Compare commits

..

653 Commits

Author SHA1 Message Date
Matthias
d104fb13a0 Merge pull request #8978 from freqtrade/new_release
New Release 2023.7
2023-07-30 09:02:44 +02:00
Matthias
047de2e0ff Bump version to 2023.7 2023-07-29 18:19:04 +02:00
Matthias
ead9e6f116 Merge pull request #8977 from Bloodhunter4rc/patch-3
showcase.md - Change links to https
2023-07-29 17:09:20 +02:00
Bloodhunter4rc
b17918d8cf change link to https 2023-07-29 16:48:52 +02:00
Matthias
79910870a3 Fix bug resampling monthly candles
closes #8972
2023-07-29 08:58:30 +02:00
Matthias
e7e7a17183 Add test confirming #8972 2023-07-29 08:50:28 +02:00
Matthias
3fa31bfe20 Better explain ROI assumption on level change
closes #8975
2023-07-29 08:14:12 +02:00
Matthias
b2abdab7cd Fix bug where adjust_entry_price was called for exit orders
closes #8973
2023-07-28 07:16:32 +02:00
Matthias
fd7dfc95e3 Enhance dca integration test for adjust_entry checks 2023-07-28 07:16:12 +02:00
Matthias
797617abaa Fix test comment 2023-07-28 07:07:10 +02:00
Matthias
9a400d0e6f Allow comments and trailing commas in remotepairlist files
closes #8971
2023-07-27 18:05:22 +02:00
Matthias
8f18a52cdf Fix Typo in remote pairlist docs
related: #8971
2023-07-27 09:24:42 +02:00
Matthias
d638a4a0ff Raise proper error on strategy search
part of https://github.com/freqtrade/frequi/issues/1387
2023-07-27 07:03:35 +02:00
Matthias
bbf472e69b Improve errorhandling on webserver endpoint
Part of https://github.com/freqtrade/frequi/issues/1387
2023-07-27 06:52:34 +02:00
Matthias
83f45d0e65 Call static method as static method, not as if it were an instance method 2023-07-27 06:39:48 +02:00
Matthias
d6122585f7 Prevent pandas exception on Date assignment 2023-07-27 06:39:31 +02:00
Matthias
2fcff78756 Move comment to actually relevant line 2023-07-26 07:07:21 +02:00
Matthias
af1d2ee2a2 Merge pull request #8968 from Bloodhunter4rc/patch-2
Update showcase.md / Change Domain due to recent dns issues
2023-07-26 06:43:48 +02:00
Bloodhunter4rc
f56f5179d2 Update showcase.md
Change of domain due to recent dns issues.
2023-07-25 23:06:56 +02:00
Matthias
c2b40da762 Bump Api Version 2023-07-25 20:51:33 +02:00
Matthias
05e4b63091 Extract backtest_result deletion logic to separate function 2023-07-25 20:42:07 +02:00
Matthias
8b2abf4422 Remove .json from backtesting output 2023-07-25 20:41:28 +02:00
Matthias
997b80fd7b Allow deleting of backtest files 2023-07-25 20:34:45 +02:00
Matthias
5a7e822342 Improve security of get_backtest_history_result 2023-07-25 20:20:09 +02:00
Matthias
1d39cc18bf Add is_file_in_dir helper function 2023-07-25 20:19:23 +02:00
Matthias
e39af17207 Improve typing for is_relative_to 2023-07-25 20:07:44 +02:00
Matthias
4ce95dd1c3 Merge pull request #8955 from freqtrade/feat/bt_streaks
Backtesting - streak output
2023-07-25 18:06:11 +02:00
Matthias
47fca02ba0 Improve docstring 2023-07-25 07:06:42 +02:00
Matthias
ed2485dd57 Move generate_wins_draw_losses to bt_output (it's an output function, not a calculation) 2023-07-25 07:04:25 +02:00
Matthias
6dc15fad01 Merge pull request #8962 from freqtrade/dependabot/pip/develop/uvicorn-0.23.1
Bump uvicorn from 0.23.0 to 0.23.1
2023-07-25 06:38:13 +02:00
Matthias
27566a4c8a Merge pull request #8963 from freqtrade/dependabot/pip/develop/ccxt-4.0.36
Bump ccxt from 4.0.35 to 4.0.36
2023-07-25 06:37:56 +02:00
Matthias
3860a5a8c5 Merge pull request #8965 from freqtrade/dependabot/pip/develop/ruff-0.0.280
Bump ruff from 0.0.278 to 0.0.280
2023-07-25 06:37:42 +02:00
Matthias
235721d9d9 Merge pull request #8964 from freqtrade/dependabot/pip/develop/types-requests-2.31.0.2
Bump types-requests from 2.31.0.1 to 2.31.0.2
2023-07-24 21:37:11 +02:00
Matthias
5a057e4b94 per-commit bump types-requests 2023-07-24 17:34:39 +02:00
dependabot[bot]
b90e7d75c6 Bump ruff from 0.0.278 to 0.0.280
Bumps [ruff](https://github.com/astral-sh/ruff) from 0.0.278 to 0.0.280.
- [Release notes](https://github.com/astral-sh/ruff/releases)
- [Changelog](https://github.com/astral-sh/ruff/blob/main/BREAKING_CHANGES.md)
- [Commits](https://github.com/astral-sh/ruff/compare/v0.0.278...v0.0.280)

---
updated-dependencies:
- dependency-name: ruff
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-24 15:32:13 +00:00
dependabot[bot]
1c26a6600b Bump types-requests from 2.31.0.1 to 2.31.0.2
Bumps [types-requests](https://github.com/python/typeshed) from 2.31.0.1 to 2.31.0.2.
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-requests
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-24 15:31:56 +00:00
dependabot[bot]
161446393d Bump ccxt from 4.0.35 to 4.0.36
Bumps [ccxt](https://github.com/ccxt/ccxt) from 4.0.35 to 4.0.36.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/4.0.35...4.0.36)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-24 15:31:53 +00:00
dependabot[bot]
9df302f2f0 Bump uvicorn from 0.23.0 to 0.23.1
Bumps [uvicorn](https://github.com/encode/uvicorn) from 0.23.0 to 0.23.1.
- [Release notes](https://github.com/encode/uvicorn/releases)
- [Changelog](https://github.com/encode/uvicorn/blob/master/CHANGELOG.md)
- [Commits](https://github.com/encode/uvicorn/compare/0.23.0...0.23.1)

---
updated-dependencies:
- dependency-name: uvicorn
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-24 15:31:45 +00:00
Matthias
e95fa83ea2 Merge pull request #8953 from freqtrade/dependabot/pip/develop/types-python-dateutil-2.8.19.14
Bump types-python-dateutil from 2.8.19.13 to 2.8.19.14
2023-07-24 16:52:39 +02:00
Matthias
b151a2c3e1 Merge pull request #8947 from freqtrade/dependabot/pip/develop/urllib3-2.0.4
Bump urllib3 from 2.0.3 to 2.0.4
2023-07-24 16:19:38 +02:00
Matthias
ce7f7d828d pre-commit bump dateuti 2023-07-24 15:49:25 +02:00
dependabot[bot]
7a69bdff6a Bump types-python-dateutil from 2.8.19.13 to 2.8.19.14
Bumps [types-python-dateutil](https://github.com/python/typeshed) from 2.8.19.13 to 2.8.19.14.
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-python-dateutil
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-24 13:34:35 +00:00
Matthias
1abb71d5a3 Merge pull request #8950 from freqtrade/dependabot/pip/develop/nbconvert-7.7.2
Bump nbconvert from 7.7.0 to 7.7.2
2023-07-24 15:34:10 +02:00
Matthias
2e57ad695f Merge pull request #8952 from freqtrade/dependabot/pip/develop/types-tabulate-0.9.0.3
Bump types-tabulate from 0.9.0.2 to 0.9.0.3
2023-07-24 15:33:49 +02:00
Matthias
bb36c9500f Bump pre-commit types tabulate 2023-07-24 14:12:52 +02:00
dependabot[bot]
235067c79f Bump nbconvert from 7.7.0 to 7.7.2
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 7.7.0 to 7.7.2.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Changelog](https://github.com/jupyter/nbconvert/blob/main/CHANGELOG.md)
- [Commits](https://github.com/jupyter/nbconvert/compare/v7.7.0...v7.7.2)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-24 12:12:06 +00:00
dependabot[bot]
11e604d613 Bump types-tabulate from 0.9.0.2 to 0.9.0.3
Bumps [types-tabulate](https://github.com/python/typeshed) from 0.9.0.2 to 0.9.0.3.
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-tabulate
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-24 12:12:03 +00:00
Matthias
f7505536ff Merge pull request #8954 from freqtrade/dependabot/pip/develop/types-cachetools-5.3.0.6
Bump types-cachetools from 5.3.0.5 to 5.3.0.6
2023-07-24 14:11:19 +02:00
Matthias
b096c857ae Merge pull request #8951 from freqtrade/dependabot/pip/develop/pyjwt-2.8.0
Bump pyjwt from 2.7.0 to 2.8.0
2023-07-24 10:03:49 +02:00
Matthias
b41b966443 pre-commit bump cachetools 2023-07-24 10:03:08 +02:00
Matthias
e01e712b8c Merge pull request #8948 from freqtrade/dependabot/pip/develop/ccxt-4.0.35
Bump ccxt from 4.0.34 to 4.0.35
2023-07-24 10:01:47 +02:00
Matthias
327b055468 Add consecutive wins/losses to backtest output 2023-07-24 07:22:33 +02:00
dependabot[bot]
221f242a4c Bump ccxt from 4.0.34 to 4.0.35
Bumps [ccxt](https://github.com/ccxt/ccxt) from 4.0.34 to 4.0.35.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/4.0.34...4.0.35)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-24 05:19:04 +00:00
Matthias
a9d310ca00 Disable bitvavo candle test temporarily after downtime 2023-07-24 07:17:29 +02:00
Matthias
f26b49ee06 Ensure return value is an int, not a np.int 2023-07-24 07:09:19 +02:00
Matthias
380244f8b1 Improve calc_streak, rename method 2023-07-24 07:09:11 +02:00
Matthias
c01c9ee411 Merge pull request #8949 from freqtrade/dependabot/pip/develop/mkdocs-material-9.1.19
Bump mkdocs-material from 9.1.18 to 9.1.19
2023-07-24 07:07:12 +02:00
Matthias
0f046ceaf2 Implement calc_consecutive_losses 2023-07-24 06:36:24 +02:00
Matthias
a7bd6725f5 Add test to verify consecutive wins / losses calculation 2023-07-24 06:36:16 +02:00
dependabot[bot]
c61b72e5cc Bump urllib3 from 2.0.3 to 2.0.4
Bumps [urllib3](https://github.com/urllib3/urllib3) from 2.0.3 to 2.0.4.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/2.0.3...2.0.4)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-24 04:33:05 +00:00
Matthias
e2a19402ec Merge pull request #8946 from freqtrade/dependabot/pip/develop/jsonschema-4.18.4
Bump jsonschema from 4.18.3 to 4.18.4
2023-07-24 06:32:06 +02:00
dependabot[bot]
d909fde4bb Bump types-cachetools from 5.3.0.5 to 5.3.0.6
Bumps [types-cachetools](https://github.com/python/typeshed) from 5.3.0.5 to 5.3.0.6.
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-cachetools
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-24 03:44:45 +00:00
dependabot[bot]
2bb4af911c Bump pyjwt from 2.7.0 to 2.8.0
Bumps [pyjwt](https://github.com/jpadilla/pyjwt) from 2.7.0 to 2.8.0.
- [Release notes](https://github.com/jpadilla/pyjwt/releases)
- [Changelog](https://github.com/jpadilla/pyjwt/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/jpadilla/pyjwt/compare/2.7.0...2.8.0)

---
updated-dependencies:
- dependency-name: pyjwt
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-24 03:44:20 +00:00
dependabot[bot]
00a392b262 Bump mkdocs-material from 9.1.18 to 9.1.19
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 9.1.18 to 9.1.19.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/9.1.18...9.1.19)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-24 03:44:05 +00:00
dependabot[bot]
6f5ba27251 Bump jsonschema from 4.18.3 to 4.18.4
Bumps [jsonschema](https://github.com/python-jsonschema/jsonschema) from 4.18.3 to 4.18.4.
- [Release notes](https://github.com/python-jsonschema/jsonschema/releases)
- [Changelog](https://github.com/python-jsonschema/jsonschema/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/python-jsonschema/jsonschema/compare/v4.18.3...v4.18.4)

---
updated-dependencies:
- dependency-name: jsonschema
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-24 03:43:35 +00:00
Matthias
6ddbc8c00d Move generate_wins_draw_losses to bt_output (it's an output function, not a calculation) 2023-07-23 19:57:47 +02:00
Matthias
a00fcd68f8 Default to 0.0.0.0 if on API listen address for configs generated through docker 2023-07-23 19:44:43 +02:00
Matthias
fb7fb7f59c Add helper function detecting (prebuilt) docker environment 2023-07-23 19:38:30 +02:00
Matthias
d7916366bd Adjust webhook tests to include timeout 2023-07-23 19:21:55 +02:00
Matthias
ad82ad4407 webhook docs improvements 2023-07-23 18:28:49 +02:00
Matthias
8dfe43f370 Add timeout for webhooks 2023-07-23 18:28:43 +02:00
Matthias
4549fb349c Add security notice about IP whitelisting on bybit docs 2023-07-23 17:57:48 +02:00
Matthias
889a732e06 Enhance bybit documentation 2023-07-23 17:57:04 +02:00
Matthias
52ec2324dd Merge pull request #8943 from stash86/bt-metrics
merge to use  expectancy and expectancy ratio from data/metrics
2023-07-23 08:37:08 +02:00
Stefano Ariestasia
8f04225282 another test fix 2023-07-23 15:00:08 +09:00
Stefano Ariestasia
4c23771d39 fix expectancy test 2023-07-23 14:42:48 +09:00
Stefano Ariestasia
0eddc6b7ad update expectancy test 2023-07-23 14:27:45 +09:00
Matthias
787e94924d Update default expectancy ratio to 100 2023-07-23 07:20:59 +02:00
Matthias
955a63725a Improve resiliance when showing older backtest results 2023-07-22 19:43:20 +02:00
dependabot[bot]
27a36bfb40 Bump lightgbm from 3.3.5 to 4.0.0 (#8923)
* Bump lightgbm from 3.3.5 to 4.0.0

Bumps [lightgbm](https://github.com/microsoft/LightGBM) from 3.3.5 to 4.0.0.
- [Release notes](https://github.com/microsoft/LightGBM/releases)
- [Commits](https://github.com/microsoft/LightGBM/compare/v3.3.5...v4.0.0)

---
updated-dependencies:
- dependency-name: lightgbm
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>

* fix: ensure freqai lightgbm variants conform to v4.0.0

* remove random file

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: robcaulk <rob.caulk@gmail.com>
2023-07-22 15:30:58 +02:00
Stefano Ariestasia
e5f01ab2e8 pre-commit fix 2023-07-22 17:45:58 +09:00
Stefano Ariestasia
40d7d05e4e merge 2 expectancy functions 2023-07-22 17:29:43 +09:00
Matthias
14d2e3e88e Merge pull request #8941 from SitoCH/develop
Map BUSD to correct coingecko id
2023-07-22 08:33:17 +02:00
Stefano Ariestasia
c6ee8fcf54 remove unused check 2023-07-22 12:20:35 +09:00
Stefano Ariestasia
3552fa431b fix test 2023-07-22 11:40:52 +09:00
Stefano Ariestasia
3dd33cde00 fix test 2023-07-22 11:39:10 +09:00
Stefano Ariestasia
ee3b69ea63 fix test 2023-07-22 11:37:22 +09:00
Stefano Ariestasia
b0639ab319 flake8 2023-07-22 11:29:08 +09:00
Stefano Ariestasia
cfd8b068e7 add test for expectancy 2023-07-22 11:25:53 +09:00
Stefano Ariestasia
8621dc96e7 fix tests 2023-07-22 09:44:24 +09:00
Stefano Ariestasia
11f24aff97 flake8 2023-07-22 09:19:36 +09:00
Stefano Ariestasia
dcc3ef1309 flake8 fix 2023-07-22 09:18:22 +09:00
Stefano Ariestasia
4812bcc28b flake8 fiz 2023-07-22 09:13:24 +09:00
Stefano Ariestasia
c048e7229a modify expectancy and expectancy ratio 2023-07-22 08:36:51 +09:00
Simone Grignola
4ea3f41d48 Map BUSD to correct coingecko id 2023-07-21 20:49:37 +00:00
Matthias
6874123974 Bump ccxt to 4.0.34
closes #8913
2023-07-21 21:11:30 +02:00
Matthias
8d332fb99e Ensure /pair_history endpoint correctly respects startup_candle_count
closes https://github.com/freqtrade/frequi/issues/1379
2023-07-21 20:58:26 +02:00
Matthias
f4933a9cff Improve test for pair_history
Verifies that startup_candle_count is verified correctly.
2023-07-21 20:57:05 +02:00
Matthias
4369e3cdeb trim_dataframe should enforce kwargs for non-required arguments 2023-07-21 20:33:41 +02:00
Matthias
9bfe96d4d6 Simplify advise calls by extracting that part into a method. 2023-07-21 20:27:52 +02:00
Matthias
91bf8abf38 Add comment to clarify usage of trim_dataframes 2023-07-21 20:22:44 +02:00
Matthias
9c1fea0e7b Add winrate to several bt metrics 2023-07-20 20:51:38 +02:00
Matthias
ac2147727f Update test for updated cost logic 2023-07-20 19:51:45 +02:00
Matthias
ea45349235 Completely remove "fee_cost_in_contracts" functionality 2023-07-20 19:51:45 +02:00
Matthias
e734ab52de okx fees are not in contracts. 2023-07-20 19:51:45 +02:00
Matthias
75628403b0 Invert order_props_in_contracts logic - cost is almost never in contracts 2023-07-20 19:51:45 +02:00
Matthias
b3642749fd Merge pull request #8940 from freqtrade/dependabot/pip/aiohttp-3.8.5
Bump aiohttp from 3.8.4 to 3.8.5
2023-07-20 19:41:29 +02:00
dependabot[bot]
f735973bf8 Bump aiohttp from 3.8.4 to 3.8.5
Bumps [aiohttp](https://github.com/aio-libs/aiohttp) from 3.8.4 to 3.8.5.
- [Release notes](https://github.com/aio-libs/aiohttp/releases)
- [Changelog](https://github.com/aio-libs/aiohttp/blob/v3.8.5/CHANGES.rst)
- [Commits](https://github.com/aio-libs/aiohttp/compare/v3.8.4...v3.8.5)

---
updated-dependencies:
- dependency-name: aiohttp
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-20 16:04:06 +00:00
Matthias
bdb778cb9f Merge pull request #8912 from froggleston/rpc_expectancy
Add expectancy to RPC calls and telegram
2023-07-19 20:21:09 +02:00
Matthias
ab5b272868 Fix double-%% 2023-07-19 19:53:00 +02:00
Matthias
49d6b0afb8 Merge pull request #8937 from freqtrade/froggleston-bt-analysis-docs-1
Add built-in trade fields in indicator list docs
2023-07-19 19:41:24 +02:00
Robert Davey
bb5a12dc11 Add built-in trade fields in indicator list docs
There are some trade- and candle-related fields that are always available to output on the indicator-list so have updated the docs to include the most commonly used ones.
2023-07-19 11:11:10 +01:00
Matthias
0539c6bf26 Merge pull request #8918 from freqtrade/dependabot/pip/develop/ta-lib-0.4.27
Bump ta-lib from 0.4.26 to 0.4.27
2023-07-19 06:48:34 +02:00
froggleston
f95f954df7 Convert winrate to ratio instead of % in calculations 2023-07-18 22:25:17 +01:00
Matthias
5ee4586989 use find-links for windows install 2023-07-18 21:14:55 +02:00
Matthias
9c39fd6e92 Update cached binance lev-tiers file 2023-07-18 20:25:55 +02:00
Matthias
c8ee48bc98 Update comment on install script 2023-07-18 20:20:57 +02:00
Matthias
ef52a7a328 Simplify windows install sscript 2023-07-18 20:20:20 +02:00
Matthias
635ab73706 Update path for install_windows helper script 2023-07-18 20:19:40 +02:00
Matthias
c4d38e6de6 Add new ta-lib windows wheel 2023-07-18 20:19:30 +02:00
Matthias
dd8a8b0f1f Merge pull request #8934 from freqtrade/fix/docker-compose
Update docker-compose-freqai.yml
2023-07-18 20:07:59 +02:00
Matthias
8fd96118a5 Bump pydantic to latest 1.10 version 2023-07-18 20:02:24 +02:00
Matthias
db0cad04ab Pin pydantic to <2.0 for now 2023-07-18 18:25:44 +02:00
Robert Caulk
d64d0e9f94 Update docker-compose-freqai.yml 2023-07-18 15:03:20 +02:00
Matthias
adda506499 Merge pull request #8920 from freqtrade/dependabot/pip/develop/ruff-0.0.278
Bump ruff from 0.0.277 to 0.0.278
2023-07-17 19:57:32 +02:00
Robert Caulk
c8525959ee Merge pull request #8932 from hom-bahrani/patch-1
Update freqai-feature-engineering.md
2023-07-17 19:13:18 +02:00
Matthias
2b95a0a7e5 Merge pull request #8931 from freqtrade/chore/remove-inlier-metric
chore: remove inlier metric
2023-07-17 18:24:41 +02:00
Matthias
c64c10e76f Use Fstrings in hyperopt-tools 2023-07-17 18:20:26 +02:00
Matthias
b9c439cdd9 Merge pull request #8929 from freqtrade/dependabot/pip/develop/ccxt-4.0.29
Bump ccxt from 4.0.28 to 4.0.29
2023-07-17 18:16:07 +02:00
dependabot[bot]
d8ba2b5df3 Bump ccxt from 4.0.28 to 4.0.29
Bumps [ccxt](https://github.com/ccxt/ccxt) from 4.0.28 to 4.0.29.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/4.0.28...4.0.29)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-17 13:44:51 +00:00
Matthias
5e37dd901d Merge pull request #8930 from freqtrade/dependabot/pip/develop/nbconvert-7.7.0
Bump nbconvert from 7.6.0 to 7.7.0
2023-07-17 15:44:05 +02:00
Matthias
031ac01b8d Merge pull request #8922 from freqtrade/dependabot/pip/develop/sqlalchemy-2.0.19
Bump sqlalchemy from 2.0.18 to 2.0.19
2023-07-17 15:43:45 +02:00
froggleston
6ccc12f337 Fix calcs, rename ratio, add docs 2023-07-17 14:16:22 +01:00
Hom Bahrani
8738b8d551 Update freqai-feature-engineering.md
It seems that the closing parenthesis ) is missing at the end of line 65 in the pipeline example
2023-07-17 13:59:09 +01:00
dependabot[bot]
f2ff85421a Bump nbconvert from 7.6.0 to 7.7.0
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 7.6.0 to 7.7.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Changelog](https://github.com/jupyter/nbconvert/blob/main/CHANGELOG.md)
- [Commits](https://github.com/jupyter/nbconvert/compare/v7.6.0...v7.7.0)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-17 11:16:30 +00:00
Matthias
cb5a67e9e0 Bump sqlalchemy pre-commit 2023-07-17 13:12:58 +02:00
Matthias
ca934c7568 Merge pull request #8926 from freqtrade/dependabot/github_actions/develop/pypa/gh-action-pypi-publish-1.8.8
Bump pypa/gh-action-pypi-publish from 1.8.7 to 1.8.8
2023-07-17 13:12:01 +02:00
robcaulk
6f0204fcd3 chore: remove inlier metric 2023-07-17 13:03:43 +02:00
Matthias
c81adf76c2 Merge pull request #8921 from freqtrade/dependabot/pip/develop/ccxt-4.0.28
Bump ccxt from 4.0.17 to 4.0.28
2023-07-17 10:30:16 +02:00
dependabot[bot]
78de614910 Bump ta-lib from 0.4.26 to 0.4.27
Bumps [ta-lib](https://github.com/ta-lib/ta-lib-python) from 0.4.26 to 0.4.27.
- [Changelog](https://github.com/TA-Lib/ta-lib-python/blob/master/CHANGELOG)
- [Commits](https://github.com/ta-lib/ta-lib-python/compare/TA_Lib-0.4.26...TA_Lib-0.4.27)

---
updated-dependencies:
- dependency-name: ta-lib
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-17 07:36:12 +00:00
Matthias
201a8fe0ba Merge pull request #8925 from freqtrade/dependabot/pip/develop/jsonschema-4.18.3
Bump jsonschema from 4.18.0 to 4.18.3
2023-07-17 09:34:54 +02:00
dependabot[bot]
e5221932e8 Bump ruff from 0.0.277 to 0.0.278
Bumps [ruff](https://github.com/astral-sh/ruff) from 0.0.277 to 0.0.278.
- [Release notes](https://github.com/astral-sh/ruff/releases)
- [Changelog](https://github.com/astral-sh/ruff/blob/main/BREAKING_CHANGES.md)
- [Commits](https://github.com/astral-sh/ruff/compare/v0.0.277...v0.0.278)

---
updated-dependencies:
- dependency-name: ruff
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-17 05:02:21 +00:00
Matthias
3d5889060d Merge pull request #8919 from freqtrade/dependabot/pip/develop/pytest-asyncio-0.21.1
Bump pytest-asyncio from 0.21.0 to 0.21.1
2023-07-17 07:01:13 +02:00
Matthias
68c3c764b7 Merge pull request #8914 from freqtrade/fix/8877
Dry-run open balance should include realized profit
2023-07-17 06:47:10 +02:00
Matthias
fba89d2082 Merge pull request #8916 from freqtrade/dependabot/pip/develop/uvicorn-0.23.0
Bump uvicorn from 0.22.0 to 0.23.0
2023-07-17 06:44:23 +02:00
Matthias
7823ed6cc0 Merge pull request #8917 from freqtrade/dependabot/pip/develop/pymdown-extensions-10.1
Bump pymdown-extensions from 10.0.1 to 10.1
2023-07-17 06:41:00 +02:00
dependabot[bot]
c23ff9d7c2 Bump pypa/gh-action-pypi-publish from 1.8.7 to 1.8.8
Bumps [pypa/gh-action-pypi-publish](https://github.com/pypa/gh-action-pypi-publish) from 1.8.7 to 1.8.8.
- [Release notes](https://github.com/pypa/gh-action-pypi-publish/releases)
- [Commits](https://github.com/pypa/gh-action-pypi-publish/compare/v1.8.7...v1.8.8)

---
updated-dependencies:
- dependency-name: pypa/gh-action-pypi-publish
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-17 03:58:46 +00:00
dependabot[bot]
5f82108aae Bump jsonschema from 4.18.0 to 4.18.3
Bumps [jsonschema](https://github.com/python-jsonschema/jsonschema) from 4.18.0 to 4.18.3.
- [Release notes](https://github.com/python-jsonschema/jsonschema/releases)
- [Changelog](https://github.com/python-jsonschema/jsonschema/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/python-jsonschema/jsonschema/compare/v4.18.0...v4.18.3)

---
updated-dependencies:
- dependency-name: jsonschema
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-17 03:51:14 +00:00
dependabot[bot]
454baa7b5b Bump sqlalchemy from 2.0.18 to 2.0.19
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 2.0.18 to 2.0.19.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/main/CHANGES.rst)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

---
updated-dependencies:
- dependency-name: sqlalchemy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-17 03:51:00 +00:00
dependabot[bot]
69e9691730 Bump ccxt from 4.0.17 to 4.0.28
Bumps [ccxt](https://github.com/ccxt/ccxt) from 4.0.17 to 4.0.28.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/4.0.17...4.0.28)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-17 03:50:49 +00:00
dependabot[bot]
8c8b315994 Bump pytest-asyncio from 0.21.0 to 0.21.1
Bumps [pytest-asyncio](https://github.com/pytest-dev/pytest-asyncio) from 0.21.0 to 0.21.1.
- [Release notes](https://github.com/pytest-dev/pytest-asyncio/releases)
- [Commits](https://github.com/pytest-dev/pytest-asyncio/compare/v0.21.0...v0.21.1)

---
updated-dependencies:
- dependency-name: pytest-asyncio
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-17 03:50:33 +00:00
dependabot[bot]
e8ff5cb783 Bump pymdown-extensions from 10.0.1 to 10.1
Bumps [pymdown-extensions](https://github.com/facelessuser/pymdown-extensions) from 10.0.1 to 10.1.
- [Release notes](https://github.com/facelessuser/pymdown-extensions/releases)
- [Commits](https://github.com/facelessuser/pymdown-extensions/compare/10.0.1...10.1.0)

---
updated-dependencies:
- dependency-name: pymdown-extensions
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-17 03:50:26 +00:00
dependabot[bot]
256a8c686e Bump uvicorn from 0.22.0 to 0.23.0
Bumps [uvicorn](https://github.com/encode/uvicorn) from 0.22.0 to 0.23.0.
- [Release notes](https://github.com/encode/uvicorn/releases)
- [Changelog](https://github.com/encode/uvicorn/blob/master/CHANGELOG.md)
- [Commits](https://github.com/encode/uvicorn/compare/0.22.0...0.23.0)

---
updated-dependencies:
- dependency-name: uvicorn
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-17 03:50:21 +00:00
Matthias
69ddbe3944 Merge pull request #8909 from freqtrade/backtest_adjustment
introduce order.stake_amount
2023-07-16 20:03:46 +02:00
froggleston
79f7f82c59 Fix telegram output 2023-07-16 16:52:06 +01:00
Matthias
35714c469b Add explicit dry_wallet test 2023-07-16 16:06:23 +02:00
Matthias
cf9ba527bb Include realized_profit in update_dry
closes #8877
2023-07-16 16:06:23 +02:00
Matthias
d0e0e156b1 Update tests to account for realized profit/loss 2023-07-16 16:06:23 +02:00
Matthias
8a55423ac7 Add asserts for wallet size 2023-07-16 16:04:00 +02:00
Matthias
66131d5103 Improve integration test assertions 2023-07-15 20:55:56 +02:00
froggleston
1fd2a2532d Reduce trade stats function complexity 2023-07-15 17:06:52 +01:00
froggleston
9d36dc7ac6 Fix line length 2023-07-15 16:59:33 +01:00
froggleston
59cb9e39dd Fix another trailing whitespace 2023-07-15 16:55:24 +01:00
froggleston
d4b282d6f7 Fix expectancy calc and tests 2023-07-15 16:51:45 +01:00
froggleston
e57bb6bc97 Add api schema entries 2023-07-15 16:27:58 +01:00
froggleston
3ce17b740b Fix flake8 problems 2023-07-15 16:25:19 +01:00
froggleston
7eced953b3 Merge in develop changes 2023-07-15 16:16:08 +01:00
Matthias
768a7b47ec Fix some futures symbol naming in tests 2023-07-15 17:14:57 +02:00
froggleston
096cb0d1ee Add tests, fix winrate calc 2023-07-15 16:09:13 +01:00
froggleston
4235ab0c7e Add expectancy and winrate to telegram 2023-07-15 15:39:47 +01:00
froggleston
6e56f84fe3 Add expectancy and winrate to rpc trade statistics 2023-07-15 15:32:52 +01:00
Matthias
ff14208105 Improve logic for from_json special case 2023-07-15 15:23:15 +02:00
Matthias
626ea6b119 Add backtesting support for order.stake_amount 2023-07-15 14:55:22 +02:00
Matthias
d8c0621887 Add stake amount property to order object 2023-07-15 10:14:08 +02:00
Matthias
d1662db813 Merge pull request #8907 from freqtrade/dependabot/pip/cryptography-41.0.2
Bump cryptography from 40.0.1 to 41.0.2
2023-07-15 10:10:21 +02:00
Matthias
17296fdf9c Use proper cost for order
closes #8906
2023-07-15 09:02:17 +02:00
Matthias
e4cd29d88c Add test for trade.cost 2023-07-15 09:02:01 +02:00
Matthias
eeec1b0b38 Don't bump armhv crypto dependency
needs https://piwheels.org/project/cryptography/  to work again.
2023-07-15 08:18:29 +02:00
dependabot[bot]
e043fdba50 Bump cryptography from 40.0.1 to 41.0.2
Bumps [cryptography](https://github.com/pyca/cryptography) from 40.0.1 to 41.0.2.
- [Changelog](https://github.com/pyca/cryptography/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pyca/cryptography/compare/40.0.1...41.0.2)

---
updated-dependencies:
- dependency-name: cryptography
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-15 01:04:17 +00:00
Matthias
7f0e1c27c6 Fix realized_profit for trade from_json 2023-07-14 07:35:58 +02:00
Matthias
bdff34017a Merge pull request #8867 from freqtrade/doc/commmunityshowcase
Add community showcase
2023-07-14 06:43:14 +02:00
Matthias
7280d6bb3b Merge pull request #8890 from freqtrade/dependabot/pip/develop/pyarrow-12.0.1
Bump pyarrow from 12.0.0 to 12.0.1
2023-07-13 19:58:25 +02:00
Matthias
061e930eb1 Merge pull request #8901 from freqtrade/fix/8841
Avoid false-triggering "dust-eating" logic for rebuys
2023-07-13 18:06:33 +02:00
Matthias
240606c5a4 Only run once for an order 2023-07-13 07:14:20 +02:00
Matthias
6134764d5e Don't wrongly eat into dust on rebuys
closes #8841
2023-07-13 07:07:15 +02:00
Matthias
45a9c304b6 Add test for new conditional behavior 2023-07-13 07:07:15 +02:00
Matthias
c970ae8add Add pyarrow pi wheel 2023-07-13 06:40:49 +02:00
Matthias
3cf419cbcd Fix ill-used type on order backpopulate mapping 2023-07-12 18:22:41 +02:00
Matthias
8ad32e7498 Merge pull request #8898 from jansmets/bybit_ohlcv_history
bybit provides up to 2years of historic ohlcv data on any timefame.
2023-07-12 18:16:11 +02:00
Matthias
722b5569bd Add Freqtrade backtest project 2023-07-12 18:06:37 +02:00
Jan Smets
e8fe5a4f17 bybit provides up to 2years of historic ohlcv data on any timefame. 2023-07-12 11:39:32 +02:00
Matthias
a314175565 Merge pull request #8882 from freqtrade/dependabot/pip/develop/orjson-3.9.2
Bump orjson from 3.9.1 to 3.9.2
2023-07-11 06:06:50 +02:00
Matthias
9505f380bf Merge pull request #8892 from freqtrade/dependabot/pip/develop/time-machine-2.11.0
Bump time-machine from 2.10.0 to 2.11.0
2023-07-10 20:53:18 +02:00
dependabot[bot]
127ca83dea Bump orjson from 3.9.1 to 3.9.2
Bumps [orjson](https://github.com/ijl/orjson) from 3.9.1 to 3.9.2.
- [Release notes](https://github.com/ijl/orjson/releases)
- [Changelog](https://github.com/ijl/orjson/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ijl/orjson/compare/3.9.1...3.9.2)

---
updated-dependencies:
- dependency-name: orjson
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-10 17:51:56 +00:00
Matthias
5acfe2c89c Merge pull request #8891 from freqtrade/dependabot/pip/develop/fastapi-0.100.0
Bump fastapi from 0.99.1 to 0.100.0
2023-07-10 19:50:56 +02:00
Matthias
aa5a5ce8e1 Merge pull request #8887 from freqtrade/dependabot/pip/develop/sqlalchemy-2.0.18
Bump sqlalchemy from 2.0.17 to 2.0.18
2023-07-10 19:50:03 +02:00
Matthias
e8eb28996d Merge pull request #8888 from freqtrade/dependabot/pip/develop/jsonschema-4.18.0
Bump jsonschema from 4.17.3 to 4.18.0
2023-07-10 19:49:07 +02:00
Matthias
9af9caae09 Merge pull request #8889 from freqtrade/dependabot/pip/develop/ccxt-4.0.17
Bump ccxt from 4.0.15 to 4.0.17
2023-07-10 19:48:50 +02:00
Matthias
a0fff43648 Add fee_base to json output 2023-07-10 19:47:37 +02:00
dependabot[bot]
b7bd1eba6f Bump time-machine from 2.10.0 to 2.11.0
Bumps [time-machine](https://github.com/adamchainz/time-machine) from 2.10.0 to 2.11.0.
- [Changelog](https://github.com/adamchainz/time-machine/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/adamchainz/time-machine/compare/2.10.0...2.11.0)

---
updated-dependencies:
- dependency-name: time-machine
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-10 16:16:34 +00:00
dependabot[bot]
6d63b9400b Bump fastapi from 0.99.1 to 0.100.0
Bumps [fastapi](https://github.com/tiangolo/fastapi) from 0.99.1 to 0.100.0.
- [Release notes](https://github.com/tiangolo/fastapi/releases)
- [Commits](https://github.com/tiangolo/fastapi/compare/0.99.1...0.100.0)

---
updated-dependencies:
- dependency-name: fastapi
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-10 16:16:30 +00:00
dependabot[bot]
e0ba2f3a15 Bump pyarrow from 12.0.0 to 12.0.1
Bumps [pyarrow](https://github.com/apache/arrow) from 12.0.0 to 12.0.1.
- [Commits](https://github.com/apache/arrow/compare/go/v12.0.0...go/v12.0.1)

---
updated-dependencies:
- dependency-name: pyarrow
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-10 16:16:25 +00:00
dependabot[bot]
7d16012f61 Bump ccxt from 4.0.15 to 4.0.17
Bumps [ccxt](https://github.com/ccxt/ccxt) from 4.0.15 to 4.0.17.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/4.0.15...4.0.17)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-10 16:16:19 +00:00
dependabot[bot]
4a422cac5b Bump jsonschema from 4.17.3 to 4.18.0
Bumps [jsonschema](https://github.com/python-jsonschema/jsonschema) from 4.17.3 to 4.18.0.
- [Release notes](https://github.com/python-jsonschema/jsonschema/releases)
- [Changelog](https://github.com/python-jsonschema/jsonschema/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/python-jsonschema/jsonschema/compare/v4.17.3...v4.18.0)

---
updated-dependencies:
- dependency-name: jsonschema
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-10 16:16:12 +00:00
Matthias
884594a967 Bump sqlalchemy pre-commit 2023-07-10 18:09:08 +02:00
Matthias
c7c5c41f41 Merge pull request #8885 from freqtrade/dependabot/pip/develop/ccxt-4.0.15
Bump ccxt from 4.0.14 to 4.0.15
2023-07-10 18:07:42 +02:00
dependabot[bot]
12d89a9061 Bump sqlalchemy from 2.0.17 to 2.0.18
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 2.0.17 to 2.0.18.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/main/CHANGES.rst)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

---
updated-dependencies:
- dependency-name: sqlalchemy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-10 08:43:16 +00:00
Matthias
7d117e8ca2 Merge pull request #8886 from freqtrade/dependabot/pip/develop/python-telegram-bot-20.4
Bump python-telegram-bot from 20.3 to 20.4
2023-07-10 10:42:11 +02:00
Matthias
f6322bd02d Merge pull request #8884 from freqtrade/dependabot/pip/develop/numpy-1.25.1
Bump numpy from 1.25.0 to 1.25.1
2023-07-10 07:53:18 +02:00
Matthias
a3aafffbd2 Merge pull request #8883 from freqtrade/dependabot/pip/develop/mkdocs-material-9.1.18
Bump mkdocs-material from 9.1.17 to 9.1.18
2023-07-10 07:23:19 +02:00
Matthias
52b4a2c921 Merge pull request #8881 from freqtrade/dependabot/pip/develop/prompt-toolkit-3.0.39
Bump prompt-toolkit from 3.0.38 to 3.0.39
2023-07-10 07:22:54 +02:00
Matthias
32857f50ea Merge pull request #8879 from freqtrade/dependabot/pip/develop/ruff-0.0.277
Bump ruff from 0.0.275 to 0.0.277
2023-07-10 07:22:37 +02:00
Matthias
40945b4eff Merge pull request #8878 from freqtrade/dependabot/pip/develop/joblib-1.3.1
Bump joblib from 1.2.0 to 1.3.1
2023-07-10 07:22:14 +02:00
Matthias
1dbc294b80 Improve order __REPR__ with date 2023-07-10 07:11:29 +02:00
Matthias
5bc84dca56 Fix from_json with new attributes 2023-07-10 06:38:18 +02:00
Matthias
8c0e66008a Remove wrong/faulty "default" comment from cli options 2023-07-10 06:12:46 +02:00
dependabot[bot]
4a1a197943 Bump python-telegram-bot from 20.3 to 20.4
Bumps [python-telegram-bot](https://github.com/python-telegram-bot/python-telegram-bot) from 20.3 to 20.4.
- [Release notes](https://github.com/python-telegram-bot/python-telegram-bot/releases)
- [Changelog](https://github.com/python-telegram-bot/python-telegram-bot/blob/master/CHANGES.rst)
- [Commits](https://github.com/python-telegram-bot/python-telegram-bot/compare/v20.3...v20.4)

---
updated-dependencies:
- dependency-name: python-telegram-bot
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-10 04:00:59 +00:00
dependabot[bot]
43f6a7e3c9 Bump ccxt from 4.0.14 to 4.0.15
Bumps [ccxt](https://github.com/ccxt/ccxt) from 4.0.14 to 4.0.15.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/4.0.14...4.0.15)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-10 04:00:46 +00:00
dependabot[bot]
1bece11eb3 Bump numpy from 1.25.0 to 1.25.1
Bumps [numpy](https://github.com/numpy/numpy) from 1.25.0 to 1.25.1.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/RELEASE_WALKTHROUGH.rst)
- [Commits](https://github.com/numpy/numpy/compare/v1.25.0...v1.25.1)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-10 04:00:27 +00:00
dependabot[bot]
3c1cd72430 Bump mkdocs-material from 9.1.17 to 9.1.18
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 9.1.17 to 9.1.18.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/9.1.17...9.1.18)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-10 03:59:59 +00:00
dependabot[bot]
1ca2a8d638 Bump prompt-toolkit from 3.0.38 to 3.0.39
Bumps [prompt-toolkit](https://github.com/prompt-toolkit/python-prompt-toolkit) from 3.0.38 to 3.0.39.
- [Changelog](https://github.com/prompt-toolkit/python-prompt-toolkit/blob/master/CHANGELOG)
- [Commits](https://github.com/prompt-toolkit/python-prompt-toolkit/compare/3.0.38...3.0.39)

---
updated-dependencies:
- dependency-name: prompt-toolkit
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-10 03:59:21 +00:00
dependabot[bot]
7359a76b77 Bump ruff from 0.0.275 to 0.0.277
Bumps [ruff](https://github.com/astral-sh/ruff) from 0.0.275 to 0.0.277.
- [Release notes](https://github.com/astral-sh/ruff/releases)
- [Changelog](https://github.com/astral-sh/ruff/blob/main/BREAKING_CHANGES.md)
- [Commits](https://github.com/astral-sh/ruff/compare/v0.0.275...v0.0.277)

---
updated-dependencies:
- dependency-name: ruff
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-10 03:59:01 +00:00
dependabot[bot]
75e6315aac Bump joblib from 1.2.0 to 1.3.1
Bumps [joblib](https://github.com/joblib/joblib) from 1.2.0 to 1.3.1.
- [Changelog](https://github.com/joblib/joblib/blob/master/CHANGES.rst)
- [Commits](https://github.com/joblib/joblib/commits)

