exchange import Exchange
|
||||
from freqtrade.mixins import LoggingMixin
|
||||
from freqtrade.optimize.backtest_caching import get_strategy_run_id
|
||||
from freqtrade.optimize.bt_progress import BTProgress
|
||||
@@ -72,7 +73,7 @@ class Backtesting:
|
||||
backtesting.start()
|
||||
"""
|
||||
|
||||
def __init__(self, config: Config) -> None:
|
||||
def __init__(self, config: Config, exchange: Optional[Exchange] = None) -> None:
|
||||
|
||||
LoggingMixin.show_output = False
|
||||
self.config = config
|
||||
@@ -89,7 +90,10 @@ class Backtesting:
|
||||
self.rejected_df: Dict[str, Dict] = {}
|
||||
|
||||
self._exchange_name = self.config['exchange']['name']
|
||||
self.exchange = ExchangeResolver.load_exchange(self.config, load_leverage_tiers=True)
|
||||
if not exchange:
|
||||
exchange = ExchangeResolver.load_exchange(self.config, load_leverage_tiers=True)
|
||||
self.exchange = exchange
|
||||
|
||||
self.dataprovider = DataProvider(self.config, self.exchange)
|
||||
|
||||
if self.config.get('strategy_list'):
|
||||
@@ -114,16 +118,7 @@ class Backtesting:
|
||||
self.timeframe_min = timeframe_to_minutes(self.timeframe)
|
||||
self.init_backtest_detail()
|
||||
self.pairlists = PairListManager(self.exchange, self.config, self.dataprovider)
|
||||
if 'VolumePairList' in self.pairlists.name_list:
|
||||
raise OperationalException("VolumePairList not allowed for backtesting. "
|
||||
"Please use StaticPairList instead.")
|
||||
if 'PerformanceFilter' in self.pairlists.name_list:
|
||||
raise OperationalException("PerformanceFilter not allowed for backtesting.")
|
||||
|
||||
if len(self.strategylist) > 1 and 'PrecisionFilter' in self.pairlists.name_list:
|
||||
raise OperationalException(
|
||||
"PrecisionFilter not allowed for backtesting multiple strategies."
|
||||
)
|
||||
self._validate_pairlists_for_backtesting()
|
||||
|
||||
self.dataprovider.add_pairlisthandler(self.pairlists)
|
||||
self.pairlists.refresh_pairlist()
|
||||
@@ -164,6 +159,18 @@ class Backtesting:
|
||||
|
||||
self.init_backtest()
|
||||
|
||||
def _validate_pairlists_for_backtesting(self):
|
||||
if 'VolumePairList' in self.pairlists.name_list:
|
||||
raise OperationalException("VolumePairList not allowed for backtesting. "
|
||||
"Please use StaticPairList instead.")
|
||||
if 'PerformanceFilter' in self.pairlists.name_list:
|
||||
raise OperationalException("PerformanceFilter not allowed for backtesting.")
|
||||
|
||||
if len(self.strategylist) > 1 and 'PrecisionFilter' in self.pairlists.name_list:
|
||||
raise OperationalException(
|
||||
"PrecisionFilter not allowed for backtesting multiple strategies."
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def cleanup():
|
||||
LoggingMixin.show_output = True
|
||||
@@ -360,11 +367,7 @@ class Backtesting:
|
||||
if not pair_data.empty:
|
||||
# Cleanup from prior runs
|
||||
pair_data.drop(HEADERS[5:] + ['buy', 'sell'], axis=1, errors='ignore')
|
||||
|
||||
df_analyzed = self.strategy.advise_exit(
|
||||
self.strategy.advise_entry(pair_data, {'pair': pair}),
|
||||
{'pair': pair}
|
||||
).copy()
|
||||
df_analyzed = self.strategy.ft_advise_signals(pair_data, {'pair': pair})
|
||||
# Trim startup period from analyzed dataframe
|
||||
df_analyzed = processed[pair] = pair_data = trim_dataframe(
|
||||
df_analyzed, self.timerange, startup_candles=self.required_startup)
|
||||
@@ -672,6 +675,7 @@ class Backtesting:
|
||||
remaining=amount,
|
||||
cost=amount * close_rate,
|
||||
)
|
||||
order._trade_bt = trade
|
||||
trade.orders.append(order)
|
||||
return trade
|
||||
|
||||
@@ -894,8 +898,9 @@ class Backtesting:
|
||||
amount=amount,
|
||||
filled=0,
|
||||
remaining=amount,
|
||||
cost=stake_amount + trade.fee_open,
|
||||
cost=amount * propose_rate + trade.fee_open,
|
||||
)
|
||||
order._trade_bt = trade
|
||||
trade.orders.append(order)
|
||||
if pos_adjust and self._get_order_filled(order.ft_price, row):
|
||||
order.close_bt_order(current_time, trade)
|
||||
@@ -1268,6 +1273,7 @@ class Backtesting:
|
||||
preprocessed = self.strategy.advise_all_indicators(data)
|
||||
|
||||
# Trim startup period from analyzed dataframe
|
||||
# This only used to determine if trimming would result in an empty dataframe
|
||||
preprocessed_tmp = trim_dataframes(preprocessed, timerange, self.required_startup)
|
||||
|
||||
if not preprocessed_tmp:
|
||||
|
||||
@@ -446,6 +446,8 @@ class Hyperopt:
|
||||
preprocessed = self.backtesting.strategy.advise_all_indicators(data)
|
||||
|
||||
# Trim startup period from analyzed dataframe to get correct dates for output.
|
||||
# This is only used to keep track of min/max date after trimming.
|
||||
# The result is NOT returned from this method, actual trimming happens in backtesting.
|
||||
trimmed = trim_dataframes(preprocessed, self.timerange, self.backtesting.required_startup)
|
||||
self.min_date, self.max_date = get_timerange(trimmed)
|
||||
if not self.market_change:
|
||||
|
||||
@@ -35,7 +35,7 @@ def hyperopt_serializer(x):
|
||||
return str(x)
|
||||
|
||||
|
||||
class HyperoptStateContainer():
|
||||
class HyperoptStateContainer:
|
||||
""" Singleton class to track state of hyperopt"""
|
||||
state: HyperoptState = HyperoptState.OPTIMIZE
|
||||
|
||||
@@ -44,7 +44,7 @@ class HyperoptStateContainer():
|
||||
cls.state = value
|
||||
|
||||
|
||||
class HyperoptTools():
|
||||
class HyperoptTools:
|
||||
|
||||
@staticmethod
|
||||
def get_strategy_filename(config: Config, strategy_name: str) -> Optional[Path]:
|
||||
@@ -432,12 +432,10 @@ class HyperoptTools():
|
||||
for i in range(len(trials)):
|
||||
if trials.loc[i]['is_profit']:
|
||||
for j in range(len(trials.loc[i]) - 3):
|
||||
trials.iat[i, j] = "{}{}{}".format(Fore.GREEN,
|
||||
str(trials.loc[i][j]), Fore.RESET)
|
||||
trials.iat[i, j] = f"{Fore.GREEN}{str(trials.loc[i][j])}{Fore.RESET}"
|
||||
if trials.loc[i]['is_best'] and highlight_best:
|
||||
for j in range(len(trials.loc[i]) - 3):
|
||||
trials.iat[i, j] = "{}{}{}".format(Style.BRIGHT,
|
||||
str(trials.loc[i][j]), Style.RESET_ALL)
|
||||
trials.iat[i, j] = f"{Style.BRIGHT}{str(trials.loc[i][j])}{Style.RESET_ALL}"
|
||||
|
||||
trials = trials.drop(columns=['is_initial_point', 'is_best', 'is_profit', 'is_random'])
|
||||
if remove_header > 0:
|
||||
|
||||
275
freqtrade/optimize/lookahead_analysis.py
Executable file
275
freqtrade/optimize/lookahead_analysis.py
Executable file
@@ -0,0 +1,275 @@
|
||||
import logging
|
||||
import shutil
|
||||
from copy import deepcopy
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data.history import get_timerange
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
from freqtrade.loggers.set_log_levels import (reduce_verbosity_for_bias_tester,
|
||||
restore_verbosity_for_bias_tester)
|
||||
from freqtrade.optimize.backtesting import Backtesting
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class VarHolder:
|
||||
timerange: TimeRange
|
||||
data: DataFrame
|
||||
indicators: Dict[str, DataFrame]
|
||||
result: DataFrame
|
||||
compared: DataFrame
|
||||
from_dt: datetime
|
||||
to_dt: datetime
|
||||
compared_dt: datetime
|
||||
timeframe: str
|
||||
|
||||
|
||||
class Analysis:
|
||||
def __init__(self) -> None:
|
||||
self.total_signals = 0
|
||||
self.false_entry_signals = 0
|
||||
self.false_exit_signals = 0
|
||||
self.false_indicators: List[str] = []
|
||||
self.has_bias = False
|
||||
|
||||
|
||||
class LookaheadAnalysis:
|
||||
|
||||
def __init__(self, config: Dict[str, Any], strategy_obj: Dict):
|
||||
self.failed_bias_check = True
|
||||
self.full_varHolder = VarHolder()
|
||||
|
||||
self.entry_varHolders: List[VarHolder] = []
|
||||
self.exit_varHolders: List[VarHolder] = []
|
||||
self.exchange: Optional[Any] = None
|
||||
|
||||
# pull variables the scope of the lookahead_analysis-instance
|
||||
self.local_config = deepcopy(config)
|
||||
self.local_config['strategy'] = strategy_obj['name']
|
||||
self.current_analysis = Analysis()
|
||||
self.minimum_trade_amount = config['minimum_trade_amount']
|
||||
self.targeted_trade_amount = config['targeted_trade_amount']
|
||||
self.strategy_obj = strategy_obj
|
||||
|
||||
@staticmethod
|
||||
def dt_to_timestamp(dt: datetime):
|
||||
timestamp = int(dt.replace(tzinfo=timezone.utc).timestamp())
|
||||
return timestamp
|
||||
|
||||
@staticmethod
|
||||
def get_result(backtesting: Backtesting, processed: DataFrame):
|
||||
min_date, max_date = get_timerange(processed)
|
||||
|
||||
result = backtesting.backtest(
|
||||
processed=deepcopy(processed),
|
||||
start_date=min_date,
|
||||
end_date=max_date
|
||||
)
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
def report_signal(result: dict, column_name: str, checked_timestamp: datetime):
|
||||
df = result['results']
|
||||
row_count = df[column_name].shape[0]
|
||||
|
||||
if row_count == 0:
|
||||
return False
|
||||
else:
|
||||
|
||||
df_cut = df[(df[column_name] == checked_timestamp)]
|
||||
if df_cut[column_name].shape[0] == 0:
