Compare commits

...

387 Commits

Author SHA1 Message Date
Matthias
43f1537383 Merge pull request #8697 from freqtrade/new_release
New release 2023.5
2023-05-28 19:59:33 +02:00
Matthias
c9f78afe65 Bump version to 2023.5 2023-05-28 10:00:39 +02:00
Matthias
a3473f3f60 Better handling of shift 2023-05-28 10:00:39 +02:00
Matthias
4eb4275331 Fix volatilityfilter behavior
closes #8698
2023-05-28 10:00:38 +02:00
Matthias
b9121274fb Merge branch 'stable' into new_release 2023-05-27 20:01:51 +02:00
Matthias
bd266f654e Properly handle invalid pairlists type before config validation
closes #8695
2023-05-27 08:19:56 +02:00
Matthias
c23a045de4 Merge pull request #8622 from freqtrade/frog-forceenter-price
Add check for None prices in forceenter REST API script
2023-05-25 19:22:03 +02:00
Matthias
61ee77e07e Merge pull request #8690 from freqtrade/remove-tb-warning
Update base_tensorboard.py
2023-05-25 18:21:05 +02:00
Robert Caulk
f647fb342b Update base_tensorboard.py
Remove incorrect warning message.
2023-05-25 16:35:06 +02:00
Robert Caulk
d4183b3fcb Merge pull request #8688 from freqtrade/dependabot/pip/develop/stable-baselines3-2.0.0a10
Bump stable-baselines3 from 2.0.0a9 to 2.0.0a10
2023-05-25 09:24:55 +02:00
Matthias
6b0b62dadf Merge pull request #8686 from freqtrade/fix/8681
okx stop improvements
2023-05-25 06:43:22 +02:00
dependabot[bot]
9e9f9b21e5 Bump stable-baselines3 from 2.0.0a9 to 2.0.0a10
Bumps [stable-baselines3](https://github.com/DLR-RM/stable-baselines3) from 2.0.0a9 to 2.0.0a10.
- [Release notes](https://github.com/DLR-RM/stable-baselines3/releases)
- [Commits](https://github.com/DLR-RM/stable-baselines3/commits)

---
updated-dependencies:
- dependency-name: stable-baselines3
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-25 04:24:42 +00:00
Matthias
91e009bf6d Merge pull request #8677 from richardjozsa/develop
Stable baselines 3 seeding update
2023-05-25 06:23:34 +02:00
Matthias
b5ed693bee Extrac OKX convert stop order, call for regular orders, too 2023-05-24 20:15:36 +02:00
Matthias
b8220ee0f7 Improve recovery detection by skipping open orders 2023-05-24 18:19:14 +02:00
Matthias
a0336c83c3 Update method casing in tests 2023-05-23 19:22:58 +02:00
Matthias
6efc62e4cd Add test which verifies #8680 won't happen again 2023-05-23 19:10:10 +02:00
Matthias
6292d1af6d Use camelcase version of private fapi method
closes #8680
2023-05-23 19:07:58 +02:00
Matthias
9ffdaceef3 Bybit - use Proxy 2023-05-23 07:15:41 +02:00
Matthias
b2d9b914ea Merge pull request #8679 from freqtrade/dependabot/pip/requests-2.31.0
Bump requests from 2.30.0 to 2.31.0
2023-05-23 07:15:35 +02:00
dependabot[bot]
1e10b25e3d Bump requests from 2.30.0 to 2.31.0
Bumps [requests](https://github.com/psf/requests) from 2.30.0 to 2.31.0.
- [Release notes](https://github.com/psf/requests/releases)
- [Changelog](https://github.com/psf/requests/blob/main/HISTORY.md)
- [Commits](https://github.com/psf/requests/compare/v2.30.0...v2.31.0)

---
updated-dependencies:
- dependency-name: requests
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-22 21:58:08 +00:00
Matthias
5b29e710dc Merge pull request #8004 from wizrds/fix/dataframe_json
Revert DataFrame serialization in Producer mode (>pandas 2.0)
2023-05-22 19:58:05 +02:00
Matthias
e70cafe578 Merge branch 'develop' into pr/wizrds/8004 2023-05-22 18:24:32 +02:00
Matthias
44bdac5e8c Improve developer docs with some minor improvements 2023-05-22 18:23:33 +02:00
Matthias
85c14578e2 Merge pull request #8661 from freqtrade/feat/datetimehelpers
Add datetime helpers, reduce arrow usage to a minimum
2023-05-22 18:22:29 +02:00
Matthias
09aaf894c6 Merge pull request #8673 from freqtrade/dependabot/pip/develop/ruff-0.0.269
Bump ruff from 0.0.267 to 0.0.269
2023-05-22 11:51:27 +02:00
Matthias
795e3e324f Merge pull request #8674 from freqtrade/dependabot/pip/develop/sqlalchemy-2.0.15
Bump sqlalchemy from 2.0.13 to 2.0.15
2023-05-22 11:33:55 +02:00
Richard Jozsa
39f4fb8797 Merge branch 'freqtrade:develop' into develop 2023-05-22 08:36:25 +00:00
Richard Jozsa
d26aa231fc Stable baselines updates, and fix
There was a seeding error in SB3 after the gymnasium update, the stable baselines team has patched and fixed the issue, but the reset function has to be aligned.
2023-05-22 10:36:07 +02:00
Matthias
6d9b8a4a99 Merge pull request #8669 from freqtrade/dependabot/pip/develop/ccxt-3.1.5
Bump ccxt from 3.0.103 to 3.1.5
2023-05-22 09:23:56 +02:00
dependabot[bot]
2242d544fc Bump ruff from 0.0.267 to 0.0.269
Bumps [ruff](https://github.com/charliermarsh/ruff) from 0.0.267 to 0.0.269.
- [Release notes](https://github.com/charliermarsh/ruff/releases)
- [Changelog](https://github.com/charliermarsh/ruff/blob/main/BREAKING_CHANGES.md)
- [Commits](https://github.com/charliermarsh/ruff/compare/v0.0.267...v0.0.269)

---
updated-dependencies:
- dependency-name: ruff
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-22 07:21:19 +00:00
Matthias
ad5f0307b7 bump sqlalchemy precommit 2023-05-22 09:21:18 +02:00
Matthias
8fccd98eca Merge pull request #8676 from freqtrade/dependabot/pip/develop/mkdocs-material-9.1.14
Bump mkdocs-material from 9.1.12 to 9.1.14
2023-05-22 09:20:31 +02:00
Matthias
e71b66f5c2 Merge pull request #8670 from freqtrade/dependabot/pip/develop/fastapi-0.95.2
Bump fastapi from 0.95.1 to 0.95.2
2023-05-22 09:19:38 +02:00
Matthias
0e99fe349c Merge pull request #8671 from freqtrade/dependabot/pip/develop/pre-commit-3.3.2
Bump pre-commit from 3.3.1 to 3.3.2
2023-05-22 09:19:18 +02:00
dependabot[bot]
96eb109b4e Bump mkdocs-material from 9.1.12 to 9.1.14
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 9.1.12 to 9.1.14.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/9.1.12...9.1.14)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-22 03:59:01 +00:00
dependabot[bot]
ae52ce8cda Bump sqlalchemy from 2.0.13 to 2.0.15
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 2.0.13 to 2.0.15.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/main/CHANGES.rst)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

---
updated-dependencies:
- dependency-name: sqlalchemy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-22 03:58:23 +00:00
dependabot[bot]
811198cc3e Bump pre-commit from 3.3.1 to 3.3.2
Bumps [pre-commit](https://github.com/pre-commit/pre-commit) from 3.3.1 to 3.3.2.
- [Release notes](https://github.com/pre-commit/pre-commit/releases)
- [Changelog](https://github.com/pre-commit/pre-commit/blob/main/CHANGELOG.md)
- [Commits](https://github.com/pre-commit/pre-commit/compare/v3.3.1...v3.3.2)

---
updated-dependencies:
- dependency-name: pre-commit
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-22 03:57:15 +00:00
dependabot[bot]
4e3de64c57 Bump fastapi from 0.95.1 to 0.95.2
Bumps [fastapi](https://github.com/tiangolo/fastapi) from 0.95.1 to 0.95.2.
- [Release notes](https://github.com/tiangolo/fastapi/releases)
- [Commits](https://github.com/tiangolo/fastapi/compare/0.95.1...0.95.2)

---
updated-dependencies:
- dependency-name: fastapi
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-22 03:57:01 +00:00
dependabot[bot]
8c866abad8 Bump ccxt from 3.0.103 to 3.1.5
Bumps [ccxt](https://github.com/ccxt/ccxt) from 3.0.103 to 3.1.5.
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/3.0.103...3.1.5)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-22 03:56:52 +00:00
Matthias
a2d03c4e2c Merge pull request #8047 from freqtrade/dependabot/pip/develop/cachetools-5.3.0
Bump cachetools from 4.2.2 to 5.3.0
2023-05-21 21:59:12 +02:00
dependabot[bot]
68ab147f57 Bump cachetools from 4.2.2 to 5.3.0
Bumps [cachetools](https://github.com/tkem/cachetools) from 4.2.2 to 5.3.0.
- [Release notes](https://github.com/tkem/cachetools/releases)
- [Changelog](https://github.com/tkem/cachetools/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/tkem/cachetools/compare/v4.2.2...v5.3.0)

---
updated-dependencies:
- dependency-name: cachetools
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-21 12:52:49 +00:00
Matthias
abc82a3fdf Simplify api backtesting by extracting the background_method 2023-05-21 12:04:18 +02:00
Matthias
a87b215d67 Fix odd import 2023-05-21 09:50:59 +02:00
Matthias
914195acf4 Ensure one test can't fail 20 others 2023-05-21 09:14:00 +02:00
Matthias
96d74063fc Don't have public attributes marked as private 2023-05-21 09:12:02 +02:00
Matthias
5316227219 Extract api backtest logic from ApiServer class 2023-05-21 09:08:52 +02:00
Matthias
fcb75560c4 Merge pull request #8565 from vinistation/develop
GPU Enable in docker-compose
2023-05-20 07:30:30 +02:00
robcaulk
c4c0371ed3 add docker comment to docker usage freqai doc section 2023-05-19 14:48:17 +00:00
robcaulk
dd1a0156b9 resolve conflict, ensure gpu works with transformer 2023-05-19 14:39:16 +00:00
Matthias
7ecc2f76a2 Merge pull request #8650 from freqtrade/feat/secure_keys
Better secure the user's exchange keys during runtime
2023-05-19 08:45:17 +02:00
Matthias
a2cbe5df04 Remove trailing spaces 2023-05-19 07:26:11 +02:00
Matthias
0d4010a0be Add sample docker-compose file for freqAI, comment about that 2023-05-19 07:25:02 +02:00
Matthias
9d0f488de7 Some more edits due to arrow 2023-05-19 07:15:24 +02:00
Matthias
707c6744b9 Fix doc and example indentation 2023-05-19 07:02:54 +02:00
Matthias
ebfc9a6039 Remove some humanize occurances 2023-05-18 19:29:37 +02:00
Matthias
5d0cff2f76 Add dt_humanize helper 2023-05-18 07:07:22 +02:00
Matthias
f657d06e91 Move shorten_date to datetime helpers 2023-05-18 07:00:36 +02:00
Matthias
b40c45ee42 Timerange -> datetime 2023-05-18 07:00:36 +02:00
Matthias
adcf751340 Bump min-requirement of arrow 2023-05-18 07:00:36 +02:00
Matthias
261822147c Fix remaining arrow testcases 2023-05-18 07:00:36 +02:00
Matthias
3ec55885bd Remove arrow from more tests 2023-05-18 07:00:36 +02:00
Matthias
9421ca2628 Remove arrow from test_persistence 2023-05-18 07:00:36 +02:00
Matthias
3a4d103bc8 Properly check wallets with new type 2023-05-18 07:00:36 +02:00
Matthias
7a2ff60255 Fix more tests 2023-05-18 07:00:36 +02:00
Matthias
915cb5ffbd add dt_utc helper 2023-05-18 07:00:36 +02:00
Matthias
c0713eb77f More tests to dt_helpers 2023-05-18 07:00:36 +02:00
Matthias
29fdcdbf56 reduce arrow in tests 2023-05-18 07:00:36 +02:00
Matthias
d131dd4050 Fix wrong transition 2023-05-18 07:00:36 +02:00
Matthias
cfae98ae00 dt_now for tests 2023-05-18 07:00:36 +02:00
Matthias
e4f701fd0d Don't use arrow for everything 2023-05-18 07:00:36 +02:00
Matthias
5b66ef4bea Implement datetime.floor 2023-05-18 07:00:36 +02:00
Matthias
7f73e99437 Simplify exchange_utils 2023-05-18 07:00:36 +02:00
Matthias
55ce58d79f Reduce some arrow usages in favor of dt helpers 2023-05-18 07:00:36 +02:00
Matthias
000f72942a Improve dt_now_ts helper 2023-05-18 07:00:36 +02:00
Matthias
aa949153eb Add now ts helper 2023-05-18 07:00:36 +02:00
Matthias
5c6f3ea439 Improve wallets time handling 2023-05-18 07:00:36 +02:00
Matthias
261df527d9 dt_now 2023-05-18 07:00:36 +02:00
Matthias
6b735bc683 Implement dt_now 2023-05-18 07:00:36 +02:00
Matthias
6044bbb6b1 Add datetime helpers to unify code 2023-05-18 07:00:36 +02:00
Matthias
2477ef57f9 Reduce arrow usage throughout code 2023-05-18 07:00:36 +02:00
Matthias
1d03e8bc5f Reduce arrow usage further 2023-05-18 07:00:36 +02:00
Matthias
d3382fbe04 Reduce usage of arrow 2023-05-18 07:00:36 +02:00
Matthias
292bd62973 Reduce verbosity of httpx (we don't need to see telegram calls) 2023-05-18 07:00:18 +02:00
Matthias
c54f28ada8 Merge pull request #8623 from freqtrade/feat/tensorboard-logger
Add Tensorboard logger for PyTorch and XGBoost
2023-05-18 06:41:15 +02:00
robcaulk
adeab13bdf cleanup tests, cross fingers that mac will pass 2023-05-17 07:21:48 +00:00
Matthias
2ab732480f Ensure pi image can be built 2023-05-17 06:26:57 +02:00
Matthias
45ee12e257 reload_trade should be a post endpoint 2023-05-16 20:27:07 +02:00
Matthias
63294c4d3a Merge pull request #8652 from freqtrade/dependabot/pip/docs/pymdown-extensions-10.0
Bump pymdown-extensions from 9.11 to 10.0 in /docs
2023-05-16 11:03:20 +02:00
Matthias
bb760a47d5 Bump pymdown-extensions to 10.0.1 2023-05-16 10:15:46 +02:00
dependabot[bot]
61ea3d817a Bump pymdown-extensions from 9.11 to 10.0 in /docs
Bumps [pymdown-extensions](https://github.com/facelessuser/pymdown-extensions) from 9.11 to 10.0.
- [Release notes](https://github.com/facelessuser/pymdown-extensions/releases)
- [Commits](https://github.com/facelessuser/pymdown-extensions/compare/9.11...10.0)

---
updated-dependencies:
- dependency-name: pymdown-extensions
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-16 07:45:08 +00:00
Matthias
7d15c379cb Fix faulty removed import 2023-05-15 19:26:51 +02:00
Matthias
c7f7dd1d4b Avoid unnecessary type ignore 2023-05-15 18:27:12 +02:00
Matthias
1b714fdb00 Fix wrong "first trade" date in UI, improve interface
closes https://github.com/freqtrade/freqtrade-strategies/issues/301
2023-05-15 18:06:17 +02:00
Matthias
9b10287899 Improve typing 2023-05-15 17:53:18 +02:00
Matthias
2a388e2db3 Merge pull request #8643 from freqtrade/dependabot/pip/develop/sqlalchemy-2.0.13
Bump sqlalchemy from 2.0.12 to 2.0.13
2023-05-15 11:52:41 +02:00
Robert Caulk
f5b570663a Merge pull request #8647 from freqtrade/dependabot/pip/develop/torch-2.0.1
Bump torch from 2.0.0 to 2.0.1
2023-05-15 10:34:38 +02:00
Matthias
78f9e09a4a Merge branch 'develop' into dependabot/pip/develop/sqlalchemy-2.0.13 2023-05-15 09:53:13 +02:00
Matthias
3a0e123c67 Bump pre-commit sqlalchemy 2023-05-15 09:39:55 +02:00
Matthias
f5c851fa84 Merge pull request #8645 from freqtrade/dependabot/pip/develop/types-python-dateutil-2.8.19.13
Bump types-python-dateutil from 2.8.19.12 to 2.8.19.13
2023-05-15 09:25:57 +02:00
Matthias
ef15b7b3d8 pre-commit dateutil types 2023-05-15 08:42:28 +02:00
Matthias
901bd74077 Merge pull request #8644 from freqtrade/dependabot/pip/develop/ruff-0.0.267
Bump ruff from 0.0.265 to 0.0.267
2023-05-15 08:21:02 +02:00
dependabot[bot]
28905885e5 Bump sqlalchemy from 2.0.12 to 2.0.13
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 2.0.12 to 2.0.13.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/main/CHANGES.rst)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

---
updated-dependencies:
- dependency-name: sqlalchemy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-15 06:18:13 +00:00
Matthias
cebdb421a3 Merge pull request #8641 from freqtrade/dependabot/pip/develop/ccxt-3.0.103
Bump ccxt from 3.0.97 to 3.0.103
2023-05-15 08:17:15 +02:00
Matthias
00168425c2 Merge pull request #8646 from freqtrade/dependabot/pip/develop/pyjwt-2.7.0
Bump pyjwt from 2.6.0 to 2.7.0
2023-05-15 08:14:15 +02:00
Matthias
68f67c5ae8 Test proper removal of exchange keys 2023-05-15 07:22:40 +02:00
Matthias
c242d89cda Improve test format 2023-05-15 07:22:40 +02:00
Matthias
66c3eb2820 Remove keys from config before loading strategy 2023-05-15 07:22:40 +02:00
Matthias
b2a631e93a refactor remove_exchange_credentials 2023-05-15 07:22:40 +02:00
Matthias
fe36e77412 Split exchange_config before passing through the strategy 2023-05-15 07:22:40 +02:00
Matthias
fffb056ad3 load_exchange - force kwargs for non-required arguments 2023-05-15 07:22:40 +02:00
Matthias
0ea47118e1 Create test Utils package 2023-05-15 07:21:26 +02:00
Matthias
c1ac0f186c Merge pull request #8642 from freqtrade/dependabot/pip/develop/mkdocs-material-9.1.12
Bump mkdocs-material from 9.1.10 to 9.1.12
2023-05-15 07:00:15 +02:00
dependabot[bot]
dd76245393 Bump ruff from 0.0.265 to 0.0.267
Bumps [ruff](https://github.com/charliermarsh/ruff) from 0.0.265 to 0.0.267.
- [Release notes](https://github.com/charliermarsh/ruff/releases)
- [Changelog](https://github.com/charliermarsh/ruff/blob/main/BREAKING_CHANGES.md)
- [Commits](https://github.com/charliermarsh/ruff/compare/v0.0.265...v0.0.267)

---
updated-dependencies:
- dependency-name: ruff
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-15 04:31:22 +00:00
Matthias
ed6958d05f Merge pull request #8640 from freqtrade/dependabot/pip/develop/mypy-1.3.0
Bump mypy from 1.2.0 to 1.3.0
2023-05-15 06:30:38 +02:00
dependabot[bot]
acdd50aada Bump torch from 2.0.0 to 2.0.1
Bumps [torch](https://github.com/pytorch/pytorch) from 2.0.0 to 2.0.1.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/main/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/compare/v2.0.0...v2.0.1)

---
updated-dependencies:
- dependency-name: torch
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-15 03:57:51 +00:00
dependabot[bot]
33a0ed67df Bump pyjwt from 2.6.0 to 2.7.0
Bumps [pyjwt](https://github.com/jpadilla/pyjwt) from 2.6.0 to 2.7.0.
- [Release notes](https://github.com/jpadilla/pyjwt/releases)
- [Changelog](https://github.com/jpadilla/pyjwt/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/jpadilla/pyjwt/compare/2.6.0...2.7.0)

---
updated-dependencies:
- dependency-name: pyjwt
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-15 03:57:33 +00:00
dependabot[bot]
f21a7a25d2 Bump types-python-dateutil from 2.8.19.12 to 2.8.19.13
Bumps [types-python-dateutil](https://github.com/python/typeshed) from 2.8.19.12 to 2.8.19.13.
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-python-dateutil
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-15 03:57:21 +00:00
dependabot[bot]
5f01b823da Bump mkdocs-material from 9.1.10 to 9.1.12
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 9.1.10 to 9.1.12.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/9.1.10...9.1.12)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-15 03:56:55 +00:00
dependabot[bot]
b0e7b43958 Bump ccxt from 3.0.97 to 3.0.103
Bumps [ccxt](https://github.com/ccxt/ccxt) from 3.0.97 to 3.0.103.
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/3.0.97...3.0.103)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-15 03:56:45 +00:00
dependabot[bot]
675ab840f2 Bump mypy from 1.2.0 to 1.3.0
Bumps [mypy](https://github.com/python/mypy) from 1.2.0 to 1.3.0.
- [Commits](https://github.com/python/mypy/compare/v1.2.0...v1.3.0)

---
updated-dependencies:
- dependency-name: mypy
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-15 03:56:38 +00:00
robcaulk
a225ab71e4 revert file count 2023-05-14 16:18:33 +00:00
robcaulk
9242dfa355 try reactivating tb for some tests 2023-05-14 16:05:49 +00:00
robcaulk
505f36a95f try even more deactivation 2023-05-14 15:49:24 +00:00
robcaulk
1ed084557a try even more deactivation 2023-05-14 15:44:41 +00:00
robcaulk
73e9047cd5 try to deactivate any test that has a callback 2023-05-14 14:53:12 +00:00
robcaulk
340d2191ff deactivate tensorboard by default 2023-05-14 14:39:23 +00:00
robcaulk
55a1a3afd6 add config option for activating and deactivating tensorboard logger, ensure the various flavors are never activated simultaneously 2023-05-14 14:08:00 +00:00
robcaulk
ab7a474ab6 try limiting tb_logger to pytorch only (XGBoost still gets its callback) 2023-05-14 12:03:15 +00:00
robcaulk
8a9b2fc16f fix merge conflicts with develop 2023-05-14 12:00:03 +00:00
Matthias
af8fbad281 Improve Date timezone useage 2023-05-14 08:54:26 +02:00
Matthias
bbce738523 Improve tests around timezone 2023-05-14 08:42:30 +02:00
Matthias
66a97ff45d Remove some utcnow usages 2023-05-13 20:43:37 +02:00
Matthias
7266279768 Improve docs around pytho 3.11 2023-05-13 20:22:15 +02:00
Matthias
59d6ae17be Merge pull request #8327 from skinner12/develop
Support for python 3.11 via setup.sh script
2023-05-13 19:57:44 +02:00
Matthias
1aa9dd02d6 Merge pull request #8588 from freqtrade/catboost_1.2
Bump catboost to 1.2, disable some constraints
2023-05-13 19:56:56 +02:00
Matthias
784087384c darwin excludes must use "sys_platform" 2023-05-13 17:22:11 +02:00
Matthias
838fbb76ab Improve version constraints 2023-05-13 16:43:45 +02:00
Matthias
7bba034efd Merge pull request #8560 from freqtrade/feat/recoverTrades
Recover trades after selling on exchange
2023-05-13 16:35:08 +02:00
Matthias
106db716f8 Force smaller catboost version on 3.8 macos 2023-05-13 16:32:46 +02:00
Matthias
e76356aff5 Bump catboost to 1.2, disable some constraints 2023-05-13 16:25:25 +02:00
Matthias
0db1869356 Update cached binance leverage tiers 2023-05-13 16:22:04 +02:00
Matthias
dc4268b6e7 Convert Exchange arguments to be kw only 2023-05-13 16:17:26 +02:00
Matthias
af95d56ceb Import deepcopy specifically 2023-05-13 16:16:35 +02:00
Matthias
0d4010c38c maint: Remove faulty config setting from default_conf 2023-05-13 16:16:20 +02:00
Matthias
90ac387444 Merge pull request #8634 from freqtrade/bug-fix/continual_learning
fix bug in continual_learning for PyTorch* models
2023-05-13 15:32:49 +02:00
robcaulk
18c1eda09b remove commented lines 2023-05-13 11:27:36 +00:00
robcaulk
2ec1302c10 add warnings in the doc for users to better understand the limitations of continual_learning 2023-05-13 11:23:57 +00:00
robcaulk
fad1c19856 add warnings in the doc for users to better understand the limitations of continual_learning 2023-05-13 11:21:43 +00:00
robcaulk
3ae3cc63df fix bug in continual_learning for PyTorch* models 2023-05-13 11:14:16 +00:00
Matthias
d50e221e62 Update active ccxt.futures test init 2023-05-13 11:03:26 +02:00
Matthias
1552d81f45 Simplify load_exchange interface 2023-05-13 11:03:26 +02:00
Matthias
b2a3fe6879 Improve remove credentials 2023-05-13 11:03:26 +02:00
Matthias
6541782758 Merge pull request #8631 from freqtrade/add-disclaimers-everwhere
Clarify expectations about the FreqAI + Freqtrade tool
2023-05-13 10:56:46 +02:00
Matthias
ab0f9d78ee Mock tensorboard callbacks for all freqAI tests 2023-05-13 08:08:30 +02:00
Matthias
23e8932a44 Mock tensorboard callbacks 2023-05-12 20:20:17 +02:00
Matthias
400cbd1836 Fix types 2023-05-12 19:47:53 +02:00
Matthias
871f1aabb7 Use tensorboard fallback for mac tests 2023-05-12 18:33:46 +02:00
Matthias
6d7172ac44 Re-add init file 2023-05-12 18:26:34 +02:00
Matthias
49b9b463b4 Move tensorboard callback exports to freqai.tensorboard. 2023-05-12 18:26:01 +02:00
Matthias
43213cc6ff Revert testing Reinforcement lerning on Mac 2023-05-12 18:07:28 +02:00
robcaulk
6e5a9fe4c9 mac strikes again 2023-05-12 13:55:41 +00:00
robcaulk
ca7ad8a49b good old macos 2023-05-12 12:50:11 +00:00
robcaulk
8261c988b9 try to fix mac CI 2023-05-12 09:11:14 +00:00
robcaulk
db0645ed1b add helpful hints for reward creation 2023-05-12 08:32:52 +00:00
robcaulk
31d15da49e add disclaimers everywhere about how example strategies are meant as examples 2023-05-12 08:16:48 +00:00
robcaulk
692fa390c6 fix the import logic, fix tests, put all tensorboard in a single folder 2023-05-12 07:56:44 +00:00
Matthias
ad2080ab3e Merge pull request #8630 from freqtrade/maint/test_user_data
Maint/test user data
2023-05-12 06:37:38 +02:00
Matthias
6000e68420 bump ccxt min dependency 2023-05-11 20:51:33 +02:00
Matthias
1d36878938 Bump min-requirements for python-telegram bot 2023-05-11 20:50:52 +02:00
Matthias
b970ddeb66 Fix unused import 2023-05-11 20:44:41 +02:00
Matthias
f7179f7c93 Fix last test with dependency on local user_data dir 2023-05-11 20:30:24 +02:00
Matthias
a00f0ff687 Merge pull request #8626 from freqtrade/ci/repochange
Check for repository changes
2023-05-11 20:11:31 +02:00
Matthias
1c1005247e Don't hardcode user_data in tests 2023-05-11 20:09:24 +02:00
Matthias
963ff8c620 Run Repo check on windows, too. 2023-05-11 10:57:24 +02:00
Matthias
395bf49198 Run Repo-check for macOS, too 2023-05-11 10:55:29 +02:00
Matthias
2ecd63234d Remove git status again 2023-05-11 10:54:46 +02:00
Matthias
bd6d4d5d2d Event-name for concurrency group? 2023-05-11 10:50:09 +02:00
Matthias
1ec1abdc33 Fix syntax 2023-05-11 10:45:52 +02:00
Matthias
800c6223ed Quote concurrency group 2023-05-11 10:45:30 +02:00
Matthias
3ba1eb6baa Improve concurrency group 2023-05-11 10:45:17 +02:00
Matthias
c60c4b9abb Update user_dir fixture to return user_data path 2023-05-11 07:10:34 +02:00
Matthias
7e023419de Auto-mock user_dir to tmpdir
This will avoid depending on the user directory being present for tests
2023-05-11 07:05:43 +02:00
Matthias
a74a081e61 Check for repository changes 2023-05-11 06:58:57 +02:00
robcaulk
6df5cb8878 add install requirement to tensorboard doc 2023-05-10 10:18:52 +00:00
robcaulk
b01aaa4d03 ensure backtesting also produces tb_logs, make sure tests are working 2023-05-10 10:11:33 +00:00
Robert Davey
242247be47 Fix var name 2023-05-10 10:56:14 +01:00
robcaulk
172b2587ab Merge remote-tracking branch 'originssh/develop' into develop 2023-05-10 09:48:54 +00:00
robcaulk
ffc4d87263 add tensorboard integration to XGBoost and PyTorch et al 2023-05-10 09:48:36 +00:00
Robert Davey
3a7e41e177 Update rest_client.py
Add fix for forceenter to avoid passing None prices back to the API
2023-05-10 10:32:00 +01:00
Robert Caulk
deeca484d8 Merge pull request #8619 from freqtrade/bug-fix-live_retrain_hours
Bug fix `live_retrain_hours`
2023-05-10 09:02:13 +02:00
Matthias
1f6a6ae86f Merge pull request #8620 from freqtrade/pytorch_tests_fix
Properly enable pytorch tests
2023-05-09 20:40:36 +02:00
Matthias
d9cc45851e Properly enable pytorch tests 2023-05-09 19:42:15 +02:00
Matthias
6731d6c505 Merge pull request #8616 from freqtrade/dependabot/pip/develop/pyarrow-12.0.0
Bump pyarrow from 11.0.0 to 12.0.0
2023-05-09 16:35:19 +02:00
robcaulk
2c0230ba93 avoid mutating new_trained_timerange 2023-05-09 12:42:02 +00:00
robcaulk
35ce88f1e5 ensure that the buffered timerange is not the trained timestamp so that live_retrain_hours functions properly 2023-05-09 10:00:33 +00:00
Matthias
55777eba73 Add pre-build arm wheel for pyarrow 2023-05-09 07:09:46 +02:00
Matthias
d02cf8f0b7 Merge pull request #8613 from freqtrade/dependabot/pip/develop/nbconvert-7.4.0
Bump nbconvert from 7.3.1 to 7.4.0
2023-05-08 20:15:49 +02:00
Matthias
2f25206fd5 Merge pull request #8615 from freqtrade/dependabot/pip/develop/urllib3-2.0.2
Bump urllib3 from 1.26.15 to 2.0.2
2023-05-08 19:54:16 +02:00
Matthias
f47db6e9fa Merge pull request #8617 from freqtrade/dependabot/pip/develop/ccxt-3.0.97
Bump ccxt from 3.0.85 to 3.0.97
2023-05-08 19:53:21 +02:00
Matthias
45c5b503c0 Merge pull request #8603 from freqtrade/dependabot/pip/develop/pre-commit-3.3.1
Bump pre-commit from 3.2.2 to 3.3.1
2023-05-08 19:47:40 +02:00
Matthias
33c2e754af Merge pull request #8611 from freqtrade/torch_ci_11
Run Torch tests on 3.11
2023-05-08 19:47:04 +02:00
Matthias
f9d16b5bbb Merge pull request #8614 from freqtrade/dependabot/pip/develop/mkdocs-material-9.1.10
Bump mkdocs-material from 9.1.9 to 9.1.10
2023-05-08 19:30:46 +02:00
dependabot[bot]
f2a65437a6 Bump ccxt from 3.0.85 to 3.0.97
Bumps [ccxt](https://github.com/ccxt/ccxt) from 3.0.85 to 3.0.97.
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/3.0.85...3.0.97)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-08 16:18:57 +00:00
dependabot[bot]
5a27245fcc Bump pyarrow from 11.0.0 to 12.0.0
Bumps [pyarrow](https://github.com/apache/arrow) from 11.0.0 to 12.0.0.
- [Commits](https://github.com/apache/arrow/compare/go/v11.0.0...go/v12.0.0)