---
updated-dependencies:
- dependency-name: joblib
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-10 03:58:40 +00:00
Matthias
d68eac92b8 Merge pull request #8874 from freqtrade/improve/convert_data
Improve/convert data
2023-07-09 17:14:12 +02:00
Matthias
b4957a2e37 Update converter test 2023-07-09 15:37:56 +02:00
Matthias
448f02960f Improve behavior for convert-data 2023-07-09 15:36:44 +02:00
Matthias
5a43dd4766 don't hard-default --timeframes via argparse 2023-07-09 15:32:51 +02:00
Matthias
10f34563f8 Improve default for --candle-types 2023-07-09 15:02:47 +02:00
Matthias
d8d0a60322 Merge pull request #8872 from freqtrade/ccxt_bump
bump ccxt to 4.0.14
2023-07-09 14:49:27 +02:00
Matthias
4c6eee8dfe Update proxy documentation to correspond to new ccxt mode 2023-07-09 13:52:46 +02:00
Matthias
a598b8554d Bump ccxt and ccxt min requirement 2023-07-09 13:48:14 +02:00
Matthias
511023ee10 Fix typo in comment 2023-07-09 13:47:57 +02:00
Matthias
8212a5af77 Merge pull request #8819 from Bloodhunter4rc/remotepairlist
Remotepairlist - add blacklist mode
2023-07-09 12:42:25 +02:00
Matthias
af5fc76dc6 Add test for different processing modes 2023-07-09 11:51:43 +02:00
Matthias
e6ee55a69b Improve some test coverage 2023-07-09 11:37:06 +02:00
Matthias
4dda9c6daa Add explicit test for short-desc 2023-07-09 11:36:13 +02:00
Matthias
5da5369ca4 Update parameter sequence to make more sense 2023-07-09 11:09:59 +02:00
Matthias
ea04210eb3 Merge pull request #8869 from stash86/patch-1
Update my link
2023-07-09 10:38:18 +02:00
Stefano Ariestasia
e64327f353 Update my link 2023-07-09 17:12:21 +09:00
Bloodhunter4rc
4d4ec11a8a - print 2023-07-09 09:53:31 +02:00
Bloodhunter4rc
4f77e3f595 Merge branch 'remotepairlist' of https://github.com/Bloodhunter4rc/freqtrade into remotepairlist 2023-07-09 09:44:19 +02:00
Bloodhunter4rc
0b68ca6cb3 use pairlist_pos remove unused check, fixed Test 2023-07-09 09:42:33 +02:00
Bloodhunter4rc
0c2eb8dc58 Merge branch 'freqtrade:develop' into remotepairlist 2023-07-09 09:15:56 +02:00
Matthias
b2106ef4a2 Update frequenthippo link description 2023-07-09 07:35:02 +02:00
Bloodhunter4rc
ee1fa34df2 Add 'processing_mode' , blacklist checks 2023-07-08 18:05:46 +02:00
Matthias
c4b0f24cd7 Use USD for kraken tests, as it has more volume. 2023-07-08 13:26:31 +02:00
Matthias
a1d50dbfa2 Add community showcase 2023-07-08 13:06:12 +02:00
Matthias
8436f9ade4 Merge pull request #8802 from freqtrade/dependabot/pip/develop/numpy-1.25.0
Bump numpy from 1.24.3 to 1.25.0
2023-07-08 10:32:27 +02:00
Matthias
2e78f7503e Merge branch 'develop' into dependabot/pip/develop/numpy-1.25.0 2023-07-08 09:52:33 +02:00
Matthias
5c0f5588a6 Simplify sort_values in PerformanceFilter
Avoids potential regression in numpy 1.25.0 - which doesn't keep prior sort order in chained sort_values calls.
2023-07-08 09:49:01 +02:00
Matthias
3d6d006e84 Merge branch 'develop' into pr/Bloodhunter4rc/8819 2023-07-08 07:37:00 +02:00
Matthias
1c5ea317e6 Add mode as parameter for the UI 2023-07-08 07:31:55 +02:00
Matthias
31faad776e Merge branch 'stable' into develop 2023-07-07 20:31:35 +02:00
Matthias
eea95f79aa Merge pull request #8862 from freqtrade/new_release
New release 2023.6
2023-07-07 20:08:27 +02:00
Matthias
f020daa357 Merge pull request #8864 from freqtrade/dependabot/pip/develop/ccxt-4.0.12
Bump ccxt from 3.1.44 to 4.0.12
2023-07-07 15:46:08 +02:00
Matthias
dacbcdb710 Merge pull request #8865 from freqtrade/online_test_trade_history
Online test trade history
2023-07-07 13:55:21 +02:00
Matthias
a9e239ca7a Don't use future date for downloading new trade data
closes #8860
2023-07-07 11:23:34 +02:00
Matthias
65550335ee Add explicit online test for get_trade_history
part of #8860
2023-07-07 11:15:15 +02:00
Matthias
01db789d42 Improve release documentation 2023-07-07 10:56:41 +02:00
Matthias
6fe0895e74 Merge pull request #8847 from freqtrade/dependabot/pip/develop/scipy-1.11.1
Bump scipy from 1.10.1 to 1.11.1
2023-07-07 10:45:47 +02:00
dependabot[bot]
c93a27af7d Bump ccxt from 3.1.44 to 4.0.12
Bumps [ccxt](https://github.com/ccxt/ccxt) from 3.1.44 to 4.0.12.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/3.1.44...4.0.12)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-07 08:22:16 +00:00
Matthias
67ce7917cc Merge pull request #8863 from freqtrade/robcaulk-patch-1
Bump datasieve 0.1.7
2023-07-07 10:21:23 +02:00
Matthias
9b447cdf1e Bump pandas to 2.0.3 2023-07-07 09:37:14 +02:00
Robert Caulk
98ba0042d8 Bump datasieve 0.1.7 2023-07-07 09:27:09 +02:00
Matthias
f64b9503f9 scipy 1.11 doesn't support python 3.8 any longer 2023-07-07 09:08:32 +02:00
Matthias
e734a664b4 bump develop-version to 2023.7.dev 2023-07-07 08:59:10 +02:00
Matthias
942f0b4fbd Move format_ms_time to datetime_helpers 2023-07-07 08:59:07 +02:00
Matthias
a2ba466918 Merge pull request #8851 from freqtrade/dependabot/pip/develop/stable-baselines3-2.0.0
Bump stable-baselines3 from 2.0.0a13 to 2.0.0
2023-07-07 08:51:45 +02:00
Matthias
7ba459db88 Version bump to 2023.6 2023-07-07 08:45:06 +02:00
Matthias
ab39144af8 Merge branch 'stable' into new_release 2023-07-07 08:44:49 +02:00
Matthias
092e30a159 Attempt CI without brew update 2023-07-06 21:22:03 +02:00
Matthias
e6db5bd193 Pin numpy for python < 3.8 2023-07-06 21:09:06 +02:00
Matthias
5cd08ce554 Merge pull request #8825 from freqtrade/dependabot/pip/develop/ruff-0.0.275
Bump ruff from 0.0.272 to 0.0.275
2023-07-04 20:47:28 +02:00
Matthias
e51085ebc6 Merge pull request #8853 from freqtrade/dependabot/pip/develop/fastapi-0.99.1
Bump fastapi from 0.98.0 to 0.99.1
2023-07-03 16:13:18 +02:00
Matthias
817b6f9bde Merge pull request #8852 from freqtrade/dependabot/pip/develop/ast-comments-1.1.0
Bump ast-comments from 1.0.1 to 1.1.0
2023-07-03 11:09:03 +02:00
Matthias
b204a93d1c Merge pull request #8858 from freqtrade/dependabot/github_actions/develop/pypa/gh-action-pypi-publish-1.8.7
Bump pypa/gh-action-pypi-publish from 1.8.6 to 1.8.7
2023-07-03 10:49:22 +02:00
dependabot[bot]
977bfa08b7 Bump pypa/gh-action-pypi-publish from 1.8.6 to 1.8.7
Bumps [pypa/gh-action-pypi-publish](https://github.com/pypa/gh-action-pypi-publish) from 1.8.6 to 1.8.7.
- [Release notes](https://github.com/pypa/gh-action-pypi-publish/releases)
- [Commits](https://github.com/pypa/gh-action-pypi-publish/compare/v1.8.6...v1.8.7)

---
updated-dependencies:
- dependency-name: pypa/gh-action-pypi-publish
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-03 03:42:51 +00:00
dependabot[bot]
ba6cba31be Bump fastapi from 0.98.0 to 0.99.1
Bumps [fastapi](https://github.com/tiangolo/fastapi) from 0.98.0 to 0.99.1.
- [Release notes](https://github.com/tiangolo/fastapi/releases)
- [Commits](https://github.com/tiangolo/fastapi/compare/0.98.0...0.99.1)

---
updated-dependencies:
- dependency-name: fastapi
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-03 03:29:53 +00:00
dependabot[bot]
1880f9ffa1 Bump ast-comments from 1.0.1 to 1.1.0
Bumps [ast-comments](https://github.com/t3rn0/ast-comments) from 1.0.1 to 1.1.0.
- [Commits](https://github.com/t3rn0/ast-comments/compare/1.0.1...1.1.0)

---
updated-dependencies:
- dependency-name: ast-comments
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-03 03:29:48 +00:00
dependabot[bot]
9d3dda4e12 Bump stable-baselines3 from 2.0.0a13 to 2.0.0
Bumps [stable-baselines3](https://github.com/DLR-RM/stable-baselines3) from 2.0.0a13 to 2.0.0.
- [Release notes](https://github.com/DLR-RM/stable-baselines3/releases)
- [Commits](https://github.com/DLR-RM/stable-baselines3/commits/v2.0.0)

---
updated-dependencies:
- dependency-name: stable-baselines3
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-03 03:29:40 +00:00
Matthias
0310a26b80 Fix documentation typo 2023-07-02 16:44:47 +00:00
Matthias
86956908d0 Merge branch 'develop' into dependabot/pip/develop/ruff-0.0.275 2023-07-02 18:35:43 +02:00
dependabot[bot]
b204da3317 Bump scipy from 1.10.1 to 1.11.1
Bumps [scipy](https://github.com/scipy/scipy) from 1.10.1 to 1.11.1.
- [Release notes](https://github.com/scipy/scipy/releases)
- [Commits](https://github.com/scipy/scipy/compare/v1.10.1...v1.11.1)

---
updated-dependencies:
- dependency-name: scipy
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-01 05:43:10 +00:00
Matthias
e16c433cb8 Merge pull request #8829 from freqtrade/dependabot/pip/develop/mypy-1.4.1
Bump mypy from 1.3.0 to 1.4.1
2023-06-30 17:52:14 +02:00
Matthias
c5510491e5 Merge pull request #8830 from freqtrade/dependabot/pip/develop/sqlalchemy-2.0.17
Bump sqlalchemy from 2.0.16 to 2.0.17
2023-06-30 09:18:24 +02:00
Matthias
29725440c8 Simplify RPCMessageType schema definition 2023-06-29 12:28:25 +00:00
Matthias
accc1b509b Simplify class setups without inheritance 2023-06-29 12:16:10 +00:00
Matthias
4b06b4772d sqlalchemy - pre-commit 2023-06-29 11:53:58 +00:00
Matthias
a90b7c0bf5 Merge pull request #8835 from freqtrade/fix/pca-components
make sure default PCA behavior reduces parameter space size
2023-06-26 19:14:44 +02:00
Matthias
c4168055f9 Merge pull request #8831 from freqtrade/dependabot/pip/develop/fastapi-0.98.0
Bump fastapi from 0.97.0 to 0.98.0
2023-06-26 15:18:37 +02:00
dependabot[bot]
b12dbd2bea Bump ruff from 0.0.272 to 0.0.275
Bumps [ruff](https://github.com/astral-sh/ruff) from 0.0.272 to 0.0.275.
- [Release notes](https://github.com/astral-sh/ruff/releases)
- [Changelog](https://github.com/astral-sh/ruff/blob/main/BREAKING_CHANGES.md)
- [Commits](https://github.com/astral-sh/ruff/compare/v0.0.272...v0.0.275)

---
updated-dependencies:
- dependency-name: ruff
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-26 13:17:59 +00:00
dependabot[bot]
be07ea5d4f Bump mypy from 1.3.0 to 1.4.1
Bumps [mypy](https://github.com/python/mypy) from 1.3.0 to 1.4.1.
- [Commits](https://github.com/python/mypy/compare/v1.3.0...v1.4.1)

---
updated-dependencies:
- dependency-name: mypy
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-26 13:17:23 +00:00
Matthias
e729c5f9fd Merge pull request #8828 from freqtrade/dependabot/pip/develop/pytest-7.4.0
Bump pytest from 7.3.2 to 7.4.0
2023-06-26 15:17:02 +02:00
Matthias
5c8181fdd3 Merge pull request #8826 from freqtrade/dependabot/pip/develop/nbconvert-7.6.0
Bump nbconvert from 7.5.0 to 7.6.0
2023-06-26 15:16:11 +02:00
Matthias
3329279b71 Merge pull request #8827 from freqtrade/dependabot/pip/develop/mkdocs-material-9.1.17
Bump mkdocs-material from 9.1.16 to 9.1.17
2023-06-26 15:15:53 +02:00
robcaulk
6b201d525e make sure default PCA behavior reduces parameter space size 2023-06-26 14:42:59 +02:00
dependabot[bot]
8c2098c262 Bump fastapi from 0.97.0 to 0.98.0
Bumps [fastapi](https://github.com/tiangolo/fastapi) from 0.97.0 to 0.98.0.
- [Release notes](https://github.com/tiangolo/fastapi/releases)
- [Commits](https://github.com/tiangolo/fastapi/compare/0.97.0...0.98.0)

---
updated-dependencies:
- dependency-name: fastapi
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-26 03:58:27 +00:00
dependabot[bot]
6274197f85 Bump sqlalchemy from 2.0.16 to 2.0.17
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 2.0.16 to 2.0.17.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/main/CHANGES.rst)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

---
updated-dependencies:
- dependency-name: sqlalchemy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-26 03:58:21 +00:00
dependabot[bot]
ae42d57a26 Bump pytest from 7.3.2 to 7.4.0
Bumps [pytest](https://github.com/pytest-dev/pytest) from 7.3.2 to 7.4.0.
- [Release notes](https://github.com/pytest-dev/pytest/releases)
- [Changelog](https://github.com/pytest-dev/pytest/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest/compare/7.3.2...7.4.0)

---
updated-dependencies:
- dependency-name: pytest
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-26 03:57:31 +00:00
dependabot[bot]
2d2699b0ad Bump mkdocs-material from 9.1.16 to 9.1.17
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 9.1.16 to 9.1.17.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/9.1.16...9.1.17)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-26 03:57:21 +00:00
dependabot[bot]
fec4cb3cf9 Bump nbconvert from 7.5.0 to 7.6.0
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 7.5.0 to 7.6.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Changelog](https://github.com/jupyter/nbconvert/blob/main/CHANGELOG.md)
- [Commits](https://github.com/jupyter/nbconvert/compare/v7.5.0...v7.6.0)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-26 03:57:07 +00:00
Matthias
4a886e1b97 Merge pull request #8824 from freqtrade/refactor/optimize_reports
Refactor/optimize reports
2023-06-25 19:29:22 +02:00
Matthias
2c36a09b4f Merge pull request #8823 from freqtrade/fix/outlier-check
Fix/outlier check
2023-06-25 19:28:55 +02:00
Matthias
1717f86702 Extract edge output to proper module 2023-06-25 17:45:01 +02:00
Matthias
72504e62ad Extract btstorage methods 2023-06-25 17:42:58 +02:00
Matthias
65e8359908 Improve naming of new file 2023-06-25 17:11:13 +02:00
Matthias
794bca1379 Split optimize report generation from visualization 2023-06-25 17:09:57 +02:00
Matthias
5e084ad2e5 convert optimize_reports to a package 2023-06-25 17:08:41 +02:00
robcaulk
fca73531cf fix: use .shape instead of index for outliers 2023-06-25 16:34:44 +02:00
robcaulk
9da28e5328 bump datasieve 2023-06-25 15:44:24 +02:00
robcaulk
fd420738cd ensure outlier-check is returning as a numpy array from datasieve 2023-06-25 15:43:02 +02:00
Matthias
48e8965322 Don't add header if it's not needed 2023-06-25 15:35:57 +02:00
Bloodhunter4rc
ce1b90885e support wildcards 2023-06-24 21:32:20 +02:00
Matthias
5f98530ef9 Catch and send exceptions from websockets 2023-06-24 20:26:05 +02:00
Matthias
69087c30e7 Don't overwrite "type" with a variable 2023-06-24 20:18:24 +02:00
Bloodhunter4rc
d534f88d1c unnecessary lines removed. 2023-06-24 14:36:31 +02:00
Bloodhunter4rc
caca070c1a added tests 2023-06-24 14:31:30 +02:00
Bloodhunter4rc
36b33fb407 add mode to set the pairlist to blacklist additional to whitelist
adhere to _number_pairs
2023-06-24 12:38:31 +02:00
Matthias
6e143d4a5d Merge pull request #8818 from freqtrade/self
Use Self typing
2023-06-23 19:50:01 +02:00
Matthias
757c6dc5ca Use Self typing 2023-06-23 18:15:06 +02:00
Matthias
01dfca80ab Improve stop test behavior 2023-06-20 19:16:21 +02:00
Matthias
2f7b29ed34 Fix test_tsl_on_exchange_compatible_with_edge 2023-06-20 19:08:55 +02:00
Matthias
b49a118764 Fix exit_timeout test 2023-06-20 18:14:16 +02:00
Matthias
c7683a7b61 Improve docs wording 2023-06-20 06:57:48 +02:00
Matthias
5d60c62645 align list blocks 2023-06-20 06:55:19 +02:00
Matthias
96c2ca67e9 Add usage note for pairs.json file 2023-06-20 06:51:40 +02:00
Matthias
b0e5fb3940 Improve structure of download-data documentation 2023-06-20 06:50:59 +02:00
Matthias
8c54036fa5 Move Downloading tip from pairs file section 2023-06-20 06:45:56 +02:00
Matthias
859f7ff3de be explicit when loading pairs file. 2023-06-19 18:29:37 +02:00
dependabot[bot]
b2c87c3591 Bump numpy from 1.24.3 to 1.25.0
Bumps [numpy](https://github.com/numpy/numpy) from 1.24.3 to 1.25.0.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/RELEASE_WALKTHROUGH.rst)
- [Commits](https://github.com/numpy/numpy/compare/v1.24.3...v1.25.0)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-19 16:05:34 +00:00
Matthias
62f4bd27ec Merge pull request #8806 from freqtrade/dependabot/pip/develop/ccxt-3.1.44
Bump ccxt from 3.1.34 to 3.1.44
2023-06-19 17:59:05 +02:00
Robert Caulk
26c06e38be Merge pull request #8804 from freqtrade/dependabot/pip/develop/xgboost-1.7.6
Bump xgboost from 1.7.5 to 1.7.6
2023-06-19 14:35:34 +02:00
Matthias
78451447ac Merge pull request #8798 from freqtrade/dependabot/pip/develop/mkdocs-material-9.1.16
Bump mkdocs-material from 9.1.15 to 9.1.16
2023-06-19 14:25:58 +02:00
Matthias
0f7720dec0 Merge pull request #8801 from freqtrade/dependabot/pip/develop/pytest-mock-3.11.1
Bump pytest-mock from 3.10.0 to 3.11.1
2023-06-19 14:25:32 +02:00
Matthias
b9fe364d9c Merge pull request #8805 from freqtrade/dependabot/pip/develop/pre-commit-3.3.3
Bump pre-commit from 3.3.2 to 3.3.3
2023-06-19 13:06:07 +02:00
Matthias
97e7b60656 Merge pull request #8803 from freqtrade/dependabot/pip/develop/filelock-3.12.2
Bump filelock from 3.12.1 to 3.12.2
2023-06-19 13:05:42 +02:00
Matthias
936e49e8ee Merge pull request #8807 from freqtrade/dependabot/pip/develop/rich-13.4.2
Bump rich from 13.4.1 to 13.4.2
2023-06-19 13:05:11 +02:00
dependabot[bot]
6bc3439cb7 Bump pytest-mock from 3.10.0 to 3.11.1
Bumps [pytest-mock](https://github.com/pytest-dev/pytest-mock) from 3.10.0 to 3.11.1.
- [Release notes](https://github.com/pytest-dev/pytest-mock/releases)
- [Changelog](https://github.com/pytest-dev/pytest-mock/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest-mock/compare/v3.10.0...v3.11.1)

---
updated-dependencies:
- dependency-name: pytest-mock
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-19 05:08:12 +00:00
Matthias
ec72c91b17 Merge pull request #8800 from freqtrade/dependabot/pip/develop/time-machine-2.10.0
Bump time-machine from 2.9.0 to 2.10.0
2023-06-19 07:01:56 +02:00
Matthias
2809379b56 Merge pull request #8799 from freqtrade/dependabot/pip/develop/nbconvert-7.5.0
Bump nbconvert from 7.4.0 to 7.5.0
2023-06-19 07:01:38 +02:00
dependabot[bot]
e965b2e454 Bump rich from 13.4.1 to 13.4.2
Bumps [rich](https://github.com/Textualize/rich) from 13.4.1 to 13.4.2.
- [Release notes](https://github.com/Textualize/rich/releases)
- [Changelog](https://github.com/Textualize/rich/blob/master/CHANGELOG.md)
- [Commits](https://github.com/Textualize/rich/compare/v13.4.1...v13.4.2)

---
updated-dependencies:
- dependency-name: rich
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-19 03:58:02 +00:00
dependabot[bot]
d82a0ad7b5 Bump ccxt from 3.1.34 to 3.1.44
Bumps [ccxt](https://github.com/ccxt/ccxt) from 3.1.34 to 3.1.44.
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/3.1.34...3.1.44)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-19 03:57:35 +00:00
dependabot[bot]
f04598c5e5 Bump pre-commit from 3.3.2 to 3.3.3
Bumps [pre-commit](https://github.com/pre-commit/pre-commit) from 3.3.2 to 3.3.3.
- [Release notes](https://github.com/pre-commit/pre-commit/releases)
- [Changelog](https://github.com/pre-commit/pre-commit/blob/main/CHANGELOG.md)
- [Commits](https://github.com/pre-commit/pre-commit/compare/v3.3.2...v3.3.3)

---
updated-dependencies:
- dependency-name: pre-commit
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-19 03:57:29 +00:00
dependabot[bot]
f82d52c6d3 Bump xgboost from 1.7.5 to 1.7.6
Bumps [xgboost](https://github.com/dmlc/xgboost) from 1.7.5 to 1.7.6.
- [Release notes](https://github.com/dmlc/xgboost/releases)
- [Changelog](https://github.com/dmlc/xgboost/blob/master/NEWS.md)
- [Commits](https://github.com/dmlc/xgboost/compare/v1.7.5...v1.7.6)

---
updated-dependencies:
- dependency-name: xgboost
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-19 03:57:17 +00:00
dependabot[bot]
fc0548ce0b Bump filelock from 3.12.1 to 3.12.2
Bumps [filelock](https://github.com/tox-dev/py-filelock) from 3.12.1 to 3.12.2.
- [Release notes](https://github.com/tox-dev/py-filelock/releases)
- [Changelog](https://github.com/tox-dev/py-filelock/blob/main/docs/changelog.rst)
- [Commits](https://github.com/tox-dev/py-filelock/compare/3.12.1...3.12.2)

---
updated-dependencies:
- dependency-name: filelock
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-19 03:57:02 +00:00
dependabot[bot]
8cc763b664 Bump time-machine from 2.9.0 to 2.10.0
Bumps [time-machine](https://github.com/adamchainz/time-machine) from 2.9.0 to 2.10.0.
- [Changelog](https://github.com/adamchainz/time-machine/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/adamchainz/time-machine/compare/2.9.0...2.10.0)

---
updated-dependencies:
- dependency-name: time-machine
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-19 03:56:44 +00:00
dependabot[bot]
ed90e77ea0 Bump nbconvert from 7.4.0 to 7.5.0
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 7.4.0 to 7.5.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Changelog](https://github.com/jupyter/nbconvert/blob/main/CHANGELOG.md)
- [Commits](https://github.com/jupyter/nbconvert/compare/v7.4.0...v7.5.0)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-19 03:56:40 +00:00
dependabot[bot]
1eb691d461 Bump mkdocs-material from 9.1.15 to 9.1.16
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 9.1.15 to 9.1.16.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/9.1.15...9.1.16)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-19 03:56:37 +00:00
Matthias
571dea6e9c Fix wrong final status on bg-tasks 2023-06-18 15:45:26 +02:00
Matthias
02071df8fa Merge pull request #8692 from freqtrade/feat/outsource-data-pipeline
Outsource data pipeline handling to improve flexibility
2023-06-18 13:39:36 +02:00
Robert Caulk
cca4fa1178 Update BaseClassifierModel.py 2023-06-18 11:31:03 +02:00
Robert Caulk
7e2f857aa5 Update BasePyTorchClassifier.py 2023-06-18 11:30:33 +02:00
Matthias
3d72d32845 Merge pull request #8369 from hippocritical/develop
backtest - lookahead_analysis
2023-06-18 08:29:08 +02:00
Matthias
52db6ac7d7 Use proper log level 2023-06-17 20:35:23 +02:00
Matthias
d94f3e7679 Add explicit tests for download-data
(without the command part)
2023-06-17 20:00:24 +02:00
Matthias
7af14d1985 Fix random test failure 2023-06-17 18:26:08 +02:00
Matthias
44a38e8362 Update download data tests 2023-06-17 18:22:47 +02:00
Matthias
0be4084eac Don't allow downloading wrong pairs
Prior to this, BTC/USDT:USDT could be downloaded to the spot directory, as it was filtered inproperly.
2023-06-17 18:14:58 +02:00
Matthias
937734365f Improve typehint for markets 2023-06-17 18:04:41 +02:00
Matthias
66b34edc0b Clarify variable name 2023-06-17 18:03:57 +02:00
Matthias
6f0f954686 Adjust mocks for new import location 2023-06-17 17:53:12 +02:00
Matthias
7453ff2fb5 Migrate download-data out of commands section 2023-06-17 17:53:12 +02:00
Matthias
b8ab6fe42b Improve wording of check command 2023-06-17 17:53:12 +02:00
Matthias
e0d5242a45 Reduce download-data verbosity 2023-06-17 17:53:12 +02:00
Robert Caulk
402a247c92 Merge pull request #8760 from initrv/rl-action-masks
Add MaskablePPO support
2023-06-17 16:28:43 +02:00
robcaulk
886b86f7c5 chore: bump datasieve 2023-06-17 16:14:48 +02:00
robcaulk
b0ab400ff3 fix: ensure test_size=0 is still accommodated 2023-06-17 15:39:33 +02:00
Matthias
bf872e8ed4 Simplify comparison depth 2023-06-17 14:25:46 +02:00
robcaulk
447feb16b4 Merge remote-tracking branch 'origin/develop' into use-datasieve 2023-06-17 13:26:35 +02:00
robcaulk
636f5753e1 Merge remote-tracking branch 'origin/feat/outsource-data-pipeline' into use-datasieve 2023-06-17 13:26:14 +02:00
robcaulk
11ff454b3b fix: ensure that a user setting up their own pipeline wont have conflicts with DI_values 2023-06-17 13:21:31 +02:00
Matthias
6bb75f0dd4 Simplify import if only one element is used 2023-06-17 10:12:36 +02:00
Matthias
1567cd2849 Use DOCS_LINK throughout 2023-06-17 09:10:54 +02:00
Matthias
34e7e3efea Simplify imports 2023-06-17 08:40:09 +02:00
Matthias
2c7aa9f721 Update doc wording 2023-06-17 08:37:38 +02:00
Matthias
24e806f081 Improve resiliance by using non-exchange controlled order attributes. 2023-06-16 19:58:35 +02:00
Matthias
b0396af4c4 Merge pull request #8791 from freqtrade/ci/catboost
Remove old version pin for catboost
2023-06-16 18:20:34 +02:00
Matthias
efaa959bfa Merge pull request #8790 from freqtrade/docs/link-to-articles
Add links to more FreqAI learning content
2023-06-16 18:20:05 +02:00
Matthias
7939716a5e Improve formatting of telegram /status messages 2023-06-16 18:00:22 +02:00
Matthias
4f834c8964 Remove old version pin for catboost 2023-06-16 15:15:40 +02:00
Robert Caulk
ffd7394adb Update freqai.md 2023-06-16 15:10:11 +02:00
Robert Caulk
2107dce2cd Update freqai-feature-engineering.md 2023-06-16 15:03:49 +02:00
robcaulk
72101f059d feat: ensure full backwards compatibility 2023-06-16 13:20:35 +02:00
robcaulk
75ec19062c chore: make DOCS_LINK in constants.py, ensure datasieve is added to setup.py 2023-06-16 13:06:21 +02:00
Matthias
64fcb1ed11 Better pin scikit-learn
caused by #7896
2023-06-16 10:15:45 +02:00
Matthias
dec3c0f374 Remove environment.yml completely 2023-06-16 07:02:40 +02:00
Matthias
1b86bf8a1d Don't include non-used parameters in command structure 2023-06-16 06:58:34 +02:00
Matthias
2cd9043c51 Make documentation discoverable / linked 2023-06-16 06:44:55 +02:00
Matthias
b3ef024e9e Don't use PurePosixPath 2023-06-15 20:43:05 +02:00
Matthias
964bf76469 Invert parameters for initialize_single_lookahead_analysis
otherwise their order is reversed before calling LookaheadAnalysis for no good reason
2023-06-15 20:42:26 +02:00
Matthias
ad74e65673 Simplify configuration setup 2023-06-15 20:26:45 +02:00
Matthias
ac36ba6592 Improve arguments file formatting 2023-06-15 20:15:44 +02:00
Matthias
ca88cac08b Remove unused code file 2023-06-15 06:39:00 +02:00
Matthias
d211bf47f1 Merge pull request #8767 from freqtrade/dependabot/pip/develop/stable-baselines3-2.0.0a13
Bump stable-baselines3 from 2.0.0a10 to 2.0.0a13
2023-06-15 06:06:44 +02:00
Matthias
11d7e7925e Fix random test failures 2023-06-14 20:34:18 +02:00
hippocritical
bc4d1c5326 Merge branch 'freqtrade:develop' into develop 2023-06-13 18:59:31 +02:00
Matthias
10b93f080a Merge pull request #8770 from freqtrade/dependabot/pip/develop/fastapi-0.97.0
Bump fastapi from 0.96.0 to 0.97.0
2023-06-13 10:56:02 +02:00
hippocritical
876ce85cd8 Merge branch 'freqtrade:develop' into develop 2023-06-12 23:04:02 +02:00
Matthias
9a7794c520 Improve behavior for when stoploss cancels without content
closes #8761
2023-06-12 20:29:23 +02:00
Matthias
1a4d94a6f3 OKX stop should convert contracts to amount 2023-06-12 20:01:26 +02:00
Matthias
1e44cfe2fc Improve stoploss test 2023-06-12 18:20:36 +02:00
Matthias
502090c199 Merge pull request #8765 from freqtrade/dependabot/pip/develop/ccxt-3.1.34
Bump ccxt from 3.1.23 to 3.1.34
2023-06-12 13:44:15 +02:00
Matthias
385d9d30b7 Merge pull request #8775 from freqtrade/dependabot/pip/develop/plotly-5.15.0
Bump plotly from 5.14.1 to 5.15.0
2023-06-12 13:33:33 +02:00
dependabot[bot]
e763e2ad35 Bump ccxt from 3.1.23 to 3.1.34
Bumps [ccxt](https://github.com/ccxt/ccxt) from 3.1.23 to 3.1.34.
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/3.1.23...3.1.34)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-12 08:08:05 +00:00
Matthias
a89c647255 Merge pull request #8769 from freqtrade/dependabot/pip/develop/sqlalchemy-2.0.16
Bump sqlalchemy from 2.0.15 to 2.0.16
2023-06-12 10:01:59 +02:00
dependabot[bot]
1beaf6f05c Bump plotly from 5.14.1 to 5.15.0
Bumps [plotly](https://github.com/plotly/plotly.py) from 5.14.1 to 5.15.0.
- [Release notes](https://github.com/plotly/plotly.py/releases)
- [Changelog](https://github.com/plotly/plotly.py/blob/master/CHANGELOG.md)
- [Commits](https://github.com/plotly/plotly.py/compare/v5.14.1...v5.15.0)

---
updated-dependencies:
- dependency-name: plotly
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-12 07:26:38 +00:00
Matthias
21949c0446 bump sqlalchemy pre-commit 2023-06-12 09:23:58 +02:00
Matthias
6e6bccfd3e Merge pull request #8773 from freqtrade/dependabot/pip/develop/urllib3-2.0.3
Bump urllib3 from 2.0.2 to 2.0.3
2023-06-12 08:48:10 +02:00
Matthias
a7f882a7fe Merge pull request #8772 from freqtrade/dependabot/pip/develop/ruff-0.0.272
Bump ruff from 0.0.270 to 0.0.272
2023-06-12 08:47:50 +02:00
Matthias
0c4dab37d7 Merge pull request #8771 from freqtrade/dependabot/pip/develop/pytest-7.3.2
Bump pytest from 7.3.1 to 7.3.2
2023-06-12 08:47:32 +02:00
Matthias
1af4fa0419 Merge pull request #8774 from freqtrade/dependabot/pip/develop/orjson-3.9.1
Bump orjson from 3.9.0 to 3.9.1
2023-06-12 08:46:49 +02:00
Matthias
37495884d4 Merge pull request #8768 from freqtrade/dependabot/pip/develop/filelock-3.12.1
Bump filelock from 3.12.0 to 3.12.1
2023-06-12 08:13:32 +02:00
dependabot[bot]
2e087750e0 Bump fastapi from 0.96.0 to 0.97.0
Bumps [fastapi](https://github.com/tiangolo/fastapi) from 0.96.0 to 0.97.0.
- [Release notes](https://github.com/tiangolo/fastapi/releases)
- [Commits](https://github.com/tiangolo/fastapi/compare/0.96.0...0.97.0)

---
updated-dependencies:
- dependency-name: fastapi
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-12 05:12:52 +00:00
Matthias
64e803356a Merge pull request #8766 from freqtrade/dependabot/pip/develop/pydantic-1.10.9
Bump pydantic from 1.10.8 to 1.10.9
2023-06-12 07:07:03 +02:00
dependabot[bot]
7172bc0af3 Bump orjson from 3.9.0 to 3.9.1
Bumps [orjson](https://github.com/ijl/orjson) from 3.9.0 to 3.9.1.
- [Release notes](https://github.com/ijl/orjson/releases)
- [Changelog](https://github.com/ijl/orjson/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ijl/orjson/compare/3.9.0...3.9.1)

---
updated-dependencies:
- dependency-name: orjson
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-12 03:58:02 +00:00
dependabot[bot]
feb6e5c466 Bump urllib3 from 2.0.2 to 2.0.3
Bumps [urllib3](https://github.com/urllib3/urllib3) from 2.0.2 to 2.0.3.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/2.0.2...2.0.3)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-12 03:58:01 +00:00
dependabot[bot]
8b27b408c7 Bump ruff from 0.0.270 to 0.0.272
Bumps [ruff](https://github.com/charliermarsh/ruff) from 0.0.270 to 0.0.272.
- [Release notes](https://github.com/charliermarsh/ruff/releases)
- [Changelog](https://github.com/astral-sh/ruff/blob/main/BREAKING_CHANGES.md)
- [Commits](https://github.com/charliermarsh/ruff/compare/v0.0.270...v0.0.272)

---
updated-dependencies:
- dependency-name: ruff
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-12 03:57:45 +00:00
dependabot[bot]
a9515dee81 Bump pytest from 7.3.1 to 7.3.2
Bumps [pytest](https://github.com/pytest-dev/pytest) from 7.3.1 to 7.3.2.
- [Release notes](https://github.com/pytest-dev/pytest/releases)
- [Changelog](https://github.com/pytest-dev/pytest/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest/compare/7.3.1...7.3.2)

---
updated-dependencies:
- dependency-name: pytest
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-12 03:57:33 +00:00
dependabot[bot]
71064c02e5 Bump sqlalchemy from 2.0.15 to 2.0.16
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 2.0.15 to 2.0.16.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/main/CHANGES.rst)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

---
updated-dependencies:
- dependency-name: sqlalchemy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-12 03:57:05 +00:00
dependabot[bot]
66dc1fd339 Bump filelock from 3.12.0 to 3.12.1
Bumps [filelock](https://github.com/tox-dev/py-filelock) from 3.12.0 to 3.12.1.
- [Release notes](https://github.com/tox-dev/py-filelock/releases)
- [Changelog](https://github.com/tox-dev/py-filelock/blob/main/docs/changelog.rst)
- [Commits](https://github.com/tox-dev/py-filelock/compare/3.12.0...3.12.1)

---
updated-dependencies:
- dependency-name: filelock
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-12 03:56:52 +00:00
dependabot[bot]
7542909e18 Bump stable-baselines3 from 2.0.0a10 to 2.0.0a13
Bumps [stable-baselines3](https://github.com/DLR-RM/stable-baselines3) from 2.0.0a10 to 2.0.0a13.
- [Release notes](https://github.com/DLR-RM/stable-baselines3/releases)
- [Commits](https://github.com/DLR-RM/stable-baselines3/commits)

---
updated-dependencies:
- dependency-name: stable-baselines3
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-12 03:56:48 +00:00
dependabot[bot]
a39f23a5c7 Bump pydantic from 1.10.8 to 1.10.9
Bumps [pydantic](https://github.com/pydantic/pydantic) from 1.10.8 to 1.10.9.
- [Release notes](https://github.com/pydantic/pydantic/releases)
- [Changelog](https://github.com/pydantic/pydantic/blob/main/HISTORY.md)
- [Commits](https://github.com/pydantic/pydantic/compare/v1.10.8...v1.10.9)

---
updated-dependencies:
- dependency-name: pydantic
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-12 03:56:43 +00:00
hippocritical
d748cf6531 Merge branch 'freqtrade:develop' into develop 2023-06-11 22:55:03 +02:00
hippocritical
663cfc6211 fixing tests 2023-06-11 22:53:21 +02:00
steam
bdb535d0e6 add maskable eval callback multiproc 2023-06-11 22:20:15 +03:00
steam
5dee86eda7 fix action_masks typing list 2023-06-11 21:44:57 +03:00
steam
c36547a563 add maskable eval callback 2023-06-11 20:05:53 +03:00
steam
afd54d39a5 add action_masks 2023-06-11 20:00:12 +03:00
Matthias
5844756ba1 Add test and fix for stop-price == limit price
closes #8758
2023-06-11 17:20:35 +02:00
Matthias
4a800fe467 Add explicit test for get_stop_limit_rate 2023-06-11 17:17:41 +02:00
Matthias
fd940dbba2 Merge pull request #8530 from freqtrade/feat/pairlistconfig
Provide pairlists via API
2023-06-11 12:43:38 +02:00
Matthias
320b3e20a6 Use correct variable for candle-type when loading data
closes #8757
2023-06-11 11:58:18 +02:00
Matthias
fc11c79b77 Fix not working date format output 2023-06-11 08:51:20 +02:00
Matthias
87e144a95a Update webserver tags 2023-06-11 08:24:16 +02:00
Matthias
9ef814689e Update endpoint in rest-client 2023-06-11 08:18:01 +02:00
hippocritical
2bd66fbb47 Merge branch 'freqtrade:develop' into develop 2023-06-11 00:21:04 +02:00
hippocritical
9eceb2f38c Merge remote-tracking branch 'origin/develop' into develop 2023-06-11 00:20:02 +02:00
hippocritical
1da1972c18 added test for config overrides 2023-06-11 00:18:34 +02:00
Matthias
e332fbfb47 Add explicit test for okx get_stop_params 2023-06-10 16:56:41 +02:00
Matthias
2806110869 Add explicit test for okx cancel_stop 2023-06-10 16:56:41 +02:00
Matthias
cfe88f06d2 Improve behavior of okx rebuys when using stop on exchange
closes #8755
2023-06-10 16:56:41 +02:00
robcaulk
ad8a4897ce remove unnecessary example in feature_engineering.md 2023-06-10 16:13:28 +02:00
Matthias
4f15b30339 Merge pull request #8590 from AchmadFathoni/develop
Fix disrepancy in freqai doc code example
2023-06-10 15:27:01 +02:00
robcaulk
229ee643cd revert change to deal with FT pinning old scikit-learn version 2023-06-10 13:24:09 +02:00
robcaulk
41e37f9d32 improve docs, update doc strings 2023-06-10 13:11:47 +02:00
robcaulk
d9bdd879ab improve migration doc 2023-06-10 13:00:59 +02:00
robcaulk
f8d7c2e21d add migration guide, add protections and migration assistance 2023-06-10 12:48:27 +02:00
robcaulk
4cdd6bc6c3 avoid using ram for unnecessary train_df, fix some deprecation warnings 2023-06-10 12:07:03 +02:00
robcaulk
e246259792 avoid manual pipeline validation 2023-06-10 11:40:57 +02:00
Matthias
3523f564bd Improve Log reduction and corresponding test 2023-06-10 09:44:20 +02:00
Matthias
265d782af8 Implement the requested changes. 2023-06-10 09:30:34 +02:00
hippocritical
94ca2988a0 updated docs 2023-06-09 23:32:58 +02:00
hippocritical
6656740f21 Moved config overrides to its' own function
Added config overrides to dry_run_wallet and max_open_trades to avoid false positives.
2023-06-09 22:11:30 +02:00
Matthias
99842402f7 Further reduce unnecessary output 2023-06-09 07:18:35 +02:00
Matthias
16b3363970 Fix type problem 2023-06-09 07:16:06 +02:00
Matthias
b89390c06b Reduce log verbosity during bias tester runs 2023-06-09 07:15:36 +02:00
Matthias
c8e827d483 Merge branch 'develop' into pr/hippocritical/8369 2023-06-09 07:03:25 +02:00
Matthias
fc8c6b06ad Extract set-log-levels from main logging module 2023-06-09 06:59:08 +02:00
Matthias
e3056b141a Move logging tests to dedicated test file 2023-06-09 06:51:12 +02:00
Matthias
05ea36f03b Fix performance when running tons of backtests 2023-06-09 06:45:34 +02:00
Matthias
61f1701e56 Bump version to 2023.5.1 2023-06-08 22:02:33 +02:00
Matthias
beaaa94406 Improve test for reload-markets timings, fix bug
closes #8714
2023-06-08 21:03:12 +02:00
Matthias
6b736c49d4 Dont persist Backtesting to avoid memory leak 2023-06-08 20:13:28 +02:00
robcaulk
33b028b104 ensure data kitchen thread count is propagated to pipeline 2023-06-08 12:33:08 +02:00
robcaulk
88337b6c5e convert to using constants in data_drawer. Remove unneeded check_if_pred_in_spaces function 2023-06-08 12:19:42 +02:00
robcaulk
e39e40dc60 improve documentation of pipeline building/customization 2023-06-08 11:56:31 +02:00
Matthias
317e0b5f2b Avoid nested loops in telegram for force* scenarios
closes #8731
2023-06-08 07:08:06 +02:00
Matthias
4404d112a9 Merge pull request #8749 from freqtrade/dependabot/docker/python-3.11.4-slim-bullseye
Bump python from 3.10.11-slim-bullseye to 3.11.4-slim-bullseye
2023-06-08 06:30:36 +02:00
dependabot[bot]
f81139b97c Bump python from 3.10.11-slim-bullseye to 3.11.4-slim-bullseye
Bumps python from 3.10.11-slim-bullseye to 3.11.4-slim-bullseye.