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
return False
|
||||
|
||||
# analyzes two data frames with processed indicators and shows differences between them.
|
||||
def analyze_indicators(self, full_vars: VarHolder, cut_vars: VarHolder, current_pair: str):
|
||||
# extract dataframes
|
||||
cut_df: DataFrame = cut_vars.indicators[current_pair]
|
||||
full_df: DataFrame = full_vars.indicators[current_pair]
|
||||
|
||||
# cut longer dataframe to length of the shorter
|
||||
full_df_cut = full_df[
|
||||
(full_df.date == cut_vars.compared_dt)
|
||||
].reset_index(drop=True)
|
||||
cut_df_cut = cut_df[
|
||||
(cut_df.date == cut_vars.compared_dt)
|
||||
].reset_index(drop=True)
|
||||
|
||||
# check if dataframes are not empty
|
||||
if full_df_cut.shape[0] != 0 and cut_df_cut.shape[0] != 0:
|
||||
|
||||
# compare dataframes
|
||||
compare_df = full_df_cut.compare(cut_df_cut)
|
||||
|
||||
if compare_df.shape[0] > 0:
|
||||
for col_name, values in compare_df.items():
|
||||
col_idx = compare_df.columns.get_loc(col_name)
|
||||
compare_df_row = compare_df.iloc[0]
|
||||
# compare_df now comprises tuples with [1] having either 'self' or 'other'
|
||||
if 'other' in col_name[1]:
|
||||
continue
|
||||
self_value = compare_df_row[col_idx]
|
||||
other_value = compare_df_row[col_idx + 1]
|
||||
|
||||
# output differences
|
||||
if self_value != other_value:
|
||||
|
||||
if not self.current_analysis.false_indicators.__contains__(col_name[0]):
|
||||
self.current_analysis.false_indicators.append(col_name[0])
|
||||
logger.info(f"=> found look ahead bias in indicator "
|
||||
f"{col_name[0]}. "
|
||||
f"{str(self_value)} != {str(other_value)}")
|
||||
|
||||
def prepare_data(self, varholder: VarHolder, pairs_to_load: List[DataFrame]):
|
||||
|
||||
if 'freqai' in self.local_config and 'identifier' in self.local_config['freqai']:
|
||||
# purge previous data if the freqai model is defined
|
||||
# (to be sure nothing is carried over from older backtests)
|
||||
path_to_current_identifier = (
|
||||
Path(f"{self.local_config['user_data_dir']}/models/"
|
||||
f"{self.local_config['freqai']['identifier']}").resolve())
|
||||
# remove folder and its contents
|
||||
if Path.exists(path_to_current_identifier):
|
||||
shutil.rmtree(path_to_current_identifier)
|
||||
|
||||
prepare_data_config = deepcopy(self.local_config)
|
||||
prepare_data_config['timerange'] = (str(self.dt_to_timestamp(varholder.from_dt)) + "-" +
|
||||
str(self.dt_to_timestamp(varholder.to_dt)))
|
||||
prepare_data_config['exchange']['pair_whitelist'] = pairs_to_load
|
||||
|
||||
backtesting = Backtesting(prepare_data_config, self.exchange)
|
||||
self.exchange = backtesting.exchange
|
||||
backtesting._set_strategy(backtesting.strategylist[0])
|
||||
|
||||
varholder.data, varholder.timerange = backtesting.load_bt_data()
|
||||
backtesting.load_bt_data_detail()
|
||||
varholder.timeframe = backtesting.timeframe
|
||||
|
||||
varholder.indicators = backtesting.strategy.advise_all_indicators(varholder.data)
|
||||
varholder.result = self.get_result(backtesting, varholder.indicators)
|
||||
|
||||
def fill_full_varholder(self):
|
||||
self.full_varHolder = VarHolder()
|
||||
|
||||
# define datetime in human-readable format
|
||||
parsed_timerange = TimeRange.parse_timerange(self.local_config['timerange'])
|
||||
|
||||
if parsed_timerange.startdt is None:
|
||||
self.full_varHolder.from_dt = datetime.fromtimestamp(0, tz=timezone.utc)
|
||||
else:
|
||||
self.full_varHolder.from_dt = parsed_timerange.startdt
|
||||
|
||||
if parsed_timerange.stopdt is None:
|
||||
self.full_varHolder.to_dt = datetime.utcnow()
|
||||
else:
|
||||
self.full_varHolder.to_dt = parsed_timerange.stopdt
|
||||
|
||||
self.prepare_data(self.full_varHolder, self.local_config['pairs'])
|
||||
|
||||
def fill_entry_and_exit_varHolders(self, result_row):
|
||||
# entry_varHolder
|
||||
entry_varHolder = VarHolder()
|
||||
self.entry_varHolders.append(entry_varHolder)
|
||||
entry_varHolder.from_dt = self.full_varHolder.from_dt
|
||||
entry_varHolder.compared_dt = result_row['open_date']
|
||||
# to_dt needs +1 candle since it won't buy on the last candle
|
||||
entry_varHolder.to_dt = (
|
||||
result_row['open_date'] +
|
||||
timedelta(minutes=timeframe_to_minutes(self.full_varHolder.timeframe)))
|
||||
self.prepare_data(entry_varHolder, [result_row['pair']])
|
||||
|
||||
# exit_varHolder
|
||||
exit_varHolder = VarHolder()
|
||||
self.exit_varHolders.append(exit_varHolder)
|
||||
# to_dt needs +1 candle since it will always exit/force-exit trades on the last candle
|
||||
exit_varHolder.from_dt = self.full_varHolder.from_dt
|
||||
exit_varHolder.to_dt = (
|
||||
result_row['close_date'] +
|
||||
timedelta(minutes=timeframe_to_minutes(self.full_varHolder.timeframe)))
|
||||
exit_varHolder.compared_dt = result_row['close_date']
|
||||
self.prepare_data(exit_varHolder, [result_row['pair']])
|
||||
|
||||
# now we analyze a full trade of full_varholder and look for analyze its bias
|
||||
def analyze_row(self, idx, result_row):
|
||||
# if force-sold, ignore this signal since here it will unconditionally exit.
|
||||
if result_row.close_date == self.dt_to_timestamp(self.full_varHolder.to_dt):
|
||||
return
|
||||
|
||||
# keep track of how many signals are processed at total
|
||||
self.current_analysis.total_signals += 1
|
||||
|
||||
# fill entry_varHolder and exit_varHolder
|
||||
self.fill_entry_and_exit_varHolders(result_row)
|
||||
|
||||
# register if buy signal is broken
|
||||
if not self.report_signal(
|
||||
self.entry_varHolders[idx].result,
|
||||
"open_date",
|
||||
self.entry_varHolders[idx].compared_dt):
|
||||
self.current_analysis.false_entry_signals += 1
|
||||
|
||||
# register if buy or sell signal is broken
|
||||
if not self.report_signal(
|
||||
self.exit_varHolders[idx].result,
|
||||
"close_date",
|
||||
self.exit_varHolders[idx].compared_dt):
|
||||
self.current_analysis.false_exit_signals += 1
|
||||
|
||||
# check if the indicators themselves contain biased data
|
||||
self.analyze_indicators(self.full_varHolder, self.entry_varHolders[idx], result_row['pair'])
|
||||
self.analyze_indicators(self.full_varHolder, self.exit_varHolders[idx], result_row['pair'])
|
||||
|
||||
def start(self) -> None:
|
||||
|
||||
# first make a single backtest
|
||||
self.fill_full_varholder()
|
||||
|
||||
reduce_verbosity_for_bias_tester()
|
||||
|
||||
# check if requirements have been met of full_varholder
|
||||
found_signals: int = self.full_varHolder.result['results'].shape[0] + 1
|
||||
if found_signals >= self.targeted_trade_amount:
|
||||
logger.info(f"Found {found_signals} trades, "
|
||||
f"calculating {self.targeted_trade_amount} trades.")
|
||||
elif self.targeted_trade_amount >= found_signals >= self.minimum_trade_amount:
|
||||
logger.info(f"Only found {found_signals} trades. Calculating all available trades.")
|
||||
else:
|
||||
logger.info(f"found {found_signals} trades "
|
||||
f"which is less than minimum_trade_amount {self.minimum_trade_amount}. "
|
||||
f"Cancelling this backtest lookahead bias test.")
|
||||
return
|
||||
|
||||
# now we loop through all signals
|
||||
# starting from the same datetime to avoid miss-reports of bias
|
||||
for idx, result_row in self.full_varHolder.result['results'].iterrows():
|
||||
if self.current_analysis.total_signals == self.targeted_trade_amount:
|
||||
break
|
||||
self.analyze_row(idx, result_row)
|
||||
|
||||
# Restore verbosity, so it's not too quiet for the next strategy
|
||||
restore_verbosity_for_bias_tester()
|
||||
# check and report signals
|
||||
if self.current_analysis.total_signals < self.local_config['minimum_trade_amount']:
|
||||
logger.info(f" -> {self.local_config['strategy']} : too few trades. "
|
||||
f"We only found {self.current_analysis.total_signals} trades. "
|
||||
f"Hint: Extend the timerange "
|
||||
f"to get at least {self.local_config['minimum_trade_amount']} "
|
||||
f"or lower the value of minimum_trade_amount.")
|
||||
self.failed_bias_check = True
|
||||
elif (self.current_analysis.false_entry_signals > 0 or
|
||||
self.current_analysis.false_exit_signals > 0 or
|
||||
len(self.current_analysis.false_indicators) > 0):
|
||||
logger.info(f" => {self.local_config['strategy']} : bias detected!")
|
||||
self.current_analysis.has_bias = True
|
||||
self.failed_bias_check = False
|
||||
else:
|
||||
logger.info(self.local_config['strategy'] + ": no bias detected")
|
||||
self.failed_bias_check = False
|
||||
202
freqtrade/optimize/lookahead_analysis_helpers.py
Normal file
202
freqtrade/optimize/lookahead_analysis_helpers.py
Normal file
@@ -0,0 +1,202 @@
|
||||
import logging
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.optimize.lookahead_analysis import LookaheadAnalysis
|
||||
from freqtrade.resolvers import StrategyResolver
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class LookaheadAnalysisSubFunctions:
|
||||
|
||||
@staticmethod
|
||||
def text_table_lookahead_analysis_instances(
|
||||
config: Dict[str, Any],
|
||||
lookahead_instances: List[LookaheadAnalysis]):
|
||||
headers = ['filename', 'strategy', 'has_bias', 'total_signals',
|
||||
'biased_entry_signals', 'biased_exit_signals', 'biased_indicators']
|
||||
data = []
|
||||
for inst in lookahead_instances:
|
||||
if config['minimum_trade_amount'] > inst.current_analysis.total_signals:
|
||||
data.append(
|
||||
[
|
||||
inst.strategy_obj['location'].parts[-1],
|
||||
inst.strategy_obj['name'],
|
||||
"too few trades caught "
|
||||
f"({inst.current_analysis.total_signals}/{config['minimum_trade_amount']})."
|
||||
f"Test failed."