---
updated-dependencies:
- dependency-name: pyarrow
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-08 16:18:40 +00:00
dependabot[bot]
3e39453905 Bump urllib3 from 1.26.15 to 2.0.2
Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.15 to 2.0.2.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.15...2.0.2)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-08 16:17:19 +00:00
dependabot[bot]
7e31cc4100 Bump mkdocs-material from 9.1.9 to 9.1.10
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 9.1.9 to 9.1.10.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/9.1.9...9.1.10)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-08 16:17:04 +00:00
dependabot[bot]
591a51e4bc Bump nbconvert from 7.3.1 to 7.4.0
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 7.3.1 to 7.4.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Changelog](https://github.com/jupyter/nbconvert/blob/main/CHANGELOG.md)
- [Commits](https://github.com/jupyter/nbconvert/compare/v7.3.1...v7.4.0)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-08 16:16:45 +00:00
Matthias
081a8b0ed0 Merge pull request #8609 from freqtrade/dependabot/pip/develop/types-requests-2.30.0.0
Bump types-requests from 2.29.0.0 to 2.30.0.0
2023-05-08 10:42:35 +02:00
dependabot[bot]
9d7c90e9da Bump pre-commit from 3.2.2 to 3.3.1
Bumps [pre-commit](https://github.com/pre-commit/pre-commit) from 3.2.2 to 3.3.1.
- [Release notes](https://github.com/pre-commit/pre-commit/releases)
- [Changelog](https://github.com/pre-commit/pre-commit/blob/main/CHANGELOG.md)
- [Commits](https://github.com/pre-commit/pre-commit/compare/v3.2.2...v3.3.1)

---
updated-dependencies:
- dependency-name: pre-commit
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-08 08:11:43 +00:00
Matthias
0336e5275c Merge pull request #8608 from freqtrade/dependabot/pip/develop/mkdocs-material-9.1.9
Bump mkdocs-material from 9.1.8 to 9.1.9
2023-05-08 10:01:37 +02:00
Matthias
c9533fc9fd Merge pull request #8610 from freqtrade/dependabot/pip/develop/ruff-0.0.265
Bump ruff from 0.0.263 to 0.0.265
2023-05-08 09:59:34 +02:00
Matthias
3952232214 Bump pre-commit requests types 2023-05-08 08:59:15 +02:00
Matthias
335f763c80 Merge pull request #8606 from freqtrade/dependabot/pip/develop/tensorboard-2.13.0
Bump tensorboard from 2.12.2 to 2.13.0
2023-05-08 08:48:56 +02:00
Matthias
8b8604b6e2 Merge pull request #8607 from freqtrade/dependabot/pip/develop/python-telegram-bot-20.3
Bump python-telegram-bot from 20.2 to 20.3
2023-05-08 08:43:20 +02:00
Matthias
225ae7fe6a Merge pull request #8605 from freqtrade/dependabot/pip/develop/requests-2.30.0
Bump requests from 2.29.0 to 2.30.0
2023-05-08 08:42:25 +02:00
Matthias
60b666feee Merge pull request #8604 from freqtrade/dependabot/github_actions/develop/pypa/gh-action-pypi-publish-1.8.6
Bump pypa/gh-action-pypi-publish from 1.8.5 to 1.8.6
2023-05-08 08:42:01 +02:00
dependabot[bot]
e0c63e12e4 Bump mkdocs-material from 9.1.8 to 9.1.9
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 9.1.8 to 9.1.9.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/9.1.8...9.1.9)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-08 05:15:49 +00:00
Matthias
e386d60831 Merge pull request #8602 from freqtrade/dependabot/pip/develop/mkdocs-1.4.3
Bump mkdocs from 1.4.2 to 1.4.3
2023-05-08 07:06:23 +02:00
Matthias
b0b0eb66df Merge pull request #8601 from freqtrade/dependabot/pip/develop/websockets-11.0.3
Bump websockets from 11.0.2 to 11.0.3
2023-05-08 07:06:06 +02:00
Matthias
10604bf49c Run Torch tests on 3.11 2023-05-08 06:46:30 +02:00
Matthias
a64cec2bdc Merge pull request #8600 from freqtrade/dependabot/pip/develop/orjson-3.8.12
Bump orjson from 3.8.11 to 3.8.12
2023-05-08 06:27:13 +02:00
dependabot[bot]
75e5f325a9 Bump ruff from 0.0.263 to 0.0.265
Bumps [ruff](https://github.com/charliermarsh/ruff) from 0.0.263 to 0.0.265.
- [Release notes](https://github.com/charliermarsh/ruff/releases)
- [Changelog](https://github.com/charliermarsh/ruff/blob/main/BREAKING_CHANGES.md)
- [Commits](https://github.com/charliermarsh/ruff/compare/v0.0.263...v0.0.265)

---
updated-dependencies:
- dependency-name: ruff
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-08 03:59:08 +00:00
dependabot[bot]
bf7c52a9ee Bump types-requests from 2.29.0.0 to 2.30.0.0
Bumps [types-requests](https://github.com/python/typeshed) from 2.29.0.0 to 2.30.0.0.
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-requests
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-08 03:58:37 +00:00
dependabot[bot]
7bd33be8f7 Bump python-telegram-bot from 20.2 to 20.3
Bumps [python-telegram-bot](https://github.com/python-telegram-bot/python-telegram-bot) from 20.2 to 20.3.
- [Release notes](https://github.com/python-telegram-bot/python-telegram-bot/releases)
- [Changelog](https://github.com/python-telegram-bot/python-telegram-bot/blob/master/CHANGES.rst)
- [Commits](https://github.com/python-telegram-bot/python-telegram-bot/compare/v20.2...v20.3)

---
updated-dependencies:
- dependency-name: python-telegram-bot
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-08 03:58:16 +00:00
dependabot[bot]
68a37cb71b Bump tensorboard from 2.12.2 to 2.13.0
Bumps [tensorboard](https://github.com/tensorflow/tensorboard) from 2.12.2 to 2.13.0.
- [Release notes](https://github.com/tensorflow/tensorboard/releases)
- [Changelog](https://github.com/tensorflow/tensorboard/blob/master/RELEASE.md)
- [Commits](https://github.com/tensorflow/tensorboard/compare/2.12.2...2.13.0)

---
updated-dependencies:
- dependency-name: tensorboard
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-08 03:58:05 +00:00
dependabot[bot]
ecd34ce470 Bump requests from 2.29.0 to 2.30.0
Bumps [requests](https://github.com/psf/requests) from 2.29.0 to 2.30.0.
- [Release notes](https://github.com/psf/requests/releases)
- [Changelog](https://github.com/psf/requests/blob/main/HISTORY.md)
- [Commits](https://github.com/psf/requests/compare/v2.29.0...v2.30.0)

---
updated-dependencies:
- dependency-name: requests
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-08 03:57:54 +00:00
dependabot[bot]
4a911bbe90 Bump pypa/gh-action-pypi-publish from 1.8.5 to 1.8.6
Bumps [pypa/gh-action-pypi-publish](https://github.com/pypa/gh-action-pypi-publish) from 1.8.5 to 1.8.6.
- [Release notes](https://github.com/pypa/gh-action-pypi-publish/releases)
- [Commits](https://github.com/pypa/gh-action-pypi-publish/compare/v1.8.5...v1.8.6)

---
updated-dependencies:
- dependency-name: pypa/gh-action-pypi-publish
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-08 03:57:44 +00:00
dependabot[bot]
3bb872a5e7 Bump mkdocs from 1.4.2 to 1.4.3
Bumps [mkdocs](https://github.com/mkdocs/mkdocs) from 1.4.2 to 1.4.3.
- [Release notes](https://github.com/mkdocs/mkdocs/releases)
- [Commits](https://github.com/mkdocs/mkdocs/compare/1.4.2...1.4.3)

---
updated-dependencies:
- dependency-name: mkdocs
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-08 03:57:22 +00:00
dependabot[bot]
fa40e4e888 Bump websockets from 11.0.2 to 11.0.3
Bumps [websockets](https://github.com/aaugustin/websockets) from 11.0.2 to 11.0.3.
- [Release notes](https://github.com/aaugustin/websockets/releases)
- [Commits](https://github.com/aaugustin/websockets/compare/11.0.2...11.0.3)

---
updated-dependencies:
- dependency-name: websockets
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-08 03:57:11 +00:00
dependabot[bot]
4b1cb96446 Bump orjson from 3.8.11 to 3.8.12
Bumps [orjson](https://github.com/ijl/orjson) from 3.8.11 to 3.8.12.
- [Release notes](https://github.com/ijl/orjson/releases)
- [Changelog](https://github.com/ijl/orjson/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ijl/orjson/compare/3.8.11...3.8.12)

---
updated-dependencies:
- dependency-name: orjson
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-08 03:56:59 +00:00
Robert Caulk
950eaf230e Merge pull request #8580 from freqtrade/feat/add-transformer
Add transformer to FreqAI
2023-05-07 11:32:38 +02:00
Matthias
89c60bbee6 Merge pull request #8598 from freqtrade/bug-fix-backtesting
bug fix backtest feature validation
2023-05-07 08:14:34 +02:00
robcaulk
36e1e58dad fix arch 2023-05-06 17:40:04 +00:00
robcaulk
3bbb7e38ea improve transformer architecture, remove 3.10 install constraint, add documentation for torch.compile() 2023-05-06 16:12:10 +00:00
robcaulk
c2beeb4c79 bug fix backtest feature validation 2023-05-06 15:53:58 +00:00
Robert Caulk
e365e913c7 Merge pull request #8596 from autoscatto/bugfix/tensor-to-numpy
Bugfix/tensor to numpy
2023-05-06 17:31:49 +02:00
Matthias
efb5cd6545 Merge pull request #7861 from froggleston/reject_report
Add support for collating and analysing rejected signals in backtest
2023-05-06 14:28:24 +02:00
Tommaso Falchi
908a2e817a Align BasePyTorchRegressor tensors to cpu as in BasePyTorchClassifier 2023-05-05 15:43:48 +02:00
Tommaso Falchi
306dfc4ae8 refactor(BasePyTorchClassifier.py): convert tensor to list before creating DataFrame to avoid TypeError.
docs(BasePyTorchClassifier.py): add missing parameter description in predict method
2023-05-05 13:04:53 +02:00
Matthias
e3ff2ccc97 Slightly reword documentation to be more clear 2023-05-05 06:45:39 +02:00
Matthias
24804f066c Update test comment, uncomment last test section 2023-05-03 20:24:59 +02:00
Matthias
775ea1c8c6 Improve type safety 2023-05-03 06:25:02 +00:00
Matthias
80930d72a6 Dont loop trades twice
closes #8591
2023-05-03 07:03:14 +02:00
Matthias
0adac268ee Add test for #8591 2023-05-03 07:01:57 +02:00
Matthias
976cc1ab15 Extract order_obj existence check to separate function 2023-05-03 06:48:17 +02:00
Matthias
1cc5b6126d Bump pre-commit ruff version 2023-05-03 06:48:02 +02:00
Matthias
0d1d25e868 Improve error-handling 2023-05-02 21:44:19 +02:00
Matthias
13974d2508 Reduce error severity when maintenance-ratio fails 2023-05-02 21:44:19 +02:00
Matthias
f419d7870d Add freqaimodel to pair history endpoint
closes #8566
2023-05-02 20:07:16 +02:00
Matthias
fb5fac164d add Packaging dependency explicitly 2023-05-02 19:28:09 +02:00
Matthias
a935f1e4de Remove no longer necessary dependency from setup.py 2023-05-02 19:27:01 +02:00
Matthias
f61bf346c0 Merge pull request #8589 from alxtrkhv/fix/update-setup-py
Add missing dependencies to setup.py
2023-05-02 19:25:55 +02:00
Matthias
d8a9c9422a Update missing "requirements" install in documentation 2023-05-02 18:17:35 +02:00
Matthias
12a64c0ffc Merge pull request #8587 from freqtrade/maint/cleanup_gym_workarounds
Remove dependency workarounds in place for gym
2023-05-02 14:21:27 +02:00
Alexander Terekhov
220f8c6b5f Add missing freqai-rl dependencies 2023-05-02 09:16:12 +03:00
Alexander Terekhov
e3f983729f Update freqai dependencies 2023-05-02 09:11:31 +03:00
Alexander Terekhov
8f5fb4e32b Add missing dev dependencies 2023-05-02 09:09:38 +03:00
Alexander Terekhov
75daa44c5a Add missing core dependencies 2023-05-02 09:02:52 +03:00
Matthias
1c2dd884e9 Remove dependency workarounds in place for gym 2023-05-02 07:12:46 +02:00
Matthias
238581ee7a Remove <3.11 pin for tqdm 2023-05-02 07:08:47 +02:00
Matthias
127b0a2e50 Merge pull request #8582 from freqtrade/dependabot/pip/develop/ccxt-3.0.85
Bump ccxt from 3.0.84 to 3.0.85
2023-05-01 20:31:51 +02:00
dependabot[bot]
3f58c19976 Bump ccxt from 3.0.84 to 3.0.85
Bumps [ccxt](https://github.com/ccxt/ccxt) from 3.0.84 to 3.0.85.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/3.0.84...3.0.85)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-01 17:48:30 +00:00
Matthias
5e32182c72 Bump types requests 2023-05-01 19:34:21 +02:00
Matthias
009db49502 Merge pull request #8578 from freqtrade/dependabot/pip/develop/types-requests-2.29.0.0
Bump types-requests from 2.28.11.17 to 2.29.0.0
2023-05-01 19:33:48 +02:00
Matthias
01124292b1 Merge pull request #8575 from freqtrade/dependabot/pip/develop/sqlalchemy-2.0.12
Bump sqlalchemy from 2.0.10 to 2.0.12
2023-05-01 19:24:36 +02:00
Matthias
103f27cfd0 Bump sqlalchemy pre-commit 2023-05-01 17:54:21 +02:00
dependabot[bot]
a31ceb51a0 Bump sqlalchemy from 2.0.10 to 2.0.12
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 2.0.10 to 2.0.12.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/main/CHANGES.rst)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

---
updated-dependencies:
- dependency-name: sqlalchemy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-01 15:54:14 +00:00
Matthias
d778beacbb Merge pull request #8576 from freqtrade/dependabot/pip/develop/ccxt-3.0.84
Bump ccxt from 3.0.75 to 3.0.84
2023-05-01 17:53:32 +02:00
Matthias
94488c86af Merge pull request #8573 from freqtrade/dependabot/pip/develop/ruff-0.0.263
Bump ruff from 0.0.262 to 0.0.263
2023-05-01 17:51:32 +02:00
Matthias
0800ed725f Merge pull request #8577 from freqtrade/dependabot/pip/develop/mkdocs-material-9.1.8
Bump mkdocs-material from 9.1.7 to 9.1.8
2023-05-01 17:50:51 +02:00
Matthias
2fd5fd8e49 Merge pull request #8574 from freqtrade/dependabot/pip/develop/uvicorn-0.22.0
Bump uvicorn from 0.21.1 to 0.22.0
2023-05-01 17:50:31 +02:00
Matthias
9e2d83f542 Merge pull request #8571 from freqtrade/dependabot/pip/develop/requests-2.29.0
Bump requests from 2.28.2 to 2.29.0
2023-05-01 17:50:10 +02:00
Matthias
cb8c91ea8e Merge pull request #8572 from freqtrade/dependabot/pip/develop/orjson-3.8.11
Bump orjson from 3.8.10 to 3.8.11
2023-05-01 17:49:51 +02:00
Matthias
2893af870e Merge pull request #8570 from freqtrade/dependabot/pip/develop/rich-13.3.5
Bump rich from 13.3.4 to 13.3.5
2023-05-01 17:49:27 +02:00
robcaulk
af139ffbab add transformer with positional encoding, fix some odds and ends in pytorch, upgrade to PyTorch 2.0 2023-05-01 13:18:03 +00:00
Robert Caulk
c26099280f Merge pull request #8336 from richardjozsa/develop
Added the latest Gymnasium version 0.28(will be released shortly),
2023-05-01 07:32:37 +02:00
dependabot[bot]
fe9f2d005e Bump types-requests from 2.28.11.17 to 2.29.0.0
Bumps [types-requests](https://github.com/python/typeshed) from 2.28.11.17 to 2.29.0.0.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-requests
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-01 03:59:14 +00:00
dependabot[bot]
1d73c7c27d Bump mkdocs-material from 9.1.7 to 9.1.8
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 9.1.7 to 9.1.8.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/9.1.7...9.1.8)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-01 03:59:08 +00:00
dependabot[bot]
d023e75920 Bump ccxt from 3.0.75 to 3.0.84
Bumps [ccxt](https://github.com/ccxt/ccxt) from 3.0.75 to 3.0.84.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/3.0.75...3.0.84)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-01 03:58:44 +00:00
dependabot[bot]
063ddd62e6 Bump uvicorn from 0.21.1 to 0.22.0
Bumps [uvicorn](https://github.com/encode/uvicorn) from 0.21.1 to 0.22.0.
- [Release notes](https://github.com/encode/uvicorn/releases)
- [Changelog](https://github.com/encode/uvicorn/blob/master/CHANGELOG.md)
- [Commits](https://github.com/encode/uvicorn/compare/0.21.1...0.22.0)

---
updated-dependencies:
- dependency-name: uvicorn
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-01 03:58:00 +00:00
dependabot[bot]
7f9a6ffc53 Bump ruff from 0.0.262 to 0.0.263
Bumps [ruff](https://github.com/charliermarsh/ruff) from 0.0.262 to 0.0.263.
- [Release notes](https://github.com/charliermarsh/ruff/releases)
- [Changelog](https://github.com/charliermarsh/ruff/blob/main/BREAKING_CHANGES.md)
- [Commits](https://github.com/charliermarsh/ruff/compare/v0.0.262...v0.0.263)

---
updated-dependencies:
- dependency-name: ruff
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-01 03:57:51 +00:00
dependabot[bot]
7dda3f5803 Bump orjson from 3.8.10 to 3.8.11
Bumps [orjson](https://github.com/ijl/orjson) from 3.8.10 to 3.8.11.
- [Release notes](https://github.com/ijl/orjson/releases)
- [Changelog](https://github.com/ijl/orjson/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ijl/orjson/compare/3.8.10...3.8.11)

---
updated-dependencies:
- dependency-name: orjson
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-01 03:57:24 +00:00
dependabot[bot]
d928792eb4 Bump requests from 2.28.2 to 2.29.0
Bumps [requests](https://github.com/psf/requests) from 2.28.2 to 2.29.0.
- [Release notes](https://github.com/psf/requests/releases)
- [Changelog](https://github.com/psf/requests/blob/main/HISTORY.md)
- [Commits](https://github.com/psf/requests/compare/v2.28.2...v2.29.0)

---
updated-dependencies:
- dependency-name: requests
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-01 03:57:14 +00:00
dependabot[bot]
9dd077d69e Bump rich from 13.3.4 to 13.3.5
Bumps [rich](https://github.com/Textualize/rich) from 13.3.4 to 13.3.5.
- [Release notes](https://github.com/Textualize/rich/releases)
- [Changelog](https://github.com/Textualize/rich/blob/master/CHANGELOG.md)
- [Commits](https://github.com/Textualize/rich/compare/v13.3.4...v13.3.5)

---
updated-dependencies:
- dependency-name: rich
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-01 03:57:08 +00:00
Richard Jozsa
ceb2631a56 Merge branch 'freqtrade:develop' into develop 2023-05-01 01:00:34 +02:00
vinistation
a66e8768c9 Update docker-compose.yml
Enable GPU Image and GPU Resources
2023-04-28 15:21:56 -05:00
vinistation
d1eb6d4fed Update BasePyTorchRegressor.py
Denormalization of prediction added to te PytorchMLP Model
2023-04-28 14:48:16 -05:00
Matthias
023c155a25 Extract signals generation from backtesting class 2023-04-28 16:14:16 +02:00
Matthias
6e395ad7c9 Refactor methods in backtesting 2023-04-28 16:09:09 +02:00
Matthias
0753f427b1 Simplify storage 2023-04-28 15:29:15 +02:00
Matthias
e20d9c8f98 Impoved errorhandling, better typesafety 2023-04-28 15:25:25 +02:00
Matthias
fc2a3c9f17 Implement further improvements, improve typehinting 2023-04-28 15:17:35 +02:00
Matthias
703ec3ccc4 Fix help text to show correct format 2023-04-28 15:01:47 +02:00
Matthias
8dd8c24595 Merge branch 'develop' into pr/froggleston/7861 2023-04-28 14:59:03 +02:00
Matthias
76ae539e61 Minor edit 2023-04-28 14:59:00 +02:00
Matthias
2a9e50a6a9 Add test testing create-table statement creation for different sql dialects
closes #8561
2023-04-27 19:43:33 +02:00
Matthias
daf564b62f Invert logic for webhook
closes #8562
2023-04-27 18:27:09 +02:00
Matthias
1d9933412a improve /version output formatting 2023-04-27 06:43:57 +02:00
Matthias
395ac5f6dc Update integration test 2023-04-27 06:23:34 +02:00
Matthias
491d2cb024 Explicit test for handle_onexchange_order 2023-04-26 20:32:51 +02:00
Matthias
8cf0e4a316 Fix mypy typing errors 2023-04-26 19:43:42 +02:00
Matthias
6d3c94a739 type: ignore the offending tensorflow call 2023-04-26 18:08:55 +02:00
robcaulk
c6f3a3bbca avoid typing issues in the tensorboard callback 2023-04-26 14:11:26 +02:00
robcaulk
e86980befa remove typing from callback init 2023-04-26 13:42:10 +02:00
robcaulk
e29ce218eb fix typing in TensorboardCallback 2023-04-26 10:54:54 +02:00
Matthias
e88e259033 explicitly test check_exit_amount 2023-04-26 07:12:54 +02:00
Matthias
d29a425baa Update parameter type in RPC modules 2023-04-26 07:03:28 +02:00
Matthias
b0b036c457 Fix logic lapsus in check_exit_amount 2023-04-26 07:02:46 +02:00
Matthias
d0b5c7d216 update telegram/api documentation with new endpoint 2023-04-25 19:40:05 +02:00
Matthias
25bed7bb87 Update telegram help with reload_trade 2023-04-25 19:39:52 +02:00
Matthias
7287e9da1d Add telegram endpoint for reload_trade 2023-04-25 19:34:37 +02:00
Matthias
0c22710ddd Add API endpoint to force trade reloading 2023-04-25 19:30:29 +02:00
Matthias
f2696c9609 Force special exit reason for "recovered" exits 2023-04-25 18:09:46 +02:00
Matthias
24cab00479 Extract amount checking to wallets, implement for futures 2023-04-25 17:49:20 +02:00
Matthias
974cf6c365 Move comment to more appropriate spot 2023-04-25 17:41:59 +02:00
Matthias
95b35e452d Emulate fetch_orders if it ain't supported natively 2023-04-25 17:13:02 +02:00
Matthias
81633b7c2e Add "handle_onexchange_order" functionality 2023-04-25 16:19:14 +02:00
Matthias
d14f50f50d temporary comment fetch_orders logic 2023-04-25 16:19:14 +02:00
Matthias
531b5727f2 add fetch_orders exchange wrapper 2023-04-25 16:19:14 +02:00
Matthias
c4a0910908 Handle special case where exit order is for more than the trade amount ... 2023-04-25 15:56:51 +02:00
Matthias
1b228e3705 Improve test resiliance by removing unneeded MagicMock 2023-04-25 15:52:10 +02:00
Matthias
e8fedb685b Update missleading docstring 2023-04-25 11:52:13 +02:00
Matthias
11c9f96d23 Use lock for trade entries, too 2023-04-25 11:45:35 +02:00
Matthias
59f9f4d467 Fix exception typos due to newlines 2023-04-25 09:27:33 +02:00
Matthias
1e9fa4c041 Improve test to cover to_ccxt better 2023-04-25 09:04:02 +02:00
Matthias
6a271317bc use stop_price_param for dry stops
closes #8555
2023-04-25 08:53:02 +02:00
Matthias
1df01a2634 Merge pull request #8554 from freqtrade/dependabot/pip/develop/pandas-2.0.1
Bump pandas from 1.5.3 to 2.0.1
2023-04-24 17:35:04 +02:00
dependabot[bot]
c19d6b4e29 Bump pandas from 1.5.3 to 2.0.1
Bumps [pandas](https://github.com/pandas-dev/pandas) from 1.5.3 to 2.0.1.
- [Release notes](https://github.com/pandas-dev/pandas/releases)
- [Commits](https://github.com/pandas-dev/pandas/compare/v1.5.3...v2.0.1)

---
updated-dependencies:
- dependency-name: pandas
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-24 14:01:01 +00:00
Matthias
459e5e67bd Merge pull request #8394 from freqtrade/dependabot/pip/develop/python-telegram-bot-20.2
Bump python-telegram-bot from 13.15 to 20.2
2023-04-24 15:58:39 +02:00
Matthias
b49ff3d5bc Improve type safety 2023-04-24 14:27:56 +02:00
Matthias
2615b0297e Move httpx to regular dependencies, losely-pin 2023-04-24 14:27:56 +02:00
Matthias
c06759223e Improve telegram async tests 2023-04-24 14:27:56 +02:00
Matthias
516b49ff50 Fix bad types 2023-04-24 14:27:56 +02:00
Matthias
d25e82d095 Mock exchange loop 2023-04-24 14:27:56 +02:00
Matthias
5608aaca26 Simplify mocking 2023-04-24 14:27:56 +02:00
Matthias
7171fd1132 Test telegram startup 2023-04-24 14:27:56 +02:00
Matthias
c9e6137ad0 Fix test_telegram _init test 2023-04-24 14:27:56 +02:00
Matthias
cf0b37057c update telegram "cleanup" test 2023-04-24 14:27:56 +02:00
Matthias
69f61ef767 Further telegram async tests 2023-04-24 14:27:56 +02:00
Matthias
4177afdf8b More async test updates 2023-04-24 14:27:56 +02:00
Matthias
678c9ae67f Fix some more async telegram tests 2023-04-24 14:27:56 +02:00
Matthias
c475c81841 Update several tests to async behavior 2023-04-24 14:27:56 +02:00
Matthias
fb56889b43 Update a few tests ... 2023-04-24 14:27:56 +02:00
Matthias
914d7350fa Update mocks in apimanager tests 2023-04-24 14:27:36 +02:00
Matthias
b1367ac46f Update decorator typehint 2023-04-24 14:27:36 +02:00
Matthias
3d0e1d142f Convert endpoints to async 2023-04-24 14:27:36 +02:00
Matthias
54732b72fd Manage startup/teardown of telegram manually 2023-04-24 14:26:50 +02:00
Matthias
e7e6f719e4 _update_msg to async 2023-04-24 14:26:50 +02:00
Matthias
5134bf8ec3 Authorized-only and /version to async 2023-04-24 14:26:50 +02:00
Matthias
cb45689c1d Small fixes to new telegram implementation 2023-04-24 14:26:50 +02:00
Matthias
14b501a4f7 Initial changes for telegram migration 2023-04-24 14:26:50 +02:00
Matthias
68ac934929 Update command list to handle frozenSets 2023-04-24 14:26:50 +02:00
Matthias
57eed50acb Fix some test failures caused by v20 update 2023-04-24 14:26:50 +02:00
Matthias
c37b7b77e4 move telegram fixture to telegram file 2023-04-24 14:26:50 +02:00
Matthias
da261003df Fix telegram imports to match v20.0 2023-04-24 14:26:49 +02:00
dependabot[bot]
99a4a64052 Bump python-telegram-bot from 13.15 to 20.2
Bumps [python-telegram-bot](https://github.com/python-telegram-bot/python-telegram-bot) from 13.15 to 20.2.
- [Release notes](https://github.com/python-telegram-bot/python-telegram-bot/releases)
- [Changelog](https://github.com/python-telegram-bot/python-telegram-bot/blob/master/CHANGES.rst)
- [Commits](https://github.com/python-telegram-bot/python-telegram-bot/compare/v13.15...v20.2)

---
updated-dependencies:
- dependency-name: python-telegram-bot
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-24 14:26:49 +02:00
Matthias
4690810d5d Merge pull request #8537 from freqtrade/feat/balance_improve
Improve balance output
2023-04-24 14:26:05 +02:00
Matthias
98db27e8f4 Bump develop version to 2023.5-dev 2023-04-24 14:05:35 +02:00
Matthias
8086d90535 Update some tests for balance updates 2023-04-24 12:34:59 +02:00
Matthias
68a8c79c08 Improve output for futures 2023-04-24 12:03:00 +02:00
Matthias
94a6bc608c Update stake-currency behavior 2023-04-22 17:42:09 +02:00
Matthias
741834301f Update tests 2023-04-22 17:21:03 +02:00
Matthias
f937818b80 Add "owned" fields to balance 2023-04-22 17:13:53 +02:00
Matthias
c4f8ff95dd Update tests 2023-04-22 16:13:27 +02:00
Matthias
dbf1f0897e Add /balance full, reduce regular balance output
closes #4497
2023-04-22 15:51:28 +02:00
Matthias
7a47500b22 Add "is_bot_managed" flag to API 2023-04-22 14:57:13 +02:00
robcaulk
0a05099713 fix mypy 2023-04-21 22:52:19 +02:00
Matthias
f30fc29da0 Merge branch 'develop' into pr/richardjozsa/8336 2023-04-19 19:37:51 +02:00
Matthias
f1e03a6873 Update variable to better reflect it's content 2023-04-19 18:20:25 +02:00
Matthias
3fb5cd3df6 Improve formatting 2023-04-17 20:27:18 +02:00
Richard Jozsa
c055f82e9a Pip release follow up 2023-04-16 19:28:36 +02:00
Richard Jozsa
8620f1178d Merge branch 'freqtrade:develop' into develop 2023-04-16 14:29:57 +02:00
Richard Jozsa
7cbc0ce80a Merge branch 'freqtrade:develop' into develop 2023-03-28 01:23:24 +02:00
Richard Jozsa
66c326b789 Add proper handling of multiple environments 2023-03-20 15:54:58 +01:00
Matthias
f455e3327c Simplify method further 2023-03-19 15:01:37 +01:00
Matthias
cd9c2c4c23 Merge branch 'develop' into pr/froggleston/7861 2023-03-19 15:00:20 +01:00
Matthias
af6fc886f6 Small refactor for new methods 2023-03-19 14:56:41 +01:00
Richard Jozsa
d03fe1f8ee add latest experimental version of gymnasium 2023-03-16 00:53:37 +01:00
pbs
fc6d7f012e Support for python 3.11 2023-03-13 17:34:34 +00:00
Timothy Pogue
97a6fb285f revert to dataframe.to_json 2023-01-10 17:52:24 -07:00
froggleston
3adb3d9b1e Merge branch 'reject_report' of github.com:froggleston/freqtrade into reject_report 2022-12-08 18:49:17 +00:00
froggleston
6f08b610d6 Merge branch 'develop' of github.com:froggleston/freqtrade into reject_report 2022-12-08 18:48:33 +00:00
froggleston
f5359985e8 Make CLI option and docs clearer that we're handling signals not trades 2022-12-08 18:47:09 +00:00
Robert Davey
d3443beaf9 Merge branch 'freqtrade:develop' into reject_report 2022-12-08 18:33:10 +00:00
froggleston
854f056eaf Fix missing Path constructors 2022-12-05 16:16:36 +00:00
froggleston
5a4e99b413 Add support for collating and analysing rejected trades in backtest 2022-12-05 15:34:31 +00:00
142 changed files with 4598 additions and 1883 deletions