---
updated-dependencies:
- dependency-name: python
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-08 03:56:43 +00:00
robcaulk
14557f2d32 merge develop into outsource-data-pipeline 2023-06-07 19:24:21 +02:00
robcaulk
f10f00f5e8 Merge remote-tracking branch 'origin' into use-datasieve 2023-06-07 19:23:36 +02:00
hippocritical
675a97c1cb Merge branch 'freqtrade:develop' into develop 2023-06-07 19:22:42 +02:00
robcaulk
c066f014e3 fix docs 2023-06-07 18:36:07 +02:00
robcaulk
6d39adc739 bump datasieve version 2023-06-07 18:29:49 +02:00
robcaulk
135aaa2be2 update docs, improve the interaction with define_data_pipeline 2023-06-07 18:26:49 +02:00
robcaulk
dc577d2a1a update to new datasieve interface, add noise to pipeline 2023-06-07 17:58:27 +02:00
robcaulk
4d4589becd fix isort in tests 2023-06-07 14:00:00 +02:00
robcaulk
f7f88aa14d fix pickle file name 2023-06-07 09:28:56 +02:00
robcaulk
17d74429b5 Merge remote-tracking branch 'origin/feat/outsource-data-pipeline' into use-datasieve 2023-06-07 09:08:09 +02:00
robcaulk
5ac141f72b convert to new datasieve api 2023-06-06 21:05:51 +02:00
Matthias
0b8ef1b880 Fix devcontainer invalid key 2023-06-05 21:13:52 +02:00
Matthias
c269eef77e Remove unnecessary calc_profit_ratio call 2023-06-05 21:10:29 +02:00
Matthias
21172802de Devcontainer image should contain as many dependencies as possible 2023-06-05 20:30:46 +02:00
Matthias
17b8cb2f7c Merge pull request #8738 from freqtrade/dependabot/pip/develop/ccxt-3.1.23
Bump ccxt from 3.1.13 to 3.1.23
2023-06-05 18:06:29 +02:00
dependabot[bot]
6ec91d11ae Bump ccxt from 3.1.13 to 3.1.23
Bumps [ccxt](https://github.com/ccxt/ccxt) from 3.1.13 to 3.1.23.
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/3.1.13...3.1.23)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-05 07:40:33 +00:00
Matthias
984dec12df Merge pull request #8739 from freqtrade/dependabot/pip/develop/pandas-2.0.2
Bump pandas from 2.0.1 to 2.0.2
2023-06-05 09:39:55 +02:00
Matthias
11f2bbdd08 Merge pull request #8740 from freqtrade/dependabot/pip/develop/types-requests-2.31.0.1
Bump types-requests from 2.31.0.0 to 2.31.0.1
2023-06-05 09:39:37 +02:00
Matthias
41f5c32526 Merge pull request #8741 from freqtrade/dependabot/pip/develop/mkdocs-material-9.1.15
Bump mkdocs-material from 9.1.14 to 9.1.15
2023-06-05 08:25:52 +02:00
Matthias
4dcb6395ef Bump pre-commit requests types 2023-06-05 07:13:09 +02:00
Matthias
46ad8afeb9 Merge pull request #8736 from freqtrade/dependabot/pip/develop/orjson-3.9.0
Bump orjson from 3.8.14 to 3.9.0
2023-06-05 07:10:27 +02:00
Matthias
49891967f2 Merge pull request #8734 from freqtrade/dependabot/pip/develop/fastapi-0.96.0
Bump fastapi from 0.95.2 to 0.96.0
2023-06-05 07:07:38 +02:00
Matthias
4acb0830e3 Merge pull request #8735 from freqtrade/dependabot/pip/develop/rich-13.4.1
Bump rich from 13.3.5 to 13.4.1
2023-06-05 07:07:20 +02:00
dependabot[bot]
e61659a2bc Bump mkdocs-material from 9.1.14 to 9.1.15
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 9.1.14 to 9.1.15.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/9.1.14...9.1.15)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-05 03:57:43 +00:00
dependabot[bot]
c2125698a7 Bump types-requests from 2.31.0.0 to 2.31.0.1
Bumps [types-requests](https://github.com/python/typeshed) from 2.31.0.0 to 2.31.0.1.
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-requests
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-05 03:57:22 +00:00
dependabot[bot]
093181e8f2 Bump pandas from 2.0.1 to 2.0.2
Bumps [pandas](https://github.com/pandas-dev/pandas) from 2.0.1 to 2.0.2.
- [Release notes](https://github.com/pandas-dev/pandas/releases)
- [Commits](https://github.com/pandas-dev/pandas/compare/v2.0.1...v2.0.2)

---
updated-dependencies:
- dependency-name: pandas
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-05 03:57:15 +00:00
dependabot[bot]
bdaf230bd1 Bump orjson from 3.8.14 to 3.9.0
Bumps [orjson](https://github.com/ijl/orjson) from 3.8.14 to 3.9.0.
- [Release notes](https://github.com/ijl/orjson/releases)
- [Changelog](https://github.com/ijl/orjson/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ijl/orjson/compare/3.8.14...3.9.0)

---
updated-dependencies:
- dependency-name: orjson
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-05 03:56:45 +00:00
dependabot[bot]
9dcab313b5 Bump rich from 13.3.5 to 13.4.1
Bumps [rich](https://github.com/Textualize/rich) from 13.3.5 to 13.4.1.
- [Release notes](https://github.com/Textualize/rich/releases)
- [Changelog](https://github.com/Textualize/rich/blob/master/CHANGELOG.md)
- [Commits](https://github.com/Textualize/rich/compare/v13.3.5...v13.4.1)

---
updated-dependencies:
- dependency-name: rich
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-05 03:56:40 +00:00
dependabot[bot]
c9bbeedd88 Bump fastapi from 0.95.2 to 0.96.0
Bumps [fastapi](https://github.com/tiangolo/fastapi) from 0.95.2 to 0.96.0.
- [Release notes](https://github.com/tiangolo/fastapi/releases)
- [Commits](https://github.com/tiangolo/fastapi/compare/0.95.2...0.96.0)

---
updated-dependencies:
- dependency-name: fastapi
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-05 03:56:37 +00:00
Robert Caulk
94bc91ef57 Update tests/freqai/test_freqai_datakitchen.py
Co-authored-by: Matthias <xmatthias@outlook.com>
2023-06-04 21:50:13 +02:00
Matthias
7a726da691 Update cached binance leverage tiers 2023-06-04 20:28:08 +02:00
Matthias
71b81ee7cd Add margin_mode to pairlists callback 2023-06-04 13:25:39 +02:00
Matthias
f61ae9c7e2 Merge branch 'develop' into feat/pairlistconfig 2023-06-04 08:33:45 +02:00
Matthias
12e31208e1 Update typedDict type used with pydantic 2023-06-03 12:33:44 +02:00
Matthias
ac7419e975 Split trademode response value into trade_mode and margin-mode 2023-06-03 11:58:55 +02:00
Matthias
72f4e1475c Bump api version 2023-06-03 11:58:55 +02:00
Matthias
74254bb893 Add /exchanges endpoint to list available exchanges 2023-06-03 11:58:55 +02:00
Matthias
54bf1634c7 Refactor validExchangesType to separate types package 2023-06-03 11:58:55 +02:00
Matthias
6f928b826f Update types for build_exchange_list_entry 2023-06-03 11:58:55 +02:00
Matthias
cc04f3279a bump pre-commit mypy version 2023-06-03 11:58:55 +02:00
Matthias
fcb960185e Clarify function naming 2023-06-03 11:58:55 +02:00
Matthias
250ae2d006 Enhance list-exchanges with more information 2023-06-03 11:58:55 +02:00
Matthias
b5d1017779 Update list_exchanges to use a dict internally 2023-06-03 11:58:55 +02:00
Matthias
26ed17fa02 Merge pull request #8725 from freqtrade/dependabot/pip/cryptography-41.0.0
Bump cryptography from 40.0.1 to 41.0.1
2023-06-03 11:32:51 +02:00
Matthias
e890bc0718 Don't bump pi version, but bump regular version 2023-06-03 08:30:38 +02:00
Matthias
10ea2b44c7 Update test line length 2023-06-03 06:59:22 +02:00
Matthias
d9d1735333 Extract ExchangePayload updating 2023-06-03 06:57:25 +02:00
Matthias
48328fb29d reset candle_type_def 2023-06-03 06:52:25 +02:00
dependabot[bot]
49c0fdf367 Bump cryptography from 40.0.1 to 41.0.0
Bumps [cryptography](https://github.com/pyca/cryptography) from 40.0.1 to 41.0.0.
- [Changelog](https://github.com/pyca/cryptography/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pyca/cryptography/compare/40.0.1...41.0.0)

---
updated-dependencies:
- dependency-name: cryptography
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-06-02 20:23:40 +00:00
Matthias
ac046d6a2d Allow setting the exchange explicitly 2023-06-02 10:14:11 +02:00
Matthias
af16ce874c Allow webserver mode to cache multiple exchanges 2023-06-02 09:50:40 +02:00
Matthias
e2594e7494 Align tests to use webserver mode 2023-06-01 20:46:28 +02:00
Matthias
77e3e9e899 Move pairlists and background tasks API's to separate file 2023-06-01 20:40:12 +02:00
Matthias
cafc9479b7 Merge branch 'develop' into feat/pairlistconfig 2023-06-01 20:33:28 +02:00
Matthias
8f02050fde Merge pull request #8721 from freqtrade/robcaulk-patch-1
Update freqai.md
2023-06-01 20:12:52 +02:00
Matthias
565c0496d9 Bump httpx min requirement 2023-06-01 20:10:57 +02:00
Matthias
d0f900f567 set HTTPX level to warning
closes #8717
2023-06-01 20:09:59 +02:00
Robert Caulk
30dd63fcb9 Update freqai.md 2023-06-01 15:54:05 +02:00
Matthias
8aee368f60 auto-inject webserver mode dependency 2023-06-01 07:07:02 +02:00
Matthias
e0d9603e99 Raise correct httperrorcode for webserver-only endpoitns 2023-06-01 07:03:35 +02:00
Matthias
88ecb935b9 Add "failed" state to bgjob task response 2023-05-31 20:22:22 +02:00
Matthias
9c6fee3841 Enable gate futures for spread-filter again
closes #8687
2023-05-31 17:14:22 +02:00
Matthias
5fc8426b9b Improve handling of order cancelation failures with force_exit
closes #8708
2023-05-31 17:06:51 +02:00
Matthias
430cd24bbc Invert order (exit trade 3 before trade 4) 2023-05-31 15:00:09 +02:00
Matthias
08d040db14 Slightly update force_exit test 2023-05-31 14:59:41 +02:00
Matthias
5311614d54 Update force exit wording 2023-05-31 14:33:09 +02:00
Matthias
193d88c9c8 Double-check cancelling stop order didn't close the trade 2023-05-31 14:12:03 +02:00
Matthias
1f543666f4 Improve test for reload-markets timings, fix bug
closes #8714
2023-05-31 11:46:31 +02:00
Matthias
fd955028a8 Update tests for new background method 2023-05-31 07:08:27 +02:00
Matthias
7bccf2129f Introduce background_job endpoints 2023-05-31 07:00:20 +02:00
robcaulk
f6a32f4ffd bump version 2023-05-29 23:35:24 +02:00
Matthias
b666c418bb Don't use variables for simple debug values 2023-05-29 17:33:11 +02:00
Matthias
af1dbf7dff Extract get_rate_from_ticker from get_rate method 2023-05-29 17:31:57 +02:00
Matthias
f074383d6a Extract orderbook logic into separate method 2023-05-29 17:24:04 +02:00
robcaulk
785f0d396f bump datasieve version 2023-05-29 16:44:53 +02:00
Matthias
6315516d50 Improve volumepairlist defaults 2023-05-29 15:18:46 +02:00
robcaulk
6237806817 bump datasieve to 0.0.8 2023-05-29 15:18:28 +02:00
robcaulk
e572653616 bring classifier/rl up to new paradigm. ensure tests pass. remove old code. add documentation, add new example transform 2023-05-29 13:33:29 +02:00
Matthias
12e8e29b4e Merge pull request #8703 from freqtrade/dependabot/pip/develop/types-requests-2.31.0.0
Bump types-requests from 2.30.0.0 to 2.31.0.0
2023-05-29 08:39:51 +02:00
Matthias
5ecf93e84b Merge pull request #8705 from freqtrade/dependabot/pip/develop/ccxt-3.1.13
Bump ccxt from 3.1.5 to 3.1.13
2023-05-29 08:39:32 +02:00
Matthias
9f1bdc19aa Bump ruff pre-commit version 2023-05-29 08:10:29 +02:00
Matthias
35836479de Bump requests pre-commit dependency 2023-05-29 08:09:56 +02:00
Matthias
e03e8547c0 Merge pull request #8707 from freqtrade/dependabot/pip/develop/orjson-3.8.14
Bump orjson from 3.8.12 to 3.8.14
2023-05-29 08:08:36 +02:00
Matthias
bcd27f5517 Merge pull request #8706 from freqtrade/dependabot/pip/develop/ruff-0.0.270
Bump ruff from 0.0.269 to 0.0.270
2023-05-29 08:08:21 +02:00
Matthias
ce02a3ff33 Merge pull request #8704 from freqtrade/dependabot/pip/develop/cachetools-5.3.1
Bump cachetools from 5.3.0 to 5.3.1
2023-05-29 08:08:06 +02:00
Matthias
85de8ca63f Merge pull request #8702 from freqtrade/dependabot/pip/develop/pytest-cov-4.1.0
Bump pytest-cov from 4.0.0 to 4.1.0
2023-05-29 08:07:46 +02:00
Matthias
4c54640800 Merge pull request #8701 from freqtrade/dependabot/pip/develop/pydantic-1.10.8
Bump pydantic from 1.10.7 to 1.10.8
2023-05-29 08:07:29 +02:00
dependabot[bot]
cb7a0f9bff Bump orjson from 3.8.12 to 3.8.14
Bumps [orjson](https://github.com/ijl/orjson) from 3.8.12 to 3.8.14.
- [Release notes](https://github.com/ijl/orjson/releases)
- [Changelog](https://github.com/ijl/orjson/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ijl/orjson/compare/3.8.12...3.8.14)

---
updated-dependencies:
- dependency-name: orjson
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-29 03:57:23 +00:00
dependabot[bot]
90808683e2 Bump ruff from 0.0.269 to 0.0.270
Bumps [ruff](https://github.com/charliermarsh/ruff) from 0.0.269 to 0.0.270.
- [Release notes](https://github.com/charliermarsh/ruff/releases)
- [Changelog](https://github.com/charliermarsh/ruff/blob/main/BREAKING_CHANGES.md)
- [Commits](https://github.com/charliermarsh/ruff/compare/v0.0.269...v0.0.270)

---
updated-dependencies:
- dependency-name: ruff
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-29 03:57:13 +00:00
dependabot[bot]
8fdec5f3a6 Bump ccxt from 3.1.5 to 3.1.13
Bumps [ccxt](https://github.com/ccxt/ccxt) from 3.1.5 to 3.1.13.
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/3.1.5...3.1.13)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-29 03:57:05 +00:00
dependabot[bot]
4e9a43ebf6 Bump cachetools from 5.3.0 to 5.3.1
Bumps [cachetools](https://github.com/tkem/cachetools) from 5.3.0 to 5.3.1.
- [Changelog](https://github.com/tkem/cachetools/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/tkem/cachetools/compare/v5.3.0...v5.3.1)

---
updated-dependencies:
- dependency-name: cachetools
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-29 03:56:56 +00:00
dependabot[bot]
3bc390cb2e Bump types-requests from 2.30.0.0 to 2.31.0.0
Bumps [types-requests](https://github.com/python/typeshed) from 2.30.0.0 to 2.31.0.0.
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-requests
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-29 03:56:53 +00:00
dependabot[bot]
12af6ea766 Bump pytest-cov from 4.0.0 to 4.1.0
Bumps [pytest-cov](https://github.com/pytest-dev/pytest-cov) from 4.0.0 to 4.1.0.
- [Changelog](https://github.com/pytest-dev/pytest-cov/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest-cov/compare/v4.0.0...v4.1.0)

---
updated-dependencies:
- dependency-name: pytest-cov
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-29 03:56:50 +00:00
dependabot[bot]
51ba4d14e9 Bump pydantic from 1.10.7 to 1.10.8
Bumps [pydantic](https://github.com/pydantic/pydantic) from 1.10.7 to 1.10.8.
- [Release notes](https://github.com/pydantic/pydantic/releases)
- [Changelog](https://github.com/pydantic/pydantic/blob/v1.10.8/HISTORY.md)
- [Commits](https://github.com/pydantic/pydantic/compare/v1.10.7...v1.10.8)

---
updated-dependencies:
- dependency-name: pydantic
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-29 03:56:46 +00:00
hippocritical
6b3b5f201d export_to_csv: Added forced conversion of float64 to int to remove the .0 values once and for all ... 2023-05-28 22:13:29 +02:00
hippocritical
fc887efd4b Merge branch 'freqtrade:develop' into develop 2023-05-28 20:53:39 +02:00
hippocritical
0874b1a959 Merge remote-tracking branch 'origin/develop' into develop 2023-05-28 20:53:16 +02:00
hippocritical
eec7837167 - modified help-string for the cli-option lookahead_analysis_exportfilename
- moved doc from utils.md to lookahead-analysis.md and modified it (unfinished)
- added a check to automatically edit the config['backtest_cache'] to be 'none'
- adjusted test_lookahead_helper_export_to_csv to catch the new catching of errors
- adjusted test_lookahead_helper_text_table_lookahead_analysis_instances to catch the new catching of errors
- changed lookahead_analysis.start result-reporting to show that not enough trades were caught including x of y
2023-05-28 20:52:58 +02:00
Matthias
1317de8c1c Add rudimentary description per pairlist 2023-05-28 18:21:23 +02:00
Matthias
dbb92f686f Merge pull request #8696 from freqtrade/feat/no_roi
allow no / empty minimal_roi
2023-05-28 15:36:01 +02:00
hippocritical
aa8eb14461 Merge branch 'freqtrade:develop' into develop 2023-05-28 12:11:29 +02:00
Matthias
3d05669f61 Merge branch 'develop' into feat/pairlistconfig 2023-05-28 10:01:43 +02:00
Matthias
8a86169256 Better handling of shift 2023-05-28 09:59:57 +02:00
Matthias
8ec0469b11 Fix volatilityfilter behavior
closes #8698
2023-05-28 09:53:53 +02:00
hippocritical
9bb25be880 modified help-string for the cli-option lookahead_analysis_exportfilename
moved doc from utils.md to lookahead-analysis.md and modified it (unfinished)
added a check to automatically edit the config['backtest_cache'] to be 'none'
2023-05-27 22:31:47 +02:00
hippocritical
0ed84fbcc1 added test_initialize_single_lookahead_analysis
A check for a random variable should be enough, right? :)
2023-05-27 20:47:59 +02:00
hippocritical
a7426755bc added a check for bias1.
Looking at has_bias should be enough to statisfy the test.
The tests could be extended with thecking the buy/sell signals and the dataframe itself -
but this should be sufficient for now.
2023-05-27 20:35:45 +02:00
Matthias
df5e6409a4 Bump develop version to 2023.6-dev 2023-05-27 20:18:39 +02:00
Matthias
5649d1d4da Convert minimal_roi to list comprehension 2023-05-27 19:57:12 +02:00
Matthias
36c82ad67c Update documentation for min_roi 2023-05-27 19:40:02 +02:00
Matthias
35a388bf9a Don't force min_roi to have content 2023-05-27 19:39:00 +02:00
hippocritical
ee37693729 Merge branch 'freqtrade:develop' into develop 2023-05-27 19:23:01 +02:00
hippocritical
05f0b32e3b Merge remote-tracking branch 'origin/develop' into develop 2023-05-27 19:22:23 +02:00
hippocritical
636298bb71 added test_lookahead_helper_export_to_csv 2023-05-27 19:15:35 +02:00
robcaulk
31e19add27 start transition toward outsourcing the data pipeline with objective of improving pipeline flexibility 2023-05-26 18:40:14 +02:00
hippocritical
eb31b574c1 added returns to text_table_lookahead_analysis_instances
filled in test_lookahead_helper_text_table_lookahead_analysis_instances
2023-05-26 12:55:54 +02:00
hippocritical
9366c77e42 Merge branch 'freqtrade:develop' into develop 2023-05-26 08:38:32 +02:00
Matthias
af7afa80a9 remove gone-wrong import 2023-05-26 06:44:48 +02:00
Matthias
9e75c768c0 Improve responses for evaluate get endpoints 2023-05-24 21:01:39 +02:00
Matthias
4c52109fa3 Handle pairlist evaluation errors gracefully 2023-05-24 20:37:23 +02:00
Matthias
c2010d160f Merge branch 'develop' into feat/pairlistconfig 2023-05-22 19:59:20 +02:00
Matthias
33e25434b4 Change statuscode to 202 2023-05-22 19:43:27 +02:00
Matthias
756e1f5d5b Test pairlist evaluation 2023-05-21 10:08:32 +02:00
Matthias
01984a06af Extract pairlist evaluation from sub-method 2023-05-21 09:58:38 +02:00
Matthias
7cc8da23c2 Update test for available pairlist 2023-05-21 09:56:46 +02:00
Matthias
bf9a6dd6e7 Merge branch 'develop' into feat/pairlistconfig 2023-05-21 09:54:17 +02:00
Matthias
818a3342b9 move pairlist evaluation to the background 2023-05-21 09:38:14 +02:00
Matthias
680e7ba98f Get exchange through DI 2023-05-21 09:21:22 +02:00
Matthias
5ad6652e55 Merge branch 'develop' into feat/pairlistconfig 2023-05-21 09:15:50 +02:00
Matthias
70a0c2e625 Fix test mishap 2023-05-21 08:21:08 +02:00
Matthias
3e6a2bf9b0 Add parameters for analysis tests ... 2023-05-20 20:12:04 +02:00
Matthias
104fa9e32d Use logger, not the logging module 2023-05-20 19:58:14 +02:00
Matthias
e73cd1487e Add somewhat sensible assert 2023-05-20 19:57:26 +02:00
Matthias
9869a21951 Move strategy to it's own directory to avoid having other 2023-05-20 19:51:54 +02:00
Matthias
3f5c18a035 Add some tests as todo 2023-05-20 19:51:54 +02:00
Matthias
e183707979 Further test lookahead_helpers 2023-05-20 19:51:54 +02:00
Matthias
ceddcd9242 Move most of the logic to lookahead_analysis helper 2023-05-20 19:51:54 +02:00
Matthias
d8af0dc9c4 Slightly improve testcase 2023-05-20 19:51:54 +02:00
Matthias
1c4a7c7a05 Split Lookahead helper to separate file 2023-05-20 19:51:54 +02:00
Matthias
7b9f82c71a Remove needless check for "None" list 2023-05-20 19:51:54 +02:00
hippocritical
5142b6bc0d Merge branch 'freqtrade:develop' into develop 2023-05-20 19:50:31 +02:00
Matthias
209eb63ede Add startup test case 2023-05-20 11:28:52 +02:00
Matthias
2e675efa13 Initial fix - test 2023-05-20 11:15:30 +02:00
Matthias
073dac8d5f Move lookahead analysis tests to optimize subdir 2023-05-20 11:08:22 +02:00
Matthias
a0edbe4797 Switch to using config instead of args. 2023-05-20 11:06:50 +02:00
Matthias
2e79aaae00 Remove usage of args.
It's clumsy to use and prevents specifying settings in the configuration.
2023-05-20 11:02:13 +02:00
Matthias
5488789bc4 Arguments should be in the configuration. 2023-05-20 11:01:42 +02:00
hippocritical
b2ecfd28a7 Merge branch 'freqtrade:develop' into develop 2023-05-18 19:12:25 +02:00
hippocritical
7a5f457b2f Merge branch 'freqtrade:develop' into develop 2023-05-17 22:14:51 +02:00
hippocritical
36f14249d4 Merge branch 'freqtrade:develop' into develop 2023-05-13 22:41:02 +02:00
hippocritical
7d871faf04 added exportfilename to args_to_config
introduced strategy_test_v3_with_lookahead_bias.py for checking lookahead_bias#
introduced test_lookahead_analysis which currently is broken
2023-05-13 22:40:11 +02:00
hippocritical
91ce1cb2ae removed overwrite_existing_exportfilename_content (won't use it myself, wouldn't make sense for others to not overwrite something they re-calculated)
switched from args to config (args still work)
renamed exportfilename to lookahead_analysis_exportfilename so if users decide to put something into it then it won't compete with other configurations
2023-05-10 22:41:27 +02:00
hippocritical
9aac367534 Merge remote-tracking branch 'origin/develop' into develop 2023-05-08 22:58:30 +02:00
hippocritical
b8357c36ca Merge branch 'freqtrade:develop' into develop 2023-05-08 22:58:03 +02:00
hippocritical
b252bdd3c7 made purging of config.freqai.identifier variable 2023-05-08 22:35:13 +02:00
hippocritical
ac4aa8ed2b Merge branch 'freqtrade:develop' into develop 2023-05-06 21:59:04 +02:00
hippocritical
2306c74dc1 adjusted code to matthias' specifications
did not change the code so that it only loads data once yet.
2023-05-06 21:56:11 +02:00
Achmad Fathoni
5abd616ae9 Fix disrepancy in freqai doc code example 2023-05-02 23:01:51 +07:00
hippocritical
ce979b21f9 Merge branch 'freqtrade:develop' into develop 2023-04-30 10:20:40 +02:00
Matthias
8e0788cf5f Merge branch 'develop' into feat/pairlistconfig 2023-04-27 20:40:55 +02:00
Matthias
877d53f439 Add airlists test endpoint (so pairlist configurations can be tested) 2023-04-27 20:35:24 +02:00
Matthias
3d4be92cc6 Add option pairlist parameter type 2023-04-21 19:30:32 +02:00
Matthias
c5bf029701 Better type response 2023-04-20 19:38:55 +02:00
Matthias
9e4f9798e6 Add pairlist "is-generator" to api 2023-04-20 19:33:36 +02:00
Matthias
3ef2a57bca Add "is_pairlist_generator" field to pairlists 2023-04-20 19:33:33 +02:00
Matthias
e20b94d836 Add more filter param descriptions 2023-04-20 07:22:12 +02:00
Matthias
4636de30cd Improve pairlistparam types 2023-04-20 07:03:27 +02:00
Matthias
2ea157d9d3 Add some more pairlist parameter definitions 2023-04-20 06:58:05 +02:00
Matthias
987da010c9 Start pairlist parameter listing 2023-04-19 21:08:44 +02:00
Matthias
5ad352fdf1 add /pairlists to rest client 2023-04-19 21:08:28 +02:00
Matthias
2df80fc49a Add /pairlists endpoint to api 2023-04-19 18:35:52 +02:00
hippocritical
e990b9fb13 Merge branch 'freqtrade:develop' into develop 2023-04-18 16:55:10 +02:00
hippocritical
2b416d3b62 - Added a first version of docs (needs checking)
- optimized pairs for entry_varholder and exit_varholder to only check a single pair instead of all pairs.
- bias-check of freqai strategies now possible
- added condition to not crash when compared_df is empty (meaning no differences have been found)
2023-04-16 23:47:10 +02:00
hippocritical
d5c98a3c39 Merge branch 'freqtrade:develop' into develop 2023-04-15 14:31:27 +02:00
hippocritical
46b97d2be4 Merge remote-tracking branch 'origin/develop' into develop 2023-04-15 14:31:12 +02:00
hippocritical
767442198e saving and updating the csv file now works
open ended timeranges now work
if a file fails then it will not report as non-bias, but report in the table as error and the csv file will not have it listed.
2023-04-15 14:29:52 +02:00
hippocritical
a9ef4c3ab0 partial progress commit:
added terminal tabulate-output
added yet non-working csv output using pandas
2023-04-12 21:03:59 +02:00
hippocritical
e5e63d5bee Merge branch 'freqtrade:develop' into develop 2023-04-10 08:26:51 +02:00
hippocritical
0fb155d6ee Merge branch 'freqtrade:develop' into develop 2023-04-03 20:17:36 +02:00
hippocritical
bad2cdabf2 Merge branch 'freqtrade:develop' into develop 2023-03-29 20:51:59 +02:00
hippocritical
7bd55971dc strategy_updater:
removed args_common_optimize for strategy-updater

backtest_lookahead_bias_checker:
added args and cli-options for minimum and target trade amounts
fixed code according to best-practice coding requests of matthias (CamelCase etc)
2023-03-28 22:20:00 +02:00
hippocritical
efefcb240b Merge branch 'freqtrade:develop' into develop 2023-03-24 22:37:21 +01:00
hippocritical
f57787882d Merge remote-tracking branch 'origin/develop' into develop 2023-03-22 12:44:29 +01:00
hippocritical
d12a7ff18b freqtrades' merge broke my side, fixed it by porting it over to my develop branch, no changes with this commit logic-wise. 2023-03-22 12:32:39 +01:00
184 changed files with 6463 additions and 2995 deletions

View File

@@ -1,11 +1,12 @@
FROM freqtradeorg/freqtrade:develop
FROM freqtradeorg/freqtrade:develop_freqairl
USER root
# Install dependencies
COPY requirements-dev.txt /freqtrade/
RUN apt-get update \
&& apt-get -y install git mercurial sudo vim build-essential \
&& apt-get -y install --no-install-recommends apt-utils dialog \
&& apt-get -y install --no-install-recommends git sudo vim build-essential \
&& apt-get clean \
&& mkdir -p /home/ftuser/.vscode-server /home/ftuser/.vscode-server-insiders /home/ftuser/commandhistory \
&& echo "export PROMPT_COMMAND='history -a'" >> /home/ftuser/.bashrc \

View File

@@ -19,23 +19,24 @@
"postCreateCommand": "freqtrade create-userdir --userdir user_data/",
"workspaceFolder": "/workspaces/freqtrade",
"settings": {
"terminal.integrated.shell.linux": "/bin/bash",
"editor.insertSpaces": true,
"files.trimTrailingWhitespace": true,
"[markdown]": {
"files.trimTrailingWhitespace": false,
"customizations": {
"settings": {
"terminal.integrated.shell.linux": "/bin/bash",
"editor.insertSpaces": true,
"files.trimTrailingWhitespace": true,
"[markdown]": {
"files.trimTrailingWhitespace": false,
},
"python.pythonPath": "/usr/local/bin/python",
},
"python.pythonPath": "/usr/local/bin/python",
},
// Add the IDs of extensions you want installed when the container is created.
"extensions": [
"ms-python.python",
"ms-python.vscode-pylance",
"davidanson.vscode-markdownlint",
"ms-azuretools.vscode-docker",
"vscode-icons-team.vscode-icons",
],
// Add the IDs of extensions you want installed when the container is created.
"extensions": [
"ms-python.python",
"ms-python.vscode-pylance",
"davidanson.vscode-markdownlint",
"ms-azuretools.vscode-docker",
"vscode-icons-team.vscode-icons",
],
}
}

View File

@@ -136,6 +136,7 @@ jobs:
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
check-latest: true
- name: Cache_dependencies
uses: actions/cache@v3
@@ -159,7 +160,8 @@ jobs:
- name: Installation - macOS
if: runner.os == 'macOS'
run: |
brew update
# brew update
# TODO: Should be the brew upgrade
# homebrew fails to update python due to unlinking failures
# https://github.com/actions/runner-images/issues/6817
rm /usr/local/bin/2to3 || true
@@ -459,7 +461,7 @@ jobs:
python setup.py sdist bdist_wheel
- name: Publish to PyPI (Test)
uses: pypa/gh-action-pypi-publish@v1.8.6
uses: pypa/gh-action-pypi-publish@v1.8.8
if: (github.event_name == 'release')
with:
user: __token__
@@ -467,7 +469,7 @@ jobs:
repository_url: https://test.pypi.org/legacy/
- name: Publish to PyPI
uses: pypa/gh-action-pypi-publish@v1.8.6
uses: pypa/gh-action-pypi-publish@v1.8.8
if: (github.event_name == 'release')
with:
user: __token__

View File

@@ -8,17 +8,17 @@ repos:
# stages: [push]
- repo: https://github.com/pre-commit/mirrors-mypy
rev: "v1.0.1"
rev: "v1.3.0"
hooks:
- id: mypy
exclude: build_helpers
additional_dependencies:
- types-cachetools==5.3.0.5
- types-cachetools==5.3.0.6
- types-filelock==3.2.7
- types-requests==2.30.0.0
- types-tabulate==0.9.0.2
- types-python-dateutil==2.8.19.13
- SQLAlchemy==2.0.15
- types-requests==2.31.0.2
- types-tabulate==0.9.0.3
- types-python-dateutil==2.8.19.14
- SQLAlchemy==2.0.19
# stages: [push]
- repo: https://github.com/pycqa/isort
@@ -30,7 +30,7 @@ repos:
- repo: https://github.com/charliermarsh/ruff-pre-commit
# Ruff version.
rev: 'v0.0.263'
rev: 'v0.0.270'
hooks:
- id: ruff

View File

@@ -1,4 +1,4 @@
FROM python:3.10.11-slim-bullseye as base
FROM python:3.11.4-slim-bullseye as base
# Setup env
ENV LANG C.UTF-8

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -1,21 +1,11 @@
# Downloads don't work automatically, since the URL is regenerated via javascript.
# Downloaded from https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
# vendored Wheels compiled via https://github.com/xmatthias/ta-lib-python/tree/ta_bundled_040
python -m pip install --upgrade pip wheel
$pyv = python -c "import sys; print(f'{sys.version_info.major}.{sys.version_info.minor}')"
if ($pyv -eq '3.8') {
pip install build_helpers\TA_Lib-0.4.26-cp38-cp38-win_amd64.whl
}
if ($pyv -eq '3.9') {
pip install build_helpers\TA_Lib-0.4.26-cp39-cp39-win_amd64.whl
}
if ($pyv -eq '3.10') {
pip install build_helpers\TA_Lib-0.4.26-cp310-cp310-win_amd64.whl
}
if ($pyv -eq '3.11') {
pip install build_helpers\TA_Lib-0.4.26-cp311-cp311-win_amd64.whl
}
pip install --find-links=build_helpers\ TA-Lib
pip install -r requirements-dev.txt
pip install -e .

View File

@@ -32,5 +32,5 @@ services:
--logfile /freqtrade/user_data/logs/freqtrade.log
--db-url sqlite:////freqtrade/user_data/tradesv3.sqlite
--config /freqtrade/user_data/config.json
--freqai-model XGBoostClassifier
--strategy SampleStrategy
--freqaimodel XGBoostRegressor
--strategy FreqaiExampleStrategy

View File

@@ -103,6 +103,22 @@ The indicators have to be present in your strategy's main DataFrame (either for
timeframe or for informative timeframes) otherwise they will simply be ignored in the script
output.
There are a range of candle and trade-related fields that are included in the analysis so are
automatically accessible by including them on the indicator-list, and these include:
- **open_date :** trade open datetime
- **close_date :** trade close datetime
- **min_rate :** minimum price seen throughout the position
- **max_rate :** maxiumum price seen throughout the position
- **open :** signal candle open price
- **close :** signal candle close price
- **high :** signal candle high price
- **low :** signal candle low price
- **volume :** signal candle volumne
- **profit_ratio :** trade profit ratio
- **profit_abs :** absolute profit return of the trade
### Filtering the trade output by date
To show only trades between dates within your backtested timerange, supply the usual `timerange` option in `YYYYMMDD-[YYYYMMDD]` format:

View File

@@ -136,7 +136,7 @@ class MyAwesomeStrategy(IStrategy):
### Dynamic parameters
Parameters can also be defined dynamically, but must be available to the instance once the * [`bot_start()` callback](strategy-callbacks.md#bot-start) has been called.
Parameters can also be defined dynamically, but must be available to the instance once the [`bot_start()` callback](strategy-callbacks.md#bot-start) has been called.
``` python

View File

@@ -305,7 +305,7 @@ A backtesting result will look like that:
| Sharpe | 2.97 |
| Calmar | 6.29 |
| Profit factor | 1.11 |
| Expectancy | -0.15 |
| Expectancy (Ratio) | -0.15 (-0.05) |
| Avg. stake amount | 0.001 BTC |
| Total trade volume | 0.429 BTC |
| | |
@@ -324,6 +324,7 @@ A backtesting result will look like that:
| Days win/draw/lose | 12 / 82 / 25 |
| Avg. Duration Winners | 4:23:00 |
| Avg. Duration Loser | 6:55:00 |
| Max Consecutive Wins / Loss | 3 / 4 |
| Rejected Entry signals | 3089 |
| Entry/Exit Timeouts | 0 / 0 |
| Canceled Trade Entries | 34 |
@@ -409,7 +410,7 @@ It contains some useful key metrics about performance of your strategy on backte
| Sharpe | 2.97 |
| Calmar | 6.29 |
| Profit factor | 1.11 |
| Expectancy | -0.15 |
| Expectancy (Ratio) | -0.15 (-0.05) |
| Avg. stake amount | 0.001 BTC |
| Total trade volume | 0.429 BTC |
| | |
@@ -428,6 +429,7 @@ It contains some useful key metrics about performance of your strategy on backte
| Days win/draw/lose | 12 / 82 / 25 |
| Avg. Duration Winners | 4:23:00 |
| Avg. Duration Loser | 6:55:00 |
| Max Consecutive Wins / Loss | 3 / 4 |
| Rejected Entry signals | 3089 |
| Entry/Exit Timeouts | 0 / 0 |
| Canceled Trade Entries | 34 |
@@ -467,6 +469,7 @@ It contains some useful key metrics about performance of your strategy on backte
- `Best day` / `Worst day`: Best and worst day based on daily profit.
- `Days win/draw/lose`: Winning / Losing days (draws are usually days without closed trade).
- `Avg. Duration Winners` / `Avg. Duration Loser`: Average durations for winning and losing trades.
- `Max Consecutive Wins / Loss`: Maximum consecutive wins/losses in a row.
- `Rejected Entry signals`: Trade entry signals that could not be acted upon due to `max_open_trades` being reached.
- `Entry/Exit Timeouts`: Entry/exit orders which did not fill (only applicable if custom pricing is used).
- `Canceled Trade Entries`: Number of trades that have been canceled by user request via `adjust_entry_price`.
@@ -534,6 +537,7 @@ Since backtesting lacks some detailed information about what happens within a ca
- ROI
- exits are compared to high - but the ROI value is used (e.g. ROI = 2%, high=5% - so the exit will be at 2%)
- exits are never "below the candle", so a ROI of 2% may result in a exit at 2.4% if low was at 2.4% profit
- ROI entries which came into effect on the triggering candle (e.g. `120: 0.02` for 1h candles, from `60: 0.05`) will use the candle's open as exit rate
- Force-exits caused by `<N>=-1` ROI entries use low as exit value, unless N falls on the candle open (e.g. `120: -1` for 1h candles)
- Stoploss exits happen exactly at stoploss price, even if low was lower, but the loss will be `2 * fees` higher than the stoploss price
- Stoploss is evaluated before ROI within one candle. So you can often see more trades with the `stoploss` exit reason comparing to the results obtained with the same strategy in the Dry Run/Live Trade modes

View File

@@ -682,16 +682,14 @@ To use a proxy for exchange connections - you will have to define the proxies as
{
"exchange": {
"ccxt_config": {
"aiohttp_proxy": "http://addr:port",
"proxies": {
"http": "http://addr:port",
"https": "http://addr:port"
},
"httpsProxy": "http://addr:port",
}
}
}
```
For more information on available proxy types, please consult the [ccxt proxy documentation](https://docs.ccxt.com/#/README?id=proxy).
## Next step
Now you have configured your config.json, the next step is to [start your bot](bot-usage.md).