|
||||
]
|
||||
)
|
||||
elif inst.failed_bias_check:
|
||||
data.append(
|
||||
[
|
||||
inst.strategy_obj['location'].parts[-1],
|
||||
inst.strategy_obj['name'],
|
||||
'error while checking'
|
||||
]
|
||||
)
|
||||
else:
|
||||
data.append(
|
||||
[
|
||||
inst.strategy_obj['location'].parts[-1],
|
||||
inst.strategy_obj['name'],
|
||||
inst.current_analysis.has_bias,
|
||||
inst.current_analysis.total_signals,
|
||||
inst.current_analysis.false_entry_signals,
|
||||
inst.current_analysis.false_exit_signals,
|
||||
", ".join(inst.current_analysis.false_indicators)
|
||||
]
|
||||
)
|
||||
from tabulate import tabulate
|
||||
table = tabulate(data, headers=headers, tablefmt="orgtbl")
|
||||
print(table)
|
||||
return table, headers, data
|
||||
|
||||
@staticmethod
|
||||
def export_to_csv(config: Dict[str, Any], lookahead_analysis: List[LookaheadAnalysis]):
|
||||
def add_or_update_row(df, row_data):
|
||||
if (
|
||||
(df['filename'] == row_data['filename']) &
|
||||
(df['strategy'] == row_data['strategy'])
|
||||
).any():
|
||||
# Update existing row
|
||||
pd_series = pd.DataFrame([row_data])
|
||||
df.loc[
|
||||
(df['filename'] == row_data['filename']) &
|
||||
(df['strategy'] == row_data['strategy'])
|
||||
] = pd_series
|
||||
else:
|
||||
# Add new row
|
||||
df = pd.concat([df, pd.DataFrame([row_data], columns=df.columns)])
|
||||
|
||||
return df
|
||||
|
||||
if Path(config['lookahead_analysis_exportfilename']).exists():
|
||||
# Read CSV file into a pandas dataframe
|
||||
csv_df = pd.read_csv(config['lookahead_analysis_exportfilename'])
|
||||
else:
|
||||
# Create a new empty DataFrame with the desired column names and set the index
|
||||
csv_df = pd.DataFrame(columns=[
|
||||
'filename', 'strategy', 'has_bias', 'total_signals',
|
||||
'biased_entry_signals', 'biased_exit_signals', 'biased_indicators'
|
||||
],
|
||||
index=None)
|
||||
|
||||
for inst in lookahead_analysis:
|
||||
# only update if
|
||||
if (inst.current_analysis.total_signals > config['minimum_trade_amount']
|
||||
and inst.failed_bias_check is not True):
|
||||
new_row_data = {'filename': inst.strategy_obj['location'].parts[-1],
|
||||
'strategy': inst.strategy_obj['name'],
|
||||
'has_bias': inst.current_analysis.has_bias,
|
||||
'total_signals':
|
||||
int(inst.current_analysis.total_signals),
|
||||
'biased_entry_signals':
|
||||
int(inst.current_analysis.false_entry_signals),
|
||||
'biased_exit_signals':
|
||||
int(inst.current_analysis.false_exit_signals),
|
||||
'biased_indicators':
|
||||
",".join(inst.current_analysis.false_indicators)}
|
||||
csv_df = add_or_update_row(csv_df, new_row_data)
|
||||
|
||||
# Fill NaN values with a default value (e.g., 0)
|
||||
csv_df['total_signals'] = csv_df['total_signals'].fillna(0)
|
||||
csv_df['biased_entry_signals'] = csv_df['biased_entry_signals'].fillna(0)
|
||||
csv_df['biased_exit_signals'] = csv_df['biased_exit_signals'].fillna(0)
|
||||
|
||||
# Convert columns to integers
|
||||
csv_df['total_signals'] = csv_df['total_signals'].astype(int)
|
||||
csv_df['biased_entry_signals'] = csv_df['biased_entry_signals'].astype(int)
|
||||
csv_df['biased_exit_signals'] = csv_df['biased_exit_signals'].astype(int)
|
||||
|
||||
logger.info(f"saving {config['lookahead_analysis_exportfilename']}")
|
||||
csv_df.to_csv(config['lookahead_analysis_exportfilename'], index=False)
|
||||
|
||||
@staticmethod
|
||||
def calculate_config_overrides(config: Config):
|
||||
if config['targeted_trade_amount'] < config['minimum_trade_amount']:
|
||||
# this combo doesn't make any sense.
|
||||
raise OperationalException(
|
||||
"Targeted trade amount can't be smaller than minimum trade amount."
|
||||
)
|
||||
if len(config['pairs']) > config['max_open_trades']:
|
||||
logger.info('Max_open_trades were less than amount of pairs. '
|
||||
'Set max_open_trades to amount of pairs just to avoid false positives.')
|
||||
config['max_open_trades'] = len(config['pairs'])
|
||||
|
||||
min_dry_run_wallet = 1000000000
|
||||
if config['dry_run_wallet'] < min_dry_run_wallet:
|
||||
logger.info('Dry run wallet was not set to 1 billion, pushing it up there '
|
||||
'just to avoid false positives')
|
||||
config['dry_run_wallet'] = min_dry_run_wallet
|
||||
|
||||
# enforce cache to be 'none', shift it to 'none' if not already
|
||||
# (since the default value is 'day')
|
||||
if config.get('backtest_cache') is None:
|
||||
config['backtest_cache'] = 'none'
|
||||
elif config['backtest_cache'] != 'none':
|
||||
logger.info(f"backtest_cache = "
|
||||
f"{config['backtest_cache']} detected. "
|
||||
f"Inside lookahead-analysis it is enforced to be 'none'. "
|
||||
f"Changed it to 'none'")
|
||||
config['backtest_cache'] = 'none'
|
||||
return config
|
||||
|
||||
@staticmethod
|
||||
def initialize_single_lookahead_analysis(config: Config, strategy_obj: Dict[str, Any]):
|
||||
|
||||
logger.info(f"Bias test of {Path(strategy_obj['location']).name} started.")
|
||||
start = time.perf_counter()
|
||||
current_instance = LookaheadAnalysis(config, strategy_obj)
|
||||
current_instance.start()
|
||||
elapsed = time.perf_counter() - start
|
||||
logger.info(f"Checking look ahead bias via backtests "
|
||||
f"of {Path(strategy_obj['location']).name} "
|
||||
f"took {elapsed:.0f} seconds.")
|
||||
return current_instance
|
||||
|
||||
@staticmethod
|
||||
def start(config: Config):
|
||||
config = LookaheadAnalysisSubFunctions.calculate_config_overrides(config)
|
||||
|
||||
strategy_objs = StrategyResolver.search_all_objects(
|
||||
config, enum_failed=False, recursive=config.get('recursive_strategy_search', False))
|
||||
|
||||
lookaheadAnalysis_instances = []
|
||||
|
||||
# unify --strategy and --strategy_list to one list
|
||||
if not (strategy_list := config.get('strategy_list', [])):
|
||||
if config.get('strategy') is None:
|
||||
raise OperationalException(
|
||||
"No Strategy specified. Please specify a strategy via --strategy or "
|
||||
"--strategy_list"
|
||||
)
|
||||
strategy_list = [config['strategy']]
|
||||
|
||||
# check if strategies can be properly loaded, only check them if they can be.
|
||||
for strat in strategy_list:
|
||||
for strategy_obj in strategy_objs:
|
||||
if strategy_obj['name'] == strat and strategy_obj not in strategy_list:
|
||||
lookaheadAnalysis_instances.append(
|
||||
LookaheadAnalysisSubFunctions.initialize_single_lookahead_analysis(
|
||||
config, strategy_obj))
|
||||
break
|
||||
|
||||
# report the results
|
||||
if lookaheadAnalysis_instances:
|
||||
LookaheadAnalysisSubFunctions.text_table_lookahead_analysis_instances(
|
||||
config, lookaheadAnalysis_instances)
|
||||
if config.get('lookahead_analysis_exportfilename') is not None:
|
||||
LookaheadAnalysisSubFunctions.export_to_csv(config, lookaheadAnalysis_instances)
|
||||
else:
|
||||
logger.error("There were no strategies specified neither through "
|
||||
"--strategy nor through "
|
||||
"--strategy_list "
|
||||
"or timeframe was not specified.")