View File

@@ -14,7 +14,7 @@ on:
- cron: '0 5 * * 4'
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
group: "${{ github.workflow }}-${{ github.ref }}-${{ github.event_name }}"
cancel-in-progress: true
permissions:
repository-projects: read
@@ -57,7 +57,7 @@ jobs:
- name: Installation - *nix
if: runner.os == 'Linux'
run: |
python -m pip install --upgrade pip==23.0.1 wheel==0.38.4
python -m pip install --upgrade pip wheel
export LD_LIBRARY_PATH=${HOME}/dependencies/lib:$LD_LIBRARY_PATH
export TA_LIBRARY_PATH=${HOME}/dependencies/lib
export TA_INCLUDE_PATH=${HOME}/dependencies/include
@@ -77,6 +77,17 @@ jobs:
# Allow failure for coveralls
coveralls || true
- name: Check for repository changes
run: |
if [ -n "$(git status --porcelain)" ]; then
echo "Repository is dirty, changes detected:"
git status
git diff
exit 1
else
echo "Repository is clean, no changes detected."
fi
- name: Backtesting (multi)
run: |
cp config_examples/config_bittrex.example.json config.json
@@ -163,7 +174,7 @@ jobs:
rm /usr/local/bin/python3.11-config || true
brew install hdf5 c-blosc
python -m pip install --upgrade pip==23.0.1 wheel==0.38.4
python -m pip install --upgrade pip wheel
export LD_LIBRARY_PATH=${HOME}/dependencies/lib:$LD_LIBRARY_PATH
export TA_LIBRARY_PATH=${HOME}/dependencies/lib
export TA_INCLUDE_PATH=${HOME}/dependencies/include
@@ -174,6 +185,17 @@ jobs:
run: |
pytest --random-order
- name: Check for repository changes
run: |
if [ -n "$(git status --porcelain)" ]; then
echo "Repository is dirty, changes detected:"
git status
git diff
exit 1
else
echo "Repository is clean, no changes detected."
fi
- name: Backtesting
run: |
cp config_examples/config_bittrex.example.json config.json
@@ -237,6 +259,18 @@ jobs:
run: |
pytest --random-order
- name: Check for repository changes
run: |
if (git status --porcelain) {
Write-Host "Repository is dirty, changes detected:"
git status
git diff
exit 1
}
else {
Write-Host "Repository is clean, no changes detected."
}
- name: Backtesting
run: |
cp config_examples/config_bittrex.example.json config.json
@@ -302,7 +336,7 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.10"
python-version: "3.11"
- name: Documentation build
run: |
@@ -352,7 +386,7 @@ jobs:
- name: Installation - *nix
if: runner.os == 'Linux'
run: |
python -m pip install --upgrade pip==23.0.1 wheel==0.38.4
python -m pip install --upgrade pip wheel
export LD_LIBRARY_PATH=${HOME}/dependencies/lib:$LD_LIBRARY_PATH
export TA_LIBRARY_PATH=${HOME}/dependencies/lib
export TA_INCLUDE_PATH=${HOME}/dependencies/include
@@ -425,7 +459,7 @@ jobs:
python setup.py sdist bdist_wheel
- name: Publish to PyPI (Test)
uses: pypa/gh-action-pypi-publish@v1.8.5
uses: pypa/gh-action-pypi-publish@v1.8.6
if: (github.event_name == 'release')
with:
user: __token__
@@ -433,7 +467,7 @@ jobs:
repository_url: https://test.pypi.org/legacy/
- name: Publish to PyPI
uses: pypa/gh-action-pypi-publish@v1.8.5
uses: pypa/gh-action-pypi-publish@v1.8.6
if: (github.event_name == 'release')
with:
user: __token__

View File

@@ -15,10 +15,10 @@ repos:
additional_dependencies:
- types-cachetools==5.3.0.5
- types-filelock==3.2.7
- types-requests==2.28.11.17
- types-requests==2.30.0.0
- types-tabulate==0.9.0.2
- types-python-dateutil==2.8.19.12
- SQLAlchemy==2.0.10
- types-python-dateutil==2.8.19.13
- SQLAlchemy==2.0.15
# stages: [push]
- repo: https://github.com/pycqa/isort
@@ -30,7 +30,7 @@ repos:
- repo: https://github.com/charliermarsh/ruff-pre-commit
# Ruff version.
rev: 'v0.0.255'
rev: 'v0.0.263'
hooks:
- id: ruff

View File

@@ -25,7 +25,7 @@ FROM base as python-deps
RUN apt-get update \
&& apt-get -y install build-essential libssl-dev git libffi-dev libgfortran5 pkg-config cmake gcc \
&& apt-get clean \
&& pip install --upgrade pip==23.0.1 wheel==0.38.4
&& pip install --upgrade pip wheel
# Install TA-lib
COPY build_helpers/* /tmp/

View File

@@ -1,7 +1,7 @@
# Downloads don't work automatically, since the URL is regenerated via javascript.
# Downloaded from https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
python -m pip install --upgrade pip==23.0.1 wheel==0.38.4
python -m pip install --upgrade pip wheel
$pyv = python -c "import sys; print(f'{sys.version_info.major}.{sys.version_info.minor}')"

View File

@@ -6,6 +6,15 @@ services:
# image: freqtradeorg/freqtrade:develop
# Use plotting image
# image: freqtradeorg/freqtrade:develop_plot
# # Enable GPU Image and GPU Resources (only relevant for freqAI)
# # Make sure to uncomment the whole deploy section
# deploy:
# resources:
# reservations:
# devices:
# - driver: nvidia
# count: 1
# capabilities: [gpu]
# Build step - only needed when additional dependencies are needed
# build:
# context: .
@@ -16,7 +25,7 @@ services:
- "./user_data:/freqtrade/user_data"
# Expose api on port 8080 (localhost only)
# Please read the https://www.freqtrade.io/en/stable/rest-api/ documentation
# before enabling this.
# for more information.
ports:
- "127.0.0.1:8080:8080"
# Default command used when running `docker compose up`

View File

@@ -0,0 +1,36 @@
---
version: '3'
services:
freqtrade:
image: freqtradeorg/freqtrade:stable_freqaitorch
# # Enable GPU Image and GPU Resources
# # Make sure to uncomment the whole deploy section
# deploy:
# resources:
# reservations:
# devices:
# - driver: nvidia
# count: 1
# capabilities: [gpu]
# Build step - only needed when additional dependencies are needed
# build:
# context: .
# dockerfile: "./docker/Dockerfile.custom"
restart: unless-stopped
container_name: freqtrade
volumes:
- "./user_data:/freqtrade/user_data"
# Expose api on port 8080 (localhost only)
# Please read the https://www.freqtrade.io/en/stable/rest-api/ documentation
# for more information.
ports:
- "127.0.0.1:8080:8080"
# Default command used when running `docker compose up`
command: >
trade
--logfile /freqtrade/user_data/logs/freqtrade.log
--db-url sqlite:////freqtrade/user_data/tradesv3.sqlite
--config /freqtrade/user_data/config.json
--freqai-model XGBoostClassifier
--strategy SampleStrategy

View File

@@ -29,7 +29,7 @@ If all goes well, you should now see a `backtest-result-{timestamp}_signals.pkl`
`user_data/backtest_results` folder.
To analyze the entry/exit tags, we now need to use the `freqtrade backtesting-analysis` command
with `--analysis-groups` option provided with space-separated arguments (default `0 1 2`):
with `--analysis-groups` option provided with space-separated arguments:
``` bash
freqtrade backtesting-analysis -c <config.json> --analysis-groups 0 1 2 3 4 5
@@ -39,6 +39,7 @@ This command will read from the last backtesting results. The `--analysis-groups
used to specify the various tabular outputs showing the profit fo each group or trade,
ranging from the simplest (0) to the most detailed per pair, per buy and per sell tag (4):
* 0: overall winrate and profit summary by enter_tag
* 1: profit summaries grouped by enter_tag
* 2: profit summaries grouped by enter_tag and exit_tag
* 3: profit summaries grouped by pair and enter_tag
@@ -115,3 +116,38 @@ For example, if your backtest timerange was `20220101-20221231` but you only wan
```bash
freqtrade backtesting-analysis -c <config.json> --timerange 20220101-20220201
```
### Printing out rejected signals
Use the `--rejected-signals` option to print out rejected signals.
```bash
freqtrade backtesting-analysis -c <config.json> --rejected-signals
```
### Writing tables to CSV
Some of the tabular outputs can become large, so printing them out to the terminal is not preferable.
Use the `--analysis-to-csv` option to disable printing out of tables to standard out and write them to CSV files.
```bash
freqtrade backtesting-analysis -c <config.json> --analysis-to-csv
```
By default this will write one file per output table you specified in the `backtesting-analysis` command, e.g.
```bash
freqtrade backtesting-analysis -c <config.json> --analysis-to-csv --rejected-signals --analysis-groups 0 1
```
This will write to `user_data/backtest_results`:
* rejected_signals.csv
* group_0.csv
* group_1.csv
To override where the files will be written, also specify the `--analysis-csv-path` option.
```bash
freqtrade backtesting-analysis -c <config.json> --analysis-to-csv --analysis-csv-path another/data/path/
```

View File

@@ -327,18 +327,18 @@ To check how the new exchange behaves, you can use the following snippet:
``` python
import ccxt
from datetime import datetime
from datetime import datetime, timezone
from freqtrade.data.converter import ohlcv_to_dataframe
ct = ccxt.binance()
ct = ccxt.binance() # Use the exchange you're testing
timeframe = "1d"
pair = "XLM/BTC" # Make sure to use a pair that exists on that exchange!
pair = "BTC/USDT" # Make sure to use a pair that exists on that exchange!
raw = ct.fetch_ohlcv(pair, timeframe=timeframe)
# convert to dataframe
df1 = ohlcv_to_dataframe(raw, timeframe, pair=pair, drop_incomplete=False)
print(df1.tail(1))
print(datetime.utcnow())
print(datetime.now(timezone.utc))
```
``` output

View File

@@ -248,9 +248,11 @@ The easiest way to quickly run a pytorch model is with the following command (fo
freqtrade trade --config config_examples/config_freqai.example.json --strategy FreqaiExampleStrategy --freqaimodel PyTorchMLPRegressor --strategy-path freqtrade/templates
```
!!! note "Installation/docker"
!!! Note "Installation/docker"
The PyTorch module requires large packages such as `torch`, which should be explicitly requested during `./setup.sh -i` by answering "y" to the question "Do you also want dependencies for freqai-rl or PyTorch (~700mb additional space required) [y/N]?".
Users who prefer docker should ensure they use the docker image appended with `_freqaitorch`.
We do provide an explicit docker-compose file for this in `docker/docker-compose-freqai.yml` - which can be used via `docker compose -f docker/docker-compose-freqai.yml run ...` - or can be copied to replace the original docker file.
This docker-compose file also contains a (disabled) section to enable GPU resources within docker containers. This obviously assumes the system has GPU resources available.
### Structure
@@ -395,3 +397,21 @@ Here we create a `PyTorchMLPRegressor` class that implements the `fit` method. T
return dataframe
```
To see a full example, you can refer to the [classifier test strategy class](https://github.com/freqtrade/freqtrade/blob/develop/tests/strategy/strats/freqai_test_classifier.py).
#### Improving performance with `torch.compile()`
Torch provides a `torch.compile()` method that can be used to improve performance for specific GPU hardware. More details can be found [here](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html). In brief, you simply wrap your `model` in `torch.compile()`:
```python
model = PyTorchMLPModel(
input_dim=n_features,
output_dim=1,
**self.model_kwargs
)
model.to(self.device)
model = torch.compile(model)
```
Then proceed to use the model as normal. Keep in mind that doing this will remove eager execution, which means errors and tracebacks will not be informative.

View File

@@ -18,9 +18,10 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
| `purge_old_models` | Number of models to keep on disk (not relevant to backtesting). Default is 2, which means that dry/live runs will keep the latest 2 models on disk. Setting to 0 keeps all models. This parameter also accepts a boolean to maintain backwards compatibility. <br> **Datatype:** Integer. <br> Default: `2`.
| `save_backtest_models` | Save models to disk when running backtesting. Backtesting operates most efficiently by saving the prediction data and reusing them directly for subsequent runs (when you wish to tune entry/exit parameters). Saving backtesting models to disk also allows to use the same model files for starting a dry/live instance with the same model `identifier`. <br> **Datatype:** Boolean. <br> Default: `False` (no models are saved).
| `fit_live_predictions_candles` | Number of historical candles to use for computing target (label) statistics from prediction data, instead of from the training dataset (more information can be found [here](freqai-configuration.md#creating-a-dynamic-target-threshold)). <br> **Datatype:** Positive integer.
| `continual_learning` | Use the final state of the most recently trained model as starting point for the new model, allowing for incremental learning (more information can be found [here](freqai-running.md#continual-learning)). <br> **Datatype:** Boolean. <br> Default: `False`.
| `continual_learning` | Use the final state of the most recently trained model as starting point for the new model, allowing for incremental learning (more information can be found [here](freqai-running.md#continual-learning)). Beware that this is currently a naive approach to incremental learning, and it has a high probability of overfitting/getting stuck in local minima while the market moves away from your model. We have the connections here primarily for experimental purposes and so that it is ready for more mature approaches to continual learning in chaotic systems like the crypto market. <br> **Datatype:** Boolean. <br> Default: `False`.
| `write_metrics_to_disk` | Collect train timings, inference timings and cpu usage in json file. <br> **Datatype:** Boolean. <br> Default: `False`
| `data_kitchen_thread_count` | <br> Designate the number of threads you want to use for data processing (outlier methods, normalization, etc.). This has no impact on the number of threads used for training. If user does not set it (default), FreqAI will use max number of threads - 2 (leaving 1 physical core available for Freqtrade bot and FreqUI) <br> **Datatype:** Positive integer.
| `activate_tensorboard` | <br> Indicate whether or not to activate tensorboard for the tensorboard enabled modules (currently Reinforcment Learning, XGBoost, Catboost, and PyTorch). Tensorboard needs Torch installed, which means you will need the torch/RL docker image or you need to answer "yes" to the install question about whether or not you wish to install Torch. <br> **Datatype:** Boolean. <br> Default: `True`.
### Feature parameters
@@ -114,5 +115,5 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
|------------|-------------|
| | **Extraneous parameters**
| `freqai.keras` | If the selected model makes use of Keras (typical for TensorFlow-based prediction models), this flag needs to be activated so that the model save/loading follows Keras standards. <br> **Datatype:** Boolean. <br> Default: `False`.
| `freqai.conv_width` | The width of a convolutional neural network input tensor. This replaces the need for shifting candles (`include_shifted_candles`) by feeding in historical data points as the second dimension of the tensor. Technically, this parameter can also be used for regressors, but it only adds computational overhead and does not change the model training/prediction. <br> **Datatype:** Integer. <br> Default: `2`.
| `freqai.conv_width` | The width of a neural network input tensor. This replaces the need for shifting candles (`include_shifted_candles`) by feeding in historical data points as the second dimension of the tensor. Technically, this parameter can also be used for regressors, but it only adds computational overhead and does not change the model training/prediction. <br> **Datatype:** Integer. <br> Default: `2`.
| `freqai.reduce_df_footprint` | Recast all numeric columns to float32/int32, with the objective of reducing ram/disk usage and decreasing train/inference timing. This parameter is set in the main level of the Freqtrade configuration file (not inside FreqAI). <br> **Datatype:** Boolean. <br> Default: `False`.

View File

@@ -135,92 +135,104 @@ Parameter details can be found [here](freqai-parameter-table.md), but in general
## Creating a custom reward function
As you begin to modify the strategy and the prediction model, you will quickly realize some important differences between the Reinforcement Learner and the Regressors/Classifiers. Firstly, the strategy does not set a target value (no labels!). Instead, you set the `calculate_reward()` function inside the `MyRLEnv` class (see below). A default `calculate_reward()` is provided inside `prediction_models/ReinforcementLearner.py` to demonstrate the necessary building blocks for creating rewards, but users are encouraged to create their own custom reinforcement learning model class (see below) and save it to `user_data/freqaimodels`. It is inside the `calculate_reward()` where creative theories about the market can be expressed. For example, you can reward your agent when it makes a winning trade, and penalize the agent when it makes a losing trade. Or perhaps, you wish to reward the agent for entering trades, and penalize the agent for sitting in trades too long. Below we show examples of how these rewards are all calculated:
!!! danger "Not for production"
Warning!
The reward function provided with the Freqtrade source code is a showcase of functionality designed to show/test as many possible environment control features as possible. It is also designed to run quickly on small computers. This is a benchmark, it is *not* for live production. Please beware that you will need to create your own custom_reward() function or use a template built by other users outside of the Freqtrade source code.
As you begin to modify the strategy and the prediction model, you will quickly realize some important differences between the Reinforcement Learner and the Regressors/Classifiers. Firstly, the strategy does not set a target value (no labels!). Instead, you set the `calculate_reward()` function inside the `MyRLEnv` class (see below). A default `calculate_reward()` is provided inside `prediction_models/ReinforcementLearner.py` to demonstrate the necessary building blocks for creating rewards, but this is *not* designed for production. Users *must* create their own custom reinforcement learning model class or use a pre-built one from outside the Freqtrade source code and save it to `user_data/freqaimodels`. It is inside the `calculate_reward()` where creative theories about the market can be expressed. For example, you can reward your agent when it makes a winning trade, and penalize the agent when it makes a losing trade. Or perhaps, you wish to reward the agent for entering trades, and penalize the agent for sitting in trades too long. Below we show examples of how these rewards are all calculated:
!!! note "Hint"
The best reward functions are ones that are continuously differentiable, and well scaled. In other words, adding a single large negative penalty to a rare event is not a good idea, and the neural net will not be able to learn that function. Instead, it is better to add a small negative penalty to a common event. This will help the agent learn faster. Not only this, but you can help improve the continuity of your rewards/penalties by having them scale with severity according to some linear/exponential functions. In other words, you'd slowly scale the penalty as the duration of the trade increases. This is better than a single large penalty occuring at a single point in time.
```python
from freqtrade.freqai.prediction_models.ReinforcementLearner import ReinforcementLearner
from freqtrade.freqai.RL.Base5ActionRLEnv import Actions, Base5ActionRLEnv, Positions
from freqtrade.freqai.prediction_models.ReinforcementLearner import ReinforcementLearner
from freqtrade.freqai.RL.Base5ActionRLEnv import Actions, Base5ActionRLEnv, Positions
class MyCoolRLModel(ReinforcementLearner):
class MyCoolRLModel(ReinforcementLearner):
"""
User created RL prediction model.
Save this file to `freqtrade/user_data/freqaimodels`
then use it with:
freqtrade trade --freqaimodel MyCoolRLModel --config config.json --strategy SomeCoolStrat
Here the users can override any of the functions
available in the `IFreqaiModel` inheritance tree. Most importantly for RL, this
is where the user overrides `MyRLEnv` (see below), to define custom
`calculate_reward()` function, or to override any other parts of the environment.
This class also allows users to override any other part of the IFreqaiModel tree.
For example, the user can override `def fit()` or `def train()` or `def predict()`
to take fine-tuned control over these processes.
Another common override may be `def data_cleaning_predict()` where the user can
take fine-tuned control over the data handling pipeline.
"""
class MyRLEnv(Base5ActionRLEnv):
"""
User created RL prediction model.
User made custom environment. This class inherits from BaseEnvironment and gym.env.
Users can override any functions from those parent classes. Here is an example
of a user customized `calculate_reward()` function.
Save this file to `freqtrade/user_data/freqaimodels`
then use it with:
freqtrade trade --freqaimodel MyCoolRLModel --config config.json --strategy SomeCoolStrat
Here the users can override any of the functions
available in the `IFreqaiModel` inheritance tree. Most importantly for RL, this
is where the user overrides `MyRLEnv` (see below), to define custom
`calculate_reward()` function, or to override any other parts of the environment.
This class also allows users to override any other part of the IFreqaiModel tree.
For example, the user can override `def fit()` or `def train()` or `def predict()`
to take fine-tuned control over these processes.
Another common override may be `def data_cleaning_predict()` where the user can
take fine-tuned control over the data handling pipeline.
Warning!
This is function is a showcase of functionality designed to show as many possible
environment control features as possible. It is also designed to run quickly
on small computers. This is a benchmark, it is *not* for live production.
"""
class MyRLEnv(Base5ActionRLEnv):
"""
User made custom environment. This class inherits from BaseEnvironment and gym.env.
Users can override any functions from those parent classes. Here is an example
of a user customized `calculate_reward()` function.
"""
def calculate_reward(self, action: int) -> float:
# first, penalize if the action is not valid
if not self._is_valid(action):
return -2
pnl = self.get_unrealized_profit()
def calculate_reward(self, action: int) -> float:
# first, penalize if the action is not valid
if not self._is_valid(action):
return -2
pnl = self.get_unrealized_profit()
factor = 100
factor = 100
pair = self.pair.replace(':', '')
pair = self.pair.replace(':', '')
# you can use feature values from dataframe
# Assumes the shifted RSI indicator has been generated in the strategy.
rsi_now = self.raw_features[f"%-rsi-period_10_shift-1_{pair}_"
f"{self.config['timeframe']}"].iloc[self._current_tick]
# you can use feature values from dataframe
# Assumes the shifted RSI indicator has been generated in the strategy.
rsi_now = self.raw_features[f"%-rsi-period_10_shift-1_{pair}_"
f"{self.config['timeframe']}"].iloc[self._current_tick]
# reward agent for entering trades
if (action in (Actions.Long_enter.value, Actions.Short_enter.value)
and self._position == Positions.Neutral):
if rsi_now < 40:
factor = 40 / rsi_now
else:
factor = 1
return 25 * factor
# reward agent for entering trades
if (action in (Actions.Long_enter.value, Actions.Short_enter.value)
and self._position == Positions.Neutral):
if rsi_now < 40:
factor = 40 / rsi_now
else:
factor = 1
return 25 * factor
# discourage agent from not entering trades
if action == Actions.Neutral.value and self._position == Positions.Neutral:
return -1
max_trade_duration = self.rl_config.get('max_trade_duration_candles', 300)
trade_duration = self._current_tick - self._last_trade_tick
if trade_duration <= max_trade_duration:
factor *= 1.5
elif trade_duration > max_trade_duration:
factor *= 0.5
# discourage sitting in position
if self._position in (Positions.Short, Positions.Long) and \
action == Actions.Neutral.value:
return -1 * trade_duration / max_trade_duration
# close long
if action == Actions.Long_exit.value and self._position == Positions.Long:
if pnl > self.profit_aim * self.rr:
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
return float(pnl * factor)
# close short
if action == Actions.Short_exit.value and self._position == Positions.Short:
if pnl > self.profit_aim * self.rr:
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
return float(pnl * factor)
return 0.
# discourage agent from not entering trades
if action == Actions.Neutral.value and self._position == Positions.Neutral:
return -1
max_trade_duration = self.rl_config.get('max_trade_duration_candles', 300)
trade_duration = self._current_tick - self._last_trade_tick
if trade_duration <= max_trade_duration:
factor *= 1.5
elif trade_duration > max_trade_duration:
factor *= 0.5
# discourage sitting in position
if self._position in (Positions.Short, Positions.Long) and \
action == Actions.Neutral.value:
return -1 * trade_duration / max_trade_duration
# close long
if action == Actions.Long_exit.value and self._position == Positions.Long:
if pnl > self.profit_aim * self.rr:
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
return float(pnl * factor)
# close short
if action == Actions.Short_exit.value and self._position == Positions.Short:
if pnl > self.profit_aim * self.rr:
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
return float(pnl * factor)
return 0.
```
### Using Tensorboard
## Using Tensorboard
Reinforcement Learning models benefit from tracking training metrics. FreqAI has integrated Tensorboard to allow users to track training and evaluation performance across all coins and across all retrainings. Tensorboard is activated via the following command:
@@ -233,32 +245,30 @@ where `unique-id` is the `identifier` set in the `freqai` configuration file. Th
![tensorboard](assets/tensorboard.jpg)
### Custom logging
## Custom logging
FreqAI also provides a built in episodic summary logger called `self.tensorboard_log` for adding custom information to the Tensorboard log. By default, this function is already called once per step inside the environment to record the agent actions. All values accumulated for all steps in a single episode are reported at the conclusion of each episode, followed by a full reset of all metrics to 0 in preparation for the subsequent episode.
`self.tensorboard_log` can also be used anywhere inside the environment, for example, it can be added to the `calculate_reward` function to collect more detailed information about how often various parts of the reward were called:
```py
class MyRLEnv(Base5ActionRLEnv):
"""
User made custom environment. This class inherits from BaseEnvironment and gym.env.
Users can override any functions from those parent classes. Here is an example
of a user customized `calculate_reward()` function.
"""
def calculate_reward(self, action: int) -> float:
if not self._is_valid(action):
self.tensorboard_log("invalid")
return -2
```python
class MyRLEnv(Base5ActionRLEnv):
"""
User made custom environment. This class inherits from BaseEnvironment and gym.env.
Users can override any functions from those parent classes. Here is an example
of a user customized `calculate_reward()` function.
"""
def calculate_reward(self, action: int) -> float:
if not self._is_valid(action):
self.tensorboard_log("invalid")
return -2
```
!!! Note
The `self.tensorboard_log()` function is designed for tracking incremented objects only i.e. events, actions inside the training environment. If the event of interest is a float, the float can be passed as the second argument e.g. `self.tensorboard_log("float_metric1", 0.23)`. In this case the metric values are not incremented.
### Choosing a base environment
## Choosing a base environment
FreqAI provides three base environments, `Base3ActionRLEnvironment`, `Base4ActionEnvironment` and `Base5ActionEnvironment`. As the names imply, the environments are customized for agents that can select from 3, 4 or 5 actions. The `Base3ActionEnvironment` is the simplest, the agent can select from hold, long, or short. This environment can also be used for long-only bots (it automatically follows the `can_short` flag from the strategy), where long is the enter condition and short is the exit condition. Meanwhile, in the `Base4ActionEnvironment`, the agent can enter long, enter short, hold neutral, or exit position. Finally, in the `Base5ActionEnvironment`, the agent has the same actions as Base4, but instead of a single exit action, it separates exit long and exit short. The main changes stemming from the environment selection include:

View File

@@ -131,6 +131,9 @@ You can choose to adopt a continual learning scheme by setting `"continual_learn
???+ danger "Continual learning enforces a constant parameter space"
Since `continual_learning` means that the model parameter space *cannot* change between trainings, `principal_component_analysis` is automatically disabled when `continual_learning` is enabled. Hint: PCA changes the parameter space and the number of features, learn more about PCA [here](freqai-feature-engineering.md#data-dimensionality-reduction-with-principal-component-analysis).
???+ danger "Experimental functionality"
Beware that this is currently a naive approach to incremental learning, and it has a high probability of overfitting/getting stuck in local minima while the market moves away from your model. We have the mechanics available in FreqAI primarily for experimental purposes and so that it is ready for more mature approaches to continual learning in chaotic systems like the crypto market.
## Hyperopt
You can hyperopt using the same command as for [typical Freqtrade hyperopt](hyperopt.md):
@@ -158,7 +161,14 @@ This specific hyperopt would help you understand the appropriate `DI_values` for
## Using Tensorboard
CatBoost models benefit from tracking training metrics via Tensorboard. You can take advantage of the FreqAI integration to track training and evaluation performance across all coins and across all retrainings. Tensorboard is activated via the following command:
!!! note "Availability"
FreqAI includes tensorboard for a variety of models, including XGBoost, all PyTorch models, Reinforcement Learning, and Catboost. If you would like to see Tensorboard integrated into another model type, please open an issue on the [Freqtrade GitHub](https://github.com/freqtrade/freqtrade/issues)
!!! danger "Requirements"
Tensorboard logging requires the FreqAI torch installation/docker image.
The easiest way to use tensorboard is to ensure `freqai.activate_tensorboard` is set to `True` (default setting) in your configuration file, run FreqAI, then open a separate shell and run:
```bash
cd freqtrade
@@ -168,3 +178,7 @@ tensorboard --logdir user_data/models/unique-id
where `unique-id` is the `identifier` set in the `freqai` configuration file. This command must be run in a separate shell if you wish to view the output in your browser at 127.0.0.1:6060 (6060 is the default port used by Tensorboard).
![tensorboard](assets/tensorboard.jpg)
!!! note "Deactivate for improved performance"
Tensorboard logging can slow down training and should be deactivated for production use.

View File

@@ -32,7 +32,10 @@ The easiest way to quickly test FreqAI is to run it in dry mode with the followi
freqtrade trade --config config_examples/config_freqai.example.json --strategy FreqaiExampleStrategy --freqaimodel LightGBMRegressor --strategy-path freqtrade/templates
```
You will see the boot-up process of automatic data downloading, followed by simultaneous training and trading.
You will see the boot-up process of automatic data downloading, followed by simultaneous training and trading.
!!! danger "Not for production"
The example strategy provided with the Freqtrade source code is designed for showcasing/testing a wide variety of FreqAI features. It is also designed to run on small computers so that it can be used as a benchmark between developers and users. It is *not* designed to be run in production.
An example strategy, prediction model, and config to use as a starting points can be found in
`freqtrade/templates/FreqaiExampleStrategy.py`, `freqtrade/freqai/prediction_models/LightGBMRegressor.py`, and
@@ -69,16 +72,15 @@ pip install -r requirements-freqai.txt
```
!!! Note
Catboost will not be installed on arm devices (raspberry, Mac M1, ARM based VPS, ...), since it does not provide wheels for this platform.
!!! Note "python 3.11"
Some dependencies (Catboost, Torch) currently don't support python 3.11. Freqtrade therefore only supports python 3.10 for these models/dependencies.
Tests involving these dependencies are skipped on 3.11.
Catboost will not be installed on low-powered arm devices (raspberry), since it does not provide wheels for this platform.
### Usage with docker
If you are using docker, a dedicated tag with FreqAI dependencies is available as `:freqai`. As such - you can replace the image line in your docker compose file with `image: freqtradeorg/freqtrade:develop_freqai`. This image contains the regular FreqAI dependencies. Similar to native installs, Catboost will not be available on ARM based devices.
!!! note "docker-compose-freqai.yml"
We do provide an explicit docker-compose file for this in `docker/docker-compose-freqai.yml` - which can be used via `docker compose -f docker/docker-compose-freqai.yml run ...` - or can be copied to replace the original docker file. This docker-compose file also contains a (disabled) section to enable GPU resources within docker containers. This obviously assumes the system has GPU resources available.
### FreqAI position in open-source machine learning landscape
Forecasting chaotic time-series based systems, such as equity/cryptocurrency markets, requires a broad set of tools geared toward testing a wide range of hypotheses. Fortunately, a recent maturation of robust machine learning libraries (e.g. `scikit-learn`) has opened up a wide range of research possibilities. Scientists from a diverse range of fields can now easily prototype their studies on an abundance of established machine learning algorithms. Similarly, these user-friendly libraries enable "citzen scientists" to use their basic Python skills for data exploration. However, leveraging these machine learning libraries on historical and live chaotic data sources can be logistically difficult and expensive. Additionally, robust data collection, storage, and handling presents a disparate challenge. [`FreqAI`](#freqai) aims to provide a generalized and extensible open-sourced framework geared toward live deployments of adaptive modeling for market forecasting. The `FreqAI` framework is effectively a sandbox for the rich world of open-source machine learning libraries. Inside the `FreqAI` sandbox, users find they can combine a wide variety of third-party libraries to test creative hypotheses on a free live 24/7 chaotic data source - cryptocurrency exchange data.