View File

@@ -6,7 +6,7 @@ To download data (candles / OHLCV) needed for backtesting and hyperoptimization
If no additional parameter is specified, freqtrade will download data for `"1m"` and `"5m"` timeframes for the last 30 days.
Exchange and pairs will come from `config.json` (if specified using `-c/--config`).
Otherwise `--exchange` becomes mandatory.
Without provided configuration, `--exchange` becomes mandatory.
You can use a relative timerange (`--days 20`) or an absolute starting point (`--timerange 20200101-`). For incremental downloads, the relative approach should be used.
@@ -83,40 +83,47 @@ Common arguments:
```
!!! Tip "Downloading all data for one quote currency"
Often, you'll want to download data for all pairs of a specific quote-currency. In such cases, you can use the following shorthand:
`freqtrade download-data --exchange binance --pairs .*/USDT <...>`. The provided "pairs" string will be expanded to contain all active pairs on the exchange.
To also download data for inactive (delisted) pairs, add `--include-inactive-pairs` to the command.
!!! Note "Startup period"
`download-data` is a strategy-independent command. The idea is to download a big chunk of data once, and then iteratively increase the amount of data stored.
For that reason, `download-data` does not care about the "startup-period" defined in a strategy. It's up to the user to download additional days if the backtest should start at a specific point in time (while respecting startup period).
### Pairs file
### Start download
In alternative to the whitelist from `config.json`, a `pairs.json` file can be used.
If you are using Binance for example:
- create a directory `user_data/data/binance` and copy or create the `pairs.json` file in that directory.
- update the `pairs.json` file to contain the currency pairs you are interested in.
A very simple command (assuming an available `config.json` file) can look as follows.
```bash
mkdir -p user_data/data/binance
touch user_data/data/binance/pairs.json
freqtrade download-data --exchange binance
```
The format of the `pairs.json` file is a simple json list.
Mixing different stake-currencies is allowed for this file, since it's only used for downloading.
This will download historical candle (OHLCV) data for all the currency pairs defined in the configuration.
``` json
[
"ETH/BTC",
"ETH/USDT",
"BTC/USDT",
"XRP/ETH"
]
Alternatively, specify the pairs directly
```bash
freqtrade download-data --exchange binance --pairs ETH/USDT XRP/USDT BTC/USDT
```
!!! Tip "Downloading all data for one quote currency"
Often, you'll want to download data for all pairs of a specific quote-currency. In such cases, you can use the following shorthand:
`freqtrade download-data --exchange binance --pairs .*/USDT <...>`. The provided "pairs" string will be expanded to contain all active pairs on the exchange.
To also download data for inactive (delisted) pairs, add `--include-inactive-pairs` to the command.
or as regex (in this case, to download all active USDT pairs)
```bash
freqtrade download-data --exchange binance --pairs .*/USDT
```
### Other Notes
* To use a different directory than the exchange specific default, use `--datadir user_data/data/some_directory`.
* To change the exchange used to download the historical data from, please use a different configuration file (you'll probably need to adjust rate limits etc.)
* To use `pairs.json` from some other directory, use `--pairs-file some_other_dir/pairs.json`.
* To download historical candle (OHLCV) data for only 10 days, use `--days 10` (defaults to 30 days).
* To download historical candle (OHLCV) data from a fixed starting point, use `--timerange 20200101-` - which will download all data from January 1st, 2020.
* Use `--timeframes` to specify what timeframe download the historical candle (OHLCV) data for. Default is `--timeframes 1m 5m` which will download 1-minute and 5-minute data.
* To use exchange, timeframe and list of pairs as defined in your configuration file, use the `-c/--config` option. With this, the script uses the whitelist defined in the config as the list of currency pairs to download data for and does not require the pairs.json file. You can combine `-c/--config` with most other options.
??? Note "Permission denied errors"
If your configuration directory `user_data` was made by docker, you may get the following error:
@@ -131,39 +138,7 @@ Mixing different stake-currencies is allowed for this file, since it's only used
sudo chown -R $UID:$GID user_data
```
### Start download
Then run:
```bash
freqtrade download-data --exchange binance
```
This will download historical candle (OHLCV) data for all the currency pairs you defined in `pairs.json`.
Alternatively, specify the pairs directly
```bash
freqtrade download-data --exchange binance --pairs ETH/USDT XRP/USDT BTC/USDT
```
or as regex (to download all active USDT pairs)
```bash
freqtrade download-data --exchange binance --pairs .*/USDT
```
### Other Notes
- To use a different directory than the exchange specific default, use `--datadir user_data/data/some_directory`.
- To change the exchange used to download the historical data from, please use a different configuration file (you'll probably need to adjust rate limits etc.)
- To use `pairs.json` from some other directory, use `--pairs-file some_other_dir/pairs.json`.
- To download historical candle (OHLCV) data for only 10 days, use `--days 10` (defaults to 30 days).
- To download historical candle (OHLCV) data from a fixed starting point, use `--timerange 20200101-` - which will download all data from January 1st, 2020.
- Use `--timeframes` to specify what timeframe download the historical candle (OHLCV) data for. Default is `--timeframes 1m 5m` which will download 1-minute and 5-minute data.
- To use exchange, timeframe and list of pairs as defined in your configuration file, use the `-c/--config` option. With this, the script uses the whitelist defined in the config as the list of currency pairs to download data for and does not require the pairs.json file. You can combine `-c/--config` with most other options.
#### Download additional data before the current timerange
### Download additional data before the current timerange
Assuming you downloaded all data from 2022 (`--timerange 20220101-`) - but you'd now like to also backtest with earlier data.
You can do so by using the `--prepend` flag, combined with `--timerange` - specifying an end-date.
@@ -238,7 +213,36 @@ Size has been taken from the BTC/USDT 1m spot combination for the timerange spec
To have a best performance/size mix, we recommend the use of either feather or parquet.
#### Sub-command convert data
### Pairs file
In alternative to the whitelist from `config.json`, a `pairs.json` file can be used.
If you are using Binance for example:
* create a directory `user_data/data/binance` and copy or create the `pairs.json` file in that directory.
* update the `pairs.json` file to contain the currency pairs you are interested in.
```bash
mkdir -p user_data/data/binance
touch user_data/data/binance/pairs.json
```
The format of the `pairs.json` file is a simple json list.
Mixing different stake-currencies is allowed for this file, since it's only used for downloading.
``` json
[
"ETH/BTC",
"ETH/USDT",
"BTC/USDT",
"XRP/ETH"
]
```
!!! Note
The `pairs.json` file is only used when no configuration is loaded (implicitly by naming, or via `--config` flag).
You can force the usage of this file via `--pairs-file pairs.json` - however we recommend to use the pairlist from within the configuration, either via `exchange.pair_whitelist` or `pairs` setting in the configuration.
## Sub-command convert data
```
usage: freqtrade convert-data [-h] [-v] [--logfile FILE] [-V] [-c PATH]
@@ -290,7 +294,7 @@ Common arguments:
```
##### Example converting data
### Example converting data
The following command will convert all candle (OHLCV) data available in `~/.freqtrade/data/binance` from json to jsongz, saving diskspace in the process.
It'll also remove original json data files (`--erase` parameter).
@@ -299,7 +303,7 @@ It'll also remove original json data files (`--erase` parameter).
freqtrade convert-data --format-from json --format-to jsongz --datadir ~/.freqtrade/data/binance -t 5m 15m --erase
```
#### Sub-command convert trade data
## Sub-command convert trade data
```
usage: freqtrade convert-trade-data [-h] [-v] [--logfile FILE] [-V] [-c PATH]
@@ -342,7 +346,7 @@ Common arguments:
```
##### Example converting trades
### Example converting trades
The following command will convert all available trade-data in `~/.freqtrade/data/kraken` from jsongz to json.
It'll also remove original jsongz data files (`--erase` parameter).
@@ -351,7 +355,7 @@ It'll also remove original jsongz data files (`--erase` parameter).
freqtrade convert-trade-data --format-from jsongz --format-to json --datadir ~/.freqtrade/data/kraken --erase
```
### Sub-command trades to ohlcv
## Sub-command trades to ohlcv
When you need to use `--dl-trades` (kraken only) to download data, conversion of trades data to ohlcv data is the last step.
This command will allow you to repeat this last step for additional timeframes without re-downloading the data.
@@ -400,13 +404,13 @@ Common arguments:
```
#### Example trade-to-ohlcv conversion
### Example trade-to-ohlcv conversion
``` bash
freqtrade trades-to-ohlcv --exchange kraken -t 5m 1h 1d --pairs BTC/EUR ETH/EUR
```
### Sub-command list-data
## Sub-command list-data
You can get a list of downloaded data using the `list-data` sub-command.
@@ -451,7 +455,7 @@ Common arguments:
```
#### Example list-data
### Example list-data
```bash
> freqtrade list-data --userdir ~/.freqtrade/user_data/
@@ -465,7 +469,7 @@ ETH/BTC 5m, 15m, 30m, 1h, 2h, 4h, 6h, 12h, 1d
ETH/USDT 5m, 15m, 30m, 1h, 2h, 4h
```
### Trades (tick) data
## Trades (tick) data
By default, `download-data` sub-command downloads Candles (OHLCV) data. Some exchanges also provide historic trade-data via their API.
This data can be useful if you need many different timeframes, since it is only downloaded once, and then resampled locally to the desired timeframes.

View File

@@ -453,7 +453,13 @@ Once the PR against stable is merged (best right after merging):
* Use the button "Draft a new release" in the Github UI (subsection releases).
* Use the version-number specified as tag.
* Use "stable" as reference (this step comes after the above PR is merged).
* Use the above changelog as release comment (as codeblock)
* Use the above changelog as release comment (as codeblock).
* Use the below snippet for the new release
??? Tip "Release template"
````
--8<-- "includes/release_template.md"
````
## Releases

View File

@@ -259,10 +259,17 @@ The configuration parameter `exchange.unknown_fee_rate` can be used to specify t
Futures trading on bybit is currently supported for USDT markets, and will use isolated futures mode.
Users with unified accounts (there's no way back) can create a Sub-account which will start as "non-unified", and can therefore use isolated futures.
On startup, freqtrade will set the position mode to "One-way Mode" for the whole (sub)account. This avoids making this call over and over again (slowing down bot operations), but means that changes to this setting may result in exceptions and errors.
On startup, freqtrade will set the position mode to "One-way Mode" for the whole (sub)account. This avoids making this call over and over again (slowing down bot operations), but means that changes to this setting may result in exceptions and errors
As bybit doesn't provide funding rate history, the dry-run calculation is used for live trades as well.
API Keys for live futures trading (Subaccount on non-unified) must have the following permissions:
* Read-write
* Contract - Orders
* Contract - Positions
We do strongly recommend to limit all API keys to the IP you're going to use it from.
!!! Tip "Stoploss on Exchange"
Bybit (futures only) supports `stoploss_on_exchange` and uses `stop-loss-limit` orders. It provides great advantages, so we recommend to benefit from it by enabling stoploss on exchange.
On futures, Bybit supports both `stop-limit` as well as `stop-market` orders. You can use either `"limit"` or `"market"` in the `order_types.stoploss` configuration setting to decide which type to use.

View File

@@ -43,10 +43,10 @@ The FreqAI strategy requires including the following lines of code in the standa
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# the model will return all labels created by user in `set_freqai_labels()`
# the model will return all labels created by user in `set_freqai_targets()`
# (& appended targets), an indication of whether or not the prediction should be accepted,
# the target mean/std values for each of the labels created by user in
# `feature_engineering_*` for each training period.
# `set_freqai_targets()` for each training period.
dataframe = self.freqai.start(dataframe, metadata, self)
@@ -160,7 +160,7 @@ Below are the values you can expect to include/use inside a typical strategy dat
|------------|-------------|
| `df['&*']` | Any dataframe column prepended with `&` in `set_freqai_targets()` is treated as a training target (label) inside FreqAI (typically following the naming convention `&-s*`). For example, to predict the close price 40 candles into the future, you would set `df['&-s_close'] = df['close'].shift(-self.freqai_info["feature_parameters"]["label_period_candles"])` with `"label_period_candles": 40` in the config. FreqAI makes the predictions and gives them back under the same key (`df['&-s_close']`) to be used in `populate_entry/exit_trend()`. <br> **Datatype:** Depends on the output of the model.
| `df['&*_std/mean']` | Standard deviation and mean values of the defined labels during training (or live tracking with `fit_live_predictions_candles`). Commonly used to understand the rarity of a prediction (use the z-score as shown in `templates/FreqaiExampleStrategy.py` and explained [here](#creating-a-dynamic-target-threshold) to evaluate how often a particular prediction was observed during training or historically with `fit_live_predictions_candles`). <br> **Datatype:** Float.
| `df['do_predict']` | Indication of an outlier data point. The return value is integer between -2 and 2, which lets you know if the prediction is trustworthy or not. `do_predict==1` means that the prediction is trustworthy. If the Dissimilarity Index (DI, see details [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di)) of the input data point is above the threshold defined in the config, FreqAI will subtract 1 from `do_predict`, resulting in `do_predict==0`. If `use_SVM_to_remove_outliers()` is active, the Support Vector Machine (SVM, see details [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm)) may also detect outliers in training and prediction data. In this case, the SVM will also subtract 1 from `do_predict`. If the input data point was considered an outlier by the SVM but not by the DI, or vice versa, the result will be `do_predict==0`. If both the DI and the SVM considers the input data point to be an outlier, the result will be `do_predict==-1`. As with the SVM, if `use_DBSCAN_to_remove_outliers` is active, DBSCAN (see details [here](freqai-feature-engineering.md#identifying-outliers-with-dbscan)) may also detect outliers and subtract 1 from `do_predict`. Hence, if both the SVM and DBSCAN are active and identify a datapoint that was above the DI threshold as an outlier, the result will be `do_predict==-2`. A particular case is when `do_predict == 2`, which means that the model has expired due to exceeding `expired_hours`. <br> **Datatype:** Integer between -2 and 2.
| `df['do_predict']` | Indication of an outlier data point. The return value is integer between -2 and 2, which lets you know if the prediction is trustworthy or not. `do_predict==1` means that the prediction is trustworthy. If the Dissimilarity Index (DI, see details [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di)) of the input data point is above the threshold defined in the config, FreqAI will subtract 1 from `do_predict`, resulting in `do_predict==0`. If `use_SVM_to_remove_outliers` is active, the Support Vector Machine (SVM, see details [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm)) may also detect outliers in training and prediction data. In this case, the SVM will also subtract 1 from `do_predict`. If the input data point was considered an outlier by the SVM but not by the DI, or vice versa, the result will be `do_predict==0`. If both the DI and the SVM considers the input data point to be an outlier, the result will be `do_predict==-1`. As with the SVM, if `use_DBSCAN_to_remove_outliers` is active, DBSCAN (see details [here](freqai-feature-engineering.md#identifying-outliers-with-dbscan)) may also detect outliers and subtract 1 from `do_predict`. Hence, if both the SVM and DBSCAN are active and identify a datapoint that was above the DI threshold as an outlier, the result will be `do_predict==-2`. A particular case is when `do_predict == 2`, which means that the model has expired due to exceeding `expired_hours`. <br> **Datatype:** Integer between -2 and 2.
| `df['DI_values']` | Dissimilarity Index (DI) values are proxies for the level of confidence FreqAI has in the prediction. A lower DI means the prediction is close to the training data, i.e., higher prediction confidence. See details about the DI [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di). <br> **Datatype:** Float.
| `df['%*']` | Any dataframe column prepended with `%` in `feature_engineering_*()` is treated as a training feature. For example, you can include the RSI in the training feature set (similar to in `templates/FreqaiExampleStrategy.py`) by setting `df['%-rsi']`. See more details on how this is done [here](freqai-feature-engineering.md). <br> **Note:** Since the number of features prepended with `%` can multiply very quickly (10s of thousands of features are easily engineered using the multiplictative functionality of, e.g., `include_shifted_candles` and `include_timeframes` as described in the [parameter table](freqai-parameter-table.md)), these features are removed from the dataframe that is returned from FreqAI to the strategy. To keep a particular type of feature for plotting purposes, you would prepend it with `%%`. <br> **Datatype:** Depends on the output of the model.

View File

@@ -180,6 +180,9 @@ You can ask for each of the defined features to be included also for informative
In total, the number of features the user of the presented example strat has created is: length of `include_timeframes` * no. features in `feature_engineering_expand_*()` * length of `include_corr_pairlist` * no. `include_shifted_candles` * length of `indicator_periods_candles`
$= 3 * 3 * 3 * 2 * 2 = 108$.
!!! note "Learn more about creative feature engineering"
Check out our [medium article](https://emergentmethods.medium.com/freqai-from-price-to-prediction-6fadac18b665) geared toward helping users learn how to creatively engineer features.
### Gain finer control over `feature_engineering_*` functions with `metadata`
@@ -209,41 +212,7 @@ Another example, where the user wants to use live metrics from the trade databas
You need to set the standard dictionary in the config so that FreqAI can return proper dataframe shapes. These values will likely be overridden by the prediction model, but in the case where the model has yet to set them, or needs a default initial value, the pre-set values are what will be returned.
## Feature normalization
FreqAI is strict when it comes to data normalization. The train features, $X^{train}$, are always normalized to [-1, 1] using a shifted min-max normalization:
$$X^{train}_{norm} = 2 * \frac{X^{train} - X^{train}.min()}{X^{train}.max() - X^{train}.min()} - 1$$
All other data (test data and unseen prediction data in dry/live/backtest) is always automatically normalized to the training feature space according to industry standards. FreqAI stores all the metadata required to ensure that test and prediction features will be properly normalized and that predictions are properly denormalized. For this reason, it is not recommended to eschew industry standards and modify FreqAI internals - however - advanced users can do so by inheriting `train()` in their custom `IFreqaiModel` and using their own normalization functions.
## Data dimensionality reduction with Principal Component Analysis
You can reduce the dimensionality of your features by activating the `principal_component_analysis` in the config:
```json
"freqai": {
"feature_parameters" : {
"principal_component_analysis": true
}
}
```
This will perform PCA on the features and reduce their dimensionality so that the explained variance of the data set is >= 0.999. Reducing data dimensionality makes training the model faster and hence allows for more up-to-date models.
## Inlier metric
The `inlier_metric` is a metric aimed at quantifying how similar the features of a data point are to the most recent historical data points.
You define the lookback window by setting `inlier_metric_window` and FreqAI computes the distance between the present time point and each of the previous `inlier_metric_window` lookback points. A Weibull function is fit to each of the lookback distributions and its cumulative distribution function (CDF) is used to produce a quantile for each lookback point. The `inlier_metric` is then computed for each time point as the average of the corresponding lookback quantiles. The figure below explains the concept for an `inlier_metric_window` of 5.
![inlier-metric](assets/freqai_inlier-metric.jpg)
FreqAI adds the `inlier_metric` to the training features and hence gives the model access to a novel type of temporal information.
This function does **not** remove outliers from the data set.
## Weighting features for temporal importance
### Weighting features for temporal importance
FreqAI allows you to set a `weight_factor` to weight recent data more strongly than past data via an exponential function:
@@ -253,13 +222,103 @@ where $W_i$ is the weight of data point $i$ in a total set of $n$ data points. B
![weight-factor](assets/freqai_weight-factor.jpg)
## Building the data pipeline
By default, FreqAI builds a dynamic pipeline based on user congfiguration settings. The default settings are robust and designed to work with a variety of methods. These two steps are a `MinMaxScaler(-1,1)` and a `VarianceThreshold` which removes any column that has 0 variance. Users can activate other steps with more configuration parameters. For example if users add `use_SVM_to_remove_outliers: true` to the `freqai` config, then FreqAI will automatically add the [`SVMOutlierExtractor`](#identifying-outliers-using-a-support-vector-machine-svm) to the pipeline. Likewise, users can add `principal_component_analysis: true` to the `freqai` config to activate PCA. The [DissimilarityIndex](#identifying-outliers-with-the-dissimilarity-index-di) is activated with `DI_threshold: 1`. Finally, noise can also be added to the data with `noise_standard_deviation: 0.1`. Finally, users can add [DBSCAN](#identifying-outliers-with-dbscan) outlier removal with `use_DBSCAN_to_remove_outliers: true`.
!!! note "More information available"
Please review the [parameter table](freqai-parameter-table.md) for more information on these parameters.
### Customizing the pipeline
Users are encouraged to customize the data pipeline to their needs by building their own data pipeline. This can be done by simply setting `dk.feature_pipeline` to their desired `Pipeline` object inside their `IFreqaiModel` `train()` function, or if they prefer not to touch the `train()` function, they can override `define_data_pipeline`/`define_label_pipeline` functions in their `IFreqaiModel`:
!!! note "More information available"
FreqAI uses the the [`DataSieve`](https://github.com/emergentmethods/datasieve) pipeline, which follows the SKlearn pipeline API, but adds, among other features, coherence between the X, y, and sample_weight vector point removals, feature removal, feature name following.
```python
from datasieve.transforms import SKLearnWrapper, DissimilarityIndex
from datasieve.pipeline import Pipeline
from sklearn.preprocessing import QuantileTransformer, StandardScaler
from freqai.base_models import BaseRegressionModel
class MyFreqaiModel(BaseRegressionModel):
"""
Some cool custom model
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
My custom fit function
"""
model = cool_model.fit()
return model
def define_data_pipeline(self) -> Pipeline:
"""
User defines their custom feature pipeline here (if they wish)
"""
feature_pipeline = Pipeline([
('qt', SKLearnWrapper(QuantileTransformer(output_distribution='normal'))),
('di', ds.DissimilarityIndex(di_threshold=1))
])
return feature_pipeline
def define_label_pipeline(self) -> Pipeline:
"""
User defines their custom label pipeline here (if they wish)
"""
label_pipeline = Pipeline([
('qt', SKLearnWrapper(StandardScaler())),
])
return label_pipeline
```
Here, you are defining the exact pipeline that will be used for your feature set during training and prediction. You can use *most* SKLearn transformation steps by wrapping them in the `SKLearnWrapper` class as shown above. In addition, you can use any of the transformations available in the [`DataSieve` library](https://github.com/emergentmethods/datasieve).
You can easily add your own transformation by creating a class that inherits from the datasieve `BaseTransform` and implementing your `fit()`, `transform()` and `inverse_transform()` methods:
```python
from datasieve.transforms.base_transform import BaseTransform
# import whatever else you need
class MyCoolTransform(BaseTransform):
def __init__(self, **kwargs):
self.param1 = kwargs.get('param1', 1)
def fit(self, X, y=None, sample_weight=None, feature_list=None, **kwargs):
# do something with X, y, sample_weight, or/and feature_list
return X, y, sample_weight, feature_list
def transform(self, X, y=None, sample_weight=None,
feature_list=None, outlier_check=False, **kwargs):
# do something with X, y, sample_weight, or/and feature_list
return X, y, sample_weight, feature_list
def inverse_transform(self, X, y=None, sample_weight=None, feature_list=None, **kwargs):
# do/dont do something with X, y, sample_weight, or/and feature_list
return X, y, sample_weight, feature_list
```
!!! note "Hint"
You can define this custom class in the same file as your `IFreqaiModel`.
### Migrating a custom `IFreqaiModel` to the new Pipeline
If you have created your own custom `IFreqaiModel` with a custom `train()`/`predict()` function, *and* you still rely on `data_cleaning_train/predict()`, then you will need to migrate to the new pipeline. If your model does *not* rely on `data_cleaning_train/predict()`, then you do not need to worry about this migration.
More details about the migration can be found [here](strategy_migration.md#freqai---new-data-pipeline).
## Outlier detection
Equity and crypto markets suffer from a high level of non-patterned noise in the form of outlier data points. FreqAI implements a variety of methods to identify such outliers and hence mitigate risk.
### Identifying outliers with the Dissimilarity Index (DI)
The Dissimilarity Index (DI) aims to quantify the uncertainty associated with each prediction made by the model.
The Dissimilarity Index (DI) aims to quantify the uncertainty associated with each prediction made by the model.
You can tell FreqAI to remove outlier data points from the training/test data sets using the DI by including the following statement in the config:
@@ -271,7 +330,7 @@ You can tell FreqAI to remove outlier data points from the training/test data se
}
```
The DI allows predictions which are outliers (not existent in the model feature space) to be thrown out due to low levels of certainty. To do so, FreqAI measures the distance between each training data point (feature vector), $X_{a}$, and all other training data points:
Which will add `DissimilarityIndex` step to your `feature_pipeline` and set the threshold to 1. The DI allows predictions which are outliers (not existent in the model feature space) to be thrown out due to low levels of certainty. To do so, FreqAI measures the distance between each training data point (feature vector), $X_{a}$, and all other training data points:
$$ d_{ab} = \sqrt{\sum_{j=1}^p(X_{a,j}-X_{b,j})^2} $$
@@ -305,9 +364,9 @@ You can tell FreqAI to remove outlier data points from the training/test data se
}
```
The SVM will be trained on the training data and any data point that the SVM deems to be beyond the feature space will be removed.
Which will add `SVMOutlierExtractor` step to your `feature_pipeline`. The SVM will be trained on the training data and any data point that the SVM deems to be beyond the feature space will be removed.
FreqAI uses `sklearn.linear_model.SGDOneClassSVM` (details are available on scikit-learn's webpage [here](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDOneClassSVM.html) (external website)) and you can elect to provide additional parameters for the SVM, such as `shuffle`, and `nu`.
You can elect to provide additional parameters for the SVM, such as `shuffle`, and `nu` via the `feature_parameters.svm_params` dictionary in the config.
The parameter `shuffle` is by default set to `False` to ensure consistent results. If it is set to `True`, running the SVM multiple times on the same data set might result in different outcomes due to `max_iter` being to low for the algorithm to reach the demanded `tol`. Increasing `max_iter` solves this issue but causes the procedure to take longer time.
@@ -325,7 +384,7 @@ You can configure FreqAI to use DBSCAN to cluster and remove outliers from the t
}
```
DBSCAN is an unsupervised machine learning algorithm that clusters data without needing to know how many clusters there should be.
Which will add the `DataSieveDBSCAN` step to your `feature_pipeline`. This is an unsupervised machine learning algorithm that clusters data without needing to know how many clusters there should be.
Given a number of data points $N$, and a distance $\varepsilon$, DBSCAN clusters the data set by setting all data points that have $N-1$ other data points within a distance of $\varepsilon$ as *core points*. A data point that is within a distance of $\varepsilon$ from a *core point* but that does not have $N-1$ other data points within a distance of $\varepsilon$ from itself is considered an *edge point*. A cluster is then the collection of *core points* and *edge points*. Data points that have no other data points at a distance $<\varepsilon$ are considered outliers. The figure below shows a cluster with $N = 3$.

View File

@@ -42,7 +42,6 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
| `use_SVM_to_remove_outliers` | Train a support vector machine to detect and remove outliers from the training dataset, as well as from incoming data points. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm). <br> **Datatype:** Boolean.
| `svm_params` | All parameters available in Sklearn's `SGDOneClassSVM()`. See details about some select parameters [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm). <br> **Datatype:** Dictionary.
| `use_DBSCAN_to_remove_outliers` | Cluster data using the DBSCAN algorithm to identify and remove outliers from training and prediction data. See details about how it works [here](freqai-feature-engineering.md#identifying-outliers-with-dbscan). <br> **Datatype:** Boolean.
| `inlier_metric_window` | If set, FreqAI adds an `inlier_metric` to the training feature set and set the lookback to be the `inlier_metric_window`, i.e., the number of previous time points to compare the current candle to. Details of how the `inlier_metric` is computed can be found [here](freqai-feature-engineering.md#inlier-metric). <br> **Datatype:** Integer. <br> Default: `0`.
| `noise_standard_deviation` | If set, FreqAI adds noise to the training features with the aim of preventing overfitting. FreqAI generates random deviates from a gaussian distribution with a standard deviation of `noise_standard_deviation` and adds them to all data points. `noise_standard_deviation` should be kept relative to the normalized space, i.e., between -1 and 1. In other words, since data in FreqAI is always normalized to be between -1 and 1, `noise_standard_deviation: 0.05` would result in 32% of the data being randomly increased/decreased by more than 2.5% (i.e., the percent of data falling within the first standard deviation). <br> **Datatype:** Integer. <br> Default: `0`.
| `outlier_protection_percentage` | Enable to prevent outlier detection methods from discarding too much data. If more than `outlier_protection_percentage` % of points are detected as outliers by the SVM or DBSCAN, FreqAI will log a warning message and ignore outlier detection, i.e., the original dataset will be kept intact. If the outlier protection is triggered, no predictions will be made based on the training dataset. <br> **Datatype:** Float. <br> Default: `30`.
| `reverse_train_test_order` | Split the feature dataset (see below) and use the latest data split for training and test on historical split of the data. This allows the model to be trained up to the most recent data point, while avoiding overfitting. However, you should be careful to understand the unorthodox nature of this parameter before employing it. <br> **Datatype:** Boolean. <br> Default: `False` (no reversal).

View File

@@ -76,7 +76,7 @@ pip install -r requirements-freqai.txt
### Usage with docker
If you are using docker, a dedicated tag with FreqAI dependencies is available as `:freqai`. As such - you can replace the image line in your docker compose file with `image: freqtradeorg/freqtrade:develop_freqai`. This image contains the regular FreqAI dependencies. Similar to native installs, Catboost will not be available on ARM based devices.
If you are using docker, a dedicated tag with FreqAI dependencies is available as `:freqai`. As such - you can replace the image line in your docker compose file with `image: freqtradeorg/freqtrade:develop_freqai`. This image contains the regular FreqAI dependencies. Similar to native installs, Catboost will not be available on ARM based devices. If you would like to use PyTorch or Reinforcement learning, you should use the torch or RL tags, `image: freqtradeorg/freqtrade:develop_freqaitorch`, `image: freqtradeorg/freqtrade:develop_freqairl`.
!!! note "docker-compose-freqai.yml"
We do provide an explicit docker-compose file for this in `docker/docker-compose-freqai.yml` - which can be used via `docker compose -f docker/docker-compose-freqai.yml run ...` - or can be copied to replace the original docker file. This docker-compose file also contains a (disabled) section to enable GPU resources within docker containers. This obviously assumes the system has GPU resources available.
@@ -107,6 +107,13 @@ This is for performance reasons - FreqAI relies on making quick predictions/retr
it needs to download all the training data at the beginning of a dry/live instance. FreqAI stores and appends
new candles automatically for future retrains. This means that if new pairs arrive later in the dry run due to a volume pairlist, it will not have the data ready. However, FreqAI does work with the `ShufflePairlist` or a `VolumePairlist` which keeps the total pairlist constant (but reorders the pairs according to volume).
## Additional learning materials
Here we compile some external materials that provide deeper looks into various components of FreqAI:
- [Real-time head-to-head: Adaptive modeling of financial market data using XGBoost and CatBoost](https://emergentmethods.medium.com/real-time-head-to-head-adaptive-modeling-of-financial-market-data-using-xgboost-and-catboost-995a115a7495)
- [FreqAI - from price to prediction](https://emergentmethods.medium.com/freqai-from-price-to-prediction-6fadac18b665)
## Credits
FreqAI is developed by a group of individuals who all contribute specific skillsets to the project.

View File

@@ -184,6 +184,8 @@ The RemotePairList is defined in the pairlists section of the configuration sett
"pairlists": [
{
"method": "RemotePairList",
"mode": "whitelist",
"processing_mode": "filter",
"pairlist_url": "https://example.com/pairlist",
"number_assets": 10,
"refresh_period": 1800,
@@ -194,6 +196,14 @@ The RemotePairList is defined in the pairlists section of the configuration sett
]
```
The optional `mode` option specifies if the pairlist should be used as a `blacklist` or as a `whitelist`. The default value is "whitelist".
The optional `processing_mode` option in the RemotePairList configuration determines how the retrieved pairlist is processed. It can have two values: "filter" or "append".
In "filter" mode, the retrieved pairlist is used as a filter. Only the pairs present in both the original pairlist and the retrieved pairlist are included in the final pairlist. Other pairs are filtered out.
In "append" mode, the retrieved pairlist is added to the original pairlist. All pairs from both lists are included in the final pairlist without any filtering.
The `pairlist_url` option specifies the URL of the remote server where the pairlist is located, or the path to a local file (if file:/// is prepended). This allows the user to use either a remote server or a local file as the source for the pairlist.
The user is responsible for providing a server or local file that returns a JSON object with the following structure:
@@ -201,7 +211,7 @@ The user is responsible for providing a server or local file that returns a JSON
```json
{
"pairs": ["XRP/USDT", "ETH/USDT", "LTC/USDT"],
"refresh_period": 1800,
"refresh_period": 1800
}
```

View File

@@ -0,0 +1,37 @@
## Highlighted changes
- ...
### How to update
As always, you can update your bot using one of the following commands:
#### docker-compose
```bash
docker-compose pull
docker-compose up -d
```
#### Installation via setup script
```
# Deactivate venv and run
./setup.sh --update
```
#### Plain native installation
```
git pull
pip install -U -r requirements.txt
```
<details>
<summary>Expand full changelog</summary>
```
<Paste your changelog here>
```
</details>

11
docs/includes/showcase.md Normal file
View File

@@ -0,0 +1,11 @@
This section will highlight a few projects from members of the community.
!!! Note
The projects below are for the most part not maintained by the freqtrade , therefore use your own caution before using them.
- [Example freqtrade strategies](https://github.com/freqtrade/freqtrade-strategies/)
- [FrequentHippo - Grafana dashboard with dry/live runs and backtests](http://frequenthippo.ddns.net:3000/) (by hippocritical).
- [Online pairlist generator](https://remotepairlist.com/) (by Blood4rc).
- [Freqtrade Backtesting Project](https://bt.robot.co.network/) (by Blood4rc).
- [Freqtrade analysis notebook](https://github.com/froggleston/freqtrade_analysis_notebook) (by Froggleston).
- [TUI for freqtrade](https://github.com/froggleston/freqtrade-frogtrade9000) (by Froggleston).
- [Bot Academy](https://botacademy.ddns.net/) (by stash86) - Blog about crypto bot projects.

View File

@@ -63,6 +63,10 @@ Exchanges confirmed working by the community:
- [X] [Bitvavo](https://bitvavo.com/)
- [X] [Kucoin](https://www.kucoin.com/)
## Community showcase
--8<-- "includes/showcase.md"
## Requirements
### Hardware requirements

100
docs/lookahead-analysis.md Normal file
View File

@@ -0,0 +1,100 @@
# Lookahead analysis
This page explains how to validate your strategy in terms of look ahead bias.
Checking look ahead bias is the bane of any strategy since it is sometimes very easy to introduce backtest bias -
but very hard to detect.
Backtesting initializes all timestamps at once and calculates all indicators in the beginning.
This means that if your indicators or entry/exit signals could look into future candles and falsify your backtest.
Lookahead-analysis requires historic data to be available.
To learn how to get data for the pairs and exchange you're interested in,
head over to the [Data Downloading](data-download.md) section of the documentation.
This command is built upon backtesting since it internally chains backtests and pokes at the strategy to provoke it to show look ahead bias.
This is done by not looking at the strategy itself - but at the results it returned.
The results are things like changed indicator-values and moved entries/exits compared to the full backtest.
You can use commands of [Backtesting](backtesting.md).
It also supports the lookahead-analysis of freqai strategies.
- `--cache` is forced to "none".
- `--max-open-trades` is forced to be at least equal to the number of pairs.
- `--dry-run-wallet` is forced to be basically infinite.
## Lookahead-analysis command reference
```
usage: freqtrade lookahead-analysis [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH] [-s NAME]
[--strategy-path PATH]
[--recursive-strategy-search]
[--freqaimodel NAME]
[--freqaimodel-path PATH] [-i TIMEFRAME]
[--timerange TIMERANGE]
[--data-format-ohlcv {json,jsongz,hdf5,feather,parquet}]
[--max-open-trades INT]
[--stake-amount STAKE_AMOUNT]
[--fee FLOAT] [-p PAIRS [PAIRS ...]]
[--enable-protections]
[--dry-run-wallet DRY_RUN_WALLET]
[--timeframe-detail TIMEFRAME_DETAIL]
[--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]]
[--export {none,trades,signals}]
[--export-filename PATH]
[--breakdown {day,week,month} [{day,week,month} ...]]
[--cache {none,day,week,month}]
[--freqai-backtest-live-models]
[--minimum-trade-amount INT]
[--targeted-trade-amount INT]
[--lookahead-analysis-exportfilename LOOKAHEAD_ANALYSIS_EXPORTFILENAME]
options:
--minimum-trade-amount INT
Minimum trade amount for lookahead-analysis
--targeted-trade-amount INT
Targeted trade amount for lookahead analysis
--lookahead-analysis-exportfilename LOOKAHEAD_ANALYSIS_EXPORTFILENAME
Use this csv-filename to store lookahead-analysis-
results
```
!!! Note ""
The above Output was reduced to options `lookahead-analysis` adds on top of regular backtesting commands.
### Summary
Checks a given strategy for look ahead bias via lookahead-analysis
Look ahead bias means that the backtest uses data from future candles thereby not making it viable beyond backtesting
and producing false hopes for the one backtesting.
### Introduction
Many strategies - without the programmer knowing - have fallen prey to look ahead bias.
Any backtest will populate the full dataframe including all time stamps at the beginning.
If the programmer is not careful or oblivious how things work internally
(which sometimes can be really hard to find out) then it will just look into the future making the strategy amazing
but not realistic.
This command is made to try to verify the validity in the form of the aforementioned look ahead bias.
### How does the command work?
It will start with a backtest of all pairs to generate a baseline for indicators and entries/exits.
After the backtest ran, it will look if the `minimum-trade-amount` is met
and if not cancel the lookahead-analysis for this strategy.
After setting the baseline it will then do additional runs for every entry and exit separately.
When a verification-backtest is done, it will compare the indicators as the signal (either entry or exit) and report the bias.
After all signals have been verified or falsified a result-table will be generated for the user to see.
### Caveats
- `lookahead-analysis` can only verify / falsify the trades it calculated and verified.
If the strategy has many different signals / signal types, it's up to you to select appropriate parameters to ensure that all signals have triggered at least once. Not triggered signals will not have been verified.
This could lead to a false-negative (the strategy will then be reported as non-biased).
- `lookahead-analysis` has access to everything that backtesting has too.
Please don't provoke any configs like enabling position stacking.
If you decide to do so, then make doubly sure that you won't ever run out of `max_open_trades` amount and neither leftover money in your wallet.

View File

@@ -1,6 +1,6 @@
markdown==3.3.7
mkdocs==1.4.3
mkdocs-material==9.1.14
mkdocs-material==9.1.19
mdx_truly_sane_lists==1.3
pymdown-extensions==10.0.1
pymdown-extensions==10.1
jinja2==3.1.2

View File

@@ -750,7 +750,7 @@ class DigDeeperStrategy(IStrategy):
# Hope you have a deep wallet!
try:
# This returns first order stake size
stake_amount = filled_entries[0].cost
stake_amount = filled_entries[0].stake_amount
# This then calculates current safety order size
stake_amount = stake_amount * (1 + (count_of_entries * 0.25))
return stake_amount

View File

@@ -342,16 +342,12 @@ The above configuration would therefore mean:
The calculation does include fees.
To disable ROI completely, set it to an insanely high number:
To disable ROI completely, set it to an empty dictionary:
```python
minimal_roi = {
"0": 100
}
minimal_roi = {}
```
While technically not completely disabled, this would exit once the trade reaches 10000% Profit.
To use times based on candle duration (timeframe), the following snippet can be handy.
This will allow you to change the timeframe for the strategy, and ROI times will still be set as candles (e.g. after 3 candles ...)

View File

@@ -728,3 +728,86 @@ Targets now get their own, dedicated method.
return dataframe
```
### FreqAI - New data Pipeline
If you have created your own custom `IFreqaiModel` with a custom `train()`/`predict()` function, *and* you still rely on `data_cleaning_train/predict()`, then you will need to migrate to the new pipeline. If your model does *not* rely on `data_cleaning_train/predict()`, then you do not need to worry about this migration. That means that this migration guide is relevant for a very small percentage of power-users. If you stumbled upon this guide by mistake, feel free to inquire in depth about your problem in the Freqtrade discord server.
The conversion involves first removing `data_cleaning_train/predict()` and replacing them with a `define_data_pipeline()` and `define_label_pipeline()` function to your `IFreqaiModel` class:
```python linenums="1" hl_lines="11-14 47-49 55-57"
class MyCoolFreqaiModel(BaseRegressionModel):
"""
Some cool custom IFreqaiModel you made before Freqtrade version 2023.6
"""
def train(
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
) -> Any:
# ... your custom stuff
# Remove these lines
# data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
# self.data_cleaning_train(dk)
# data_dictionary = dk.normalize_data(data_dictionary)
# (1)
# Add these lines. Now we control the pipeline fit/transform ourselves
dd = dk.make_train_test_datasets(features_filtered, labels_filtered)
dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)
dk.label_pipeline = self.define_label_pipeline(threads=dk.thread_count)
(dd["train_features"],
dd["train_labels"],
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
dd["train_labels"],
dd["train_weights"])
(dd["test_features"],
dd["test_labels"],
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
dd["test_labels"],
dd["test_weights"])
dd["train_labels"], _, _ = dk.label_pipeline.fit_transform(dd["train_labels"])
dd["test_labels"], _, _ = dk.label_pipeline.transform(dd["test_labels"])
# ... your custom code
return model
def predict(
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
# ... your custom stuff
# Remove these lines:
# self.data_cleaning_predict(dk)
# (2)
# Add these lines:
dk.data_dictionary["prediction_features"], outliers, _ = dk.feature_pipeline.transform(
dk.data_dictionary["prediction_features"], outlier_check=True)
# Remove this line
# pred_df = dk.denormalize_labels_from_metadata(pred_df)
# (3)
# Replace with these lines
pred_df, _, _ = dk.label_pipeline.inverse_transform(pred_df)
if self.freqai_info.get("DI_threshold", 0) > 0:
dk.DI_values = dk.feature_pipeline["di"].di_values
else:
dk.DI_values = np.zeros(outliers.shape[0])
dk.do_predict = outliers
# ... your custom code
return (pred_df, dk.do_predict)
```
1. Data normalization and cleaning is now homogenized with the new pipeline definition. This is created in the new `define_data_pipeline()` and `define_label_pipeline()` functions. The `data_cleaning_train()` and `data_cleaning_predict()` functions are no longer used. You can override `define_data_pipeline()` to create your own custom pipeline if you wish.
2. Data normalization and cleaning is now homogenized with the new pipeline definition. This is created in the new `define_data_pipeline()` and `define_label_pipeline()` functions. The `data_cleaning_train()` and `data_cleaning_predict()` functions are no longer used. You can override `define_data_pipeline()` to create your own custom pipeline if you wish.
3. Data denormalization is done with the new pipeline. Replace this with the lines below.

View File

@@ -287,12 +287,17 @@ Return a summary of your profit/loss and performance.
> **Best Performing:** `PAY/BTC: 50.23%`
> **Trading volume:** `0.5 BTC`
> **Profit factor:** `1.04`
> **Win / Loss:** `102 / 36`
> **Winrate:** `73.91%`
> **Expectancy (Ratio):** `4.87 (1.66)`
> **Max Drawdown:** `9.23% (0.01255 BTC)`
The relative profit of `1.2%` is the average profit per trade.
The relative profit of `15.2 Σ%` is be based on the starting capital - so in this case, the starting capital was `0.00485701 * 1.152 = 0.00738 BTC`.
Starting capital is either taken from the `available_capital` setting, or calculated by using current wallet size - profits.
Profit Factor is calculated as gross profits / gross losses - and should serve as an overall metric for the strategy.
Expectancy corresponds to the average return per currency unit at risk, i.e. the winrate and the risk-reward ratio (the average gain of winning trades compared to the average loss of losing trades).
Expectancy Ratio is expected profit or loss of a subsequent trade based on the performance of all past trades.
Max drawdown corresponds to the backtesting metric `Absolute Drawdown (Account)` - calculated as `(Absolute Drawdown) / (DrawdownHigh + startingBalance)`.
Bot started date will refer to the date the bot was first started. For older bots, this will default to the first trade's open date.

View File

@@ -141,7 +141,8 @@ Most properties here can be None as they are dependant on the exchange response.
`amount` | float | Amount in base currency
`filled` | float | Filled amount (in base currency)
`remaining` | float | Remaining amount
`cost` | float | Cost of the order - usually average * filled
`cost` | float | Cost of the order - usually average * filled (*Exchange dependant on futures, may contain the cost with or without leverage and may be in contracts.*)
`stake_amount` | float | Stake amount used for this order. *Added in 2023.7.*
`order_date` | datetime | Order creation date **use `order_date_utc` instead**
`order_date_utc` | datetime | Order creation date (in UTC)
`order_fill_date` | datetime | Order fill date **use `order_fill_utc` instead**