|
||||
18
freqtrade/optimize/optimize_reports/__init__.py
Normal file
18
freqtrade/optimize/optimize_reports/__init__.py
Normal file
@@ -0,0 +1,18 @@
|
||||
# flake8: noqa: F401
|
||||
from freqtrade.optimize.optimize_reports.bt_output import (generate_edge_table,
|
||||
generate_wins_draws_losses,
|
||||
show_backtest_result,
|
||||
show_backtest_results,
|
||||
show_sorted_pairlist,
|
||||
text_table_add_metrics,
|
||||
text_table_bt_results,
|
||||
text_table_exit_reason,
|
||||
text_table_periodic_breakdown,
|
||||
text_table_strategy, text_table_tags)
|
||||
from freqtrade.optimize.optimize_reports.bt_storage import (store_backtest_analysis_results,
|
||||
store_backtest_stats)
|
||||
from freqtrade.optimize.optimize_reports.optimize_reports import (
|
||||
generate_all_periodic_breakdown_stats, generate_backtest_stats, generate_daily_stats,
|
||||
generate_exit_reason_stats, generate_pair_metrics, generate_periodic_breakdown_stats,
|
||||
generate_rejected_signals, generate_strategy_comparison, generate_strategy_stats,
|
||||
generate_tag_metrics, generate_trade_signal_candles, generate_trading_stats)
|
||||
418
freqtrade/optimize/optimize_reports/bt_output.py
Normal file
418
freqtrade/optimize/optimize_reports/bt_output.py
Normal file
@@ -0,0 +1,418 @@
|
||||
import logging
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from tabulate import tabulate
|
||||
|
||||
from freqtrade.constants import UNLIMITED_STAKE_AMOUNT, Config
|
||||
from freqtrade.misc import decimals_per_coin, round_coin_value
|
||||
from freqtrade.optimize.optimize_reports.optimize_reports import generate_periodic_breakdown_stats
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _get_line_floatfmt(stake_currency: str) -> List[str]:
|
||||
"""
|
||||
Generate floatformat (goes in line with _generate_result_line())
|
||||
"""
|
||||
return ['s', 'd', '.2f', '.2f', f'.{decimals_per_coin(stake_currency)}f',
|
||||
'.2f', 'd', 's', 's']
|
||||
|
||||
|
||||
def _get_line_header(first_column: str, stake_currency: str,
|
||||
direction: str = 'Entries') -> List[str]:
|
||||
"""
|
||||
Generate header lines (goes in line with _generate_result_line())
|
||||
"""
|
||||
return [first_column, direction, 'Avg Profit %', 'Cum Profit %',
|
||||
f'Tot Profit {stake_currency}', 'Tot Profit %', 'Avg Duration',
|
||||
'Win Draw Loss Win%']
|
||||
|
||||
|
||||
def generate_wins_draws_losses(wins, draws, losses):
|
||||
if wins > 0 and losses == 0:
|
||||
wl_ratio = '100'
|
||||
elif wins == 0:
|
||||
wl_ratio = '0'
|
||||
else:
|
||||
wl_ratio = f'{100.0 / (wins + draws + losses) * wins:.1f}' if losses > 0 else '100'
|
||||
return f'{wins:>4} {draws:>4} {losses:>4} {wl_ratio:>4}'
|
||||
|
||||
|
||||
def text_table_bt_results(pair_results: List[Dict[str, Any]], stake_currency: str) -> str:
|
||||
"""
|
||||
Generates and returns a text table for the given backtest data and the results dataframe
|
||||
:param pair_results: List of Dictionaries - one entry per pair + final TOTAL row
|
||||
:param stake_currency: stake-currency - used to correctly name headers
|
||||
:return: pretty printed table with tabulate as string
|
||||
"""
|
||||
|
||||
headers = _get_line_header('Pair', stake_currency)
|
||||
floatfmt = _get_line_floatfmt(stake_currency)
|
||||
output = [[
|
||||
t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'],
|
||||
t['profit_total_pct'], t['duration_avg'],
|
||||
generate_wins_draws_losses(t['wins'], t['draws'], t['losses'])
|
||||
] for t in pair_results]
|
||||
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
||||
return tabulate(output, headers=headers,
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
|
||||
|
||||
|
||||
def text_table_exit_reason(exit_reason_stats: List[Dict[str, Any]], stake_currency: str) -> str:
|
||||
"""
|
||||
Generate small table outlining Backtest results
|
||||
:param sell_reason_stats: Exit reason metrics
|
||||
:param stake_currency: Stakecurrency used
|
||||
:return: pretty printed table with tabulate as string
|
||||
"""
|
||||
headers = [
|
||||
'Exit Reason',
|
||||
'Exits',
|
||||
'Win Draws Loss Win%',
|
||||
'Avg Profit %',
|
||||
'Cum Profit %',
|
||||
f'Tot Profit {stake_currency}',
|
||||
'Tot Profit %',
|
||||
]
|
||||
|
||||
output = [[
|
||||
t.get('exit_reason', t.get('sell_reason')), t['trades'],
|
||||
generate_wins_draws_losses(t['wins'], t['draws'], t['losses']),
|
||||
t['profit_mean_pct'], t['profit_sum_pct'],
|
||||
round_coin_value(t['profit_total_abs'], stake_currency, False),
|
||||
t['profit_total_pct'],
|
||||
] for t in exit_reason_stats]
|
||||
return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right")
|
||||
|
||||
|
||||
def text_table_tags(tag_type: str, tag_results: List[Dict[str, Any]], stake_currency: str) -> str:
|
||||
"""
|
||||
Generates and returns a text table for the given backtest data and the results dataframe
|
||||
:param pair_results: List of Dictionaries - one entry per pair + final TOTAL row
|
||||
:param stake_currency: stake-currency - used to correctly name headers
|
||||
:return: pretty printed table with tabulate as string
|
||||
"""
|
||||
if (tag_type == "enter_tag"):
|
||||
headers = _get_line_header("TAG", stake_currency)
|
||||
else:
|
||||
headers = _get_line_header("TAG", stake_currency, 'Exits')
|
||||
floatfmt = _get_line_floatfmt(stake_currency)
|
||||
output = [
|
||||
[
|
||||
t['key'] if t['key'] is not None and len(
|
||||
t['key']) > 0 else "OTHER",
|
||||
t['trades'],
|
||||
t['profit_mean_pct'],
|
||||
t['profit_sum_pct'],
|
||||
t['profit_total_abs'],
|
||||
t['profit_total_pct'],
|
||||
t['duration_avg'],
|
||||
generate_wins_draws_losses(
|
||||
t['wins'],
|
||||
t['draws'],
|
||||
t['losses'])] for t in tag_results]
|
||||
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
||||
return tabulate(output, headers=headers,
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
|
||||
|
||||
|
||||
def text_table_periodic_breakdown(days_breakdown_stats: List[Dict[str, Any]],
|
||||
stake_currency: str, period: str) -> str:
|
||||
"""
|
||||
Generate small table with Backtest results by days
|
||||
:param days_breakdown_stats: Days breakdown metrics
|
||||
:param stake_currency: Stakecurrency used
|
||||
:return: pretty printed table with tabulate as string
|
||||
"""
|
||||
headers = [
|
||||
period.capitalize(),
|
||||
f'Tot Profit {stake_currency}',
|
||||
'Wins',
|
||||
'Draws',
|
||||
'Losses',
|
||||
]
|
||||
output = [[
|
||||
d['date'], round_coin_value(d['profit_abs'], stake_currency, False),
|
||||
d['wins'], d['draws'], d['loses'],
|
||||
] for d in days_breakdown_stats]
|
||||
return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right")
|
||||
|
||||
|
||||
def text_table_strategy(strategy_results, stake_currency: str) -> str:
|
||||
"""
|
||||
Generate summary table per strategy
|
||||
:param strategy_results: Dict of <Strategyname: DataFrame> containing results for all strategies
|
||||
:param stake_currency: stake-currency - used to correctly name headers
|
||||
:return: pretty printed table with tabulate as string
|
||||
"""
|
||||
floatfmt = _get_line_floatfmt(stake_currency)
|
||||
headers = _get_line_header('Strategy', stake_currency)
|
||||
# _get_line_header() is also used for per-pair summary. Per-pair drawdown is mostly useless
|
||||
# therefore we slip this column in only for strategy summary here.
|
||||
headers.append('Drawdown')
|
||||
|
||||
# Align drawdown string on the center two space separator.
|
||||
if 'max_drawdown_account' in strategy_results[0]:
|
||||
drawdown = [f'{t["max_drawdown_account"] * 100:.2f}' for t in strategy_results]
|
||||
else:
|
||||
# Support for prior backtest results
|
||||
drawdown = [f'{t["max_drawdown_per"]:.2f}' for t in strategy_results]
|
||||
|
||||
dd_pad_abs = max([len(t['max_drawdown_abs']) for t in strategy_results])
|
||||
dd_pad_per = max([len(dd) for dd in drawdown])
|
||||
drawdown = [f'{t["max_drawdown_abs"]:>{dd_pad_abs}} {stake_currency} {dd:>{dd_pad_per}}%'
|
||||
for t, dd in zip(strategy_results, drawdown)]
|
||||
|
||||
output = [[
|
||||
t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'],
|
||||
t['profit_total_pct'], t['duration_avg'],
|
||||
generate_wins_draws_losses(t['wins'], t['draws'], t['losses']), drawdown]
|
||||
for t, drawdown in zip(strategy_results, drawdown)]
|
||||
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
||||
return tabulate(output, headers=headers,
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
|
||||
|
||||
|
||||
def text_table_add_metrics(strat_results: Dict) -> str:
|
||||
if len(strat_results['trades']) > 0:
|
||||
best_trade = max(strat_results['trades'], key=lambda x: x['profit_ratio'])
|
||||
worst_trade = min(strat_results['trades'], key=lambda x: x['profit_ratio'])
|
||||
|
||||
short_metrics = [
|
||||
('', ''), # Empty line to improve readability
|
||||
('Long / Short',
|
||||
f"{strat_results.get('trade_count_long', 'total_trades')} / "
|
||||
f"{strat_results.get('trade_count_short', 0)}"),
|
||||
('Total profit Long %', f"{strat_results['profit_total_long']:.2%}"),
|
||||
('Total profit Short %', f"{strat_results['profit_total_short']:.2%}"),
|
||||
('Absolute profit Long', round_coin_value(strat_results['profit_total_long_abs'],
|
||||
strat_results['stake_currency'])),
|
||||
('Absolute profit Short', round_coin_value(strat_results['profit_total_short_abs'],
|
||||
strat_results['stake_currency'])),
|
||||
] if strat_results.get('trade_count_short', 0) > 0 else []
|
||||
|
||||
drawdown_metrics = []
|
||||
if 'max_relative_drawdown' in strat_results:
|
||||
# Compatibility to show old hyperopt results
|
||||
drawdown_metrics.append(
|
||||
('Max % of account underwater', f"{strat_results['max_relative_drawdown']:.2%}")
|
||||
)
|
||||
drawdown_metrics.extend([
|
||||
('Absolute Drawdown (Account)', f"{strat_results['max_drawdown_account']:.2%}")
|
||||
if 'max_drawdown_account' in strat_results else (
|
||||
'Drawdown', f"{strat_results['max_drawdown']:.2%}"),
|
||||
('Absolute Drawdown', round_coin_value(strat_results['max_drawdown_abs'],
|
||||
strat_results['stake_currency'])),
|
||||
('Drawdown high', round_coin_value(strat_results['max_drawdown_high'],
|
||||
strat_results['stake_currency'])),
|
||||
('Drawdown low', round_coin_value(strat_results['max_drawdown_low'],
|
||||
strat_results['stake_currency'])),
|
||||
('Drawdown Start', strat_results['drawdown_start']),
|
||||
('Drawdown End', strat_results['drawdown_end']),
|
||||
])
|
||||
|
||||
entry_adjustment_metrics = [
|
||||
('Canceled Trade Entries', strat_results.get('canceled_trade_entries', 'N/A')),
|
||||
('Canceled Entry Orders', strat_results.get('canceled_entry_orders', 'N/A')),
|
||||
('Replaced Entry Orders', strat_results.get('replaced_entry_orders', 'N/A')),
|
||||
] if strat_results.get('canceled_entry_orders', 0) > 0 else []