View File

@@ -30,12 +30,6 @@ The easiest way to install and run Freqtrade is to clone the bot Github reposito
!!! Warning "Up-to-date clock"
The clock on the system running the bot must be accurate, synchronized to a NTP server frequently enough to avoid problems with communication to the exchanges.
!!! Error "Running setup.py install for gym did not run successfully."
If you get an error related with gym we suggest you to downgrade setuptools it to version 65.5.0 you can do it with the following command:
```bash
pip install setuptools==65.5.0
```
------
## Requirements
@@ -242,6 +236,7 @@ source .env/bin/activate
```bash
python3 -m pip install --upgrade pip
python3 -m pip install -r requirements.txt
python3 -m pip install -e .
```

View File

@@ -1,6 +1,6 @@
markdown==3.3.7
mkdocs==1.4.2
mkdocs-material==9.1.7
mkdocs==1.4.3
mkdocs-material==9.1.14
mdx_truly_sane_lists==1.3
pymdown-extensions==9.11
pymdown-extensions==10.0.1
jinja2==3.1.2

View File

@@ -134,7 +134,9 @@ python3 scripts/rest_client.py --config rest_config.json <command> [optional par
| `reload_config` | Reloads the configuration file.
| `trades` | List last trades. Limited to 500 trades per call.
| `trade/<tradeid>` | Get specific trade.
| `delete_trade <trade_id>` | Remove trade from the database. Tries to close open orders. Requires manual handling of this trade on the exchange.
| `trade/<tradeid>` | DELETE - Remove trade from the database. Tries to close open orders. Requires manual handling of this trade on the exchange.
| `trade/<tradeid>/open-order` | DELETE - Cancel open order for this trade.
| `trade/<tradeid>/reload` | GET - Reload a trade from the Exchange. Only works in live, and can potentially help recover a trade that was manually sold on the exchange.
| `show_config` | Shows part of the current configuration with relevant settings to operation.
| `logs` | Shows last log messages.
| `status` | Lists all open trades.