View File

@@ -80,12 +80,18 @@ When using the Form-Encoded or JSON-Encoded configuration you can configure any
The result would be a POST request with e.g. `Status: running` body and `Content-Type: text/plain` header.
Optional parameters are available to enable automatic retries for webhook messages. The `webhook.retries` parameter can be set for the maximum number of retries the webhook request should attempt if it is unsuccessful (i.e. HTTP response status is not 200). By default this is set to `0` which is disabled. An additional `webhook.retry_delay` parameter can be set to specify the time in seconds between retry attempts. By default this is set to `0.1` (i.e. 100ms). Note that increasing the number of retries or retry delay may slow down the trader if there are connectivity issues with the webhook. Example configuration for retries:
## Additional configurations
The `webhook.retries` parameter can be set for the maximum number of retries the webhook request should attempt if it is unsuccessful (i.e. HTTP response status is not 200). By default this is set to `0` which is disabled. An additional `webhook.retry_delay` parameter can be set to specify the time in seconds between retry attempts. By default this is set to `0.1` (i.e. 100ms). Note that increasing the number of retries or retry delay may slow down the trader if there are connectivity issues with the webhook.
You can also specify `webhook.timeout` - which defines how long the bot will wait until it assumes the other host as unresponsive (defaults to 10s).
Example configuration for retries:
```json
"webhook": {
"enabled": true,
"url": "https://<YOURHOOKURL>",
"timeout": 10,
"retries": 3,
"retry_delay": 0.2,
"status": {
@@ -109,6 +115,8 @@ Custom messages can be sent to Webhook endpoints via the `self.dp.send_msg()` fu
Different payloads can be configured for different events. Not all fields are necessary, but you should configure at least one of the dicts, otherwise the webhook will never be called.
## Webhook Message types
### Entry
The fields in `webhook.entry` are filled when the bot executes a long/short. Parameters are filled using string.format.

View File

View File

@@ -1,5 +1,5 @@
""" Freqtrade bot """
__version__ = '2023.5'
__version__ = '2023.7'
if 'dev' in __version__:
from pathlib import Path

View File

@@ -19,7 +19,8 @@ from freqtrade.commands.list_commands import (start_list_exchanges, start_list_f
start_list_markets, start_list_strategies,
start_list_timeframes, start_show_trades)
from freqtrade.commands.optimize_commands import (start_backtesting, start_backtesting_show,
start_edge, start_hyperopt)
start_edge, start_hyperopt,
start_lookahead_analysis)
from freqtrade.commands.pairlist_commands import start_test_pairlist
from freqtrade.commands.plot_commands import start_plot_dataframe, start_plot_profit
from freqtrade.commands.strategy_utils_commands import start_strategy_update

27
freqtrade/commands/arguments.py Normal file → Executable file
View File

@@ -67,8 +67,7 @@ ARGS_BUILD_STRATEGY = ["user_data_dir", "strategy", "template"]
ARGS_CONVERT_DATA = ["pairs", "format_from", "format_to", "erase", "exchange"]
ARGS_CONVERT_DATA_OHLCV = ARGS_CONVERT_DATA + ["timeframes", "trading_mode",
"candle_types"]
ARGS_CONVERT_DATA_OHLCV = ARGS_CONVERT_DATA + ["timeframes", "trading_mode", "candle_types"]
ARGS_CONVERT_TRADES = ["pairs", "timeframes", "exchange", "dataformat_ohlcv", "dataformat_trades"]
@@ -117,7 +116,11 @@ NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-strategy"]
ARGS_STRATEGY_UTILS = ["strategy_list", "strategy_path", "recursive_strategy_search"]
ARGS_STRATEGY_UPDATER = ["strategy_list", "strategy_path", "recursive_strategy_search"]
ARGS_LOOKAHEAD_ANALYSIS = [
a for a in ARGS_BACKTEST if a not in ("position_stacking", "use_max_market_positions", 'cache')
] + ["minimum_trade_amount", "targeted_trade_amount", "lookahead_analysis_exportfilename"]
class Arguments:
@@ -201,8 +204,9 @@ class Arguments:
start_install_ui, start_list_data, start_list_exchanges,
start_list_freqAI_models, start_list_markets,
start_list_strategies, start_list_timeframes,
start_new_config, start_new_strategy, start_plot_dataframe,
start_plot_profit, start_show_trades, start_strategy_update,
start_lookahead_analysis, start_new_config,
start_new_strategy, start_plot_dataframe, start_plot_profit,
start_show_trades, start_strategy_update,
start_test_pairlist, start_trading, start_webserver)
subparsers = self.parser.add_subparsers(dest='command',
@@ -451,4 +455,15 @@ class Arguments:
'files to the current version',
parents=[_common_parser])
strategy_updater_cmd.set_defaults(func=start_strategy_update)
self._build_args(optionlist=ARGS_STRATEGY_UTILS, parser=strategy_updater_cmd)
self._build_args(optionlist=ARGS_STRATEGY_UPDATER, parser=strategy_updater_cmd)
# Add lookahead_analysis subcommand
lookahead_analayis_cmd = subparsers.add_parser(
'lookahead-analysis',
help="Check for potential look ahead bias.",
parents=[_common_parser, _strategy_parser])
lookahead_analayis_cmd.set_defaults(func=start_lookahead_analysis)
self._build_args(optionlist=ARGS_LOOKAHEAD_ANALYSIS,
parser=lookahead_analayis_cmd)

View File

@@ -5,6 +5,7 @@ from typing import Any, Dict, List
from questionary import Separator, prompt
from freqtrade.configuration.detect_environment import running_in_docker
from freqtrade.configuration.directory_operations import chown_user_directory
from freqtrade.constants import UNLIMITED_STAKE_AMOUNT
from freqtrade.exceptions import OperationalException
@@ -179,7 +180,7 @@ def ask_user_config() -> Dict[str, Any]:
"name": "api_server_listen_addr",
"message": ("Insert Api server Listen Address (0.0.0.0 for docker, "
"otherwise best left untouched)"),
"default": "127.0.0.1",
"default": "127.0.0.1" if not running_in_docker() else "0.0.0.0",
"when": lambda x: x['api_server']
},
{

23
freqtrade/commands/cli_options.py Normal file → Executable file
View File

@@ -381,7 +381,7 @@ AVAILABLE_CLI_OPTIONS = {
),
"candle_types": Arg(
'--candle-types',
help='Select candle type to use',
help='Select candle type to convert. Defaults to all available types.',
choices=[c.value for c in CandleType],
nargs='+',
),
@@ -450,14 +450,12 @@ AVAILABLE_CLI_OPTIONS = {
),
"exchange": Arg(
'--exchange',
help=f'Exchange name (default: `{constants.DEFAULT_EXCHANGE}`). '
f'Only valid if no config is provided.',
help='Exchange name. Only valid if no config is provided.',
),
"timeframes": Arg(
'-t', '--timeframes',
help='Specify which tickers to download. Space-separated list. '
'Default: `1m 5m`.',
default=['1m', '5m'],
nargs='+',
),
"prepend_data": Arg(
@@ -690,4 +688,21 @@ AVAILABLE_CLI_OPTIONS = {
help='Run backtest with ready models.',
action='store_true'
),
"minimum_trade_amount": Arg(
'--minimum-trade-amount',
help='Minimum trade amount for lookahead-analysis',
type=check_int_positive,
metavar='INT',
),
"targeted_trade_amount": Arg(
'--targeted-trade-amount',
help='Targeted trade amount for lookahead analysis',
type=check_int_positive,
metavar='INT',
),
"lookahead_analysis_exportfilename": Arg(
'--lookahead-analysis-exportfilename',
help="Use this csv-filename to store lookahead-analysis-results",
type=str
),
}

View File

@@ -1,18 +1,16 @@
import logging
import sys
from collections import defaultdict
from datetime import datetime, timedelta
from typing import Any, Dict, List
from typing import Any, Dict
from freqtrade.configuration import TimeRange, setup_utils_configuration
from freqtrade.constants import DATETIME_PRINT_FORMAT, Config
from freqtrade.constants import DATETIME_PRINT_FORMAT, DL_DATA_TIMEFRAMES, Config
from freqtrade.data.converter import convert_ohlcv_format, convert_trades_format
from freqtrade.data.history import (convert_trades_to_ohlcv, refresh_backtest_ohlcv_data,
refresh_backtest_trades_data)
from freqtrade.enums import CandleType, RunMode, TradingMode
from freqtrade.data.history import convert_trades_to_ohlcv, download_data_main
from freqtrade.enums import RunMode, TradingMode
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import market_is_active, timeframe_to_minutes
from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist, expand_pairlist
from freqtrade.exchange import timeframe_to_minutes
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
from freqtrade.resolvers import ExchangeResolver
from freqtrade.util.binance_mig import migrate_binance_futures_data
@@ -20,7 +18,7 @@ from freqtrade.util.binance_mig import migrate_binance_futures_data
logger = logging.getLogger(__name__)
def _data_download_sanity(config: Config) -> None:
def _check_data_config_download_sanity(config: Config) -> None:
if 'days' in config and 'timerange' in config:
raise OperationalException("--days and --timerange are mutually exclusive. "
"You can only specify one or the other.")
@@ -37,78 +35,14 @@ def start_download_data(args: Dict[str, Any]) -> None:
"""
config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
_data_download_sanity(config)
timerange = TimeRange()
if 'days' in config:
time_since = (datetime.now() - timedelta(days=config['days'])).strftime("%Y%m%d")
timerange = TimeRange.parse_timerange(f'{time_since}-')
if 'timerange' in config:
timerange = timerange.parse_timerange(config['timerange'])
# Remove stake-currency to skip checks which are not relevant for datadownload
config['stake_currency'] = ''
pairs_not_available: List[str] = []
# Init exchange
exchange = ExchangeResolver.load_exchange(config, validate=False)
markets = [p for p, m in exchange.markets.items() if market_is_active(m)
or config.get('include_inactive')]
expanded_pairs = dynamic_expand_pairlist(config, markets)
# Manual validations of relevant settings
if not config['exchange'].get('skip_pair_validation', False):
exchange.validate_pairs(expanded_pairs)
logger.info(f"About to download pairs: {expanded_pairs}, "
f"intervals: {config['timeframes']} to {config['datadir']}")
for timeframe in config['timeframes']:
exchange.validate_timeframes(timeframe)
_check_data_config_download_sanity(config)
try:
if config.get('download_trades'):
if config.get('trading_mode') == 'futures':
raise OperationalException("Trade download not supported for futures.")
pairs_not_available = refresh_backtest_trades_data(
exchange, pairs=expanded_pairs, datadir=config['datadir'],
timerange=timerange, new_pairs_days=config['new_pairs_days'],
erase=bool(config.get('erase')), data_format=config['dataformat_trades'])
# Convert downloaded trade data to different timeframes
convert_trades_to_ohlcv(
pairs=expanded_pairs, timeframes=config['timeframes'],
datadir=config['datadir'], timerange=timerange, erase=bool(config.get('erase')),
data_format_ohlcv=config['dataformat_ohlcv'],
data_format_trades=config['dataformat_trades'],
)
else:
if not exchange.get_option('ohlcv_has_history', True):
raise OperationalException(
f"Historic klines not available for {exchange.name}. "
"Please use `--dl-trades` instead for this exchange "
"(will unfortunately take a long time)."
)
migrate_binance_futures_data(config)
pairs_not_available = refresh_backtest_ohlcv_data(
exchange, pairs=expanded_pairs, timeframes=config['timeframes'],
datadir=config['datadir'], timerange=timerange,
new_pairs_days=config['new_pairs_days'],
erase=bool(config.get('erase')), data_format=config['dataformat_ohlcv'],
trading_mode=config.get('trading_mode', 'spot'),
prepend=config.get('prepend_data', False)
)
download_data_main(config)
except KeyboardInterrupt:
sys.exit("SIGINT received, aborting ...")
finally:
if pairs_not_available:
logger.info(f"Pairs [{','.join(pairs_not_available)}] not available "
f"on exchange {exchange.name}.")
def start_convert_trades(args: Dict[str, Any]) -> None:
@@ -123,6 +57,8 @@ def start_convert_trades(args: Dict[str, Any]) -> None:
raise OperationalException(
"Downloading data requires a list of pairs. "
"Please check the documentation on how to configure this.")
if 'timeframes' not in config:
config['timeframes'] = DL_DATA_TIMEFRAMES
# Init exchange
exchange = ExchangeResolver.load_exchange(config, validate=False)
@@ -152,11 +88,10 @@ def start_convert_data(args: Dict[str, Any], ohlcv: bool = True) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
if ohlcv:
migrate_binance_futures_data(config)
candle_types = [CandleType.from_string(ct) for ct in config.get('candle_types', ['spot'])]
for candle_type in candle_types:
convert_ohlcv_format(config,
convert_from=args['format_from'], convert_to=args['format_to'],
erase=args['erase'], candle_type=candle_type)
convert_ohlcv_format(config,
convert_from=args['format_from'],
convert_to=args['format_to'],
erase=args['erase'])
else:
convert_trades_format(config,
convert_from=args['format_from'], convert_to=args['format_to'],

View File

@@ -1,7 +1,7 @@
import csv
import logging
import sys
from typing import Any, Dict, List
from typing import Any, Dict, List, Union
import rapidjson
from colorama import Fore, Style
@@ -11,9 +11,10 @@ from tabulate import tabulate
from freqtrade.configuration import setup_utils_configuration
from freqtrade.enums import RunMode
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import market_is_active, validate_exchanges
from freqtrade.exchange import list_available_exchanges, market_is_active
from freqtrade.misc import parse_db_uri_for_logging, plural
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
from freqtrade.types import ValidExchangesType
logger = logging.getLogger(__name__)
@@ -25,18 +26,42 @@ def start_list_exchanges(args: Dict[str, Any]) -> None:
:param args: Cli args from Arguments()
:return: None
"""
exchanges = validate_exchanges(args['list_exchanges_all'])
exchanges = list_available_exchanges(args['list_exchanges_all'])
if args['print_one_column']:
print('\n'.join([e[0] for e in exchanges]))
print('\n'.join([e['name'] for e in exchanges]))
else:
headers = {
'name': 'Exchange name',
'supported': 'Supported',
'trade_modes': 'Markets',
'comment': 'Reason',
}
headers.update({'valid': 'Valid'} if args['list_exchanges_all'] else {})
def build_entry(exchange: ValidExchangesType, valid: bool):
valid_entry = {'valid': exchange['valid']} if valid else {}
result: Dict[str, Union[str, bool]] = {
'name': exchange['name'],
**valid_entry,
'supported': 'Official' if exchange['supported'] else '',
'trade_modes': ', '.join(
(f"{a['margin_mode']} " if a['margin_mode'] else '') + a['trading_mode']
for a in exchange['trade_modes']
),
'comment': exchange['comment'],
}
return result
if args['list_exchanges_all']:
print("All exchanges supported by the ccxt library:")
exchanges = [build_entry(e, True) for e in exchanges]
else:
print("Exchanges available for Freqtrade:")
exchanges = [e for e in exchanges if e[1] is not False]
exchanges = [build_entry(e, False) for e in exchanges if e['valid'] is not False]
print(tabulate(exchanges, headers=['Exchange name', 'Valid', 'reason']))
print(tabulate(exchanges, headers=headers, ))
def _print_objs_tabular(objs: List, print_colorized: bool) -> None:

View File

@@ -132,3 +132,15 @@ def start_edge(args: Dict[str, Any]) -> None:
# Initialize Edge object
edge_cli = EdgeCli(config)
edge_cli.start()
def start_lookahead_analysis(args: Dict[str, Any]) -> None:
"""
Start the backtest bias tester script
:param args: Cli args from Arguments()
:return: None
"""
from freqtrade.optimize.lookahead_analysis_helpers import LookaheadAnalysisSubFunctions
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
LookaheadAnalysisSubFunctions.start(config)

View File

@@ -203,7 +203,7 @@ class Configuration:
# This will override the strategy configuration
self._args_to_config(config, argname='timeframe',
logstring='Parameter -i/--timeframe detected ... '
'Using timeframe: {} ...')
'Using timeframe: {} ...')
self._args_to_config(config, argname='position_stacking',
logstring='Parameter --enable-position-stacking detected ...')
@@ -300,6 +300,9 @@ class Configuration:
self._args_to_config(config, argname='hyperoptexportfilename',
logstring='Using hyperopt file: {}')
self._args_to_config(config, argname='lookahead_analysis_exportfilename',
logstring='Saving lookahead analysis results into {} ...')
self._args_to_config(config, argname='epochs',
logstring='Parameter --epochs detected ... '
'Will run Hyperopt with for {} epochs ...'
@@ -474,6 +477,19 @@ class Configuration:
self._args_to_config(config, argname='analysis_csv_path',
logstring='Path to store analysis CSVs: {}')
self._args_to_config(config, argname='analysis_csv_path',
logstring='Path to store analysis CSVs: {}')
# Lookahead analysis results
self._args_to_config(config, argname='targeted_trade_amount',
logstring='Targeted Trade amount: {}')
self._args_to_config(config, argname='minimum_trade_amount',
logstring='Minimum Trade amount: {}')
self._args_to_config(config, argname='lookahead_analysis_exportfilename',
logstring='Path to store lookahead-analysis-results: {}')
def _process_runmode(self, config: Config) -> None:
self._args_to_config(config, argname='dry_run',
@@ -552,6 +568,7 @@ class Configuration:
# Fall back to /dl_path/pairs.json
pairs_file = config['datadir'] / 'pairs.json'
if pairs_file.exists():
logger.info(f'Reading pairs file "{pairs_file}".')
config['pairs'] = load_file(pairs_file)
if 'pairs' in config and isinstance(config['pairs'], list):
config['pairs'].sort()

View File

@@ -0,0 +1,8 @@
import os
def running_in_docker() -> bool:
"""
Check if we are running in a docker container
"""
return os.environ.get('FT_APP_ENV') == 'docker'

View File

@@ -3,6 +3,7 @@ import shutil
from pathlib import Path
from typing import Optional
from freqtrade.configuration.detect_environment import running_in_docker
from freqtrade.constants import (USER_DATA_FILES, USERPATH_FREQAIMODELS, USERPATH_HYPEROPTS,
USERPATH_NOTEBOOKS, USERPATH_STRATEGIES, Config)
from freqtrade.exceptions import OperationalException
@@ -30,8 +31,7 @@ def chown_user_directory(directory: Path) -> None:
Use Sudo to change permissions of the home-directory if necessary
Only applies when running in docker!
"""
import os
if os.environ.get('FT_APP_ENV') == 'docker':
if running_in_docker():
try:
import subprocess
subprocess.check_output(

View File

@@ -6,6 +6,8 @@ import re
from datetime import datetime, timezone
from typing import Optional
from typing_extensions import Self
from freqtrade.constants import DATETIME_PRINT_FORMAT
from freqtrade.exceptions import OperationalException
@@ -107,15 +109,15 @@ class TimeRange:
self.startts = int(min_date.timestamp() + timeframe_secs * startup_candles)
self.starttype = 'date'
@staticmethod
def parse_timerange(text: Optional[str]) -> 'TimeRange':
@classmethod
def parse_timerange(cls, text: Optional[str]) -> Self:
"""
Parse the value of the argument --timerange to determine what is the range desired
:param text: value from --timerange
:return: Start and End range period
"""
if not text:
return TimeRange(None, None, 0, 0)
return cls(None, None, 0, 0)
syntax = [(r'^-(\d{8})$', (None, 'date')),
(r'^(\d{8})-$', ('date', None)),
(r'^(\d{8})-(\d{8})$', ('date', 'date')),
@@ -156,5 +158,5 @@ class TimeRange:
if start > stop > 0:
raise OperationalException(
f'Start date is after stop date for timerange "{text}"')
return TimeRange(stype[0], stype[1], start, stop)
return cls(stype[0], stype[1], start, stop)
raise OperationalException(f'Incorrect syntax for timerange "{text}"')

View File

@@ -8,8 +8,8 @@ from typing import Any, Dict, List, Literal, Tuple
from freqtrade.enums import CandleType, PriceType, RPCMessageType
DOCS_LINK = "https://www.freqtrade.io/en/stable"
DEFAULT_CONFIG = 'config.json'
DEFAULT_EXCHANGE = 'bittrex'
PROCESS_THROTTLE_SECS = 5 # sec
HYPEROPT_EPOCH = 100 # epochs
RETRY_TIMEOUT = 30 # sec
@@ -65,6 +65,7 @@ TELEGRAM_SETTING_OPTIONS = ['on', 'off', 'silent']
WEBHOOK_FORMAT_OPTIONS = ['form', 'json', 'raw']
FULL_DATAFRAME_THRESHOLD = 100
CUSTOM_TAG_MAX_LENGTH = 255
DL_DATA_TIMEFRAMES = ['1m', '5m']
ENV_VAR_PREFIX = 'FREQTRADE__'
@@ -111,6 +112,8 @@ MINIMAL_CONFIG = {
}
}
__MESSAGE_TYPE_DICT: Dict[str, Dict[str, str]] = {x: {'type': 'object'} for x in RPCMessageType}
# Required json-schema for user specified config
CONF_SCHEMA = {
'type': 'object',
@@ -148,7 +151,6 @@ CONF_SCHEMA = {
'patternProperties': {
'^[0-9.]+$': {'type': 'number'}
},
'minProperties': 1
},
'amount_reserve_percent': {'type': 'number', 'minimum': 0.0, 'maximum': 0.5},
'stoploss': {'type': 'number', 'maximum': 0, 'exclusiveMaximum': True, 'minimum': -1},
@@ -164,6 +166,9 @@ CONF_SCHEMA = {
'trading_mode': {'type': 'string', 'enum': TRADING_MODES},
'margin_mode': {'type': 'string', 'enum': MARGIN_MODES},
'reduce_df_footprint': {'type': 'boolean', 'default': False},
'minimum_trade_amount': {'type': 'number', 'default': 10},
'targeted_trade_amount': {'type': 'number', 'default': 20},
'lookahead_analysis_exportfilename': {'type': 'string'},
'liquidation_buffer': {'type': 'number', 'minimum': 0.0, 'maximum': 0.99},
'backtest_breakdown': {
'type': 'array',
@@ -351,7 +356,8 @@ CONF_SCHEMA = {
'format': {'type': 'string', 'enum': WEBHOOK_FORMAT_OPTIONS, 'default': 'form'},
'retries': {'type': 'integer', 'minimum': 0},
'retry_delay': {'type': 'number', 'minimum': 0},
**dict([(x, {'type': 'object'}) for x in RPCMessageType]),
**__MESSAGE_TYPE_DICT,
# **{x: {'type': 'object'} for x in RPCMessageType},
# Below -> Deprecated
'webhookentry': {'type': 'object'},
'webhookentrycancel': {'type': 'object'},

View File

@@ -170,6 +170,7 @@ def load_and_merge_backtest_result(strategy_name: str, filename: Path, results:
def _get_backtest_files(dirname: Path) -> List[Path]:
# Weird glob expression here avoids including .meta.json files.
return list(reversed(sorted(dirname.glob('backtest-result-*-[0-9][0-9].json'))))
@@ -184,7 +185,7 @@ def get_backtest_resultlist(dirname: Path):
continue
for s, v in metadata.items():
results.append({
'filename': filename.name,
'filename': filename.stem,
'strategy': s,
'run_id': v['run_id'],
'backtest_start_time': v['backtest_start_time'],
@@ -193,6 +194,17 @@ def get_backtest_resultlist(dirname: Path):
return results
def delete_backtest_result(file_abs: Path):
"""
Delete backtest result file and corresponding metadata file.
"""
# *.meta.json
logger.info(f"Deleting backtest result file: {file_abs.name}")
file_abs_meta = file_abs.with_suffix('.meta.json')
file_abs.unlink()
file_abs_meta.unlink()
def find_existing_backtest_stats(dirname: Union[Path, str], run_ids: Dict[str, str],
min_backtest_date: Optional[datetime] = None) -> Dict[str, Any]:
"""
@@ -211,7 +223,6 @@ def find_existing_backtest_stats(dirname: Union[Path, str], run_ids: Dict[str, s
'strategy_comparison': [],
}
# Weird glob expression here avoids including .meta.json files.
for filename in _get_backtest_files(dirname):
metadata = load_backtest_metadata(filename)
if not metadata:

View File

@@ -11,7 +11,7 @@ import pandas as pd
from pandas import DataFrame, to_datetime
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS, Config, TradeList
from freqtrade.enums import CandleType
from freqtrade.enums import CandleType, TradingMode
logger = logging.getLogger(__name__)
@@ -96,8 +96,14 @@ def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str)
'volume': 'sum'
}
timeframe_minutes = timeframe_to_minutes(timeframe)
resample_interval = f'{timeframe_minutes}min'
if timeframe_minutes >= 43200 and timeframe_minutes < 525600:
# Monthly candles need special treatment to stick to the 1st of the month
resample_interval = f'{timeframe}S'
elif timeframe_minutes > 43200:
resample_interval = timeframe
# Resample to create "NAN" values
df = dataframe.resample(f'{timeframe_minutes}min', on='date').agg(ohlcv_dict)
df = dataframe.resample(resample_interval, on='date').agg(ohlcv_dict)
# Forwardfill close for missing columns
df['close'] = df['close'].fillna(method='ffill')
@@ -122,7 +128,7 @@ def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str)
return df
def trim_dataframe(df: DataFrame, timerange, df_date_col: str = 'date',
def trim_dataframe(df: DataFrame, timerange, *, df_date_col: str = 'date',
startup_candles: int = 0) -> DataFrame:
"""
Trim dataframe based on given timerange
@@ -264,7 +270,6 @@ def convert_ohlcv_format(
convert_from: str,
convert_to: str,
erase: bool,
candle_type: CandleType
):
"""
Convert OHLCV from one format to another
@@ -272,7 +277,6 @@ def convert_ohlcv_format(
:param convert_from: Source format
:param convert_to: Target format
:param erase: Erase source data (does not apply if source and target format are identical)
:param candle_type: Any of the enum CandleType (must match trading mode!)
"""
from freqtrade.data.history.idatahandler import get_datahandler
src = get_datahandler(config['datadir'], convert_from)
@@ -280,37 +284,45 @@ def convert_ohlcv_format(
timeframes = config.get('timeframes', [config.get('timeframe')])
logger.info(f"Converting candle (OHLCV) for timeframe {timeframes}")
if 'pairs' not in config:
config['pairs'] = []
# Check timeframes or fall back to timeframe.
for timeframe in timeframes:
config['pairs'].extend(src.ohlcv_get_pairs(
config['datadir'],
timeframe,
candle_type=candle_type
))
config['pairs'] = sorted(set(config['pairs']))
logger.info(f"Converting candle (OHLCV) data for {config['pairs']}")
candle_types = [CandleType.from_string(ct) for ct in config.get('candle_types', [
c.value for c in CandleType])]
logger.info(candle_types)
paircombs = src.ohlcv_get_available_data(config['datadir'], TradingMode.SPOT)
paircombs.extend(src.ohlcv_get_available_data(config['datadir'], TradingMode.FUTURES))
for timeframe in timeframes:
for pair in config['pairs']:
data = src.ohlcv_load(pair=pair, timeframe=timeframe,
timerange=None,
fill_missing=False,
drop_incomplete=False,
startup_candles=0,
candle_type=candle_type)
logger.info(f"Converting {len(data)} {timeframe} {candle_type} candles for {pair}")
if len(data) > 0:
trg.ohlcv_store(
pair=pair,
timeframe=timeframe,
data=data,
candle_type=candle_type
)
if erase and convert_from != convert_to:
logger.info(f"Deleting source data for {pair} / {timeframe}")
src.ohlcv_purge(pair=pair, timeframe=timeframe, candle_type=candle_type)
if 'pairs' in config:
# Filter pairs
paircombs = [comb for comb in paircombs if comb[0] in config['pairs']]
if 'timeframes' in config:
paircombs = [comb for comb in paircombs if comb[1] in config['timeframes']]
paircombs = [comb for comb in paircombs if comb[2] in candle_types]
paircombs = sorted(paircombs, key=lambda x: (x[0], x[1], x[2].value))
formatted_paircombs = '\n'.join([f"{pair}, {timeframe}, {candle_type}"
for pair, timeframe, candle_type in paircombs])
logger.info(f"Converting candle (OHLCV) data for the following pair combinations:\n"
f"{formatted_paircombs}")
for pair, timeframe, candle_type in paircombs:
data = src.ohlcv_load(pair=pair, timeframe=timeframe,
timerange=None,
fill_missing=False,
drop_incomplete=False,
startup_candles=0,
candle_type=candle_type)
logger.info(f"Converting {len(data)} {timeframe} {candle_type} candles for {pair}")
if len(data) > 0:
trg.ohlcv_store(
pair=pair,
timeframe=timeframe,
data=data,
candle_type=candle_type
)
if erase and convert_from != convert_to:
logger.info(f"Deleting source data for {pair} / {timeframe}")
src.ohlcv_purge(pair=pair, timeframe=timeframe, candle_type=candle_type)
def reduce_dataframe_footprint(df: DataFrame) -> DataFrame:

View File

@@ -6,7 +6,7 @@ Includes:
* download data from exchange and store to disk
"""
# flake8: noqa: F401
from .history_utils import (convert_trades_to_ohlcv, get_timerange, load_data, load_pair_history,
refresh_backtest_ohlcv_data, refresh_backtest_trades_data, refresh_data,
validate_backtest_data)
from .history_utils import (convert_trades_to_ohlcv, download_data_main, get_timerange, load_data,
load_pair_history, refresh_backtest_ohlcv_data,
refresh_backtest_trades_data, refresh_data, validate_backtest_data)
from .idatahandler import get_datahandler

View File

@@ -7,14 +7,17 @@ from typing import Dict, List, Optional, Tuple
from pandas import DataFrame, concat
from freqtrade.configuration import TimeRange
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
from freqtrade.constants import (DATETIME_PRINT_FORMAT, DEFAULT_DATAFRAME_COLUMNS,
DL_DATA_TIMEFRAMES, Config)
from freqtrade.data.converter import (clean_ohlcv_dataframe, ohlcv_to_dataframe,
trades_remove_duplicates, trades_to_ohlcv)
from freqtrade.data.history.idatahandler import IDataHandler, get_datahandler
from freqtrade.enums import CandleType
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import Exchange
from freqtrade.misc import format_ms_time
from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist
from freqtrade.util import format_ms_time
from freqtrade.util.binance_mig import migrate_binance_futures_data
logger = logging.getLogger(__name__)
@@ -227,9 +230,11 @@ def _download_pair_history(pair: str, *,
)
logger.debug("Current Start: %s",
f"{data.iloc[0]['date']:DATETIME_PRINT_FORMAT}" if not data.empty else 'None')
f"{data.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}"
if not data.empty else 'None')
logger.debug("Current End: %s",
f"{data.iloc[-1]['date']:DATETIME_PRINT_FORMAT}" if not data.empty else 'None')
f"{data.iloc[-1]['date']:{DATETIME_PRINT_FORMAT}}"
if not data.empty else 'None')
# Default since_ms to 30 days if nothing is given
new_data = exchange.get_historic_ohlcv(pair=pair,
@@ -252,10 +257,12 @@ def _download_pair_history(pair: str, *,
data = clean_ohlcv_dataframe(concat([data, new_dataframe], axis=0), timeframe, pair,
fill_missing=False, drop_incomplete=False)
logger.debug("New Start: %s",
f"{data.iloc[0]['date']:DATETIME_PRINT_FORMAT}" if not data.empty else 'None')
logger.debug("New Start: %s",
f"{data.iloc[0]['date']:{DATETIME_PRINT_FORMAT}}"
if not data.empty else 'None')
logger.debug("New End: %s",
f"{data.iloc[-1]['date']:DATETIME_PRINT_FORMAT}" if not data.empty else 'None')
f"{data.iloc[-1]['date']:{DATETIME_PRINT_FORMAT}}"
if not data.empty else 'None')
data_handler.ohlcv_store(pair, timeframe, data=data, candle_type=candle_type)
return True
@@ -290,7 +297,7 @@ def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes
continue
for timeframe in timeframes:
logger.info(f'Downloading pair {pair}, interval {timeframe}.')
logger.debug(f'Downloading pair {pair}, {candle_type}, interval {timeframe}.')
process = f'{idx}/{len(pairs)}'
_download_pair_history(pair=pair, process=process,
datadir=datadir, exchange=exchange,
@@ -348,7 +355,7 @@ def _download_trades_history(exchange: Exchange,
trades = []
if not since:
since = int((datetime.now() - timedelta(days=-new_pairs_days)).timestamp()) * 1000
since = int((datetime.now() - timedelta(days=new_pairs_days)).timestamp()) * 1000
from_id = trades[-1][1] if trades else None
if trades and since < trades[-1][0]:
@@ -479,3 +486,79 @@ def validate_backtest_data(data: DataFrame, pair: str, min_date: datetime,
logger.warning("%s has missing frames: expected %s, got %s, that's %s missing values",
pair, expected_frames, dflen, expected_frames - dflen)
return found_missing
def download_data_main(config: Config) -> None:
timerange = TimeRange()
if 'days' in config:
time_since = (datetime.now() - timedelta(days=config['days'])).strftime("%Y%m%d")
timerange = TimeRange.parse_timerange(f'{time_since}-')
if 'timerange' in config:
timerange = timerange.parse_timerange(config['timerange'])
# Remove stake-currency to skip checks which are not relevant for datadownload
config['stake_currency'] = ''
pairs_not_available: List[str] = []
# Init exchange
from freqtrade.resolvers.exchange_resolver import ExchangeResolver
exchange = ExchangeResolver.load_exchange(config, validate=False)
available_pairs = [
p for p in exchange.get_markets(
tradable_only=True, active_only=not config.get('include_inactive')
).keys()
]
expanded_pairs = dynamic_expand_pairlist(config, available_pairs)
if 'timeframes' not in config:
config['timeframes'] = DL_DATA_TIMEFRAMES
# Manual validations of relevant settings
if not config['exchange'].get('skip_pair_validation', False):
exchange.validate_pairs(expanded_pairs)
logger.info(f"About to download pairs: {expanded_pairs}, "
f"intervals: {config['timeframes']} to {config['datadir']}")
for timeframe in config['timeframes']:
exchange.validate_timeframes(timeframe)
# Start downloading
try:
if config.get('download_trades'):
if config.get('trading_mode') == 'futures':
raise OperationalException("Trade download not supported for futures.")
pairs_not_available = refresh_backtest_trades_data(
exchange, pairs=expanded_pairs, datadir=config['datadir'],
timerange=timerange, new_pairs_days=config['new_pairs_days'],
erase=bool(config.get('erase')), data_format=config['dataformat_trades'])
# Convert downloaded trade data to different timeframes
convert_trades_to_ohlcv(
pairs=expanded_pairs, timeframes=config['timeframes'],
datadir=config['datadir'], timerange=timerange, erase=bool(config.get('erase')),
data_format_ohlcv=config['dataformat_ohlcv'],
data_format_trades=config['dataformat_trades'],
)
else:
if not exchange.get_option('ohlcv_has_history', True):
raise OperationalException(
f"Historic klines not available for {exchange.name}. "
"Please use `--dl-trades` instead for this exchange "
"(will unfortunately take a long time)."
)
migrate_binance_futures_data(config)
pairs_not_available = refresh_backtest_ohlcv_data(
exchange, pairs=expanded_pairs, timeframes=config['timeframes'],
datadir=config['datadir'], timerange=timerange,
new_pairs_days=config['new_pairs_days'],
erase=bool(config.get('erase')), data_format=config['dataformat_ohlcv'],
trading_mode=config.get('trading_mode', 'spot'),
prepend=config.get('prepend_data', False)
)
finally:
if pairs_not_available:
logger.info(f"Pairs [{','.join(pairs_not_available)}] not available "
f"on exchange {exchange.name}.")

View File

@@ -194,32 +194,35 @@ def calculate_cagr(days_passed: int, starting_balance: float, final_balance: flo
return (final_balance / starting_balance) ** (1 / (days_passed / 365)) - 1
def calculate_expectancy(trades: pd.DataFrame) -> float:
def calculate_expectancy(trades: pd.DataFrame) -> Tuple[float, float]:
"""
Calculate expectancy
:param trades: DataFrame containing trades (requires columns close_date and profit_abs)
:return: expectancy
:return: expectancy, expectancy_ratio
"""
if len(trades) == 0:
return 0
expectancy = 1
expectancy = 0
expectancy_ratio = 100
profit_sum = trades.loc[trades['profit_abs'] > 0, 'profit_abs'].sum()
loss_sum = abs(trades.loc[trades['profit_abs'] < 0, 'profit_abs'].sum())
nb_win_trades = len(trades.loc[trades['profit_abs'] > 0])
nb_loss_trades = len(trades.loc[trades['profit_abs'] < 0])
if len(trades) > 0:
winning_trades = trades.loc[trades['profit_abs'] > 0]
losing_trades = trades.loc[trades['profit_abs'] < 0]
profit_sum = winning_trades['profit_abs'].sum()
loss_sum = abs(losing_trades['profit_abs'].sum())
nb_win_trades = len(winning_trades)
nb_loss_trades = len(losing_trades)
if (nb_win_trades > 0) and (nb_loss_trades > 0):
average_win = profit_sum / nb_win_trades
average_loss = loss_sum / nb_loss_trades
risk_reward_ratio = average_win / average_loss
winrate = nb_win_trades / len(trades)
expectancy = ((1 + risk_reward_ratio) * winrate) - 1
elif nb_win_trades == 0:
expectancy = 0
average_win = (profit_sum / nb_win_trades) if nb_win_trades > 0 else 0
average_loss = (loss_sum / nb_loss_trades) if nb_loss_trades > 0 else 0
winrate = (nb_win_trades / len(trades))
loserate = (nb_loss_trades / len(trades))
return expectancy
expectancy = (winrate * average_win) - (loserate * average_loss)
if (average_loss > 0):
risk_reward_ratio = average_win / average_loss
expectancy_ratio = ((1 + risk_reward_ratio) * winrate) - 1
return expectancy, expectancy_ratio
def calculate_sortino(trades: pd.DataFrame, min_date: datetime, max_date: datetime,

View File

@@ -172,13 +172,7 @@ class Edge:
pair_data = pair_data.sort_values(by=['date'])
pair_data = pair_data.reset_index(drop=True)
df_analyzed = self.strategy.advise_exit(
dataframe=self.strategy.advise_entry(
dataframe=pair_data,
metadata={'pair': pair}
),
metadata={'pair': pair}
)[headers].copy()
df_analyzed = self.strategy.ft_advise_signals(pair_data, {'pair': pair})[headers].copy()
trades += self._find_trades_for_stoploss_range(df_analyzed, pair, self._stoploss_range)

View File

@@ -1,7 +1,7 @@
from enum import Enum
class MarginMode(Enum):
class MarginMode(str, Enum):
"""
Enum to distinguish between
cross margin/futures margin_mode and

View File

@@ -13,11 +13,11 @@ from freqtrade.exchange.exchange_utils import (ROUND_DOWN, ROUND_UP, amount_to_c
amount_to_contracts, amount_to_precision,
available_exchanges, ccxt_exchanges,
contracts_to_amount, date_minus_candles,
is_exchange_known_ccxt, market_is_active,
price_to_precision, timeframe_to_minutes,
timeframe_to_msecs, timeframe_to_next_date,
timeframe_to_prev_date, timeframe_to_seconds,
validate_exchange, validate_exchanges)
is_exchange_known_ccxt, list_available_exchanges,
market_is_active, price_to_precision,
timeframe_to_minutes, timeframe_to_msecs,
timeframe_to_next_date, timeframe_to_prev_date,
timeframe_to_seconds, validate_exchange)
from freqtrade.exchange.gate import Gate
from freqtrade.exchange.hitbtc import Hitbtc
from freqtrade.exchange.huobi import Huobi

View File

@@ -34,6 +34,7 @@ class Binance(Exchange):
"tickers_have_price": False,
"floor_leverage": True,
"stop_price_type_field": "workingType",
"order_props_in_contracts": ['amount', 'cost', 'filled', 'remaining'],
"stop_price_type_value_mapping": {
PriceType.LAST: "CONTRACT_PRICE",
PriceType.MARK: "MARK_PRICE",

File diff suppressed because it is too large Load Diff

View File

@@ -28,7 +28,7 @@ class Bybit(Exchange):
_ft_has: Dict = {
"ohlcv_candle_limit": 200,
"ohlcv_has_history": False,
"ohlcv_has_history": True,
}
_ft_has_futures: Dict = {
"ohlcv_has_history": True,

View File

@@ -80,9 +80,8 @@ class Exchange:
"mark_ohlcv_price": "mark",
"mark_ohlcv_timeframe": "8h",
"ccxt_futures_name": "swap",
"fee_cost_in_contracts": False, # Fee cost needs contract conversion
"needs_trading_fees": False, # use fetch_trading_fees to cache fees
"order_props_in_contracts": ['amount', 'cost', 'filled', 'remaining'],
"order_props_in_contracts": ['amount', 'filled', 'remaining'],
# Override createMarketBuyOrderRequiresPrice where ccxt has it wrong
"marketOrderRequiresPrice": False,
}
@@ -191,7 +190,7 @@ class Exchange:
# Converts the interval provided in minutes in config to seconds
self.markets_refresh_interval: int = exchange_conf.get(
"markets_refresh_interval", 60) * 60
"markets_refresh_interval", 60) * 60 * 1000
if self.trading_mode != TradingMode.SPOT and load_leverage_tiers:
self.fill_leverage_tiers()
@@ -301,7 +300,7 @@ class Exchange:
return list((self._api.timeframes or {}).keys())
@property
def markets(self) -> Dict:
def markets(self) -> Dict[str, Any]:
"""exchange ccxt markets"""
if not self._markets:
logger.info("Markets were not loaded. Loading them now..")
@@ -1148,8 +1147,8 @@ class Exchange:
else:
limit_rate = stop_price * (2 - limit_price_pct)
bad_stop_price = ((stop_price <= limit_rate) if side ==
"sell" else (stop_price >= limit_rate))
bad_stop_price = ((stop_price < limit_rate) if side ==
"sell" else (stop_price > limit_rate))
# Ensure rate is less than stop price
if bad_stop_price:
# This can for example happen if the stop / liquidation price is set to 0
@@ -1662,39 +1661,18 @@ class Exchange:
price_side = self._get_price_side(side, is_short, conf_strategy)
price_side_word = price_side.capitalize()
if conf_strategy.get('use_order_book', False):
order_book_top = conf_strategy.get('order_book_top', 1)
if order_book is None:
order_book = self.fetch_l2_order_book(pair, order_book_top)
logger.debug('order_book %s', order_book)
# top 1 = index 0
try:
obside: OBLiteral = 'bids' if price_side == 'bid' else 'asks'
rate = order_book[obside][order_book_top - 1][0]
except (IndexError, KeyError) as e:
logger.warning(
f"{pair} - {name} Price at location {order_book_top} from orderbook "
f"could not be determined. Orderbook: {order_book}"
)
raise PricingError from e
logger.debug(f"{pair} - {name} price from orderbook {price_side_word}"
f"side - top {order_book_top} order book {side} rate {rate:.8f}")
rate = self._get_rate_from_ob(pair, side, order_book, name, price_side,
order_book_top)
else:
logger.debug(f"Using Last {price_side_word} / Last Price")
logger.debug(f"Using Last {price_side.capitalize()} / Last Price")
if ticker is None:
ticker = self.fetch_ticker(pair)
ticker_rate = ticker[price_side]
if ticker['last'] and ticker_rate:
if side == 'entry' and ticker_rate > ticker['last']:
balance = conf_strategy.get('price_last_balance', 0.0)
ticker_rate = ticker_rate + balance * (ticker['last'] - ticker_rate)
elif side == 'exit' and ticker_rate < ticker['last']:
balance = conf_strategy.get('price_last_balance', 0.0)
ticker_rate = ticker_rate - balance * (ticker_rate - ticker['last'])
rate = ticker_rate
rate = self._get_rate_from_ticker(side, ticker, conf_strategy, price_side)
if rate is None:
raise PricingError(f"{name}-Rate for {pair} was empty.")
@@ -1703,6 +1681,43 @@ class Exchange:
return rate
def _get_rate_from_ticker(self, side: EntryExit, ticker: Ticker, conf_strategy: Dict[str, Any],
price_side: BidAsk) -> Optional[float]:
"""
Get rate from ticker.
"""
ticker_rate = ticker[price_side]
if ticker['last'] and ticker_rate:
if side == 'entry' and ticker_rate > ticker['last']:
balance = conf_strategy.get('price_last_balance', 0.0)
ticker_rate = ticker_rate + balance * (ticker['last'] - ticker_rate)
elif side == 'exit' and ticker_rate < ticker['last']:
balance = conf_strategy.get('price_last_balance', 0.0)
ticker_rate = ticker_rate - balance * (ticker_rate - ticker['last'])
rate = ticker_rate
return rate
def _get_rate_from_ob(self, pair: str, side: EntryExit, order_book: OrderBook, name: str,
price_side: BidAsk, order_book_top: int) -> float:
"""
Get rate from orderbook
:raises: PricingError if rate could not be determined.
"""
logger.debug('order_book %s', order_book)
# top 1 = index 0
try:
obside: OBLiteral = 'bids' if price_side == 'bid' else 'asks'
rate = order_book[obside][order_book_top - 1][0]
except (IndexError, KeyError) as e:
logger.warning(
f"{pair} - {name} Price at location {order_book_top} from orderbook "
f"could not be determined. Orderbook: {order_book}"
)
raise PricingError from e
logger.debug(f"{pair} - {name} price from orderbook {price_side.capitalize()}"
f"side - top {order_book_top} order book {side} rate {rate:.8f}")
return rate
def get_rates(self, pair: str, refresh: bool, is_short: bool) -> Tuple[float, float]:
entry_rate = None
exit_rate = None
@@ -1843,9 +1858,6 @@ class Exchange:
if fee_curr is None:
return None
fee_cost = float(fee['cost'])
if self._ft_has['fee_cost_in_contracts']:
# Convert cost via "contracts" conversion
fee_cost = self._contracts_to_amount(symbol, fee['cost'])
# Calculate fee based on order details
if fee_curr == self.get_pair_base_currency(symbol):

View File

@@ -9,7 +9,9 @@ import ccxt
from ccxt import (DECIMAL_PLACES, ROUND, ROUND_DOWN, ROUND_UP, SIGNIFICANT_DIGITS, TICK_SIZE,
TRUNCATE, decimal_to_precision)
from freqtrade.exchange.common import BAD_EXCHANGES, EXCHANGE_HAS_OPTIONAL, EXCHANGE_HAS_REQUIRED
from freqtrade.exchange.common import (BAD_EXCHANGES, EXCHANGE_HAS_OPTIONAL, EXCHANGE_HAS_REQUIRED,
SUPPORTED_EXCHANGES)
from freqtrade.types import ValidExchangesType
from freqtrade.util import FtPrecise
from freqtrade.util.datetime_helpers import dt_from_ts, dt_ts
@@ -55,14 +57,41 @@ def validate_exchange(exchange: str) -> Tuple[bool, str]:
return True, ''
def validate_exchanges(all_exchanges: bool) -> List[Tuple[str, bool, str]]:
def _build_exchange_list_entry(
exchange_name: str, exchangeClasses: Dict[str, Any]) -> ValidExchangesType:
valid, comment = validate_exchange(exchange_name)
result: ValidExchangesType = {
'name': exchange_name,
'valid': valid,
'supported': exchange_name.lower() in SUPPORTED_EXCHANGES,
'comment': comment,
'trade_modes': [{'trading_mode': 'spot', 'margin_mode': ''}],
}
if resolved := exchangeClasses.get(exchange_name.lower()):
supported_modes = [{'trading_mode': 'spot', 'margin_mode': ''}] + [
{'trading_mode': tm.value, 'margin_mode': mm.value}
for tm, mm in resolved['class']._supported_trading_mode_margin_pairs
]
result.update({
'trade_modes': supported_modes,
})
return result
def list_available_exchanges(all_exchanges: bool) -> List[ValidExchangesType]:
"""
:return: List of tuples with exchangename, valid, reason.
"""
exchanges = ccxt_exchanges() if all_exchanges else available_exchanges()
exchanges_valid = [
(e, *validate_exchange(e)) for e in exchanges
from freqtrade.resolvers.exchange_resolver import ExchangeResolver
subclassed = {e['name'].lower(): e for e in ExchangeResolver.search_all_objects({}, False)}
exchanges_valid: List[ValidExchangesType] = [
_build_exchange_list_entry(e, subclassed) for e in exchanges
]
return exchanges_valid

View File

@@ -33,9 +33,6 @@ class Gate(Exchange):
_ft_has_futures: Dict = {
"needs_trading_fees": True,
"marketOrderRequiresPrice": False,
"tickers_have_bid_ask": False,
"fee_cost_in_contracts": False, # Set explicitly to false for clarity
"order_props_in_contracts": ['amount', 'filled', 'remaining'],
"stop_price_type_field": "price_type",
"stop_price_type_value_mapping": {
PriceType.LAST: 0,

View File

@@ -32,7 +32,6 @@ class Okx(Exchange):
}
_ft_has_futures: Dict = {
"tickers_have_quoteVolume": False,
"fee_cost_in_contracts": True,
"stop_price_type_field": "slTriggerPxType",
"stop_price_type_value_mapping": {
PriceType.LAST: "last",
@@ -125,6 +124,20 @@ class Okx(Exchange):
params['posSide'] = self._get_posSide(side, reduceOnly)
return params