|
||||
|
||||
# Newly added fields should be ignored if they are missing in strat_results. hyperopt-show
|
||||
# command stores these results and newer version of freqtrade must be able to handle old
|
||||
# results with missing new fields.
|
||||
metrics = [
|
||||
('Backtesting from', strat_results['backtest_start']),
|
||||
('Backtesting to', strat_results['backtest_end']),
|
||||
('Max open trades', strat_results['max_open_trades']),
|
||||
('', ''), # Empty line to improve readability
|
||||
('Total/Daily Avg Trades',
|
||||
f"{strat_results['total_trades']} / {strat_results['trades_per_day']}"),
|
||||
|
||||
('Starting balance', round_coin_value(strat_results['starting_balance'],
|
||||
strat_results['stake_currency'])),
|
||||
('Final balance', round_coin_value(strat_results['final_balance'],
|
||||
strat_results['stake_currency'])),
|
||||
('Absolute profit ', round_coin_value(strat_results['profit_total_abs'],
|
||||
strat_results['stake_currency'])),
|
||||
('Total profit %', f"{strat_results['profit_total']:.2%}"),
|
||||
('CAGR %', f"{strat_results['cagr']:.2%}" if 'cagr' in strat_results else 'N/A'),
|
||||
('Sortino', f"{strat_results['sortino']:.2f}" if 'sortino' in strat_results else 'N/A'),
|
||||
('Sharpe', f"{strat_results['sharpe']:.2f}" if 'sharpe' in strat_results else 'N/A'),
|
||||
('Calmar', f"{strat_results['calmar']:.2f}" if 'calmar' in strat_results else 'N/A'),
|
||||
('Profit factor', f'{strat_results["profit_factor"]:.2f}' if 'profit_factor'
|
||||
in strat_results else 'N/A'),
|
||||
('Expectancy (Ratio)', (
|
||||
f"{strat_results['expectancy']:.2f} ({strat_results['expectancy_ratio']:.2f})" if
|
||||
'expectancy_ratio' in strat_results else 'N/A')),
|
||||
('Trades per day', strat_results['trades_per_day']),
|
||||
('Avg. daily profit %',
|
||||
f"{(strat_results['profit_total'] / strat_results['backtest_days']):.2%}"),
|
||||
('Avg. stake amount', round_coin_value(strat_results['avg_stake_amount'],
|
||||
strat_results['stake_currency'])),
|
||||
('Total trade volume', round_coin_value(strat_results['total_volume'],
|
||||
strat_results['stake_currency'])),
|
||||
*short_metrics,
|
||||
('', ''), # Empty line to improve readability
|
||||
('Best Pair', f"{strat_results['best_pair']['key']} "
|
||||
f"{strat_results['best_pair']['profit_sum']:.2%}"),
|
||||
('Worst Pair', f"{strat_results['worst_pair']['key']} "
|
||||
f"{strat_results['worst_pair']['profit_sum']:.2%}"),
|
||||
('Best trade', f"{best_trade['pair']} {best_trade['profit_ratio']:.2%}"),
|
||||
('Worst trade', f"{worst_trade['pair']} "
|
||||
f"{worst_trade['profit_ratio']:.2%}"),
|
||||
|
||||
('Best day', round_coin_value(strat_results['backtest_best_day_abs'],
|
||||
strat_results['stake_currency'])),
|
||||
('Worst day', round_coin_value(strat_results['backtest_worst_day_abs'],
|
||||
strat_results['stake_currency'])),
|
||||
('Days win/draw/lose', f"{strat_results['winning_days']} / "
|
||||
f"{strat_results['draw_days']} / {strat_results['losing_days']}"),
|
||||
('Avg. Duration Winners', f"{strat_results['winner_holding_avg']}"),
|
||||
('Avg. Duration Loser', f"{strat_results['loser_holding_avg']}"),
|
||||
('Max Consecutive Wins / Loss',
|
||||
f"{strat_results['max_consecutive_wins']} / {strat_results['max_consecutive_losses']}"
|
||||
if 'max_consecutive_losses' in strat_results else 'N/A'),
|
||||
('Rejected Entry signals', strat_results.get('rejected_signals', 'N/A')),
|
||||
('Entry/Exit Timeouts',
|
||||
f"{strat_results.get('timedout_entry_orders', 'N/A')} / "
|
||||
f"{strat_results.get('timedout_exit_orders', 'N/A')}"),
|
||||
*entry_adjustment_metrics,
|
||||
('', ''), # Empty line to improve readability
|
||||
|
||||
('Min balance', round_coin_value(strat_results['csum_min'],
|
||||
strat_results['stake_currency'])),
|
||||
('Max balance', round_coin_value(strat_results['csum_max'],
|
||||
strat_results['stake_currency'])),
|
||||
|
||||
*drawdown_metrics,
|
||||
('Market change', f"{strat_results['market_change']:.2%}"),
|
||||
]
|
||||
|
||||
return tabulate(metrics, headers=["Metric", "Value"], tablefmt="orgtbl")
|
||||
else:
|
||||
start_balance = round_coin_value(strat_results['starting_balance'],
|
||||
strat_results['stake_currency'])
|
||||
stake_amount = round_coin_value(
|
||||
strat_results['stake_amount'], strat_results['stake_currency']
|
||||
) if strat_results['stake_amount'] != UNLIMITED_STAKE_AMOUNT else 'unlimited'
|
||||
|
||||
message = ("No trades made. "
|
||||
f"Your starting balance was {start_balance}, "
|
||||
f"and your stake was {stake_amount}."
|
||||
)
|
||||
return message
|
||||
|
||||
|
||||
def show_backtest_result(strategy: str, results: Dict[str, Any], stake_currency: str,
|
||||
backtest_breakdown=[]):
|
||||
"""
|
||||
Print results for one strategy
|
||||
"""
|
||||
# Print results
|
||||
print(f"Result for strategy {strategy}")
|
||||
table = text_table_bt_results(results['results_per_pair'], stake_currency=stake_currency)
|
||||
if isinstance(table, str):
|
||||
print(' BACKTESTING REPORT '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
table = text_table_bt_results(results['left_open_trades'], stake_currency=stake_currency)
|
||||
if isinstance(table, str) and len(table) > 0:
|
||||
print(' LEFT OPEN TRADES REPORT '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
if (results.get('results_per_enter_tag') is not None
|
||||
or results.get('results_per_buy_tag') is not None):
|
||||
# results_per_buy_tag is deprecated and should be removed 2 versions after short golive.
|
||||
table = text_table_tags(
|
||||
"enter_tag",
|
||||
results.get('results_per_enter_tag', results.get('results_per_buy_tag')),
|
||||
stake_currency=stake_currency)
|
||||
|
||||
if isinstance(table, str) and len(table) > 0:
|
||||
print(' ENTER TAG STATS '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
exit_reasons = results.get('exit_reason_summary', results.get('sell_reason_summary'))
|
||||
table = text_table_exit_reason(exit_reason_stats=exit_reasons,
|
||||
stake_currency=stake_currency)
|
||||
if isinstance(table, str) and len(table) > 0:
|
||||
print(' EXIT REASON STATS '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
for period in backtest_breakdown:
|
||||
if period in results.get('periodic_breakdown', {}):
|
||||
days_breakdown_stats = results['periodic_breakdown'][period]
|
||||
else:
|
||||
days_breakdown_stats = generate_periodic_breakdown_stats(
|
||||
trade_list=results['trades'], period=period)
|
||||
table = text_table_periodic_breakdown(days_breakdown_stats=days_breakdown_stats,
|
||||
stake_currency=stake_currency, period=period)
|
||||
if isinstance(table, str) and len(table) > 0:
|
||||
print(f' {period.upper()} BREAKDOWN '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
table = text_table_add_metrics(results)
|
||||
if isinstance(table, str) and len(table) > 0:
|
||||
print(' SUMMARY METRICS '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
if isinstance(table, str) and len(table) > 0:
|
||||
print('=' * len(table.splitlines()[0]))
|
||||
|
||||
print()
|
||||
|
||||
|
||||
def show_backtest_results(config: Config, backtest_stats: Dict):
|
||||
stake_currency = config['stake_currency']
|
||||
|
||||
for strategy, results in backtest_stats['strategy'].items():
|
||||
show_backtest_result(
|
||||
strategy, results, stake_currency,
|
||||
config.get('backtest_breakdown', []))
|
||||
|
||||
if len(backtest_stats['strategy']) > 0:
|
||||
# Print Strategy summary table
|
||||
|
||||
table = text_table_strategy(backtest_stats['strategy_comparison'], stake_currency)
|
||||
print(f"Backtested {results['backtest_start']} -> {results['backtest_end']} |"
|
||||
f" Max open trades : {results['max_open_trades']}")
|
||||
print(' STRATEGY SUMMARY '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
print('=' * len(table.splitlines()[0]))
|
||||
print('\nFor more details, please look at the detail tables above')
|
||||
|
||||
|
||||
def show_sorted_pairlist(config: Config, backtest_stats: Dict):
|
||||
if config.get('backtest_show_pair_list', False):
|
||||
for strategy, results in backtest_stats['strategy'].items():
|
||||
print(f"Pairs for Strategy {strategy}: \n[")
|
||||
for result in results['results_per_pair']:
|
||||
if result["key"] != 'TOTAL':
|
||||
print(f'"{result["key"]}", // {result["profit_mean"]:.2%}')
|
||||
print("]")
|
||||
|
||||
|
||||
def generate_edge_table(results: dict) -> str:
|
||||
floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', 'd', 'd')
|
||||
tabular_data = []
|
||||
headers = ['Pair', 'Stoploss', 'Win Rate', 'Risk Reward Ratio',
|
||||
'Required Risk Reward', 'Expectancy', 'Total Number of Trades',
|
||||
'Average Duration (min)']
|
||||
|
||||
for result in results.items():
|
||||
if result[1].nb_trades > 0:
|
||||
tabular_data.append([
|
||||
result[0],
|
||||
result[1].stoploss,
|
||||
result[1].winrate,
|
||||
result[1].risk_reward_ratio,
|
||||
result[1].required_risk_reward,
|
||||
result[1].expectancy,
|
||||
result[1].nb_trades,
|
||||
round(result[1].avg_trade_duration)
|
||||
])
|
||||
|
||||
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
||||
return tabulate(tabular_data, headers=headers,
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
|
||||
71
freqtrade/optimize/optimize_reports/bt_storage.py
Normal file
71
freqtrade/optimize/optimize_reports/bt_storage.py
Normal file
@@ -0,0 +1,71 @@
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.constants import LAST_BT_RESULT_FN
|
||||
from freqtrade.misc import file_dump_joblib, file_dump_json
|
||||
from freqtrade.optimize.backtest_caching import get_backtest_metadata_filename
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def store_backtest_stats(
|
||||
recordfilename: Path, stats: Dict[str, DataFrame], dtappendix: str) -> None:
|
||||
"""
|
||||
Stores backtest results
|
||||
:param recordfilename: Path object, which can either be a filename or a directory.
|
||||
Filenames will be appended with a timestamp right before the suffix
|
||||
while for directories, <directory>/backtest-result-<datetime>.json will be used as filename
|
||||
:param stats: Dataframe containing the backtesting statistics
|
||||
:param dtappendix: Datetime to use for the filename
|
||||
"""
|
||||
if recordfilename.is_dir():
|
||||
filename = (recordfilename / f'backtest-result-{dtappendix}.json')
|
||||
else:
|
||||
filename = Path.joinpath(
|
||||
recordfilename.parent, f'{recordfilename.stem}-{dtappendix}'
|
||||
).with_suffix(recordfilename.suffix)
|
||||
|
||||
# Store metadata separately.
|
||||
file_dump_json(get_backtest_metadata_filename(filename), stats['metadata'])
|
||||
del stats['metadata']
|
||||
|
||||
file_dump_json(filename, stats)
|
||||
|
||||
latest_filename = Path.joinpath(filename.parent, LAST_BT_RESULT_FN)
|
||||
file_dump_json(latest_filename, {'latest_backtest': str(filename.name)})
|
||||
|
||||
|
||||
def _store_backtest_analysis_data(
|
||||
recordfilename: Path, data: Dict[str, Dict],
|
||||
dtappendix: str, name: str) -> Path:
|
||||
"""
|
||||
Stores backtest trade candles for analysis
|
||||
:param recordfilename: Path object, which can either be a filename or a directory.