View File

@@ -227,8 +227,8 @@ for val in self.buy_ema_short.range:
f'ema_short_{val}': ta.EMA(dataframe, timeperiod=val)
}))
# Append columns to existing dataframe
merged_frame = pd.concat(frames, axis=1)
# Combine all dataframes, and reassign the original dataframe column
dataframe = pd.concat(frames, axis=1)
```
Freqtrade does however also counter this by running `dataframe.copy()` on the dataframe right after the `populate_indicators()` method - so performance implications of this should be low to non-existant.

View File

@@ -187,11 +187,13 @@ official commands. You can ask at any moment for help with `/help`.
| `/forcelong <pair> [rate]` | Instantly buys the given pair. Rate is optional and only applies to limit orders. (`force_entry_enable` must be set to True)
| `/forceshort <pair> [rate]` | Instantly shorts the given pair. Rate is optional and only applies to limit orders. This will only work on non-spot markets. (`force_entry_enable` must be set to True)
| `/delete <trade_id>` | Delete a specific trade from the Database. Tries to close open orders. Requires manual handling of this trade on the exchange.
| `/reload_trade <trade_id>` | Reload a trade from the Exchange. Only works in live, and can potentially help recover a trade that was manually sold on the exchange.
| `/cancel_open_order <trade_id> | /coo <trade_id>` | Cancel an open order for a trade.
| **Metrics** |
| `/profit [<n>]` | Display a summary of your profit/loss from close trades and some stats about your performance, over the last n days (all trades by default)
| `/performance` | Show performance of each finished trade grouped by pair
| `/balance` | Show account balance per currency
| `/balance` | Show bot managed balance per currency
| `/balance full` | Show account balance per currency
| `/daily <n>` | Shows profit or loss per day, over the last n days (n defaults to 7)
| `/weekly <n>` | Shows profit or loss per week, over the last n weeks (n defaults to 8)
| `/monthly <n>` | Shows profit or loss per month, over the last n months (n defaults to 6)
@@ -202,7 +204,6 @@ official commands. You can ask at any moment for help with `/help`.
| `/blacklist [pair]` | Show the current blacklist, or adds a pair to the blacklist.
| `/edge` | Show validated pairs by Edge if it is enabled.
## Telegram commands in action
Below, example of Telegram message you will receive for each command.

View File

@@ -723,6 +723,9 @@ usage: freqtrade backtesting-analysis [-h] [-v] [--logfile FILE] [-V]
[--exit-reason-list EXIT_REASON_LIST [EXIT_REASON_LIST ...]]
[--indicator-list INDICATOR_LIST [INDICATOR_LIST ...]]
[--timerange YYYYMMDD-[YYYYMMDD]]
[--rejected]
[--analysis-to-csv]
[--analysis-csv-path PATH]
optional arguments:
-h, --help show this help message and exit
@@ -736,19 +739,27 @@ optional arguments:
pair and enter_tag, 4: by pair, enter_ and exit_tag
(this can get quite large)
--enter-reason-list ENTER_REASON_LIST [ENTER_REASON_LIST ...]
Comma separated list of entry signals to analyse.
Default: all. e.g. 'entry_tag_a,entry_tag_b'
Space separated list of entry signals to analyse.
Default: all. e.g. 'entry_tag_a entry_tag_b'
--exit-reason-list EXIT_REASON_LIST [EXIT_REASON_LIST ...]
Comma separated list of exit signals to analyse.
Space separated list of exit signals to analyse.
Default: all. e.g.
'exit_tag_a,roi,stop_loss,trailing_stop_loss'
'exit_tag_a roi stop_loss trailing_stop_loss'
--indicator-list INDICATOR_LIST [INDICATOR_LIST ...]
Comma separated list of indicators to analyse. e.g.
'close,rsi,bb_lowerband,profit_abs'
Space separated list of indicators to analyse. e.g.
'close rsi bb_lowerband profit_abs'
--timerange YYYYMMDD-[YYYYMMDD]
Timerange to filter trades for analysis,
start inclusive, end exclusive. e.g.
20220101-20220201
--rejected
Print out rejected trades table
--analysis-to-csv
Write out tables to individual CSVs, by default to
'user_data/backtest_results' unless '--analysis-csv-path' is given.
--analysis-csv-path [PATH]
Optional path where individual CSVs will be written. If not used,
CSVs will be written to 'user_data/backtest_results'.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).

View File

@@ -1,5 +1,5 @@
""" Freqtrade bot """
__version__ = '2023.4'
__version__ = '2023.5'
if 'dev' in __version__:
from pathlib import Path

View File

@@ -106,7 +106,8 @@ ARGS_HYPEROPT_SHOW = ["hyperopt_list_best", "hyperopt_list_profitable", "hyperop
"disableparamexport", "backtest_breakdown"]
ARGS_ANALYZE_ENTRIES_EXITS = ["exportfilename", "analysis_groups", "enter_reason_list",
"exit_reason_list", "indicator_list", "timerange"]
"exit_reason_list", "indicator_list", "timerange",
"analysis_rejected", "analysis_to_csv", "analysis_csv_path"]
NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list-timeframes",
"list-markets", "list-pairs", "list-strategies", "list-freqaimodels",

View File

@@ -636,30 +636,45 @@ AVAILABLE_CLI_OPTIONS = {
"4: by pair, enter_ and exit_tag (this can get quite large), "
"5: by exit_tag"),
nargs='+',
default=['0', '1', '2'],
default=[],
choices=['0', '1', '2', '3', '4', '5'],
),
"enter_reason_list": Arg(
"--enter-reason-list",
help=("Comma separated list of entry signals to analyse. Default: all. "
"e.g. 'entry_tag_a,entry_tag_b'"),
help=("Space separated list of entry signals to analyse. Default: all. "
"e.g. 'entry_tag_a entry_tag_b'"),
nargs='+',
default=['all'],
),
"exit_reason_list": Arg(
"--exit-reason-list",
help=("Comma separated list of exit signals to analyse. Default: all. "
"e.g. 'exit_tag_a,roi,stop_loss,trailing_stop_loss'"),
help=("Space separated list of exit signals to analyse. Default: all. "
"e.g. 'exit_tag_a roi stop_loss trailing_stop_loss'"),
nargs='+',
default=['all'],
),
"indicator_list": Arg(
"--indicator-list",
help=("Comma separated list of indicators to analyse. "
"e.g. 'close,rsi,bb_lowerband,profit_abs'"),
help=("Space separated list of indicators to analyse. "
"e.g. 'close rsi bb_lowerband profit_abs'"),
nargs='+',
default=[],
),
"analysis_rejected": Arg(
'--rejected-signals',
help='Analyse rejected signals',
action='store_true',
),
"analysis_to_csv": Arg(
'--analysis-to-csv',
help='Save selected analysis tables to individual CSVs',
action='store_true',
),
"analysis_csv_path": Arg(
'--analysis-csv-path',
help=("Specify a path to save the analysis CSVs "
"if --analysis-to-csv is enabled. Default: user_data/basktesting_results/"),
),
"freqaimodel": Arg(
'--freqaimodel',
help='Specify a custom freqaimodels.',

View File

@@ -52,7 +52,7 @@ def start_download_data(args: Dict[str, Any]) -> None:
pairs_not_available: List[str] = []
# Init exchange
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False)
exchange = ExchangeResolver.load_exchange(config, validate=False)
markets = [p for p, m in exchange.markets.items() if market_is_active(m)
or config.get('include_inactive')]
@@ -125,7 +125,7 @@ def start_convert_trades(args: Dict[str, Any]) -> None:
"Please check the documentation on how to configure this.")
# Init exchange
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False)
exchange = ExchangeResolver.load_exchange(config, validate=False)
# Manual validations of relevant settings
if not config['exchange'].get('skip_pair_validation', False):
exchange.validate_pairs(config['pairs'])

View File

@@ -114,7 +114,7 @@ def start_list_timeframes(args: Dict[str, Any]) -> None:
config['timeframe'] = None
# Init exchange
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False)
exchange = ExchangeResolver.load_exchange(config, validate=False)
if args['print_one_column']:
print('\n'.join(exchange.timeframes))
@@ -133,7 +133,7 @@ def start_list_markets(args: Dict[str, Any], pairs_only: bool = False) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
# Init exchange
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False)
exchange = ExchangeResolver.load_exchange(config, validate=False)
# By default only active pairs/markets are to be shown
active_only = not args.get('list_pairs_all', False)

View File

@@ -18,7 +18,7 @@ def start_test_pairlist(args: Dict[str, Any]) -> None:
from freqtrade.plugins.pairlistmanager import PairListManager
config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False)
exchange = ExchangeResolver.load_exchange(config, validate=False)
quote_currencies = args.get('quote_currencies')
if not quote_currencies:

View File

@@ -174,7 +174,7 @@ def _validate_whitelist(conf: Dict[str, Any]) -> None:
return
for pl in conf.get('pairlists', [{'method': 'StaticPairList'}]):
if (pl.get('method') == 'StaticPairList'
if (isinstance(pl, dict) and pl.get('method') == 'StaticPairList'
and not conf.get('exchange', {}).get('pair_whitelist')):
raise OperationalException("StaticPairList requires pair_whitelist to be set.")

View File

@@ -465,6 +465,15 @@ class Configuration:
self._args_to_config(config, argname='timerange',
logstring='Filter trades by timerange: {}')
self._args_to_config(config, argname='analysis_rejected',
logstring='Analyse rejected signals: {}')
self._args_to_config(config, argname='analysis_to_csv',
logstring='Store analysis tables to CSV: {}')
self._args_to_config(config, argname='analysis_csv_path',
logstring='Path to store analysis CSVs: {}')
def _process_runmode(self, config: Config) -> None:
self._args_to_config(config, argname='dry_run',

View File

@@ -6,8 +6,6 @@ import re
from datetime import datetime, timezone
from typing import Optional
import arrow
from freqtrade.constants import DATETIME_PRINT_FORMAT
from freqtrade.exceptions import OperationalException
@@ -139,7 +137,8 @@ class TimeRange:
if stype[0]:
starts = rvals[index]
if stype[0] == 'date' and len(starts) == 8:
start = arrow.get(starts, 'YYYYMMDD').int_timestamp
start = int(datetime.strptime(starts, '%Y%m%d').replace(
tzinfo=timezone.utc).timestamp())
elif len(starts) == 13:
start = int(starts) // 1000
else:
@@ -148,7 +147,8 @@ class TimeRange:
if stype[1]:
stops = rvals[index]
if stype[1] == 'date' and len(stops) == 8:
stop = arrow.get(stops, 'YYYYMMDD').int_timestamp
stop = int(datetime.strptime(stops, '%Y%m%d').replace(
tzinfo=timezone.utc).timestamp())
elif len(stops) == 13:
stop = int(stops) // 1000
else:

View File

@@ -690,4 +690,6 @@ BidAsk = Literal['bid', 'ask']
OBLiteral = Literal['asks', 'bids']
Config = Dict[str, Any]
# Exchange part of the configuration.
ExchangeConfig = Dict[str, Any]
IntOrInf = float

View File

@@ -1,5 +1,6 @@
import logging
from pathlib import Path
from typing import List
import joblib
import pandas as pd
@@ -15,22 +16,31 @@ from freqtrade.exceptions import OperationalException
logger = logging.getLogger(__name__)
def _load_signal_candles(backtest_dir: Path):
def _load_backtest_analysis_data(backtest_dir: Path, name: str):
if backtest_dir.is_dir():
scpf = Path(backtest_dir,
Path(get_latest_backtest_filename(backtest_dir)).stem + "_signals.pkl"
Path(get_latest_backtest_filename(backtest_dir)).stem + "_" + name + ".pkl"
)
else:
scpf = Path(backtest_dir.parent / f"{backtest_dir.stem}_signals.pkl")
scpf = Path(backtest_dir.parent / f"{backtest_dir.stem}_{name}.pkl")
try:
with scpf.open("rb") as scp:
signal_candles = joblib.load(scp)
logger.info(f"Loaded signal candles: {str(scpf)}")
loaded_data = joblib.load(scp)
logger.info(f"Loaded {name} candles: {str(scpf)}")
except Exception as e:
logger.error("Cannot load signal candles from pickled results: ", e)
logger.error(f"Cannot load {name} data from pickled results: ", e)
return None
return signal_candles
return loaded_data
def _load_rejected_signals(backtest_dir: Path):
return _load_backtest_analysis_data(backtest_dir, "rejected")
def _load_signal_candles(backtest_dir: Path):
return _load_backtest_analysis_data(backtest_dir, "signals")
def _process_candles_and_indicators(pairlist, strategy_name, trades, signal_candles):
@@ -43,9 +53,7 @@ def _process_candles_and_indicators(pairlist, strategy_name, trades, signal_cand
for pair in pairlist:
if pair in signal_candles[strategy_name]:
analysed_trades_dict[strategy_name][pair] = _analyze_candles_and_indicators(
pair,
trades,
signal_candles[strategy_name][pair])
pair, trades, signal_candles[strategy_name][pair])
except Exception as e:
print(f"Cannot process entry/exit reasons for {strategy_name}: ", e)
@@ -85,7 +93,7 @@ def _analyze_candles_and_indicators(pair, trades: pd.DataFrame, signal_candles:
return pd.DataFrame()
def _do_group_table_output(bigdf, glist):
def _do_group_table_output(bigdf, glist, csv_path: Path, to_csv=False, ):
for g in glist:
# 0: summary wins/losses grouped by enter tag
if g == "0":
@@ -116,7 +124,8 @@ def _do_group_table_output(bigdf, glist):
sortcols = ['total_num_buys']
_print_table(new, sortcols, show_index=True)
_print_table(new, sortcols, show_index=True, name="Group 0:",
to_csv=to_csv, csv_path=csv_path)
else:
agg_mask = {'profit_abs': ['count', 'sum', 'median', 'mean'],
@@ -154,11 +163,24 @@ def _do_group_table_output(bigdf, glist):
new['mean_profit_pct'] = new['mean_profit_pct'] * 100
new['total_profit_pct'] = new['total_profit_pct'] * 100
_print_table(new, sortcols)
_print_table(new, sortcols, name=f"Group {g}:",
to_csv=to_csv, csv_path=csv_path)
else:
logger.warning("Invalid group mask specified.")
def _do_rejected_signals_output(rejected_signals_df: pd.DataFrame,
to_csv: bool = False, csv_path=None) -> None:
cols = ['pair', 'date', 'enter_tag']
sortcols = ['date', 'pair', 'enter_tag']
_print_table(rejected_signals_df[cols],
sortcols,
show_index=False,
name="Rejected Signals:",
to_csv=to_csv,
csv_path=csv_path)
def _select_rows_within_dates(df, timerange=None, df_date_col: str = 'date'):
if timerange:
if timerange.starttype == 'date':
@@ -192,38 +214,64 @@ def prepare_results(analysed_trades, stratname,
return res_df
def print_results(res_df, analysis_groups, indicator_list):
def print_results(res_df: pd.DataFrame, analysis_groups: List[str], indicator_list: List[str],
csv_path: Path, rejected_signals=None, to_csv=False):
if res_df.shape[0] > 0:
if analysis_groups:
_do_group_table_output(res_df, analysis_groups)
_do_group_table_output(res_df, analysis_groups, to_csv=to_csv, csv_path=csv_path)
if rejected_signals is not None:
if rejected_signals.empty:
print("There were no rejected signals.")
else:
_do_rejected_signals_output(rejected_signals, to_csv=to_csv, csv_path=csv_path)
# NB this can be large for big dataframes!
if "all" in indicator_list:
print(res_df)
elif indicator_list is not None:
_print_table(res_df,
show_index=False,
name="Indicators:",
to_csv=to_csv,
csv_path=csv_path)
elif indicator_list is not None and indicator_list:
available_inds = []
for ind in indicator_list:
if ind in res_df:
available_inds.append(ind)
ilist = ["pair", "enter_reason", "exit_reason"] + available_inds
_print_table(res_df[ilist], sortcols=['exit_reason'], show_index=False)
_print_table(res_df[ilist],
sortcols=['exit_reason'],
show_index=False,
name="Indicators:",
to_csv=to_csv,
csv_path=csv_path)
else:
print("\\No trades to show")
def _print_table(df, sortcols=None, show_index=False):
def _print_table(df: pd.DataFrame, sortcols=None, *, show_index=False, name=None,
to_csv=False, csv_path: Path):
if (sortcols is not None):
data = df.sort_values(sortcols)
else:
data = df
print(
tabulate(
data,
headers='keys',
tablefmt='psql',
showindex=show_index
if to_csv:
safe_name = Path(csv_path, name.lower().replace(" ", "_").replace(":", "") + ".csv")
data.to_csv(safe_name)
print(f"Saved {name} to {safe_name}")
else:
if name is not None:
print(name)
print(
tabulate(
data,
headers='keys',
tablefmt='psql',
showindex=show_index
)
)
)
def process_entry_exit_reasons(config: Config):
@@ -232,6 +280,11 @@ def process_entry_exit_reasons(config: Config):
enter_reason_list = config.get('enter_reason_list', ["all"])
exit_reason_list = config.get('exit_reason_list', ["all"])
indicator_list = config.get('indicator_list', [])
do_rejected = config.get('analysis_rejected', False)
to_csv = config.get('analysis_to_csv', False)
csv_path = Path(config.get('analysis_csv_path', config['exportfilename']))
if to_csv and not csv_path.is_dir():
raise OperationalException(f"Specified directory {csv_path} does not exist.")
timerange = TimeRange.parse_timerange(None if config.get(
'timerange') is None else str(config.get('timerange')))
@@ -241,8 +294,16 @@ def process_entry_exit_reasons(config: Config):
for strategy_name, results in backtest_stats['strategy'].items():
trades = load_backtest_data(config['exportfilename'], strategy_name)
if not trades.empty:
if trades is not None and not trades.empty:
signal_candles = _load_signal_candles(config['exportfilename'])
rej_df = None
if do_rejected:
rejected_signals_dict = _load_rejected_signals(config['exportfilename'])
rej_df = prepare_results(rejected_signals_dict, strategy_name,
enter_reason_list, exit_reason_list,
timerange=timerange)
analysed_trades_dict = _process_candles_and_indicators(
config['exchange']['pair_whitelist'], strategy_name,
trades, signal_candles)
@@ -253,7 +314,10 @@ def process_entry_exit_reasons(config: Config):
print_results(res_df,
analysis_groups,
indicator_list)
indicator_list,
rejected_signals=rej_df,
to_csv=to_csv,
csv_path=csv_path)
except ValueError as e:
raise OperationalException(e) from e

View File

@@ -1,10 +1,9 @@
import logging
import operator
from datetime import datetime
from datetime import datetime, timedelta
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import arrow
from pandas import DataFrame, concat
from freqtrade.configuration import TimeRange
@@ -236,8 +235,8 @@ def _download_pair_history(pair: str, *,
new_data = exchange.get_historic_ohlcv(pair=pair,
timeframe=timeframe,
since_ms=since_ms if since_ms else
arrow.utcnow().shift(
days=-new_pairs_days).int_timestamp * 1000,
int((datetime.now() - timedelta(days=new_pairs_days)
).timestamp()) * 1000,
is_new_pair=data.empty,
candle_type=candle_type,
until_ms=until_ms if until_ms else None
@@ -349,7 +348,7 @@ def _download_trades_history(exchange: Exchange,
trades = []
if not since:
since = arrow.utcnow().shift(days=-new_pairs_days).int_timestamp * 1000
since = int((datetime.now() - timedelta(days=-new_pairs_days)).timestamp()) * 1000
from_id = trades[-1][1] if trades else None
if trades and since < trades[-1][0]:

View File

@@ -3,9 +3,9 @@
import logging
from collections import defaultdict
from copy import deepcopy
from datetime import timedelta
from typing import Any, Dict, List, NamedTuple
import arrow
import numpy as np
import utils_find_1st as utf1st
from pandas import DataFrame
@@ -18,6 +18,7 @@ from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_seconds
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
from freqtrade.strategy.interface import IStrategy
from freqtrade.util import dt_now
logger = logging.getLogger(__name__)
@@ -79,8 +80,8 @@ class Edge:
self._stoploss_range_step
)
self._timerange: TimeRange = TimeRange.parse_timerange("%s-" % arrow.now().shift(
days=-1 * self._since_number_of_days).format('YYYYMMDD'))
self._timerange: TimeRange = TimeRange.parse_timerange(
f"{(dt_now() - timedelta(days=self._since_number_of_days)).strftime('%Y%m%d')}-")
if config.get('fee'):
self.fee = config['fee']
else:
@@ -97,7 +98,7 @@ class Edge:
heartbeat = self.edge_config.get('process_throttle_secs')
if (self._last_updated > 0) and (
self._last_updated + heartbeat > arrow.utcnow().int_timestamp):
self._last_updated + heartbeat > int(dt_now().timestamp())):
return False
data: Dict[str, Any] = {}
@@ -189,7 +190,7 @@ class Edge:
# Fill missing, calculable columns, profit, duration , abs etc.
trades_df = self._fill_calculable_fields(DataFrame(trades))
self._cached_pairs = self._process_expectancy(trades_df)
self._last_updated = arrow.utcnow().int_timestamp
self._last_updated = int(dt_now().timestamp())
return True

View File

@@ -15,6 +15,7 @@ class ExitType(Enum):
EMERGENCY_EXIT = "emergency_exit"
CUSTOM_EXIT = "custom_exit"
PARTIAL_EXIT = "partial_exit"
SOLD_ON_EXCHANGE = "sold_on_exchange"
NONE = ""
def __str__(self):

View File

@@ -1,6 +1,6 @@
# flake8: noqa: F401
# isort: off
from freqtrade.exchange.common import remove_credentials, MAP_EXCHANGE_CHILDCLASS
from freqtrade.exchange.common import remove_exchange_credentials, MAP_EXCHANGE_CHILDCLASS
from freqtrade.exchange.exchange import Exchange
# isort: on
from freqtrade.exchange.binance import Binance

View File

@@ -1,10 +1,9 @@
""" Binance exchange subclass """
import logging
from datetime import datetime
from datetime import datetime, timezone
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import arrow
import ccxt
from freqtrade.enums import CandleType, MarginMode, PriceType, TradingMode
@@ -66,7 +65,7 @@ class Binance(Exchange):
"""
try:
if self.trading_mode == TradingMode.FUTURES and not self._config['dry_run']:
position_side = self._api.fapiPrivateGetPositionsideDual()
position_side = self._api.fapiPrivateGetPositionSideDual()
self._log_exchange_response('position_side_setting', position_side)
assets_margin = self._api.fapiPrivateGetMultiAssetsMargin()
self._log_exchange_response('multi_asset_margin', assets_margin)
@@ -105,8 +104,9 @@ class Binance(Exchange):
if x and x[3] and x[3][0] and x[3][0][0] > since_ms:
# Set starting date to first available candle.
since_ms = x[3][0][0]
logger.info(f"Candle-data for {pair} available starting with "
f"{arrow.get(since_ms // 1000).isoformat()}.")
logger.info(
f"Candle-data for {pair} available starting with "
f"{datetime.fromtimestamp(since_ms // 1000, tz=timezone.utc).isoformat()}.")
return await super()._async_get_historic_ohlcv(
pair=pair,

File diff suppressed because it is too large Load Diff

View File

@@ -4,6 +4,7 @@ import time
from functools import wraps
from typing import Any, Callable, Optional, TypeVar, cast, overload
from freqtrade.constants import ExchangeConfig
from freqtrade.exceptions import DDosProtection, RetryableOrderError, TemporaryError
from freqtrade.mixins import LoggingMixin
@@ -84,20 +85,22 @@ EXCHANGE_HAS_OPTIONAL = [
# 'fetchPositions', # Futures trading
# 'fetchLeverageTiers', # Futures initialization
# 'fetchMarketLeverageTiers', # Futures initialization
# 'fetchOpenOrders', 'fetchClosedOrders', # 'fetchOrders', # Refinding balance...
]
def remove_credentials(config) -> None:
def remove_exchange_credentials(exchange_config: ExchangeConfig, dry_run: bool) -> None:
"""
Removes exchange keys from the configuration and specifies dry-run
Used for backtesting / hyperopt / edge and utils.
Modifies the input dict!
"""
if config.get('dry_run', False):
config['exchange']['key'] = ''
config['exchange']['secret'] = ''
config['exchange']['password'] = ''
config['exchange']['uid'] = ''
if dry_run:
exchange_config['key'] = ''
exchange_config['apiKey'] = ''
exchange_config['secret'] = ''
exchange_config['password'] = ''
exchange_config['uid'] = ''
def calculate_backoff(retrycount, max_retries):

View File

@@ -11,7 +11,6 @@ from math import floor
from threading import Lock
from typing import Any, Coroutine, Dict, List, Literal, Optional, Tuple, Union
import arrow
import ccxt
import ccxt.async_support as ccxt_async
from cachetools import TTLCache
@@ -20,16 +19,16 @@ from dateutil import parser
from pandas import DataFrame, concat
from freqtrade.constants import (DEFAULT_AMOUNT_RESERVE_PERCENT, NON_OPEN_EXCHANGE_STATES, BidAsk,
BuySell, Config, EntryExit, ListPairsWithTimeframes, MakerTaker,
OBLiteral, PairWithTimeframe)
BuySell, Config, EntryExit, ExchangeConfig,
ListPairsWithTimeframes, MakerTaker, OBLiteral, PairWithTimeframe)
from freqtrade.data.converter import clean_ohlcv_dataframe, ohlcv_to_dataframe, trades_dict_to_list
from freqtrade.enums import OPTIMIZE_MODES, CandleType, MarginMode, TradingMode
from freqtrade.enums.pricetype import PriceType
from freqtrade.exceptions import (DDosProtection, ExchangeError, InsufficientFundsError,
InvalidOrderException, OperationalException, PricingError,
RetryableOrderError, TemporaryError)
from freqtrade.exchange.common import (API_FETCH_ORDER_RETRY_COUNT, remove_credentials, retrier,
retrier_async)
from freqtrade.exchange.common import (API_FETCH_ORDER_RETRY_COUNT, remove_exchange_credentials,
retrier, retrier_async)
from freqtrade.exchange.exchange_utils import (ROUND, ROUND_DOWN, ROUND_UP, CcxtModuleType,
amount_to_contract_precision, amount_to_contracts,
amount_to_precision, contracts_to_amount,
@@ -42,6 +41,8 @@ from freqtrade.exchange.types import OHLCVResponse, OrderBook, Ticker, Tickers
from freqtrade.misc import (chunks, deep_merge_dicts, file_dump_json, file_load_json,
safe_value_fallback2)
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
from freqtrade.util import dt_from_ts, dt_now
from freqtrade.util.datetime_helpers import dt_humanize, dt_ts
logger = logging.getLogger(__name__)
@@ -92,8 +93,8 @@ class Exchange:
# TradingMode.SPOT always supported and not required in this list
]
def __init__(self, config: Config, validate: bool = True,
load_leverage_tiers: bool = False) -> None:
def __init__(self, config: Config, *, exchange_config: Optional[ExchangeConfig] = None,
validate: bool = True, load_leverage_tiers: bool = False) -> None:
"""
Initializes this module with the given config,
it does basic validation whether the specified exchange and pairs are valid.
@@ -107,8 +108,7 @@ class Exchange:
# Lock event loop. This is necessary to avoid race-conditions when using force* commands
# Due to funding fee fetching.
self._loop_lock = Lock()
self.loop = asyncio.new_event_loop()
asyncio.set_event_loop(self.loop)
self.loop = self._init_async_loop()
self._config: Config = {}
self._config.update(config)
@@ -132,13 +132,13 @@ class Exchange:
# Holds all open sell orders for dry_run
self._dry_run_open_orders: Dict[str, Any] = {}
remove_credentials(config)
if config['dry_run']:
logger.info('Instance is running with dry_run enabled')
logger.info(f"Using CCXT {ccxt.__version__}")
exchange_config = config['exchange']
self.log_responses = exchange_config.get('log_responses', False)
exchange_conf: Dict[str, Any] = exchange_config if exchange_config else config['exchange']
remove_exchange_credentials(exchange_conf, config.get('dry_run', False))
self.log_responses = exchange_conf.get('log_responses', False)
# Leverage properties
self.trading_mode: TradingMode = config.get('trading_mode', TradingMode.SPOT)
@@ -153,8 +153,8 @@ class Exchange:
self._ft_has = deep_merge_dicts(self._ft_has, deepcopy(self._ft_has_default))
if self.trading_mode == TradingMode.FUTURES:
self._ft_has = deep_merge_dicts(self._ft_has_futures, self._ft_has)
if exchange_config.get('_ft_has_params'):
self._ft_has = deep_merge_dicts(exchange_config.get('_ft_has_params'),
if exchange_conf.get('_ft_has_params'):
self._ft_has = deep_merge_dicts(exchange_conf.get('_ft_has_params'),
self._ft_has)
logger.info("Overriding exchange._ft_has with config params, result: %s", self._ft_has)
@@ -166,18 +166,18 @@ class Exchange:
# Initialize ccxt objects
ccxt_config = self._ccxt_config
ccxt_config = deep_merge_dicts(exchange_config.get('ccxt_config', {}), ccxt_config)
ccxt_config = deep_merge_dicts(exchange_config.get('ccxt_sync_config', {}), ccxt_config)
ccxt_config = deep_merge_dicts(exchange_conf.get('ccxt_config', {}), ccxt_config)
ccxt_config = deep_merge_dicts(exchange_conf.get('ccxt_sync_config', {}), ccxt_config)
self._api = self._init_ccxt(exchange_config, ccxt_kwargs=ccxt_config)
self._api = self._init_ccxt(exchange_conf, ccxt_kwargs=ccxt_config)
ccxt_async_config = self._ccxt_config
ccxt_async_config = deep_merge_dicts(exchange_config.get('ccxt_config', {}),
ccxt_async_config = deep_merge_dicts(exchange_conf.get('ccxt_config', {}),
ccxt_async_config)
ccxt_async_config = deep_merge_dicts(exchange_config.get('ccxt_async_config', {}),
ccxt_async_config = deep_merge_dicts(exchange_conf.get('ccxt_async_config', {}),
ccxt_async_config)
self._api_async = self._init_ccxt(
exchange_config, ccxt_async, ccxt_kwargs=ccxt_async_config)
exchange_conf, ccxt_async, ccxt_kwargs=ccxt_async_config)
logger.info(f'Using Exchange "{self.name}"')
self.required_candle_call_count = 1
@@ -190,7 +190,7 @@ class Exchange:
self._startup_candle_count, config.get('timeframe', ''))
# Converts the interval provided in minutes in config to seconds
self.markets_refresh_interval: int = exchange_config.get(
self.markets_refresh_interval: int = exchange_conf.get(
"markets_refresh_interval", 60) * 60
if self.trading_mode != TradingMode.SPOT and load_leverage_tiers:
@@ -212,6 +212,11 @@ class Exchange:
if self.loop and not self.loop.is_closed():
self.loop.close()
def _init_async_loop(self) -> asyncio.AbstractEventLoop:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop
def validate_config(self, config):
# Check if timeframe is available
self.validate_timeframes(config.get('timeframe'))
@@ -486,7 +491,7 @@ class Exchange:
try:
self._markets = self._api.load_markets(params={})
self._load_async_markets()
self._last_markets_refresh = arrow.utcnow().int_timestamp
self._last_markets_refresh = dt_ts()
if self._ft_has['needs_trading_fees']:
self._trading_fees = self.fetch_trading_fees()
@@ -497,15 +502,14 @@ class Exchange:
"""Reload markets both sync and async if refresh interval has passed """
# Check whether markets have to be reloaded
if (self._last_markets_refresh > 0) and (
self._last_markets_refresh + self.markets_refresh_interval
> arrow.utcnow().int_timestamp):
self._last_markets_refresh + self.markets_refresh_interval > dt_ts()):
return None
logger.debug("Performing scheduled market reload..")
try:
self._markets = self._api.load_markets(reload=True, params={})
# Also reload async markets to avoid issues with newly listed pairs
self._load_async_markets(reload=True)
self._last_markets_refresh = arrow.utcnow().int_timestamp
self._last_markets_refresh = dt_ts()
self.fill_leverage_tiers()
except ccxt.BaseError:
logger.exception("Could not reload markets.")
@@ -839,7 +843,8 @@ class Exchange:
def create_dry_run_order(self, pair: str, ordertype: str, side: str, amount: float,
rate: float, leverage: float, params: Dict = {},
stop_loss: bool = False) -> Dict[str, Any]:
order_id = f'dry_run_{side}_{datetime.now().timestamp()}'
now = dt_now()
order_id = f'dry_run_{side}_{now.timestamp()}'
# Rounding here must respect to contract sizes
_amount = self._contracts_to_amount(
pair, self.amount_to_precision(pair, self._amount_to_contracts(pair, amount)))
@@ -854,8 +859,8 @@ class Exchange:
'side': side,
'filled': 0,
'remaining': _amount,
'datetime': arrow.utcnow().strftime('%Y-%m-%dT%H:%M:%S.%fZ'),
'timestamp': arrow.utcnow().int_timestamp * 1000,
'datetime': now.strftime('%Y-%m-%dT%H:%M:%S.%fZ'),
'timestamp': dt_ts(now),
'status': "open",
'fee': None,
'info': {},
@@ -863,7 +868,7 @@ class Exchange:
}
if stop_loss:
dry_order["info"] = {"stopPrice": dry_order["price"]}
dry_order["stopPrice"] = dry_order["price"]
dry_order[self._ft_has['stop_price_param']] = dry_order["price"]
# Workaround to avoid filling stoploss orders immediately
dry_order["ft_order_type"] = "stoploss"
orderbook: Optional[OrderBook] = None
@@ -1015,7 +1020,7 @@ class Exchange:
from freqtrade.persistence import Order
order = Order.order_by_id(order_id)
if order:
ccxt_order = order.to_ccxt_object()
ccxt_order = order.to_ccxt_object(self._ft_has['stop_price_param'])
self._dry_run_open_orders[order_id] = ccxt_order
return ccxt_order
# Gracefully handle errors with dry-run orders.
@@ -1428,6 +1433,47 @@ class Exchange:
except ccxt.BaseError as e:
raise OperationalException(e) from e
@retrier(retries=0)
def fetch_orders(self, pair: str, since: datetime) -> List[Dict]:
"""
Fetch all orders for a pair "since"
:param pair: Pair for the query
:param since: Starting time for the query
"""
if self._config['dry_run']:
return []
def fetch_orders_emulate() -> List[Dict]:
orders = []
if self.exchange_has('fetchClosedOrders'):
orders = self._api.fetch_closed_orders(pair, since=since_ms)
if self.exchange_has('fetchOpenOrders'):
orders_open = self._api.fetch_open_orders(pair, since=since_ms)
orders.extend(orders_open)
return orders
try:
since_ms = int((since.timestamp() - 10) * 1000)
if self.exchange_has('fetchOrders'):
try:
orders: List[Dict] = self._api.fetch_orders(pair, since=since_ms)
except ccxt.NotSupported:
# Some exchanges don't support fetchOrders
# attempt to fetch open and closed orders separately
orders = fetch_orders_emulate()
else:
orders = fetch_orders_emulate()
self._log_exchange_response('fetch_orders', orders)
orders = [self._order_contracts_to_amount(o) for o in orders]
return orders
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not fetch positions due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
@retrier
def fetch_trading_fees(self) -> Dict[str, Any]:
"""
@@ -1885,11 +1931,11 @@ class Exchange:
logger.debug(
"one_call: %s msecs (%s)",
one_call,
arrow.utcnow().shift(seconds=one_call // 1000).humanize(only_distance=True)
dt_humanize(dt_now() - timedelta(milliseconds=one_call), only_distance=True)
)
input_coroutines = [self._async_get_candle_history(
pair, timeframe, candle_type, since) for since in
range(since_ms, until_ms or (arrow.utcnow().int_timestamp * 1000), one_call)]
range(since_ms, until_ms or dt_ts(), one_call)]
data: List = []
# Chunk requests into batches of 100 to avoid overwelming ccxt Throttling
@@ -2072,7 +2118,7 @@ class Exchange:
"""
try:
# Fetch OHLCV asynchronously
s = '(' + arrow.get(since_ms // 1000).isoformat() + ') ' if since_ms is not None else ''
s = '(' + dt_from_ts(since_ms).isoformat() + ') ' if since_ms is not None else ''
logger.debug(
"Fetching pair %s, %s, interval %s, since %s %s...",
pair, candle_type, timeframe, since_ms, s
@@ -2162,7 +2208,7 @@ class Exchange:
logger.debug(
"Fetching trades for pair %s, since %s %s...",
pair, since,
'(' + arrow.get(since // 1000).isoformat() + ') ' if since is not None else ''
'(' + dt_from_ts(since).isoformat() + ') ' if since is not None else ''
)
trades = await self._api_async.fetch_trades(pair, since=since, limit=1000)
trades = self._trades_contracts_to_amount(trades)
@@ -2896,8 +2942,8 @@ class Exchange:
if nominal_value >= tier['minNotional']:
return (tier['maintenanceMarginRate'], tier['maintAmt'])
raise OperationalException("nominal value can not be lower than 0")
raise ExchangeError("nominal value can not be lower than 0")
# The lowest notional_floor for any pair in fetch_leverage_tiers is always 0 because it
# describes the min amt for a tier, and the lowest tier will always go down to 0
else:
raise OperationalException(f"Cannot get maintenance ratio using {self.name}")
raise ExchangeError(f"Cannot get maintenance ratio using {self.name}")

View File

@@ -11,6 +11,7 @@ from ccxt import (DECIMAL_PLACES, ROUND, ROUND_DOWN, ROUND_UP, SIGNIFICANT_DIGIT
from freqtrade.exchange.common import BAD_EXCHANGES, EXCHANGE_HAS_OPTIONAL, EXCHANGE_HAS_REQUIRED
from freqtrade.util import FtPrecise
from freqtrade.util.datetime_helpers import dt_from_ts, dt_ts
CcxtModuleType = Any
@@ -99,9 +100,8 @@ def timeframe_to_prev_date(timeframe: str, date: Optional[datetime] = None) -> d
if not date:
date = datetime.now(timezone.utc)
new_timestamp = ccxt.Exchange.round_timeframe(timeframe, date.timestamp() * 1000,
ROUND_DOWN) // 1000
return datetime.fromtimestamp(new_timestamp, tz=timezone.utc)
new_timestamp = ccxt.Exchange.round_timeframe(timeframe, dt_ts(date), ROUND_DOWN) // 1000
return dt_from_ts(new_timestamp)
def timeframe_to_next_date(timeframe: str, date: Optional[datetime] = None) -> datetime:
@@ -113,9 +113,8 @@ def timeframe_to_next_date(timeframe: str, date: Optional[datetime] = None) -> d
"""
if not date:
date = datetime.now(timezone.utc)
new_timestamp = ccxt.Exchange.round_timeframe(timeframe, date.timestamp() * 1000,
ROUND_UP) // 1000
return datetime.fromtimestamp(new_timestamp, tz=timezone.utc)
new_timestamp = ccxt.Exchange.round_timeframe(timeframe, dt_ts(date), ROUND_UP) // 1000
return dt_from_ts(new_timestamp)
def date_minus_candles(

View File

@@ -169,6 +169,22 @@ class Okx(Exchange):
params['posSide'] = self._get_posSide(side, True)
return params
def _convert_stop_order(self, pair: str, order_id: str, order: Dict) -> Dict:
if (
order['status'] == 'closed'
and (real_order_id := order.get('info', {}).get('ordId')) is not None