def __fetch_leverage_already_set(self, pair: str, leverage: float, side: BuySell) -> bool:
try:
res_lev = self._api.fetch_leverage(symbol=pair, params={
"mgnMode": self.margin_mode.value,
"posSide": self._get_posSide(side, False),
})
self._log_exchange_response('get_leverage', res_lev)
already_set = all(float(x['lever']) == leverage for x in res_lev['data'])
return already_set
except ccxt.BaseError:
# Assume all errors as "not set yet"
return False
@retrier
def _lev_prep(self, pair: str, leverage: float, side: BuySell, accept_fail: bool = False):
if self.trading_mode != TradingMode.SPOT and self.margin_mode is not None:
@@ -141,8 +154,11 @@ class Okx(Exchange):
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not set leverage due to {e.__class__.__name__}. Message: {e}') from e
already_set = self.__fetch_leverage_already_set(pair, leverage, side)
if not already_set:
raise TemporaryError(
f'Could not set leverage due to {e.__class__.__name__}. Message: {e}'
) from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
@@ -182,6 +198,7 @@ class Okx(Exchange):
order_reg['type'] = 'stoploss'
order_reg['status_stop'] = 'triggered'
return order_reg
order = self._order_contracts_to_amount(order)
order['type'] = 'stoploss'
return order

View File

@@ -2,7 +2,7 @@ import logging
import random
from abc import abstractmethod
from enum import Enum
from typing import Optional, Type, Union
from typing import List, Optional, Type, Union
import gymnasium as gym
import numpy as np
@@ -141,6 +141,9 @@ class BaseEnvironment(gym.Env):
Unique to the environment action count. Must be inherited.
"""
def action_masks(self) -> List[bool]:
return [self._is_valid(action.value) for action in self.actions]
def seed(self, seed: int = 1):
self.np_random, seed = seeding.np_random(seed)
return [seed]

View File

@@ -13,7 +13,8 @@ import pandas as pd
import torch as th
import torch.multiprocessing
from pandas import DataFrame
from stable_baselines3.common.callbacks import EvalCallback
from sb3_contrib.common.maskable.callbacks import MaskableEvalCallback
from sb3_contrib.common.maskable.utils import is_masking_supported
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.utils import set_random_seed
from stable_baselines3.common.vec_env import SubprocVecEnv, VecMonitor
@@ -48,7 +49,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
self.reward_params = self.freqai_info['rl_config']['model_reward_parameters']
self.train_env: Union[VecMonitor, SubprocVecEnv, gym.Env] = gym.Env()
self.eval_env: Union[VecMonitor, SubprocVecEnv, gym.Env] = gym.Env()
self.eval_callback: Optional[EvalCallback] = None
self.eval_callback: Optional[MaskableEvalCallback] = None
self.model_type = self.freqai_info['rl_config']['model_type']
self.rl_config = self.freqai_info['rl_config']
self.df_raw: DataFrame = DataFrame()
@@ -82,6 +83,9 @@ class BaseReinforcementLearningModel(IFreqaiModel):
if self.ft_params.get('use_DBSCAN_to_remove_outliers', False):
self.ft_params.update({'use_DBSCAN_to_remove_outliers': False})
logger.warning('User tried to use DBSCAN with RL. Deactivating DBSCAN.')
if self.ft_params.get('DI_threshold', False):
self.ft_params.update({'DI_threshold': False})
logger.warning('User tried to use DI_threshold with RL. Deactivating DI_threshold.')
if self.freqai_info['data_split_parameters'].get('shuffle', False):
self.freqai_info['data_split_parameters'].update({'shuffle': False})
logger.warning('User tried to shuffle training data. Setting shuffle to False')
@@ -107,27 +111,37 @@ class BaseReinforcementLearningModel(IFreqaiModel):
training_filter=True,
)
data_dictionary: Dict[str, Any] = dk.make_train_test_datasets(
dd: Dict[str, Any] = dk.make_train_test_datasets(
features_filtered, labels_filtered)
self.df_raw = copy.deepcopy(data_dictionary["train_features"])
self.df_raw = copy.deepcopy(dd["train_features"])
dk.fit_labels() # FIXME useless for now, but just satiating append methods
# normalize all data based on train_dataset only
prices_train, prices_test = self.build_ohlc_price_dataframes(dk.data_dictionary, pair, dk)
data_dictionary = dk.normalize_data(data_dictionary)
dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)
# data cleaning/analysis
self.data_cleaning_train(dk)
(dd["train_features"],
dd["train_labels"],
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
dd["train_labels"],
dd["train_weights"])
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
(dd["test_features"],
dd["test_labels"],
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
dd["test_labels"],
dd["test_weights"])
logger.info(
f'Training model on {len(dk.data_dictionary["train_features"].columns)}'
f' features and {len(data_dictionary["train_features"])} data points'
f' features and {len(dd["train_features"])} data points'
)
self.set_train_and_eval_environments(data_dictionary, prices_train, prices_test, dk)
self.set_train_and_eval_environments(dd, prices_train, prices_test, dk)
model = self.fit(data_dictionary, dk)
model = self.fit(dd, dk)
logger.info(f"--------------------done training {pair}--------------------")
@@ -151,9 +165,11 @@ class BaseReinforcementLearningModel(IFreqaiModel):
self.train_env = self.MyRLEnv(df=train_df, prices=prices_train, **env_info)
self.eval_env = Monitor(self.MyRLEnv(df=test_df, prices=prices_test, **env_info))
self.eval_callback = EvalCallback(self.eval_env, deterministic=True,
render=False, eval_freq=len(train_df),
best_model_save_path=str(dk.data_path))
self.eval_callback = MaskableEvalCallback(self.eval_env, deterministic=True,
render=False, eval_freq=len(train_df),
best_model_save_path=str(dk.data_path),
use_masking=(self.model_type == 'MaskablePPO' and
is_masking_supported(self.eval_env)))
actions = self.train_env.get_actions()
self.tensorboard_callback = TensorboardCallback(verbose=1, actions=actions)
@@ -236,13 +252,10 @@ class BaseReinforcementLearningModel(IFreqaiModel):
unfiltered_df, dk.training_features_list, training_filter=False
)
filtered_dataframe = self.drop_ohlc_from_df(filtered_dataframe, dk)
dk.data_dictionary["prediction_features"] = self.drop_ohlc_from_df(filtered_dataframe, dk)
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
dk.data_dictionary["prediction_features"] = filtered_dataframe
# optional additional data cleaning/analysis
self.data_cleaning_predict(dk)
dk.data_dictionary["prediction_features"], _, _ = dk.feature_pipeline.transform(
dk.data_dictionary["prediction_features"], outlier_check=True)
pred_df = self.rl_model_predict(
dk.data_dictionary["prediction_features"], dk, self.model)

View File

@@ -17,8 +17,8 @@ logger = logging.getLogger(__name__)
class BaseClassifierModel(IFreqaiModel):
"""
Base class for regression type models (e.g. Catboost, LightGBM, XGboost etc.).
User *must* inherit from this class and set fit() and predict(). See example scripts
such as prediction_models/CatboostPredictionModel.py for guidance.
User *must* inherit from this class and set fit(). See example scripts
such as prediction_models/CatboostClassifier.py for guidance.
"""
def train(
@@ -50,21 +50,30 @@ class BaseClassifierModel(IFreqaiModel):
logger.info(f"-------------------- Training on data from {start_date} to "
f"{end_date} --------------------")
# split data into train/test data.
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
dd = dk.make_train_test_datasets(features_filtered, labels_filtered)
if not self.freqai_info.get("fit_live_predictions_candles", 0) or not self.live:
dk.fit_labels()
# normalize all data based on train_dataset only
data_dictionary = dk.normalize_data(data_dictionary)
dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)
# optional additional data cleaning/analysis
self.data_cleaning_train(dk)
(dd["train_features"],
dd["train_labels"],
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
dd["train_labels"],
dd["train_weights"])
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
(dd["test_features"],
dd["test_labels"],
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
dd["test_labels"],
dd["test_weights"])
logger.info(
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
)
logger.info(f"Training model on {len(data_dictionary['train_features'])} data points")
logger.info(f"Training model on {len(dd['train_features'])} data points")
model = self.fit(data_dictionary, dk)
model = self.fit(dd, dk)
end_time = time()
@@ -89,10 +98,11 @@ class BaseClassifierModel(IFreqaiModel):
filtered_df, _ = dk.filter_features(
unfiltered_df, dk.training_features_list, training_filter=False
)
filtered_df = dk.normalize_data_from_metadata(filtered_df)
dk.data_dictionary["prediction_features"] = filtered_df
self.data_cleaning_predict(dk)
dk.data_dictionary["prediction_features"], outliers, _ = dk.feature_pipeline.transform(
dk.data_dictionary["prediction_features"], outlier_check=True)
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
if self.CONV_WIDTH == 1:
@@ -107,4 +117,10 @@ class BaseClassifierModel(IFreqaiModel):
pred_df = pd.concat([pred_df, pred_df_prob], axis=1)
if dk.feature_pipeline["di"]:
dk.DI_values = dk.feature_pipeline["di"].di_values
else:
dk.DI_values = np.zeros(outliers.shape[0])
dk.do_predict = outliers
return (pred_df, dk.do_predict)

View File

@@ -1,5 +1,6 @@
import logging
from typing import Dict, List, Tuple
from time import time
from typing import Any, Dict, List, Tuple
import numpy as np
import numpy.typing as npt
@@ -35,6 +36,7 @@ class BasePyTorchClassifier(BasePyTorchModel):
return dataframe
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.class_name_to_index = None
@@ -68,9 +70,12 @@ class BasePyTorchClassifier(BasePyTorchModel):
filtered_df, _ = dk.filter_features(
unfiltered_df, dk.training_features_list, training_filter=False
)
filtered_df = dk.normalize_data_from_metadata(filtered_df)
dk.data_dictionary["prediction_features"] = filtered_df
self.data_cleaning_predict(dk)
dk.data_dictionary["prediction_features"], outliers, _ = dk.feature_pipeline.transform(
dk.data_dictionary["prediction_features"], outlier_check=True)
x = self.data_convertor.convert_x(
dk.data_dictionary["prediction_features"],
device=self.device
@@ -85,6 +90,13 @@ class BasePyTorchClassifier(BasePyTorchModel):
pred_df_prob = DataFrame(probs.detach().tolist(), columns=class_names)
pred_df = DataFrame(predicted_classes_str, columns=[dk.label_list[0]])
pred_df = pd.concat([pred_df, pred_df_prob], axis=1)
if dk.feature_pipeline["di"]:
dk.DI_values = dk.feature_pipeline["di"].di_values
else:
dk.DI_values = np.zeros(outliers.shape[0])
dk.do_predict = outliers
return (pred_df, dk.do_predict)
def encode_class_names(
@@ -149,3 +161,58 @@ class BasePyTorchClassifier(BasePyTorchModel):
)
return self.class_names
def train(
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
) -> Any:
"""
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
for storing, saving, loading, and analyzing the data.
:param unfiltered_df: Full dataframe for the current training period
:return:
:model: Trained model which can be used to inference (self.predict)
"""
logger.info(f"-------------------- Starting training {pair} --------------------")
start_time = time()
features_filtered, labels_filtered = dk.filter_features(
unfiltered_df,
dk.training_features_list,
dk.label_list,
training_filter=True,
)
# split data into train/test data.
dd = dk.make_train_test_datasets(features_filtered, labels_filtered)
if not self.freqai_info.get("fit_live_predictions_candles", 0) or not self.live:
dk.fit_labels()
dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)
(dd["train_features"],
dd["train_labels"],
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
dd["train_labels"],
dd["train_weights"])
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
(dd["test_features"],
dd["test_labels"],
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
dd["test_labels"],
dd["test_weights"])
logger.info(
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
)
logger.info(f"Training model on {len(dd['train_features'])} data points")
model = self.fit(dd, dk)
end_time = time()
logger.info(f"-------------------- Done training {pair} "
f"({end_time - start_time:.2f} secs) --------------------")
return model

View File

@@ -1,12 +1,8 @@
import logging
from abc import ABC, abstractmethod
from time import time
from typing import Any
import torch
from pandas import DataFrame
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.freqai_interface import IFreqaiModel
from freqtrade.freqai.torch.PyTorchDataConvertor import PyTorchDataConvertor
@@ -29,51 +25,6 @@ class BasePyTorchModel(IFreqaiModel, ABC):
self.splits = ["train", "test"] if test_size != 0 else ["train"]
self.window_size = self.freqai_info.get("conv_width", 1)
def train(
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
) -> Any:
"""
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
for storing, saving, loading, and analyzing the data.
:param unfiltered_df: Full dataframe for the current training period
:return:
:model: Trained model which can be used to inference (self.predict)
"""
logger.info(f"-------------------- Starting training {pair} --------------------")
start_time = time()
features_filtered, labels_filtered = dk.filter_features(
unfiltered_df,
dk.training_features_list,
dk.label_list,
training_filter=True,
)
# split data into train/test data.
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
if not self.freqai_info.get("fit_live_predictions", 0) or not self.live:
dk.fit_labels()
# normalize all data based on train_dataset only
data_dictionary = dk.normalize_data(data_dictionary)
# optional additional data cleaning/analysis
self.data_cleaning_train(dk)
logger.info(
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
)
logger.info(f"Training model on {len(data_dictionary['train_features'])} data points")
model = self.fit(data_dictionary, dk)
end_time = time()
logger.info(f"-------------------- Done training {pair} "
f"({end_time - start_time:.2f} secs) --------------------")
return model
@property
@abstractmethod
def data_convertor(self) -> PyTorchDataConvertor:

View File

@@ -1,5 +1,6 @@
import logging
from typing import Tuple
from time import time
from typing import Any, Tuple
import numpy as np
import numpy.typing as npt
@@ -17,6 +18,7 @@ class BasePyTorchRegressor(BasePyTorchModel):
A PyTorch implementation of a regressor.
User must implement fit method
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
@@ -36,10 +38,11 @@ class BasePyTorchRegressor(BasePyTorchModel):
filtered_df, _ = dk.filter_features(
unfiltered_df, dk.training_features_list, training_filter=False
)
filtered_df = dk.normalize_data_from_metadata(filtered_df)
dk.data_dictionary["prediction_features"] = filtered_df
self.data_cleaning_predict(dk)
dk.data_dictionary["prediction_features"], outliers, _ = dk.feature_pipeline.transform(
dk.data_dictionary["prediction_features"], outlier_check=True)
x = self.data_convertor.convert_x(
dk.data_dictionary["prediction_features"],
device=self.device
@@ -47,5 +50,71 @@ class BasePyTorchRegressor(BasePyTorchModel):
self.model.model.eval()
y = self.model.model(x)
pred_df = DataFrame(y.detach().tolist(), columns=[dk.label_list[0]])
pred_df = dk.denormalize_labels_from_metadata(pred_df)
pred_df, _, _ = dk.label_pipeline.inverse_transform(pred_df)
if dk.feature_pipeline["di"]:
dk.DI_values = dk.feature_pipeline["di"].di_values
else:
dk.DI_values = np.zeros(outliers.shape[0])
dk.do_predict = outliers
return (pred_df, dk.do_predict)
def train(
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
) -> Any:
"""
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
for storing, saving, loading, and analyzing the data.
:param unfiltered_df: Full dataframe for the current training period
:return:
:model: Trained model which can be used to inference (self.predict)
"""
logger.info(f"-------------------- Starting training {pair} --------------------")
start_time = time()
features_filtered, labels_filtered = dk.filter_features(
unfiltered_df,
dk.training_features_list,
dk.label_list,
training_filter=True,
)
# split data into train/test data.
dd = dk.make_train_test_datasets(features_filtered, labels_filtered)
if not self.freqai_info.get("fit_live_predictions_candles", 0) or not self.live:
dk.fit_labels()
dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)
dk.label_pipeline = self.define_label_pipeline(threads=dk.thread_count)
dd["train_labels"], _, _ = dk.label_pipeline.fit_transform(dd["train_labels"])
dd["test_labels"], _, _ = dk.label_pipeline.transform(dd["test_labels"])
(dd["train_features"],
dd["train_labels"],
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
dd["train_labels"],
dd["train_weights"])
dd["train_labels"], _, _ = dk.label_pipeline.fit_transform(dd["train_labels"])
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
(dd["test_features"],
dd["test_labels"],
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
dd["test_labels"],
dd["test_weights"])
dd["test_labels"], _, _ = dk.label_pipeline.transform(dd["test_labels"])
logger.info(
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
)
logger.info(f"Training model on {len(dd['train_features'])} data points")
model = self.fit(dd, dk)
end_time = time()
logger.info(f"-------------------- Done training {pair} "
f"({end_time - start_time:.2f} secs) --------------------")
return model

View File

@@ -16,8 +16,8 @@ logger = logging.getLogger(__name__)
class BaseRegressionModel(IFreqaiModel):
"""
Base class for regression type models (e.g. Catboost, LightGBM, XGboost etc.).
User *must* inherit from this class and set fit() and predict(). See example scripts
such as prediction_models/CatboostPredictionModel.py for guidance.
User *must* inherit from this class and set fit(). See example scripts
such as prediction_models/CatboostRegressor.py for guidance.
"""
def train(
@@ -49,21 +49,33 @@ class BaseRegressionModel(IFreqaiModel):
logger.info(f"-------------------- Training on data from {start_date} to "
f"{end_date} --------------------")
# split data into train/test data.
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
dd = dk.make_train_test_datasets(features_filtered, labels_filtered)
if not self.freqai_info.get("fit_live_predictions_candles", 0) or not self.live:
dk.fit_labels()
# normalize all data based on train_dataset only
data_dictionary = dk.normalize_data(data_dictionary)
dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)
dk.label_pipeline = self.define_label_pipeline(threads=dk.thread_count)
# optional additional data cleaning/analysis
self.data_cleaning_train(dk)
(dd["train_features"],
dd["train_labels"],
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
dd["train_labels"],
dd["train_weights"])
dd["train_labels"], _, _ = dk.label_pipeline.fit_transform(dd["train_labels"])
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
(dd["test_features"],
dd["test_labels"],
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
dd["test_labels"],
dd["test_weights"])
dd["test_labels"], _, _ = dk.label_pipeline.transform(dd["test_labels"])
logger.info(
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
)
logger.info(f"Training model on {len(data_dictionary['train_features'])} data points")
logger.info(f"Training model on {len(dd['train_features'])} data points")
model = self.fit(data_dictionary, dk)
model = self.fit(dd, dk)
end_time = time()
@@ -85,14 +97,12 @@ class BaseRegressionModel(IFreqaiModel):
"""
dk.find_features(unfiltered_df)
filtered_df, _ = dk.filter_features(
dk.data_dictionary["prediction_features"], _ = dk.filter_features(
unfiltered_df, dk.training_features_list, training_filter=False
)
filtered_df = dk.normalize_data_from_metadata(filtered_df)
dk.data_dictionary["prediction_features"] = filtered_df
# optional additional data cleaning/analysis
self.data_cleaning_predict(dk)
dk.data_dictionary["prediction_features"], outliers, _ = dk.feature_pipeline.transform(
dk.data_dictionary["prediction_features"], outlier_check=True)
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
if self.CONV_WIDTH == 1:
@@ -100,6 +110,11 @@ class BaseRegressionModel(IFreqaiModel):
pred_df = DataFrame(predictions, columns=dk.label_list)
pred_df = dk.denormalize_labels_from_metadata(pred_df)
pred_df, _, _ = dk.label_pipeline.inverse_transform(pred_df)
if dk.feature_pipeline["di"]:
dk.DI_values = dk.feature_pipeline["di"].di_values
else:
dk.DI_values = np.zeros(outliers.shape[0])
dk.do_predict = outliers
return (pred_df, dk.do_predict)

View File

@@ -1,70 +0,0 @@
import logging
from time import time
from typing import Any
from pandas import DataFrame
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.freqai_interface import IFreqaiModel
logger = logging.getLogger(__name__)
class BaseTensorFlowModel(IFreqaiModel):
"""
Base class for TensorFlow type models.
User *must* inherit from this class and set fit() and predict().
"""
def train(
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
) -> Any:
"""
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
for storing, saving, loading, and analyzing the data.
:param unfiltered_df: Full dataframe for the current training period
:param metadata: pair metadata from strategy.
:return:
:model: Trained model which can be used to inference (self.predict)
"""
logger.info(f"-------------------- Starting training {pair} --------------------")
start_time = time()
# filter the features requested by user in the configuration file and elegantly handle NaNs
features_filtered, labels_filtered = dk.filter_features(
unfiltered_df,
dk.training_features_list,
dk.label_list,
training_filter=True,
)
start_date = unfiltered_df["date"].iloc[0].strftime("%Y-%m-%d")
end_date = unfiltered_df["date"].iloc[-1].strftime("%Y-%m-%d")
logger.info(f"-------------------- Training on data from {start_date} to "
f"{end_date} --------------------")
# split data into train/test data.
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
if not self.freqai_info.get("fit_live_predictions_candles", 0) or not self.live:
dk.fit_labels()
# normalize all data based on train_dataset only
data_dictionary = dk.normalize_data(data_dictionary)
# optional additional data cleaning/analysis
self.data_cleaning_train(dk)
logger.info(
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
)
logger.info(f"Training model on {len(data_dictionary['train_features'])} data points")
model = self.fit(data_dictionary, dk)
end_time = time()
logger.info(f"-------------------- Done training {pair} "
f"({end_time - start_time:.2f} secs) --------------------")
return model

View File

@@ -20,6 +20,7 @@ from pandas import DataFrame
from freqtrade.configuration import TimeRange
from freqtrade.constants import Config
from freqtrade.data.history import load_pair_history
from freqtrade.enums import CandleType
from freqtrade.exceptions import OperationalException
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.strategy.interface import IStrategy
@@ -27,6 +28,11 @@ from freqtrade.strategy.interface import IStrategy
logger = logging.getLogger(__name__)
FEATURE_PIPELINE = "feature_pipeline"
LABEL_PIPELINE = "label_pipeline"
TRAINDF = "trained_df"
METADATA = "metadata"
class pair_info(TypedDict):
model_filename: str
@@ -424,7 +430,7 @@ class FreqaiDataDrawer:
dk.data["training_features_list"] = list(dk.data_dictionary["train_features"].columns)
dk.data["label_list"] = dk.label_list
with (save_path / f"{dk.model_filename}_metadata.json").open("w") as fp:
with (save_path / f"{dk.model_filename}_{METADATA}.json").open("w") as fp:
rapidjson.dump(dk.data, fp, default=self.np_encoder, number_mode=rapidjson.NM_NATIVE)
return
@@ -449,39 +455,39 @@ class FreqaiDataDrawer:
elif self.model_type in ["stable_baselines3", "sb3_contrib", "pytorch"]:
model.save(save_path / f"{dk.model_filename}_model.zip")
if dk.svm_model is not None:
dump(dk.svm_model, save_path / f"{dk.model_filename}_svm_model.joblib")
dk.data["data_path"] = str(dk.data_path)
dk.data["model_filename"] = str(dk.model_filename)
dk.data["training_features_list"] = dk.training_features_list
dk.data["label_list"] = dk.label_list
# store the metadata
with (save_path / f"{dk.model_filename}_metadata.json").open("w") as fp:
with (save_path / f"{dk.model_filename}_{METADATA}.json").open("w") as fp:
rapidjson.dump(dk.data, fp, default=self.np_encoder, number_mode=rapidjson.NM_NATIVE)
# save the train data to file so we can check preds for area of applicability later
# save the pipelines to pickle files
with (save_path / f"{dk.model_filename}_{FEATURE_PIPELINE}.pkl").open("wb") as fp:
cloudpickle.dump(dk.feature_pipeline, fp)
with (save_path / f"{dk.model_filename}_{LABEL_PIPELINE}.pkl").open("wb") as fp:
cloudpickle.dump(dk.label_pipeline, fp)
# save the train data to file for post processing if desired
dk.data_dictionary["train_features"].to_pickle(
save_path / f"{dk.model_filename}_trained_df.pkl"
save_path / f"{dk.model_filename}_{TRAINDF}.pkl"
)
dk.data_dictionary["train_dates"].to_pickle(
save_path / f"{dk.model_filename}_trained_dates_df.pkl"
)
if self.freqai_info["feature_parameters"].get("principal_component_analysis"):
cloudpickle.dump(
dk.pca, (dk.data_path / f"{dk.model_filename}_pca_object.pkl").open("wb")
)
self.model_dictionary[coin] = model
self.pair_dict[coin]["model_filename"] = dk.model_filename
self.pair_dict[coin]["data_path"] = str(dk.data_path)
if coin not in self.meta_data_dictionary:
self.meta_data_dictionary[coin] = {}
self.meta_data_dictionary[coin]["train_df"] = dk.data_dictionary["train_features"]
self.meta_data_dictionary[coin]["meta_data"] = dk.data
self.meta_data_dictionary[coin][METADATA] = dk.data
self.meta_data_dictionary[coin][FEATURE_PIPELINE] = dk.feature_pipeline
self.meta_data_dictionary[coin][LABEL_PIPELINE] = dk.label_pipeline
self.save_drawer_to_disk()
return
@@ -491,7 +497,7 @@ class FreqaiDataDrawer:
Load only metadata into datakitchen to increase performance during
presaved backtesting (prediction file loading).
"""
with (dk.data_path / f"{dk.model_filename}_metadata.json").open("r") as fp:
with (dk.data_path / f"{dk.model_filename}_{METADATA}.json").open("r") as fp:
dk.data = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
dk.training_features_list = dk.data["training_features_list"]
dk.label_list = dk.data["label_list"]
@@ -511,15 +517,17 @@ class FreqaiDataDrawer:
dk.data_path = Path(self.pair_dict[coin]["data_path"])
if coin in self.meta_data_dictionary:
dk.data = self.meta_data_dictionary[coin]["meta_data"]
dk.data_dictionary["train_features"] = self.meta_data_dictionary[coin]["train_df"]
dk.data = self.meta_data_dictionary[coin][METADATA]
dk.feature_pipeline = self.meta_data_dictionary[coin][FEATURE_PIPELINE]
dk.label_pipeline = self.meta_data_dictionary[coin][LABEL_PIPELINE]
else:
with (dk.data_path / f"{dk.model_filename}_metadata.json").open("r") as fp:
with (dk.data_path / f"{dk.model_filename}_{METADATA}.json").open("r") as fp:
dk.data = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
dk.data_dictionary["train_features"] = pd.read_pickle(
dk.data_path / f"{dk.model_filename}_trained_df.pkl"
)
with (dk.data_path / f"{dk.model_filename}_{FEATURE_PIPELINE}.pkl").open("rb") as fp:
dk.feature_pipeline = cloudpickle.load(fp)
with (dk.data_path / f"{dk.model_filename}_{LABEL_PIPELINE}.pkl").open("rb") as fp:
dk.label_pipeline = cloudpickle.load(fp)
dk.training_features_list = dk.data["training_features_list"]
dk.label_list = dk.data["label_list"]
@@ -529,9 +537,6 @@ class FreqaiDataDrawer:
model = self.model_dictionary[coin]
elif self.model_type == 'joblib':
model = load(dk.data_path / f"{dk.model_filename}_model.joblib")
elif self.model_type == 'keras':
from tensorflow import keras
model = keras.models.load_model(dk.data_path / f"{dk.model_filename}_model.h5")
elif 'stable_baselines' in self.model_type or 'sb3_contrib' == self.model_type:
mod = importlib.import_module(
self.model_type, self.freqai_info['rl_config']['model_type'])
@@ -543,9 +548,6 @@ class FreqaiDataDrawer:
model = zip["pytrainer"]
model = model.load_from_checkpoint(zip)
if Path(dk.data_path / f"{dk.model_filename}_svm_model.joblib").is_file():
dk.svm_model = load(dk.data_path / f"{dk.model_filename}_svm_model.joblib")
if not model:
raise OperationalException(
f"Unable to load model, ensure model exists at " f"{dk.data_path} "
@@ -555,11 +557,6 @@ class FreqaiDataDrawer:
if coin not in self.model_dictionary:
self.model_dictionary[coin] = model
if self.config["freqai"]["feature_parameters"]["principal_component_analysis"]:
dk.pca = cloudpickle.load(
(dk.data_path / f"{dk.model_filename}_pca_object.pkl").open("rb")
)
return model
def update_historic_data(self, strategy: IStrategy, dk: FreqaiDataKitchen) -> None:
@@ -639,7 +636,7 @@ class FreqaiDataDrawer:
pair=pair,
timerange=timerange,
data_format=self.config.get("dataformat_ohlcv", "json"),
candle_type=self.config.get("trading_mode", "spot"),
candle_type=self.config.get("candle_type_def", CandleType.SPOT),
)
def get_base_and_corr_dataframes(

View File

@@ -4,7 +4,6 @@ import logging
import random
import shutil
from datetime import datetime, timezone
from math import cos, sin
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple
@@ -12,16 +11,12 @@ import numpy as np
import numpy.typing as npt
import pandas as pd
import psutil
from datasieve.pipeline import Pipeline
from pandas import DataFrame
from scipy import stats
from sklearn import linear_model
from sklearn.cluster import DBSCAN
from sklearn.metrics.pairwise import pairwise_distances
from sklearn.model_selection import train_test_split
from sklearn.neighbors import NearestNeighbors
from freqtrade.configuration import TimeRange
from freqtrade.constants import Config
from freqtrade.constants import DOCS_LINK, Config
from freqtrade.data.converter import reduce_dataframe_footprint
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_seconds
@@ -81,11 +76,12 @@ class FreqaiDataKitchen:
self.backtest_predictions_folder: str = "backtesting_predictions"
self.live = live
self.pair = pair
self.svm_model: linear_model.SGDOneClassSVM = None
self.keras: bool = self.freqai_config.get("keras", False)
self.set_all_pairs()
self.backtest_live_models = config.get("freqai_backtest_live_models", False)
self.feature_pipeline = Pipeline()
self.label_pipeline = Pipeline()
self.DI_values: npt.NDArray = np.array([])
if not self.live:
self.full_path = self.get_full_models_path(self.config)
@@ -227,13 +223,7 @@ class FreqaiDataKitchen:
drop_index = pd.isnull(filtered_df).any(axis=1) # get the rows that have NaNs,
drop_index = drop_index.replace(True, 1).replace(False, 0) # pep8 requirement.
if (training_filter):
const_cols = list((filtered_df.nunique() == 1).loc[lambda x: x].index)
if const_cols:
filtered_df = filtered_df.filter(filtered_df.columns.difference(const_cols))
self.data['constant_features_list'] = const_cols
logger.warning(f"Removed features {const_cols} with constant values.")
else:
self.data['constant_features_list'] = []
# we don't care about total row number (total no. datapoints) in training, we only care
# about removing any row with NaNs
# if labels has multiple columns (user wants to train multiple modelEs), we detect here
@@ -264,8 +254,7 @@ class FreqaiDataKitchen:
self.data["filter_drop_index_training"] = drop_index
else:
if 'constant_features_list' in self.data and len(self.data['constant_features_list']):
filtered_df = self.check_pred_labels(filtered_df)
# we are backtesting so we need to preserve row number to send back to strategy,
# so now we use do_predict to avoid any prediction based on a NaN
drop_index = pd.isnull(filtered_df).any(axis=1)
@@ -307,107 +296,6 @@ class FreqaiDataKitchen:
return self.data_dictionary
def normalize_data(self, data_dictionary: Dict) -> Dict[Any, Any]:
"""
Normalize all data in the data_dictionary according to the training dataset
:param data_dictionary: dictionary containing the cleaned and
split training/test data/labels
:returns:
:data_dictionary: updated dictionary with standardized values.
"""
# standardize the data by training stats
train_max = data_dictionary["train_features"].max()
train_min = data_dictionary["train_features"].min()
data_dictionary["train_features"] = (
2 * (data_dictionary["train_features"] - train_min) / (train_max - train_min) - 1
)
data_dictionary["test_features"] = (
2 * (data_dictionary["test_features"] - train_min) / (train_max - train_min) - 1
)
for item in train_max.keys():
self.data[item + "_max"] = train_max[item]
self.data[item + "_min"] = train_min[item]
for item in data_dictionary["train_labels"].keys():
if data_dictionary["train_labels"][item].dtype == object:
continue
train_labels_max = data_dictionary["train_labels"][item].max()
train_labels_min = data_dictionary["train_labels"][item].min()
data_dictionary["train_labels"][item] = (
2
* (data_dictionary["train_labels"][item] - train_labels_min)
/ (train_labels_max - train_labels_min)
- 1
)
if self.freqai_config.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
data_dictionary["test_labels"][item] = (
2
* (data_dictionary["test_labels"][item] - train_labels_min)
/ (train_labels_max - train_labels_min)
- 1
)
self.data[f"{item}_max"] = train_labels_max
self.data[f"{item}_min"] = train_labels_min
return data_dictionary
def normalize_single_dataframe(self, df: DataFrame) -> DataFrame:
train_max = df.max()
train_min = df.min()
df = (
2 * (df - train_min) / (train_max - train_min) - 1
)
for item in train_max.keys():
self.data[item + "_max"] = train_max[item]
self.data[item + "_min"] = train_min[item]
return df
def normalize_data_from_metadata(self, df: DataFrame) -> DataFrame:
"""
Normalize a set of data using the mean and standard deviation from
the associated training data.
:param df: Dataframe to be standardized
"""
train_max = [None] * len(df.keys())
train_min = [None] * len(df.keys())
for i, item in enumerate(df.keys()):
train_max[i] = self.data[f"{item}_max"]
train_min[i] = self.data[f"{item}_min"]
train_max_series = pd.Series(train_max, index=df.keys())
train_min_series = pd.Series(train_min, index=df.keys())
df = (
2 * (df - train_min_series) / (train_max_series - train_min_series) - 1
)
return df
def denormalize_labels_from_metadata(self, df: DataFrame) -> DataFrame:
"""
Denormalize a set of data using the mean and standard deviation from
the associated training data.
:param df: Dataframe of predictions to be denormalized
"""
for label in df.columns:
if df[label].dtype == object or label in self.unique_class_list:
continue
df[label] = (
(df[label] + 1)
* (self.data[f"{label}_max"] - self.data[f"{label}_min"])
/ 2
) + self.data[f"{label}_min"]
return df
def split_timerange(
self, tr: str, train_split: int = 28, bt_split: float = 7
) -> Tuple[list, list]:
@@ -452,9 +340,7 @@ class FreqaiDataKitchen:
tr_training_list_timerange.append(copy.deepcopy(timerange_train))
# associated backtest period
timerange_backtest.startts = timerange_train.stopts
timerange_backtest.stopts = timerange_backtest.startts + int(bt_period)
if timerange_backtest.stopts > config_timerange.stopts:
@@ -485,426 +371,6 @@ class FreqaiDataKitchen:
return df
def check_pred_labels(self, df_predictions: DataFrame) -> DataFrame:
"""
Check that prediction feature labels match training feature labels.
:param df_predictions: incoming predictions
"""
constant_labels = self.data['constant_features_list']
df_predictions = df_predictions.filter(
df_predictions.columns.difference(constant_labels)
)
logger.warning(
f"Removed {len(constant_labels)} features from prediction features, "
f"these were considered constant values during most recent training."
)
return df_predictions
def principal_component_analysis(self) -> None:
"""
Performs Principal Component Analysis on the data for dimensionality reduction
and outlier detection (see self.remove_outliers())
No parameters or returns, it acts on the data_dictionary held by the DataHandler.
"""
from sklearn.decomposition import PCA # avoid importing if we dont need it
pca = PCA(0.999)
pca = pca.fit(self.data_dictionary["train_features"])
n_keep_components = pca.n_components_
self.data["n_kept_components"] = n_keep_components
n_components = self.data_dictionary["train_features"].shape[1]
logger.info("reduced feature dimension by %s", n_components - n_keep_components)
logger.info("explained variance %f", np.sum(pca.explained_variance_ratio_))
train_components = pca.transform(self.data_dictionary["train_features"])
self.data_dictionary["train_features"] = pd.DataFrame(
data=train_components,
columns=["PC" + str(i) for i in range(0, n_keep_components)],
index=self.data_dictionary["train_features"].index,
)
# normalsing transformed training features
self.data_dictionary["train_features"] = self.normalize_single_dataframe(
self.data_dictionary["train_features"])
# keeping a copy of the non-transformed features so we can check for errors during
# model load from disk
self.data["training_features_list_raw"] = copy.deepcopy(self.training_features_list)
self.training_features_list = self.data_dictionary["train_features"].columns
if self.freqai_config.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
test_components = pca.transform(self.data_dictionary["test_features"])
self.data_dictionary["test_features"] = pd.DataFrame(
data=test_components,
columns=["PC" + str(i) for i in range(0, n_keep_components)],
index=self.data_dictionary["test_features"].index,
)
# normalise transformed test feature to transformed training features
self.data_dictionary["test_features"] = self.normalize_data_from_metadata(
self.data_dictionary["test_features"])
self.data["n_kept_components"] = n_keep_components
self.pca = pca
logger.info(f"PCA reduced total features from {n_components} to {n_keep_components}")
if not self.data_path.is_dir():
self.data_path.mkdir(parents=True, exist_ok=True)
return None
def pca_transform(self, filtered_dataframe: DataFrame) -> None:
"""
Use an existing pca transform to transform data into components
:param filtered_dataframe: DataFrame = the cleaned dataframe
"""
pca_components = self.pca.transform(filtered_dataframe)
self.data_dictionary["prediction_features"] = pd.DataFrame(
data=pca_components,
columns=["PC" + str(i) for i in range(0, self.data["n_kept_components"])],
index=filtered_dataframe.index,
)
# normalise transformed predictions to transformed training features
self.data_dictionary["prediction_features"] = self.normalize_data_from_metadata(
self.data_dictionary["prediction_features"])
def compute_distances(self) -> float:
"""
Compute distances between each training point and every other training
point. This metric defines the neighborhood of trained data and is used
for prediction confidence in the Dissimilarity Index
"""
# logger.info("computing average mean distance for all training points")
pairwise = pairwise_distances(
self.data_dictionary["train_features"], n_jobs=self.thread_count)
# remove the diagonal distances which are itself distances ~0
np.fill_diagonal(pairwise, np.NaN)
pairwise = pairwise.reshape(-1, 1)
avg_mean_dist = pairwise[~np.isnan(pairwise)].mean()
return avg_mean_dist
def get_outlier_percentage(self, dropped_pts: npt.NDArray) -> float:
"""
Check if more than X% of points werer dropped during outlier detection.
"""
outlier_protection_pct = self.freqai_config["feature_parameters"].get(
"outlier_protection_percentage", 30)
outlier_pct = (dropped_pts.sum() / len(dropped_pts)) * 100
if outlier_pct >= outlier_protection_pct:
return outlier_pct
else:
return 0.0
def use_SVM_to_remove_outliers(self, predict: bool) -> None:
"""
Build/inference a Support Vector Machine to detect outliers
in training data and prediction
:param predict: bool = If true, inference an existing SVM model, else construct one
"""
if self.keras:
logger.warning(
"SVM outlier removal not currently supported for Keras based models. "
"Skipping user requested function."
)
if predict:
self.do_predict = np.ones(len(self.data_dictionary["prediction_features"]))
return
if predict:
if not self.svm_model:
logger.warning("No svm model available for outlier removal")
return
y_pred = self.svm_model.predict(self.data_dictionary["prediction_features"])
do_predict = np.where(y_pred == -1, 0, y_pred)
if (len(do_predict) - do_predict.sum()) > 0:
logger.info(f"SVM tossed {len(do_predict) - do_predict.sum()} predictions.")
self.do_predict += do_predict
self.do_predict -= 1
else:
# use SGDOneClassSVM to increase speed?
svm_params = self.freqai_config["feature_parameters"].get(
"svm_params", {"shuffle": False, "nu": 0.1})
self.svm_model = linear_model.SGDOneClassSVM(**svm_params).fit(
self.data_dictionary["train_features"]
)
y_pred = self.svm_model.predict(self.data_dictionary["train_features"])
kept_points = np.where(y_pred == -1, 0, y_pred)
# keep_index = np.where(y_pred == 1)
outlier_pct = self.get_outlier_percentage(1 - kept_points)
if outlier_pct:
logger.warning(
f"SVM detected {outlier_pct:.2f}% of the points as outliers. "
f"Keeping original dataset."
)
self.svm_model = None
return
self.data_dictionary["train_features"] = self.data_dictionary["train_features"][
(y_pred == 1)
]
self.data_dictionary["train_labels"] = self.data_dictionary["train_labels"][
(y_pred == 1)
]
self.data_dictionary["train_weights"] = self.data_dictionary["train_weights"][
(y_pred == 1)
]
logger.info(
f"SVM tossed {len(y_pred) - kept_points.sum()}"
f" train points from {len(y_pred)} total points."
)
# same for test data
# TODO: This (and the part above) could be refactored into a separate function
# to reduce code duplication
if self.freqai_config['data_split_parameters'].get('test_size', 0.1) != 0:
y_pred = self.svm_model.predict(self.data_dictionary["test_features"])
kept_points = np.where(y_pred == -1, 0, y_pred)
self.data_dictionary["test_features"] = self.data_dictionary["test_features"][
(y_pred == 1)
]
self.data_dictionary["test_labels"] = self.data_dictionary["test_labels"][(
y_pred == 1)]
self.data_dictionary["test_weights"] = self.data_dictionary["test_weights"][
(y_pred == 1)
]
logger.info(
f"{self.pair}: SVM tossed {len(y_pred) - kept_points.sum()}"
f" test points from {len(y_pred)} total points."
)
return
def use_DBSCAN_to_remove_outliers(self, predict: bool, eps=None) -> None:
"""
Use DBSCAN to cluster training data and remove "noisy" data (read outliers).
User controls this via the config param `DBSCAN_outlier_pct` which indicates the
pct of training data that they want to be considered outliers.
:param predict: bool = If False (training), iterate to find the best hyper parameters
to match user requested outlier percent target.
If True (prediction), use the parameters determined from
the previous training to estimate if the current prediction point
is an outlier.
"""
if predict:
if not self.data['DBSCAN_eps']:
return
train_ft_df = self.data_dictionary['train_features']
pred_ft_df = self.data_dictionary['prediction_features']
num_preds = len(pred_ft_df)
df = pd.concat([train_ft_df, pred_ft_df], axis=0, ignore_index=True)
clustering = DBSCAN(eps=self.data['DBSCAN_eps'],
min_samples=self.data['DBSCAN_min_samples'],
n_jobs=self.thread_count
).fit(df)
do_predict = np.where(clustering.labels_[-num_preds:] == -1, 0, 1)
if (len(do_predict) - do_predict.sum()) > 0:
logger.info(f"DBSCAN tossed {len(do_predict) - do_predict.sum()} predictions")
self.do_predict += do_predict
self.do_predict -= 1
else:
def normalise_distances(distances):
normalised_distances = (distances - distances.min()) / \
(distances.max() - distances.min())
return normalised_distances
def rotate_point(origin, point, angle):
# rotate a point counterclockwise by a given angle (in radians)
# around a given origin
x = origin[0] + cos(angle) * (point[0] - origin[0]) - \
sin(angle) * (point[1] - origin[1])
y = origin[1] + sin(angle) * (point[0] - origin[0]) + \
cos(angle) * (point[1] - origin[1])
return (x, y)
MinPts = int(len(self.data_dictionary['train_features'].index) * 0.25)
# measure pairwise distances to nearest neighbours
neighbors = NearestNeighbors(
n_neighbors=MinPts, n_jobs=self.thread_count)
neighbors_fit = neighbors.fit(self.data_dictionary['train_features'])
distances, _ = neighbors_fit.kneighbors(self.data_dictionary['train_features'])
distances = np.sort(distances, axis=0).mean(axis=1)
normalised_distances = normalise_distances(distances)
x_range = np.linspace(0, 1, len(distances))
line = np.linspace(normalised_distances[0],
normalised_distances[-1], len(normalised_distances))
deflection = np.abs(normalised_distances - line)
max_deflection_loc = np.where(deflection == deflection.max())[0][0]
origin = x_range[max_deflection_loc], line[max_deflection_loc]
point = x_range[max_deflection_loc], normalised_distances[max_deflection_loc]
rot_angle = np.pi / 4
elbow_loc = rotate_point(origin, point, rot_angle)
epsilon = elbow_loc[1] * (distances[-1] - distances[0]) + distances[0]
clustering = DBSCAN(eps=epsilon, min_samples=MinPts,
n_jobs=int(self.thread_count)).fit(
self.data_dictionary['train_features']
)
logger.info(f'DBSCAN found eps of {epsilon:.2f}.')
self.data['DBSCAN_eps'] = epsilon
self.data['DBSCAN_min_samples'] = MinPts
dropped_points = np.where(clustering.labels_ == -1, 1, 0)
outlier_pct = self.get_outlier_percentage(dropped_points)
if outlier_pct:
logger.warning(
f"DBSCAN detected {outlier_pct:.2f}% of the points as outliers. "
f"Keeping original dataset."
)
self.data['DBSCAN_eps'] = 0
return
self.data_dictionary['train_features'] = self.data_dictionary['train_features'][
(clustering.labels_ != -1)
]
self.data_dictionary["train_labels"] = self.data_dictionary["train_labels"][
(clustering.labels_ != -1)
]
self.data_dictionary["train_weights"] = self.data_dictionary["train_weights"][
(clustering.labels_ != -1)
]
logger.info(
f"DBSCAN tossed {dropped_points.sum()}"