|
||||
Filenames will be appended with a timestamp right before the suffix
|
||||
while for directories, <directory>/backtest-result-<datetime>_<name>.pkl will be used
|
||||
as filename
|
||||
:param candles: Dict containing the backtesting data for analysis
|
||||
:param dtappendix: Datetime to use for the filename
|
||||
:param name: Name to use for the file, e.g. signals, rejected
|
||||
"""
|
||||
if recordfilename.is_dir():
|
||||
filename = (recordfilename / f'backtest-result-{dtappendix}_{name}.pkl')
|
||||
else:
|
||||
filename = Path.joinpath(
|
||||
recordfilename.parent, f'{recordfilename.stem}-{dtappendix}_{name}.pkl'
|
||||
)
|
||||
|
||||
file_dump_joblib(filename, data)
|
||||
|
||||
return filename
|
||||
|
||||
|
||||
def store_backtest_analysis_results(
|
||||
recordfilename: Path, candles: Dict[str, Dict], trades: Dict[str, Dict],
|
||||
dtappendix: str) -> None:
|
||||
_store_backtest_analysis_data(recordfilename, candles, dtappendix, "signals")
|
||||
_store_backtest_analysis_data(recordfilename, trades, dtappendix, "rejected")
|
||||
@@ -1,83 +1,21 @@
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Union
|
||||
from typing import Any, Dict, List, Tuple, Union
|
||||
|
||||
from pandas import DataFrame, concat, to_datetime
|
||||
from tabulate import tabulate
|
||||
import numpy as np
|
||||
from pandas import DataFrame, Series, concat, to_datetime
|
||||
|
||||
from freqtrade.constants import (BACKTEST_BREAKDOWNS, DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN,
|
||||
UNLIMITED_STAKE_AMOUNT, Config, IntOrInf)
|
||||
from freqtrade.constants import BACKTEST_BREAKDOWNS, DATETIME_PRINT_FORMAT, IntOrInf
|
||||
from freqtrade.data.metrics import (calculate_cagr, calculate_calmar, calculate_csum,
|
||||
calculate_expectancy, calculate_market_change,
|
||||
calculate_max_drawdown, calculate_sharpe, calculate_sortino)
|
||||
from freqtrade.misc import decimals_per_coin, file_dump_joblib, file_dump_json, round_coin_value
|
||||
from freqtrade.optimize.backtest_caching import get_backtest_metadata_filename
|
||||
from freqtrade.misc import decimals_per_coin, round_coin_value
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def store_backtest_stats(
|
||||
recordfilename: Path, stats: Dict[str, DataFrame], dtappendix: str) -> None:
|
||||
"""
|
||||
Stores backtest results
|
||||
:param recordfilename: Path object, which can either be a filename or a directory.
|
||||
Filenames will be appended with a timestamp right before the suffix
|
||||
while for directories, <directory>/backtest-result-<datetime>.json will be used as filename
|
||||
:param stats: Dataframe containing the backtesting statistics
|
||||
:param dtappendix: Datetime to use for the filename
|
||||
"""
|
||||
if recordfilename.is_dir():
|
||||
filename = (recordfilename / f'backtest-result-{dtappendix}.json')
|
||||
else:
|
||||
filename = Path.joinpath(
|
||||
recordfilename.parent, f'{recordfilename.stem}-{dtappendix}'
|
||||
).with_suffix(recordfilename.suffix)
|
||||
|
||||
# Store metadata separately.
|
||||
file_dump_json(get_backtest_metadata_filename(filename), stats['metadata'])
|
||||
del stats['metadata']
|
||||
|
||||
file_dump_json(filename, stats)
|
||||
|
||||
latest_filename = Path.joinpath(filename.parent, LAST_BT_RESULT_FN)
|
||||
file_dump_json(latest_filename, {'latest_backtest': str(filename.name)})
|
||||
|
||||
|
||||
def _store_backtest_analysis_data(
|
||||
recordfilename: Path, data: Dict[str, Dict],
|
||||
dtappendix: str, name: str) -> Path:
|
||||
"""
|
||||
Stores backtest trade candles for analysis
|
||||
:param recordfilename: Path object, which can either be a filename or a directory.
|
||||
Filenames will be appended with a timestamp right before the suffix
|
||||
while for directories, <directory>/backtest-result-<datetime>_<name>.pkl will be used
|
||||
as filename
|
||||
:param candles: Dict containing the backtesting data for analysis
|
||||
:param dtappendix: Datetime to use for the filename
|
||||
:param name: Name to use for the file, e.g. signals, rejected
|
||||
"""
|
||||
if recordfilename.is_dir():
|
||||
filename = (recordfilename / f'backtest-result-{dtappendix}_{name}.pkl')
|
||||
else:
|
||||
filename = Path.joinpath(
|
||||
recordfilename.parent, f'{recordfilename.stem}-{dtappendix}_{name}.pkl'
|
||||
)
|
||||
|
||||
file_dump_joblib(filename, data)
|
||||
|
||||
return filename
|
||||
|
||||
|
||||
def store_backtest_analysis_results(
|
||||
recordfilename: Path, candles: Dict[str, Dict], trades: Dict[str, Dict],
|
||||
dtappendix: str) -> None:
|
||||
_store_backtest_analysis_data(recordfilename, candles, dtappendix, "signals")
|
||||
_store_backtest_analysis_data(recordfilename, trades, dtappendix, "rejected")
|
||||
|
||||
|
||||
def generate_trade_signal_candles(preprocessed_df: Dict[str, DataFrame],
|
||||
bt_results: Dict[str, Any]) -> DataFrame:
|
||||
signal_candles_only = {}
|
||||
@@ -120,34 +58,6 @@ def generate_rejected_signals(preprocessed_df: Dict[str, DataFrame],
|
||||
return rejected_candles_only
|
||||
|
||||
|
||||
def _get_line_floatfmt(stake_currency: str) -> List[str]:
|
||||
"""
|
||||
Generate floatformat (goes in line with _generate_result_line())
|
||||
"""
|
||||
return ['s', 'd', '.2f', '.2f', f'.{decimals_per_coin(stake_currency)}f',
|
||||
'.2f', 'd', 's', 's']
|
||||
|
||||
|
||||
def _get_line_header(first_column: str, stake_currency: str,
|
||||
direction: str = 'Entries') -> List[str]:
|
||||
"""
|
||||
Generate header lines (goes in line with _generate_result_line())
|
||||
"""
|
||||
return [first_column, direction, 'Avg Profit %', 'Cum Profit %',
|
||||
f'Tot Profit {stake_currency}', 'Tot Profit %', 'Avg Duration',
|
||||
'Win Draw Loss Win%']
|
||||
|
||||
|
||||
def generate_wins_draws_losses(wins, draws, losses):
|
||||
if wins > 0 and losses == 0:
|
||||
wl_ratio = '100'
|
||||
elif wins == 0:
|
||||
wl_ratio = '0'
|
||||
else:
|
||||
wl_ratio = f'{100.0 / (wins + draws + losses) * wins:.1f}' if losses > 0 else '100'
|
||||
return f'{wins:>4} {draws:>4} {losses:>4} {wl_ratio:>4}'
|
||||
|
||||
|
||||
def _generate_result_line(result: DataFrame, starting_balance: int, first_column: str) -> Dict:
|
||||
"""
|
||||
Generate one result dict, with "first_column" as key.
|
||||
@@ -178,6 +88,7 @@ def _generate_result_line(result: DataFrame, starting_balance: int, first_column
|
||||
'wins': len(result[result['profit_abs'] > 0]),
|
||||
'draws': len(result[result['profit_abs'] == 0]),
|
||||
'losses': len(result[result['profit_abs'] < 0]),
|
||||
'winrate': len(result[result['profit_abs'] > 0]) / len(result) if len(result) else 0.0,
|
||||
}
|
||||
|
||||
|
||||
@@ -265,6 +176,7 @@ def generate_exit_reason_stats(max_open_trades: IntOrInf, results: DataFrame) ->
|
||||
'wins': len(result[result['profit_abs'] > 0]),
|
||||
'draws': len(result[result['profit_abs'] == 0]),
|
||||
'losses': len(result[result['profit_abs'] < 0]),
|
||||
'winrate': len(result[result['profit_abs'] > 0]) / count if count else 0.0,
|
||||
'profit_mean': profit_mean,
|
||||
'profit_mean_pct': round(profit_mean * 100, 2),
|
||||
'profit_sum': profit_sum,
|
||||
@@ -295,31 +207,6 @@ def generate_strategy_comparison(bt_stats: Dict) -> List[Dict]:
|
||||
return tabular_data
|
||||
|
||||
|
||||
def generate_edge_table(results: dict) -> str:
|
||||
floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', 'd', 'd')
|
||||
tabular_data = []
|
||||
headers = ['Pair', 'Stoploss', 'Win Rate', 'Risk Reward Ratio',
|
||||
'Required Risk Reward', 'Expectancy', 'Total Number of Trades',
|
||||
'Average Duration (min)']
|
||||
|
||||
for result in results.items():
|
||||
if result[1].nb_trades > 0:
|
||||
tabular_data.append([
|
||||
result[0],
|
||||
result[1].stoploss,
|
||||
result[1].winrate,
|
||||
result[1].risk_reward_ratio,
|
||||
result[1].required_risk_reward,
|
||||
result[1].expectancy,
|
||||
result[1].nb_trades,
|
||||
round(result[1].avg_trade_duration)
|
||||
])
|
||||
|
||||
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
||||
return tabulate(tabular_data, headers=headers,
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
|
||||
|
||||
|
||||
def _get_resample_from_period(period: str) -> str:
|
||||
if period == 'day':
|
||||
return '1d'
|
||||
@@ -344,6 +231,7 @@ def generate_periodic_breakdown_stats(trade_list: List, period: str) -> List[Dic
|
||||
wins = sum(day['profit_abs'] > 0)
|
||||
draws = sum(day['profit_abs'] == 0)
|
||||
loses = sum(day['profit_abs'] < 0)
|
||||
trades = (wins + draws + loses)
|
||||
stats.append(
|
||||
{
|
||||
'date': name.strftime('%d/%m/%Y'),
|
||||
@@ -351,7 +239,8 @@ def generate_periodic_breakdown_stats(trade_list: List, period: str) -> List[Dic
|
||||
'profit_abs': profit_abs,
|
||||
'wins': wins,
|
||||
'draws': draws,
|
||||
'loses': loses
|
||||
'loses': loses,
|
||||
'winrate': wins / trades if trades else 0.0,
|
||||
}
|
||||
)
|
||||
return stats
|
||||
@@ -364,6 +253,23 @@ def generate_all_periodic_breakdown_stats(trade_list: List) -> Dict[str, List]:
|
||||
return result
|
||||
|
||||
|
||||
def calc_streak(dataframe: DataFrame) -> Tuple[int, int]:
|
||||
"""
|
||||
Calculate consecutive win and loss streaks
|
||||
:param dataframe: Dataframe containing the trades dataframe, with profit_ratio column
|
||||
:return: Tuple containing consecutive wins and losses
|
||||
"""
|
||||
|
||||
df = Series(np.where(dataframe['profit_ratio'] > 0, 'win', 'loss')).to_frame('result')
|
||||
df['streaks'] = df['result'].ne(df['result'].shift()).cumsum().rename('streaks')
|
||||
df['counter'] = df['streaks'].groupby(df['streaks']).cumcount() + 1
|
||||
res = df.groupby(df['result']).max()
|
||||
#
|
||||
cons_wins = int(res.loc['win', 'counter']) if 'win' in res.index else 0
|
||||
cons_losses = int(res.loc['loss', 'counter']) if 'loss' in res.index else 0
|
||||
return cons_wins, cons_losses
|
||||
|
||||
|
||||
def generate_trading_stats(results: DataFrame) -> Dict[str, Any]:
|
||||
""" Generate overall trade statistics """
|
||||
if len(results) == 0:
|
||||
@@ -371,9 +277,12 @@ def generate_trading_stats(results: DataFrame) -> Dict[str, Any]:
|
||||
'wins': 0,
|
||||
'losses': 0,
|
||||
'draws': 0,
|
||||
'winrate': 0,
|
||||
'holding_avg': timedelta(),
|
||||
'winner_holding_avg': timedelta(),
|
||||
'loser_holding_avg': timedelta(),
|
||||
'max_consecutive_wins': 0,
|
||||
'max_consecutive_losses': 0,
|
||||
}
|
||||
|
||||
winning_trades = results.loc[results['profit_ratio'] > 0]
|
||||