):
# Once a order triggered, we fetch the regular followup order.
order_reg = self.fetch_order(real_order_id, pair)
self._log_exchange_response('fetch_stoploss_order1', order_reg)
order_reg['id_stop'] = order_reg['id']
order_reg['id'] = order_id
order_reg['type'] = 'stoploss'
order_reg['status_stop'] = 'triggered'
return order_reg
order['type'] = 'stoploss'
return order
def fetch_stoploss_order(self, order_id: str, pair: str, params: Dict = {}) -> Dict:
if self._config['dry_run']:
return self.fetch_dry_run_order(order_id)
@@ -177,7 +193,7 @@ class Okx(Exchange):
params1 = {'stop': True}
order_reg = self._api.fetch_order(order_id, pair, params=params1)
self._log_exchange_response('fetch_stoploss_order', order_reg)
return order_reg
return self._convert_stop_order(pair, order_id, order_reg)
except ccxt.OrderNotFound:
pass
params2 = {'stop': True, 'ordType': 'conditional'}
@@ -188,18 +204,7 @@ class Okx(Exchange):
orders_f = [order for order in orders if order['id'] == order_id]
if orders_f:
order = orders_f[0]
if (order['status'] == 'closed'
and (real_order_id := order.get('info', {}).get('ordId')) is not None):
# Once a order triggered, we fetch the regular followup order.
order_reg = self.fetch_order(real_order_id, pair)
self._log_exchange_response('fetch_stoploss_order1', order_reg)
order_reg['id_stop'] = order_reg['id']
order_reg['id'] = order_id
order_reg['type'] = 'stoploss'
order_reg['status_stop'] = 'triggered'
return order_reg
order['type'] = 'stoploss'
return order
return self._convert_stop_order(pair, order_id, order)
except ccxt.BaseError:
pass
raise RetryableOrderError(

View File

@@ -1,7 +1,7 @@
import logging
from enum import Enum
from gym import spaces
from gymnasium import spaces
from freqtrade.freqai.RL.BaseEnvironment import BaseEnvironment, Positions
@@ -94,9 +94,12 @@ class Base3ActionRLEnv(BaseEnvironment):
observation = self._get_observation()
# user can play with time if they want
truncated = False
self._update_history(info)
return observation, step_reward, self._done, info
return observation, step_reward, self._done, truncated, info
def is_tradesignal(self, action: int) -> bool:
"""

View File

@@ -1,7 +1,7 @@
import logging
from enum import Enum
from gym import spaces
from gymnasium import spaces
from freqtrade.freqai.RL.BaseEnvironment import BaseEnvironment, Positions
@@ -96,9 +96,12 @@ class Base4ActionRLEnv(BaseEnvironment):
observation = self._get_observation()
# user can play with time if they want
truncated = False
self._update_history(info)
return observation, step_reward, self._done, info
return observation, step_reward, self._done, truncated, info
def is_tradesignal(self, action: int) -> bool:
"""

View File

@@ -1,7 +1,7 @@
import logging
from enum import Enum
from gym import spaces
from gymnasium import spaces
from freqtrade.freqai.RL.BaseEnvironment import BaseEnvironment, Positions
@@ -101,10 +101,12 @@ class Base5ActionRLEnv(BaseEnvironment):
)
observation = self._get_observation()
# user can play with time if they want
truncated = False
self._update_history(info)
return observation, step_reward, self._done, info
return observation, step_reward, self._done, truncated, info
def is_tradesignal(self, action: int) -> bool:
"""

View File

@@ -4,11 +4,11 @@ from abc import abstractmethod
from enum import Enum
from typing import Optional, Type, Union
import gym
import gymnasium as gym
import numpy as np
import pandas as pd
from gym import spaces
from gym.utils import seeding
from gymnasium import spaces
from gymnasium.utils import seeding
from pandas import DataFrame
@@ -127,6 +127,14 @@ class BaseEnvironment(gym.Env):
self.history: dict = {}
self.trade_history: list = []
def get_attr(self, attr: str):
"""
Returns the attribute of the environment
:param attr: attribute to return
:return: attribute
"""
return getattr(self, attr)
@abstractmethod
def set_action_space(self):
"""
@@ -172,7 +180,7 @@ class BaseEnvironment(gym.Env):
def reset_tensorboard_log(self):
self.tensorboard_metrics = {}
def reset(self):
def reset(self, seed=None):
"""
Reset is called at the beginning of every episode
"""
@@ -203,7 +211,7 @@ class BaseEnvironment(gym.Env):
self.close_trade_profit = []
self._total_unrealized_profit = 1
return self._get_observation()
return self._get_observation(), self.history
@abstractmethod
def step(self, action: int):
@@ -298,6 +306,12 @@ class BaseEnvironment(gym.Env):
"""
An example reward function. This is the one function that users will likely
wish to inject their own creativity into.
Warning!
This is function is a showcase of functionality designed to show as many possible
environment control features as possible. It is also designed to run quickly
on small computers. This is a benchmark, it is *not* for live production.
:param action: int = The action made by the agent for the current candle.
:return:
float = the reward to give to the agent for current step (used for optimization

View File

@@ -6,7 +6,7 @@ from datetime import datetime, timezone
from pathlib import Path
from typing import Any, Callable, Dict, Optional, Tuple, Type, Union
import gym
import gymnasium as gym
import numpy as np
import numpy.typing as npt
import pandas as pd
@@ -16,14 +16,14 @@ from pandas import DataFrame
from stable_baselines3.common.callbacks import EvalCallback
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.utils import set_random_seed
from stable_baselines3.common.vec_env import SubprocVecEnv
from stable_baselines3.common.vec_env import SubprocVecEnv, VecMonitor
from freqtrade.exceptions import OperationalException
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.freqai_interface import IFreqaiModel
from freqtrade.freqai.RL.Base5ActionRLEnv import Actions, Base5ActionRLEnv
from freqtrade.freqai.RL.BaseEnvironment import BaseActions, Positions
from freqtrade.freqai.RL.TensorboardCallback import TensorboardCallback
from freqtrade.freqai.RL.BaseEnvironment import BaseActions, BaseEnvironment, Positions
from freqtrade.freqai.tensorboard.TensorboardCallback import TensorboardCallback
from freqtrade.persistence import Trade
@@ -46,8 +46,8 @@ class BaseReinforcementLearningModel(IFreqaiModel):
'cpu_count', 1), max(int(self.max_system_threads / 2), 1))
th.set_num_threads(self.max_threads)
self.reward_params = self.freqai_info['rl_config']['model_reward_parameters']
self.train_env: Union[SubprocVecEnv, Type[gym.Env]] = gym.Env()
self.eval_env: Union[SubprocVecEnv, Type[gym.Env]] = gym.Env()
self.train_env: Union[VecMonitor, SubprocVecEnv, gym.Env] = gym.Env()
self.eval_env: Union[VecMonitor, SubprocVecEnv, gym.Env] = gym.Env()
self.eval_callback: Optional[EvalCallback] = None
self.model_type = self.freqai_info['rl_config']['model_type']
self.rl_config = self.freqai_info['rl_config']
@@ -371,6 +371,12 @@ class BaseReinforcementLearningModel(IFreqaiModel):
"""
An example reward function. This is the one function that users will likely
wish to inject their own creativity into.
Warning!
This is function is a showcase of functionality designed to show as many possible
environment control features as possible. It is also designed to run quickly
on small computers. This is a benchmark, it is *not* for live production.
:param action: int = The action made by the agent for the current candle.
:return:
float = the reward to give to the agent for current step (used for optimization
@@ -431,9 +437,8 @@ class BaseReinforcementLearningModel(IFreqaiModel):
return 0.
def make_env(MyRLEnv: Type[gym.Env], env_id: str, rank: int,
def make_env(MyRLEnv: Type[BaseEnvironment], env_id: str, rank: int,
seed: int, train_df: DataFrame, price: DataFrame,
monitor: bool = False,
env_info: Dict[str, Any] = {}) -> Callable:
"""
Utility function for multiprocessed env.
@@ -450,8 +455,7 @@ def make_env(MyRLEnv: Type[gym.Env], env_id: str, rank: int,
env = MyRLEnv(df=train_df, prices=price, id=env_id, seed=seed + rank,
**env_info)
if monitor:
env = Monitor(env)
return env
set_random_seed(seed)
return _init

View File

@@ -45,6 +45,7 @@ class BasePyTorchClassifier(BasePyTorchModel):
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
"""
Filter the prediction features data and predict with it.
:param dk: dk: The datakitchen object
:param unfiltered_df: Full dataframe for the current backtest period.
:return:
:pred_df: dataframe containing the predictions
@@ -74,11 +75,14 @@ class BasePyTorchClassifier(BasePyTorchModel):
dk.data_dictionary["prediction_features"],
device=self.device
)
self.model.model.eval()
logits = self.model.model(x)
probs = F.softmax(logits, dim=-1)
predicted_classes = torch.argmax(probs, dim=-1)
predicted_classes_str = self.decode_class_names(predicted_classes)
pred_df_prob = DataFrame(probs.detach().numpy(), columns=class_names)
# used .tolist to convert probs into an iterable, in this way Tensors
# are automatically moved to the CPU first if necessary.
pred_df_prob = DataFrame(probs.detach().tolist(), columns=class_names)
pred_df = DataFrame(predicted_classes_str, columns=[dk.label_list[0]])
pred_df = pd.concat([pred_df, pred_df_prob], axis=1)
return (pred_df, dk.do_predict)

View File

@@ -27,6 +27,7 @@ class BasePyTorchModel(IFreqaiModel, ABC):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
test_size = self.freqai_info.get('data_split_parameters', {}).get('test_size')
self.splits = ["train", "test"] if test_size != 0 else ["train"]
self.window_size = self.freqai_info.get("conv_width", 1)
def train(
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs

View File

@@ -44,7 +44,8 @@ class BasePyTorchRegressor(BasePyTorchModel):
dk.data_dictionary["prediction_features"],
device=self.device
)
self.model.model.eval()
y = self.model.model(x)
y = y.cpu()
pred_df = DataFrame(y.detach().numpy(), columns=[dk.label_list[0]])
pred_df = DataFrame(y.detach().tolist(), columns=[dk.label_list[0]])
pred_df = dk.denormalize_labels_from_metadata(pred_df)
return (pred_df, dk.do_predict)

View File

@@ -21,7 +21,7 @@ from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_seconds
from freqtrade.freqai.data_drawer import FreqaiDataDrawer
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.utils import plot_feature_importance, record_params
from freqtrade.freqai.utils import get_tb_logger, plot_feature_importance, record_params
from freqtrade.strategy.interface import IStrategy
@@ -80,6 +80,7 @@ class IFreqaiModel(ABC):
if self.keras and self.ft_params.get("DI_threshold", 0):
self.ft_params["DI_threshold"] = 0
logger.warning("DI threshold is not configured for Keras models yet. Deactivating.")
self.CONV_WIDTH = self.freqai_info.get('conv_width', 1)
if self.ft_params.get("inlier_metric_window", 0):
self.CONV_WIDTH = self.ft_params.get("inlier_metric_window", 0) * 2
@@ -109,6 +110,7 @@ class IFreqaiModel(ABC):
if self.ft_params.get('principal_component_analysis', False) and self.continual_learning:
self.ft_params.update({'principal_component_analysis': False})
logger.warning('User tried to use PCA with continual learning. Deactivating PCA.')
self.activate_tensorboard: bool = self.freqai_info.get('activate_tensorboard', True)
record_params(config, self.full_path)
@@ -242,8 +244,8 @@ class IFreqaiModel(ABC):
new_trained_timerange, pair, strategy, dk, data_load_timerange
)
except Exception as msg:
logger.warning(f"Training {pair} raised exception {msg.__class__.__name__}. "
f"Message: {msg}, skipping.")
logger.exception(f"Training {pair} raised exception {msg.__class__.__name__}. "
f"Message: {msg}, skipping.")
self.train_timer('stop', pair)
@@ -306,10 +308,11 @@ class IFreqaiModel(ABC):
if dk.check_if_backtest_prediction_is_valid(len_backtest_df):
if check_features:
self.dd.load_metadata(dk)
dataframe_dummy_features = self.dk.use_strategy_to_populate_indicators(
df_fts = self.dk.use_strategy_to_populate_indicators(
strategy, prediction_dataframe=dataframe.tail(1), pair=pair
)
dk.find_features(dataframe_dummy_features)
df_fts = dk.remove_special_chars_from_feature_names(df_fts)
dk.find_features(df_fts)
self.check_if_feature_list_matches_strategy(dk)
check_features = False
append_df = dk.get_backtesting_prediction()
@@ -342,7 +345,10 @@ class IFreqaiModel(ABC):
dk.find_labels(dataframe_train)
try:
self.tb_logger = get_tb_logger(self.dd.model_type, dk.data_path,
self.activate_tensorboard)
self.model = self.train(dataframe_train, pair, dk)
self.tb_logger.close()
except Exception as msg:
logger.warning(
f"Training {pair} raised exception {msg.__class__.__name__}. "
@@ -489,9 +495,9 @@ class IFreqaiModel(ABC):
if dk.training_features_list != feature_list:
raise OperationalException(
"Trying to access pretrained model with `identifier` "
"but found different features furnished by current strategy."
"Change `identifier` to train from scratch, or ensure the"
"strategy is furnishing the same features as the pretrained"
"but found different features furnished by current strategy. "
"Change `identifier` to train from scratch, or ensure the "
"strategy is furnishing the same features as the pretrained "
"model. In case of --strategy-list, please be aware that FreqAI "
"requires all strategies to maintain identical "
"feature_engineering_* functions"
@@ -620,18 +626,23 @@ class IFreqaiModel(ABC):
strategy, corr_dataframes, base_dataframes, pair
)
new_trained_timerange = dk.buffer_timerange(new_trained_timerange)
trained_timestamp = new_trained_timerange.stopts
unfiltered_dataframe = dk.slice_dataframe(new_trained_timerange, unfiltered_dataframe)
buffered_timerange = dk.buffer_timerange(new_trained_timerange)
unfiltered_dataframe = dk.slice_dataframe(buffered_timerange, unfiltered_dataframe)
# find the features indicated by strategy and store in datakitchen
dk.find_features(unfiltered_dataframe)
dk.find_labels(unfiltered_dataframe)
self.tb_logger = get_tb_logger(self.dd.model_type, dk.data_path,
self.activate_tensorboard)
model = self.train(unfiltered_dataframe, pair, dk)
self.tb_logger.close()
self.dd.pair_dict[pair]["trained_timestamp"] = new_trained_timerange.stopts
dk.set_new_model_names(pair, new_trained_timerange.stopts)
self.dd.pair_dict[pair]["trained_timestamp"] = trained_timestamp
dk.set_new_model_names(pair, trained_timestamp)
self.dd.save_data(model, pair, dk)
if self.plot_features:

View File

@@ -74,16 +74,18 @@ class PyTorchMLPClassifier(BasePyTorchClassifier):
model.to(self.device)
optimizer = torch.optim.AdamW(model.parameters(), lr=self.learning_rate)
criterion = torch.nn.CrossEntropyLoss()
init_model = self.get_init_model(dk.pair)
trainer = PyTorchModelTrainer(
model=model,
optimizer=optimizer,
criterion=criterion,
model_meta_data={"class_names": class_names},
device=self.device,
init_model=init_model,
data_convertor=self.data_convertor,
**self.trainer_kwargs,
)
# check if continual_learning is activated, and retreive the model to continue training
trainer = self.get_init_model(dk.pair)
if trainer is None:
trainer = PyTorchModelTrainer(
model=model,
optimizer=optimizer,
criterion=criterion,
model_meta_data={"class_names": class_names},
device=self.device,
data_convertor=self.data_convertor,
tb_logger=self.tb_logger,
**self.trainer_kwargs,
)
trainer.fit(data_dictionary, self.splits)
return trainer

View File

@@ -69,15 +69,17 @@ class PyTorchMLPRegressor(BasePyTorchRegressor):
model.to(self.device)
optimizer = torch.optim.AdamW(model.parameters(), lr=self.learning_rate)
criterion = torch.nn.MSELoss()
init_model = self.get_init_model(dk.pair)
trainer = PyTorchModelTrainer(
model=model,
optimizer=optimizer,
criterion=criterion,
device=self.device,
init_model=init_model,
data_convertor=self.data_convertor,
**self.trainer_kwargs,
)
# check if continual_learning is activated, and retreive the model to continue training
trainer = self.get_init_model(dk.pair)
if trainer is None:
trainer = PyTorchModelTrainer(
model=model,
optimizer=optimizer,
criterion=criterion,
device=self.device,
data_convertor=self.data_convertor,
tb_logger=self.tb_logger,
**self.trainer_kwargs,
)
trainer.fit(data_dictionary, self.splits)
return trainer

View File

@@ -0,0 +1,140 @@
from typing import Any, Dict, Tuple
import numpy as np
import numpy.typing as npt
import pandas as pd
import torch
from freqtrade.freqai.base_models.BasePyTorchRegressor import BasePyTorchRegressor
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.torch.PyTorchDataConvertor import (DefaultPyTorchDataConvertor,
PyTorchDataConvertor)
from freqtrade.freqai.torch.PyTorchModelTrainer import PyTorchTransformerTrainer
from freqtrade.freqai.torch.PyTorchTransformerModel import PyTorchTransformerModel
class PyTorchTransformerRegressor(BasePyTorchRegressor):
"""
This class implements the fit method of IFreqaiModel.
in the fit method we initialize the model and trainer objects.
the only requirement from the model is to be aligned to PyTorchRegressor
predict method that expects the model to predict tensor of type float.
the trainer defines the training loop.
parameters are passed via `model_training_parameters` under the freqai
section in the config file. e.g:
{
...
"freqai": {
...
"model_training_parameters" : {
"learning_rate": 3e-4,
"trainer_kwargs": {
"max_iters": 5000,
"batch_size": 64,
"max_n_eval_batches": null
},
"model_kwargs": {
"hidden_dim": 512,
"dropout_percent": 0.2,
"n_layer": 1,
},
}
}
}
"""
@property
def data_convertor(self) -> PyTorchDataConvertor:
return DefaultPyTorchDataConvertor(target_tensor_type=torch.float)
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
config = self.freqai_info.get("model_training_parameters", {})
self.learning_rate: float = config.get("learning_rate", 3e-4)
self.model_kwargs: Dict[str, Any] = config.get("model_kwargs", {})
self.trainer_kwargs: Dict[str, Any] = config.get("trainer_kwargs", {})
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
"""
n_features = data_dictionary["train_features"].shape[-1]
n_labels = data_dictionary["train_labels"].shape[-1]
model = PyTorchTransformerModel(
input_dim=n_features,
output_dim=n_labels,
time_window=self.window_size,
**self.model_kwargs
)
model.to(self.device)
optimizer = torch.optim.AdamW(model.parameters(), lr=self.learning_rate)
criterion = torch.nn.MSELoss()
# check if continual_learning is activated, and retreive the model to continue training
trainer = self.get_init_model(dk.pair)
if trainer is None:
trainer = PyTorchTransformerTrainer(
model=model,
optimizer=optimizer,
criterion=criterion,
device=self.device,
data_convertor=self.data_convertor,
window_size=self.window_size,
tb_logger=self.tb_logger,
**self.trainer_kwargs,
)
trainer.fit(data_dictionary, self.splits)
return trainer
def predict(
self, unfiltered_df: pd.DataFrame, dk: FreqaiDataKitchen, **kwargs
) -> Tuple[pd.DataFrame, npt.NDArray[np.int_]]:
"""
Filter the prediction features data and predict with it.
:param unfiltered_df: Full dataframe for the current backtest period.
:return:
:pred_df: dataframe containing the predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
data (NaNs) or felt uncertain about data (PCA and DI index)
"""
dk.find_features(unfiltered_df)
filtered_df, _ = dk.filter_features(
unfiltered_df, dk.training_features_list, training_filter=False
)
filtered_df = dk.normalize_data_from_metadata(filtered_df)
dk.data_dictionary["prediction_features"] = filtered_df
self.data_cleaning_predict(dk)
x = self.data_convertor.convert_x(
dk.data_dictionary["prediction_features"],
device=self.device
)
# if user is asking for multiple predictions, slide the window
# along the tensor
x = x.unsqueeze(0)
# create empty torch tensor
self.model.model.eval()
yb = torch.empty(0).to(self.device)
if x.shape[1] > 1:
ws = self.window_size
for i in range(0, x.shape[1] - ws):
xb = x[:, i:i + ws, :].to(self.device)
y = self.model.model(xb)
yb = torch.cat((yb, y), dim=0)
else:
yb = self.model.model(x)
yb = yb.cpu().squeeze()
pred_df = pd.DataFrame(yb.detach().numpy(), columns=dk.label_list)
pred_df = dk.denormalize_labels_from_metadata(pred_df)
if x.shape[1] > 1:
zeros_df = pd.DataFrame(np.zeros((x.shape[1] - len(pred_df), len(pred_df.columns))),
columns=pred_df.columns)
pred_df = pd.concat([zeros_df, pred_df], axis=0, ignore_index=True)
return (pred_df, dk.do_predict)

View File

@@ -1,11 +1,12 @@
import logging
from pathlib import Path
from typing import Any, Dict
from typing import Any, Dict, Type
import torch as th
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.RL.Base5ActionRLEnv import Actions, Base5ActionRLEnv, Positions
from freqtrade.freqai.RL.BaseEnvironment import BaseEnvironment
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
@@ -57,10 +58,14 @@ class ReinforcementLearner(BaseReinforcementLearningModel):
policy_kwargs = dict(activation_fn=th.nn.ReLU,
net_arch=self.net_arch)
if self.activate_tensorboard:
tb_path = Path(dk.full_path / "tensorboard" / dk.pair.split('/')[0])
else:
tb_path = None
if dk.pair not in self.dd.model_dictionary or not self.continual_learning:
model = self.MODELCLASS(self.policy_type, self.train_env, policy_kwargs=policy_kwargs,
tensorboard_log=Path(
dk.full_path / "tensorboard" / dk.pair.split('/')[0]),
tensorboard_log=tb_path,
**self.freqai_info.get('model_training_parameters', {})
)
else:
@@ -84,7 +89,9 @@ class ReinforcementLearner(BaseReinforcementLearningModel):
return model
class MyRLEnv(Base5ActionRLEnv):
MyRLEnv: Type[BaseEnvironment]
class MyRLEnv(Base5ActionRLEnv): # type: ignore[no-redef]
"""
User can override any function in BaseRLEnv and gym.Env. Here the user
sets a custom reward based on profit and trade duration.
@@ -94,6 +101,12 @@ class ReinforcementLearner(BaseReinforcementLearningModel):
"""
An example reward function. This is the one function that users will likely
wish to inject their own creativity into.
Warning!
This is function is a showcase of functionality designed to show as many possible
environment control features as possible. It is also designed to run quickly
on small computers. This is a benchmark, it is *not* for live production.
:param action: int = The action made by the agent for the current candle.
:return:
float = the reward to give to the agent for current step (used for optimization

View File

@@ -3,12 +3,12 @@ from typing import Any, Dict
from pandas import DataFrame
from stable_baselines3.common.callbacks import EvalCallback
from stable_baselines3.common.vec_env import SubprocVecEnv
from stable_baselines3.common.vec_env import SubprocVecEnv, VecMonitor
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.prediction_models.ReinforcementLearner import ReinforcementLearner
from freqtrade.freqai.RL.BaseReinforcementLearningModel import make_env
from freqtrade.freqai.RL.TensorboardCallback import TensorboardCallback
from freqtrade.freqai.tensorboard.TensorboardCallback import TensorboardCallback
logger = logging.getLogger(__name__)
@@ -41,22 +41,25 @@ class ReinforcementLearner_multiproc(ReinforcementLearner):
env_info = self.pack_env_dict(dk.pair)
eval_freq = len(train_df) // self.max_threads
env_id = "train_env"
self.train_env = SubprocVecEnv([make_env(self.MyRLEnv, env_id, i, 1,
train_df, prices_train,
monitor=True,
env_info=env_info) for i
in range(self.max_threads)])
self.train_env = VecMonitor(SubprocVecEnv([make_env(self.MyRLEnv, env_id, i, 1,
train_df, prices_train,
env_info=env_info) for i
in range(self.max_threads)]))
eval_env_id = 'eval_env'
self.eval_env = SubprocVecEnv([make_env(self.MyRLEnv, eval_env_id, i, 1,
test_df, prices_test,
monitor=True,
env_info=env_info) for i
in range(self.max_threads)])
self.eval_env = VecMonitor(SubprocVecEnv([make_env(self.MyRLEnv, eval_env_id, i, 1,
test_df, prices_test,
env_info=env_info) for i
in range(self.max_threads)]))
self.eval_callback = EvalCallback(self.eval_env, deterministic=True,
render=False, eval_freq=len(train_df),
render=False, eval_freq=eval_freq,
best_model_save_path=str(dk.data_path))
# TENSORBOARD CALLBACK DOES NOT RECOMMENDED TO USE WITH MULTIPLE ENVS,
# IT WILL RETURN FALSE INFORMATIONS, NEVERTHLESS NOT THREAD SAFE WITH SB3!!!
actions = self.train_env.env_method("get_actions")[0]
self.tensorboard_callback = TensorboardCallback(verbose=1, actions=actions)

View File

@@ -5,6 +5,7 @@ from xgboost import XGBRegressor
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.tensorboard import TBCallback
logger = logging.getLogger(__name__)
@@ -44,7 +45,10 @@ class XGBoostRegressor(BaseRegressionModel):
model = XGBRegressor(**self.model_training_parameters)
model.set_params(callbacks=[TBCallback(dk.data_path)], activate=self.activate_tensorboard)
model.fit(X=X, y=y, sample_weight=sample_weight, eval_set=eval_set,
sample_weight_eval_set=eval_weights, xgb_model=xgb_model)
# set the callbacks to empty so that we can serialize to disk later
model.set_params(callbacks=[])
return model

View File

@@ -3,8 +3,9 @@ from typing import Any, Dict, Type, Union
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.logger import HParam
from stable_baselines3.common.vec_env import VecEnv
from freqtrade.freqai.RL.BaseEnvironment import BaseActions, BaseEnvironment
from freqtrade.freqai.RL.BaseEnvironment import BaseActions
class TensorboardCallback(BaseCallback):
@@ -12,11 +13,13 @@ class TensorboardCallback(BaseCallback):
Custom callback for plotting additional values in tensorboard and
episodic summary reports.
"""
# Override training_env type to fix type errors
training_env: Union[VecEnv, None] = None
def __init__(self, verbose=1, actions: Type[Enum] = BaseActions):
super().__init__(verbose)
self.model: Any = None
self.logger = None # type: Any
self.training_env: BaseEnvironment = None # type: ignore
self.logger: Any = None
self.actions: Type[Enum] = actions
def _on_training_start(self) -> None:
@@ -44,6 +47,8 @@ class TensorboardCallback(BaseCallback):
def _on_step(self) -> bool:
local_info = self.locals["infos"][0]
if self.training_env is None:
return True
tensorboard_metrics = self.training_env.get_attr("tensorboard_metrics")[0]
for metric in local_info:

View File

@@ -0,0 +1,15 @@
# ensure users can still use a non-torch freqai version
try:
from freqtrade.freqai.tensorboard.tensorboard import TensorBoardCallback, TensorboardLogger
TBLogger = TensorboardLogger
TBCallback = TensorBoardCallback
except ModuleNotFoundError:
from freqtrade.freqai.tensorboard.base_tensorboard import (BaseTensorBoardCallback,
BaseTensorboardLogger)
TBLogger = BaseTensorboardLogger # type: ignore
TBCallback = BaseTensorBoardCallback # type: ignore
__all__ = (
"TBLogger",
"TBCallback"
)

View File

@@ -0,0 +1,33 @@
import logging
from pathlib import Path
from typing import Any
from xgboost.callback import TrainingCallback
logger = logging.getLogger(__name__)
class BaseTensorboardLogger:
def __init__(self, logdir: Path, activate: bool = True):
pass
def log_scalar(self, tag: str, scalar_value: Any, step: int):
return
def close(self):
return
class BaseTensorBoardCallback(TrainingCallback):
def __init__(self, logdir: Path, activate: bool = True):
pass
def after_iteration(
self, model, epoch: int, evals_log: TrainingCallback.EvalsLog
) -> bool:
return False
def after_training(self, model):
return model

View File

@@ -0,0 +1,62 @@
import logging
from pathlib import Path
from typing import Any
from torch.utils.tensorboard import SummaryWriter
from xgboost import callback
from freqtrade.freqai.tensorboard.base_tensorboard import (BaseTensorBoardCallback,
BaseTensorboardLogger)
logger = logging.getLogger(__name__)
class TensorboardLogger(BaseTensorboardLogger):
def __init__(self, logdir: Path, activate: bool = True):
self.activate = activate
if self.activate:
self.writer: SummaryWriter = SummaryWriter(f"{str(logdir)}/tensorboard")
def log_scalar(self, tag: str, scalar_value: Any, step: int):
if self.activate:
self.writer.add_scalar(tag, scalar_value, step)
def close(self):
if self.activate:
self.writer.flush()
self.writer.close()
class TensorBoardCallback(BaseTensorBoardCallback):
def __init__(self, logdir: Path, activate: bool = True):
self.activate = activate
if self.activate:
self.writer: SummaryWriter = SummaryWriter(f"{str(logdir)}/tensorboard")
def after_iteration(
self, model, epoch: int, evals_log: callback.TrainingCallback.EvalsLog
) -> bool:
if not self.activate:
return False
if not evals_log:
return False
for data, metric in evals_log.items():
for metric_name, log in metric.items():
score = log[-1][0] if isinstance(log[-1], tuple) else log[-1]
if data == "train":
self.writer.add_scalar("train_loss", score, epoch)
else:
self.writer.add_scalar("valid_loss", score, epoch)
return False
def after_training(self, model):
if not self.activate:
return model
self.writer.flush()
self.writer.close()
return model

View File

@@ -1,5 +1,5 @@
from abc import ABC, abstractmethod
from typing import List, Optional
from typing import Optional
import pandas as pd
import torch
@@ -12,14 +12,14 @@ class PyTorchDataConvertor(ABC):
"""
@abstractmethod
def convert_x(self, df: pd.DataFrame, device: Optional[str] = None) -> List[torch.Tensor]:
def convert_x(self, df: pd.DataFrame, device: Optional[str] = None) -> torch.Tensor:
"""
:param df: "*_features" dataframe.
:param device: The device to use for training (e.g. 'cpu', 'cuda').
"""
@abstractmethod
def convert_y(self, df: pd.DataFrame, device: Optional[str] = None) -> List[torch.Tensor]:
def convert_y(self, df: pd.DataFrame, device: Optional[str] = None) -> torch.Tensor:
"""
:param df: "*_labels" dataframe.
:param device: The device to use for training (e.g. 'cpu', 'cuda').
@@ -45,14 +45,14 @@ class DefaultPyTorchDataConvertor(PyTorchDataConvertor):
self._target_tensor_type = target_tensor_type
self._squeeze_target_tensor = squeeze_target_tensor
def convert_x(self, df: pd.DataFrame, device: Optional[str] = None) -> List[torch.Tensor]:
def convert_x(self, df: pd.DataFrame, device: Optional[str] = None) -> torch.Tensor:
x = torch.from_numpy(df.values).float()
if device:
x = x.to(device)
return [x]
return x
def convert_y(self, df: pd.DataFrame, device: Optional[str] = None) -> List[torch.Tensor]:
def convert_y(self, df: pd.DataFrame, device: Optional[str] = None) -> torch.Tensor:
y = torch.from_numpy(df.values)
if self._target_tensor_type:
@@ -64,4 +64,4 @@ class DefaultPyTorchDataConvertor(PyTorchDataConvertor):
if device:
y = y.to(device)
return [y]
return y

View File

@@ -1,5 +1,4 @@
import logging
from typing import List
import torch
from torch import nn
@@ -47,8 +46,8 @@ class PyTorchMLPModel(nn.Module):
self.relu = nn.ReLU()
self.dropout = nn.Dropout(p=dropout_percent)
def forward(self, tensors: List[torch.Tensor]) -> torch.Tensor:
x: torch.Tensor = tensors[0]
def forward(self, x: torch.Tensor) -> torch.Tensor:
# x: torch.Tensor = tensors[0]
x = self.relu(self.input_layer(x))
x = self.dropout(x)
x = self.blocks(x)

View File

@@ -12,6 +12,8 @@ from torch.utils.data import DataLoader, TensorDataset
from freqtrade.freqai.torch.PyTorchDataConvertor import PyTorchDataConvertor
from freqtrade.freqai.torch.PyTorchTrainerInterface import PyTorchTrainerInterface
from .datasets import WindowDataset
logger = logging.getLogger(__name__)
@@ -23,9 +25,10 @@ class PyTorchModelTrainer(PyTorchTrainerInterface):
optimizer: Optimizer,
criterion: nn.Module,
device: str,
init_model: Dict,
data_convertor: PyTorchDataConvertor,
model_meta_data: Dict[str, Any] = {},
window_size: int = 1,
tb_logger: Any = None,
**kwargs
):
"""
@@ -52,8 +55,8 @@ class PyTorchModelTrainer(PyTorchTrainerInterface):
self.batch_size: int = kwargs.get("batch_size", 64)
self.max_n_eval_batches: Optional[int] = kwargs.get("max_n_eval_batches", None)
self.data_convertor = data_convertor
if init_model:
self.load_from_checkpoint(init_model)
self.window_size: int = window_size
self.tb_logger = tb_logger
def fit(self, data_dictionary: Dict[str, pd.DataFrame], splits: List[str]):
"""
@@ -75,36 +78,28 @@ class PyTorchModelTrainer(PyTorchTrainerInterface):
batch_size=self.batch_size,
n_iters=self.max_iters
)
self.model.train()
for epoch in range(1, epochs + 1):
# training
losses = []
for i, batch_data in enumerate(data_loaders_dictionary["train"]):
for tensor in batch_data:
tensor.to(self.device)
xb = batch_data[:-1]
yb = batch_data[-1]
xb, yb = batch_data
xb.to(self.device)
yb.to(self.device)
yb_pred = self.model(xb)
loss = self.criterion(yb_pred, yb)
self.optimizer.zero_grad(set_to_none=True)
loss.backward()
self.optimizer.step()
losses.append(loss.item())
train_loss = sum(losses) / len(losses)
log_message = f"epoch {epoch}/{epochs}: train loss {train_loss:.4f}"
self.tb_logger.log_scalar("train_loss", loss.item(), i)
# evaluation
if "test" in splits:
test_loss = self.estimate_loss(
self.estimate_loss(
data_loaders_dictionary,
self.max_n_eval_batches,
"test"
)
log_message += f" ; test loss {test_loss:.4f}"
logger.info(log_message)
@torch.no_grad()
def estimate_loss(
@@ -112,26 +107,22 @@ class PyTorchModelTrainer(PyTorchTrainerInterface):
data_loader_dictionary: Dict[str, DataLoader],
max_n_eval_batches: Optional[int],
split: str,
) -> float:
) -> None:
self.model.eval()
n_batches = 0
losses = []
for i, batch_data in enumerate(data_loader_dictionary[split]):
if max_n_eval_batches and i > max_n_eval_batches:
n_batches += 1
break
xb, yb = batch_data
xb.to(self.device)
yb.to(self.device)
for tensor in batch_data:
tensor.to(self.device)
xb = batch_data[:-1]
yb = batch_data[-1]
yb_pred = self.model(xb)
loss = self.criterion(yb_pred, yb)
losses.append(loss.item())
self.tb_logger.log_scalar(f"{split}_loss", loss.item(), i)
self.model.train()
return sum(losses) / len(losses)
def create_data_loaders_dictionary(
self,
@@ -145,7 +136,7 @@ class PyTorchModelTrainer(PyTorchTrainerInterface):
for split in splits:
x = self.data_convertor.convert_x(data_dictionary[f"{split}_features"], self.device)
y = self.data_convertor.convert_y(data_dictionary[f"{split}_labels"], self.device)
dataset = TensorDataset(*x, *y)
dataset = TensorDataset(x, y)
data_loader = DataLoader(
dataset,
batch_size=self.batch_size,
@@ -206,3 +197,33 @@ class PyTorchModelTrainer(PyTorchTrainerInterface):
self.optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
self.model_meta_data = checkpoint["model_meta_data"]
return self
class PyTorchTransformerTrainer(PyTorchModelTrainer):
"""
Creating a trainer for the Transformer model.
"""
def create_data_loaders_dictionary(
self,
data_dictionary: Dict[str, pd.DataFrame],
splits: List[str]
) -> Dict[str, DataLoader]:
"""
Converts the input data to PyTorch tensors using a data loader.
"""
data_loader_dictionary = {}
for split in splits:
x = self.data_convertor.convert_x(data_dictionary[f"{split}_features"], self.device)
y = self.data_convertor.convert_y(data_dictionary[f"{split}_labels"], self.device)
dataset = WindowDataset(x, y, self.window_size)
data_loader = DataLoader(
dataset,
batch_size=self.batch_size,
shuffle=False,
drop_last=True,
num_workers=0,
)
data_loader_dictionary[split] = data_loader
return data_loader_dictionary

View File

@@ -0,0 +1,93 @@
import math
import torch
from torch import nn
"""
The architecture is based on the paper “Attention Is All You Need”.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017.
"""
class PyTorchTransformerModel(nn.Module):
"""
A transformer approach to time series modeling using positional encoding.
The architecture is based on the paper “Attention Is All You Need”.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017.
"""
def __init__(self, input_dim: int = 7, output_dim: int = 7, hidden_dim=1024,
n_layer=2, dropout_percent=0.1, time_window=10, nhead=8):
super().__init__()
self.time_window = time_window
# ensure the input dimension to the transformer is divisible by nhead
self.dim_val = input_dim - (input_dim % nhead)
self.input_net = nn.Sequential(
nn.Dropout(dropout_percent), nn.Linear(input_dim, self.dim_val)
)
# Encode the timeseries with Positional encoding
self.positional_encoding = PositionalEncoding(d_model=self.dim_val, max_len=self.dim_val)
# Define the encoder block of the Transformer
self.encoder_layer = nn.TransformerEncoderLayer(
d_model=self.dim_val, nhead=nhead, dropout=dropout_percent, batch_first=True)
self.transformer = nn.TransformerEncoder(self.encoder_layer, num_layers=n_layer)
# the pseudo decoding FC
self.output_net = nn.Sequential(