f" train points from {len(clustering.labels_)}"
)
return
def compute_inlier_metric(self, set_='train') -> None:
"""
Compute inlier metric from backwards distance distributions.
This metric defines how well features from a timepoint fit
into previous timepoints.
"""
def normalise(dataframe: DataFrame, key: str) -> DataFrame:
if set_ == 'train':
min_value = dataframe.min()
max_value = dataframe.max()
self.data[f'{key}_min'] = min_value
self.data[f'{key}_max'] = max_value
else:
min_value = self.data[f'{key}_min']
max_value = self.data[f'{key}_max']
return (dataframe - min_value) / (max_value - min_value)
no_prev_pts = self.freqai_config["feature_parameters"]["inlier_metric_window"]
if set_ == 'train':
compute_df = copy.deepcopy(self.data_dictionary['train_features'])
elif set_ == 'test':
compute_df = copy.deepcopy(self.data_dictionary['test_features'])
else:
compute_df = copy.deepcopy(self.data_dictionary['prediction_features'])
compute_df_reindexed = compute_df.reindex(
index=np.flip(compute_df.index)
)
pairwise = pd.DataFrame(
np.triu(
pairwise_distances(compute_df_reindexed, n_jobs=self.thread_count)
),
columns=compute_df_reindexed.index,
index=compute_df_reindexed.index
)
pairwise = pairwise.round(5)
column_labels = [
'{}{}'.format('d', i) for i in range(1, no_prev_pts + 1)
]
distances = pd.DataFrame(
columns=column_labels, index=compute_df.index
)
for index in compute_df.index[no_prev_pts:]:
current_row = pairwise.loc[[index]]
current_row_no_zeros = current_row.loc[
:, (current_row != 0).any(axis=0)
]
distances.loc[[index]] = current_row_no_zeros.iloc[
:, :no_prev_pts
]
distances = distances.replace([np.inf, -np.inf], np.nan)
drop_index = pd.isnull(distances).any(axis=1)
distances = distances[drop_index == 0]
inliers = pd.DataFrame(index=distances.index)
for key in distances.keys():
current_distances = distances[key].dropna()
current_distances = normalise(current_distances, key)
if set_ == 'train':
fit_params = stats.weibull_min.fit(current_distances)
self.data[f'{key}_fit_params'] = fit_params
else:
fit_params = self.data[f'{key}_fit_params']
quantiles = stats.weibull_min.cdf(current_distances, *fit_params)
df_inlier = pd.DataFrame(
{key: quantiles}, index=distances.index
)
inliers = pd.concat(
[inliers, df_inlier], axis=1
)
inlier_metric = pd.DataFrame(
data=inliers.sum(axis=1) / no_prev_pts,
columns=['%-inlier_metric'],
index=compute_df.index
)
inlier_metric = (2 * (inlier_metric - inlier_metric.min()) /
(inlier_metric.max() - inlier_metric.min()) - 1)
if set_ in ('train', 'test'):
inlier_metric = inlier_metric.iloc[no_prev_pts:]
compute_df = compute_df.iloc[no_prev_pts:]
self.remove_beginning_points_from_data_dict(set_, no_prev_pts)
self.data_dictionary[f'{set_}_features'] = pd.concat(
[compute_df, inlier_metric], axis=1)
else:
self.data_dictionary['prediction_features'] = pd.concat(
[compute_df, inlier_metric], axis=1)
self.data_dictionary['prediction_features'].fillna(0, inplace=True)
logger.info('Inlier metric computed and added to features.')
return None
def remove_beginning_points_from_data_dict(self, set_='train', no_prev_pts: int = 10):
features = self.data_dictionary[f'{set_}_features']
weights = self.data_dictionary[f'{set_}_weights']
labels = self.data_dictionary[f'{set_}_labels']
self.data_dictionary[f'{set_}_weights'] = weights[no_prev_pts:]
self.data_dictionary[f'{set_}_features'] = features.iloc[no_prev_pts:]
self.data_dictionary[f'{set_}_labels'] = labels.iloc[no_prev_pts:]
def add_noise_to_training_features(self) -> None:
"""
Add noise to train features to reduce the risk of overfitting.
"""
mu = 0 # no shift
sigma = self.freqai_config["feature_parameters"]["noise_standard_deviation"]
compute_df = self.data_dictionary['train_features']
noise = np.random.normal(mu, sigma, [compute_df.shape[0], compute_df.shape[1]])
self.data_dictionary['train_features'] += noise
return
def find_features(self, dataframe: DataFrame) -> None:
"""
Find features in the strategy provided dataframe
@@ -925,37 +391,6 @@ class FreqaiDataKitchen:
labels = [c for c in column_names if "&" in c]
self.label_list = labels
def check_if_pred_in_training_spaces(self) -> None:
"""
Compares the distance from each prediction point to each training data
point. It uses this information to estimate a Dissimilarity Index (DI)
and avoid making predictions on any points that are too far away
from the training data set.
"""
distance = pairwise_distances(
self.data_dictionary["train_features"],
self.data_dictionary["prediction_features"],
n_jobs=self.thread_count,
)
self.DI_values = distance.min(axis=0) / self.data["avg_mean_dist"]
do_predict = np.where(
self.DI_values < self.freqai_config["feature_parameters"]["DI_threshold"],
1,
0,
)
if (len(do_predict) - do_predict.sum()) > 0:
logger.info(
f"{self.pair}: DI tossed {len(do_predict) - do_predict.sum()} predictions for "
"being too far from training data."
)
self.do_predict += do_predict
self.do_predict -= 1
def set_weights_higher_recent(self, num_weights: int) -> npt.ArrayLike:
"""
Set weights so that recent data is more heavily weighted during
@@ -1325,9 +760,9 @@ class FreqaiDataKitchen:
" which was deprecated on March 1, 2023. Please refer "
"to the strategy migration guide to use the new "
"feature_engineering_* methods: \n"
"https://www.freqtrade.io/en/stable/strategy_migration/#freqai-strategy \n"
f"{DOCS_LINK}/strategy_migration/#freqai-strategy \n"
"And the feature_engineering_* documentation: \n"
"https://www.freqtrade.io/en/latest/freqai-feature-engineering/"
f"{DOCS_LINK}/freqai-feature-engineering/"
)
tfs: List[str] = self.freqai_config["feature_parameters"].get("include_timeframes")
@@ -1515,3 +950,32 @@ class FreqaiDataKitchen:
timerange.startts += buffer * timeframe_to_seconds(self.config["timeframe"])
return timerange
# deprecated functions
def normalize_data(self, data_dictionary: Dict) -> Dict[Any, Any]:
"""
Deprecation warning, migration assistance
"""
logger.warning(f"Your custom IFreqaiModel relies on the deprecated"
" data pipeline. Please update your model to use the new data pipeline."
" This can be achieved by following the migration guide at "
f"{DOCS_LINK}/strategy_migration/#freqai-new-data-pipeline "
"We added a basic pipeline for you, but this will be removed "
"in a future version.")
return data_dictionary
def denormalize_labels_from_metadata(self, df: DataFrame) -> DataFrame:
"""
Deprecation warning, migration assistance
"""
logger.warning(f"Your custom IFreqaiModel relies on the deprecated"
" data pipeline. Please update your model to use the new data pipeline."
" This can be achieved by following the migration guide at "
f"{DOCS_LINK}/strategy_migration/#freqai-new-data-pipeline "
"We added a basic pipeline for you, but this will be removed "
"in a future version.")
pred_df, _, _ = self.label_pipeline.inverse_transform(df)
return pred_df

View File

@@ -7,14 +7,18 @@ from datetime import datetime, timezone
from pathlib import Path
from typing import Any, Dict, List, Literal, Optional, Tuple
import datasieve.transforms as ds
import numpy as np
import pandas as pd
import psutil
from datasieve.pipeline import Pipeline
from datasieve.transforms import SKLearnWrapper
from numpy.typing import NDArray
from pandas import DataFrame
from sklearn.preprocessing import MinMaxScaler
from freqtrade.configuration import TimeRange
from freqtrade.constants import Config
from freqtrade.constants import DOCS_LINK, Config
from freqtrade.data.dataprovider import DataProvider
from freqtrade.enums import RunMode
from freqtrade.exceptions import OperationalException
@@ -82,8 +86,6 @@ class IFreqaiModel(ABC):
logger.warning("DI threshold is not configured for Keras models yet. Deactivating.")
self.CONV_WIDTH = self.freqai_info.get('conv_width', 1)
if self.ft_params.get("inlier_metric_window", 0):
self.CONV_WIDTH = self.ft_params.get("inlier_metric_window", 0) * 2
self.class_names: List[str] = [] # used in classification subclasses
self.pair_it = 0
self.pair_it_train = 0
@@ -503,68 +505,43 @@ class IFreqaiModel(ABC):
"feature_engineering_* functions"
)
def data_cleaning_train(self, dk: FreqaiDataKitchen) -> None:
"""
Base data cleaning method for train.
Functions here improve/modify the input data by identifying outliers,
computing additional metrics, adding noise, reducing dimensionality etc.
"""
def define_data_pipeline(self, threads=-1) -> Pipeline:
ft_params = self.freqai_info["feature_parameters"]
pipe_steps = [
('const', ds.VarianceThreshold(threshold=0)),
('scaler', SKLearnWrapper(MinMaxScaler(feature_range=(-1, 1))))
]
if ft_params.get('inlier_metric_window', 0):
dk.compute_inlier_metric(set_='train')
if self.freqai_info["data_split_parameters"]["test_size"] > 0:
dk.compute_inlier_metric(set_='test')
if ft_params.get(
"principal_component_analysis", False
):
dk.principal_component_analysis()
if ft_params.get("principal_component_analysis", False):
pipe_steps.append(('pca', ds.PCA(n_components=0.999)))
pipe_steps.append(('post-pca-scaler',
SKLearnWrapper(MinMaxScaler(feature_range=(-1, 1)))))
if ft_params.get("use_SVM_to_remove_outliers", False):
dk.use_SVM_to_remove_outliers(predict=False)
svm_params = ft_params.get(
"svm_params", {"shuffle": False, "nu": 0.01})
pipe_steps.append(('svm', ds.SVMOutlierExtractor(**svm_params)))
if ft_params.get("DI_threshold", 0):
dk.data["avg_mean_dist"] = dk.compute_distances()
di = ft_params.get("DI_threshold", 0)
if di:
pipe_steps.append(('di', ds.DissimilarityIndex(di_threshold=di, n_jobs=threads)))
if ft_params.get("use_DBSCAN_to_remove_outliers", False):
if dk.pair in self.dd.old_DBSCAN_eps:
eps = self.dd.old_DBSCAN_eps[dk.pair]
else:
eps = None
dk.use_DBSCAN_to_remove_outliers(predict=False, eps=eps)
self.dd.old_DBSCAN_eps[dk.pair] = dk.data['DBSCAN_eps']
pipe_steps.append(('dbscan', ds.DBSCAN(n_jobs=threads)))
if self.freqai_info["feature_parameters"].get('noise_standard_deviation', 0):
dk.add_noise_to_training_features()
sigma = self.freqai_info["feature_parameters"].get('noise_standard_deviation', 0)
if sigma:
pipe_steps.append(('noise', ds.Noise(sigma=sigma)))
def data_cleaning_predict(self, dk: FreqaiDataKitchen) -> None:
"""
Base data cleaning method for predict.
Functions here are complementary to the functions of data_cleaning_train.
"""
ft_params = self.freqai_info["feature_parameters"]
return Pipeline(pipe_steps)
# ensure user is feeding the correct indicators to the model
self.check_if_feature_list_matches_strategy(dk)
def define_label_pipeline(self, threads=-1) -> Pipeline:
if ft_params.get('inlier_metric_window', 0):
dk.compute_inlier_metric(set_='predict')
label_pipeline = Pipeline([
('scaler', SKLearnWrapper(MinMaxScaler(feature_range=(-1, 1))))
])
if ft_params.get(
"principal_component_analysis", False
):
dk.pca_transform(dk.data_dictionary['prediction_features'])
if ft_params.get("use_SVM_to_remove_outliers", False):
dk.use_SVM_to_remove_outliers(predict=True)
if ft_params.get("DI_threshold", 0):
dk.check_if_pred_in_training_spaces()
if ft_params.get("use_DBSCAN_to_remove_outliers", False):
dk.use_DBSCAN_to_remove_outliers(predict=True)
return label_pipeline
def model_exists(self, dk: FreqaiDataKitchen) -> bool:
"""
@@ -576,8 +553,6 @@ class IFreqaiModel(ABC):
"""
if self.dd.model_type == 'joblib':
file_type = ".joblib"
elif self.dd.model_type == 'keras':
file_type = ".h5"
elif self.dd.model_type in ["stable_baselines3", "sb3_contrib", "pytorch"]:
file_type = ".zip"
@@ -699,15 +674,6 @@ class IFreqaiModel(ABC):
hist_preds_df['close_price'] = strat_df['close']
hist_preds_df['date_pred'] = strat_df['date']
# # for keras type models, the conv_window needs to be prepended so
# # viewing is correct in frequi
if self.freqai_info.get('keras', False) or self.ft_params.get('inlier_metric_window', 0):
n_lost_points = self.freqai_info.get('conv_width', 2)
zeros_df = DataFrame(np.zeros((n_lost_points, len(hist_preds_df.columns))),
columns=hist_preds_df.columns)
self.dd.historic_predictions[pair] = pd.concat(
[zeros_df, hist_preds_df], axis=0, ignore_index=True)
def fit_live_predictions(self, dk: FreqaiDataKitchen, pair: str) -> None:
"""
Fit the labels with a gaussian distribution
@@ -991,3 +957,50 @@ class IFreqaiModel(ABC):
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
data (NaNs) or felt uncertain about data (i.e. SVM and/or DI index)
"""
# deprecated functions
def data_cleaning_train(self, dk: FreqaiDataKitchen, pair: str):
"""
throw deprecation warning if this function is called
"""
logger.warning(f"Your model {self.__class__.__name__} relies on the deprecated"
" data pipeline. Please update your model to use the new data pipeline."
" This can be achieved by following the migration guide at "
f"{DOCS_LINK}/strategy_migration/#freqai-new-data-pipeline")
dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)
dd = dk.data_dictionary
(dd["train_features"],
dd["train_labels"],
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
dd["train_labels"],
dd["train_weights"])
(dd["test_features"],
dd["test_labels"],
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
dd["test_labels"],
dd["test_weights"])
dk.label_pipeline = self.define_label_pipeline(threads=dk.thread_count)
dd["train_labels"], _, _ = dk.label_pipeline.fit_transform(dd["train_labels"])
dd["test_labels"], _, _ = dk.label_pipeline.transform(dd["test_labels"])
return
def data_cleaning_predict(self, dk: FreqaiDataKitchen, pair: str):
"""
throw deprecation warning if this function is called
"""
logger.warning(f"Your model {self.__class__.__name__} relies on the deprecated"
" data pipeline. Please update your model to use the new data pipeline."
" This can be achieved by following the migration guide at "
f"{DOCS_LINK}/strategy_migration/#freqai-new-data-pipeline")
dd = dk.data_dictionary
dd["predict_features"], outliers, _ = dk.feature_pipeline.transform(
dd["predict_features"], outlier_check=True)
if self.freqai_info.get("DI_threshold", 0) > 0:
dk.DI_values = dk.feature_pipeline["di"].di_values
else:
dk.DI_values = np.zeros(outliers.shape[0])
dk.do_predict = outliers
return

View File

@@ -32,8 +32,8 @@ class LightGBMClassifier(BaseClassifierModel):
eval_set = None
test_weights = None
else:
eval_set = (data_dictionary["test_features"].to_numpy(),
data_dictionary["test_labels"].to_numpy()[:, 0])
eval_set = [(data_dictionary["test_features"].to_numpy(),
data_dictionary["test_labels"].to_numpy()[:, 0])]
test_weights = data_dictionary["test_weights"]
X = data_dictionary["train_features"].to_numpy()
y = data_dictionary["train_labels"].to_numpy()[:, 0]
@@ -42,7 +42,6 @@ class LightGBMClassifier(BaseClassifierModel):
init_model = self.get_init_model(dk.pair)
model = LGBMClassifier(**self.model_training_parameters)
model.fit(X=X, y=y, eval_set=eval_set, sample_weight=train_weights,
eval_sample_weight=[test_weights], init_model=init_model)

View File

@@ -32,7 +32,7 @@ class LightGBMRegressor(BaseRegressionModel):
eval_set = None
eval_weights = None
else:
eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
eval_set = [(data_dictionary["test_features"], data_dictionary["test_labels"])]
eval_weights = data_dictionary["test_weights"]
X = data_dictionary["train_features"]
y = data_dictionary["train_labels"]

View File

@@ -42,10 +42,10 @@ class LightGBMRegressorMultiTarget(BaseRegressionModel):
eval_weights = [data_dictionary["test_weights"]]
eval_sets = [(None, None)] * data_dictionary['test_labels'].shape[1] # type: ignore
for i in range(data_dictionary['test_labels'].shape[1]):
eval_sets[i] = ( # type: ignore
eval_sets[i] = [( # type: ignore
data_dictionary["test_features"],
data_dictionary["test_labels"].iloc[:, i]
)
)]
init_model = self.get_init_model(dk.pair)
if init_model:

View File

@@ -103,13 +103,13 @@ class PyTorchTransformerRegressor(BasePyTorchRegressor):
"""
dk.find_features(unfiltered_df)
filtered_df, _ = dk.filter_features(
dk.data_dictionary["prediction_features"], _ = dk.filter_features(
unfiltered_df, dk.training_features_list, training_filter=False
)
filtered_df = dk.normalize_data_from_metadata(filtered_df)
dk.data_dictionary["prediction_features"] = filtered_df
self.data_cleaning_predict(dk)
dk.data_dictionary["prediction_features"], outliers, _ = dk.feature_pipeline.transform(
dk.data_dictionary["prediction_features"], outlier_check=True)
x = self.data_convertor.convert_x(
dk.data_dictionary["prediction_features"],
device=self.device
@@ -131,7 +131,13 @@ class PyTorchTransformerRegressor(BasePyTorchRegressor):
yb = yb.cpu().squeeze()
pred_df = pd.DataFrame(yb.detach().numpy(), columns=dk.label_list)
pred_df = dk.denormalize_labels_from_metadata(pred_df)
pred_df, _, _ = dk.label_pipeline.inverse_transform(pred_df)
if self.freqai_info.get("DI_threshold", 0) > 0:
dk.DI_values = dk.feature_pipeline["di"].di_values
else:
dk.DI_values = np.zeros(outliers.shape[0])
dk.do_predict = outliers
if x.shape[1] > 1:
zeros_df = pd.DataFrame(np.zeros((x.shape[1] - len(pred_df), len(pred_df.columns))),

View File

@@ -2,7 +2,8 @@ import logging
from typing import Any, Dict
from pandas import DataFrame
from stable_baselines3.common.callbacks import EvalCallback
from sb3_contrib.common.maskable.callbacks import MaskableEvalCallback
from sb3_contrib.common.maskable.utils import is_masking_supported
from stable_baselines3.common.vec_env import SubprocVecEnv, VecMonitor
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
@@ -55,9 +56,11 @@ class ReinforcementLearner_multiproc(ReinforcementLearner):
env_info=env_info) for i
in range(self.max_threads)]))
self.eval_callback = EvalCallback(self.eval_env, deterministic=True,
render=False, eval_freq=eval_freq,
best_model_save_path=str(dk.data_path))
self.eval_callback = MaskableEvalCallback(self.eval_env, deterministic=True,
render=False, eval_freq=eval_freq,
best_model_save_path=str(dk.data_path),
use_masking=(self.model_type == 'MaskablePPO' and
is_masking_supported(self.eval_env)))
# TENSORBOARD CALLBACK DOES NOT RECOMMENDED TO USE WITH MULTIPLE ENVS,
# IT WILL RETURN FALSE INFORMATIONS, NEVERTHLESS NOT THREAD SAFE WITH SB3!!!

View File

@@ -5,6 +5,7 @@ from xgboost import XGBRFRegressor
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.tensorboard import TBCallback
logger = logging.getLogger(__name__)
@@ -44,7 +45,10 @@ class XGBoostRFRegressor(BaseRegressionModel):
model = XGBRFRegressor(**self.model_training_parameters)
model.set_params(callbacks=[TBCallback(dk.data_path)], activate=self.activate_tensorboard)
model.fit(X=X, y=y, sample_weight=sample_weight, eval_set=eval_set,
sample_weight_eval_set=eval_weights, xgb_model=xgb_model)
# set the callbacks to empty so that we can serialize to disk later
model.set_params(callbacks=[])
return model

View File

@@ -231,7 +231,7 @@ class FreqtradeBot(LoggingMixin):
self.manage_open_orders()
# Protect from collisions with force_exit.
# Without this, freqtrade my try to recreate stoploss_on_exchange orders
# Without this, freqtrade may try to recreate stoploss_on_exchange orders
# while exiting is in process, since telegram messages arrive in an different thread.
with self._exit_lock:
trades = Trade.get_open_trades()
@@ -1302,6 +1302,10 @@ class FreqtradeBot(LoggingMixin):
f"(orderid:{order['id']}) in order to add another one ...")
self.cancel_stoploss_on_exchange(trade)
if not trade.is_open:
logger.warning(
f"Trade {trade} is closed, not creating trailing stoploss order.")
return
# Create new stoploss order
if not self.create_stoploss_order(trade=trade, stop_price=stoploss_norm):
@@ -1379,7 +1383,10 @@ class FreqtradeBot(LoggingMixin):
latest_candle_close_date = timeframe_to_next_date(self.strategy.timeframe,
latest_candle_open_date)
# Check if new candle
if order_obj and latest_candle_close_date > order_obj.order_date_utc:
if (
order_obj and order_obj.side == trade.entry_side
and latest_candle_close_date > order_obj.order_date_utc
):
# New candle
proposed_rate = self.exchange.get_rate(
trade.pair, side='entry', is_short=trade.is_short, refresh=True)
@@ -1935,6 +1942,7 @@ class FreqtradeBot(LoggingMixin):
"""
Applies the fee to amount (either from Order or from Trades).
Can eat into dust if more than the required asset is available.
In case of trade adjustment orders, trade.amount will not have been adjusted yet.
Can't happen in Futures mode - where Fees are always in settlement currency,
never in base currency.
"""
@@ -1944,6 +1952,10 @@ class FreqtradeBot(LoggingMixin):
# check against remaining amount!
amount_ = trade.amount - amount
if trade.nr_of_successful_entries >= 1 and order_obj.ft_order_side == trade.entry_side:
# In case of rebuy's, trade.amount doesn't contain the amount of the last entry.
amount_ = trade.amount + amount
if fee_abs != 0 and self.wallets.get_free(trade_base_currency) >= amount_:
# Eat into dust if we own more than base currency
logger.info(f"Fee amount for {trade} was in base currency - "
@@ -1973,7 +1985,11 @@ class FreqtradeBot(LoggingMixin):
# Init variables
order_amount = safe_value_fallback(order, 'filled', 'amount')
# Only run for closed orders
if trade.fee_updated(order.get('side', '')) or order['status'] == 'open':
if (
trade.fee_updated(order.get('side', ''))
or order['status'] == 'open'
or order_obj.ft_fee_base
):
return None
trade_base_currency = self.exchange.get_pair_base_currency(trade.pair)

View File

@@ -5,6 +5,7 @@ from logging.handlers import RotatingFileHandler, SysLogHandler
from freqtrade.constants import Config
from freqtrade.exceptions import OperationalException
from freqtrade.loggers.buffering_handler import FTBufferingHandler
from freqtrade.loggers.set_log_levels import set_loggers
from freqtrade.loggers.std_err_stream_handler import FTStdErrStreamHandler
@@ -16,29 +17,6 @@ bufferHandler = FTBufferingHandler(1000)
bufferHandler.setFormatter(Formatter(LOGFORMAT))
def _set_loggers(verbosity: int = 0, api_verbosity: str = 'info') -> None:
"""
Set the logging level for third party libraries
:return: None
"""
logging.getLogger('requests').setLevel(
logging.INFO if verbosity <= 1 else logging.DEBUG
)
logging.getLogger("urllib3").setLevel(
logging.INFO if verbosity <= 1 else logging.DEBUG
)
logging.getLogger('ccxt.base.exchange').setLevel(
logging.INFO if verbosity <= 2 else logging.DEBUG
)
logging.getLogger('telegram').setLevel(logging.INFO)
logging.getLogger('httpx').setLevel(logging.INFO)
logging.getLogger('werkzeug').setLevel(
logging.ERROR if api_verbosity == 'error' else logging.INFO
)
def get_existing_handlers(handlertype):
"""
Returns Existing handler or None (if the handler has not yet been added to the root handlers).
@@ -115,6 +93,6 @@ def setup_logging(config: Config) -> None:
logging.root.addHandler(handler_rf)
logging.root.setLevel(logging.INFO if verbosity < 1 else logging.DEBUG)
_set_loggers(verbosity, config.get('api_server', {}).get('verbosity', 'info'))
set_loggers(verbosity, config.get('api_server', {}).get('verbosity', 'info'))
logger.info('Verbosity set to %s', verbosity)

View File

@@ -0,0 +1,55 @@
import logging
logger = logging.getLogger(__name__)
def set_loggers(verbosity: int = 0, api_verbosity: str = 'info') -> None:
"""
Set the logging level for third party libraries
:return: None
"""
logging.getLogger('requests').setLevel(
logging.INFO if verbosity <= 1 else logging.DEBUG
)
logging.getLogger("urllib3").setLevel(
logging.INFO if verbosity <= 1 else logging.DEBUG
)
logging.getLogger('ccxt.base.exchange').setLevel(
logging.INFO if verbosity <= 2 else logging.DEBUG
)
logging.getLogger('telegram').setLevel(logging.INFO)
logging.getLogger('httpx').setLevel(logging.WARNING)
logging.getLogger('werkzeug').setLevel(
logging.ERROR if api_verbosity == 'error' else logging.INFO
)
__BIAS_TESTER_LOGGERS = [
'freqtrade.resolvers',
'freqtrade.strategy.hyper',
'freqtrade.configuration.config_validation',
]
def reduce_verbosity_for_bias_tester() -> None:
"""
Reduce verbosity for bias tester.
It loads the same strategy several times, which would spam the log.
"""
logger.info("Reducing verbosity for bias tester.")
for logger_name in __BIAS_TESTER_LOGGERS:
logging.getLogger(logger_name).setLevel(logging.WARNING)
def restore_verbosity_for_bias_tester() -> None:
"""
Restore verbosity after bias tester.
"""
logger.info("Restoring log verbosity.")
log_level = logging.NOTSET
for logger_name in __BIAS_TESTER_LOGGERS:
logging.getLogger(logger_name).setLevel(log_level)

View File

@@ -3,7 +3,6 @@ Various tool function for Freqtrade and scripts
"""
import gzip
import logging
from datetime import datetime
from pathlib import Path
from typing import Any, Dict, Iterator, List, Mapping, Optional, TextIO, Union
from urllib.parse import urlparse
@@ -117,20 +116,19 @@ def file_load_json(file: Path):
return pairdata
def is_file_in_dir(file: Path, directory: Path) -> bool:
"""
Helper function to check if file is in directory.
"""
return file.is_file() and file.parent.samefile(directory)
def pair_to_filename(pair: str) -> str:
for ch in ['/', ' ', '.', '@', '$', '+', ':']:
pair = pair.replace(ch, '_')
return pair
def format_ms_time(date: int) -> str:
"""
convert MS date to readable format.
: epoch-string in ms
"""
return datetime.fromtimestamp(date / 1000.0).strftime('%Y-%m-%dT%H:%M:%S')
def deep_merge_dicts(source, destination, allow_null_overrides: bool = True):
"""
Values from Source override destination, destination is returned (and modified!!)

View File

@@ -3,7 +3,7 @@ from typing import Callable
from cachetools import TTLCache, cached
class LoggingMixin():
class LoggingMixin:
"""
Logging Mixin
Shows similar messages only once every `refresh_period`.

View File

@@ -24,6 +24,7 @@ from freqtrade.enums import (BacktestState, CandleType, ExitCheckTuple, ExitType
from freqtrade.exceptions import DependencyException, OperationalException
from freqtrade.exchange import (amount_to_contract_precision, price_to_precision,
timeframe_to_minutes, timeframe_to_seconds)
from freqtrade.exchange.exchange import Exchange
from freqtrade.mixins import LoggingMixin
from freqtrade.optimize.backtest_caching import get_strategy_run_id
from freqtrade.optimize.bt_progress import BTProgress
@@ -72,7 +73,7 @@ class Backtesting:
backtesting.start()
"""
def __init__(self, config: Config) -> None:
def __init__(self, config: Config, exchange: Optional[Exchange] = None) -> None:
LoggingMixin.show_output = False
self.config = config
@@ -89,7 +90,10 @@ class Backtesting:
self.rejected_df: Dict[str, Dict] = {}
self._exchange_name = self.config['exchange']['name']
self.exchange = ExchangeResolver.load_exchange(self.config, load_leverage_tiers=True)
if not exchange:
exchange = ExchangeResolver.load_exchange(self.config, load_leverage_tiers=True)
self.exchange = exchange
self.dataprovider = DataProvider(self.config, self.exchange)
if self.config.get('strategy_list'):
@@ -114,16 +118,7 @@ class Backtesting:
self.timeframe_min = timeframe_to_minutes(self.timeframe)
self.init_backtest_detail()
self.pairlists = PairListManager(self.exchange, self.config, self.dataprovider)
if 'VolumePairList' in self.pairlists.name_list:
raise OperationalException("VolumePairList not allowed for backtesting. "
"Please use StaticPairList instead.")
if 'PerformanceFilter' in self.pairlists.name_list:
raise OperationalException("PerformanceFilter not allowed for backtesting.")
if len(self.strategylist) > 1 and 'PrecisionFilter' in self.pairlists.name_list:
raise OperationalException(
"PrecisionFilter not allowed for backtesting multiple strategies."
)
self._validate_pairlists_for_backtesting()
self.dataprovider.add_pairlisthandler(self.pairlists)
self.pairlists.refresh_pairlist()
@@ -164,6 +159,18 @@ class Backtesting:
self.init_backtest()
def _validate_pairlists_for_backtesting(self):
if 'VolumePairList' in self.pairlists.name_list:
raise OperationalException("VolumePairList not allowed for backtesting. "
"Please use StaticPairList instead.")
if 'PerformanceFilter' in self.pairlists.name_list:
raise OperationalException("PerformanceFilter not allowed for backtesting.")
if len(self.strategylist) > 1 and 'PrecisionFilter' in self.pairlists.name_list:
raise OperationalException(
"PrecisionFilter not allowed for backtesting multiple strategies."
)
@staticmethod
def cleanup():
LoggingMixin.show_output = True
@@ -360,11 +367,7 @@ class Backtesting:
if not pair_data.empty:
# Cleanup from prior runs
pair_data.drop(HEADERS[5:] + ['buy', 'sell'], axis=1, errors='ignore')
df_analyzed = self.strategy.advise_exit(
self.strategy.advise_entry(pair_data, {'pair': pair}),
{'pair': pair}
).copy()
df_analyzed = self.strategy.ft_advise_signals(pair_data, {'pair': pair})
# Trim startup period from analyzed dataframe
df_analyzed = processed[pair] = pair_data = trim_dataframe(
df_analyzed, self.timerange, startup_candles=self.required_startup)
@@ -672,6 +675,7 @@ class Backtesting:
remaining=amount,
cost=amount * close_rate,
)
order._trade_bt = trade
trade.orders.append(order)
return trade
@@ -894,8 +898,9 @@ class Backtesting:
amount=amount,
filled=0,
remaining=amount,
cost=stake_amount + trade.fee_open,
cost=amount * propose_rate + trade.fee_open,
)
order._trade_bt = trade
trade.orders.append(order)
if pos_adjust and self._get_order_filled(order.ft_price, row):
order.close_bt_order(current_time, trade)
@@ -1268,6 +1273,7 @@ class Backtesting:
preprocessed = self.strategy.advise_all_indicators(data)
# Trim startup period from analyzed dataframe
# This only used to determine if trimming would result in an empty dataframe
preprocessed_tmp = trim_dataframes(preprocessed, timerange, self.required_startup)
if not preprocessed_tmp:

View File

@@ -446,6 +446,8 @@ class Hyperopt:
preprocessed = self.backtesting.strategy.advise_all_indicators(data)
# Trim startup period from analyzed dataframe to get correct dates for output.
# This is only used to keep track of min/max date after trimming.
# The result is NOT returned from this method, actual trimming happens in backtesting.
trimmed = trim_dataframes(preprocessed, self.timerange, self.backtesting.required_startup)
self.min_date, self.max_date = get_timerange(trimmed)
if not self.market_change:

View File

@@ -35,7 +35,7 @@ def hyperopt_serializer(x):
return str(x)
class HyperoptStateContainer():
class HyperoptStateContainer:
""" Singleton class to track state of hyperopt"""
state: HyperoptState = HyperoptState.OPTIMIZE
@@ -44,7 +44,7 @@ class HyperoptStateContainer():
cls.state = value
class HyperoptTools():
class HyperoptTools:
@staticmethod
def get_strategy_filename(config: Config, strategy_name: str) -> Optional[Path]:
@@ -432,12 +432,10 @@ class HyperoptTools():
for i in range(len(trials)):
if trials.loc[i]['is_profit']:
for j in range(len(trials.loc[i]) - 3):
trials.iat[i, j] = "{}{}{}".format(Fore.GREEN,
str(trials.loc[i][j]), Fore.RESET)
trials.iat[i, j] = f"{Fore.GREEN}{str(trials.loc[i][j])}{Fore.RESET}"
if trials.loc[i]['is_best'] and highlight_best:
for j in range(len(trials.loc[i]) - 3):
trials.iat[i, j] = "{}{}{}".format(Style.BRIGHT,
str(trials.loc[i][j]), Style.RESET_ALL)
trials.iat[i, j] = f"{Style.BRIGHT}{str(trials.loc[i][j])}{Style.RESET_ALL}"
trials = trials.drop(columns=['is_initial_point', 'is_best', 'is_profit', 'is_random'])
if remove_header > 0:

View File

@@ -0,0 +1,275 @@
import logging
import shutil
from copy import deepcopy
from datetime import datetime, timedelta, timezone
from pathlib import Path
from typing import Any, Dict, List, Optional
from pandas import DataFrame
from freqtrade.configuration import TimeRange
from freqtrade.data.history import get_timerange
from freqtrade.exchange import timeframe_to_minutes
from freqtrade.loggers.set_log_levels import (reduce_verbosity_for_bias_tester,
restore_verbosity_for_bias_tester)
from freqtrade.optimize.backtesting import Backtesting
logger = logging.getLogger(__name__)
class VarHolder:
timerange: TimeRange
data: DataFrame
indicators: Dict[str, DataFrame]
result: DataFrame
compared: DataFrame
from_dt: datetime
to_dt: datetime
compared_dt: datetime
timeframe: str
class Analysis:
def __init__(self) -> None:
self.total_signals = 0
self.false_entry_signals = 0
self.false_exit_signals = 0
self.false_indicators: List[str] = []
self.has_bias = False
class LookaheadAnalysis:
def __init__(self, config: Dict[str, Any], strategy_obj: Dict):
self.failed_bias_check = True
self.full_varHolder = VarHolder()
self.entry_varHolders: List[VarHolder] = []
self.exit_varHolders: List[VarHolder] = []
self.exchange: Optional[Any] = None
# pull variables the scope of the lookahead_analysis-instance
self.local_config = deepcopy(config)
self.local_config['strategy'] = strategy_obj['name']
self.current_analysis = Analysis()
self.minimum_trade_amount = config['minimum_trade_amount']
self.targeted_trade_amount = config['targeted_trade_amount']
self.strategy_obj = strategy_obj
@staticmethod
def dt_to_timestamp(dt: datetime):
timestamp = int(dt.replace(tzinfo=timezone.utc).timestamp())
return timestamp
@staticmethod
def get_result(backtesting: Backtesting, processed: DataFrame):
min_date, max_date = get_timerange(processed)
result = backtesting.backtest(
processed=deepcopy(processed),
start_date=min_date,
end_date=max_date
)
return result
@staticmethod
def report_signal(result: dict, column_name: str, checked_timestamp: datetime):
df = result['results']
row_count = df[column_name].shape[0]
if row_count == 0:
return False
else:
df_cut = df[(df[column_name] == checked_timestamp)]
if df_cut[column_name].shape[0] == 0:
return False
else:
return True
return False
# analyzes two data frames with processed indicators and shows differences between them.
def analyze_indicators(self, full_vars: VarHolder, cut_vars: VarHolder, current_pair: str):
# extract dataframes
cut_df: DataFrame = cut_vars.indicators[current_pair]
full_df: DataFrame = full_vars.indicators[current_pair]
# cut longer dataframe to length of the shorter
full_df_cut = full_df[
(full_df.date == cut_vars.compared_dt)
].reset_index(drop=True)
cut_df_cut = cut_df[
(cut_df.date == cut_vars.compared_dt)
].reset_index(drop=True)
# check if dataframes are not empty
if full_df_cut.shape[0] != 0 and cut_df_cut.shape[0] != 0:
# compare dataframes
compare_df = full_df_cut.compare(cut_df_cut)
if compare_df.shape[0] > 0:
for col_name, values in compare_df.items():
col_idx = compare_df.columns.get_loc(col_name)
compare_df_row = compare_df.iloc[0]
# compare_df now comprises tuples with [1] having either 'self' or 'other'
if 'other' in col_name[1]:
continue
self_value = compare_df_row[col_idx]
other_value = compare_df_row[col_idx + 1]
# output differences
if self_value != other_value:
if not self.current_analysis.false_indicators.__contains__(col_name[0]):
self.current_analysis.false_indicators.append(col_name[0])
logger.info(f"=> found look ahead bias in indicator "
f"{col_name[0]}. "
f"{str(self_value)} != {str(other_value)}")
def prepare_data(self, varholder: VarHolder, pairs_to_load: List[DataFrame]):
if 'freqai' in self.local_config and 'identifier' in self.local_config['freqai']:
# purge previous data if the freqai model is defined
# (to be sure nothing is carried over from older backtests)
path_to_current_identifier = (
Path(f"{self.local_config['user_data_dir']}/models/"
f"{self.local_config['freqai']['identifier']}").resolve())
# remove folder and its contents
if Path.exists(path_to_current_identifier):
shutil.rmtree(path_to_current_identifier)
prepare_data_config = deepcopy(self.local_config)
prepare_data_config['timerange'] = (str(self.dt_to_timestamp(varholder.from_dt)) + "-" +
str(self.dt_to_timestamp(varholder.to_dt)))
prepare_data_config['exchange']['pair_whitelist'] = pairs_to_load
backtesting = Backtesting(prepare_data_config, self.exchange)
self.exchange = backtesting.exchange
backtesting._set_strategy(backtesting.strategylist[0])
varholder.data, varholder.timerange = backtesting.load_bt_data()
backtesting.load_bt_data_detail()
varholder.timeframe = backtesting.timeframe
varholder.indicators = backtesting.strategy.advise_all_indicators(varholder.data)
varholder.result = self.get_result(backtesting, varholder.indicators)
def fill_full_varholder(self):
self.full_varHolder = VarHolder()
# define datetime in human-readable format
parsed_timerange = TimeRange.parse_timerange(self.local_config['timerange'])
if parsed_timerange.startdt is None:
self.full_varHolder.from_dt = datetime.fromtimestamp(0, tz=timezone.utc)
else:
self.full_varHolder.from_dt = parsed_timerange.startdt
if parsed_timerange.stopdt is None:
self.full_varHolder.to_dt = datetime.utcnow()
else:
self.full_varHolder.to_dt = parsed_timerange.stopdt
self.prepare_data(self.full_varHolder, self.local_config['pairs'])
def fill_entry_and_exit_varHolders(self, result_row):
# entry_varHolder
entry_varHolder = VarHolder()
self.entry_varHolders.append(entry_varHolder)
entry_varHolder.from_dt = self.full_varHolder.from_dt
entry_varHolder.compared_dt = result_row['open_date']
# to_dt needs +1 candle since it won't buy on the last candle
entry_varHolder.to_dt = (
result_row['open_date'] +
timedelta(minutes=timeframe_to_minutes(self.full_varHolder.timeframe)))
self.prepare_data(entry_varHolder, [result_row['pair']])
# exit_varHolder
exit_varHolder = VarHolder()
self.exit_varHolders.append(exit_varHolder)
# to_dt needs +1 candle since it will always exit/force-exit trades on the last candle
exit_varHolder.from_dt = self.full_varHolder.from_dt
exit_varHolder.to_dt = (
result_row['close_date'] +
timedelta(minutes=timeframe_to_minutes(self.full_varHolder.timeframe)))
exit_varHolder.compared_dt = result_row['close_date']
self.prepare_data(exit_varHolder, [result_row['pair']])
# now we analyze a full trade of full_varholder and look for analyze its bias
def analyze_row(self, idx, result_row):
# if force-sold, ignore this signal since here it will unconditionally exit.
if result_row.close_date == self.dt_to_timestamp(self.full_varHolder.to_dt):
return
# keep track of how many signals are processed at total
self.current_analysis.total_signals += 1
# fill entry_varHolder and exit_varHolder
self.fill_entry_and_exit_varHolders(result_row)
# register if buy signal is broken
if not self.report_signal(
self.entry_varHolders[idx].result,
"open_date",
self.entry_varHolders[idx].compared_dt):
self.current_analysis.false_entry_signals += 1
# register if buy or sell signal is broken
if not self.report_signal(
self.exit_varHolders[idx].result,
"close_date",
self.exit_varHolders[idx].compared_dt):
self.current_analysis.false_exit_signals += 1
# check if the indicators themselves contain biased data
self.analyze_indicators(self.full_varHolder, self.entry_varHolders[idx], result_row['pair'])
self.analyze_indicators(self.full_varHolder, self.exit_varHolders[idx], result_row['pair'])
def start(self) -> None:
# first make a single backtest
self.fill_full_varholder()
reduce_verbosity_for_bias_tester()
# check if requirements have been met of full_varholder
found_signals: int = self.full_varHolder.result['results'].shape[0] + 1
if found_signals >= self.targeted_trade_amount:
logger.info(f"Found {found_signals} trades, "
f"calculating {self.targeted_trade_amount} trades.")
elif self.targeted_trade_amount >= found_signals >= self.minimum_trade_amount:
logger.info(f"Only found {found_signals} trades. Calculating all available trades.")
else:
logger.info(f"found {found_signals} trades "
f"which is less than minimum_trade_amount {self.minimum_trade_amount}. "
f"Cancelling this backtest lookahead bias test.")
return
# now we loop through all signals
# starting from the same datetime to avoid miss-reports of bias
for idx, result_row in self.full_varHolder.result['results'].iterrows():
if self.current_analysis.total_signals == self.targeted_trade_amount:
break
self.analyze_row(idx, result_row)
# Restore verbosity, so it's not too quiet for the next strategy
restore_verbosity_for_bias_tester()
# check and report signals
if self.current_analysis.total_signals < self.local_config['minimum_trade_amount']:
logger.info(f" -> {self.local_config['strategy']} : too few trades. "
f"We only found {self.current_analysis.total_signals} trades. "
f"Hint: Extend the timerange "
f"to get at least {self.local_config['minimum_trade_amount']} "
f"or lower the value of minimum_trade_amount.")
self.failed_bias_check = True
elif (self.current_analysis.false_entry_signals > 0 or
self.current_analysis.false_exit_signals > 0 or
len(self.current_analysis.false_indicators) > 0):
logger.info(f" => {self.local_config['strategy']} : bias detected!")
self.current_analysis.has_bias = True
self.failed_bias_check = False
else:
logger.info(self.local_config['strategy'] + ": no bias detected")
self.failed_bias_check = False

View File

@@ -0,0 +1,202 @@
import logging
import time
from pathlib import Path
from typing import Any, Dict, List
import pandas as pd
from freqtrade.constants import Config
from freqtrade.exceptions import OperationalException
from freqtrade.optimize.lookahead_analysis import LookaheadAnalysis
from freqtrade.resolvers import StrategyResolver
logger = logging.getLogger(__name__)
class LookaheadAnalysisSubFunctions:
@staticmethod
def text_table_lookahead_analysis_instances(
config: Dict[str, Any],
lookahead_instances: List[LookaheadAnalysis]):
headers = ['filename', 'strategy', 'has_bias', 'total_signals',
'biased_entry_signals', 'biased_exit_signals', 'biased_indicators']
data = []
for inst in lookahead_instances:
if config['minimum_trade_amount'] > inst.current_analysis.total_signals:
data.append(
[
inst.strategy_obj['location'].parts[-1],
inst.strategy_obj['name'],
"too few trades caught "
f"({inst.current_analysis.total_signals}/{config['minimum_trade_amount']})."
f"Test failed."
]
)
elif inst.failed_bias_check:
data.append(
[
inst.strategy_obj['location'].parts[-1],
inst.strategy_obj['name'],
'error while checking'
]
)
else:
data.append(
[
inst.strategy_obj['location'].parts[-1],
inst.strategy_obj['name'],
inst.current_analysis.has_bias,
inst.current_analysis.total_signals,
inst.current_analysis.false_entry_signals,
inst.current_analysis.false_exit_signals,
", ".join(inst.current_analysis.false_indicators)
]
)
from tabulate import tabulate
table = tabulate(data, headers=headers, tablefmt="orgtbl")
print(table)
return table, headers, data
@staticmethod
def export_to_csv(config: Dict[str, Any], lookahead_analysis: List[LookaheadAnalysis]):
def add_or_update_row(df, row_data):
if (
(df['filename'] == row_data['filename']) &
(df['strategy'] == row_data['strategy'])
).any():
# Update existing row
pd_series = pd.DataFrame([row_data])
df.loc[
(df['filename'] == row_data['filename']) &
(df['strategy'] == row_data['strategy'])
] = pd_series
else:
# Add new row
df = pd.concat([df, pd.DataFrame([row_data], columns=df.columns)])
return df
if Path(config['lookahead_analysis_exportfilename']).exists():
# Read CSV file into a pandas dataframe
csv_df = pd.read_csv(config['lookahead_analysis_exportfilename'])
else:
# Create a new empty DataFrame with the desired column names and set the index
csv_df = pd.DataFrame(columns=[
'filename', 'strategy', 'has_bias', 'total_signals',
'biased_entry_signals', 'biased_exit_signals', 'biased_indicators'
],
index=None)
for inst in lookahead_analysis:
# only update if
if (inst.current_analysis.total_signals > config['minimum_trade_amount']
and inst.failed_bias_check is not True):
new_row_data = {'filename': inst.strategy_obj['location'].parts[-1],
'strategy': inst.strategy_obj['name'],
'has_bias': inst.current_analysis.has_bias,
'total_signals':
int(inst.current_analysis.total_signals),
'biased_entry_signals':
int(inst.current_analysis.false_entry_signals),
'biased_exit_signals':
int(inst.current_analysis.false_exit_signals),
'biased_indicators':
",".join(inst.current_analysis.false_indicators)}
csv_df = add_or_update_row(csv_df, new_row_data)
# Fill NaN values with a default value (e.g., 0)
csv_df['total_signals'] = csv_df['total_signals'].fillna(0)
csv_df['biased_entry_signals'] = csv_df['biased_entry_signals'].fillna(0)
csv_df['biased_exit_signals'] = csv_df['biased_exit_signals'].fillna(0)
# Convert columns to integers
csv_df['total_signals'] = csv_df['total_signals'].astype(int)
csv_df['biased_entry_signals'] = csv_df['biased_entry_signals'].astype(int)
csv_df['biased_exit_signals'] = csv_df['biased_exit_signals'].astype(int)
logger.info(f"saving {config['lookahead_analysis_exportfilename']}")
csv_df.to_csv(config['lookahead_analysis_exportfilename'], index=False)
@staticmethod
def calculate_config_overrides(config: Config):
if config['targeted_trade_amount'] < config['minimum_trade_amount']:
# this combo doesn't make any sense.
raise OperationalException(
"Targeted trade amount can't be smaller than minimum trade amount."
)
if len(config['pairs']) > config['max_open_trades']:
logger.info('Max_open_trades were less than amount of pairs. '
'Set max_open_trades to amount of pairs just to avoid false positives.')
config['max_open_trades'] = len(config['pairs'])
min_dry_run_wallet = 1000000000
if config['dry_run_wallet'] < min_dry_run_wallet:
logger.info('Dry run wallet was not set to 1 billion, pushing it up there '
'just to avoid false positives')
config['dry_run_wallet'] = min_dry_run_wallet
# enforce cache to be 'none', shift it to 'none' if not already
# (since the default value is 'day')
if config.get('backtest_cache') is None:
config['backtest_cache'] = 'none'
elif config['backtest_cache'] != 'none':
logger.info(f"backtest_cache = "
f"{config['backtest_cache']} detected. "
f"Inside lookahead-analysis it is enforced to be 'none'. "
f"Changed it to 'none'")
config['backtest_cache'] = 'none'
return config
@staticmethod
def initialize_single_lookahead_analysis(config: Config, strategy_obj: Dict[str, Any]):
logger.info(f"Bias test of {Path(strategy_obj['location']).name} started.")