@@ -386,17 +295,21 @@ def generate_trading_stats(results: DataFrame) -> Dict[str, Any]:
|
||||
if not winning_trades.empty else timedelta())
|
||||
loser_holding_avg = (timedelta(minutes=round(losing_trades['trade_duration'].mean()))
|
||||
if not losing_trades.empty else timedelta())
|
||||
winstreak, loss_streak = calc_streak(results)
|
||||
|
||||
return {
|
||||
'wins': len(winning_trades),
|
||||
'losses': len(losing_trades),
|
||||
'draws': len(draw_trades),
|
||||
'winrate': len(winning_trades) / len(results) if len(results) else 0.0,
|
||||
'holding_avg': holding_avg,
|
||||
'holding_avg_s': holding_avg.total_seconds(),
|
||||
'winner_holding_avg': winner_holding_avg,
|
||||
'winner_holding_avg_s': winner_holding_avg.total_seconds(),
|
||||
'loser_holding_avg': loser_holding_avg,
|
||||
'loser_holding_avg_s': loser_holding_avg.total_seconds(),
|
||||
'max_consecutive_wins': winstreak,
|
||||
'max_consecutive_losses': loss_streak,
|
||||
}
|
||||
|
||||
|
||||
@@ -489,6 +402,7 @@ def generate_strategy_stats(pairlist: List[str],
|
||||
losing_profit = results.loc[results['profit_abs'] < 0, 'profit_abs'].sum()
|
||||
profit_factor = winning_profit / abs(losing_profit) if losing_profit else 0.0
|
||||
|
||||
expectancy, expectancy_ratio = calculate_expectancy(results)
|
||||
backtest_days = (max_date - min_date).days or 1
|
||||
strat_stats = {
|
||||
'trades': results.to_dict(orient='records'),
|
||||
@@ -514,7 +428,8 @@ def generate_strategy_stats(pairlist: List[str],
|
||||
'profit_total_long_abs': results.loc[~results['is_short'], 'profit_abs'].sum(),
|
||||
'profit_total_short_abs': results.loc[results['is_short'], 'profit_abs'].sum(),
|
||||
'cagr': calculate_cagr(backtest_days, start_balance, content['final_balance']),
|
||||
'expectancy': calculate_expectancy(results),
|
||||
'expectancy': expectancy,
|
||||
'expectancy_ratio': expectancy_ratio,
|
||||
'sortino': calculate_sortino(results, min_date, max_date, start_balance),
|
||||
'sharpe': calculate_sharpe(results, min_date, max_date, start_balance),
|
||||
'calmar': calculate_calmar(results, min_date, max_date, start_balance),
|
||||
@@ -652,357 +567,3 @@ def generate_backtest_stats(btdata: Dict[str, DataFrame],
|
||||
result['strategy_comparison'] = strategy_results
|
||||
|
||||
return result
|
||||
|
||||
|
||||
###
|
||||
# Start output section
|
||||
###
|
||||
|
||||
def text_table_bt_results(pair_results: List[Dict[str, Any]], stake_currency: str) -> str:
|
||||
"""
|
||||
Generates and returns a text table for the given backtest data and the results dataframe
|
||||
:param pair_results: List of Dictionaries - one entry per pair + final TOTAL row
|
||||
:param stake_currency: stake-currency - used to correctly name headers
|
||||
:return: pretty printed table with tabulate as string
|
||||
"""
|
||||
|
||||
headers = _get_line_header('Pair', stake_currency)
|
||||
floatfmt = _get_line_floatfmt(stake_currency)
|
||||
output = [[
|
||||
t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'],
|
||||
t['profit_total_pct'], t['duration_avg'],
|
||||
generate_wins_draws_losses(t['wins'], t['draws'], t['losses'])
|
||||
] for t in pair_results]
|
||||
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
||||
return tabulate(output, headers=headers,
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
|
||||
|
||||
|
||||
def text_table_exit_reason(exit_reason_stats: List[Dict[str, Any]], stake_currency: str) -> str:
|
||||
"""
|
||||
Generate small table outlining Backtest results
|
||||
:param sell_reason_stats: Exit reason metrics
|
||||
:param stake_currency: Stakecurrency used
|
||||
:return: pretty printed table with tabulate as string
|
||||
"""
|
||||
headers = [
|
||||
'Exit Reason',
|
||||
'Exits',
|
||||
'Win Draws Loss Win%',
|
||||
'Avg Profit %',
|
||||
'Cum Profit %',
|
||||
f'Tot Profit {stake_currency}',
|
||||
'Tot Profit %',
|
||||
]
|
||||
|
||||
output = [[
|
||||
t.get('exit_reason', t.get('sell_reason')), t['trades'],
|
||||
generate_wins_draws_losses(t['wins'], t['draws'], t['losses']),
|
||||
t['profit_mean_pct'], t['profit_sum_pct'],
|
||||
round_coin_value(t['profit_total_abs'], stake_currency, False),
|
||||
t['profit_total_pct'],
|
||||
] for t in exit_reason_stats]
|
||||
return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right")
|
||||
|
||||
|
||||
def text_table_tags(tag_type: str, tag_results: List[Dict[str, Any]], stake_currency: str) -> str:
|
||||
"""
|
||||
Generates and returns a text table for the given backtest data and the results dataframe
|
||||
:param pair_results: List of Dictionaries - one entry per pair + final TOTAL row
|
||||
:param stake_currency: stake-currency - used to correctly name headers
|
||||
:return: pretty printed table with tabulate as string
|
||||
"""
|
||||
if (tag_type == "enter_tag"):
|
||||
headers = _get_line_header("TAG", stake_currency)
|
||||
else:
|
||||
headers = _get_line_header("TAG", stake_currency, 'Exits')
|
||||
floatfmt = _get_line_floatfmt(stake_currency)
|
||||
output = [
|
||||
[
|
||||
t['key'] if t['key'] is not None and len(
|
||||
t['key']) > 0 else "OTHER",
|
||||
t['trades'],
|
||||
t['profit_mean_pct'],
|
||||
t['profit_sum_pct'],
|
||||
t['profit_total_abs'],
|
||||
t['profit_total_pct'],
|
||||
t['duration_avg'],
|
||||
generate_wins_draws_losses(
|
||||
t['wins'],
|
||||
t['draws'],
|
||||
t['losses'])] for t in tag_results]
|
||||
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
||||
return tabulate(output, headers=headers,
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
|
||||
|
||||
|
||||
def text_table_periodic_breakdown(days_breakdown_stats: List[Dict[str, Any]],
|
||||
stake_currency: str, period: str) -> str:
|
||||
"""
|
||||
Generate small table with Backtest results by days
|
||||
:param days_breakdown_stats: Days breakdown metrics
|
||||
:param stake_currency: Stakecurrency used
|
||||
:return: pretty printed table with tabulate as string
|
||||
"""
|
||||
headers = [
|
||||
period.capitalize(),
|
||||
f'Tot Profit {stake_currency}',
|
||||
'Wins',
|
||||
'Draws',
|
||||
'Losses',
|
||||
]
|
||||
output = [[
|
||||
d['date'], round_coin_value(d['profit_abs'], stake_currency, False),
|
||||
d['wins'], d['draws'], d['loses'],
|
||||
] for d in days_breakdown_stats]
|
||||
return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right")
|
||||
|
||||
|
||||
def text_table_strategy(strategy_results, stake_currency: str) -> str:
|
||||
"""
|
||||
Generate summary table per strategy
|
||||
:param strategy_results: Dict of <Strategyname: DataFrame> containing results for all strategies
|
||||
:param stake_currency: stake-currency - used to correctly name headers
|
||||
:return: pretty printed table with tabulate as string
|
||||
"""
|
||||
floatfmt = _get_line_floatfmt(stake_currency)
|
||||
headers = _get_line_header('Strategy', stake_currency)
|
||||
# _get_line_header() is also used for per-pair summary. Per-pair drawdown is mostly useless
|
||||
# therefore we slip this column in only for strategy summary here.
|
||||
headers.append('Drawdown')
|
||||
|
||||
# Align drawdown string on the center two space separator.
|
||||
if 'max_drawdown_account' in strategy_results[0]:
|
||||
drawdown = [f'{t["max_drawdown_account"] * 100:.2f}' for t in strategy_results]
|
||||
else:
|
||||
# Support for prior backtest results
|
||||
drawdown = [f'{t["max_drawdown_per"]:.2f}' for t in strategy_results]
|
||||
|
||||
dd_pad_abs = max([len(t['max_drawdown_abs']) for t in strategy_results])
|
||||
dd_pad_per = max([len(dd) for dd in drawdown])
|
||||
drawdown = [f'{t["max_drawdown_abs"]:>{dd_pad_abs}} {stake_currency} {dd:>{dd_pad_per}}%'
|
||||
for t, dd in zip(strategy_results, drawdown)]
|
||||
|
||||
output = [[
|
||||
t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'],
|
||||
t['profit_total_pct'], t['duration_avg'],
|
||||
generate_wins_draws_losses(t['wins'], t['draws'], t['losses']), drawdown]
|
||||
for t, drawdown in zip(strategy_results, drawdown)]
|
||||
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
||||
return tabulate(output, headers=headers,
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
|
||||
|
||||
|
||||
def text_table_add_metrics(strat_results: Dict) -> str:
|
||||
if len(strat_results['trades']) > 0:
|
||||
best_trade = max(strat_results['trades'], key=lambda x: x['profit_ratio'])
|
||||
worst_trade = min(strat_results['trades'], key=lambda x: x['profit_ratio'])
|
||||
|
||||
short_metrics = [
|
||||
('', ''), # Empty line to improve readability
|
||||
('Long / Short',
|
||||
f"{strat_results.get('trade_count_long', 'total_trades')} / "
|
||||
f"{strat_results.get('trade_count_short', 0)}"),
|
||||
('Total profit Long %', f"{strat_results['profit_total_long']:.2%}"),
|
||||
('Total profit Short %', f"{strat_results['profit_total_short']:.2%}"),
|
||||
('Absolute profit Long', round_coin_value(strat_results['profit_total_long_abs'],
|
||||
strat_results['stake_currency'])),
|
||||
('Absolute profit Short', round_coin_value(strat_results['profit_total_short_abs'],
|
||||
strat_results['stake_currency'])),
|
||||
] if strat_results.get('trade_count_short', 0) > 0 else []
|
||||
|
||||
drawdown_metrics = []
|
||||
if 'max_relative_drawdown' in strat_results:
|
||||
# Compatibility to show old hyperopt results
|
||||
drawdown_metrics.append(
|
||||
('Max % of account underwater', f"{strat_results['max_relative_drawdown']:.2%}")
|
||||
)
|
||||
drawdown_metrics.extend([
|
||||
('Absolute Drawdown (Account)', f"{strat_results['max_drawdown_account']:.2%}")
|
||||
if 'max_drawdown_account' in strat_results else (
|
||||
'Drawdown', f"{strat_results['max_drawdown']:.2%}"),
|
||||
('Absolute Drawdown', round_coin_value(strat_results['max_drawdown_abs'],
|
||||
strat_results['stake_currency'])),
|
||||
('Drawdown high', round_coin_value(strat_results['max_drawdown_high'],
|
||||
strat_results['stake_currency'])),
|
||||
('Drawdown low', round_coin_value(strat_results['max_drawdown_low'],
|
||||
strat_results['stake_currency'])),
|
||||
('Drawdown Start', strat_results['drawdown_start']),
|
||||
('Drawdown End', strat_results['drawdown_end']),
|
||||
])
|
||||
|
||||
entry_adjustment_metrics = [
|
||||
('Canceled Trade Entries', strat_results.get('canceled_trade_entries', 'N/A')),
|
||||
('Canceled Entry Orders', strat_results.get('canceled_entry_orders', 'N/A')),
|
||||
('Replaced Entry Orders', strat_results.get('replaced_entry_orders', 'N/A')),
|
||||
] if strat_results.get('canceled_entry_orders', 0) > 0 else []