nn.Linear(self.dim_val * time_window, int(hidden_dim)),
nn.ReLU(),
nn.Dropout(dropout_percent),
nn.Linear(int(hidden_dim), int(hidden_dim / 2)),
nn.ReLU(),
nn.Dropout(dropout_percent),
nn.Linear(int(hidden_dim / 2), int(hidden_dim / 4)),
nn.ReLU(),
nn.Dropout(dropout_percent),
nn.Linear(int(hidden_dim / 4), output_dim)
)
def forward(self, x, mask=None, add_positional_encoding=True):
"""
Args:
x: Input features of shape [Batch, SeqLen, input_dim]
mask: Mask to apply on the attention outputs (optional)
add_positional_encoding: If True, we add the positional encoding to the input.
Might not be desired for some tasks.
"""
x = self.input_net(x)
if add_positional_encoding:
x = self.positional_encoding(x)
x = self.transformer(x, mask=mask)
x = x.reshape(-1, 1, self.time_window * x.shape[-1])
x = self.output_net(x)
return x
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=5000):
"""
Args
d_model: Hidden dimensionality of the input.
max_len: Maximum length of a sequence to expect.
"""
super().__init__()
# Create matrix of [SeqLen, HiddenDim] representing the positional encoding
# for max_len inputs
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer("pe", pe, persistent=False)
def forward(self, x):
x = x + self.pe[:, : x.size(1)]
return x

View File

@@ -0,0 +1,19 @@
import torch
class WindowDataset(torch.utils.data.Dataset):
def __init__(self, xs, ys, window_size):
self.xs = xs
self.ys = ys
self.window_size = window_size
def __len__(self):
return len(self.xs) - self.window_size
def __getitem__(self, index):
idx_rev = len(self.xs) - self.window_size - index - 1
window_x = self.xs[idx_rev:idx_rev + self.window_size, :]
# Beware of indexing, these two window_x and window_y are aimed at the same row!
# this is what happens when you use :
window_y = self.ys[idx_rev + self.window_size - 1, :].unsqueeze(0)
return window_x, window_y

View File

@@ -92,55 +92,6 @@ def get_required_data_timerange(config: Config) -> TimeRange:
return data_load_timerange
# Keep below for when we wish to download heterogeneously lengthed data for FreqAI.
# def download_all_data_for_training(dp: DataProvider, config: Config) -> None:
# """
# Called only once upon start of bot to download the necessary data for
# populating indicators and training a FreqAI model.
# :param timerange: TimeRange = The full data timerange for populating the indicators
# and training the model.
# :param dp: DataProvider instance attached to the strategy
# """
# if dp._exchange is not None:
# markets = [p for p, m in dp._exchange.markets.items() if market_is_active(m)
# or config.get('include_inactive')]
# else:
# # This should not occur:
# raise OperationalException('No exchange object found.')
# all_pairs = dynamic_expand_pairlist(config, markets)
# if not dp._exchange:
# # Not realistic - this is only called in live mode.
# raise OperationalException("Dataprovider did not have an exchange attached.")
# time = datetime.now(tz=timezone.utc).timestamp()
# for tf in config["freqai"]["feature_parameters"].get("include_timeframes"):
# timerange = TimeRange()
# timerange.startts = int(time)
# timerange.stopts = int(time)
# startup_candles = dp.get_required_startup(str(tf))
# tf_seconds = timeframe_to_seconds(str(tf))
# timerange.subtract_start(tf_seconds * startup_candles)
# new_pairs_days = int((timerange.stopts - timerange.startts) / 86400)
# # FIXME: now that we are looping on `refresh_backtest_ohlcv_data`, the function
# # redownloads the funding rate for each pair.
# refresh_backtest_ohlcv_data(
# dp._exchange,
# pairs=all_pairs,
# timeframes=[tf],
# datadir=config["datadir"],
# timerange=timerange,
# new_pairs_days=new_pairs_days,
# erase=False,
# data_format=config.get("dataformat_ohlcv", "json"),
# trading_mode=config.get("trading_mode", "spot"),
# prepend=config.get("prepend_data", False),
# )
def plot_feature_importance(model: Any, pair: str, dk: FreqaiDataKitchen,
count_max: int = 25) -> None:
"""
@@ -233,3 +184,13 @@ def get_timerange_backtest_live_models(config: Config) -> str:
dd = FreqaiDataDrawer(models_path, config)
timerange = dd.get_timerange_from_live_historic_predictions()
return timerange.timerange_str
def get_tb_logger(model_type: str, path: Path, activate: bool) -> Any:
if model_type == "pytorch" and activate:
from freqtrade.freqai.tensorboard import TBLogger
return TBLogger(path, activate)
else:
from freqtrade.freqai.tensorboard.base_tensorboard import BaseTensorboardLogger
return BaseTensorboardLogger(path, activate)

View File

@@ -1,9 +1,9 @@
"""
Freqtrade is the main module of this bot. It contains the class Freqtrade()
"""
import copy
import logging
import traceback
from copy import deepcopy
from datetime import datetime, time, timedelta, timezone
from math import isclose
from threading import Lock
@@ -13,7 +13,7 @@ from schedule import Scheduler
from freqtrade import constants
from freqtrade.configuration import validate_config_consistency
from freqtrade.constants import BuySell, Config, LongShort
from freqtrade.constants import BuySell, Config, ExchangeConfig, LongShort
from freqtrade.data.converter import order_book_to_dataframe
from freqtrade.data.dataprovider import DataProvider
from freqtrade.edge import Edge
@@ -23,6 +23,7 @@ from freqtrade.exceptions import (DependencyException, ExchangeError, Insufficie
InvalidOrderException, PricingError)
from freqtrade.exchange import (ROUND_DOWN, ROUND_UP, timeframe_to_minutes, timeframe_to_next_date,
timeframe_to_seconds)
from freqtrade.exchange.common import remove_exchange_credentials
from freqtrade.misc import safe_value_fallback, safe_value_fallback2
from freqtrade.mixins import LoggingMixin
from freqtrade.persistence import Order, PairLocks, Trade, init_db
@@ -63,6 +64,9 @@ class FreqtradeBot(LoggingMixin):
# Init objects
self.config = config
exchange_config: ExchangeConfig = deepcopy(config['exchange'])
# Remove credentials from original exchange config to avoid accidental credentail exposure
remove_exchange_credentials(config['exchange'], True)
self.strategy: IStrategy = StrategyResolver.load_strategy(self.config)
@@ -70,7 +74,7 @@ class FreqtradeBot(LoggingMixin):
validate_config_consistency(config)
self.exchange = ExchangeResolver.load_exchange(
self.config['exchange']['name'], self.config, load_leverage_tiers=True)
self.config, exchange_config=exchange_config, load_leverage_tiers=True)
init_db(self.config['db_url'])
@@ -420,7 +424,7 @@ class FreqtradeBot(LoggingMixin):
"""
Try refinding a lost trade.
Only used when InsufficientFunds appears on exit orders (stoploss or long sell/short buy).
Tries to walk the stored orders and sell them off eventually.
Tries to walk the stored orders and updates the trade state if necessary.
"""
logger.info(f"Trying to refind lost order for {trade}")
for order in trade.orders:
@@ -451,6 +455,42 @@ class FreqtradeBot(LoggingMixin):
except ExchangeError:
logger.warning(f"Error updating {order.order_id}.")
def handle_onexchange_order(self, trade: Trade):
"""
Try refinding a order that is not in the database.
Only used balance disappeared, which would make exiting impossible.
"""
try:
orders = self.exchange.fetch_orders(trade.pair, trade.open_date_utc)
for order in orders:
trade_order = [o for o in trade.orders if o.order_id == order['id']]
if trade_order:
continue
logger.info(f"Found previously unknown order {order['id']} for {trade.pair}.")
order_obj = Order.parse_from_ccxt_object(order, trade.pair, order['side'])
order_obj.order_filled_date = datetime.fromtimestamp(
safe_value_fallback(order, 'lastTradeTimestamp', 'timestamp') // 1000,
tz=timezone.utc)
trade.orders.append(order_obj)
# TODO: how do we handle open_order_id ...
Trade.commit()
prev_exit_reason = trade.exit_reason
trade.exit_reason = ExitType.SOLD_ON_EXCHANGE.value
self.update_trade_state(trade, order['id'], order)
logger.info(f"handled order {order['id']}")
if not trade.is_open:
# Trade was just closed
trade.close_date = order_obj.order_filled_date
Trade.commit()
break
else:
trade.exit_reason = prev_exit_reason
Trade.commit()
except ExchangeError:
logger.warning("Error finding onexchange order")
#
# BUY / enter positions / open trades logic and methods
#
@@ -461,7 +501,7 @@ class FreqtradeBot(LoggingMixin):
"""
trades_created = 0
whitelist = copy.deepcopy(self.active_pair_whitelist)
whitelist = deepcopy(self.active_pair_whitelist)
if not whitelist:
self.log_once("Active pair whitelist is empty.", logger.info)
return trades_created
@@ -490,7 +530,8 @@ class FreqtradeBot(LoggingMixin):
# Create entity and execute trade for each pair from whitelist
for pair in whitelist:
try:
trades_created += self.create_trade(pair)
with self._exit_lock:
trades_created += self.create_trade(pair)
except DependencyException as exception:
logger.warning('Unable to create trade for %s: %s', pair, exception)
@@ -981,7 +1022,7 @@ class FreqtradeBot(LoggingMixin):
'base_currency': self.exchange.get_pair_base_currency(trade.pair),
'fiat_currency': self.config.get('fiat_display_currency', None),
'amount': order.safe_amount_after_fee if fill else (order.amount or trade.amount),
'open_date': trade.open_date or datetime.utcnow(),
'open_date': trade.open_date_utc or datetime.now(timezone.utc),
'current_rate': current_rate,
'sub_trade': sub_trade,
}
@@ -1033,6 +1074,13 @@ class FreqtradeBot(LoggingMixin):
"""
trades_closed = 0
for trade in trades:
if trade.open_order_id is None and not self.wallets.check_exit_amount(trade):
logger.warning(
f'Not enough {trade.safe_base_currency} in wallet to exit {trade}. '
'Trying to recover.')
self.handle_onexchange_order(trade)
try:
try:
if (self.strategy.order_types.get('stoploss_on_exchange') and
@@ -1535,13 +1583,13 @@ class FreqtradeBot(LoggingMixin):
# Update wallets to ensure amounts tied up in a stoploss is now free!
self.wallets.update()
if self.trading_mode == TradingMode.FUTURES:
# A safe exit amount isn't needed for futures, you can just exit/close the position
return amount
trade_base_currency = self.exchange.get_pair_base_currency(pair)
wallet_amount = self.wallets.get_free(trade_base_currency)
logger.debug(f"{pair} - Wallet: {wallet_amount} - Trade-amount: {amount}")
if wallet_amount >= amount:
# A safe exit amount isn't needed for futures, you can just exit/close the position
return amount
elif wallet_amount > amount * 0.98:
logger.info(f"{pair} - Falling back to wallet-amount {wallet_amount} -> {amount}.")
@@ -1697,8 +1745,8 @@ class FreqtradeBot(LoggingMixin):
'enter_tag': trade.enter_tag,
'sell_reason': trade.exit_reason, # Deprecated
'exit_reason': trade.exit_reason,
'open_date': trade.open_date,
'close_date': trade.close_date or datetime.utcnow(),
'open_date': trade.open_date_utc,
'close_date': trade.close_date_utc or datetime.now(timezone.utc),
'stake_amount': trade.stake_amount,
'stake_currency': self.config['stake_currency'],
'base_currency': self.exchange.get_pair_base_currency(trade.pair),
@@ -1720,10 +1768,8 @@ class FreqtradeBot(LoggingMixin):
else:
trade.exit_order_status = reason
order = trade.select_order_by_order_id(order_id)
if not order:
raise DependencyException(
f"Order_obj not found for {order_id}. This should not have happened.")
order_or_none = trade.select_order_by_order_id(order_id)
order = self.order_obj_or_raise(order_id, order_or_none)
profit_rate: float = trade.safe_close_rate
profit_trade = trade.calc_profit(rate=profit_rate)
@@ -1764,6 +1810,12 @@ class FreqtradeBot(LoggingMixin):
# Send the message
self.rpc.send_msg(msg)
def order_obj_or_raise(self, order_id: str, order_obj: Optional[Order]) -> Order:
if not order_obj:
raise DependencyException(
f"Order_obj not found for {order_id}. This should not have happened.")
return order_obj
#
# Common update trade state methods
#
@@ -1802,10 +1854,8 @@ class FreqtradeBot(LoggingMixin):
# Handling of this will happen in check_handle_timedout.
return True
order_obj = trade.select_order_by_order_id(order_id)
if not order_obj:
raise DependencyException(
f"Order_obj not found for {order_id}. This should not have happened.")
order_obj_or_none = trade.select_order_by_order_id(order_id)
order_obj = self.order_obj_or_raise(order_id, order_obj_or_none)
self.handle_order_fee(trade, order_obj, order)
@@ -1823,16 +1873,18 @@ class FreqtradeBot(LoggingMixin):
# Must also run for partial exits
# TODO: Margin will need to use interest_rate as well.
# interest_rate = self.exchange.get_interest_rate()
trade.set_liquidation_price(self.exchange.get_liquidation_price(
pair=trade.pair,
open_rate=trade.open_rate,
is_short=trade.is_short,
amount=trade.amount,
stake_amount=trade.stake_amount,
leverage=trade.leverage,
wallet_balance=trade.stake_amount,
))
try:
trade.set_liquidation_price(self.exchange.get_liquidation_price(
pair=trade.pair,
open_rate=trade.open_rate,
is_short=trade.is_short,
amount=trade.amount,
stake_amount=trade.stake_amount,
leverage=trade.leverage,
wallet_balance=trade.stake_amount,
))
except DependencyException:
logger.warning('Unable to calculate liquidation price')
# Updating wallets when order is closed
self.wallets.update()
Trade.commit()

View File

@@ -32,6 +32,7 @@ def _set_loggers(verbosity: int = 0, api_verbosity: str = 'info') -> None:
logging.INFO if verbosity <= 2 else logging.DEBUG
)
logging.getLogger('telegram').setLevel(logging.INFO)
logging.getLogger('httpx').setLevel(logging.INFO)
logging.getLogger('werkzeug').setLevel(
logging.ERROR if api_verbosity == 'error' else logging.INFO

View File

@@ -3,13 +3,11 @@ Various tool function for Freqtrade and scripts
"""
import gzip
import logging
import re
from datetime import datetime
from pathlib import Path
from typing import Any, Dict, Iterator, List, Mapping, Optional, TextIO, Union
from urllib.parse import urlparse
import orjson
import pandas as pd
import rapidjson
@@ -48,18 +46,6 @@ def round_coin_value(
return val
def shorten_date(_date: str) -> str:
"""
Trim the date so it fits on small screens
"""
new_date = re.sub('seconds?', 'sec', _date)
new_date = re.sub('minutes?', 'min', new_date)
new_date = re.sub('hours?', 'h', new_date)
new_date = re.sub('days?', 'd', new_date)
new_date = re.sub('^an?', '1', new_date)
return new_date
def file_dump_json(filename: Path, data: Any, is_zip: bool = False, log: bool = True) -> None:
"""
Dump JSON data into a file
@@ -262,17 +248,7 @@ def dataframe_to_json(dataframe: pd.DataFrame) -> str:
:param dataframe: A pandas DataFrame
:returns: A JSON string of the pandas DataFrame
"""
# https://github.com/pandas-dev/pandas/issues/24889
# https://github.com/pandas-dev/pandas/issues/40443
# We need to convert to a dict to avoid mem leak
def default(z):
if isinstance(z, pd.Timestamp):
return z.timestamp() * 1e3
if z is pd.NaT:
return 'NaT'
raise TypeError
return str(orjson.dumps(dataframe.to_dict(orient='split'), default=default), 'utf-8')
return dataframe.to_json(orient='split')
def json_to_dataframe(data: str) -> pd.DataFrame:

View File

@@ -9,7 +9,6 @@ from copy import deepcopy
from datetime import datetime, timedelta, timezone
from typing import Any, Dict, List, Optional, Tuple
import pandas as pd
from numpy import nan
from pandas import DataFrame
@@ -28,8 +27,10 @@ from freqtrade.exchange import (amount_to_contract_precision, price_to_precision
from freqtrade.mixins import LoggingMixin
from freqtrade.optimize.backtest_caching import get_strategy_run_id
from freqtrade.optimize.bt_progress import BTProgress
from freqtrade.optimize.optimize_reports import (generate_backtest_stats, show_backtest_results,
store_backtest_signal_candles,
from freqtrade.optimize.optimize_reports import (generate_backtest_stats, generate_rejected_signals,
generate_trade_signal_candles,
show_backtest_results,
store_backtest_analysis_results,
store_backtest_stats)
from freqtrade.persistence import LocalTrade, Order, PairLocks, Trade
from freqtrade.plugins.pairlistmanager import PairListManager
@@ -84,10 +85,11 @@ class Backtesting:
self.strategylist: List[IStrategy] = []
self.all_results: Dict[str, Dict] = {}
self.processed_dfs: Dict[str, Dict] = {}
self.rejected_dict: Dict[str, List] = {}
self.rejected_df: Dict[str, Dict] = {}
self._exchange_name = self.config['exchange']['name']
self.exchange = ExchangeResolver.load_exchange(
self._exchange_name, self.config, load_leverage_tiers=True)
self.exchange = ExchangeResolver.load_exchange(self.config, load_leverage_tiers=True)
self.dataprovider = DataProvider(self.config, self.exchange)
if self.config.get('strategy_list'):
@@ -1056,6 +1058,18 @@ class Backtesting:
return None
return row
def _collate_rejected(self, pair, row):
"""
Temporarily store rejected signal information for downstream use in backtesting_analysis
"""
# It could be fun to enable hyperopt mode to write
# a loss function to reduce rejected signals
if (self.config.get('export', 'none') == 'signals' and
self.dataprovider.runmode == RunMode.BACKTEST):
if pair not in self.rejected_dict:
self.rejected_dict[pair] = []
self.rejected_dict[pair].append([row[DATE_IDX], row[ENTER_TAG_IDX]])
def backtest_loop(
self, row: Tuple, pair: str, current_time: datetime, end_date: datetime,
open_trade_count_start: int, trade_dir: Optional[LongShort],
@@ -1081,20 +1095,22 @@ class Backtesting:
if (
(self._position_stacking or len(LocalTrade.bt_trades_open_pp[pair]) == 0)
and is_first
and self.trade_slot_available(open_trade_count_start)
and current_time != end_date
and trade_dir is not None
and not PairLocks.is_pair_locked(pair, row[DATE_IDX], trade_dir)
):
trade = self._enter_trade(pair, row, trade_dir)
if trade:
# TODO: hacky workaround to avoid opening > max_open_trades
# This emulates previous behavior - not sure if this is correct
# Prevents entering if the trade-slot was freed in this candle
open_trade_count_start += 1
# logger.debug(f"{pair} - Emulate creation of new trade: {trade}.")
LocalTrade.add_bt_trade(trade)
self.wallets.update()
if (self.trade_slot_available(open_trade_count_start)):
trade = self._enter_trade(pair, row, trade_dir)
if trade:
# TODO: hacky workaround to avoid opening > max_open_trades
# This emulates previous behavior - not sure if this is correct
# Prevents entering if the trade-slot was freed in this candle
open_trade_count_start += 1
# logger.debug(f"{pair} - Emulate creation of new trade: {trade}.")
LocalTrade.add_bt_trade(trade)
self.wallets.update()
else:
self._collate_rejected(pair, row)
for trade in list(LocalTrade.bt_trades_open_pp[pair]):
# 3. Process entry orders.
@@ -1236,8 +1252,8 @@ class Backtesting:
def backtest_one_strategy(self, strat: IStrategy, data: Dict[str, DataFrame],
timerange: TimeRange):
self.progress.init_step(BacktestState.ANALYZE, 0)
logger.info(f"Running backtesting for Strategy {strat.get_strategy_name()}")
strategy_name = strat.get_strategy_name()
logger.info(f"Running backtesting for Strategy {strategy_name}")
backtest_start_time = datetime.now(timezone.utc)
self._set_strategy(strat)
@@ -1272,37 +1288,21 @@ class Backtesting:
)
backtest_end_time = datetime.now(timezone.utc)
results.update({
'run_id': self.run_ids.get(strat.get_strategy_name(), ''),
'run_id': self.run_ids.get(strategy_name, ''),
'backtest_start_time': int(backtest_start_time.timestamp()),
'backtest_end_time': int(backtest_end_time.timestamp()),
})
self.all_results[self.strategy.get_strategy_name()] = results
self.all_results[strategy_name] = results
if (self.config.get('export', 'none') == 'signals' and
self.dataprovider.runmode == RunMode.BACKTEST):
self._generate_trade_signal_candles(preprocessed_tmp, results)
self.processed_dfs[strategy_name] = generate_trade_signal_candles(
preprocessed_tmp, results)
self.rejected_df[strategy_name] = generate_rejected_signals(
preprocessed_tmp, self.rejected_dict)
return min_date, max_date
def _generate_trade_signal_candles(self, preprocessed_df, bt_results):
signal_candles_only = {}
for pair in preprocessed_df.keys():
signal_candles_only_df = DataFrame()
pairdf = preprocessed_df[pair]
resdf = bt_results['results']
pairresults = resdf.loc[(resdf["pair"] == pair)]
if pairdf.shape[0] > 0:
for t, v in pairresults.open_date.items():
allinds = pairdf.loc[(pairdf['date'] < v)]
signal_inds = allinds.iloc[[-1]]
signal_candles_only_df = pd.concat([signal_candles_only_df, signal_inds])
signal_candles_only[pair] = signal_candles_only_df
self.processed_dfs[self.strategy.get_strategy_name()] = signal_candles_only
def _get_min_cached_backtest_date(self):
min_backtest_date = None
backtest_cache_age = self.config.get('backtest_cache', constants.BACKTEST_CACHE_DEFAULT)
@@ -1365,8 +1365,9 @@ class Backtesting:
if (self.config.get('export', 'none') == 'signals' and
self.dataprovider.runmode == RunMode.BACKTEST):
store_backtest_signal_candles(
self.config['exportfilename'], self.processed_dfs, dt_appendix)
store_backtest_analysis_results(
self.config['exportfilename'], self.processed_dfs, self.rejected_df,
dt_appendix)
# Results may be mixed up now. Sort them so they follow --strategy-list order.
if 'strategy_list' in self.config and len(self.results) > 0:

View File

@@ -32,7 +32,7 @@ class EdgeCli:
# Ensure using dry-run
self.config['dry_run'] = True
self.config['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT
self.exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'], self.config)
self.exchange = ExchangeResolver.load_exchange(self.config)
self.strategy = StrategyResolver.load_strategy(self.config)
self.strategy.dp = DataProvider(config, self.exchange)

View File

@@ -4,7 +4,7 @@ from datetime import datetime, timedelta, timezone
from pathlib import Path
from typing import Any, Dict, List, Union
from pandas import DataFrame, to_datetime
from pandas import DataFrame, concat, to_datetime
from tabulate import tabulate
from freqtrade.constants import (BACKTEST_BREAKDOWNS, DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN,
@@ -46,29 +46,80 @@ def store_backtest_stats(
file_dump_json(latest_filename, {'latest_backtest': str(filename.name)})
def store_backtest_signal_candles(
recordfilename: Path, candles: Dict[str, Dict], dtappendix: str) -> Path:
def _store_backtest_analysis_data(
recordfilename: Path, data: Dict[str, Dict],
dtappendix: str, name: str) -> Path:
"""
Stores backtest trade signal candles
Stores backtest trade candles for analysis
:param recordfilename: Path object, which can either be a filename or a directory.
Filenames will be appended with a timestamp right before the suffix
while for directories, <directory>/backtest-result-<datetime>_signals.pkl will be used
while for directories, <directory>/backtest-result-<datetime>_<name>.pkl will be used
as filename
:param stats: Dict containing the backtesting signal candles
:param candles: Dict containing the backtesting data for analysis
:param dtappendix: Datetime to use for the filename
:param name: Name to use for the file, e.g. signals, rejected
"""
if recordfilename.is_dir():
filename = (recordfilename / f'backtest-result-{dtappendix}_signals.pkl')
filename = (recordfilename / f'backtest-result-{dtappendix}_{name}.pkl')
else:
filename = Path.joinpath(
recordfilename.parent, f'{recordfilename.stem}-{dtappendix}_signals.pkl'
recordfilename.parent, f'{recordfilename.stem}-{dtappendix}_{name}.pkl'
)
file_dump_joblib(filename, candles)
file_dump_joblib(filename, data)
return filename
def store_backtest_analysis_results(
recordfilename: Path, candles: Dict[str, Dict], trades: Dict[str, Dict],
dtappendix: str) -> None:
_store_backtest_analysis_data(recordfilename, candles, dtappendix, "signals")
_store_backtest_analysis_data(recordfilename, trades, dtappendix, "rejected")
def generate_trade_signal_candles(preprocessed_df: Dict[str, DataFrame],
bt_results: Dict[str, Any]) -> DataFrame:
signal_candles_only = {}
for pair in preprocessed_df.keys():
signal_candles_only_df = DataFrame()
pairdf = preprocessed_df[pair]
resdf = bt_results['results']
pairresults = resdf.loc[(resdf["pair"] == pair)]
if pairdf.shape[0] > 0:
for t, v in pairresults.open_date.items():
allinds = pairdf.loc[(pairdf['date'] < v)]
signal_inds = allinds.iloc[[-1]]
signal_candles_only_df = concat([
signal_candles_only_df.infer_objects(),
signal_inds.infer_objects()])
signal_candles_only[pair] = signal_candles_only_df
return signal_candles_only
def generate_rejected_signals(preprocessed_df: Dict[str, DataFrame],
rejected_dict: Dict[str, DataFrame]) -> Dict[str, DataFrame]:
rejected_candles_only = {}
for pair, signals in rejected_dict.items():
rejected_signals_only_df = DataFrame()
pairdf = preprocessed_df[pair]
for t in signals:
data_df_row = pairdf.loc[(pairdf['date'] == t[0])].copy()
data_df_row['pair'] = pair
data_df_row['enter_tag'] = t[1]
rejected_signals_only_df = concat([
rejected_signals_only_df.infer_objects(),
data_df_row.infer_objects()])
rejected_candles_only[pair] = rejected_signals_only_df
return rejected_candles_only
def _get_line_floatfmt(stake_currency: str) -> List[str]:
"""
Generate floatformat (goes in line with _generate_result_line())

View File

@@ -36,7 +36,7 @@ class _KeyValueStoreModel(ModelBase):
value_type: Mapped[ValueTypesEnum] = mapped_column(String(20), nullable=False)
string_value: Mapped[Optional[str]]
string_value: Mapped[Optional[str]] = mapped_column(String(255), nullable=True)
datetime_value: Mapped[Optional[datetime]]
float_value: Mapped[Optional[float]]
int_value: Mapped[Optional[int]]

View File

@@ -19,7 +19,7 @@ from freqtrade.exchange import (ROUND_DOWN, ROUND_UP, amount_to_contract_precisi
price_to_precision)
from freqtrade.leverage import interest
from freqtrade.persistence.base import ModelBase, SessionType
from freqtrade.util import FtPrecise
from freqtrade.util import FtPrecise, dt_now
logger = logging.getLogger(__name__)
@@ -68,7 +68,7 @@ class Order(ModelBase):
remaining: Mapped[Optional[float]] = mapped_column(Float(), nullable=True)
cost: Mapped[Optional[float]] = mapped_column(Float(), nullable=True)
stop_price: Mapped[Optional[float]] = mapped_column(Float(), nullable=True)
order_date: Mapped[datetime] = mapped_column(nullable=True, default=datetime.utcnow)
order_date: Mapped[datetime] = mapped_column(nullable=True, default=dt_now)
order_filled_date: Mapped[Optional[datetime]] = mapped_column(nullable=True)
order_update_date: Mapped[Optional[datetime]] = mapped_column(nullable=True)
funding_fee: Mapped[Optional[float]] = mapped_column(Float(), nullable=True)
@@ -158,7 +158,7 @@ class Order(ModelBase):
self.order_filled_date = datetime.now(timezone.utc)
self.order_update_date = datetime.now(timezone.utc)
def to_ccxt_object(self) -> Dict[str, Any]:
def to_ccxt_object(self, stopPriceName: str = 'stopPrice') -> Dict[str, Any]:
order: Dict[str, Any] = {
'id': self.order_id,
'symbol': self.ft_pair,
@@ -170,7 +170,6 @@ class Order(ModelBase):
'side': self.ft_order_side,
'filled': self.filled,
'remaining': self.remaining,
'stopPrice': self.stop_price,
'datetime': self.order_date_utc.strftime('%Y-%m-%dT%H:%M:%S.%f'),
'timestamp': int(self.order_date_utc.timestamp() * 1000),
'status': self.status,
@@ -178,7 +177,11 @@ class Order(ModelBase):
'info': {},
}
if self.ft_order_side == 'stoploss':
order['ft_order_type'] = 'stoploss'
order.update({
stopPriceName: self.stop_price,
'ft_order_type': 'stoploss',
})
return order
def to_json(self, entry_side: str, minified: bool = False) -> Dict[str, Any]:
@@ -422,7 +425,7 @@ class LocalTrade():
@property
def close_date_utc(self):
return self.close_date.replace(tzinfo=timezone.utc)
return self.close_date.replace(tzinfo=timezone.utc) if self.close_date else None
@property
def entry_side(self) -> str:
@@ -708,7 +711,10 @@ class LocalTrade():
if order.ft_order_side != self.entry_side:
amount_tr = amount_to_contract_precision(self.amount, self.amount_precision,
self.precision_mode, self.contract_size)
if isclose(order.safe_amount_after_fee, amount_tr, abs_tol=MATH_CLOSE_PREC):
if (
isclose(order.safe_amount_after_fee, amount_tr, abs_tol=MATH_CLOSE_PREC)
or order.safe_amount_after_fee > amount_tr
):
self.close(order.safe_price)
else:
self.recalc_trade_from_orders()

View File

@@ -633,7 +633,7 @@ def load_and_plot_trades(config: Config):
"""
strategy = StrategyResolver.load_strategy(config)
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config)
exchange = ExchangeResolver.load_exchange(config)
IStrategy.dp = DataProvider(config, exchange)
strategy.ft_bot_start()
strategy.bot_loop_start(datetime.now(timezone.utc))
@@ -678,7 +678,7 @@ def plot_profit(config: Config) -> None:
if 'timeframe' not in config:
raise OperationalException('Timeframe must be set in either config or via --timeframe.')
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config)
exchange = ExchangeResolver.load_exchange(config)
plot_elements = init_plotscript(config, list(exchange.markets))
trades = plot_elements['trades']
# Filter trades to relevant pairs

View File

@@ -3,9 +3,9 @@ Minimum age (days listed) pair list filter
"""
import logging
from copy import deepcopy
from datetime import timedelta
from typing import Any, Dict, List, Optional
import arrow
from pandas import DataFrame
from freqtrade.constants import Config, ListPairsWithTimeframes
@@ -13,7 +13,7 @@ from freqtrade.exceptions import OperationalException
from freqtrade.exchange.types import Tickers
from freqtrade.misc import plural
from freqtrade.plugins.pairlist.IPairList import IPairList
from freqtrade.util import PeriodicCache
from freqtrade.util import PeriodicCache, dt_floor_day, dt_now, dt_ts
logger = logging.getLogger(__name__)
@@ -84,10 +84,7 @@ class AgeFilter(IPairList):
since_days = -(
self._max_days_listed if self._max_days_listed else self._min_days_listed
) - 1
since_ms = int(arrow.utcnow()
.floor('day')
.shift(days=since_days)
.float_timestamp) * 1000
since_ms = dt_ts(dt_floor_day(dt_now()) + timedelta(days=since_days))
candles = self._exchange.refresh_latest_ohlcv(needed_pairs, since_ms=since_ms, cache=False)
if self._enabled:
for p in deepcopy(pairlist):
@@ -116,7 +113,7 @@ class AgeFilter(IPairList):
):
# We have fetched at least the minimum required number of daily candles
# Add to cache, store the time we last checked this symbol
self._symbolsChecked[pair] = arrow.utcnow().int_timestamp * 1000
self._symbolsChecked[pair] = dt_ts()
return True
else:
self.log_once((
@@ -127,6 +124,6 @@ class AgeFilter(IPairList):
" or more than "
f"{self._max_days_listed} {plural(self._max_days_listed, 'day')}"
) if self._max_days_listed else ''), logger.info)
self._symbolsCheckFailed[pair] = arrow.utcnow().int_timestamp * 1000
self._symbolsCheckFailed[pair] = dt_ts()
return False
return False

View File

@@ -4,9 +4,9 @@ Volatility pairlist filter
import logging
import sys
from copy import deepcopy
from datetime import timedelta
from typing import Any, Dict, List, Optional
import arrow
import numpy as np
from cachetools import TTLCache
from pandas import DataFrame
@@ -16,6 +16,7 @@ from freqtrade.exceptions import OperationalException
from freqtrade.exchange.types import Tickers
from freqtrade.misc import plural
from freqtrade.plugins.pairlist.IPairList import IPairList
from freqtrade.util import dt_floor_day, dt_now, dt_ts
logger = logging.getLogger(__name__)
@@ -73,10 +74,7 @@ class VolatilityFilter(IPairList):
needed_pairs: ListPairsWithTimeframes = [
(p, '1d', self._def_candletype) for p in pairlist if p not in self._pair_cache]
since_ms = (arrow.utcnow()
.floor('day')
.shift(days=-self._days - 1)
.int_timestamp) * 1000
since_ms = dt_ts(dt_floor_day(dt_now()) - timedelta(days=self._days))
# Get all candles
candles = {}
if needed_pairs:
@@ -105,7 +103,7 @@ class VolatilityFilter(IPairList):
result = False
if daily_candles is not None and not daily_candles.empty:
returns = (np.log(daily_candles.close / daily_candles.close.shift(-1)))
returns = (np.log(daily_candles["close"].shift(1) / daily_candles["close"]))
returns.fillna(0, inplace=True)
volatility_series = returns.rolling(window=self._days).std() * np.sqrt(self._days)

View File

@@ -4,7 +4,7 @@ Volume PairList provider
Provides dynamic pair list based on trade volumes
"""
import logging
from datetime import datetime, timedelta, timezone
from datetime import timedelta
from typing import Any, Dict, List, Literal
from cachetools import TTLCache
@@ -15,6 +15,7 @@ from freqtrade.exchange import timeframe_to_minutes, timeframe_to_prev_date
from freqtrade.exchange.types import Tickers
from freqtrade.misc import format_ms_time
from freqtrade.plugins.pairlist.IPairList import IPairList
from freqtrade.util import dt_now
logger = logging.getLogger(__name__)
@@ -161,13 +162,13 @@ class VolumePairList(IPairList):
# get lookback period in ms, for exchange ohlcv fetch
since_ms = int(timeframe_to_prev_date(
self._lookback_timeframe,
datetime.now(timezone.utc) + timedelta(
dt_now() + timedelta(
minutes=-(self._lookback_period * self._tf_in_min) - self._tf_in_min)
).timestamp()) * 1000
to_ms = int(timeframe_to_prev_date(
self._lookback_timeframe,
datetime.now(timezone.utc) - timedelta(minutes=self._tf_in_min)
dt_now() - timedelta(minutes=self._tf_in_min)
).timestamp()) * 1000
# todo: utc date output for starting date

View File

@@ -3,9 +3,9 @@ Rate of change pairlist filter
"""
import logging
from copy import deepcopy
from datetime import timedelta
from typing import Any, Dict, List, Optional
import arrow
from cachetools import TTLCache
from pandas import DataFrame
@@ -14,6 +14,7 @@ from freqtrade.exceptions import OperationalException
from freqtrade.exchange.types import Tickers
from freqtrade.misc import plural
from freqtrade.plugins.pairlist.IPairList import IPairList
from freqtrade.util import dt_floor_day, dt_now, dt_ts
logger = logging.getLogger(__name__)
@@ -71,10 +72,7 @@ class RangeStabilityFilter(IPairList):
needed_pairs: ListPairsWithTimeframes = [
(p, '1d', self._def_candletype) for p in pairlist if p not in self._pair_cache]
since_ms = (arrow.utcnow()
.floor('day')
.shift(days=-self._days - 1)
.int_timestamp) * 1000
since_ms = dt_ts(dt_floor_day(dt_now()) - timedelta(days=self._days - 1))
# Get all candles
candles = {}
if needed_pairs:

View File

@@ -2,9 +2,10 @@
This module loads custom exchanges
"""
import logging
from typing import Optional
import freqtrade.exchange as exchanges
from freqtrade.constants import Config
from freqtrade.constants import Config, ExchangeConfig
from freqtrade.exchange import MAP_EXCHANGE_CHILDCLASS, Exchange
from freqtrade.resolvers import IResolver
@@ -19,13 +20,14 @@ class ExchangeResolver(IResolver):
object_type = Exchange
@staticmethod
def load_exchange(exchange_name: str, config: Config, validate: bool = True,
load_leverage_tiers: bool = False) -> Exchange:
def load_exchange(config: Config, *, exchange_config: Optional[ExchangeConfig] = None,
validate: bool = True, load_leverage_tiers: bool = False) -> Exchange:
"""
Load the custom class from config parameter
:param exchange_name: name of the Exchange to load
:param config: configuration dictionary
"""
exchange_name: str = config['exchange']['name']
# Map exchange name to avoid duplicate classes for identical exchanges
exchange_name = MAP_EXCHANGE_CHILDCLASS.get(exchange_name, exchange_name)
exchange_name = exchange_name.title()
@@ -36,13 +38,14 @@ class ExchangeResolver(IResolver):
kwargs={
'config': config,
'validate': validate,
'exchange_config': exchange_config,
'load_leverage_tiers': load_leverage_tiers}
)
except ImportError:
logger.info(
f"No {exchange_name} specific subclass found. Using the generic class instead.")
if not exchange:
exchange = Exchange(config, validate=validate)
exchange = Exchange(config, validate=validate, exchange_config=exchange_config,)
return exchange
@staticmethod

View File

@@ -8,14 +8,16 @@ from fastapi import APIRouter, BackgroundTasks, Depends
from fastapi.exceptions import HTTPException
from freqtrade.configuration.config_validation import validate_config_consistency
from freqtrade.constants import Config
from freqtrade.data.btanalysis import get_backtest_resultlist, load_and_merge_backtest_result
from freqtrade.enums import BacktestState
from freqtrade.exceptions import DependencyException, OperationalException
from freqtrade.exchange.common import remove_exchange_credentials
from freqtrade.misc import deep_merge_dicts