start = time.perf_counter()
current_instance = LookaheadAnalysis(config, strategy_obj)
current_instance.start()
elapsed = time.perf_counter() - start
logger.info(f"Checking look ahead bias via backtests "
f"of {Path(strategy_obj['location']).name} "
f"took {elapsed:.0f} seconds.")
return current_instance
@staticmethod
def start(config: Config):
config = LookaheadAnalysisSubFunctions.calculate_config_overrides(config)
strategy_objs = StrategyResolver.search_all_objects(
config, enum_failed=False, recursive=config.get('recursive_strategy_search', False))
lookaheadAnalysis_instances = []
# unify --strategy and --strategy_list to one list
if not (strategy_list := config.get('strategy_list', [])):
if config.get('strategy') is None:
raise OperationalException(
"No Strategy specified. Please specify a strategy via --strategy or "
"--strategy_list"
)
strategy_list = [config['strategy']]
# check if strategies can be properly loaded, only check them if they can be.
for strat in strategy_list:
for strategy_obj in strategy_objs:
if strategy_obj['name'] == strat and strategy_obj not in strategy_list:
lookaheadAnalysis_instances.append(
LookaheadAnalysisSubFunctions.initialize_single_lookahead_analysis(
config, strategy_obj))
break
# report the results
if lookaheadAnalysis_instances:
LookaheadAnalysisSubFunctions.text_table_lookahead_analysis_instances(
config, lookaheadAnalysis_instances)
if config.get('lookahead_analysis_exportfilename') is not None:
LookaheadAnalysisSubFunctions.export_to_csv(config, lookaheadAnalysis_instances)
else:
logger.error("There were no strategies specified neither through "
"--strategy nor through "
"--strategy_list "
"or timeframe was not specified.")

View File

@@ -0,0 +1,18 @@
# flake8: noqa: F401
from freqtrade.optimize.optimize_reports.bt_output import (generate_edge_table,
generate_wins_draws_losses,
show_backtest_result,
show_backtest_results,
show_sorted_pairlist,
text_table_add_metrics,
text_table_bt_results,
text_table_exit_reason,
text_table_periodic_breakdown,
text_table_strategy, text_table_tags)
from freqtrade.optimize.optimize_reports.bt_storage import (store_backtest_analysis_results,
store_backtest_stats)
from freqtrade.optimize.optimize_reports.optimize_reports import (
generate_all_periodic_breakdown_stats, generate_backtest_stats, generate_daily_stats,
generate_exit_reason_stats, generate_pair_metrics, generate_periodic_breakdown_stats,
generate_rejected_signals, generate_strategy_comparison, generate_strategy_stats,
generate_tag_metrics, generate_trade_signal_candles, generate_trading_stats)

View File

@@ -0,0 +1,418 @@
import logging
from typing import Any, Dict, List
from tabulate import tabulate
from freqtrade.constants import UNLIMITED_STAKE_AMOUNT, Config
from freqtrade.misc import decimals_per_coin, round_coin_value
from freqtrade.optimize.optimize_reports.optimize_reports import generate_periodic_breakdown_stats
logger = logging.getLogger(__name__)
def _get_line_floatfmt(stake_currency: str) -> List[str]:
"""
Generate floatformat (goes in line with _generate_result_line())
"""
return ['s', 'd', '.2f', '.2f', f'.{decimals_per_coin(stake_currency)}f',
'.2f', 'd', 's', 's']
def _get_line_header(first_column: str, stake_currency: str,
direction: str = 'Entries') -> List[str]:
"""
Generate header lines (goes in line with _generate_result_line())
"""
return [first_column, direction, 'Avg Profit %', 'Cum Profit %',
f'Tot Profit {stake_currency}', 'Tot Profit %', 'Avg Duration',
'Win Draw Loss Win%']
def generate_wins_draws_losses(wins, draws, losses):
if wins > 0 and losses == 0:
wl_ratio = '100'
elif wins == 0:
wl_ratio = '0'
else:
wl_ratio = f'{100.0 / (wins + draws + losses) * wins:.1f}' if losses > 0 else '100'
return f'{wins:>4} {draws:>4} {losses:>4} {wl_ratio:>4}'
def text_table_bt_results(pair_results: List[Dict[str, Any]], stake_currency: str) -> str:
"""
Generates and returns a text table for the given backtest data and the results dataframe
:param pair_results: List of Dictionaries - one entry per pair + final TOTAL row
:param stake_currency: stake-currency - used to correctly name headers
:return: pretty printed table with tabulate as string
"""
headers = _get_line_header('Pair', stake_currency)
floatfmt = _get_line_floatfmt(stake_currency)
output = [[
t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'],
t['profit_total_pct'], t['duration_avg'],
generate_wins_draws_losses(t['wins'], t['draws'], t['losses'])
] for t in pair_results]
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(output, headers=headers,
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
def text_table_exit_reason(exit_reason_stats: List[Dict[str, Any]], stake_currency: str) -> str:
"""
Generate small table outlining Backtest results
:param sell_reason_stats: Exit reason metrics
:param stake_currency: Stakecurrency used
:return: pretty printed table with tabulate as string
"""
headers = [
'Exit Reason',
'Exits',
'Win Draws Loss Win%',
'Avg Profit %',
'Cum Profit %',
f'Tot Profit {stake_currency}',
'Tot Profit %',
]
output = [[
t.get('exit_reason', t.get('sell_reason')), t['trades'],
generate_wins_draws_losses(t['wins'], t['draws'], t['losses']),
t['profit_mean_pct'], t['profit_sum_pct'],
round_coin_value(t['profit_total_abs'], stake_currency, False),
t['profit_total_pct'],
] for t in exit_reason_stats]
return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right")
def text_table_tags(tag_type: str, tag_results: List[Dict[str, Any]], stake_currency: str) -> str:
"""
Generates and returns a text table for the given backtest data and the results dataframe
:param pair_results: List of Dictionaries - one entry per pair + final TOTAL row
:param stake_currency: stake-currency - used to correctly name headers
:return: pretty printed table with tabulate as string
"""
if (tag_type == "enter_tag"):
headers = _get_line_header("TAG", stake_currency)
else:
headers = _get_line_header("TAG", stake_currency, 'Exits')
floatfmt = _get_line_floatfmt(stake_currency)
output = [
[
t['key'] if t['key'] is not None and len(
t['key']) > 0 else "OTHER",
t['trades'],
t['profit_mean_pct'],
t['profit_sum_pct'],
t['profit_total_abs'],
t['profit_total_pct'],
t['duration_avg'],
generate_wins_draws_losses(
t['wins'],
t['draws'],
t['losses'])] for t in tag_results]
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(output, headers=headers,
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
def text_table_periodic_breakdown(days_breakdown_stats: List[Dict[str, Any]],
stake_currency: str, period: str) -> str:
"""
Generate small table with Backtest results by days
:param days_breakdown_stats: Days breakdown metrics
:param stake_currency: Stakecurrency used
:return: pretty printed table with tabulate as string
"""
headers = [
period.capitalize(),
f'Tot Profit {stake_currency}',
'Wins',
'Draws',
'Losses',
]
output = [[
d['date'], round_coin_value(d['profit_abs'], stake_currency, False),
d['wins'], d['draws'], d['loses'],
] for d in days_breakdown_stats]
return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right")
def text_table_strategy(strategy_results, stake_currency: str) -> str:
"""
Generate summary table per strategy
:param strategy_results: Dict of <Strategyname: DataFrame> containing results for all strategies
:param stake_currency: stake-currency - used to correctly name headers
:return: pretty printed table with tabulate as string
"""
floatfmt = _get_line_floatfmt(stake_currency)
headers = _get_line_header('Strategy', stake_currency)
# _get_line_header() is also used for per-pair summary. Per-pair drawdown is mostly useless
# therefore we slip this column in only for strategy summary here.
headers.append('Drawdown')
# Align drawdown string on the center two space separator.
if 'max_drawdown_account' in strategy_results[0]:
drawdown = [f'{t["max_drawdown_account"] * 100:.2f}' for t in strategy_results]
else:
# Support for prior backtest results
drawdown = [f'{t["max_drawdown_per"]:.2f}' for t in strategy_results]
dd_pad_abs = max([len(t['max_drawdown_abs']) for t in strategy_results])
dd_pad_per = max([len(dd) for dd in drawdown])
drawdown = [f'{t["max_drawdown_abs"]:>{dd_pad_abs}} {stake_currency} {dd:>{dd_pad_per}}%'
for t, dd in zip(strategy_results, drawdown)]
output = [[
t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'],
t['profit_total_pct'], t['duration_avg'],
generate_wins_draws_losses(t['wins'], t['draws'], t['losses']), drawdown]
for t, drawdown in zip(strategy_results, drawdown)]
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(output, headers=headers,
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
def text_table_add_metrics(strat_results: Dict) -> str:
if len(strat_results['trades']) > 0:
best_trade = max(strat_results['trades'], key=lambda x: x['profit_ratio'])
worst_trade = min(strat_results['trades'], key=lambda x: x['profit_ratio'])
short_metrics = [
('', ''), # Empty line to improve readability
('Long / Short',
f"{strat_results.get('trade_count_long', 'total_trades')} / "
f"{strat_results.get('trade_count_short', 0)}"),
('Total profit Long %', f"{strat_results['profit_total_long']:.2%}"),
('Total profit Short %', f"{strat_results['profit_total_short']:.2%}"),
('Absolute profit Long', round_coin_value(strat_results['profit_total_long_abs'],
strat_results['stake_currency'])),
('Absolute profit Short', round_coin_value(strat_results['profit_total_short_abs'],
strat_results['stake_currency'])),
] if strat_results.get('trade_count_short', 0) > 0 else []
drawdown_metrics = []
if 'max_relative_drawdown' in strat_results:
# Compatibility to show old hyperopt results
drawdown_metrics.append(
('Max % of account underwater', f"{strat_results['max_relative_drawdown']:.2%}")
)
drawdown_metrics.extend([
('Absolute Drawdown (Account)', f"{strat_results['max_drawdown_account']:.2%}")
if 'max_drawdown_account' in strat_results else (
'Drawdown', f"{strat_results['max_drawdown']:.2%}"),
('Absolute Drawdown', round_coin_value(strat_results['max_drawdown_abs'],
strat_results['stake_currency'])),
('Drawdown high', round_coin_value(strat_results['max_drawdown_high'],
strat_results['stake_currency'])),
('Drawdown low', round_coin_value(strat_results['max_drawdown_low'],
strat_results['stake_currency'])),
('Drawdown Start', strat_results['drawdown_start']),
('Drawdown End', strat_results['drawdown_end']),
])
entry_adjustment_metrics = [
('Canceled Trade Entries', strat_results.get('canceled_trade_entries', 'N/A')),
('Canceled Entry Orders', strat_results.get('canceled_entry_orders', 'N/A')),
('Replaced Entry Orders', strat_results.get('replaced_entry_orders', 'N/A')),
] if strat_results.get('canceled_entry_orders', 0) > 0 else []
# Newly added fields should be ignored if they are missing in strat_results. hyperopt-show
# command stores these results and newer version of freqtrade must be able to handle old
# results with missing new fields.
metrics = [
('Backtesting from', strat_results['backtest_start']),
('Backtesting to', strat_results['backtest_end']),
('Max open trades', strat_results['max_open_trades']),
('', ''), # Empty line to improve readability
('Total/Daily Avg Trades',
f"{strat_results['total_trades']} / {strat_results['trades_per_day']}"),
('Starting balance', round_coin_value(strat_results['starting_balance'],
strat_results['stake_currency'])),
('Final balance', round_coin_value(strat_results['final_balance'],
strat_results['stake_currency'])),
('Absolute profit ', round_coin_value(strat_results['profit_total_abs'],
strat_results['stake_currency'])),
('Total profit %', f"{strat_results['profit_total']:.2%}"),
('CAGR %', f"{strat_results['cagr']:.2%}" if 'cagr' in strat_results else 'N/A'),
('Sortino', f"{strat_results['sortino']:.2f}" if 'sortino' in strat_results else 'N/A'),
('Sharpe', f"{strat_results['sharpe']:.2f}" if 'sharpe' in strat_results else 'N/A'),
('Calmar', f"{strat_results['calmar']:.2f}" if 'calmar' in strat_results else 'N/A'),
('Profit factor', f'{strat_results["profit_factor"]:.2f}' if 'profit_factor'
in strat_results else 'N/A'),
('Expectancy (Ratio)', (
f"{strat_results['expectancy']:.2f} ({strat_results['expectancy_ratio']:.2f})" if
'expectancy_ratio' in strat_results else 'N/A')),
('Trades per day', strat_results['trades_per_day']),
('Avg. daily profit %',
f"{(strat_results['profit_total'] / strat_results['backtest_days']):.2%}"),
('Avg. stake amount', round_coin_value(strat_results['avg_stake_amount'],
strat_results['stake_currency'])),
('Total trade volume', round_coin_value(strat_results['total_volume'],
strat_results['stake_currency'])),
*short_metrics,
('', ''), # Empty line to improve readability
('Best Pair', f"{strat_results['best_pair']['key']} "
f"{strat_results['best_pair']['profit_sum']:.2%}"),
('Worst Pair', f"{strat_results['worst_pair']['key']} "
f"{strat_results['worst_pair']['profit_sum']:.2%}"),
('Best trade', f"{best_trade['pair']} {best_trade['profit_ratio']:.2%}"),
('Worst trade', f"{worst_trade['pair']} "
f"{worst_trade['profit_ratio']:.2%}"),
('Best day', round_coin_value(strat_results['backtest_best_day_abs'],
strat_results['stake_currency'])),
('Worst day', round_coin_value(strat_results['backtest_worst_day_abs'],
strat_results['stake_currency'])),
('Days win/draw/lose', f"{strat_results['winning_days']} / "
f"{strat_results['draw_days']} / {strat_results['losing_days']}"),
('Avg. Duration Winners', f"{strat_results['winner_holding_avg']}"),
('Avg. Duration Loser', f"{strat_results['loser_holding_avg']}"),
('Max Consecutive Wins / Loss',
f"{strat_results['max_consecutive_wins']} / {strat_results['max_consecutive_losses']}"
if 'max_consecutive_losses' in strat_results else 'N/A'),
('Rejected Entry signals', strat_results.get('rejected_signals', 'N/A')),
('Entry/Exit Timeouts',
f"{strat_results.get('timedout_entry_orders', 'N/A')} / "
f"{strat_results.get('timedout_exit_orders', 'N/A')}"),
*entry_adjustment_metrics,
('', ''), # Empty line to improve readability
('Min balance', round_coin_value(strat_results['csum_min'],
strat_results['stake_currency'])),
('Max balance', round_coin_value(strat_results['csum_max'],
strat_results['stake_currency'])),
*drawdown_metrics,
('Market change', f"{strat_results['market_change']:.2%}"),
]
return tabulate(metrics, headers=["Metric", "Value"], tablefmt="orgtbl")
else:
start_balance = round_coin_value(strat_results['starting_balance'],
strat_results['stake_currency'])
stake_amount = round_coin_value(
strat_results['stake_amount'], strat_results['stake_currency']
) if strat_results['stake_amount'] != UNLIMITED_STAKE_AMOUNT else 'unlimited'
message = ("No trades made. "
f"Your starting balance was {start_balance}, "
f"and your stake was {stake_amount}."
)
return message
def show_backtest_result(strategy: str, results: Dict[str, Any], stake_currency: str,
backtest_breakdown=[]):
"""
Print results for one strategy
"""
# Print results
print(f"Result for strategy {strategy}")
table = text_table_bt_results(results['results_per_pair'], stake_currency=stake_currency)
if isinstance(table, str):
print(' BACKTESTING REPORT '.center(len(table.splitlines()[0]), '='))
print(table)
table = text_table_bt_results(results['left_open_trades'], stake_currency=stake_currency)
if isinstance(table, str) and len(table) > 0:
print(' LEFT OPEN TRADES REPORT '.center(len(table.splitlines()[0]), '='))
print(table)
if (results.get('results_per_enter_tag') is not None
or results.get('results_per_buy_tag') is not None):
# results_per_buy_tag is deprecated and should be removed 2 versions after short golive.
table = text_table_tags(
"enter_tag",
results.get('results_per_enter_tag', results.get('results_per_buy_tag')),
stake_currency=stake_currency)
if isinstance(table, str) and len(table) > 0:
print(' ENTER TAG STATS '.center(len(table.splitlines()[0]), '='))
print(table)
exit_reasons = results.get('exit_reason_summary', results.get('sell_reason_summary'))
table = text_table_exit_reason(exit_reason_stats=exit_reasons,
stake_currency=stake_currency)
if isinstance(table, str) and len(table) > 0:
print(' EXIT REASON STATS '.center(len(table.splitlines()[0]), '='))
print(table)
for period in backtest_breakdown:
if period in results.get('periodic_breakdown', {}):
days_breakdown_stats = results['periodic_breakdown'][period]
else:
days_breakdown_stats = generate_periodic_breakdown_stats(
trade_list=results['trades'], period=period)
table = text_table_periodic_breakdown(days_breakdown_stats=days_breakdown_stats,
stake_currency=stake_currency, period=period)
if isinstance(table, str) and len(table) > 0:
print(f' {period.upper()} BREAKDOWN '.center(len(table.splitlines()[0]), '='))
print(table)
table = text_table_add_metrics(results)
if isinstance(table, str) and len(table) > 0:
print(' SUMMARY METRICS '.center(len(table.splitlines()[0]), '='))
print(table)
if isinstance(table, str) and len(table) > 0:
print('=' * len(table.splitlines()[0]))
print()
def show_backtest_results(config: Config, backtest_stats: Dict):
stake_currency = config['stake_currency']
for strategy, results in backtest_stats['strategy'].items():
show_backtest_result(
strategy, results, stake_currency,
config.get('backtest_breakdown', []))
if len(backtest_stats['strategy']) > 0:
# Print Strategy summary table
table = text_table_strategy(backtest_stats['strategy_comparison'], stake_currency)
print(f"Backtested {results['backtest_start']} -> {results['backtest_end']} |"
f" Max open trades : {results['max_open_trades']}")
print(' STRATEGY SUMMARY '.center(len(table.splitlines()[0]), '='))
print(table)
print('=' * len(table.splitlines()[0]))
print('\nFor more details, please look at the detail tables above')
def show_sorted_pairlist(config: Config, backtest_stats: Dict):
if config.get('backtest_show_pair_list', False):
for strategy, results in backtest_stats['strategy'].items():
print(f"Pairs for Strategy {strategy}: \n[")
for result in results['results_per_pair']:
if result["key"] != 'TOTAL':
print(f'"{result["key"]}", // {result["profit_mean"]:.2%}')
print("]")
def generate_edge_table(results: dict) -> str:
floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', 'd', 'd')
tabular_data = []
headers = ['Pair', 'Stoploss', 'Win Rate', 'Risk Reward Ratio',
'Required Risk Reward', 'Expectancy', 'Total Number of Trades',
'Average Duration (min)']
for result in results.items():
if result[1].nb_trades > 0:
tabular_data.append([
result[0],
result[1].stoploss,
result[1].winrate,
result[1].risk_reward_ratio,
result[1].required_risk_reward,
result[1].expectancy,
result[1].nb_trades,
round(result[1].avg_trade_duration)
])
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(tabular_data, headers=headers,
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")

View File

@@ -0,0 +1,71 @@
import logging
from pathlib import Path
from typing import Dict
from pandas import DataFrame
from freqtrade.constants import LAST_BT_RESULT_FN
from freqtrade.misc import file_dump_joblib, file_dump_json
from freqtrade.optimize.backtest_caching import get_backtest_metadata_filename
logger = logging.getLogger(__name__)
def store_backtest_stats(
recordfilename: Path, stats: Dict[str, DataFrame], dtappendix: str) -> None:
"""
Stores backtest results
:param recordfilename: Path object, which can either be a filename or a directory.
Filenames will be appended with a timestamp right before the suffix
while for directories, <directory>/backtest-result-<datetime>.json will be used as filename
:param stats: Dataframe containing the backtesting statistics
:param dtappendix: Datetime to use for the filename
"""
if recordfilename.is_dir():
filename = (recordfilename / f'backtest-result-{dtappendix}.json')
else:
filename = Path.joinpath(
recordfilename.parent, f'{recordfilename.stem}-{dtappendix}'
).with_suffix(recordfilename.suffix)
# Store metadata separately.
file_dump_json(get_backtest_metadata_filename(filename), stats['metadata'])
del stats['metadata']
file_dump_json(filename, stats)
latest_filename = Path.joinpath(filename.parent, LAST_BT_RESULT_FN)
file_dump_json(latest_filename, {'latest_backtest': str(filename.name)})
def _store_backtest_analysis_data(
recordfilename: Path, data: Dict[str, Dict],
dtappendix: str, name: str) -> Path:
"""
Stores backtest trade candles for analysis
:param recordfilename: Path object, which can either be a filename or a directory.
Filenames will be appended with a timestamp right before the suffix
while for directories, <directory>/backtest-result-<datetime>_<name>.pkl will be used
as filename
:param candles: Dict containing the backtesting data for analysis
:param dtappendix: Datetime to use for the filename
:param name: Name to use for the file, e.g. signals, rejected
"""
if recordfilename.is_dir():
filename = (recordfilename / f'backtest-result-{dtappendix}_{name}.pkl')
else:
filename = Path.joinpath(
recordfilename.parent, f'{recordfilename.stem}-{dtappendix}_{name}.pkl'
)
file_dump_joblib(filename, data)
return filename
def store_backtest_analysis_results(
recordfilename: Path, candles: Dict[str, Dict], trades: Dict[str, Dict],
dtappendix: str) -> None:
_store_backtest_analysis_data(recordfilename, candles, dtappendix, "signals")
_store_backtest_analysis_data(recordfilename, trades, dtappendix, "rejected")

View File

@@ -1,83 +1,21 @@
import logging
from copy import deepcopy
from datetime import datetime, timedelta, timezone
from pathlib import Path
from typing import Any, Dict, List, Union
from typing import Any, Dict, List, Tuple, Union
from pandas import DataFrame, concat, to_datetime
from tabulate import tabulate
import numpy as np
from pandas import DataFrame, Series, concat, to_datetime
from freqtrade.constants import (BACKTEST_BREAKDOWNS, DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN,
UNLIMITED_STAKE_AMOUNT, Config, IntOrInf)
from freqtrade.constants import BACKTEST_BREAKDOWNS, DATETIME_PRINT_FORMAT, IntOrInf
from freqtrade.data.metrics import (calculate_cagr, calculate_calmar, calculate_csum,
calculate_expectancy, calculate_market_change,
calculate_max_drawdown, calculate_sharpe, calculate_sortino)
from freqtrade.misc import decimals_per_coin, file_dump_joblib, file_dump_json, round_coin_value
from freqtrade.optimize.backtest_caching import get_backtest_metadata_filename
from freqtrade.misc import decimals_per_coin, round_coin_value
logger = logging.getLogger(__name__)
def store_backtest_stats(
recordfilename: Path, stats: Dict[str, DataFrame], dtappendix: str) -> None:
"""
Stores backtest results
:param recordfilename: Path object, which can either be a filename or a directory.
Filenames will be appended with a timestamp right before the suffix
while for directories, <directory>/backtest-result-<datetime>.json will be used as filename
:param stats: Dataframe containing the backtesting statistics
:param dtappendix: Datetime to use for the filename
"""
if recordfilename.is_dir():
filename = (recordfilename / f'backtest-result-{dtappendix}.json')
else:
filename = Path.joinpath(
recordfilename.parent, f'{recordfilename.stem}-{dtappendix}'
).with_suffix(recordfilename.suffix)
# Store metadata separately.
file_dump_json(get_backtest_metadata_filename(filename), stats['metadata'])
del stats['metadata']
file_dump_json(filename, stats)
latest_filename = Path.joinpath(filename.parent, LAST_BT_RESULT_FN)
file_dump_json(latest_filename, {'latest_backtest': str(filename.name)})
def _store_backtest_analysis_data(
recordfilename: Path, data: Dict[str, Dict],
dtappendix: str, name: str) -> Path:
"""
Stores backtest trade candles for analysis
:param recordfilename: Path object, which can either be a filename or a directory.
Filenames will be appended with a timestamp right before the suffix
while for directories, <directory>/backtest-result-<datetime>_<name>.pkl will be used
as filename
:param candles: Dict containing the backtesting data for analysis
:param dtappendix: Datetime to use for the filename
:param name: Name to use for the file, e.g. signals, rejected
"""
if recordfilename.is_dir():
filename = (recordfilename / f'backtest-result-{dtappendix}_{name}.pkl')
else:
filename = Path.joinpath(
recordfilename.parent, f'{recordfilename.stem}-{dtappendix}_{name}.pkl'
)
file_dump_joblib(filename, data)
return filename
def store_backtest_analysis_results(
recordfilename: Path, candles: Dict[str, Dict], trades: Dict[str, Dict],
dtappendix: str) -> None:
_store_backtest_analysis_data(recordfilename, candles, dtappendix, "signals")
_store_backtest_analysis_data(recordfilename, trades, dtappendix, "rejected")
def generate_trade_signal_candles(preprocessed_df: Dict[str, DataFrame],
bt_results: Dict[str, Any]) -> DataFrame:
signal_candles_only = {}
@@ -120,34 +58,6 @@ def generate_rejected_signals(preprocessed_df: Dict[str, DataFrame],
return rejected_candles_only
def _get_line_floatfmt(stake_currency: str) -> List[str]:
"""
Generate floatformat (goes in line with _generate_result_line())
"""
return ['s', 'd', '.2f', '.2f', f'.{decimals_per_coin(stake_currency)}f',
'.2f', 'd', 's', 's']
def _get_line_header(first_column: str, stake_currency: str,
direction: str = 'Entries') -> List[str]:
"""
Generate header lines (goes in line with _generate_result_line())
"""
return [first_column, direction, 'Avg Profit %', 'Cum Profit %',
f'Tot Profit {stake_currency}', 'Tot Profit %', 'Avg Duration',
'Win Draw Loss Win%']
def generate_wins_draws_losses(wins, draws, losses):
if wins > 0 and losses == 0:
wl_ratio = '100'
elif wins == 0:
wl_ratio = '0'
else:
wl_ratio = f'{100.0 / (wins + draws + losses) * wins:.1f}' if losses > 0 else '100'
return f'{wins:>4} {draws:>4} {losses:>4} {wl_ratio:>4}'
def _generate_result_line(result: DataFrame, starting_balance: int, first_column: str) -> Dict:
"""
Generate one result dict, with "first_column" as key.
@@ -178,6 +88,7 @@ def _generate_result_line(result: DataFrame, starting_balance: int, first_column
'wins': len(result[result['profit_abs'] > 0]),
'draws': len(result[result['profit_abs'] == 0]),
'losses': len(result[result['profit_abs'] < 0]),
'winrate': len(result[result['profit_abs'] > 0]) / len(result) if len(result) else 0.0,
}
@@ -265,6 +176,7 @@ def generate_exit_reason_stats(max_open_trades: IntOrInf, results: DataFrame) ->
'wins': len(result[result['profit_abs'] > 0]),
'draws': len(result[result['profit_abs'] == 0]),
'losses': len(result[result['profit_abs'] < 0]),
'winrate': len(result[result['profit_abs'] > 0]) / count if count else 0.0,
'profit_mean': profit_mean,
'profit_mean_pct': round(profit_mean * 100, 2),
'profit_sum': profit_sum,
@@ -295,31 +207,6 @@ def generate_strategy_comparison(bt_stats: Dict) -> List[Dict]:
return tabular_data
def generate_edge_table(results: dict) -> str:
floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', 'd', 'd')
tabular_data = []
headers = ['Pair', 'Stoploss', 'Win Rate', 'Risk Reward Ratio',
'Required Risk Reward', 'Expectancy', 'Total Number of Trades',
'Average Duration (min)']
for result in results.items():
if result[1].nb_trades > 0:
tabular_data.append([
result[0],
result[1].stoploss,
result[1].winrate,
result[1].risk_reward_ratio,
result[1].required_risk_reward,
result[1].expectancy,
result[1].nb_trades,
round(result[1].avg_trade_duration)
])
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(tabular_data, headers=headers,
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
def _get_resample_from_period(period: str) -> str:
if period == 'day':
return '1d'
@@ -344,6 +231,7 @@ def generate_periodic_breakdown_stats(trade_list: List, period: str) -> List[Dic
wins = sum(day['profit_abs'] > 0)
draws = sum(day['profit_abs'] == 0)
loses = sum(day['profit_abs'] < 0)
trades = (wins + draws + loses)
stats.append(
{
'date': name.strftime('%d/%m/%Y'),
@@ -351,7 +239,8 @@ def generate_periodic_breakdown_stats(trade_list: List, period: str) -> List[Dic
'profit_abs': profit_abs,
'wins': wins,
'draws': draws,
'loses': loses
'loses': loses,
'winrate': wins / trades if trades else 0.0,
}
)
return stats
@@ -364,6 +253,23 @@ def generate_all_periodic_breakdown_stats(trade_list: List) -> Dict[str, List]:
return result
def calc_streak(dataframe: DataFrame) -> Tuple[int, int]:
"""
Calculate consecutive win and loss streaks
:param dataframe: Dataframe containing the trades dataframe, with profit_ratio column
:return: Tuple containing consecutive wins and losses
"""
df = Series(np.where(dataframe['profit_ratio'] > 0, 'win', 'loss')).to_frame('result')
df['streaks'] = df['result'].ne(df['result'].shift()).cumsum().rename('streaks')
df['counter'] = df['streaks'].groupby(df['streaks']).cumcount() + 1
res = df.groupby(df['result']).max()
#
cons_wins = int(res.loc['win', 'counter']) if 'win' in res.index else 0
cons_losses = int(res.loc['loss', 'counter']) if 'loss' in res.index else 0
return cons_wins, cons_losses
def generate_trading_stats(results: DataFrame) -> Dict[str, Any]:
""" Generate overall trade statistics """
if len(results) == 0:
@@ -371,9 +277,12 @@ def generate_trading_stats(results: DataFrame) -> Dict[str, Any]:
'wins': 0,
'losses': 0,
'draws': 0,
'winrate': 0,
'holding_avg': timedelta(),
'winner_holding_avg': timedelta(),
'loser_holding_avg': timedelta(),
'max_consecutive_wins': 0,
'max_consecutive_losses': 0,
}
winning_trades = results.loc[results['profit_ratio'] > 0]
@@ -386,17 +295,21 @@ def generate_trading_stats(results: DataFrame) -> Dict[str, Any]:
if not winning_trades.empty else timedelta())
loser_holding_avg = (timedelta(minutes=round(losing_trades['trade_duration'].mean()))
if not losing_trades.empty else timedelta())
winstreak, loss_streak = calc_streak(results)
return {
'wins': len(winning_trades),
'losses': len(losing_trades),
'draws': len(draw_trades),
'winrate': len(winning_trades) / len(results) if len(results) else 0.0,
'holding_avg': holding_avg,
'holding_avg_s': holding_avg.total_seconds(),
'winner_holding_avg': winner_holding_avg,
'winner_holding_avg_s': winner_holding_avg.total_seconds(),
'loser_holding_avg': loser_holding_avg,
'loser_holding_avg_s': loser_holding_avg.total_seconds(),
'max_consecutive_wins': winstreak,
'max_consecutive_losses': loss_streak,
}
@@ -489,6 +402,7 @@ def generate_strategy_stats(pairlist: List[str],
losing_profit = results.loc[results['profit_abs'] < 0, 'profit_abs'].sum()
profit_factor = winning_profit / abs(losing_profit) if losing_profit else 0.0
expectancy, expectancy_ratio = calculate_expectancy(results)
backtest_days = (max_date - min_date).days or 1
strat_stats = {
'trades': results.to_dict(orient='records'),
@@ -514,7 +428,8 @@ def generate_strategy_stats(pairlist: List[str],
'profit_total_long_abs': results.loc[~results['is_short'], 'profit_abs'].sum(),
'profit_total_short_abs': results.loc[results['is_short'], 'profit_abs'].sum(),
'cagr': calculate_cagr(backtest_days, start_balance, content['final_balance']),
'expectancy': calculate_expectancy(results),
'expectancy': expectancy,
'expectancy_ratio': expectancy_ratio,
'sortino': calculate_sortino(results, min_date, max_date, start_balance),
'sharpe': calculate_sharpe(results, min_date, max_date, start_balance),
'calmar': calculate_calmar(results, min_date, max_date, start_balance),
@@ -652,357 +567,3 @@ def generate_backtest_stats(btdata: Dict[str, DataFrame],
result['strategy_comparison'] = strategy_results
return result
###
# Start output section
###
def text_table_bt_results(pair_results: List[Dict[str, Any]], stake_currency: str) -> str:
"""
Generates and returns a text table for the given backtest data and the results dataframe
:param pair_results: List of Dictionaries - one entry per pair + final TOTAL row
:param stake_currency: stake-currency - used to correctly name headers
:return: pretty printed table with tabulate as string
"""
headers = _get_line_header('Pair', stake_currency)
floatfmt = _get_line_floatfmt(stake_currency)
output = [[
t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'],
t['profit_total_pct'], t['duration_avg'],
generate_wins_draws_losses(t['wins'], t['draws'], t['losses'])
] for t in pair_results]
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(output, headers=headers,
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
def text_table_exit_reason(exit_reason_stats: List[Dict[str, Any]], stake_currency: str) -> str:
"""
Generate small table outlining Backtest results
:param sell_reason_stats: Exit reason metrics
:param stake_currency: Stakecurrency used
:return: pretty printed table with tabulate as string
"""
headers = [
'Exit Reason',
'Exits',
'Win Draws Loss Win%',
'Avg Profit %',
'Cum Profit %',
f'Tot Profit {stake_currency}',
'Tot Profit %',
]
output = [[
t.get('exit_reason', t.get('sell_reason')), t['trades'],
generate_wins_draws_losses(t['wins'], t['draws'], t['losses']),
t['profit_mean_pct'], t['profit_sum_pct'],
round_coin_value(t['profit_total_abs'], stake_currency, False),
t['profit_total_pct'],
] for t in exit_reason_stats]
return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right")
def text_table_tags(tag_type: str, tag_results: List[Dict[str, Any]], stake_currency: str) -> str:
"""
Generates and returns a text table for the given backtest data and the results dataframe
:param pair_results: List of Dictionaries - one entry per pair + final TOTAL row
:param stake_currency: stake-currency - used to correctly name headers
:return: pretty printed table with tabulate as string
"""
if (tag_type == "enter_tag"):
headers = _get_line_header("TAG", stake_currency)
else:
headers = _get_line_header("TAG", stake_currency, 'Exits')
floatfmt = _get_line_floatfmt(stake_currency)
output = [
[
t['key'] if t['key'] is not None and len(
t['key']) > 0 else "OTHER",
t['trades'],
t['profit_mean_pct'],
t['profit_sum_pct'],
t['profit_total_abs'],
t['profit_total_pct'],
t['duration_avg'],
generate_wins_draws_losses(
t['wins'],
t['draws'],
t['losses'])] for t in tag_results]
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(output, headers=headers,
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
def text_table_periodic_breakdown(days_breakdown_stats: List[Dict[str, Any]],
stake_currency: str, period: str) -> str:
"""
Generate small table with Backtest results by days
:param days_breakdown_stats: Days breakdown metrics
:param stake_currency: Stakecurrency used
:return: pretty printed table with tabulate as string
"""
headers = [
period.capitalize(),
f'Tot Profit {stake_currency}',
'Wins',
'Draws',
'Losses',
]
output = [[
d['date'], round_coin_value(d['profit_abs'], stake_currency, False),
d['wins'], d['draws'], d['loses'],
] for d in days_breakdown_stats]
return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right")
def text_table_strategy(strategy_results, stake_currency: str) -> str:
"""
Generate summary table per strategy
:param strategy_results: Dict of <Strategyname: DataFrame> containing results for all strategies
:param stake_currency: stake-currency - used to correctly name headers
:return: pretty printed table with tabulate as string
"""
floatfmt = _get_line_floatfmt(stake_currency)
headers = _get_line_header('Strategy', stake_currency)
# _get_line_header() is also used for per-pair summary. Per-pair drawdown is mostly useless
# therefore we slip this column in only for strategy summary here.
headers.append('Drawdown')
# Align drawdown string on the center two space separator.
if 'max_drawdown_account' in strategy_results[0]:
drawdown = [f'{t["max_drawdown_account"] * 100:.2f}' for t in strategy_results]
else:
# Support for prior backtest results
drawdown = [f'{t["max_drawdown_per"]:.2f}' for t in strategy_results]
dd_pad_abs = max([len(t['max_drawdown_abs']) for t in strategy_results])
dd_pad_per = max([len(dd) for dd in drawdown])
drawdown = [f'{t["max_drawdown_abs"]:>{dd_pad_abs}} {stake_currency} {dd:>{dd_pad_per}}%'
for t, dd in zip(strategy_results, drawdown)]
output = [[
t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'],
t['profit_total_pct'], t['duration_avg'],
generate_wins_draws_losses(t['wins'], t['draws'], t['losses']), drawdown]
for t, drawdown in zip(strategy_results, drawdown)]
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(output, headers=headers,
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
def text_table_add_metrics(strat_results: Dict) -> str:
if len(strat_results['trades']) > 0:
best_trade = max(strat_results['trades'], key=lambda x: x['profit_ratio'])
worst_trade = min(strat_results['trades'], key=lambda x: x['profit_ratio'])
short_metrics = [
('', ''), # Empty line to improve readability
('Long / Short',
f"{strat_results.get('trade_count_long', 'total_trades')} / "
f"{strat_results.get('trade_count_short', 0)}"),
('Total profit Long %', f"{strat_results['profit_total_long']:.2%}"),
('Total profit Short %', f"{strat_results['profit_total_short']:.2%}"),
('Absolute profit Long', round_coin_value(strat_results['profit_total_long_abs'],
strat_results['stake_currency'])),
('Absolute profit Short', round_coin_value(strat_results['profit_total_short_abs'],
strat_results['stake_currency'])),
] if strat_results.get('trade_count_short', 0) > 0 else []
drawdown_metrics = []
if 'max_relative_drawdown' in strat_results:
# Compatibility to show old hyperopt results
drawdown_metrics.append(
('Max % of account underwater', f"{strat_results['max_relative_drawdown']:.2%}")
)
drawdown_metrics.extend([
('Absolute Drawdown (Account)', f"{strat_results['max_drawdown_account']:.2%}")
if 'max_drawdown_account' in strat_results else (
'Drawdown', f"{strat_results['max_drawdown']:.2%}"),
('Absolute Drawdown', round_coin_value(strat_results['max_drawdown_abs'],
strat_results['stake_currency'])),
('Drawdown high', round_coin_value(strat_results['max_drawdown_high'],
strat_results['stake_currency'])),
('Drawdown low', round_coin_value(strat_results['max_drawdown_low'],
strat_results['stake_currency'])),
('Drawdown Start', strat_results['drawdown_start']),
('Drawdown End', strat_results['drawdown_end']),
])
entry_adjustment_metrics = [
('Canceled Trade Entries', strat_results.get('canceled_trade_entries', 'N/A')),
('Canceled Entry Orders', strat_results.get('canceled_entry_orders', 'N/A')),
('Replaced Entry Orders', strat_results.get('replaced_entry_orders', 'N/A')),
] if strat_results.get('canceled_entry_orders', 0) > 0 else []
# Newly added fields should be ignored if they are missing in strat_results. hyperopt-show
# command stores these results and newer version of freqtrade must be able to handle old
# results with missing new fields.
metrics = [
('Backtesting from', strat_results['backtest_start']),
('Backtesting to', strat_results['backtest_end']),
('Max open trades', strat_results['max_open_trades']),
('', ''), # Empty line to improve readability
('Total/Daily Avg Trades',
f"{strat_results['total_trades']} / {strat_results['trades_per_day']}"),
('Starting balance', round_coin_value(strat_results['starting_balance'],
strat_results['stake_currency'])),
('Final balance', round_coin_value(strat_results['final_balance'],
strat_results['stake_currency'])),
('Absolute profit ', round_coin_value(strat_results['profit_total_abs'],
strat_results['stake_currency'])),
('Total profit %', f"{strat_results['profit_total']:.2%}"),
('CAGR %', f"{strat_results['cagr']:.2%}" if 'cagr' in strat_results else 'N/A'),
('Sortino', f"{strat_results['sortino']:.2f}" if 'sortino' in strat_results else 'N/A'),
('Sharpe', f"{strat_results['sharpe']:.2f}" if 'sharpe' in strat_results else 'N/A'),
('Calmar', f"{strat_results['calmar']:.2f}" if 'calmar' in strat_results else 'N/A'),
('Profit factor', f'{strat_results["profit_factor"]:.2f}' if 'profit_factor'
in strat_results else 'N/A'),
('Expectancy', f"{strat_results['expectancy']:.2f}" if 'expectancy'
in strat_results else 'N/A'),
('Trades per day', strat_results['trades_per_day']),
('Avg. daily profit %',
f"{(strat_results['profit_total'] / strat_results['backtest_days']):.2%}"),
('Avg. stake amount', round_coin_value(strat_results['avg_stake_amount'],
strat_results['stake_currency'])),
('Total trade volume', round_coin_value(strat_results['total_volume'],
strat_results['stake_currency'])),
*short_metrics,
('', ''), # Empty line to improve readability
('Best Pair', f"{strat_results['best_pair']['key']} "
f"{strat_results['best_pair']['profit_sum']:.2%}"),
('Worst Pair', f"{strat_results['worst_pair']['key']} "
f"{strat_results['worst_pair']['profit_sum']:.2%}"),
('Best trade', f"{best_trade['pair']} {best_trade['profit_ratio']:.2%}"),
('Worst trade', f"{worst_trade['pair']} "
f"{worst_trade['profit_ratio']:.2%}"),
('Best day', round_coin_value(strat_results['backtest_best_day_abs'],
strat_results['stake_currency'])),
('Worst day', round_coin_value(strat_results['backtest_worst_day_abs'],
strat_results['stake_currency'])),
('Days win/draw/lose', f"{strat_results['winning_days']} / "
f"{strat_results['draw_days']} / {strat_results['losing_days']}"),
('Avg. Duration Winners', f"{strat_results['winner_holding_avg']}"),
('Avg. Duration Loser', f"{strat_results['loser_holding_avg']}"),
('Rejected Entry signals', strat_results.get('rejected_signals', 'N/A')),
('Entry/Exit Timeouts',
f"{strat_results.get('timedout_entry_orders', 'N/A')} / "
f"{strat_results.get('timedout_exit_orders', 'N/A')}"),
*entry_adjustment_metrics,
('', ''), # Empty line to improve readability
('Min balance', round_coin_value(strat_results['csum_min'],
strat_results['stake_currency'])),
('Max balance', round_coin_value(strat_results['csum_max'],
strat_results['stake_currency'])),
*drawdown_metrics,
('Market change', f"{strat_results['market_change']:.2%}"),
]
return tabulate(metrics, headers=["Metric", "Value"], tablefmt="orgtbl")
else:
start_balance = round_coin_value(strat_results['starting_balance'],
strat_results['stake_currency'])
stake_amount = round_coin_value(
strat_results['stake_amount'], strat_results['stake_currency']
) if strat_results['stake_amount'] != UNLIMITED_STAKE_AMOUNT else 'unlimited'
message = ("No trades made. "
f"Your starting balance was {start_balance}, "
f"and your stake was {stake_amount}."
)
return message
def show_backtest_result(strategy: str, results: Dict[str, Any], stake_currency: str,
backtest_breakdown=[]):
"""
Print results for one strategy
"""
# Print results
print(f"Result for strategy {strategy}")
table = text_table_bt_results(results['results_per_pair'], stake_currency=stake_currency)
if isinstance(table, str):
print(' BACKTESTING REPORT '.center(len(table.splitlines()[0]), '='))
print(table)
table = text_table_bt_results(results['left_open_trades'], stake_currency=stake_currency)
if isinstance(table, str) and len(table) > 0:
print(' LEFT OPEN TRADES REPORT '.center(len(table.splitlines()[0]), '='))
print(table)
if (results.get('results_per_enter_tag') is not None
or results.get('results_per_buy_tag') is not None):
# results_per_buy_tag is deprecated and should be removed 2 versions after short golive.
table = text_table_tags(
"enter_tag",
results.get('results_per_enter_tag', results.get('results_per_buy_tag')),
stake_currency=stake_currency)
if isinstance(table, str) and len(table) > 0:
print(' ENTER TAG STATS '.center(len(table.splitlines()[0]), '='))
print(table)
exit_reasons = results.get('exit_reason_summary', results.get('sell_reason_summary'))
table = text_table_exit_reason(exit_reason_stats=exit_reasons,
stake_currency=stake_currency)
if isinstance(table, str) and len(table) > 0:
print(' EXIT REASON STATS '.center(len(table.splitlines()[0]), '='))
print(table)
for period in backtest_breakdown:
if period in results.get('periodic_breakdown', {}):
days_breakdown_stats = results['periodic_breakdown'][period]
else:
days_breakdown_stats = generate_periodic_breakdown_stats(
trade_list=results['trades'], period=period)
table = text_table_periodic_breakdown(days_breakdown_stats=days_breakdown_stats,
stake_currency=stake_currency, period=period)
if isinstance(table, str) and len(table) > 0:
print(f' {period.upper()} BREAKDOWN '.center(len(table.splitlines()[0]), '='))
print(table)
table = text_table_add_metrics(results)
if isinstance(table, str) and len(table) > 0:
print(' SUMMARY METRICS '.center(len(table.splitlines()[0]), '='))
print(table)
if isinstance(table, str) and len(table) > 0:
print('=' * len(table.splitlines()[0]))
print()
def show_backtest_results(config: Config, backtest_stats: Dict):
stake_currency = config['stake_currency']
for strategy, results in backtest_stats['strategy'].items():
show_backtest_result(
strategy, results, stake_currency,
config.get('backtest_breakdown', []))
if len(backtest_stats['strategy']) > 0:
# Print Strategy summary table
table = text_table_strategy(backtest_stats['strategy_comparison'], stake_currency)
print(f"Backtested {results['backtest_start']} -> {results['backtest_end']} |"
f" Max open trades : {results['max_open_trades']}")
print(' STRATEGY SUMMARY '.center(len(table.splitlines()[0]), '='))
print(table)
print('=' * len(table.splitlines()[0]))
print('\nFor more details, please look at the detail tables above')
def show_sorted_pairlist(config: Config, backtest_stats: Dict):
if config.get('backtest_show_pair_list', False):
for strategy, results in backtest_stats['strategy'].items():
print(f"Pairs for Strategy {strategy}: \n[")
for result in results['results_per_pair']:
if result["key"] != 'TOTAL':
print(f'"{result["key"]}", // {result["profit_mean"]:.2%}')
print("]")

View File

@@ -42,7 +42,7 @@ class _KeyValueStoreModel(ModelBase):
int_value: Mapped[Optional[int]]
class KeyValueStore():
class KeyValueStore:
"""
Generic bot-wide, persistent key-value store
Can be used to store generic values, e.g. very first bot startup time.

Some files were not shown because too many files have changed in this diff Show More