|
||||
|
||||
# Newly added fields should be ignored if they are missing in strat_results. hyperopt-show
|
||||
# command stores these results and newer version of freqtrade must be able to handle old
|
||||
# results with missing new fields.
|
||||
metrics = [
|
||||
('Backtesting from', strat_results['backtest_start']),
|
||||
('Backtesting to', strat_results['backtest_end']),
|
||||
('Max open trades', strat_results['max_open_trades']),
|
||||
('', ''), # Empty line to improve readability
|
||||
('Total/Daily Avg Trades',
|
||||
f"{strat_results['total_trades']} / {strat_results['trades_per_day']}"),
|
||||
|
||||
('Starting balance', round_coin_value(strat_results['starting_balance'],
|
||||
strat_results['stake_currency'])),
|
||||
('Final balance', round_coin_value(strat_results['final_balance'],
|
||||
strat_results['stake_currency'])),
|
||||
('Absolute profit ', round_coin_value(strat_results['profit_total_abs'],
|
||||
strat_results['stake_currency'])),
|
||||
('Total profit %', f"{strat_results['profit_total']:.2%}"),
|
||||
('CAGR %', f"{strat_results['cagr']:.2%}" if 'cagr' in strat_results else 'N/A'),
|
||||
('Sortino', f"{strat_results['sortino']:.2f}" if 'sortino' in strat_results else 'N/A'),
|
||||
('Sharpe', f"{strat_results['sharpe']:.2f}" if 'sharpe' in strat_results else 'N/A'),
|
||||
('Calmar', f"{strat_results['calmar']:.2f}" if 'calmar' in strat_results else 'N/A'),
|
||||
('Profit factor', f'{strat_results["profit_factor"]:.2f}' if 'profit_factor'
|
||||
in strat_results else 'N/A'),
|
||||
('Expectancy', f"{strat_results['expectancy']:.2f}" if 'expectancy'
|
||||
in strat_results else 'N/A'),
|
||||
('Trades per day', strat_results['trades_per_day']),
|
||||
('Avg. daily profit %',
|
||||
f"{(strat_results['profit_total'] / strat_results['backtest_days']):.2%}"),
|
||||
('Avg. stake amount', round_coin_value(strat_results['avg_stake_amount'],
|
||||
strat_results['stake_currency'])),
|
||||
('Total trade volume', round_coin_value(strat_results['total_volume'],
|
||||
strat_results['stake_currency'])),
|
||||
*short_metrics,
|
||||
('', ''), # Empty line to improve readability
|
||||
('Best Pair', f"{strat_results['best_pair']['key']} "
|
||||
f"{strat_results['best_pair']['profit_sum']:.2%}"),
|
||||
('Worst Pair', f"{strat_results['worst_pair']['key']} "
|
||||
f"{strat_results['worst_pair']['profit_sum']:.2%}"),
|
||||
('Best trade', f"{best_trade['pair']} {best_trade['profit_ratio']:.2%}"),
|
||||
('Worst trade', f"{worst_trade['pair']} "
|
||||
f"{worst_trade['profit_ratio']:.2%}"),
|
||||
|
||||
('Best day', round_coin_value(strat_results['backtest_best_day_abs'],
|
||||
strat_results['stake_currency'])),
|
||||
('Worst day', round_coin_value(strat_results['backtest_worst_day_abs'],
|
||||
strat_results['stake_currency'])),
|
||||
('Days win/draw/lose', f"{strat_results['winning_days']} / "
|
||||
f"{strat_results['draw_days']} / {strat_results['losing_days']}"),
|
||||
('Avg. Duration Winners', f"{strat_results['winner_holding_avg']}"),
|
||||
('Avg. Duration Loser', f"{strat_results['loser_holding_avg']}"),
|
||||
('Rejected Entry signals', strat_results.get('rejected_signals', 'N/A')),
|
||||
('Entry/Exit Timeouts',
|
||||
f"{strat_results.get('timedout_entry_orders', 'N/A')} / "
|
||||
f"{strat_results.get('timedout_exit_orders', 'N/A')}"),
|
||||
*entry_adjustment_metrics,
|
||||
('', ''), # Empty line to improve readability
|
||||
|
||||
('Min balance', round_coin_value(strat_results['csum_min'],
|
||||
strat_results['stake_currency'])),
|
||||
('Max balance', round_coin_value(strat_results['csum_max'],
|
||||
strat_results['stake_currency'])),
|
||||
|
||||
*drawdown_metrics,
|
||||
('Market change', f"{strat_results['market_change']:.2%}"),
|
||||
]
|
||||
|
||||
return tabulate(metrics, headers=["Metric", "Value"], tablefmt="orgtbl")
|
||||
else:
|
||||
start_balance = round_coin_value(strat_results['starting_balance'],
|
||||
strat_results['stake_currency'])
|
||||
stake_amount = round_coin_value(
|
||||
strat_results['stake_amount'], strat_results['stake_currency']
|
||||
) if strat_results['stake_amount'] != UNLIMITED_STAKE_AMOUNT else 'unlimited'
|
||||
|
||||
message = ("No trades made. "
|
||||
f"Your starting balance was {start_balance}, "
|
||||
f"and your stake was {stake_amount}."
|
||||
)
|
||||
return message
|
||||
|
||||
|
||||
def show_backtest_result(strategy: str, results: Dict[str, Any], stake_currency: str,
|
||||
backtest_breakdown=[]):
|
||||
"""
|
||||
Print results for one strategy
|
||||
"""
|
||||
# Print results
|
||||
print(f"Result for strategy {strategy}")
|
||||
table = text_table_bt_results(results['results_per_pair'], stake_currency=stake_currency)
|
||||
if isinstance(table, str):
|
||||
print(' BACKTESTING REPORT '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
table = text_table_bt_results(results['left_open_trades'], stake_currency=stake_currency)
|
||||
if isinstance(table, str) and len(table) > 0:
|
||||
print(' LEFT OPEN TRADES REPORT '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
if (results.get('results_per_enter_tag') is not None
|
||||
or results.get('results_per_buy_tag') is not None):
|
||||
# results_per_buy_tag is deprecated and should be removed 2 versions after short golive.
|
||||
table = text_table_tags(
|
||||
"enter_tag",
|
||||
results.get('results_per_enter_tag', results.get('results_per_buy_tag')),
|
||||
stake_currency=stake_currency)
|
||||
|
||||
if isinstance(table, str) and len(table) > 0:
|
||||
print(' ENTER TAG STATS '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
exit_reasons = results.get('exit_reason_summary', results.get('sell_reason_summary'))
|
||||
table = text_table_exit_reason(exit_reason_stats=exit_reasons,
|
||||
stake_currency=stake_currency)
|
||||
if isinstance(table, str) and len(table) > 0:
|
||||
print(' EXIT REASON STATS '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
for period in backtest_breakdown:
|
||||
if period in results.get('periodic_breakdown', {}):
|
||||
days_breakdown_stats = results['periodic_breakdown'][period]
|
||||
else:
|
||||
days_breakdown_stats = generate_periodic_breakdown_stats(
|
||||
trade_list=results['trades'], period=period)
|
||||
table = text_table_periodic_breakdown(days_breakdown_stats=days_breakdown_stats,
|
||||
stake_currency=stake_currency, period=period)
|
||||
if isinstance(table, str) and len(table) > 0:
|
||||
print(f' {period.upper()} BREAKDOWN '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
table = text_table_add_metrics(results)
|
||||
if isinstance(table, str) and len(table) > 0:
|
||||
print(' SUMMARY METRICS '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
if isinstance(table, str) and len(table) > 0:
|
||||
print('=' * len(table.splitlines()[0]))
|
||||
|
||||
print()
|
||||
|
||||
|
||||
def show_backtest_results(config: Config, backtest_stats: Dict):
|
||||
stake_currency = config['stake_currency']
|
||||
|
||||
for strategy, results in backtest_stats['strategy'].items():
|
||||
show_backtest_result(
|
||||
strategy, results, stake_currency,
|
||||
config.get('backtest_breakdown', []))
|
||||
|
||||
if len(backtest_stats['strategy']) > 0:
|
||||
# Print Strategy summary table
|
||||
|
||||
table = text_table_strategy(backtest_stats['strategy_comparison'], stake_currency)
|
||||
print(f"Backtested {results['backtest_start']} -> {results['backtest_end']} |"
|
||||
f" Max open trades : {results['max_open_trades']}")
|
||||
print(' STRATEGY SUMMARY '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
print('=' * len(table.splitlines()[0]))
|
||||
print('\nFor more details, please look at the detail tables above')
|
||||
|
||||
|
||||
def show_sorted_pairlist(config: Config, backtest_stats: Dict):
|
||||
if config.get('backtest_show_pair_list', False):
|
||||
for strategy, results in backtest_stats['strategy'].items():
|
||||
print(f"Pairs for Strategy {strategy}: \n[")
|
||||
for result in results['results_per_pair']:
|
||||
if result["key"] != 'TOTAL':
|
||||
print(f'"{result["key"]}", // {result["profit_mean"]:.2%}')
|
||||
print("]")
|
||||
@@ -42,7 +42,7 @@ class _KeyValueStoreModel(ModelBase):
|
||||
int_value: Mapped[Optional[int]]
|
||||
|
||||
|
||||
class KeyValueStore():
|
||||
class KeyValueStore:
|
||||
"""
|
||||
Generic bot-wide, persistent key-value store
|
||||
Can be used to store generic values, e.g. very first bot startup time.
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user