from freqtrade.rpc.api_server.api_schemas import (BacktestHistoryEntry, BacktestRequest,
BacktestResponse)
from freqtrade.rpc.api_server.deps import get_config, is_webserver_mode
from freqtrade.rpc.api_server.webserver import ApiServer
from freqtrade.rpc.api_server.webserver_bgwork import ApiBG
from freqtrade.rpc.rpc import RPCException
@@ -25,19 +27,92 @@ logger = logging.getLogger(__name__)
router = APIRouter()
def __run_backtest_bg(btconfig: Config):
from freqtrade.optimize.optimize_reports import generate_backtest_stats, store_backtest_stats
from freqtrade.resolvers import StrategyResolver
asyncio.set_event_loop(asyncio.new_event_loop())
try:
# Reload strategy
lastconfig = ApiBG.bt['last_config']
strat = StrategyResolver.load_strategy(btconfig)
validate_config_consistency(btconfig)
if (
not ApiBG.bt['bt']
or lastconfig.get('timeframe') != strat.timeframe
or lastconfig.get('timeframe_detail') != btconfig.get('timeframe_detail')
or lastconfig.get('timerange') != btconfig['timerange']
):
from freqtrade.optimize.backtesting import Backtesting
ApiBG.bt['bt'] = Backtesting(btconfig)
ApiBG.bt['bt'].load_bt_data_detail()
else:
ApiBG.bt['bt'].config = btconfig
ApiBG.bt['bt'].init_backtest()
# Only reload data if timeframe changed.
if (
not ApiBG.bt['data']
or not ApiBG.bt['timerange']
or lastconfig.get('timeframe') != strat.timeframe
or lastconfig.get('timerange') != btconfig['timerange']
):
ApiBG.bt['data'], ApiBG.bt['timerange'] = ApiBG.bt[
'bt'].load_bt_data()
lastconfig['timerange'] = btconfig['timerange']
lastconfig['timeframe'] = strat.timeframe
lastconfig['protections'] = btconfig.get('protections', [])
lastconfig['enable_protections'] = btconfig.get('enable_protections')
lastconfig['dry_run_wallet'] = btconfig.get('dry_run_wallet')
ApiBG.bt['bt'].enable_protections = btconfig.get('enable_protections', False)
ApiBG.bt['bt'].strategylist = [strat]
ApiBG.bt['bt'].results = {}
ApiBG.bt['bt'].load_prior_backtest()
ApiBG.bt['bt'].abort = False
if (ApiBG.bt['bt'].results and
strat.get_strategy_name() in ApiBG.bt['bt'].results['strategy']):
# When previous result hash matches - reuse that result and skip backtesting.
logger.info(f'Reusing result of previous backtest for {strat.get_strategy_name()}')
else:
min_date, max_date = ApiBG.bt['bt'].backtest_one_strategy(
strat, ApiBG.bt['data'], ApiBG.bt['timerange'])
ApiBG.bt['bt'].results = generate_backtest_stats(
ApiBG.bt['data'], ApiBG.bt['bt'].all_results,
min_date=min_date, max_date=max_date)
if btconfig.get('export', 'none') == 'trades':
store_backtest_stats(
btconfig['exportfilename'], ApiBG.bt['bt'].results,
datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
)
logger.info("Backtest finished.")
except (Exception, OperationalException, DependencyException) as e:
logger.exception(f"Backtesting caused an error: {e}")
ApiBG.bt['bt_error'] = str(e)
pass
finally:
ApiBG.bgtask_running = False
@router.post('/backtest', response_model=BacktestResponse, tags=['webserver', 'backtest'])
async def api_start_backtest( # noqa: C901
async def api_start_backtest(
bt_settings: BacktestRequest, background_tasks: BackgroundTasks,
config=Depends(get_config), ws_mode=Depends(is_webserver_mode)):
ApiServer._bt['bt_error'] = None
ApiBG.bt['bt_error'] = None
"""Start backtesting if not done so already"""
if ApiServer._bgtask_running:
if ApiBG.bgtask_running:
raise RPCException('Bot Background task already running')
if ':' in bt_settings.strategy:
raise HTTPException(status_code=500, detail="base64 encoded strategies are not allowed.")
btconfig = deepcopy(config)
remove_exchange_credentials(btconfig['exchange'], True)
settings = dict(bt_settings)
if settings.get('freqai', None) is not None:
settings['freqai'] = dict(settings['freqai'])
@@ -54,80 +129,9 @@ async def api_start_backtest( # noqa: C901
# Start backtesting
# Initialize backtesting object
def run_backtest():
from freqtrade.optimize.optimize_reports import (generate_backtest_stats,
store_backtest_stats)
from freqtrade.resolvers import StrategyResolver
asyncio.set_event_loop(asyncio.new_event_loop())
try:
# Reload strategy
lastconfig = ApiServer._bt['last_config']
strat = StrategyResolver.load_strategy(btconfig)
validate_config_consistency(btconfig)
if (
not ApiServer._bt['bt']
or lastconfig.get('timeframe') != strat.timeframe
or lastconfig.get('timeframe_detail') != btconfig.get('timeframe_detail')
or lastconfig.get('timerange') != btconfig['timerange']
):
from freqtrade.optimize.backtesting import Backtesting
ApiServer._bt['bt'] = Backtesting(btconfig)
ApiServer._bt['bt'].load_bt_data_detail()
else:
ApiServer._bt['bt'].config = btconfig
ApiServer._bt['bt'].init_backtest()
# Only reload data if timeframe changed.
if (
not ApiServer._bt['data']
or not ApiServer._bt['timerange']
or lastconfig.get('timeframe') != strat.timeframe
or lastconfig.get('timerange') != btconfig['timerange']
):
ApiServer._bt['data'], ApiServer._bt['timerange'] = ApiServer._bt[
'bt'].load_bt_data()
lastconfig['timerange'] = btconfig['timerange']
lastconfig['timeframe'] = strat.timeframe
lastconfig['protections'] = btconfig.get('protections', [])
lastconfig['enable_protections'] = btconfig.get('enable_protections')
lastconfig['dry_run_wallet'] = btconfig.get('dry_run_wallet')
ApiServer._bt['bt'].enable_protections = btconfig.get('enable_protections', False)
ApiServer._bt['bt'].strategylist = [strat]
ApiServer._bt['bt'].results = {}
ApiServer._bt['bt'].load_prior_backtest()
ApiServer._bt['bt'].abort = False
if (ApiServer._bt['bt'].results and
strat.get_strategy_name() in ApiServer._bt['bt'].results['strategy']):
# When previous result hash matches - reuse that result and skip backtesting.
logger.info(f'Reusing result of previous backtest for {strat.get_strategy_name()}')
else:
min_date, max_date = ApiServer._bt['bt'].backtest_one_strategy(
strat, ApiServer._bt['data'], ApiServer._bt['timerange'])
ApiServer._bt['bt'].results = generate_backtest_stats(
ApiServer._bt['data'], ApiServer._bt['bt'].all_results,
min_date=min_date, max_date=max_date)
if btconfig.get('export', 'none') == 'trades':
store_backtest_stats(
btconfig['exportfilename'], ApiServer._bt['bt'].results,
datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
)
logger.info("Backtest finished.")
except (Exception, OperationalException, DependencyException) as e:
logger.exception(f"Backtesting caused an error: {e}")
ApiServer._bt['bt_error'] = str(e)
pass
finally:
ApiServer._bgtask_running = False
background_tasks.add_task(run_backtest)
ApiServer._bgtask_running = True
background_tasks.add_task(__run_backtest_bg, btconfig=btconfig)
ApiBG.bgtask_running = True
return {
"status": "running",
@@ -145,18 +149,18 @@ def api_get_backtest(ws_mode=Depends(is_webserver_mode)):
Returns Result after backtesting has been ran.
"""
from freqtrade.persistence import LocalTrade
if ApiServer._bgtask_running:
if ApiBG.bgtask_running:
return {
"status": "running",
"running": True,
"step": (ApiServer._bt['bt'].progress.action if ApiServer._bt['bt']
"step": (ApiBG.bt['bt'].progress.action if ApiBG.bt['bt']
else str(BacktestState.STARTUP)),
"progress": ApiServer._bt['bt'].progress.progress if ApiServer._bt['bt'] else 0,
"progress": ApiBG.bt['bt'].progress.progress if ApiBG.bt['bt'] else 0,
"trade_count": len(LocalTrade.trades),
"status_msg": "Backtest running",
}
if not ApiServer._bt['bt']:
if not ApiBG.bt['bt']:
return {
"status": "not_started",
"running": False,
@@ -164,13 +168,13 @@ def api_get_backtest(ws_mode=Depends(is_webserver_mode)):
"progress": 0,
"status_msg": "Backtest not yet executed"
}
if ApiServer._bt['bt_error']:
if ApiBG.bt['bt_error']:
return {
"status": "error",
"running": False,
"step": "",
"progress": 0,
"status_msg": f"Backtest failed with {ApiServer._bt['bt_error']}"
"status_msg": f"Backtest failed with {ApiBG.bt['bt_error']}"
}
return {
@@ -179,14 +183,14 @@ def api_get_backtest(ws_mode=Depends(is_webserver_mode)):
"status_msg": "Backtest ended",
"step": "finished",
"progress": 1,
"backtest_result": ApiServer._bt['bt'].results,
"backtest_result": ApiBG.bt['bt'].results,
}
@router.delete('/backtest', response_model=BacktestResponse, tags=['webserver', 'backtest'])
def api_delete_backtest(ws_mode=Depends(is_webserver_mode)):
"""Reset backtesting"""
if ApiServer._bgtask_running:
if ApiBG.bgtask_running:
return {
"status": "running",
"running": True,
@@ -194,12 +198,12 @@ def api_delete_backtest(ws_mode=Depends(is_webserver_mode)):
"progress": 0,
"status_msg": "Backtest running",
}
if ApiServer._bt['bt']:
ApiServer._bt['bt'].cleanup()
del ApiServer._bt['bt']
ApiServer._bt['bt'] = None
del ApiServer._bt['data']
ApiServer._bt['data'] = None
if ApiBG.bt['bt']:
ApiBG.bt['bt'].cleanup()
del ApiBG.bt['bt']
ApiBG.bt['bt'] = None
del ApiBG.bt['data']
ApiBG.bt['data'] = None
logger.info("Backtesting reset")
return {
"status": "reset",
@@ -212,7 +216,7 @@ def api_delete_backtest(ws_mode=Depends(is_webserver_mode)):
@router.get('/backtest/abort', response_model=BacktestResponse, tags=['webserver', 'backtest'])
def api_backtest_abort(ws_mode=Depends(is_webserver_mode)):
if not ApiServer._bgtask_running:
if not ApiBG.bgtask_running:
return {
"status": "not_running",
"running": False,
@@ -220,7 +224,7 @@ def api_backtest_abort(ws_mode=Depends(is_webserver_mode)):
"progress": 0,
"status_msg": "Backtest ended",
}
ApiServer._bt['bt'].abort = True
ApiBG.bt['bt'].abort = True
return {
"status": "stopping",
"running": False,

View File

@@ -36,20 +36,25 @@ class Balance(BaseModel):
free: float
balance: float
used: float
bot_owned: Optional[float]
est_stake: float
est_stake_bot: Optional[float]
stake: str
# Starting with 2.x
side: str
leverage: float
is_position: bool
position: float
is_bot_managed: bool
class Balances(BaseModel):
currencies: List[Balance]
total: float
total_bot: float
symbol: str
value: float
value_bot: float
stake: str
note: str
starting_capital: float
@@ -95,8 +100,10 @@ class Profit(BaseModel):
trade_count: int
closed_trade_count: int
first_trade_date: str
first_trade_humanized: str
first_trade_timestamp: int
latest_trade_date: str
latest_trade_humanized: str
latest_trade_timestamp: int
avg_duration: str
best_pair: str

View File

@@ -43,7 +43,10 @@ logger = logging.getLogger(__name__)
# 2.23: Allow plot config request in webserver mode
# 2.24: Add cancel_open_order endpoint
# 2.25: Add several profit values to /status endpoint
API_VERSION = 2.25
# 2.26: increase /balance output
# 2.27: Add /trades/<id>/reload endpoint
# 2.28: Switch reload endpoint to Post
API_VERSION = 2.28
# Public API, requires no auth.
router_public = APIRouter()
@@ -126,11 +129,17 @@ def trades_delete(tradeid: int, rpc: RPC = Depends(get_rpc)):
@router.delete('/trades/{tradeid}/open-order', response_model=OpenTradeSchema, tags=['trading'])
def cancel_open_order(tradeid: int, rpc: RPC = Depends(get_rpc)):
def trade_cancel_open_order(tradeid: int, rpc: RPC = Depends(get_rpc)):
rpc._rpc_cancel_open_order(tradeid)
return rpc._rpc_trade_status([tradeid])[0]
@router.post('/trades/{tradeid}/reload', response_model=OpenTradeSchema, tags=['trading'])
def trade_reload(tradeid: int, rpc: RPC = Depends(get_rpc)):
rpc._rpc_reload_trade_from_exchange(tradeid)
return rpc._rpc_trade_status([tradeid])[0]
# TODO: Missing response model
@router.get('/edge', tags=['info'])
def edge(rpc: RPC = Depends(get_rpc)):
@@ -246,14 +255,17 @@ def pair_candles(
@router.get('/pair_history', response_model=PairHistory, tags=['candle data'])
def pair_history(pair: str, timeframe: str, timerange: str, strategy: str,
freqaimodel: Optional[str] = None,
config=Depends(get_config), exchange=Depends(get_exchange)):
# The initial call to this endpoint can be slow, as it may need to initialize
# the exchange class.
config = deepcopy(config)
config.update({
'strategy': strategy,
'timerange': timerange,
'freqaimodel': freqaimodel if freqaimodel else config.get('freqaimodel'),
})
return RPC._rpc_analysed_history_full(config, pair, timeframe, timerange, exchange)
return RPC._rpc_analysed_history_full(config, pair, timeframe, exchange)
@router.get('/plot_config', response_model=PlotConfig, tags=['candle data'])

View File

@@ -6,6 +6,7 @@ from fastapi import Depends
from freqtrade.enums import RunMode
from freqtrade.persistence import Trade
from freqtrade.persistence.models import _request_id_ctx_var
from freqtrade.rpc.api_server.webserver_bgwork import ApiBG
from freqtrade.rpc.rpc import RPC, RPCException
from .webserver import ApiServer
@@ -43,11 +44,11 @@ def get_api_config() -> Dict[str, Any]:
def get_exchange(config=Depends(get_config)):
if not ApiServer._exchange:
if not ApiBG.exchange:
from freqtrade.resolvers import ExchangeResolver
ApiServer._exchange = ExchangeResolver.load_exchange(
config['exchange']['name'], config, load_leverage_tiers=False)
return ApiServer._exchange
ApiBG.exchange = ExchangeResolver.load_exchange(
config, load_leverage_tiers=False)
return ApiBG.exchange
def get_message_stream():

View File

@@ -1,6 +1,6 @@
import logging
from ipaddress import IPv4Address
from typing import Any, Dict, Optional
from typing import Any, Optional
import orjson
import uvicorn
@@ -36,19 +36,8 @@ class ApiServer(RPCHandler):
__initialized = False
_rpc: RPC
# Backtesting type: Backtesting
_bt: Dict[str, Any] = {
'bt': None,
'data': None,
'timerange': None,
'last_config': {},
'bt_error': None,
}
_has_rpc: bool = False
_bgtask_running: bool = False
_config: Config = {}
# Exchange - only available in webserver mode.
_exchange = None
# websocket message stuff
_message_stream: Optional[MessageStream] = None
@@ -85,7 +74,7 @@ class ApiServer(RPCHandler):
"""
Attach rpc handler
"""
if not self._has_rpc:
if not ApiServer._has_rpc:
ApiServer._rpc = rpc
ApiServer._has_rpc = True
else:

View File

@@ -0,0 +1,16 @@
from typing import Any, Dict
class ApiBG():
# Backtesting type: Backtesting
bt: Dict[str, Any] = {
'bt': None,
'data': None,
'timerange': None,
'last_config': {},
'bt_error': None,
}
bgtask_running: bool = False
# Exchange - only available in webserver mode.
exchange = None

View File

@@ -7,7 +7,6 @@ from datetime import date, datetime, timedelta, timezone
from math import isnan
from typing import Any, Dict, Generator, List, Optional, Sequence, Tuple, Union
import arrow
import psutil
from dateutil.relativedelta import relativedelta
from dateutil.tz import tzlocal
@@ -26,12 +25,13 @@ from freqtrade.exceptions import ExchangeError, PricingError
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_msecs
from freqtrade.exchange.types import Tickers
from freqtrade.loggers import bufferHandler
from freqtrade.misc import decimals_per_coin, shorten_date
from freqtrade.misc import decimals_per_coin
from freqtrade.persistence import KeyStoreKeys, KeyValueStore, Order, PairLocks, Trade
from freqtrade.persistence.models import PairLock
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
from freqtrade.rpc.fiat_convert import CryptoToFiatConverter
from freqtrade.rpc.rpc_types import RPCSendMsg
from freqtrade.util import dt_humanize, dt_now, shorten_date
from freqtrade.wallets import PositionWallet, Wallet
@@ -292,7 +292,7 @@ class RPC:
and open_order.ft_order_side == trade.entry_side) else '')
+ ('**' if (open_order and
open_order.ft_order_side == trade.exit_side is not None) else ''),
shorten_date(arrow.get(trade.open_date).humanize(only_distance=True)),
shorten_date(dt_humanize(trade.open_date, only_distance=True)),
profit_str
]
if self._config.get('position_adjustment_enable', False):
@@ -420,16 +420,15 @@ class RPC:
else:
return 'draws'
trades = Trade.get_trades([Trade.is_open.is_(False)], include_orders=False)
# Sell reason
# Duration
dur: Dict[str, List[float]] = {'wins': [], 'draws': [], 'losses': []}
# Exit reason
exit_reasons = {}
for trade in trades:
if trade.exit_reason not in exit_reasons:
exit_reasons[trade.exit_reason] = {'wins': 0, 'losses': 0, 'draws': 0}
exit_reasons[trade.exit_reason][trade_win_loss(trade)] += 1
# Duration
dur: Dict[str, List[float]] = {'wins': [], 'draws': [], 'losses': []}
for trade in trades:
if trade.close_date is not None and trade.open_date is not None:
trade_dur = (trade.close_date - trade.open_date).total_seconds()
dur[trade_win_loss(trade)].append(trade_dur)
@@ -541,8 +540,8 @@ class RPC:
fiat_display_currency
) if self._fiat_converter else 0
first_date = trades[0].open_date if trades else None
last_date = trades[-1].open_date if trades else None
first_date = trades[0].open_date_utc if trades else None
last_date = trades[-1].open_date_utc if trades else None
num = float(len(durations) or 1)
bot_start = KeyValueStore.get_datetime_value(KeyStoreKeys.BOT_START_TIME)
return {
@@ -564,9 +563,11 @@ class RPC:
'profit_all_fiat': profit_all_fiat,
'trade_count': len(trades),
'closed_trade_count': len([t for t in trades if not t.is_open]),
'first_trade_date': arrow.get(first_date).humanize() if first_date else '',
'first_trade_date': first_date.strftime(DATETIME_PRINT_FORMAT) if first_date else '',
'first_trade_humanized': dt_humanize(first_date) if first_date else '',
'first_trade_timestamp': int(first_date.timestamp() * 1000) if first_date else 0,
'latest_trade_date': arrow.get(last_date).humanize() if last_date else '',
'latest_trade_date': last_date.strftime(DATETIME_PRINT_FORMAT) if last_date else '',
'latest_trade_humanized': dt_humanize(last_date) if last_date else '',
'latest_trade_timestamp': int(last_date.timestamp() * 1000) if last_date else 0,
'avg_duration': str(timedelta(seconds=sum(durations) / num)).split('.')[0],
'best_pair': best_pair[0] if best_pair else '',
@@ -583,13 +584,16 @@ class RPC:
}
def __balance_get_est_stake(
self, coin: str, stake_currency: str, balance: Wallet, tickers) -> float:
self, coin: str, stake_currency: str, amount: float,
balance: Wallet, tickers) -> Tuple[float, float]:
est_stake = 0.0
est_bot_stake = 0.0
if coin == stake_currency:
est_stake = balance.total
if self._config.get('trading_mode', TradingMode.SPOT) != TradingMode.SPOT:
# in Futures, "total" includes the locked stake, and therefore all positions
est_stake = balance.free
est_bot_stake = amount
else:
try:
pair = self._freqtrade.exchange.get_valid_pair_combination(coin, stake_currency)
@@ -598,11 +602,12 @@ class RPC:
if pair.startswith(stake_currency) and not pair.endswith(stake_currency):
rate = 1.0 / rate
est_stake = rate * balance.total
est_bot_stake = rate * amount
except (ExchangeError):
logger.warning(f"Could not get rate for pair {coin}.")
raise ValueError()
return est_stake
return est_stake, est_bot_stake
def _rpc_balance(self, stake_currency: str, fiat_display_currency: str) -> Dict:
""" Returns current account balance per crypto """
@@ -615,7 +620,7 @@ class RPC:
raise RPCException('Error getting current tickers.')
open_trades: List[Trade] = Trade.get_open_trades()
open_assets = [t.base_currency for t in open_trades]
open_assets: Dict[str, Trade] = {t.safe_base_currency: t for t in open_trades}
self._freqtrade.wallets.update(require_update=False)
starting_capital = self._freqtrade.wallets.get_starting_balance()
starting_cap_fiat = self._fiat_converter.convert_amount(
@@ -625,30 +630,43 @@ class RPC:
for coin, balance in self._freqtrade.wallets.get_all_balances().items():
if not balance.total:
continue
trade = open_assets.get(coin, None)
is_bot_managed = coin == stake_currency or trade is not None
trade_amount = trade.amount if trade else 0
if coin == stake_currency:
trade_amount = self._freqtrade.wallets.get_available_stake_amount()
try:
est_stake = self.__balance_get_est_stake(coin, stake_currency, balance, tickers)
est_stake, est_stake_bot = self.__balance_get_est_stake(
coin, stake_currency, trade_amount, balance, tickers)
except ValueError:
continue
total += est_stake
if coin == stake_currency or coin in open_assets:
total_bot += est_stake
if is_bot_managed:
total_bot += est_stake_bot
currencies.append({
'currency': coin,
'free': balance.free,
'balance': balance.total,
'used': balance.used,
'bot_owned': trade_amount,
'est_stake': est_stake or 0,
'est_stake_bot': est_stake_bot if is_bot_managed else 0,
'stake': stake_currency,
'side': 'long',
'leverage': 1,
'position': 0,
'is_bot_managed': is_bot_managed,
'is_position': False,
})
symbol: str
position: PositionWallet
for symbol, position in self._freqtrade.wallets.get_all_positions().items():
total += position.collateral
total_bot += position.collateral
currencies.append({
'currency': symbol,
@@ -657,9 +675,11 @@ class RPC:
'used': 0,
'position': position.position,
'est_stake': position.collateral,
'est_stake_bot': position.collateral,
'stake': stake_currency,
'leverage': position.leverage,
'side': position.side,
'is_bot_managed': True,
'is_position': True
})
@@ -675,8 +695,10 @@ class RPC:
return {
'currencies': currencies,
'total': total,
'total_bot': total_bot,
'symbol': fiat_display_currency,
'value': value,
'value_bot': value_bot,
'stake': stake_currency,
'starting_capital': starting_capital,
'starting_capital_ratio': starting_capital_ratio,
@@ -720,6 +742,18 @@ class RPC:
return {'status': 'No more entries will occur from now. Run /reload_config to reset.'}
def _rpc_reload_trade_from_exchange(self, trade_id: int) -> Dict[str, str]:
"""
Handler for reload_trade_from_exchange.
Reloads a trade from it's orders, should manual interaction have happened.
"""
trade = Trade.get_trades(trade_filter=[Trade.id == trade_id]).first()
if not trade:
raise RPCException(f"Could not find trade with id {trade_id}.")
self._freqtrade.handle_onexchange_order(trade)
return {'status': 'Reloaded from orders from exchange'}
def __exec_force_exit(self, trade: Trade, ordertype: Optional[str],
amount: Optional[float] = None) -> None:
# Check if there is there is an open order
@@ -1195,8 +1229,8 @@ class RPC:
@staticmethod
def _rpc_analysed_history_full(config: Config, pair: str, timeframe: str,
timerange: str, exchange) -> Dict[str, Any]:
timerange_parsed = TimeRange.parse_timerange(timerange)
exchange) -> Dict[str, Any]:
timerange_parsed = TimeRange.parse_timerange(config.get('timerange'))
_data = load_data(
datadir=config["datadir"],
@@ -1207,7 +1241,8 @@ class RPC:
candle_type=config.get('candle_type_def', CandleType.SPOT)
)
if pair not in _data:
raise RPCException(f"No data for {pair}, {timeframe} in {timerange} found.")
raise RPCException(
f"No data for {pair}, {timeframe} in {config.get('timerange')} found.")
from freqtrade.data.dataprovider import DataProvider
from freqtrade.resolvers.strategy_resolver import StrategyResolver
strategy = StrategyResolver.load_strategy(config)
@@ -1217,7 +1252,7 @@ class RPC:
df_analyzed = strategy.analyze_ticker(_data[pair], {'pair': pair})
return RPC._convert_dataframe_to_dict(strategy.get_strategy_name(), pair, timeframe,
df_analyzed, arrow.Arrow.utcnow().datetime)
df_analyzed, dt_now())
def _rpc_plot_config(self) -> Dict[str, Any]:
if (self._freqtrade.strategy.plot_config and

File diff suppressed because it is too large Load Diff

View File

@@ -44,8 +44,11 @@ class Webhook(RPCHandler):
def _get_value_dict(self, msg: RPCSendMsg) -> Optional[Dict[str, Any]]:
whconfig = self._config['webhook']
if msg['type'].value in whconfig:
# Explicit types should have priority
valuedict = whconfig.get(msg['type'].value)
# Deprecated 2022.10 - only keep generic method.
if msg['type'] in [RPCMessageType.ENTRY]:
elif msg['type'] in [RPCMessageType.ENTRY]:
valuedict = whconfig.get('webhookentry')
elif msg['type'] in [RPCMessageType.ENTRY_CANCEL]:
valuedict = whconfig.get('webhookentrycancel')
@@ -62,9 +65,6 @@ class Webhook(RPCHandler):
RPCMessageType.EXCEPTION,
RPCMessageType.WARNING):
valuedict = whconfig.get('webhookstatus')
elif msg['type'].value in whconfig:
# Allow all types ...
valuedict = whconfig.get(msg['type'].value)
elif msg['type'] in (
RPCMessageType.PROTECTION_TRIGGER,
RPCMessageType.PROTECTION_TRIGGER_GLOBAL,

View File

@@ -7,7 +7,6 @@ from abc import ABC, abstractmethod
from datetime import datetime, timedelta, timezone
from typing import Dict, List, Optional, Tuple, Union
import arrow
from pandas import DataFrame
from freqtrade.constants import CUSTOM_TAG_MAX_LENGTH, Config, IntOrInf, ListPairsWithTimeframes
@@ -23,6 +22,7 @@ from freqtrade.strategy.informative_decorator import (InformativeData, PopulateI
_create_and_merge_informative_pair,
_format_pair_name)
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
from freqtrade.util import dt_now
from freqtrade.wallets import Wallets
@@ -938,7 +938,7 @@ class IStrategy(ABC, HyperStrategyMixin):
pair: str,
timeframe: str,
dataframe: DataFrame,
) -> Tuple[Optional[DataFrame], Optional[arrow.Arrow]]:
) -> Tuple[Optional[DataFrame], Optional[datetime]]:
"""
Calculates current signal based based on the entry order or exit order
columns of the dataframe.
@@ -954,16 +954,16 @@ class IStrategy(ABC, HyperStrategyMixin):
latest_date = dataframe['date'].max()
latest = dataframe.loc[dataframe['date'] == latest_date].iloc[-1]
# Explicitly convert to arrow object to ensure the below comparison does not fail
latest_date = arrow.get(latest_date)
# Explicitly convert to datetime object to ensure the below comparison does not fail
latest_date = latest_date.to_pydatetime()
# Check if dataframe is out of date
timeframe_minutes = timeframe_to_minutes(timeframe)
offset = self.config.get('exchange', {}).get('outdated_offset', 5)
if latest_date < (arrow.utcnow().shift(minutes=-(timeframe_minutes * 2 + offset))):
if latest_date < (dt_now() - timedelta(minutes=timeframe_minutes * 2 + offset)):
logger.warning(
'Outdated history for pair %s. Last tick is %s minutes old',
pair, int((arrow.utcnow() - latest_date).total_seconds() // 60)
pair, int((dt_now() - latest_date).total_seconds() // 60)
)
return None, None
return latest, latest_date
@@ -1046,8 +1046,8 @@ class IStrategy(ABC, HyperStrategyMixin):
timeframe_seconds = timeframe_to_seconds(timeframe)
if self.ignore_expired_candle(
latest_date=latest_date.datetime,
current_time=datetime.now(timezone.utc),
latest_date=latest_date,
current_time=dt_now(),
timeframe_seconds=timeframe_seconds,
enter=bool(enter_signal)
):

View File

@@ -15,12 +15,15 @@ logger = logging.getLogger(__name__)
class FreqaiExampleStrategy(IStrategy):
"""
Example strategy showing how the user connects their own
IFreqaiModel to the strategy. Namely, the user uses:
self.freqai.start(dataframe, metadata)
IFreqaiModel to the strategy.
to make predictions on their data. feature_engineering_*() automatically
generate the variety of features indicated by the user in the
canonical freqtrade configuration file under config['freqai'].
Warning! This is a showcase of functionality,
which means that it is designed to show various functions of FreqAI
and it runs on all computers. We use this showcase to help users
understand how to build a strategy, and we use it as a benchmark
to help debug possible problems.
This means this is *not* meant to be run live in production.
"""
minimal_roi = {"0": 0.1, "240": -1}

View File

@@ -1,2 +1,17 @@
from freqtrade.util.ft_precise import FtPrecise # noqa: F401
from freqtrade.util.periodic_cache import PeriodicCache # noqa: F401
from freqtrade.util.datetime_helpers import (dt_floor_day, dt_from_ts, dt_humanize, dt_now, dt_ts,
dt_utc, shorten_date)
from freqtrade.util.ft_precise import FtPrecise
from freqtrade.util.periodic_cache import PeriodicCache
__all__ = [
'dt_floor_day',
'dt_from_ts',
'dt_now',
'dt_ts',
'dt_utc',
'dt_humanize',
'shorten_date',
'FtPrecise',
'PeriodicCache',
]

View File

@@ -0,0 +1,63 @@
import re
from datetime import datetime, timezone
from typing import Optional
import arrow
def dt_now() -> datetime:
"""Return the current datetime in UTC."""
return datetime.now(timezone.utc)
def dt_utc(year: int, month: int, day: int, hour: int = 0, minute: int = 0, second: int = 0,
microsecond: int = 0) -> datetime:
"""Return a datetime in UTC."""
return datetime(year, month, day, hour, minute, second, microsecond, tzinfo=timezone.utc)
def dt_ts(dt: Optional[datetime] = None) -> int:
"""
Return dt in ms as a timestamp in UTC.
If dt is None, return the current datetime in UTC.
"""
if dt:
return int(dt.timestamp() * 1000)
return int(dt_now().timestamp() * 1000)
def dt_floor_day(dt: datetime) -> datetime:
"""Return the floor of the day for the given datetime."""
return dt.replace(hour=0, minute=0, second=0, microsecond=0)
def dt_from_ts(timestamp: float) -> datetime:
"""
Return a datetime from a timestamp.
:param timestamp: timestamp in seconds or milliseconds
"""
if timestamp > 1e10:
# Timezone in ms - convert to seconds
timestamp /= 1000
return datetime.fromtimestamp(timestamp, tz=timezone.utc)
def shorten_date(_date: str) -> str:
"""
Trim the date so it fits on small screens
"""
new_date = re.sub('seconds?', 'sec', _date)
new_date = re.sub('minutes?', 'min', new_date)
new_date = re.sub('hours?', 'h', new_date)
new_date = re.sub('days?', 'd', new_date)
new_date = re.sub('^an?', '1', new_date)
return new_date
def dt_humanize(dt: datetime, **kwargs) -> str:
"""
Return a humanized string for the given datetime.
:param dt: datetime to humanize
:param kwargs: kwargs to pass to arrow's humanize()
"""
return arrow.get(dt).humanize(**kwargs)

View File

@@ -3,16 +3,16 @@
import logging
from copy import deepcopy
from datetime import datetime, timedelta
from typing import Dict, NamedTuple, Optional
import arrow
from freqtrade.constants import UNLIMITED_STAKE_AMOUNT, Config
from freqtrade.enums import RunMode, TradingMode
from freqtrade.exceptions import DependencyException
from freqtrade.exchange import Exchange
from freqtrade.misc import safe_value_fallback
from freqtrade.persistence import LocalTrade, Trade
from freqtrade.util.datetime_helpers import dt_now
logger = logging.getLogger(__name__)
@@ -43,7 +43,7 @@ class Wallets:
self._wallets: Dict[str, Wallet] = {}
self._positions: Dict[str, PositionWallet] = {}
self.start_cap = config['dry_run_wallet']
self._last_wallet_refresh = 0
self._last_wallet_refresh: Optional[datetime] = None
self.update()
def get_free(self, currency: str) -> float:
@@ -166,14 +166,19 @@ class Wallets:
for trading operations, the latest balance is needed.
:param require_update: Allow skipping an update if balances were recently refreshed
"""
if (require_update or (self._last_wallet_refresh + 3600 < arrow.utcnow().int_timestamp)):
now = dt_now()
if (
require_update
or self._last_wallet_refresh is None
or (self._last_wallet_refresh + timedelta(seconds=3600) < now)
):
if (not self._config['dry_run'] or self._config.get('runmode') == RunMode.LIVE):
self._update_live()
else:
self._update_dry()
if self._log:
logger.info('Wallets synced.')
self._last_wallet_refresh = arrow.utcnow().int_timestamp
self._last_wallet_refresh = dt_now()
def get_all_balances(self) -> Dict[str, Wallet]:
return self._wallets
@@ -181,6 +186,35 @@ class Wallets:
def get_all_positions(self) -> Dict[str, PositionWallet]:
return self._positions
def _check_exit_amount(self, trade: Trade) -> bool:
if trade.trading_mode != TradingMode.FUTURES:
# Slightly higher offset than in safe_exit_amount.
wallet_amount: float = self.get_total(trade.safe_base_currency) * (2 - 0.981)
else:
# wallet_amount: float = self.wallets.get_free(trade.safe_base_currency)
position = self._positions.get(trade.pair)
if position is None:
# We don't own anything :O
return False
wallet_amount = position.position
if wallet_amount >= trade.amount:
return True
return False
def check_exit_amount(self, trade: Trade) -> bool:
"""
Checks if the exit amount is available in the wallet.
:param trade: Trade to check
:return: True if the exit amount is available, False otherwise
"""
if not self._check_exit_amount(trade):
# Update wallets just to make sure
self.update()
return self._check_exit_amount(trade)
return True
def get_starting_balance(self) -> float:
"""
Retrieves starting balance - based on either available capital,

View File

@@ -1,5 +1,5 @@
[build-system]
requires = ["setuptools >= 46.4.0", "wheel"]
requires = ["setuptools >= 64.0.0", "wheel"]
build-backend = "setuptools.build_meta"
[tool.black]

View File

@@ -7,9 +7,9 @@
-r docs/requirements-docs.txt
coveralls==3.3.1
ruff==0.0.262
mypy==1.2.0
pre-commit==3.2.2
ruff==0.0.269
mypy==1.3.0
pre-commit==3.3.2
pytest==7.3.1
pytest-asyncio==0.21.0
pytest-cov==4.0.0
@@ -18,15 +18,13 @@ pytest-random-order==1.1.0
isort==5.12.0
# For datetime mocking
time-machine==2.9.0
# fastapi testing
httpx==0.24.0
# Convert jupyter notebooks to markdown documents
nbconvert==7.3.1
nbconvert==7.4.0
# mypy types
types-cachetools==5.3.0.5
types-filelock==3.2.7
types-requests==2.28.11.17
types-requests==2.30.0.0
types-tabulate==0.9.0.2
types-python-dateutil==2.8.19.12
types-python-dateutil==2.8.19.13

View File

@@ -2,11 +2,10 @@
-r requirements-freqai.txt
# Required for freqai-rl
torch==1.13.1; python_version < '3.11'
stable-baselines3==1.7.0; python_version < '3.11'
sb3-contrib==1.7.0; python_version < '3.11'
# Gym is forced to this version by stable-baselines3.
setuptools==65.5.1 # Should be removed when gym is fixed.
gym==0.21; python_version < '3.11'
torch==2.0.1
#until these branches will be released we can use this
gymnasium==0.28.1
stable_baselines3==2.0.0a10
sb3_contrib>=2.0.0a9
# Progress bar for stable-baselines3 and sb3-contrib
tqdm==4.65.0; python_version < '3.11'
tqdm==4.65.0

View File

@@ -5,7 +5,8 @@
# Required for freqai
scikit-learn==1.1.3
joblib==1.2.0
catboost==1.1.1; platform_machine != 'aarch64' and 'arm' not in platform_machine and python_version < '3.11'
catboost==1.1.1; sys_platform == 'darwin' and python_version < '3.9'
catboost==1.2; 'arm' not in platform_machine and (sys_platform != 'darwin' or python_version >= '3.9')
lightgbm==3.3.5
xgboost==1.7.5
tensorboard==2.12.2
tensorboard==2.13.0

View File

@@ -1,16 +1,19 @@
numpy==1.24.3
pandas==1.5.3
pandas==2.0.1
pandas-ta==0.3.14b
ccxt==3.0.75
cryptography==40.0.2
ccxt==3.1.5
cryptography==40.0.2; platform_machine != 'armv7l'
cryptography==40.0.1; platform_machine == 'armv7l'
aiohttp==3.8.4
SQLAlchemy==2.0.10
python-telegram-bot==13.15
SQLAlchemy==2.0.15
python-telegram-bot==20.3
# can't be hard-pinned due to telegram-bot pinning httpx with ~
httpx>=0.23.3
arrow==1.2.3
cachetools==4.2.2
requests==2.28.2
urllib3==1.26.15
cachetools==5.3.0
requests==2.31.0
urllib3==2.0.2
jsonschema==4.17.3
TA-Lib==0.4.26
technical==1.4.0
@@ -20,8 +23,8 @@ jinja2==3.1.2
tables==3.8.0
blosc==1.11.1
joblib==1.2.0
rich==13.3.4
pyarrow==11.0.0; platform_machine != 'armv7l'
rich==13.3.5
pyarrow==12.0.0; platform_machine != 'armv7l'
# find first, C search in arrays
py_find_1st==1.1.5
@@ -29,16 +32,16 @@ py_find_1st==1.1.5
# Load ticker files 30% faster
python-rapidjson==1.10
# Properly format api responses
orjson==3.8.10
orjson==3.8.12
# Notify systemd
sdnotify==0.3.2
# API Server
fastapi==0.95.1
fastapi==0.95.2
pydantic==1.10.7
uvicorn==0.21.1
pyjwt==2.6.0
uvicorn==0.22.0
pyjwt==2.7.0
aiofiles==23.1.0
psutil==5.9.5
@@ -54,7 +57,8 @@ python-dateutil==2.8.2
schedule==1.2.0
#WS Messages
websockets==11.0.2
websockets==11.0.3
janus==1.0.0
ast-comments==1.0.1
packaging==23.1

View File

@@ -279,8 +279,9 @@ class FtRestClient():
"""
data = {"pair": pair,
"side": side,
"price": price,
}
if price:
data['price'] = price
return self._post("forceenter", data=data)
def forceexit(self, tradeid, ordertype=None, amount=None):
@@ -348,12 +349,13 @@ class FtRestClient():
params['limit'] = limit
return self._get("pair_candles", params=params)
def pair_history(self, pair, timeframe, strategy, timerange=None):
def pair_history(self, pair, timeframe, strategy, timerange=None, freqaimodel=None):
"""Return historic, analyzed dataframe
:param pair: Pair to get data for
:param timeframe: Only pairs with this timeframe available.
:param strategy: Strategy to analyze and get values for
:param freqaimodel: FreqAI model to use for analysis
:param timerange: Timerange to get data for (same format than --timerange endpoints)
:return: json object
"""
@@ -361,6 +363,7 @@ class FtRestClient():
"pair": pair,
"timeframe": timeframe,
"strategy": strategy,
"freqaimodel": freqaimodel,
"timerange": timerange if timerange else '',
})

Some files were not shown because too many files have changed in this diff Show More